Science.gov

Sample records for atlas silicon tracker

  1. Alignment of the ATLAS silicon tracker

    NASA Astrophysics Data System (ADS)

    Morley, Anthony

    2008-10-01

    ATLAS is one of the four experiments currently under preparation at Large Hadron Collider. Charged particle track reconstruction in the ATLAS Inner Detector is performed both with silicon and drift-tube-based detectors. The alignment of the ATLAS tracking system is one of the challenges that the experiment must overcome in order to achieve its physics goals. This requires the determination of almost 35 000 degrees of freedom. The precision required for the most sensitive coordinate of the silicon devices is of the order of few microns. This precision will be attained with a combination of two techniques: a hardware system with Frequency Scan Interferometers, and track-based alignment. The latter requires the application of complex alignment algorithms that can be both CPU and memory intensive due to the possible requirement of large matrix inversion or many iterations. The alignment algorithms have been already exercised on several challenges such as a Combined Test Beam, cosmic ray runs and large scale computing simulation of physics samples. This note reports on the methods, their computing requirements and preliminary results.

  2. The silicon microstrip sensors of the ATLAS semiconductor tracker

    SciTech Connect

    ATLAS SCT Collaboration; Spieler, Helmuth G.

    2007-04-13

    This paper describes the AC-coupled, single-sided, p-in-n silicon microstrip sensors used in the Semiconductor Tracker (SCT) of the ATLAS experiment at the CERN Large Hadron Collider (LHC). The sensor requirements, specifications and designs are discussed, together with the qualification and quality assurance procedures adopted for their production. The measured sensor performance is presented, both initially and after irradiation to the fluence anticipated after 10 years of LHC operation. The sensors are now successfully assembled within the detecting modules of the SCT, and the SCT tracker is completed and integrated within the ATLAS Inner Detector. Hamamatsu Photonics Ltd. supplied 92.2percent of the 15,392 installed sensors, with the remainder supplied by CiS.

  3. Operation and performance of the ATLAS silicon micro-strip tracker

    SciTech Connect

    Pylypchenko, Y.

    2011-07-01

    The Semiconductor Tracker (SCT) is the key precision tracking device in ATLAS, made from silicon micro-strip detectors processed in the planar p-in-n technology. The completed SCT has been installed inside the ATLAS experimental hall since 2007 and has been operational since then. In this paper the current status of the Semiconductor Tracker is reviewed, including results from the data-taking periods in 2009 and 2010, and from the detector alignment. The emphasis is given to the performance of the Semiconductor Tracker with the LHC in collision mode and to the performance of individual electronic components. (authors)

  4. Performance of silicon pixel detectors at small track incidence angles for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Viel, Simon; Banerjee, Swagato; Brandt, Gerhard; Carney, Rebecca; Garcia-Sciveres, Maurice; Hard, Andrew Straiton; Kaplan, Laser Seymour; Kashif, Lashkar; Pranko, Aliaksandr; Rieger, Julia; Wolf, Julian; Wu, Sau Lan; Yang, Hongtao

    2016-09-01

    In order to enable the ATLAS experiment to successfully track charged particles produced in high-energy collisions at the High-Luminosity Large Hadron Collider, the current ATLAS Inner Detector will be replaced by the Inner Tracker (ITk), entirely composed of silicon pixel and strip detectors. An extension of the tracking coverage of the ITk to very forward pseudorapidity values is proposed, using pixel modules placed in a long cylindrical layer around the beam pipe. The measurement of long pixel clusters, detected when charged particles cross the silicon sensor at small incidence angles, has potential to significantly improve the tracking efficiency, fake track rejection, and resolution of the ITk in the very forward region. The performance of state-of-the-art pixel modules at small track incidence angles is studied using test beam data collected at SLAC and CERN.

  5. Diagnostic Analysis of Silicon Strips Detector Readout in the ATLAS Semi-Conductor Tracker Module Production

    SciTech Connect

    Ciocio, Alessandra; ATLAS SCT Collaboration

    2004-10-31

    The ATLAS Semi-Conductor Tracker (SCT) Collaboration is currently in the production phase of fabricating and testing silicon strips modules for the ATLAS detector at the Large Hadron Collider being built at the CERN laboratory in Geneva, Switzerland. A small but relevant percentage of ICs developed a new set of defects after being mounted on hybrids that were not detected in the wafer screening. To minimize IC replacement and outright module failure, analysis methods were developed to study IC problems during the production of SCT modules. These analyses included studying wafer and hybrid data correlations to finely tune the selection of ICs and tests to utilize the ability to adjust front-end parameters of the IC in order to reduce the rejection and replacement rate of fabricated components. This paper will discuss a few examples of the problems encountered during the production of SCT hybrids and modules in the area of ICs performance, and will demonstrate the value of the flexibility built into the ABCD3T chip.

  6. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    SciTech Connect

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)

  7. LHCb Silicon Tracker infrastructure

    NASA Astrophysics Data System (ADS)

    Ermoline, Yuri

    2004-02-01

    The LHCb Silicon Tracker is a vital part of the experiment. It consists of four planar stations: one trigger and three inner tracking stations. The operation of the Silicon Tracker detectors and electronics is provided by its infrastructure: cooling system, high- and low-voltage power supply systems, temperature and radiation monitoring systems. Several components of these systems are located in the experimental hall and subjected to radiation. This paper mainly concentrates on the recent development: requirements definition, evaluation of possible implementation scenarios, component choice and component radiation tests.

  8. Evaluation of the performance of irradiated silicon strip sensors for the forward detector of the ATLAS Inner Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Mori, R.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia-Munoz, M. I.; Hommels, L. B. A.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Garcia, S. Marti i.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The upgrade to the High-Luminosity LHC foreseen in about ten years represents a great challenge for the ATLAS inner tracker and the silicon strip sensors in the forward region. Several strip sensor designs were developed by the ATLAS collaboration and fabricated by Hamamatsu in order to maintain enough performance in terms of charge collection efficiency and its uniformity throughout the active region. Of particular attention, in the case of a stereo-strip sensor, is the area near the sensor edge where shorter strips were ganged to the complete ones. In this work the electrical and charge collection test results on irradiated miniature sensors with forward geometry are presented. Results from charge collection efficiency measurements show that at the maximum expected fluence, the collected charge is roughly halved with respect to the one obtained prior to irradiation. Laser measurements show a good signal uniformity over the sensor. Ganged strips have a similar efficiency as standard strips.

  9. The LHCb Silicon Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-09-01

    The LHCb experiment is dedicated to the study of heavy flavour physics at the Large Hadron Collider (LHC). The primary goal of the experiment is to search for indirect evidence of new physics via measurements of CP violation and rare decays of beauty and charm hadrons. The LHCb detector has a large-area silicon micro-strip detector located upstream of a dipole magnet, and three tracking stations with silicon micro-strip detectors in the innermost region downstream of the magnet. These two sub-detectors form the LHCb Silicon Tracker (ST). This paper gives an overview of the performance and operation of the ST during LHC Run 1. Measurements of the observed radiation damage are shown and compared to the expectation from simulation.

  10. Silicon tracker data acquisition

    SciTech Connect

    Haynes, W.J.

    1997-12-31

    Large particle physics experiments are making increasing technological demands on the design and implementation of real-time data acquisition systems. The LHC will have bunch crossing intervals of 25 nanoseconds and detectors, such as CMS, will contain over 10 million electronic channels. Readout systems will need to cope with 100 kHz rates of 1 MByte-sized events. Over 70% of this voluminous flow will stem from silicon tracker and MSGC devices. This paper describes the techniques currently being harnessed from ASIC devices through to modular microprocessor-based architectures around standards such as VMEbus and PCI. In particular, the experiences gained at the HERA H1 experiment are highlighted where many of the key technological concepts have already been im implemented.

  11. Design and performance of the ABCD3TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker

    NASA Astrophysics Data System (ADS)

    Campabadal, F.; Fleta, C.; Key, M.; Lozano, M.; Martinez, C.; Pellegrini, G.; Rafi, J. M.; Ullan, M.; Johansen, L. G.; Mohn, B.; Oye, O.; Solberg, A. O.; Stugu, B.; Ciocio, A.; Ely, R.; Fadeyev, V.; Gilchriese, M.; Haber, C.; Siegrist, J.; Spieler, H.; Vu, C.; Bell, P. J.; Charlton, D. G.; Dowell, J. D.; Gallop, B. J.; Homer, R. J.; Jovanovic, P.; Mahout, G.; McMahon, T. J.; Wilson, J. A.; Barr, A. J.; Carter, J. R.; Goodrick, M. J.; Hill, J. C.; Lester, C. G.; Parker, M. A.; Robinson, D.; Anghinolfi, F.; Chesi, E.; Jarron, P.; Kaplon, J.; Macpherson, A.; Pernegger, H.; Pritchard, T.; Roe, S.; Rudge, A.; Weilhammer, P.; Bialas, W.; Dabrowski, W.; Dwuznik, M.; Toczek, B.; Koperny, S.; Bruckman, P.; Gadomski, S.; Gornicki, E.; Malecki, P.; Moszczynski, A.; Stanecka, E.; Szczygiel, R.; Turala, M.; Wolter, M.; Feld, L.; Ketterer, C.; Ludwig, J.; Meinhardt, J.; Runge, K.; Clark, A. G.; Donega, M.; D'Onofrio, M.; Ferrere, D.; La Marra, D.; Macina, D.; Mangin-Brinet, M.; Mikulec, B.; Zsenei, A.; Bates, R. L.; Cheplakov, A.; Iwata, Y.; Ohsugi, T.; Ikegami, Y.; Kohriki, T.; Kondo, T.; Terada, S.; Ujiie, N.; Unno, Y.; Takashima, R.; Allport, P. P.; Greenall, A.; Jackson, J. N.; Jones, T. J.; Smith, N. A.; Beck, G. A.; Carter, A. A.; Morris, J.; Morin, J.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Duerdoth, I. P.; Foster, J. M.; Pater, J.; Snow, S. W.; Thompson, R. J.; Atkinson, T. M.; Dick, B.; Fares, F.; Moorhead, G. F.; Taylor, G. N.; Andricek, L.; Bethke, S.; Hauff, D.; Kudlaty, J.; Lutz, G.; Moser, H.-G.; Nisius, R.; Richter, R.; Schieck, J.; Colijn, A.-P.; Cornelissen, T.; Gorfine, G. W.; Hartjes, F. G.; Hessey, N. P.; de Jong, P.; Kluit, R.; Koffeman, E.; Muijs, A. J. M.; Peeters, S. J. M.; van Eijk, B.; Nakano, I.; Tanaka, R.; Dorholt, O.; Danielsen, K. M.; Huse, T.; Sandaker, H.; Stapnes, S.; Kundu, N.; Nickerson, R. B.; Weidberg, A.; Bohm, J.; Mikestikova, M.; Stastny, J.; Broklova, Z.; Broz, J.; Dolezal, Z.; Kodys, P.; Kubik, P.; Reznicek, P.; Vorobel, V.; Wilhelm, I.; Cermák, P.; Chren, D.; Horazdovský, T.; Linhart, V.; Pospísil, S.; Sinor, M.; Solar, M.; Sopko, B.; Stekl, I.; Apsimon, R. J.; Batchelor, L. E.; Bizzell, J. P.; Falconer, N. G.; French, M. J.; Gibson, M. D.; Haywood, S. J.; Matson, R. M.; McMahon, S. J.; Morrissey, M.; Murray, W. J.; Phillips, P. W.; Tyndel, M.; Villani, E. G.; Cosgrove, D. P.; Dorfan, D. E.; Grillo, A. A.; Kachiguine, S.; Rosenbaum, F.; Sadrozinski, H. F.-W.; Seiden, A.; Spencer, E.; Wilder, M.; Akimoto, T.; Hara, K.; Tanizaki, K.; Bingefors, N.; Brenner, R.; Ekelof, T.; Eklund, L.; Bernabeu, J.; Civera, J. V.; Costa, M. J.; Fuster, J.; Garcia, C.; Garcia-Navarro, J. E.; Gonzalez-Sevilla, S.; Lacasta, C.; Llosa, G.; Marti-Garcia, S.; Modesto, P.; Sanchez, F. J.; Sospedra, L.; Vos, M.

    2005-11-01

    The ABCD3TA is a 128-channel ASIC with binary architecture for the readout of silicon strip particle detectors in the Semiconductor Tracker of the ATLAS experiment at the Large Hadron Collider (LHC). The chip comprises fast front-end and amplitude discriminator circuits using bipolar devices, a binary pipeline for first level trigger latency, a second level derandomising buffer and data compression circuitry based on CMOS devices. It has been designed and fabricated in a BiCMOS radiation resistant process. Extensive testing of the ABCD3TA chips assembled into detector modules show that the design meets the specifications and maintains the required performance after irradiation up to a total ionising dose of 10 Mrad and a 1-MeV neutron equivalent fluence of 2×10 14 n/cm 2, corresponding to 10 years of operation of the LHC at its design luminosity. Wafer screening and quality assurance procedures have been developed and implemented in large volume production to ensure that the chips assembled into modules meet the rigorous acceptance criteria.

  12. The CDF silicon vertex tracker

    SciTech Connect

    A. Cerri et al.

    2000-10-10

    Real time pattern recognition is becoming a key issue in many position sensitive detector applications. The CDF collaboration is building SVT: a specialized electronic device designed to perform real time track reconstruction using the silicon vertex detector (SVX II). This will strongly improve the CDF capability of triggering on events containing b quarks, usually characterized by the presence of a secondary vertex. SVT is designed to reconstruct in real time charged particles trajectories using data coming from the Silicon Vertex detector and the Central Outer Tracker drift chamber. The SVT architecture and algorithm have been specially tuned to minimize processing time without degrading parameter resolution.

  13. Silicon photomultipliers for scintillating trackers

    NASA Astrophysics Data System (ADS)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  14. Silicon Tracker Design for the ILC

    SciTech Connect

    Nelson, T.; /SLAC

    2005-07-27

    The task of tracking charged particles in energy frontier collider experiments has been largely taken over by solid-state detectors. While silicon microstrip trackers offer many advantages in this environment, large silicon trackers are generally much more massive than their gaseous counterparts. Because of the properties of the machine itself, much of the material that comprises a typical silicon microstrip tracker can be eliminated from a design for the ILC. This realization is the inspiration for a tracker design using lightweight, short, mass-producible modules to tile closed, nested cylinders with silicon microstrips. This design relies upon a few key technologies to provide excellent performance with low cost and complexity. The details of this concept are discussed, along with the performance and status of the design effort.

  15. The LHCb silicon tracker: running experience

    NASA Astrophysics Data System (ADS)

    Saornil Gamarra, S.

    2013-02-01

    The LHCb Silicon Tracker is part of the main tracking system of the LHCb detector at the LHC. It measures very precisely the particle trajectories coming from the interaction point in the region of high occupancies around the beam axis. It covers the full acceptance angle in front of the dipole magnet in the Tracker Turicensis station and the innermost part around the beam axis in the three Inner Tracker stations downstream of the magnet. The Silicon Tracker covers a sensitive area of 12 m2 using silicon micro-strip sensors with very long readout strips. We report on running experience for the experiment. Focussing on electronic and hardware issues we describe some of the lessons learned and pitfalls encountered after three years of successful operation.

  16. A new silicon tracker for proton imaging and dosimetry

    NASA Astrophysics Data System (ADS)

    Taylor, J. T.; Waltham, C.; Price, T.; Allinson, N. M.; Allport, P. P.; Casse, G. L.; Kacperek, A.; Manger, S.; Smith, N. A.; Tsurin, I.

    2016-09-01

    For many years, silicon micro-strip detectors have been successfully used as tracking detectors for particle and nuclear physics experiments. A new application of this technology is to the field of particle therapy where radiotherapy is carried out by use of charged particles such as protons or carbon ions. Such a treatment has been shown to have advantages over standard x-ray radiotherapy and as a result of this, many new centres offering particle therapy are currently under construction around the world today. The Proton Radiotherapy, Verification and Dosimetry Applications (PRaVDA) consortium are developing instrumentation for particle therapy based upon technology from high-energy physics. The characteristics of a new silicon micro-strip tracker for particle therapy will be presented. The array uses specifically designed, large area sensors with technology choices that follow closely those taken for the ATLAS experiment at the HL-LHC. These detectors will be arranged into four units each with three layers in an x-u-v configuration to be suitable for fast proton tracking with minimal ambiguities. The sensors will form a tracker capable of tracing the path of ~200 MeV protons entering and exiting a patient allowing a new mode of imaging known as proton computed tomography (pCT). This will aid the accurate delivery of treatment doses and in addition, the tracker will also be used to monitor the beam profile and total dose delivered during the high fluences used for treatment. We present here details of the design, construction and assembly of one of the four units that will make up the complete tracker along with its characterisation using radiation tests carried out using a 90Sr source in the laboratory and a 60 MeV proton beam at the Clatterbridge Cancer Centre.

  17. D0 layer 0 innermost layer of silicon microstrip tracker

    SciTech Connect

    Hanagaki, K.; /Fermilab

    2006-01-01

    A new inner layer silicon strip detector has been built and will be installed in the existing silicon microstrip tracker in D0. They report on the motivation, design, and performance of this new detector.

  18. The DAMPE silicon-tungsten tracker

    NASA Astrophysics Data System (ADS)

    Azzarello, P.; Ambrosi, G.; Asfandiyarov, R.; Bernardini, P.; Bertucci, B.; Bolognini, A.; Cadoux, F.; Caprai, M.; De Mitri, I.; Domenjoz, M.; Dong, Y.; Duranti, M.; Fan, R.; Fusco, P.; Gallo, V.; Gargano, F.; Gong, K.; Guo, D.; Husi, C.; Ionica, M.; La Marra, D.; Loparco, F.; Marsella, G.; Mazziotta, M. N.; Mesa, J.; Nardinocchi, A.; Nicola, L.; Pelleriti, G.; Peng, W.; Pohl, M.; Postolache, V.; Qiao, R.; Surdo, A.; Tykhonov, A.; Vitillo, S.; Wang, H.; Weber, M.; Wu, D.; Wu, X.; Zhang, F.

    2016-09-01

    The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV-10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m2. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.

  19. Radiation-tolerant optical links for the ATLAS semiconductor tracker

    NASA Astrophysics Data System (ADS)

    Matheson, John; Charlton, David G.; Chu, Ming-lee; Dowell, John D.; Galagedera, Senerath; Homer, Roger J.; Hou, Li-Shing; Jovanovic, Predrag; Kundu, Nikhil N.; Lee, Shih-chang; McMahon, Thomas J.; Macwaters, Craig; Mahout, Gilles; Morrissey, Martin; Rudge, Alan; Skubic, Bjorn J.; Teng, Ping-kun; Wastie, Roy; Weidberg, Anthony R.; Wilson, John A.

    2002-09-01

    The Large Hadron Collider (LHC), currently under construction at CERN, Geneva, will collide proton beams of energy 7 TeV. The high luminosity of the machine will lead to a severe radiation environment for detectors such as ATLAS. The ATLAS Semiconductor Tracker (SCT) must be able to tolerate a radiation field equivalent to an ionising dose of 10 Mrad (Si) and a neutron fluence of 2x1014cm-2 (1MeV,Si) over the 10 year lifetime of the experiment. The SCT is instrumented by silicon microstrip detectors and their front-end chips (ABCDs). Data is transferred from, and control signals to, the ABCDs using multimode optical links carrying light at 840 nm. The incoming timing, trigger and control (TTC) link uses biphase mark encoding to send 40 Mbit/s control signals along with a 40 MHz clock down a single fibre. Optical signals are received by a p-i-n diode and decoded by DORIC chips. Data in electrical form from the ABCDs is used to moderate two VCSELs by means of a VCSEL driver chip (VDC). Each detector module carries 12 ABCDs and is served by two optical fibres for data readout and one for TTC signals. There are 4088 such modules within the SCT. The system performance specifications and architecture are described, followed by test results on individual components and complete links. The optical fibre, active optical components, chips, packaging and interconnects have all been qualified to the necessary radiation levels. This has involved studies of total dose effects, single event upset and ageing at elevated temperatures and details of these studies are presented.

  20. Simulation of the GEM silicon central tracker using GEANT

    SciTech Connect

    Brooks, M.L.; Kinnison, W.W.

    1994-01-01

    The silicon central tracker of the GEM detector has been simulated using the high energy physics simulations code GEANT. This paper will describe the level of detail of the geometry of the tracker that is in the code, including the silicon detectors themselves as well as all non-sensitive volumes such as support structures; the digitization, or detector response to particles, of the silicon detectors; the coordinate reconstruction from the digitizations, and some of the results of the simulations regarding the detector performance.

  1. EMC Diagnosis and Corrective Actions for Silicon Strip Tracker Detectors

    SciTech Connect

    Arteche, F.; Rivetta, C.; /SLAC

    2006-06-06

    The tracker sub-system is one of the five sub-detectors of the Compact Muon Solenoid (CMS) experiment under construction at CERN for the Large Hadron Collider (LHC) accelerator. The tracker subdetector is designed to reconstruct tracks of charged sub-atomic particles generated after collisions. The tracker system processes analogue signals from 10 million channels distributed across 14000 silicon micro-strip detectors. It is designed to process signals of a few nA and digitize them at 40 MHz. The overall sub-detector is embedded in a high particle radiation environment and a magnetic field of 4 Tesla. The evaluation of the electromagnetic immunity of the system is very important to optimize the performance of the tracker sub-detector and the whole CMS experiment. This paper presents the EMC diagnosis of the CMS silicon tracker sub-detector. Immunity tests were performed using the final prototype of the Silicon Tracker End-Caps (TEC) system to estimate the sensitivity of the system to conducted noise, evaluate the weakest areas of the system and take corrective actions before the integration of the overall detector. This paper shows the results of one of those tests, that is the measurement and analysis of the immunity to CM external conducted noise perturbations.

  2. Simulations of silicon vertex tracker for star experiment at RHIC

    SciTech Connect

    Odyniec, G.; Cebra, D.; Christie, W.; Naudet, C.; Schroeder, L.; Wilson, W.; Liko, D.; Cramer, J.; Prindle, D.; Trainor, T.; Braithwaite, W.

    1991-12-31

    The first computer simulations to optimize the Silicon Vertex Tracker (SVT) designed for the STAR experiment at RHIC are presented. The physics goals and the expected complexity of the events at RHIC dictate the design of a tracking system for the STAR experiment. The proposed tracking system will consist of a silicon vertex tracker (SVT) to locate the primary interaction and secondary decay vertices and to improve the momentum resolution, and a time projection chamber (TPC), positioned inside a solenoidal magnet, for continuous tracking.

  3. The Atlas Tracker Upgrade:. Short Strips Detectors for the sLHC

    NASA Astrophysics Data System (ADS)

    Soldevila, Unnila; Miñano, M.; Garcia, C.; Lacasta, C.; Marti, S.

    2010-04-01

    It is foreseen to increase the luminosity of the Large Hadron Collider (LHC) at CERN around 20I8 by about an order of magnitude, with the upgraded machine dubbed Super-LHC or sLHC. The ATLAS experiment will require a new tracker for sLHC operation. In order to cope with the order of magnitude increase in pile-up backgrounds at the higher luminosity, an all silicon detector tracker is being designed. As the increased luminosity will mean a corresponding increase in radiation dose, a new generation of extremely radiation hard silicon detectors is required. A massive R&D program is underway to develop silicon sensors with sufficient radiation hardness. New front-end electronics and readout systems are being designed to cope with the higher data rates. The challenges of powering and cooling a very large strip detector will be discussed. Ideas on possible schemes for the layout and support mechanics will be shown. Planar detectors to be made on p-type wafers in a number of different designs have been developed. These prototype detectors were then produced by a leading manufacturers and irradiated to a set of fluences matched to sLHC expectations. The irradiated sensors were subsequently tested with LHC-readout-electronics in order to study the radiation-induced degradation, and determine their performance after serious hadron irradiation of up to 1015 neqcm-2. The signal suffers degradation as a function of irradiation. It is however evident that sufficient charge can still be recorded even at the highest fluence. We will give an overview of the ATLAS tracker upgrade, in particular focusing on innermost silicon strip layers. We will draw conclusions on what type and design of strip detectors to employ for the upgrades of the tracking layers in the sLHC upgrades of LHC experiments.

  4. The D0 silicon micro-strip tracker

    SciTech Connect

    Weber, Michael S.; /Fermilab

    2006-01-01

    The D0 silicon micro-strip tracker (SMT) is part of the D0 upgrade for the Tevatron RunII at Fermilab. The detector has been running successfully since the start of the RunII physics data taking. The tracking and vertexing performance match the expectation from Monte-Carlo studies. An additional inner layer (Layer0) of silicon sensors at R = 1.6cm will be installed in 2005.

  5. Real time tracker based upon local hit correlation circuit for silicon strip sensors

    NASA Astrophysics Data System (ADS)

    Lehmann, Niklaus; Pirrami, Lorenzo; Blue, Andrew; Diez, Sergio; Dressnandt, Nandor; Duner, Silvan; Garcia-Sciveres, Maurice; Haber, Carl; Halgeri, Amogh; Keener, Paul; Keller, John; Newcomer, Mitchell; Pasner, Jacob; Peschke, Richard; Risbud, Amar; Ropraz, Eric; Stalder, Jonas; Wang, Haichen

    2016-01-01

    For the planned high luminosity upgrade of the Large Hadron Collider (LHC), a significant performance improvement of the detectors is required, including new tracker and trigger systems that makes use of charged track information early on. In this note we explore the principle of real time track reconstruction integrated in the readout electronics. A prototype was built using the silicon strip sensor for the ATLAS phase-II upgrade. The real time tracker is not the baseline for ATLAS but is nevertheless of interest, as the upgraded trigger design has not yet been finalized. For this, a new readout scheme in parallel with conventional readout, called the Fast Cluster Finder (FCF), was included in the latest prototype of the ATLAS strip detector readout chip (ABC130). The FCF is capable of finding hits within 6 ns and transmitting the found hit information synchronously every 25 ns. Using the FCF together with external correlation logic makes it possible to look for pairs of hits consistent with tracks from the interaction point above a transverse momentum threshold. A correlator logic finds correlations between two closely spaced parallel sensors, a "doublet", and can generate information used as input to a lowest level trigger decision. Such a correlator logic was developed as part of a demonstrator and was successfully tested in an electron beam. The results of this test beam experiment proved the concept of the real time track vector processor with FCF.

  6. Search for WW and WZ production in lepton, neutrino plus jets final states at CDF Run II and Silicon module production and detector control system for the ATLAS SemiConductor Tracker

    SciTech Connect

    Sfyrla, Anna

    2008-03-10

    In the first part of this work, we present a search for WW and WZ production in charged lepton, neutrino plus jets final states produced in p$\\bar{p}$ collisions with √s = 1.96 TeV at the Fermilab Tevatron, using 1.2 fb-1 of data accumulated with the CDF II detector. This channel is yet to be observed in hadron colliders due to the large singleWplus jets background. However, this decay mode has a much larger branching fraction than the cleaner fully leptonic mode making it more sensitive to anomalous triple gauge couplings that manifest themselves at higher transverse W momentum. Because the final state is topologically similar to associated production of a Higgs boson with a W, the techniques developed in this analysis are also applicable in that search. An Artificial Neural Network has been used for the event selection optimization. The theoretical prediction for the cross section is σWW/WZtheory x Br(W → ℓv; W/Z → jj) = 2.09 ± 0.14 pb. They measured NSignal = 410 ± 212(stat) ± 102(sys) signal events that correspond to a cross section σWW/WZ x Br(W → ℓv; W/Z → jj) = 1.47 ± 0.77(stat) ± 0.38(sys) pb. The 95% CL upper limit to the cross section is estimated to be σ x Br(W → ℓv; W/Z → jj) < 2.88 pb. The second part of the present work is technical and concerns the ATLAS SemiConductor Tracker (SCT) assembly phase. Although technical, the work in the SCT assembly phase is of prime importance for the good performance of the detector during data taking. The production at the University of Geneva of approximately one third of the silicon microstrip end-cap modules is presented. This collaborative effort of the university of Geneva group that lasted two years, resulted in 655 produced modules, 97% of which were good modules, constructed within the mechanical and electrical specifications and delivered in the SCT collaboration for assembly on the end-cap disks. The SCT end-caps and barrels

  7. Progress with the single-sided module prototypes for the ATLAS tracker upgrade stave

    NASA Astrophysics Data System (ADS)

    Allport, P. P.; Affolder, A. A.; Anghinolfi, F.; Bates, R.; Betancourt, C.; Buttar, C.; Carter, J. R.; Casse, G.; Chen, H.; Chilingarov, A.; Civera, J. V.; Clark, A.; Colijn, A. P.; Dabrowski, W.; Dawson, N.; Dewilde, B.; Dhawan, S.; Dressnandt, N.; Dwužnik, M.; Eklund, L.; Fadeyev, V.; Farthouat, P.; Ferrère, D.; Fox, H.; French, R.; Gallop, B.; García, C.; Gerling, M.; Gibson, M.; Gilchriese, M.; Gonzalez Sevilla, S.; Goodrick, M.; Greenall, A.; Grillo, A. A.; Haber, C. H.; Hessey, N. P.; Holt, R.; Hommels, L. B. A.; Jakobs, K.; Jones, T. J.; Kaplon, J.; Kierstead, J.; Koffeman, E.; Köhler, M.; Lacasta, C.; La Marra, D.; Li, Z.; Lindgren, S.; Lynn, D.; Maddock, P.; Mahboubi, K.; Martinez-McKinney, F.; Matheson, J.; Maunu, R.; McCarthy, R.; Newcomer, M.; Nickerson, R.; O'Shea, V.; Paganis, S.; Parzefall, U.; Pernecker, S.; Phillips, P.; Poltorak, K.; Puldon, D.; Robinson, D.; Sadrozinski, H. F.-W.; Santoyo, D.; Sattari, S.; Schamberger, D.; Seiden, A.; Sutcliffe, P.; Swientek, K.; Tsionou, D.; Tyndel, M.; Unno, Y.; Viehhauser, G.; Villani, E. G.; von Wilpert, J.; Wastie, R.; Weber, M.; Weidberg, A.; Wiik, L.; Wilmut, I.; Wormald, M.; Wright, J.; Xu, D.

    2011-04-01

    The ATLAS experiment is preparing for the planned luminosity upgrade of the LHC (the super-luminous LHC or sLHC) with a programme of development for tracking able to withstand an order of greater magnitude radiation fluence and much greater hit occupancy rates than the current detector. This has led to the concept of an all-silicon tracker with an enhanced performance pixel-based inner region and short-strips for much of the higher radii. Both sub-systems employ many common technologies, including the proposed “stave” concept for integrated cooling and support. For the short-strip region, use of this integrated stave concept requires single-sided modules mounted on either side of a thin central lightweight support.Each sensor is divided into four rows of 23.82 mm length strips; within each row, there are 1280 strips of 74.5μm pitch. Well over a hundred prototype sensors are being delivered by Hamamatsu Photonics (HPK) to Japan, Europe and the US.We present results of the first 20 chip ABCN25 ASIC hybrids for these sensors, results of the first prototype 5120 strip module built with 40 ABCN25 read-out ASICs, and the status of the hybrids and modules being developed for the ATLAS tracker upgrade stave programme.

  8. DAMPE silicon tracker on-board data compression algorithm

    NASA Astrophysics Data System (ADS)

    Dong, Yi-Fan; Zhang, Fei; Qiao, Rui; Peng, Wen-Xi; Fan, Rui-Rui; Gong, Ke; Wu, Di; Wang, Huan-Yu

    2015-11-01

    The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic ray detection. The silicon tracker (STK) is a subdetector of the DAMPE payload. It has excellent position resolution (readout pitch of 242 μm), and measures the incident direction of particles as well as charge. The STK consists of 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5 m2. The total number of readout channels of the STK is 73728, which leads to a huge amount of raw data to be processed. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, and show the results of initial verification by cosmic-ray measurements. Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences (XDA040402) and National Natural Science Foundation of China (1111403027)

  9. A hardware fast tracker for the ATLAS trigger

    NASA Astrophysics Data System (ADS)

    Asbah, Nedaa

    2016-09-01

    The trigger system of the ATLAS experiment is designed to reduce the event rate from the LHC nominal bunch crossing at 40 MHz to about 1 kHz, at the design luminosity of 1034 cm-2 s-1. After a successful period of data taking from 2010 to early 2013, the LHC already started with much higher instantaneous luminosity. This will increase the load on High Level Trigger system, the second stage of the selection based on software algorithms. More sophisticated algorithms will be needed to achieve higher background rejection while maintaining good efficiency for interesting physics signals. The Fast TracKer (FTK) is part of the ATLAS trigger upgrade project. It is a hardware processor that will provide, at every Level-1 accepted event (100 kHz) and within 100 microseconds, full tracking information for tracks with momentum as low as 1 GeV. Providing fast, extensive access to tracking information, with resolution comparable to the offline reconstruction, FTK will help in precise detection of the primary and secondary vertices to ensure robust selections and improve the trigger performance. FTK exploits hardware technologies with massive parallelism, combining Associative Memory ASICs, FPGAs and high-speed communication links.

  10. Determination of W boson helicity fractions in top quark decays in p$\\bar{p}$ collisions at CDF Run II and production of endcap modules for the ATLAS Silicon Tracker

    SciTech Connect

    Moed, Shulamit

    2007-01-01

    The thesis presented here includes two parts. The first part discusses the production of endcap modules for the ATLAS SemiConductor Tracker at the University of Geneva. The ATLAS experiment is one of the two multi-purpose experiments being built at the LHC at CERN. The University of Geneva invested extensive efforts to create an excellent and efficient module production site, in which 655 endcap outer modules were constructed. The complexity and extreme requirements for 10 years of LHC operation with a high resolution, high efficiency, low noise tracking system resulted in an extremely careful, time consuming production and quality assurance of every single module. At design luminosity about 1000 particles will pass through the tracking system each 25 ns. In addition to requiring fast tracking techniques, the high particle flux causes significant radiation damage. Therefore, modules have to be constructed within tight and accurate mechanical and electrical specification. A description of the ATLAS experiment and the ATLAS Semiconductor tracker is presented, followed by a detailed overview of the module production at the University of Geneva. My personal contribution to the endcap module production at the University of Geneva was taking part, together with other physicists, in selecting components to be assembled to a module, including hybrid reception tests, measuring the I-V curve of the sensors and the modules at different stages of the production, thermal cycling the modules and performing electrical readout tests as an initial quality assurance of the modules before they were shipped to CERN. An elaborated description of all of these activities is given in this thesis. At the beginning of the production period the author developed a statistics package which enabled us to monitor the rate and quality of the module production. This package was then used widely by the ATLAS SCT institutes that built endcap modules of any type, and kept being improved and updated

  11. Performance of the CLAS12 Silicon Vertex Tracker modules

    SciTech Connect

    Antonioli, Mary Ann; Boiarinov, Serguie; Bonneau, Peter R.; Elouadrhiri, Latifa; Eng, Brian J.; Gotra, Yuri N.; Kurbatov, Evgeny O.; Leffel, Mindy A.; Mandal, Saptarshi; McMullen, Marc E.; Merkin, Mikhail M.; Raydo, Benjamin J.; Teachey, Robert W,; Tucker, Ross J.; Ungaro, Maurizio; Yegneswaran, Amrit S.; Ziegler, Veronique

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156{micro}m, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  12. Performance of the CLAS12 Silicon Vertex Tracker modules

    NASA Astrophysics Data System (ADS)

    Antonioli, M. A.; Boiarinov, S.; Bonneau, P.; Elouadrhiri, L.; Eng, B.; Gotra, Y.; Kurbatov, E.; Leffel, M.; Mandal, S.; McMullen, M.; Merkin, M.; Raydo, B.; Teachey, W.; Tucker, R.; Ungaro, M.; Yegneswaran, A.; Ziegler, V.

    2013-12-01

    For the 12 GeV upgrade, the CLAS12 experiment has designed a Silicon Vertex Tracker (SVT) using single sided microstrip sensors fabricated by Hamamatsu. The sensors have graded angle design to minimize dead areas and a readout pitch of 156 μm, with intermediate strip. Double sided SVT module hosts three daisy-chained sensors on each side with a full strip length of 33 cm. There are 512 channels per module read out by four Fermilab Silicon Strip Readout (FSSR2) chips featuring data driven architecture, mounted on a rigid-flex hybrid. Modules are assembled on the barrel using unique cantilevered geometry to minimize the amount of material in the tracking volume. Design and performance of the SVT modules are presented, focusing on results of electrical measurements.

  13. The AMS-02 Silicon Tracker:. Status and Performances

    NASA Astrophysics Data System (ADS)

    D'Urso, D.

    2012-08-01

    The Alpha Magnetic Spectrometer (AMS-02) is a space based high energy physics experiment operating on the International Space Station (ISS) since May. AMS-02 will measure the different cosmic radiation components allowing the search of primordial antimatter and dark matter annihilation products. Exploiting a large acceptance and a data taking of at least 10 years, AMS-02 will detect more than 1010 charged particles in the GV-TV rigidity range. The tracking device is composed by 2 planes at the ends of the apparatus and 7 layers of silicon sensors in the permanent magnet (0.15T) bore. The measurement of the curvature radius of the charged particles bent trajectories allows the estimation of particle rigidity and charge sign. The tracker is composed by 2264 double-sided silicon sensors (72×41 mm2, 300 μm thick) assembled in 192 read-out units, for a total of ≈ 200.000 read-out channels. The status of the AMS-02 tracker, after these first months of data taking in space, its performances and potentialities will be presented.

  14. The ATLAS semiconductor tracker end-cap module

    NASA Astrophysics Data System (ADS)

    Abdesselam, A.; Adkin, P. J.; Allport, P. P.; Alonso, J.; Andricek, L.; Anghinolfi, F.; Antonov, A. A.; Apsimon, R. J.; Atkinson, T.; Batchelor, L. E.; Bates, R. L.; Beck, G.; Becker, H.; Bell, P.; Bell, W.; Beneš, P.; Bernabeu, J.; Bethke, S.; Bizzell, J. P.; Blocki, J.; Broklová, Z.; Brož, J.; Bohm, J.; Booker, P.; Bright, G.; Brodbeck, T. J.; Bruckman, P.; Buttar, C. M.; Butterworth, J. M.; Campabadal, F.; Campbell, D.; Carpentieri, C.; Carroll, J. L.; Carter, A. A.; Carter, J. R.; Casse, G. L.; Čermák, P.; Chamizo, M.; Charlton, D. G.; Cheplakov, A.; Chesi, E.; Chilingarov, A.; Chouridou, S.; Chren, D.; Christinet, A.; Chu, M. L.; Cindro, V.; Ciocio, A.; Civera, J. V.; Clark, A.; Colijn, A. P.; Cooke, P. A.; Costa, M. J.; Costanzo, D.; Dabrowski, W.; Danielsen, K. M.; Davies, V. R.; Dawson, I.; de Jong, P.; Dervan, P.; Doherty, F.; Doležal, Z.; Donega, M.; D'Onofrio, M.; Dorholt, O.; Drásal, Z.; Dowell, J. D.; Duerdoth, I. P.; Duxfield, R.; Dwuznik, M.; Easton, J. M.; Eckert, S.; Eklund, L.; Escobar, C.; Fadeyev, V.; Fasching, D.; Feld, L.; Ferguson, D. P. S.; Ferrari, P.; Ferrere, D.; Fleta, C.; Fortin, R.; Foster, J. M.; Fowler, C.; Fox, H.; Freestone, J.; French, R. S.; Fuster, J.; Gadomski, S.; Gallop, B. J.; García, C.; García-Navarro, J. E.; Gibson, S.; Gilchriese, M. G. D.; Gonzalez, F.; Gonzalez-Sevilla, S.; Goodrick, M. J.; Gorisek, A.; Gornicki, E.; Greenall, A.; Greenfield, D.; Gregory, S.; Grigorieva, I. G.; Grillo, A. A.; Grosse-Knetter, J.; Gryska, C.; Guipet, A.; Haber, C.; Hara, K.; Hartjes, F. G.; Hauff, D.; Haywood, S. J.; Hegeman, S. J.; Heinzinger, K.; Hessey, N. P.; Heusch, C.; Hicheur, A.; Hill, J. C.; Hodgkinson, M.; Hodgson, P.; Horažďovský, T.; Hollins, T. I.; Hou, L. S.; Hou, S.; Hughes, G.; Huse, T.; Ibbotson, M.; Iglesias, M.; Ikegami, Y.; Ilyashenko, I.; Issever, C.; Jackson, J. N.; Jakobs, K.; Jared, R. C.; Jarron, P.; Johansson, P.; Jones, R. W. L.; Jones, T. J.; Joos, D.; Joseph, J.; Jovanovic, P.; Jusko, O.; Jusko, V.; Kaplon, J.; Kazi, S.; Ketterer, Ch.; Kholodenko, A. G.; King, B. T.; Kodyš, P.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kondo, T.; Koperny, S.; Koukol, H.; Král, V.; Kramberger, G.; Kubík, P.; Kudlaty, J.; Lacasta, C.; Lagouri, T.; Lee, S. C.; Leney, K.; Lenz, S.; Lester, C. G.; Liebicher, K.; Limper, M.; Lindsay, S.; Linhart, V.; LLosá, G.; Loebinger, F. K.; Lozano, M.; Ludwig, I.; Ludwig, J.; Lutz, G.; Lys, J.; Maassen, M.; Macina, D.; Macpherson, A.; MacWaters, C.; Magrath, C. A.; Malecki, P.; Mandić, I.; Mangin-Brinet, M.; Martí-García, S.; Matheson, J. P.; Matson, R. M.; McMahon, S. J.; McMahon, T. J.; Meinhardt, J.; Mellado, B.; Melone, J. J.; Mercer, I. J.; Messmer, I.; Mikulec, B.; Mikuž, M.; Miñano, M.; Mitsou, V. A.; Modesto, P.; Moed, S.; Mohn, B.; Moncrieff, S.; Moorhead, G.; Morris, F. S.; Morris, J.; Morrissey, M.; Moser, H. G.; Moszczynski, A.; Muijs, A. J. M.; Murray, W. J.; Muskett, D.; Nacher, J.; Nagai, K.; Nakano, I.; Nickerson, R. B.; Nisius, R.; Oye, O. K.; O'Shea, V.; Paganis, E.; Parker, M. A.; Parzefall, U.; Pater, J. R.; Peeters, S. J. M.; Pellegrini, G.; Pelleriti, G.; Pernegger, H.; Perrin, E.; Phillips, P. W.; Pilavova, L. V.; Poltorak, K.; Pospíšil, S.; Postranecky, M.; Pritchard, T.; Prokofiev, K.; Rafí, J. M.; Raine, C.; Ratoff, P. N.; Řezníček, P.; Riadovikov, V. N.; Richter, R. H.; Robichaud-Véronneau, A.; Robinson, D.; Rodriguez-Oliete, R.; Roe, S.; Rudge, A.; Runge, K.; Saavedra, A.; Sadrozinski, H. F. W.; Sanchez, F. J.; Sandaker, H.; Saxon, D. H.; Scheirich, D.; Schieck, J.; Seiden, A.; Sfyrla, A.; Slavíček, T.; Smith, K. M.; Smith, N. A.; Snow, S. W.; Solar, M.; Sopko, B.; Sopko, V.; Sospedra, L.; Spencer, E.; Stanecka, E.; Stapnes, S.; Stastny, J.; Strachko, V.; Stradling, A.; Stugu, B.; Su, D. S.; Sutcliffe, P.; Szczygiel, R.; Tanaka, R.; Taylor, G.; Teng, P. K.; Terada, S.; Thompson, R. J.; Titov, M.; Toczek, B.; Tovey, D. R.; Tratzl, G.; Troitsky, V. L.; Tseng, J.; Turala, M.; Turner, P. R.; Tyndel, M.; Ullán, M.; Unno, Y.; Vickey, T.; Van der Kraaij, E.; Viehhauser, G.; Villani, E. G.; Vitek, T.; Vu Anh, T.; Vorobiev, A. P.; Vossebeld, J. H.; Wachler, M.; Wallny, R.; Ward, C. P.; Warren, M. R. M.; Webel, M.; Weber, M.; Weber, M.; Weidberg, A. R.; Weilhammer, P.; Wells, P. S.; Wetzel, P.; Whitley, M.; Wiesmann, M.; Wilhelm, I.; Willenbrock, M.; Wilmut, I.; Wilson, J. A.; Winton, J.; Wolter, M.; Wormald, M. P.; Wu, S. L.; Wu, X.; Zhu, H.; Bingefors, N.; Brenner, R.; Ekelof, T.

    2007-06-01

    The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip 3.3 μs buffer. The highest anticipated dose after 10 years operation is 1.4×1014 cm-2 in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area ˜70 cm2, each having 2×768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e- equivalent noise charge (ENC) rising to only 1800e- ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the 16 μm (rφ) resolution perpendicular to the strip directions or 580 μm radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40-50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be

  15. Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Fadeyev, V.; Galloway, Z.; Grabas, H.; Grillo, A. A.; Liang, Z.; Martinez-Mckinney, F.; Seiden, A.; Volk, J.; Affolder, A.; Buckland, M.; Meng, L.; Arndt, K.; Bortoletto, D.; Huffman, T.; John, J.; McMahon, S.; Nickerson, R.; Phillips, P.; Plackett, R.; Shipsey, I.; Vigani, L.; Bates, R.; Blue, A.; Buttar, C.; Kanisauskas, K.; Maneuski, D.; Benoit, M.; Di Bello, F.; Caragiulo, P.; Dragone, A.; Grenier, P.; Kenney, C.; Rubbo, F.; Segal, J.; Su, D.; Tamma, C.; Das, D.; Dopke, J.; Turchetta, R.; Wilson, F.; Worm, S.; Ehrler, F.; Peric, I.; Gregor, I. M.; Stanitzki, M.; Hoeferkamp, M.; Seidel, S.; Hommels, L. B. A.; Kramberger, G.; Mandić, I.; Mikuž, M.; Muenstermann, D.; Wang, R.; Zhang, J.; Warren, M.; Song, W.; Xiu, Q.; Zhu, H.

    2016-09-01

    ATLAS has formed strip CMOS project to study the use of CMOS MAPS devices as silicon strip sensors for the Phase-II Strip Tracker Upgrade. This choice of sensors promises several advantages over the conventional baseline design, such as better resolution, less material in the tracking volume, and faster construction speed. At the same time, many design features of the sensors are driven by the requirement of minimizing the impact on the rest of the detector. Hence the target devices feature long pixels which are grouped to form a virtual strip with binary-encoded z position. The key performance aspects are radiation hardness compatibility with HL-LHC environment, as well as extraction of the full hit position with full-reticle readout architecture. To date, several test chips have been submitted using two different CMOS technologies. The AMS 350 nm is a high voltage CMOS process (HV-CMOS), that features the sensor bias of up to 120 V. The TowerJazz 180 nm high resistivity CMOS process (HR-CMOS) uses a high resistivity epitaxial layer to provide the depletion region on top of the substrate. We have evaluated passive pixel performance, and charge collection projections. The results strongly support the radiation tolerance of these devices to radiation dose of the HL-LHC in the strip tracker region. We also describe design features for the next chip submission that are motivated by our technology evaluation.

  16. Design of an upgraded D0 silicon microstrip tracker for Run IIb at the Tevatron

    SciTech Connect

    Hanagaki, K.; /Fermilab

    2004-01-01

    The D0 collaboration planned to upgrade the Silicon Tracker to withstand the radiation dose corresponding to above 2 fb{sup -1} of data. This new detector was designed to be functional up to at least 15 fb{sup -1}. The authors report on the design of the new Silicon Tracker with details of the innermost layer.

  17. Future silicon sensors for the CMS Tracker Upgrade

    NASA Astrophysics Data System (ADS)

    Bernard-Schwarz, Maria; CMS Tracker Collaboration

    2013-01-01

    For the high-luminosity phase of LHC (Large Hadron Collider) at CERN a campaign was started in the CMS (Compact Muon Solenoid) experiment to investigate different radiation hard silicon detectors. Therefore 6 in. silicon wafers were ordered to answer various questions regarding for example the radiation tolerance and the annealing behavior of different sensor material. The testing variety includes sensor versions n-in-p and p-in-n in thicknesses from 50 μm to 300 μm. In terms of sensor material the difference between floating zone, magnetic Czochralski and epitaxial grown silicon is investigated. For the n-in-p sensors, the different isolation technologies, p-stop and p-spray, are tested. The design of the wafer contains test structures, diodes, mini-sensors, long and very short strip sensors, real pixel sensors and double metal routing variants. The irradiation is done with mixed fluences of protons and neutrons which represent the rates of integrated hadrons that are expected in the CMS tracker after the LHC upgrade. This paper presents an overview of results from measurements of non-irradiated test structures with different technologies and also the results after irradiation.

  18. Beam tests of ATLAS SCT silicon strip detector modules

    SciTech Connect

    Campabadal, F.; Fleta, C.; Key, M.; Lozano, M.; Martinez, C.; Pellegrini, G.; Rafi, J.M.; Ullan, M.; Johansen, L.; Pommeresche, B.; Stugu, B.; Ciocio, A.; Fadeyev, V.; Gilchriese, M.; Haber, C.; Siegrist,J.; Spieler, H.; Vu, C.; Bell, P.J.; Charlton, D.G.; Dowell, J.D.; Gallop, B.J.; Homer, R.J.; Jovanovic, P.; Mahout, G.; McMahon, T.J.; Wilson, J.A.; Barr, A.J.; Carter, J.R.; Fromant, B.P.; Goodrick, M.J.; Hill, J.C.; Lester, C.G.; Palmer, M.J.; Parker, M.A.; Robinson, D.; Sabetfakhri, A.; Shaw, R.J.; Anghinolfi, F.; Chesi, E.; Chouridou, S.; Fortin, R.; Grosse-Knetter, M.; Gruwe, M.; Ferrari, P.; Jarron, P.; Kaplon, J.; Macpherson, A.; Niinikoski, T.; Pernegger, H.; Roe, S.; Rudge, A.; Ruggiero, G.; Wallny, R.; Weilhammer, P.; Bialas, W.; Dabrowski, W.; Grybos, P.; Koperny, S.; Blocki, J.; Bruckman, P.; Gadomski, S.; Godlewski, J.; Gornicki, E.; Malecki, P.; Moszczynski, A.; Stanecka, E.; Stodulski, M.; Szczygiel, R.; Turala, M.; Wolter, M.; Ahmad, A.; Benes, J.; Carpentieri, C.; Feld, L.; Ketterer, C.; Ludwig,J.; Meinhardt, J.; Runge, K.; Mikulec, B.; Mangin-Brinet, M.; D'Onofrio,M.; Donega, M.; Moed, S.; Sfyrla, A.; Ferrere, D.; Clark, A.G.; Perrin,E.; Weber, M.; Bates, R.L.; Cheplakov, A.; Saxon, D.H.; O'Shea, V.; Smith, K.M.; Iwata, Y.; Ohsugi, T.; Kohriki, T.; Kondo, T.; Terada, S.; Ujiie, N.; Ikegami, Y.; Unno, Y.; Takashima, R.; Brodbeck, T.; Chilingarov, A.; Hughes, G.; Ratoff, P.; Sloan, T.; Allport, P.P.; Casse,G.-L.; Greenall, A.; Jackson, J.N.; Jones, T.J.; King, B.T.; Maxfield,S.J.; Smith, N.A.; Sutcliffe, P.; Vossebeld, J.; Beck, G.A.; Carter,A.A.; Lloyd, S.L.; Martin, A.J.; Morris, J.; Morin, J.; Nagai, K.; Pritchard, T.W.; Anderson, B.E.; Butterworth, J.M.; Fraser, T.J.; Jones,T.W.; Lane, J.B.; Postranecky, M.; Warren, M.R.M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Duerdoth, I.P.; Freestone, J.; Foster, J.M.; Ibbotson, M.; Loebinger, F.K.; Pater, J.; Snow, S.W.; Thompson, R.J.; Atkinson, T.M.; et al.

    2004-08-18

    The design and technology of the silicon strip detector modules for the Semiconductor Tracker (SCT) of the ATLAS experiment have been finalized in the last several years. Integral to this process has been the measurement and verification of the tracking performance of the different module types in test beams at the CERN SPS and the KEK PS. Tests have been performed to explore the module performance under various operating conditions including detector bias voltage, magnetic field, incidence angle, and state of irradiation up to 3 1014 protons per square centimeter. A particular emphasis has been the understanding of the operational consequences of the binary readout scheme.

  19. The ATLAS Transition Radiation Tracker (TRT) proportional drift tube: design and performance

    NASA Astrophysics Data System (ADS)

    ATLAS TRT Collaboration; Abat, E.; Addy, T. N.; Åkesson, T. P. A.; Alison, J.; Anghinolfi, F.; Arik, E.; Arik, M.; Atoian, G.; Auerbach, B.; Baker, O. K.; Banas, E.; Baron, S.; Bault, C.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Blampey, H.; Bocci, A.; Bochenek, M.; Bondarenko, V. G.; Bychkov, V.; Callahan, J.; Capeáns Garrido, M.; Cardiel Sas, L.; Catinaccio, A.; Cetin, S. A.; Chandler, T.; Chritin, R.; Cwetanski, P.; Dam, M.; Danielsson, H.; Danilevich, E.; David, E.; Degenhardt, J.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dogan, O. B.; Dolgoshein, B. A.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Egede, U.; Egorov, K.; Evans, H.; Farthouat, P.; Fedin, O. L.; Fowler, A. J.; Fratina, S.; Froidevaux, D.; Fry, A.; Gagnon, P.; Gavrilenko, I. L.; Gay, C.; Ghodbane, N.; Godlewski, J.; Goulette, M.; Gousakov, I.; Grigalashvili, N.; Grishkevich, Y.; Grognuz, J.; Hajduk, Z.; Hance, M.; Hansen, F.; Hansen, J. B.; Hansen, P. H.; Hare, G. A.; Harvey, A., Jr.; Hauviller, C.; High, A.; Hulsbergen, W.; Huta, W.; Issakov, V.; Istin, S.; Jain, V.; Jarlskog, G.; Jeanty, L.; Kantserov, V. A.; Kaplan, B.; Kapliy, A. S.; Katounine, S.; Kayumov, F.; Keener, P. T.; Kekelidze, G. D.; Khabarova, E.; Khristachev, A.; Kisielewski, B.; Kittelmann, T. H.; Kline, C.; Klinkby, E. B.; Klopov, N. V.; Ko, B. R.; Koffas, T.; Kondratieva, N. V.; Konovalov, S. P.; Koperny, S.; Korsmo, H.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; LeBihan, A.-C.; LeGeyt, B. C.; Levterov, K.; Lichard, P.; Lindahl, A.; Lisan, V.; Lobastov, S.; Loginov, A.; Loh, C. W.; Lokwitz, S.; Long, M. C.; Lucas, S.; Lucotte, A.; Luehring, F.; Lundberg, B.; Mackeprang, R.; Maleev, V. P.; Manara, A.; Mandl, M.; Martin, A. J.; Martin, F. F.; Mashinistov, R.; Mayers, G. M.; McFarlane, K. W.; Mialkovski, V.; Mills, B. M.; Mindur, B.; Mitsou, V. A.; Mjörnmark, J. U.; Morozov, S. V.; Morris, E.; Mouraviev, S. V.; Muir, A. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Nikitin, N.; Novgorodova, O.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olivito, D.; Olszowska, J.; Ostrowicz, W.; Passmore, M. S.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; Petersen, T. C.; Petti, R.; Placci, A.; Poblaguev, A.; Pons, X.; Price, M. J.; hne, O. Rø; Reece, R. D.; Reilly, M. B.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Söderberg, M.; Savenkov, A.; Saxon, J.; Scandurra, M.; Schegelsky, V. A.; Scherzer, M. I.; Schmidt, M. P.; Schmitt, C.; Sedykh, E.; Seliverstov, D. M.; Shin, T.; Shmeleva, A.; Sivoklokov, S.; Smirnov, S. Yu; Smirnova, L.; Smirnova, O.; Smith, P.; Sosnovtsev, V. V.; Sprachmann, G.; Subramania, S.; Suchkov, S. I.; Sulin, V. V.; Szczygiel, R. R.; Tartarelli, G.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vassilakopoulos, V. I.; Vassilieva, L.; Wagner, P.; Wall, R.; Wang, C.; Whittington, D.; Williams, H. H.; Zhelezko, A.; Zhukov, K.

    2008-02-01

    A straw proportional counter is the basic element of the ATLAS Transition Radiation Tracker (TRT). Its detailed properties as well as the main properties of a few TRT operating gas mixtures are described. Particular attention is paid to straw tube performance in high radiation conditions and to its operational stability.

  20. Sensors for the End-cap prototype of the Inner Tracker in the ATLAS Detector Upgrade

    NASA Astrophysics Data System (ADS)

    Benítez, V.; Ullán, M.; Quirion, D.; Pellegrini, G.; Fleta, C.; Lozano, M.; Sperlich, D.; Hauser, M.; Wonsak, S.; Parzefall, U.; Mahboubi, K.; Kuehn, S.; Mori, R.; Jakobs, K.; Bernabeu, J.; García, C.; Lacasta, C.; Marco, R.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.; Ariza, D.; Bloch, I.; Diez, S.; Gregor, I. M.; Keller, J.; Lohwasser, K.; Peschke, R.; Poley, L.; Brenner, R.; Affolder, A.

    2016-10-01

    The new silicon microstrip sensors of the End-cap part of the HL-LHC ATLAS Inner Tracker (ITk) present a number of challenges due to their complex design features such as the multiple different sensor shapes, the varying strip pitch, or the built-in stereo angle. In order to investigate these specific problems, the "petalet" prototype was defined as a small End-cap prototype. The sensors for the petalet prototype include several new layout and technological solutions to investigate the issues, they have been tested in detail by the collaboration. The sensor description and detailed test results are presented in this paper. New software tools have been developed for the automatic layout generation of the complex designs. The sensors have been fabricated, characterized and delivered to the institutes in the collaboration for their assembly on petalet prototypes. This paper describes the lessons learnt from the design and tests of the new solutions implemented on these sensors, which are being used for the full petal sensor development. This has resulted in the ITk strip community acquiring the necessary expertise to develop the full End-cap structure, the petal.

  1. Silicon photomultiplier choice for the scintillating fibre tracker in second generation proton computed tomography scanner

    SciTech Connect

    Gearhart, A.; Johnson, E.; Medvedev, V.; Ronzhin, A.; Rykalin, V.; Rubinov, P.; Sleptcov, V.; /Unlisted, RU

    2012-03-01

    Scintillating fibers are capable of charged particle tracking with high position resolution, as demonstrated by the central fiber tracker of the D0 experiment. The charged particles will deposit less energy in the polystyrene scintillating fibers as opposed to a typical silicon tracker of the same thickness, while SiPM's are highly efficient at detecting photons created by the passage of the charged particle through the fibers. The current prototype of the Proton Computed Tomography (pCT) tracker uses groups of three 0.5 mm green polystyrene based scintillating fibers connected to a single SiPM, while first generation prototype tracker used Silicon strip detectors. The results of R&D for the Scintillating Fiber Tracker (SFT) as part of the pCT detector are outlined, and the premise for the selection of SiPM is discussed.

  2. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker.

    SciTech Connect

    Onuki, Y.; PHENIX Collaboration, et al.

    2009-05-08

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  3. Charge collection and field profile studies of heavily irradiated strip sensors for the ATLAS inner tracker upgrade

    NASA Astrophysics Data System (ADS)

    Hara, K.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i. Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The ATLAS group has evaluated the charge collection in silicon microstrip sensors irradiated up to a fluence of 1 ×1016 neq/cm2, exceeding the maximum of 1.6 ×1015 neq/cm2 expected for the strip tracker during the high luminosity LHC (HL-LHC) period including a safety factor of 2. The ATLAS12, n+-on-p type sensor, which is fabricated by Hamamatsu Photonics (HPK) on float zone (FZ) substrates, is the latest barrel sensor prototype. The charge collection from the irradiated 1×1 cm2 barrel test sensors has been evaluated systematically using penetrating β-rays and an Alibava readout system. The data obtained at different measurement sites are compared with each other and with the results obtained from the previous ATLAS07 design. The results are very consistent, in particular, when the deposit charge is normalized by the sensor's active thickness derived from the edge transient current technique (edge-TCT) measurements. The measurements obtained using β-rays are verified to be consistent with the measurements using an electron beam. The edge-TCT is also effective for evaluating the field profiles across the depth. The differences between the irradiated ATLAS07 and ATLAS12 samples have been examined along with the differences among the samples irradiated with different radiation sources: neutrons, protons, and pions. The studies of the bulk properties of the devices show that the devices can yield a sufficiently large signal for the expected fluence range in the HL-LHC, thereby acting as precision tracking sensors.

  4. Rad-hard vertical JFET switch for the HV-MUX system of the ATLAS upgrade Inner Tracker

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, P.; Ullán, M.; Flores, D.; Hidalgo, S.; Quirion, D.; Lynn, D.

    2016-01-01

    This work presents a new silicon vertical JFET (V-JFET) device, based on the trenched 3D-detector technology developed at IMB-CNM, to be used as a switch for the High-Voltage powering scheme of the ATLAS upgrade Inner Tracker. The optimization of the device characteristics is performed by 2D and 3D TCAD simulations. Special attention has been paid to the on-resistance and the switch-off and breakdown voltages to meet the specific requirements of the system. In addition, a set of parameter values has been extracted from the simulated curves to implement a SPICE model of the proposed V-JFET transistor. As these devices are expected to operate under very high radiation conditions during the whole experiment life-time, a study of the radiation damage effects and the expected degradation of the device performance is also presented at the end of the paper.

  5. The AGILE silicon tracker: Pre-launch and in-flight configuration

    NASA Astrophysics Data System (ADS)

    Bulgarelli, A.; Argan, A.; Barbiellini, G.; Basset, M.; Chen, A.; Di Cocco, G.; Foggetta, L.; Gianotti, F.; Giuliani, A.; Longo, F.; Mereghetti, S.; Monzani, F.; Nicolini, L.; Pavesi, R.; Pellizzoni, A.; Pontoni, C.; Prest, M.; Pucella, G.; Tavani, M.; Trifoglio, M.; Trois, A.; Vallazza, E.; Vercellone, S.

    2010-03-01

    AGILE is an ASI (Italian Space Agency) Small Scientific Mission dedicated to high-energy astrophysics which was successfully launched on April 23, 2007. The AGILE instrument is composed of three main detectors: a Tungsten-Silicon Tracker designed to detect and image photons in the 30 MeV-50 GeV energy band, an X-ray imager called Super-AGILE operating in the 18-60 keV energy band, and a Mini-Calorimeter that detects gamma-rays and charged particles energy deposits between 300 keV and 100 MeV. The instrument is surrounded by an anti-coincidence (AC) system. In this paper, we present the noise characterization and the front-end configuration of the Silicon Tracker. Two crucial (and unique, among gamma-ray astrophysics missions) characteristic of the AGILE Silicon Tracker are the analog signal acquisition (aimed at obtaining an optimal angular resolution for gamma-ray imaging) and the very small dimension of the instrument (the total height including the active elements is ˜21 cm and therefore the Silicon Tracker is the lightest and most compact γ- ray imager sent in orbit). The results presented in this paper were obtained during the AIV (Assembly, Integration and Verification) pre-launch testing phase and during the post-launch commissioning phase. The AGILE Silicon Tracker has been optimally configured with a very good response of the frontend system and of the data acquisition units.

  6. Alignment of the CMS silicon strip tracker during stand-alone commissioning

    SciTech Connect

    Adam, W.; et al.

    2009-07-01

    The results of the CMS tracker alignment analysis are presented using the data from cosmic tracks, optical survey information, and the laser alignment system at the Tracker Integration Facility at CERN. During several months of operation in the spring and summer of 2007, about five million cosmic track events were collected with a partially active CMS Tracker. This allowed us to perform first alignment of the active silicon modules with the cosmic tracks using three different statistical approaches; validate the survey and laser alignment system performance; and test the stability of Tracker structures under various stresses and temperatures ranging from +15C to -15C. Comparison with simulation shows that the achieved alignment precision in the barrel part of the tracker leads to residual distributions similar to those obtained with a random misalignment of 50 (80) microns in the outer (inner) part of the barrel.

  7. Induced radioactivity in the forward shielding and semiconductor tracker of the ATLAS detector.

    PubMed

    Bĕdajánek, I; Linhart, V; Stekl, I; Pospísil, S; Kolros, A; Kovalenko, V

    2005-01-01

    The radioactivity induced in the forward shielding, copper collimator and semiconductor tracker modules of the ATLAS detector has been studied. The ATLAS detector is a long-term experiment which, during operation, will require to have service and access to all of its parts and components. The radioactivity induced in the forward shielding was calculated by Monte Carlo methods based on GEANT3 software tool. The results show that the equivalent dose rates on the outer surface of the forward shielding are very low (at most 0.038 microSv h(-1)). On the other hand, the equivalent dose rates are significantly higher on the inner surface of the forward shielding (up to 661 microSv h(-1)) and, especially, at the copper collimator close to the beampipe (up to 60 mSv h(-1)). The radioactivity induced in the semiconductor tracker modules was studied experimentally. The module was activated by neutrons in a training nuclear reactor and the delayed gamma ray spectra were measured. From these measurements, the equivalent dose rate on the surface of the semiconductor tracker module was estimated to be < 100 microSv h(-1) after 100 d of Large Hadron Collider (LHC) operation and 10 d of cooling. PMID:16604587

  8. Fabrication of the GLAST Silicon Tracker Readout Electronics

    SciTech Connect

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Johnson, R.P.; Latronico, Luca; Minuti, Massimo; Nelson, David; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Sugizaki, Mutsumi; Tajima, Hiro; Cohen Tanugi, Johann; Young, Charles; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /UC, Santa Cruz

    2006-03-03

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm long silicon strips in a 4 x 4 array of tower modules. An aggressive mechanical design fits the readout electronics in narrow spaces between the tower modules, to minimize dead area. This design and the resulting departures from conventional electronics packaging led to several fabrication challenges and lessons learned. This paper describes the fabrication processes and how the problems peculiar to this design were overcome.

  9. Electron identification with a prototype of the Transition Radiation Tracker for the ATLAS experiment. ATLAS TRT collaboration

    NASA Astrophysics Data System (ADS)

    Akesson, T.; Antonov, A.; Bondarenko, V.; Bytchkov, V.; Carling, H.; Commichau, K.; Danielsson, H.; Dittus, F.; Dolgoshein, B.; Dressnandt, N.; Dulny, B.; Ebenstein, W. L.; Egede, U.; Farthouat, P.; Fent, J.; Froidevaux, D.; Gavrilenko, I.; Hanson, G.; Holder, M.; Ivochkin, V. G.; Jagielski, S.; Jaroslawski, S.; Keener, P. T.; Kisielewski, B.; Konovalov, S.; Konstantinov, A.; Kramarenko, V. A.; Lichard, P.; Lundberg, B.; Luehring, F.; Lutsch, Y.; Malecki, P.; Muraviev, S.; Nadtochy, A.; Nevski, P.; Newcomer, F. M.; Norton, P.; Nuennerich, R.; Ogren, H.; Oh, S. H.; Olszowska, J.; Pavlenko, S.; Peshekhonov, V.; Richter, R.; Romaniouk, A.; Rust, D. R.; Ryjov, V.; Saxon, D. H.; Schegelsky, V.; Schulte, R.; Semenov, S.; Shmeleva, A.; Smirnov, S.; Smirnova, L. N.; Soderberg, M.; Sosnovtsev, V.; Spiridenkov, E.; Stavrianakou, M.; Thulesius, M.; Tikhomirov, V.; Van Berg, R.; Wang, C.; White, D. J.; Williams, H. H.

    A prototype of the Transition Radiation Tracker (TRT) for the ATLAS detector at the LHC has been built and tested. The TRT is an array of straw tubes which integrate tracking and electron identification by transition radiation into one device. Results of experimental measurements and of comparisons with Monte-Carlo simulations are presented for the electron identification performance as a function of various detector parameters. Under optimal operating conditions, a rejection against pions of a factor 100 was achieved with 90% electron efficiency.

  10. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    SciTech Connect

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  11. Detector control system for the ATLAS Transition Radiation Tracker: architecture and development techniques

    NASA Astrophysics Data System (ADS)

    Banaś, ElŻbieta; Hajduk, Zbigniew; Olszowska, Jolanta

    2012-05-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three sub-systems of the ATLAS Inner Detector at the Large Hadron Collider at CERN. With ~300000 drift tube proportional counters (straws) filled with stable gas mixture and high voltage biased it provides precise quasi-continuous tracking and particles identification. Safe, coherent and efficient operation of the TRT is fulfilled with the help of the Detector Control System (DCS) running on 11 computers as PVSS (industrial SCADA) projects. Standard industrial and custom developed server applications and protocols are used for reading hardware parameters. Higher level control system layers based on the CERN JCOP framework allow for automatic control procedures, efficient error recognition and handling and provide a synchronization mechanism with the ATLAS data acquisition system. Different data bases are used to store the detector online parameters, the configuration parameters and replicate a subset of them used to flag data quality for physics reconstruction. The TRT DCS is fully integrated with the ATLAS Detector Control System.

  12. The Silicon Inner Tracker of CMS: Construction, Organization and Future Upgrade

    SciTech Connect

    Krammer, Manfred

    2008-04-21

    The silicon Inner Tracker is the innermost detector part of the CMS experiment at CERN. This detector contains about 200 m{sup 2} of precision silicon sensors, fast and radiation hard electronics, an optical readout and many more highly sophisticated components. The total number of sensor elements amounts to 9.3 million strips and 66 millions pixels. The strip detector is completely assembled and has been commissioned at the operating temperature of about--15 deg. C. A collaboration consisting of about 500 members coming from 51 institutes worldwide has designed and constructed this detector in a period of more than 12 years. The different components for the tracker were developed in cooperation with industrial partners. The Inner Tracker was installed in the CMS experiment at the end of 2007. A discussion on the upgrade of CMS and the Inner Tracker has already started in view of an increase in performance of the LHC collider. To cope with the even more demanding requirements expected for the next generation apparatus an extensive R and D period is about to start with many opportunities opening up for new collaboration members to join the effort.

  13. Fiber-optic links based on silicon photonics for high-speed readout of trackers

    NASA Astrophysics Data System (ADS)

    Drake, G.; Garcia-Scivres, M.; Paramonov, A.; Stanek, R.; Underwood, D.

    2014-10-01

    We propose to use silicon photonics technology to build radiation-hard fiber-optic links for high-bandwidth readout of tracking detectors. The CMOS integrated silicon photonics was developed by Luxtera and commercialized by Molex. The commercial off-the-shelf (COTS) fiber-optic links feature moderate radiation tolerance insufficient for trackers. A transceiver contains four RX and four TX channels operating at 10 Gbps each. The next generation will likely operate at 25 Gbps per channel. The approach uses a standard CMOS process and single-mode fibers, providing low power consumption and good scalability and reliability.

  14. Production and performance of the silicon sensor and readout electronics for the PHENIX FVTX tracker

    SciTech Connect

    Kapustinsky, Jon Steven

    2009-01-01

    The Forward Silicon Vertex Tracker (FVTX) upgrade for the PHENIX detector at RHIC will extend the vertex capability of the central PHENIX Silicon Vertex Tracker (VTX). The FVTX is designed with adequate spatial resolution to separate decay muons coming from the relatively long-lived heavy quark mesons (Charm and Beauty), from prompt particles and the longer-lived pion and kaon decays that originate at the primary collision vertex. These heavy quarks can be used to probe the high density medium that is formed in Au+Au collisions at RHIC. The FVTX is designed as two endcaps. Each endcap is comprised of four silicon disks covering opening angles from 10 to 35 degrees to match the existing muon arm acceptance. Each disk consists of p-on-n, silicon wedges, with ac-coupled mini-strips on 75 {micro}m radial pitch and proj ective length in the phi direction that increases with radius. A custom front-end chip, the FPHX, has been designed for the FVTX. The chip combines fast trigger capability with data push architecture in a low power design.

  15. Fast TracKer: A fast hardware track trigger for the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Pandini, Carlo

    2016-07-01

    The trigger system at the ATLAS experiment is designed to lower the event rate occurring from the nominal bunch crossing rate of 40 MHz to about 1 kHz for a LHC luminosity of the order of 1034cm-2s-1. To achieve high background rejection while maintaining good efficiency for interesting physics signals, sophisticated algorithms are needed which require an extensive use of tracking information. The Fast TracKer (FTK) trigger system, part of the ATLAS trigger upgrade program, is a highly parallel hardware device designed to perform track-finding at 100 kHz. Modern, powerful Field Programmable Gate Arrays (FPGAs) form an important part of the system architecture, and the combinatorial problem of pattern recognition is solved by 8000 standard-cell ASICs used to implement an Associative Memory architecture. The availability of the tracking and subsequent vertex information within a short latency ensures robust selections and allows improved trigger performance for the most difficult signatures, such as b-jets and τ leptons.

  16. Silicon sensor prototypes for the Phase II upgrade of the CMS tracker

    NASA Astrophysics Data System (ADS)

    Bergauer, Thomas

    2016-09-01

    The High-Luminosity LHC (HL-LHC) has been identified as the highest priority program in High Energy Physics in the mid-term future. It will provide the experiments an additional integrated luminosity of about 2500 fb-1 over 10 years of operation, starting in 2025. In order to meet the experimental challenges of unprecedented p-p luminosity, especially in terms of radiation levels and occupancy, the CMS collaboration will need to replace its entire strip tracker by a new one. In this paper the baseline layout option for this new Phase-II tracker is shown, together with two variants using a tilted barrel geometry or larger modules from 8-inch silicon wafers. Moreover, the two module concepts are discussed, which consist either of two strip sensors (2S) or of one strip and one pixel sensor (PS). These two designs allow pT discrimination at module level enabling the tracker to contribute to the L1 trigger decision. The paper presents testing results of the macro-pixel-light sensor for the PS module and shows the first electrical characterization of unirradiated, full-scale strip sensor prototypes for the 2S module concept, both on 6- and 8-inch wafers.

  17. MEG II drift chamber characterization with the silicon based cosmic ray tracker at INFN Pisa

    NASA Astrophysics Data System (ADS)

    Venturini, M.; Baldini, A. M.; Baracchini, E.; Cei, F.; D`Onofrio, A.; Dussoni, S.; Galli, L.; Grassi, M.; Nicolò, D.; Signorelli, G.

    2016-07-01

    High energy physics experiments at the high intensity frontier place ever greater demands on detectors, and in particular on tracking devices. In order to compare the performance of small size tracking prototypes, a high resolution cosmic ray tracker has been assembled to provide an external track reference. It consists of four spare ladders of the external layers of the Silicon Vertex Tracker of the BaBar experiment. The test facility, operating at INFN Sezione di Pisa, provides the detector under test with an external track with an intrinsic resolution of 15-30 μm. The MEG II tracker is conceived as a unique volume wire drift chamber filled with He-isobutane 85-15%. The ionization density in this gas mixture is about 13 clusters/cm and this results in a non-negligible bias of the impact parameters for tracks crossing the cell close to the anode wire. We present the telescope performance in terms of tracking efficiency and resolution and the results of the characterization of a MEG II drift chamber prototype.

  18. A two-level fanout system for the CDF silicon vertex tracker

    SciTech Connect

    A. Bardi et al.

    2001-11-02

    The Fanout system is part of the Silicon Vertex Tracker, a new trigger processor designed to reconstruct charged particle trajectories at Level 2 of the CDF trigger, with a latency of 10 {micro}s and an event rate up to 100 kHz. The core of SVT is organized as 12 identical slices, which process in parallel the data from the 12 independent azimuthal wedges of the Silicon Vertex Detector (SVXII). Each SVT slice links the digitized pulse heights found within one SVXII wedge to the tracks reconstructed by the Level 1 fast track finder (XFT) in the corresponding 30{sup o} angular region of the Central Outer Tracker. Since the XFT tracks are transmitted to SVT as a single data stream, their distribution to the proper SVT slices requires dedicated fanout logic. The Fanout system has been implemented as a multi-board project running on a common 20 MHz clock. Track fanout is performed in two steps by one ''Fanout A'' and two ''Fanout B'' boards. The architecture, design, and implementation of this system are described.

  19. ASIC Wafer Test System for the ATLAS Semiconductor Tracker Front-End Chip

    SciTech Connect

    Anghinolfi, F.; Bialas, W.; Busek, N.; Ciocio, A.; Cosgrove, D.; Fadeyev, V.; Flacco, C.; Gilchriese, M.; Grillo, A.A.; Haber, C.; Kaplon, J.; Lacasta, C.; Murray, W.; Niggli, H.; Pritchard, T.; Rosenbaum, F.; Spieler, H.; Stezelberger, T.; Vu, C.; Wilder, M.; Yaver, H.; Zetti, F.

    2002-03-19

    An ASIC wafer test system has been developed to provide comprehensive production screening of the ATLAS Semiconductor Tracker front-end chip (ABCD3T). The ABCD3T[1] features a 128-channel analog front-end, a digital pipeline, and communication circuitry, clocked at 40 MHz, which is the bunch crossing frequency at the LHC (Large Hadron Collider). The tester measures values and tolerance ranges of all critical IC parameters, including DC parameters, electronic noise, time resolution, clock levels and clock timing. The tester is controlled by an FPGA (ORCA3T) programmed to issue the input commands to the IC and to interpret the output data. This allows the high-speed wafer-level IC testing necessary to meet the production schedule. To characterize signal amplitudes and phase margins, the tester utilizes pin-driver, delay, and DAC chips, which control the amplitudes and delays of signals sent to the IC under test. Output signals from the IC under test go through window comparator chips to measure their levels. A probe card has been designed specifically to reduce pick-up noise that can affect the measurements. The system can operate at frequencies up to 100 MHz to study the speed limits of the digital circuitry before and after radiation damage. Testing requirements and design solutions are presented.

  20. Software Development for the Commissioning of the Jefferson Lab Hall B Silicon Vertex Tracker

    NASA Astrophysics Data System (ADS)

    Ruger, Justin; Ziegler, Veronique; Gotra, Yuri; Gavalian, Gagik

    2015-04-01

    One of the new additions to Hall B at the Thomas Jefferson National Accelerator Facility is a Silicon Vertex Tracker system that includes 4 regions with 10, 14, 18, 24 sectors of double-sided modules. Recently, the SVT hardware group has completed construction and installation of regions one and two on a cosmic ray test stand. This test setup will be used to preform the first cosmic ray efficiency analysis of the SVT with the availability of 8 measurement layers. In order to study efficiency and module performance, a set of software packages had to be written to decode, analyze and provide feedback on the output from data acquisition. This talk will provide an overview of the software validation suite designed and developed for Hall B and a report on its current utilization for SVT cosmic data analysis.

  1. Silicon Vertex Tracker for PHENIX Upgrade at RICH: Capabilities and Detector Technology

    NASA Astrophysics Data System (ADS)

    Nouicer, R.

    From the wealth of data obtained from the first three years of RHIC operation, the four RHIC experiments, BRAHMS, PHENIX, PHOBOS and STAR, have concluded that a high density partonic matter is formed at central Au+Au collisions at sNN = 200 GeV. The research focus now shifts from initial discovery to a detailed exploration of partonic matter. Particles carrying heavy flavor, i.e. charm or beauty quarks, are powerful tool for study the properties of the hot and dense medium created in high-energy nuclear collisions at RHIC. At the relatively low transverse momentum region, the collective motion of the heavy flavor will be a sensitive signal for the thermalization of light flavors. They also allow to probe the spin structure of the proton in a new and precise way. An upgrade of RHIC (RHIC-II) is intended for the second half of the decade, with a luminosity increase to about 20-40 times the design value of 8 × 10^26 cm-2 s-1 for Au+Au, and 2 × 10^32 cm-2 s-1 for polarized proton beams. The PHENIX collaboration plans to upgrade its experiment to exploit with an enhanced detector new physics then in reach. For this purpose, we are constructing the Silicon Vertex Tracker (VTX). The VTX detector will provide us the tool to measure new physics observables that are not accessible at the present RHIC or available only with very limited accuracy. These include a precise determination of the charm production cross section, transverse momentum spectra at high-pT region for particles carrying beauty quarks as well the detection of recoil jets in direct photon production. The VTX detector consists of four layers of barrel detectors located in the region of pseudorapidity |η| < 1.2 and covers almost 2π azimuthal angle. The pseudorapidity, η, is defined as η = -ln[tan(θ/2)], where θ is the emission angle relative to the beam axis. The inner two silicon barrels consists of silicon pixel sensors and their technology is the ALICE1LHCb sensor-readout hybrid, which was developed

  2. Characterization and performance of silicon n-in-p pixel detectors for the ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    Weigell, P.; Beimforde, M.; Gallrapp, Ch.; La Rosa, A.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.

    2011-12-01

    The existing ATLAS tracker will be at its functional limit for particle fluences of 10 15 neq/cm2 (LHC). Thus for the upgrades at smaller radii like in the case of the planned Insertable B-Layer (IBL) and for increased LHC luminosities (super LHC) the development of new structures and materials which can cope with the resulting particle fluences is needed. n-in-p silicon devices are a promising candidate for tracking detectors to achieve these goals, since they are radiation hard, cost efficient and are not type inverted after irradiation. A n-in-p pixel production based on a MPP/HLL design and performed by CiS (Erfurt, Germany) on 300 μm thick Float-Zone material is characterised and the electrical properties of sensors and single chip modules (SCM) are presented, including noise, charge collection efficiencies, and measurements with MIPs as well as an 241Am source. The SCMs are built with sensors connected to the current ATLAS read-out chip FE-I3. The characterisation has been performed with the ATLAS pixel read-out systems, before and after irradiation with 24 GeV/ c protons. In addition preliminary testbeam results for the tracking efficiency and charge collection, obtained with a SCM, are discussed.

  3. Recent developments on CMOS MAPS for the SuperB Silicon Vertex Tracker

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Comott, D.; Manghisoni, M.; Re, V.; Traversi, G.; Fabbri, L.; Gabrielli, A.; Giorgi, F.; Pellegrini, G.; Sbarra, C.; Semprini-Cesari, N.; Valentinetti, S.; Villa, M.; Zoccoli, A.; Berra, A.; Lietti, D.; Prest, M.; Bevan, A.; Wilson, F.; Beck, G.; Morris, J.; Gannaway, F.; Cenci, R.; Bombelli, L.; Citterio, M.; Coelli, S.; Fiorini, C.; Liberali, V.; Monti, M.; Nasri, B.; Neri, N.; Palombo, F.; Stabile, A.; Balestri, G.; Batignani, G.; Bernardelli, A.; Bettarini, S.; Bosi, F.; Casarosa, G.; Ceccanti, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Mammini, P.; Morsani, F.; Oberhof, B.; Paoloni, E.; Perez, A.; Petragnani, G.; Profeti, A.; Soldani, A.; Walsh, J.; Chrzaszcz, M.; Gaioni, L.; Manazza, A.; Quartieri, E.; Ratti, L.; Zucca, S.; Alampi, G.; Cotto, G.; Gamba, D.; Zambito, S.; Dalla Betta, G.-F.; Fontana, G.; Pancheri, L.; Povoli, M.; Verzellesi, G.; Bomben, M.; Bosisio, L.; Cristaudo, P.; Lanceri, L.; Liberti, B.; Rashevskaya, I.; Stella, C.; Vitale, L.

    2013-08-01

    In the design of the Silicon Vertex Tracker for the high luminosity SuperB collider, very challenging requirements are set by physics and background conditions on its innermost Layer0: small radius (about 1.5 cm), resolution of 10 - 15 μm in both coordinates, low material budget < 1 %X0, and the ability to withstand a background hit rate of several tens of MHz /cm2. Thanks to an intense R&D program the development of Deep NWell CMOS MAPS (with the ST Microelectronics 130 nm process) has reached a good level of maturity and allowed for the first time the implementation of thin CMOS sensors with similar functionalities as in hybrid pixels, such as pixel-level sparsification and fast time stamping. Further MAPS performance improvements are currently under investigation with two different approaches: the INMAPS CMOS process, featuring a quadruple well and a high resistivity substrate, and 3D CMOS MAPS, realized with vertical integration technology. In both cases specific features of the processes chosen can improve charge collection efficiency, with respect to a standard DNW MAPS design, and allow to implement a more complex in-pixel logic in order to develop a faster readout architecture. Prototypes of MAPS matrix, suitable for application in the SuperB Layer0, have been realized with the INMAPS 180 nm process and the 130 nm Chartered/Tezzaron 3D process and results of their characterization will be presented in this paper.

  4. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    SciTech Connect

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.

  5. Front-end software for the D-Zero silicon tracker

    SciTech Connect

    1997-01-01

    Fermilab's D0 experiment is constructing a new silicon microstrip detector as part of its upgrade detector. This will have nearly 800,000 instrumented channels and combined with the rest of the tracker accounts for nearly one million channels. Being able to monitor, calibrate, and diagnose problems with this many channels is a daunting challenge. We propose to use distributed processors to ''spy'' on the data as it is collected. These processors will be resident in the VME data acquisition crates and will be able to access the data over either VME or a secondary bus which is independent of the main data acquisition path. The processing of the monitor data will take place in these local processors. Communication with the online cluster will be over ethernet and will employ a graphical interface for user control. The design uses a client/server architecture in this network of processors. We describe the software and hardware which has been tested as part of the verification of this desig n.

  6. Integrated USB based readout interface for silicon strip detectors of the ATLAS SCT module

    NASA Astrophysics Data System (ADS)

    Masek, P.; Linhart, V.; Granja, C.; Pospisil, S.; Husak, M.

    2011-12-01

    An integrated portable USB based readout interface for the ATLAS semiconductor trackers (SCT) has been built. The ATLAS SCT modules are large area silicon strip detectors designed for tracking of high-energy charged particles resulting in collisions on Large Hadron Collider (LHC) in CERN. These modules can be also used on small accelerators for medical or industry applications where a compact and configurable readout interface would be useful. A complete custom made PC-host software tool was written for Windows platform for control and DAQ with build-in online visualization. The new constructed interface provides integrated power, control and DAQ and configurable communication between the detector module and the controlling PC. The interface is based on the Field Programmable Gate Array (FPGA) and the high speed USB 2.0 standard. This design permits to operate the modules under high particle fluence while minimizing the dead time of the whole detection system. Utilization of the programmable device simplifies the operation and permits future expansion of the functionality without any hardware changes. The device includes the high voltage source for detector bias up to 500 V and it is equipped with number of devices for monitoring the operation and conditions of measurement (temperature, humidity, voltage). These features are particularly useful as the strip detector must be operated in a well controlled environment. The operation of the interface will be demonstrated on data measured with different particles from radiation sources.

  7. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    SciTech Connect

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx

  8. Noise evaluation of silicon strip super-module with ABCN250 readout chips for the ATLAS detector upgrade at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Todome, K.; Jinnouchi, O.; Clark, A.; Barbier, G.; Cadoux, F.; Favre, Y.; Ferrere, D.; Gonzalez-Sevilla, S.; Iacobucci, G.; La Marra, D.; Perrin, E.; Weber, M.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Tojo, J.; Kono, T.; Hanagaki, K.; Hirose, M.; Homma, Y.; Sato, S.; Hara, K.; Sato, K.

    2016-09-01

    Toward High Luminosity LHC (HL-LHC), the whole ATLAS inner tracker will be replaced, including the semiconductor tracker (SCT) which is the silicon micro strip detector for tracking charged particles. In development of the SCT, integration of the detector is the important issue. One of the concepts of integration is the "super-module" in which individual modules are assembled to produce the SCT ladder. A super-module prototype has been developed to demonstrate its functionality. One of the concerns in integrating the super-modules is the electrical coupling between each module, because it may increase intrinsic noise of the system. To investigate the electrical performance of the prototype, the new Data Acquisition (DAQ) system has been developed by using SEABAS. The electric performance of the super-module prototype, especially the input noise and random noise hit rate, was investigated by using SEABAS system.

  9. Thermal imaging QC for silicon strip staves of the ATLAS phase II upgrade

    NASA Astrophysics Data System (ADS)

    Vergel Infante, Carlos

    2016-03-01

    A new silicon strip detector is part of the phase II upgrade of the ATLAS inner tracker. Light-material carbon fiber honeycomb sandwich staves serve as mechanical support for the strip sensors and readout modules and to move the dissipated heat out of the detector. A cooling pipe inside the stave is embedded in heat-conducting foam that thermally connects the pipe with the readout modules. The staves are required to pass a set of quality control (QC) tests before they are populated with readout modules. One test uses a non-invasive inspection method of infrared (IR) thermal imaging of the heat path while the stave is cooled to around -40°C at ambient room temperature. Imperfections in the manufacturing, such as the delamination of the stave facing from the foam, will exhibit a different temperature profile compared to a flawless stave. We report on the current status of the thermal imaging QC measurements including a characterization of various contributions to the uncertainties in the temperature reading of the IR camera such as pedestal variations, common-mode noise, vignetting, and statistical fluctuations across the field of view.

  10. Analyzing Potential Tracking Algorithms for the Upgrade to the Silicon Tracker of the Compact Muon Solenoid

    NASA Astrophysics Data System (ADS)

    Hardin, John; McDermott, Kevin

    2011-10-01

    The research performed revolves around creating tracking algorithms for the proposed ten-year upgrade to the tracker for CMS, one of two main detectors for the LHC at CERN. The proposed upgrade to the tracker for CMS will use fast hardware to trace particle trajectories so that they can be used immediately in a trigger system. The additional information will be combined with other sub-detectors in CMS, enabling mostly the non-background events to be read-out by the detector. The algorithms would be implemented directly into the Level-1 trigger, the first trigger in a 2 trigger system, to be used in real time. Specifically, by analyzing computer generated stable particles over various ranges of transverse momentum and the tracks they produce, we created and tested various simulated trigger algorithms that might be used in hardware. As one algorithm has proved very effective, the next step is to test this algorithm against simulated events with an environment equivalent to SLHC luminosities.

  11. Trapping in irradiated p+-n-n- silicon sensors at fluences anticipated at the HL-LHC outer tracker

    DOE PAGES

    Adam, W.

    2016-04-22

    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200μm thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3 x 1015 neq/cm2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming twomore » effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. Furthermore, the effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggests an improved tracker performance over initial expectations.« less

  12. Trapping in proton irradiated p+-n-n+ silicon sensors at fluences anticipated at the HL-LHC outer tracker

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bergauer, T.; Dragicevic, M.; Friedl, M.; Fruehwirth, R.; Hoch, M.; Hrubec, J.; Krammer, M.; Treberspurg, W.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Luyckx, S.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Grebenyuk, A.; Lenzi, Th.; Léonard, A.; Maerschalk, Th.; Mohammadi, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; D'Hondt, J.; Daci, N.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Mulders, P.; Van Onsem, G.; Van Parijs, I.; Strom, D. A.; Basegmez, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; De Callatay, B.; Delaere, C.; Du Pree, T.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Michotte, D.; Nuttens, C.; Perrini, L.; Pagano, D.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.-R.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Beaulieu, G.; Boudoul, G.; Combaret, C.; Contardo, D.; Gallbit, G.; Lumb, N.; Mathez, H.; Mirabito, L.; Perries, S.; Sabes, D.; Vander Donckt, M.; Verdier, P.; Viret, S.; Zoccarato, Y.; Agram, J.-L.; Conte, E.; Fontaine, J.-Ch.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Charles, L.; Goetzmann, Ch.; Gross, L.; Hosselet, J.; Mathieu, C.; Richer, M.; Skovpen, K.; Pistone, C.; Fluegge, G.; Kuensken, A.; Geisler, M.; Pooth, O.; Stahl, A.; Autermann, C.; Edelhoff, M.; Esser, H.; Feld, L.; Karpinski, W.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schwering, G.; Wittmer, B.; Wlochal, M.; Zhukov, V.; Bartosik, N.; Behr, J.; Burgmeier, A.; Calligaris, L.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Fluke, G.; Garay Garcia, J.; Gizhko, A.; Hansen, K.; Harb, A.; Hauk, J.; Kalogeropoulos, A.; Kleinwort, C.; Korol, I.; Lange, W.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Schroeder, M.; Seitz, C.; Spannagel, S.; Zuber, A.; Biskop, H.; Blobel, V.; Buhmann, P.; Centis-Vignali, M.; Draeger, A.-R.; Erfle, J.; Garutti, E.; Haller, J.; Hoffmann, M.; Junkes, A.; Lapsien, T.; Mättig, S.; Matysek, M.; Perieanu, A.; Poehlsen, J.; Poehlsen, T.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Sola, V.; Steinbrück, G.; Wellhausen, J.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Casele, M.; Colombo, F.; Dierlamm, A.; Eber, R.; Freund, B.; Hartmann, F.; Hauth, Th.; Heindl, S.; Hoffmann, K.-H.; Husemann, U.; Kornmeyer, A.; Mallows, S.; Muller, Th.; Nuernberg, A.; Printz, M.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Bhardwaj, A.; Kumar, A.; Kumar, A.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Sala, G.; Silvestris, L.; Creanza, D.; De Palma, M.; Maggi, G.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Di Mattia, A.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuvè, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Civinini, C.; Gallo, E.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Ciulli, V.; D'Alessandro, R.; Gonzi, S.; Gori, V.; Focardi, E.; Lenzi, P.; Scarlini, E.; Tropiano, A.; Viliani, L.; Ferro, F.; Robutti, E.; Lo Vetere, M.; Gennai, S.; Malvezzi, S.; Menasce, D.; Moroni, L.; Pedrini, D.; Dinardo, M.; Fiorendi, S.; Manzoni, R. A.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Dorigo, T.; Giubilato, P.; Pozzobon, N.; Tosi, M.; Zucchetta, A.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Bilei, G. M.; Bissi, L.; Checcucci, B.; Magalotti, D.; Menichelli, M.; Saha, A.; Servoli, L.; Storchi, L.; Biasini, M.; Conti, E.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Passeri, D.; Placidi, P.; Salvatore, M.; Santocchia, A.; Solestizi, L. A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Lomtadze, T.; Magazzu, G.; Mazzoni, E.; Minuti, M.; Moggi, A.; Moon, C. S.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Martini, L.; Messineo, A.; Rizzi, A.; Tonelli, G.; Calzolari, F.; Donato, S.; Fiori, F.; Ligabue, F.; Vernieri, C.; Demaria, N.; Rivetti, A.; Bellan, R.; Casasso, S.; Costa, M.; Covarelli, R.; Migliore, E.; Monteil, E.; Musich, M.; Pacher, L.; Ravera, F.; Romero, A.; Solano, A.; Trapani, P.; Jaramillo Echeverria, R.; Fernandez, M.; Gomez, G.; Moya, D.; Gonzalez Sanchez, F. J.; Munoz Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Breuker, H.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Alfonso, M.; D'Auria, A.; Detraz, S.; De Visscher, S.; Deyrail, D.; Faccio, F.; Felici, D.; Frank, N.; Gill, K.; Giordano, D.; Harris, P.; Honma, A.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Mannelli, M.; Marchioro, A.; Marconi, S.; Martina, S.; Mersi, S.; Michelis, S.; Moll, M.; Onnela, A.; Pakulski, T.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Rzonca, M.; Stoye, M.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; Bäni, L.; di Calafiori, D.; Casal, B.; Djambazov, L.; Donega, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Horisberger, U.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Perrozzi, L.; Roeser, U.; Rossini, M.; Starodumov, A.; Takahashi, M.; Wallny, R.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Chen, P.-H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Lu, R.-S.; Moya, M.; Wilken, R.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hobson, P.; Leggat, D.; Reid, I. D.; Teodorescu, L.; Bainbridge, R.; Dauncey, P.; Fulcher, J.; Hall, G.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Coughlan, J. A.; Harder, K.; Ilic, J.; Tomalin, I. R.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Burt, K.; Ellison, J.; Hanson, G.; Malberti, M.; Olmedo, M.; Cerati, G.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; McColl, N.; Mullin, S.; White, D.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Stenson, K.; Wagner, S. R.; Baldin, B.; Bolla, G.; Burkett, K.; Butler, J.; Cheung, H.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Gruenendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Jung, A.; Joshi, U.; Kahlid, F.; Lei, C. M.; Lipton, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Yin, H.; Adams, M. R.; Berry, D. R.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Kapustka, B. K.; O'Brien, C.; Sandoval Gonzalez, D. I.; Trauger, H.; Turner, P.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Benelli, G.; Gray, J.; Majumder, D.; Noonan, D.; Sanders, S.; Stringer, R.; Ivanov, A.; Makouski, M.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Acosta, J. G.; Cremaldi, L. M.; Oliveros, S.; Perera, L.; Summers, D.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Meier, F.; Monroy, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Duggan, D.; Halkiadakis, E.; Lath, A.; Park, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Kaufman, G.; Mirman, N.; Ryd, A.; Salvati, E.; Skinnari, L.; Thom, J.; Thompson, J.; Tucker, J.; Winstrom, L.; Akgün, B.; Ecklund, K. M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.; Delannoy, A. G.; D'Angelo, P.; Johns, W.

    2016-04-01

    The degradation of signal in silicon sensors is studied under conditions expected at the CERN High-Luminosity LHC. 200 μm thick n-type silicon sensors are irradiated with protons of different energies to fluences of up to 3 · 1015 neq/cm2. Pulsed red laser light with a wavelength of 672 nm is used to generate electron-hole pairs in the sensors. The induced signals are used to determine the charge collection efficiencies separately for electrons and holes drifting through the sensor. The effective trapping rates are extracted by comparing the results to simulation. The electric field is simulated using Synopsys device simulation assuming two effective defects. The generation and drift of charge carriers are simulated in an independent simulation based on PixelAV. The effective trapping rates are determined from the measured charge collection efficiencies and the simulated and measured time-resolved current pulses are compared. The effective trapping rates determined for both electrons and holes are about 50% smaller than those obtained using standard extrapolations of studies at low fluences and suggest an improved tracker performance over initial expectations.

  13. Development and testing of novel stripixel detectors for the silicon vertex tracker at PHENIX

    NASA Astrophysics Data System (ADS)

    Haegemann, C.; Hoeferkamp, M.; Fields, D. E.; Zimmerman, A.; Turner, J.; Malik, M.; Edans, L.

    2005-12-01

    As a part of the upgrades for the PHENIX detector at RHIC,a silicon vertex tracking detector is planned. This detector will consist of two pixel layers followed by two strip-pixel layers in the barrel region,an d four mini-strip layers in the endcap region. As a part of the development phase of the vertex detector, we have set up three sensor testing facilities at Brookhaven National Laboratory, at State University of New York, Stonybrook, and at University of New Mexico to characterize the preproduction sensors, and develop our testing and quality assurance plans. Preliminary results from these test are presented here.

  14. The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope

    SciTech Connect

    Baldini, Luca; Brez, Alessandro; Himel, Thomas; Hirayama, Masaharu; Johnson, R.P.; Kroeger, Wilko; Latronico, Luca; Minuti, Massimo; Nelson, David; Rando, Riccardo; Sadrozinski, H.F.-W.; Sgro, Carmelo; Spandre, Gloria; Spencer, E.N.; Sugizaki, Mutsumi; Tajima, Hiro; Cohen-Tanugi, Johann; Ziegler, Marcus; /Pisa U. /INFN, Pisa /SLAC /Maryland U. /UC, Santa Cruz /Padua U. /INFN, Padua

    2006-02-27

    A unique electronics system has been built and tested for reading signals from the silicon-strip detectors of the Gamma-ray Large Area Space Telescope mission. The system amplifies and processes signals from 884,736 36-cm strips using only 160 W of power, and it achieves close to 100% detection efficiency with noise occupancy sufficiently low to allow it to self trigger. The design of the readout system is described, and results are presented from ground-based testing of the completed detector system.

  15. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm‑2s‑1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb‑1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  16. Characterisation of strip silicon detectors for the ATLAS Phase-II Upgrade with a micro-focused X-ray beam

    NASA Astrophysics Data System (ADS)

    Poley, L.; Blue, A.; Bates, R.; Bloch, I.; Díez, S.; Fernandez-Tejero, J.; Fleta, C.; Gallop, B.; Greenall, A.; Gregor, I.-M.; Hara, K.; Ikegami, Y.; Lacasta, C.; Lohwasser, K.; Maneuski, D.; Nagorski, S.; Pape, I.; Phillips, P. W.; Sperlich, D.; Sawhney, K.; Soldevila, U.; Ullan, M.; Unno, Y.; Warren, M.

    2016-07-01

    The planned HL-LHC (High Luminosity LHC) in 2025 is being designed to maximise the physics potential through a sizable increase in the luminosity up to 6·1034 cm-2s-1. A consequence of this increased luminosity is the expected radiation damage at 3000 fb-1 after ten years of operation, requiring the tracking detectors to withstand fluences to over 1·1016 1 MeV neq/cm2. In order to cope with the consequent increased readout rates, a complete re-design of the current ATLAS Inner Detector (ID) is being developed as the Inner Tracker (ITk). Two proposed detectors for the ATLAS strip tracker region of the ITk were characterized at the Diamond Light Source with a 3 μm FWHM 15 keV micro focused X-ray beam. The devices under test were a 320 μm thick silicon stereo (Barrel) ATLAS12 strip mini sensor wire bonded to a 130 nm CMOS binary readout chip (ABC130) and a 320 μm thick full size radial (end-cap) strip sensor - utilizing bi-metal readout layers - wire bonded to 250 nm CMOS binary readout chips (ABCN-25). A resolution better than the inter strip pitch of the 74.5 μm strips was achieved for both detectors. The effect of the p-stop diffusion layers between strips was investigated in detail for the wire bond pad regions. Inter strip charge collection measurements indicate that the effective width of the strip on the silicon sensors is determined by p-stop regions between the strips rather than the strip pitch.

  17. The Gamma Ray Imaging Detector of the AGILE satellite: A novel application of silicon trackers for detection of astrophysics high-energy photons

    NASA Astrophysics Data System (ADS)

    Rappoldi, Andrea; AGILE Collaboration

    2009-10-01

    AGILE is a project of the Italian Space Agency (ASI) Scientific Program dedicated to Gamma ray astrophysics. It is designed to be a very light and compact instrument, capable of photon detections and imaging in both the 30 MeV-50 GeV and 18-60 keV energy ranges, with a large field of view (FOV is ˜3 and ˜1 sr, respectively). The core of the instrument (launched on April 23, 2007 from the Indian Space Research Organization's launch facility) is represented by the Gamma Ray Imaging Detector (GRID), which is a silicon tracker developed by the Italian National Institute of Nuclear Physics (INFN), with a spatial resolution of ˜40 μm. The GRID performances have been studied by means of a GEANT Montecarlo, and tested with a dedicated calibration campaign using the tagged gamma beam available at Beam Test Facility (BTF) of INFN Frascati Laboratory.

  18. Novel silicon n-in-p pixel sensors for the future ATLAS upgrades

    NASA Astrophysics Data System (ADS)

    La Rosa, A.; Gallrapp, C.; Macchiolo, A.; Nisius, R.; Pernegger, H.; Richter, R. H.; Weigell, P.

    2013-08-01

    In view of the LHC upgrade phases towards HL-LHC the ATLAS experiment plans to upgrade the inner detector with an all silicon system. The n-in-p silicon technology is a promising candidate for the pixel upgrade thanks to its radiation hardness and cost effectiveness that allow for enlarging the area instrumented with pixel detectors. We present the characterization and performance of novel n-in-p planar pixel sensors produced by CiS (Germany) connected by bump bonding to the ATLAS readout chip FE-I3. These results are obtained before and after irradiation up to a fluence of 10161-MeV neq cm-2, and prove the operability of this kind of sensors in the harsh radiation environment foreseen for the pixel system at HL-LHC. We also present an overview of the new pixel production, which is on-going at CiS for sensors compatible with the new ATLAS readout chip FE-I4.

  19. Test Beam Results of 3D Silicon Pixel Sensors for the ATLAS upgrade

    SciTech Connect

    Grenier, P.; Alimonti, G.; Barbero, M.; Bates, R.; Bolle, E.; Borri, M.; Boscardin, M.; Buttar, C.; Capua, M.; Cavalli-Sforza, M.; Cobal, M.; Cristofoli, A.; Dalla Betta, G.F.; Darbo, G.; Da Via, C.; Devetak, E.; DeWilde, B.; Di Girolamo, B.; Dobos, D.; Einsweiler, K.; Esseni, D.; /Udine U. /INFN, Udine /Calabria U. /INFN, Cosenza /Barcelona, Inst. Microelectron. /Manchester U. /CERN /LBL, Berkeley /INFN, Genoa /INFN, Genoa /Udine U. /INFN, Udine /Oslo U. /ICREA, Barcelona /Barcelona, IFAE /SINTEF, Oslo /SINTEF, Oslo /SLAC /SLAC /Bergen U. /New Mexico U. /Bonn U. /SLAC /Freiburg U. /VTT Electronics, Espoo /Bonn U. /SLAC /Freiburg U. /SLAC /SINTEF, Oslo /Manchester U. /Barcelona, IFAE /Bonn U. /Bonn U. /CERN /Manchester U. /SINTEF, Oslo /Barcelona, Inst. Microelectron. /Calabria U. /INFN, Cosenza /Udine U. /INFN, Udine /Manchester U. /VTT Electronics, Espoo /Glasgow U. /Barcelona, IFAE /Udine U. /INFN, Udine /Hawaii U. /Freiburg U. /Manchester U. /Barcelona, Inst. Microelectron. /CERN /Fond. Bruno Kessler, Povo /Prague, Tech. U. /Trento U. /INFN, Trento /CERN /Oslo U. /Fond. Bruno Kessler, Povo /INFN, Genoa /INFN, Genoa /Bergen U. /New Mexico U. /Udine U. /INFN, Udine /SLAC /Oslo U. /Prague, Tech. U. /Oslo U. /Bergen U. /SUNY, Stony Brook /SLAC /Calabria U. /INFN, Cosenza /Manchester U. /Bonn U. /SUNY, Stony Brook /Manchester U. /Bonn U. /SLAC /Fond. Bruno Kessler, Povo

    2011-08-19

    Results on beam tests of 3D silicon pixel sensors aimed at the ATLAS Insertable-B-Layer and High Luminosity LHC (HL-LHC) upgrades are presented. Measurements include charge collection, tracking efficiency and charge sharing between pixel cells, as a function of track incident angle, and were performed with and without a 1.6 T magnetic field oriented as the ATLAS Inner Detector solenoid field. Sensors were bump bonded to the front-end chip currently used in the ATLAS pixel detector. Full 3D sensors, with electrodes penetrating through the entire wafer thickness and active edge, and double-sided 3D sensors with partially overlapping bias and read-out electrodes were tested and showed comparable performance. Full and partial 3D pixel detectors have been tested, with and without a 1.6T magnetic field, in high energy pion beams at the CERN SPS North Area in 2009. Sensors characteristics have been measured as a function of the beam incident angle and compared to a regular planar pixel device. Overall full and partial 3D devices have similar behavior. Magnetic field has no sizeable effect on 3D performances. Due to electrode inefficiency 3D devices exhibit some loss of tracking efficiency for normal incident tracks but recover full efficiency with tilted tracks. As expected due to the electric field configuration 3D sensors have little charge sharing between cells.

  20. Study of built-in amplifier performance on HV-CMOS sensor for the ATLAS phase-II strip tracker upgrade

    NASA Astrophysics Data System (ADS)

    Liang, Z.; Affolder, A.; Arndt, K.; Bates, R.; Benoit, M.; Di Bello, F.; Blue, A.; Bortoletto, D.; Buckland, M.; Buttar, C.; Caragiulo, P.; Das, D.; Dopke, J.; Dragone, A.; Ehrler, F.; Fadeyev, V.; Galloway, Z.; Grabas, H.; Gregor, I. M.; Grenier, P.; Grillo, A.; Hoeferkamp, M.; Hommels, L. B. A.; Huffman, B. T.; John, J.; Kanisauskas, K.; Kenney, C.; Kramberger, J.; Mandić, I.; Maneuski, D.; Martinez-Mckinney, F.; McMahon, S.; Meng, L.; Mikuž, M.; Muenstermann, D.; Nickerson, R.; Peric, I.; Phillips, P.; Plackett, R.; Rubbo, F.; Segal, J.; Seidel, S.; Seiden, A.; Shipsey, I.; Song, W.; Stanitzki, M.; Su, D.; Tamma, C.; Turchetta, R.; Vigani, L.; Volk, J.; Wang, R.; Warren, M.; Wilson, F.; Worm, S.; Xiu, Q.; Zhang, J.; Zhu, H.

    2016-09-01

    This paper focuses on the performance of analog readout electronics (built-in amplifier) integrated on the high-voltage (HV) CMOS silicon sensor chip, as well as its radiation hardness. Since the total collected charge from minimum ionizing particle (MIP) for the CMOS sensor is 10 times lower than for a conventional planar sensor, it is crucial to integrate a low noise built-in amplifier on the sensor chip to improve the signal to noise ratio of the system. As part of the investigation for the ATLAS strip detector upgrade, a test chip that comprises several pixel arrays with different geometries, as well as standalone built-in amplifiers and built-in amplifiers in pixel arrays has been fabricated in a 0.35 μm high-voltage CMOS process. Measurements of the gain and the noise of both the standalone amplifiers and built-in amplifiers in pixel arrays were performed before and after gamma radiation of up to 60 Mrad. Of special interest is the variation of the noise as a function of the sensor capacitance. We optimized the configuration of the amplifier for a fast rise time to adapt to the LHC bunch crossing period of 25 ns, and measured the timing characteristics including jitter. Our results indicate an adequate amplifier performance for monolithic structures used in HV-CMOS technology. The results have been incorporated in the next submission of a large-structure chip.

  1. Eye tracker.

    PubMed

    Pruehsner, W; Enderle, J D

    1999-01-01

    A device that records saccadic eye movements, the Eye Tracker, is presented in this paper. The Eye Tracker utilizes infra-red technology mounted on fully adjustable goggles to follow eye movements targeted by either a goggles mounted HUD type display or a wall mounted light bank. Output from the goggles is remotely sent to a PC type computer, which leads to device portability. The goggles can also maintain output data in an internal memory for latter download. The user interface is Windows based with the output from the goggles represented as a trace map or plotted points. This output can also be saved or printed for future reference. The user interface can be used on any PC type computer. The device is designed with reference to standard ISO design methodology. Safety in design and final product usage has also been addressed with reference to standard ISO type procedures. Device accuracy is maintained by precise construction of the IR units in the goggles and tight control of cross talk between each IR device plus filtering of ambient light signals. Also, a reset feature is included to maintain equal baseline control. An automatic switching device is included in the goggles to allow the Eye Tracker to "warm up," assuring that equal IR power is delivered for each subject tested. The IR units in the goggles are also modular in case replacement is required. PMID:11143354

  2. Tracker Toolkit

    NASA Technical Reports Server (NTRS)

    Lewis, Steven J.; Palacios, David M.

    2013-01-01

    This software can track multiple moving objects within a video stream simultaneously, use visual features to aid in the tracking, and initiate tracks based on object detection in a subregion. A simple programmatic interface allows plugging into larger image chain modeling suites. It extracts unique visual features for aid in tracking and later analysis, and includes sub-functionality for extracting visual features about an object identified within an image frame. Tracker Toolkit utilizes a feature extraction algorithm to tag each object with metadata features about its size, shape, color, and movement. Its functionality is independent of the scale of objects within a scene. The only assumption made on the tracked objects is that they move. There are no constraints on size within the scene, shape, or type of movement. The Tracker Toolkit is also capable of following an arbitrary number of objects in the same scene, identifying and propagating the track of each object from frame to frame. Target objects may be specified for tracking beforehand, or may be dynamically discovered within a tripwire region. Initialization of the Tracker Toolkit algorithm includes two steps: Initializing the data structures for tracked target objects, including targets preselected for tracking; and initializing the tripwire region. If no tripwire region is desired, this step is skipped. The tripwire region is an area within the frames that is always checked for new objects, and all new objects discovered within the region will be tracked until lost (by leaving the frame, stopping, or blending in to the background).

  3. Diborane Electrode Response in 3D Silicon Sensors for the CMS and ATLAS Experiments

    SciTech Connect

    Brown, Emily R.; /Reed Coll. /SLAC

    2011-06-22

    Unusually high leakage currents have been measured in test wafers produced by the manufacturer SINTEF containing 3D pixel silicon sensor chips designed for the ATLAS (A Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid) experiments. Previous data has shown the CMS chips as having a lower leakage current after processing than ATLAS chips. Some theories behind the cause of the leakage currents include the dicing process and the usage of copper in bump bonding, and with differences in packaging and handling between the ATLAS and CMS chips causing the disparity between the two. Data taken at SLAC from a SINTEF wafer with electrodes doped with diborane and filled with polysilicon, before dicing, and with indium bumps added contradicts this past data, as ATLAS chips showed a lower leakage current than CMS chips. It also argues against copper in bump bonding and the dicing process as main causes of leakage current as neither were involved on this wafer. However, they still display an extremely high leakage current, with the source mostly unknown. The SINTEF wafer shows completely different behavior than the others, as the FEI3s actually performed better than the CMS chips. Therefore this data argues against the differences in packaging and handling or the intrinsic geometry of the two as a cause in the disparity between the leakage currents of the chips. Even though the leakage current in the FEI3s overall is lower, the current is still significant enough to cause problems. As this wafer was not diced, nor had it any copper added for bump bonding, this data argues against the dicing and bump bonding as causes for leakage current. To compliment this information, more data will be taken on the efficiency of the individual electrodes of the ATLAS and CMS chips on this wafer. The electrodes will be shot perpendicularly with a laser to test the efficiency across the width of the electrode. A mask with pinholes has been made to focus the laser to a beam smaller than the

  4. Silicon strip tracking detector development and prototyping for the Phase-II upgrade of the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Kuehn, S.

    2016-07-01

    In about ten years from now, the Phase-II upgrade of the LHC will be carried out. Due to increased luminosity, a severe radiation dose and high particle rates will occur for the experiments. In consequence, several detector components will have to be upgraded. In the ATLAS experiment, the current inner detector will be replaced by an all-silicon tracking detector with the goal of at least delivering the present detector performance also in the harsh Phase-II LHC conditions. This report presents the current planning and results from first prototype measurements of the upgrade silicon strip tracking detector.

  5. 3D silicon pixel detectors for the ATLAS Forward Physics experiment

    NASA Astrophysics Data System (ADS)

    Lange, J.; Cavallaro, E.; Grinstein, S.; López Paz, I.

    2015-03-01

    The ATLAS Forward Physics (AFP) project plans to install 3D silicon pixel detectors about 210 m away from the interaction point and very close to the beamline (2-3 mm). This implies the need of slim edges of about 100-200 μm width for the sensor side facing the beam to minimise the dead area. Another challenge is an expected non-uniform irradiation of the pixel sensors. It is studied if these requirements can be met using slightly-modified FE-I4 3D pixel sensors from the ATLAS Insertable B-Layer production. AFP-compatible slim edges are obtained with a simple diamond-saw cut. Electrical characterisations and beam tests are carried out and no detrimental impact on the leakage current and hit efficiency is observed. For devices without a 3D guard ring a remaining insensitive edge of less than 15 μm width is found. Moreover, 3D detectors are non-uniformly irradiated up to fluences of several 1015 neq/cm2 with either a focussed 23 GeV proton beam or a 23 MeV proton beam through holes in Al masks. The efficiency in the irradiated region is found to be similar to the one in the non-irradiated region and exceeds 97% in case of favourable chip-parameter settings. Only in a narrow transition area at the edge of the hole in the Al mask, a significantly lower efficiency is seen. A follow-up study of this effect using arrays of small pad diodes for position-resolved dosimetry via the leakage current is carried out.

  6. STAR heavy flavor tracker

    NASA Astrophysics Data System (ADS)

    Qiu, Hao

    2014-11-01

    Hadrons containing heavy quarks are a clean probe of the early dynamic evolution of the dense and hot medium created in high-energy nuclear collisions. To explore heavy quark production at RHIC, the Heavy Flavor Tracker (HFT) for the STAR experiment was built and installed in time for RHIC Run 14. The HFT consists of four layers of silicon detectors. The two outermost layers are silicon strip detectors and the two innermost layers are made from state-of-the-art ultra-thin CMOS Monolithic Active Pixel Sensors (MAPS). This is the first application of a CMOS MAPS detector in a collider experiment. The use of thin pixel sensors plus the use of carbon fiber supporting material limits the material budget to be only 0.4% radiation length per pixel detector layer, enabling the reconstruction of low pT heavy flavor hadrons. The status and performance of the HFT in the RHIC 200 GeV Au + Au run in 2014 are reported. Very good detector efficiency, hit residuals and track resolution (DCAs) were observed in the cosmic ray data and in the Au + Au data.

  7. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  8. LHCb Upgrade: Scintillating Fibre Tracker

    NASA Astrophysics Data System (ADS)

    Tobin, Mark

    2016-07-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  9. Interacting Multiview Tracker.

    PubMed

    Yoon, Ju Hong; Yang, Ming-Hsuan; Yoon, Kuk-Jin

    2016-05-01

    A robust algorithm is proposed for tracking a target object in dynamic conditions including motion blurs, illumination changes, pose variations, and occlusions. To cope with these challenging factors, multiple trackers based on different feature representations are integrated within a probabilistic framework. Each view of the proposed multiview (multi-channel) feature learning algorithm is concerned with one particular feature representation of a target object from which a tracker is developed with different levels of reliability. With the multiple trackers, the proposed algorithm exploits tracker interaction and selection for robust tracking performance. In the tracker interaction, a transition probability matrix is used to estimate dependencies between trackers. Multiple trackers communicate with each other by sharing information of sample distributions. The tracker selection process determines the most reliable tracker with the highest probability. To account for object appearance changes, the transition probability matrix and tracker probability are updated in a recursive Bayesian framework by reflecting the tracker reliability measured by a robust tracker likelihood function that learns to account for both transient and stable appearance changes. Experimental results on benchmark datasets demonstrate that the proposed interacting multiview algorithm performs robustly and favorably against state-of-the-art methods in terms of several quantitative metrics. PMID:26336117

  10. Development of n+-in-p large-area silicon microstrip sensors for very high radiation environments - ATLAS12 design and initial results

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Lynn, D.; Carter, J. R.; Hommels, L. B. A.; Robinson, D.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Betancourt, C.; Jakobs, K.; Kuehn, S.; Mori, R.; Parzefall, U.; Wiik-Fucks, L.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Nishimura, R.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Allport, P. P.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Arai, Y.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Grillo, A. A.; Martinez-McKinney, F.; Ngo, J.; Parker, C.; Sadrozinski, H. F.-W.; Schumacher, D.; Seiden, A.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Paganis, S.; Jinnouchi, O.; Motohashi, K.; Todome, K.; Yamaguchi, D.; Hara, K.; Hagihara, M.; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti i Garcia, S.; Soldevila, U.

    2014-11-01

    We have been developing a novel radiation-tolerant n+-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 μm and slim edge space of 450 μm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.

  11. ORNL SunTracker

    SciTech Connect

    Wysor, Robert Wesley

    2005-09-14

    The ORNL Sun Tracker software is the user interface that operates on a Personal Computer and serially communicates with the controller board. This software allows the user to manually operate the Hybrid Solar Lighting (HSL) unit. It displays the current location of the HSL unit, its parameters and it provides real-time monitoring. The ORNL Sun Tracker software is also the main component used in setting up and calibrating the tracker. It contains a setup screen that requires latitude, longitude, and a few other key values to accurately locate the sun's position. The software also will provide the user access to calibrate the tracking location in relation to the sun's actual position.

  12. The upstream tracker for the LHCb upgrade

    NASA Astrophysics Data System (ADS)

    Steinkamp, Olaf

    2016-09-01

    The LHCb collaboration is planning a comprehensive upgrade of the experiment for the long shutdown of the LHC in 2019/20. As part of this upgrade, the tracking station in front of the LHCb dipole magnet will be replaced by a new planar four-layer silicon micro-strip detector with 40 MHz readout and silicon sensors with finer granularity and improved radiation hardness. Key design aspects of this new Upstream Tracker are described and a brief overview of the status of the project is given.

  13. The CMS Tracker Detector Control System

    NASA Astrophysics Data System (ADS)

    Yousaf Shah, S.; Tsirou, Andromachi; Verdini, Piero Giorgio; Hartmann, Frank; Masetti, Lorenzo; Dirkes, Guido H.; Stringer, Robert; Fahrer, Manuel

    2009-06-01

    The Compact Muon Solenoid DCS (CMS) Silicon Strip Tracker is by far the largest detector ever built in micro-strip technology. It has an active surface area of 198 m 2 consisting of 15,148 silicon modules with 9,316,352 readout channels read via 75,376 Analog Pipeline Voltage (APV) front-end chips and a total of 24,244 sensors. The Detector Control System (DCS) for the Tracker is a distributed control system that operates ˜2000 power supplies for the silicon modules and also monitors its environmental sensors. The DCS receives information from about 10 3 environmental probes (temperature and humidity sensors) located inside the detector's volume and values from these probes are driven through the Programmable Logic Controllers (PLC) of the Detector Safety System (DSS). A total of 10 5 parameters are read out from the dedicated chips in the front-end electronics of the detector via the data acquisition system, and a total of 10 5 parameters are read from the power supply modules. All these parameters are monitored, evaluated and correlated with the detector layout; actions are taken under specific conditions. The hardware for DCS consists of 10 PCs and 10 PLC systems that are continuously running the necessary control and safety routines. The DCS is a fundamental tool for the Tracker operation and its safety.

  14. Miniature Laser Tracker

    DOEpatents

    Vann, Charles S.

    2003-09-09

    This small, inexpensive, non-contact laser sensor can detect the location of a retroreflective target in a relatively large volume and up to six degrees of position. The tracker's laser beam is formed into a plane of light which is swept across the space of interest. When the beam illuminates the retroreflector, some of the light returns to the tracker. The intensity, angle, and time of the return beam is measured to calculate the three dimensional location of the target. With three retroreflectors on the target, the locations of three points on the target are measured, enabling the calculation of all six degrees of target position. Until now, devices for three-dimensional tracking of objects in a large volume have been heavy, large, and very expensive. Because of the simplicity and unique characteristics of this tracker, it is capable of three-dimensional tracking of one to several objects in a large volume, yet it is compact, light-weight, and relatively inexpensive. Alternatively, a tracker produces a diverging laser beam which is directed towards a fixed position, and senses when a retroreflective target enters the fixed field of view. An optically bar coded target can be read by the tracker to provide information about the target. The target can be formed of a ball lens with a bar code on one end. As the target moves through the field, the ball lens causes the laser beam to scan across the bar code.

  15. ORNL SunTracker

    2005-09-14

    The ORNL Sun Tracker software is the user interface that operates on a Personal Computer and serially communicates with the controller board. This software allows the user to manually operate the Hybrid Solar Lighting (HSL) unit. It displays the current location of the HSL unit, its parameters and it provides real-time monitoring. The ORNL Sun Tracker software is also the main component used in setting up and calibrating the tracker. It contains a setup screenmore » that requires latitude, longitude, and a few other key values to accurately locate the sun's position. The software also will provide the user access to calibrate the tracking location in relation to the sun's actual position.« less

  16. Line-focus sun trackers

    SciTech Connect

    Gee, R.

    1980-05-01

    Sun trackers have been a troublesome component for line-focus concentrating collector systems. The problems have included poor accuracy, component failures, false locks on clouds, and restricted tracker operating ranges. In response to these tracking difficulties, a variety of improved sun trackers have been developed. A testing program is underway at SERI to determine the tracking accuracy of this new generation of sun trackers. The three major types of trackers are defined, some recent sun tracker developments are described, and the testing that is underway is outlined.

  17. Teaching Astronomy Using Tracker

    ERIC Educational Resources Information Center

    Belloni, Mario; Christian, Wolfgang; Brown, Douglas

    2013-01-01

    A recent paper in this journal presented a set of innovative uses of video analysis for introductory physics using Tracker. In addition, numerous other papers have described how video analysis can be a meaningful part of introductory courses. Yet despite this, there are few resources for using video analysis in introductory astronomy classes. In…

  18. Rotational Dynamics with Tracker

    ERIC Educational Resources Information Center

    Eadkhong, T.; Rajsadorn, R.; Jannual, P.; Danworaphong, S.

    2012-01-01

    We propose the use of Tracker, freeware for video analysis, to analyse the moment of inertia ("I") of a cylindrical plate. Three experiments are performed to validate the proposed method. The first experiment is dedicated to find the linear coefficient of rotational friction ("b") for our system. By omitting the effect of such friction, we derive…

  19. MediaTracker system

    SciTech Connect

    Sandoval, D. M.; Strittmatter, R. B.; Abeyta, J. D.; Brown, J.; Marks, T. , Jr.; Martinez, B. J.; Jones, D. B.; Hsue, W.

    2004-01-01

    The initial objectives of this effort were to provide a hardware and software platform that can address the requirements for the accountability of classified removable electronic media and vault access logging. The Media Tracker system software assists classified media custodian in managing vault access logging and Media Tracking to prevent the inadvertent violation of rules or policies for the access to a restricted area and the movement and use of tracked items. The MediaTracker system includes the software tools to track and account for high consequence security assets and high value items. The overall benefits include: (1) real-time access to the disposition of all Classified Removable Electronic Media (CREM), (2) streamlined security procedures and requirements, (3) removal of ambiguity and managerial inconsistencies, (4) prevention of incidents that can and should be prevented, (5) alignment with the DOE's initiative to achieve improvements in security and facility operations through technology deployment, and (6) enhanced individual responsibility by providing a consistent method of dealing with daily responsibilities. In response to initiatives to enhance the control of classified removable electronic media (CREM), the Media Tracker software suite was developed, piloted and implemented at the Los Alamos National Laboratory beginning in July 2000. The Media Tracker software suite assists in the accountability and tracking of CREM and other high-value assets. One component of the MediaTracker software suite provides a Laboratory-approved media tracking system. Using commercial touch screen and bar code technology, the MediaTracker (MT) component of the MediaTracker software suite provides an efficient and effective means to meet current Laboratory requirements and provides new-engineered controls to help assure compliance with those requirements. It also establishes a computer infrastructure at vault entrances for vault access logging, and can accommodate

  20. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    SciTech Connect

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.

  1. Status of the PAMELA silicon tracker

    NASA Astrophysics Data System (ADS)

    Bonechi, L.; Adriani, O.; Bongi, M.; Bottai, S.; Castellini, G.; Fedele, D.; Grandi, M.; Papini, P.; Ricciarini, S.; Spillantini, P.; Straulino, S.; Taddei, E.; Vannuccini, E.

    2007-01-01

    PAMELA is a composite particle detector which will be launched during the first half of 2006 on board the Russian satellite Resurs DK-1 from Baikonur cosmodrome in Kazakhstan. This experiment is mainly conceived for the study of cosmic-ray antiparticles and for the search for light antinuclei, but other issues related to the cosmic-ray physics will be investigated. In this work the structure of the whole apparatus is shortly discussed with particular attention to the magnetic spectrometer, which has been designed and built in Firenze.

  2. The Tevatron Chromaticity tracker

    SciTech Connect

    Tan, Cheng-Yang; /Fermilab

    2008-12-01

    The Tevatron chromaticity tracker (CT) has been successfully commissioned and is now operational. The basic idea behind the CT is that when the phase of the Tevatron RF is slowly modulated, the beam momentum is also modulated. This momentum modulation is coupled transversely via chromaticity to manifest as a phase modulation on the betatron tune. Thus by phase demodulating the betatron tune, the chromaticity can be recovered. However, for the phase demodulation to be successful, it is critical that the betatron tune be a coherent signal that can be easily picked up by a phase detector. This is easily done because the Tevatron has a phase locked loop (PLL) based tune tracker which coherently excites the beam at the betatron tune.

  3. Performance studies of the CMS Strip Tracker before installation

    SciTech Connect

    Adam, W.; et al.

    2009-06-01

    In March 2007 the assembly of the Silicon Strip Tracker was completed at the Tracker Integration Facility at CERN. Nearly 15% of the detector was instrumented using cables, fiber optics, power supplies, and electronics intended for the operation at the LHC. A local chiller was used to circulate the coolant for low temperature operation. In order to understand the efficiency and alignment of the strip tracker modules, a cosmic ray trigger was implemented. From March through July 4.5 million triggers were recorded. This period, referred to as the Sector Test, provided practical experience with the operation of the Tracker, especially safety, data acquisition, power, and cooling systems. This paper describes the performance of the strip system during the Sector Test, which consisted of five distinct periods defined by the coolant temperature. Significant emphasis is placed on comparisons between the data and results from Monte Carlo studies.

  4. Evaluation of testing strategies for the radiation tolerant ATLAS n +-in-n pixel sensor

    NASA Astrophysics Data System (ADS)

    Klaiber-Lodewigs, Jonas M.; Atlas Pixel Collaboration

    2003-10-01

    The development of particle tracker systems for high fluence environments in new high-energy physics experiments raises new challenges for the development, manufacturing and reliable testing of radiation tolerant components. The ATLAS pixel detector for use at the LHC, CERN, is designed to cover an active sensor area of 1.8 m2 with 1.1×10 8 read-out channels usable for a particle fluence up to 10 15 cm-2 ( 1 MeV neutron equivalent) and an ionization dose up to 500 kGy of mainly charged hadron radiation. To cope with such a harsh environment the ATLAS Pixel Collaboration has developed a radiation hard n +-in-n silicon pixel cell design with a standard cell size of 50×400 μm2. Using this design on an oxygenated silicon substrate, sensor production has started in 2001. This contribution describes results gained during the development of testing procedures of the ATLAS pixel sensor and evaluates quality assurance procedures regarding their relevance for detector operation in the ATLAS experiment. The specific set of tests discussed in detail measures sensor depletion, interface generation velocity, p-spray dose and biasing by punch-through mechanism and is designed to give insights into effects of irradiation with ionizing particles.

  5. A Heavy Flavor Tracker for STAR

    SciTech Connect

    Chasman, C.; Beavis, D.; Debbe, R.; Lee, J.H.; Levine, M.J.; Videbaek, F.; Xu, Z.; Kleinfelder, S.; Li, S.; Cendejas, R.; Huang, H.; Sakai, S.; Whitten, C.; Joseph, J.; Keane, D.; Margetis, S.; Rykov, V.; Zhang, W.M.; Bystersky, M.; Kapitan, J.; Kushpil, V.; Sumbera, M.; Baudot, J.; Hu-Guo, C.; Shabetai, A.; Szelezniak, M.; Winter, M.; Kelsey, J.; Milner, R.; Plesko, M.; Redwine, R.; Simon, F.; Surrow, B.; Van Nieuwenhuizen, G.; Anderssen, E.; Dong, X.; Greiner, L.; Matis, H.S.; Morgan, S.; Ritter, H.G.; Rose, A.; Sichtermann, E.; Singh, R.P.; Stezelberger, T.; Sun, X.; Thomas, J.H.; Tram, V.; Vu, C.; Wieman, H.H.; Xu, N.; Hirsch, A.; Srivastava, B.; Wang, F.; Xie, W.; Bichsel, H.

    2008-02-25

    The STAR Collaboration proposes to construct a state-of-the-art microvertex detector,the Heavy Flavor Tracker (HFT), utilizing active pixel sensors and silicon strip technology. The HFT will significantly extend the physics reach of the STAR experiment for precision measurement of the yields and spectra of particles containing heavy quarks. This will be accomplished through topological identification of D mesons by reconstruction of their displaced decay vertices with a precision of approximately 50 mu m in p+p, d+A, and A+A collisions. The HFT consists of 4 layers of silicon detectors grouped into two sub-systems with different technologies, guaranteeing increasing resolution when tracking from the TPC and the Silicon Strip Detector (SSD) towards the vertex of the collision. The Intermediate Silicon Tracker (IST), consisting of two layers of single-sided strips, is located inside the SSD. Two layers of Silicon Pixel Detector (PIXEL) are inside the IST. The PIXEL detectors have the resolution necessary for a precision measurement of the displaced vertex. The PIXEL detector will use CMOS Active Pixel Sensors (APS), an innovative technology never used before in a collider experiment. The APSsensors are only 50 mu m thick and at a distance of only 2.5 cm from the interaction point. This opens up a new realm of possibilities for physics measurements. In particular, a thin detector (0.28percent radiation length per layer) in STAR makes it possible to do the direct topological reconstruction of open charm hadrons down to very low pT by the identification of the charged daughters of the hadronic decay.

  6. Tracker 300 Software

    SciTech Connect

    Wysor, R. Wes

    2006-01-12

    The Tracker300 software is downloaded to an off-the-shelf product called RCM3400/RCM3410 made by Rabbit Semiconductor. The software is a closed loop control which computes the sun's position and provides stability compensation. Using the RCM3400/RCM3410 module, the software stores and retrieves parameters from the onboard flash. The software also allows for communication with a host. It will allow the parameters to be downloaded or uploaded, it will show the status of the controller, it will provide real-time feedback, and it will send command acknowledgements. The software will capture the GPS response and ensure the internal clock is set correctly.

  7. CMS tracker visualization tools

    NASA Astrophysics Data System (ADS)

    Mennea, M. S.; Osborne, I.; Regano, A.; Zito, G.

    2005-08-01

    This document will review the design considerations, implementations and performance of the CMS Tracker Visualization tools. In view of the great complexity of this sub-detector (more than 50 millions channels organized in 16540 modules each one of these being a complete detector), the standard CMS visualization tools (IGUANA and IGUANACMS) that provide basic 3D capabilities and integration within CMS framework, respectively, have been complemented with additional 2D graphics objects. Based on the experience acquired using this software to debug and understand both hardware and software during the construction phase, we propose possible future improvements to cope with online monitoring and event analysis during data taking.

  8. Beam tests of an integrated prototype of the ATLAS Forward Proton detector

    NASA Astrophysics Data System (ADS)

    Lange, J.; Adamczyk, L.; Avoni, G.; Banas, E.; Brandt, A.; Bruschi, M.; Buglewicz, P.; Cavallaro, E.; Caforio, D.; Chiodini, G.; Chytka, L.; Cieśla, K.; Davis, P. M.; Dyndal, M.; Grinstein, S.; Janas, K.; Jirakova, K.; Kocian, M.; Korcyl, K.; Lopez Paz, I.; Northacker, D.; Nozka, L.; Rijssenbeek, M.; Seabra, L.; Staszewski, R.; Świerska, P.; Sykora, T.

    2016-09-01

    The ATLAS Forward Proton (AFP) detector is intended to measure protons scattered at small angles from the ATLAS interaction point. To this end, a combination of 3D Silicon pixel tracking modules and Quartz-Cherenkov time-of-flight (ToF) detectors is installed 210 m away from the interaction point at both sides of ATLAS. Beam tests with an AFP prototype detector combining tracking and timing sub-detectors and a common readout have been performed at the CERN-SPS test-beam facility in November 2014 and September 2015 to complete the system integration and to study the detector performance. The successful tracking-timing integration was demonstrated. Good tracker hit efficiencies above 99.9% at a sensor tilt of 14°, as foreseen for AFP, were observed. Spatial resolutions in the short pixel direction with 50 μm pitch of 5.5 ± 0.5 μm per pixel plane and of 2.8 ± 0.5 μm for the full four-plane tracker at 14° were found, largely surpassing the AFP requirement of 10 μm. The timing detector showed also good hit efficiencies above 99%, and a full-system time resolution of 35±6 ps was found for the ToF prototype detector with two Quartz bars in-line (half the final AFP size) without dedicated optimisation, fulfilling the requirements for initial low-luminosity AFP runs.

  9. Detector production for the R3B Si-tracker

    NASA Astrophysics Data System (ADS)

    Borri, M.; Lemmon, R.; Thornhill, J.; Bate, R.; Chartier, M.; Clague, N.; Herzberg, R.-D.; Labiche, M.; Lindsay, S.; Nolan, P.; Pearce, F.; Powell, W.; Wells, D.

    2016-11-01

    R3B is a fixed target experiment which will study reactions with relativistic radioactive beams at FAIR. Its Si-tracker will surround the target volume and it will detect light charged-particles like protons. The detector technology in use consists of double-sided silicon strip sensors wire bonded to the custom made R3B-ASIC. The tracker allows for a maximum of two outer layers and one inner layer. This paper reports on the production of detectors necessary to build the minimum tracking configuration: one inner layer and one outer layer.

  10. Characterization of the Ecosole HCPV tracker and single module inverter

    NASA Astrophysics Data System (ADS)

    Carpanelli, Maurizio; Borelli, Gianni; Verdilio, Daniele; De Nardis, Davide; Migali, Fabrizio; Cancro, Carmine; Graditi, Giorgio

    2015-09-01

    BECAR, the Beghelli group's R&D company, is leading ECOSOLE (Elevated COncentration SOlar Energy), one of the largest European Demonstration projects in solar photovoltaic. ECOSOLE, started in 2012, is focused on the study, design, and realization of new HCPV generator made of high efficiency PV modules equipped with SoG (Silicone on Glass) fresnel lenses and III-V solar cells, and a low cost matched solar tracker with distributed inverters approach. The project also regards the study and demonstration of new high throughput methods for the industrial large scale productions, at very low manufacturing costs. This work reports the description of the characterization of the tracker and single module.

  11. Tracker 300 Software

    2006-01-12

    The Tracker300 software is downloaded to an off-the-shelf product called RCM3400/RCM3410 made by Rabbit Semiconductor. The software is a closed loop control which computes the sun's position and provides stability compensation. Using the RCM3400/RCM3410 module, the software stores and retrieves parameters from the onboard flash. The software also allows for communication with a host. It will allow the parameters to be downloaded or uploaded, it will show the status of the controller, it will providemore » real-time feedback, and it will send command acknowledgements. The software will capture the GPS response and ensure the internal clock is set correctly.« less

  12. The ATLAS TRT electronics

    NASA Astrophysics Data System (ADS)

    ATLAS TRT Collaboration; Abat, E.; Addy, T. N.; Åkesson, T. P. A.; Alison, J.; Anghinolfi, F.; Arik, E.; Arik, M.; Atoian, G.; Auerbach, B.; Baker, O. K.; Banas, E.; Baron, S.; Bault, C.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Blampey, H.; Bocci, A.; Bochenek, M.; Bondarenko, V. G.; Bychkov, V.; Callahan, J.; Capeáns Garrido, M.; Cardiel Sas, L.; Catinaccio, A.; Cetin, S. A.; Chandler, T.; Chritin, R.; Cwetanski, P.; Dam, M.; Danielsson, H.; Danilevich, E.; David, E.; Degenhardt, J.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dogan, O. B.; Dolgoshein, B. A.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Egede, U.; Egorov, K.; Evans, H.; Farthouat, P.; Fedin, O. L.; Fowler, A. J.; Fratina, S.; Froidevaux, D.; Fry, A.; Gagnon, P.; Gavrilenko, I. L.; Gay, C.; Ghodbane, N.; Godlewski, J.; Goulette, M.; Gousakov, I.; Grigalashvili, N.; Grishkevich, Y.; Grognuz, J.; Hajduk, Z.; Hance, M.; Hansen, F.; Hansen, J. B.; Hansen, P. H.; Hare, G. A.; Harvey, A., Jr.; Hauviller, C.; High, A.; Hulsbergen, W.; Huta, W.; Issakov, V.; Istin, S.; Jain, V.; Jarlskog, G.; Jeanty, L.; Kantserov, V. A.; Kaplan, B.; Kapliy, A. S.; Katounin, S.; Kayumov, F.; Keener, P. T.; Kekelidze, G. D.; Khabarova, E.; Khristachev, A.; Kisielewski, B.; Kittelmann, T. H.; Kline, C.; Klinkby, E. B.; Klopov, N. V.; Ko, B. R.; Koffas, T.; Kondratieva, N. V.; Konovalov, S. P.; Koperny, S.; Korsmo, H.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; LeBihan, A.-C.; LeGeyt, B. C.; Levterov, K.; Lichard, P.; Lindahl, A.; Lisan, V.; Lobastov, S.; Loginov, A.; Loh, C. W.; Lokwitz, S.; Long, M. C.; Lucas, S.; Lucotte, A.; Luehring, F.; Lundberg, B.; Mackeprang, R.; Maleev, V. P.; Manara, A.; Mandl, M.; Martin, A. J.; Martin, F. F.; Mashinistov, R.; Mayers, G. M.; McFarlane, K. W.; Mialkovski, V.; Mills, B. M.; Mindur, B.; Mitsou, V. A.; Mjörnmark, J. U.; Morozov, S. V.; Morris, E.; Mouraviev, S. V.; Muir, A. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Nikitin, N.; Novgorodova, O.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olivito, D.; Olszowska, J.; Ostrowicz, W.; Passmore, M. S.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; Petersen, T. C.; Petti, R.; Placci, A.; Poblaguev, A.; Pons, X.; Price, M. J.; Røhne, O.; Reece, R. D.; Reilly, M. B.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Söderberg, M.; Savenkov, A.; Saxon, J.; Scandurra, M.; Schegelsky, V. A.; Scherzer, M. I.; Schmidt, M. P.; Schmitt, C.; Sedykh, E.; Seliverstov, D. M.; Shin, T.; Shmeleva, A.; Sivoklokov, S.; Smirnov, S. Yu; Smirnova, L.; Smirnova, O.; Smith, P.; Sosnovtsev, V. V.; Sprachmann, G.; Subramania, S.; Suchkov, S. I.; Sulin, V. V.; Szczygiel, R. R.; Tartarelli, G.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vassilakopoulos, V. I.; Vassilieva, L.; Wagner, P.; Wall, R.; Wang, C.; Whittington, D.; Williams, H. H.; Zhelezko, A.; Zhukov, K.

    2008-06-01

    The ATLAS inner detector consists of three sub-systems: the pixel detector spanning the radius range 4cm-20cm, the semiconductor tracker at radii from 30 to 52 cm, and the transition radiation tracker (TRT), tracking from 56 to 107 cm. The TRT provides a combination of continuous tracking with many projective measurements based on individual drift tubes (or straws) and of electron identification based on transition radiation from fibres or foils interleaved between the straws themselves. This paper describes the on and off detector electronics for the TRT as well as the TRT portion of the data acquisition (DAQ) system.

  13. DC-DC converters with reduced mass for trackers at the HL-LHC

    NASA Astrophysics Data System (ADS)

    Affolder, A.; Allongue, B.; Blanchot, G.; Faccio, F.; Fuentes, C.; Greenall, A.; Michelis, S.

    2011-11-01

    The development at CERN of low noise DC-DC converters for the powering of front-end systems enables the implementation of efficient powering schemes for the physics experiments at the HL-LHC. Recent tests made on the ATLAS short strip tracker modules confirm the full electromagnetic compatibility of the DC-DC converter prototypes with front-end detectors. The integration of the converters in the trackers front-ends needs to address also the material budget constraints. The impact of the DC-DC converters onto the material budget of the ATLAS tracker modules is discussed and mass reduction techniques are explored, leading to a compromise between electromagnetic compatibility and mass. Low mass shield implementations and Aluminum core inductors are proposed. Also, the impact on emitted noise due to a size reduction of critical components is discussed. Finally, material reduction techniques are discussed at the board layout and manufacturing levels.

  14. WFOV star tracker camera

    SciTech Connect

    Lewis, I.T. ); Ledebuhr, A.G.; Axelrod, T.S.; Kordas, J.F.; Hills, R.F. )

    1991-04-01

    A prototype wide-field-of-view (WFOV) star tracker camera has been fabricated and tested for use in spacecraft navigation. The most unique feature of this device is its 28{degrees} {times} 44{degrees} FOV, which views a large enough sector of the sky to ensure the existence of at least 5 stars of m{sub v} = 4.5 or brighter in all viewing directions. The WFOV requirement and the need to maximize both collection aperture (F/1.28) and spectral input band (0.4 to 1.1 {mu}m) to meet the light gathering needs for the dimmest star have dictated the use of a novel concentric optical design, which employs a fiber optic faceplate field flattener. The main advantage of the WFOV configuration is the smaller star map required for position processing, which results in less processing power and faster matching. Additionally, a size and mass benefit is seen with a larger FOV/smaller effective focal length (efl) sensor. Prototype hardware versions have included both image intensified and un-intensified CCD cameras. Integration times of {le} 50 msec have been demonstrated with both the intensified and un-intensified versions. 3 refs., 16 figs.

  15. WGM Temperature Tracker

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.

    2012-01-01

    This software implements digital control of a WGM (whispering-gallerymode) resonator temperature based on the dual-mode approach. It comprises one acquisition (dual-channel) and three control modules. The interaction of the proportional-integral loops is designed in the original way, preventing the loops from fighting. The data processing is organized in parallel with the acquisition, which allows the computational overhead time to be suppressed or often completely avoided. WGM resonators potentially provide excellent optical references for metrology, clocks, spectroscopy, and other applications. However, extremely accurate (below micro-Kelvin) temperature stabilization is required. This software allows one specifically advantageous method of such stabilization to be implemented, which is immune to a variety of effects that mask the temperature variation. WGM Temperature Tracker 2.3 (see figure) is a LabVIEW code developed for dual-mode temperature stabilization of WGM resonators. It has allowed for the temperature stabilization at the level of 200 nK with one-second integration time, and 6 nK with 10,000-second integration time, with the above room-temperature set point. This software, in conjunction with the appropriate hardware, can be used as a noncryogenic temperature sensor/ controller with sub-micro-Kelvin sensitivity, which at the time of this reporting considerably outperforms the state of the art.

  16. Study of ATLAS TRT performance with GRID and supercomputers

    NASA Astrophysics Data System (ADS)

    Krasnopevtsev, D. V.; Klimentov, A. A.; Mashinistov, R. Yu.; Belyaev, N. L.; Ryabinkin, E. A.

    2016-09-01

    One of the most important studies dedicated to be solved for ATLAS physical analysis is a reconstruction of proton-proton events with large number of interactions in Transition Radiation Tracker. Paper includes Transition Radiation Tracker performance results obtained with the usage of the ATLAS GRID and Kurchatov Institute's Data Processing Center including Tier-1 grid site and supercomputer as well as analysis of CPU efficiency during these studies.

  17. Head tracker evaluation utilizing the dynamic tracker test fixture

    NASA Astrophysics Data System (ADS)

    La Moure Shattuck, Judson, III; Parisi, Vincent M., II; Smerdon, Arryn J.

    2007-04-01

    In military aviation, head tracker technologies have become increasingly important to track the pilot's head position and orientation, allowing the user to quickly interact with the operational environment. This technology allows the pilot to quickly acquire items of interest and see Fighter Data Link type information. Acquiring the target on a helmet-mounted tracker/display which can automatically slew a weapon's seeker is far more efficient than having to point at the target with the nose of the aircraft as previously required for the heads-up display (HUD) type of target acquisition. The United States Air Force (USAF) has used and evaluated a variety of helmet-mounted trackers for incorporation into their high performance aircrafts. The Dynamic Tracker Test Fixture (DTTF) was designed by the Helmet-Mounted Sensory Technology (HMST) laboratory to accurately measure rotation in one plane both static and dynamic conditions for the purpose of evaluating the accuracy of head trackers, including magnetic, inertial, and optical trackers. This paper describes the design, construction, capabilities, limitations, and performance of the DTTF.

  18. Recent results of the ATLAS upgrade Planar Pixel Sensors R&D project

    NASA Astrophysics Data System (ADS)

    Forshaw, Dean

    2013-12-01

    To extend the physics reach of the LHC, upgrades to the accelerator are planned which will increase the integrated annual luminosity by a factor of 5-10. This will increase the occupancy and the radiation damage of the inner trackers. To cope with the elevated occupancy, the ATLAS experiment plans to introduce an all silicon inner tracker for High Luminosity LHC (HL-LHC) operation. With silicon, the occupancy can be adjusted by using the appropriate pitch for the pixels/micro-strips. Constraints due to high radiation damage mean that only sensors with electrode configuration designed to read out the electron signal (n-in-p and n-in-n) are considered. To investigate the suitability of planar pixel sensors (PPS) for the ATLAS tracker upgrade, a dedicated R&D project was established, with 17 institutes and more than 80 scientists. The main focuses of research are the performance of planar pixel sensors after the high fluences expected during HL-LHC operation, the optimisation of the detector and module production technologies for cost reduction to enable the instrumentation of large volumes and the reduction of the inactive areas needed for electrical insulation of the sensitive region from the cut edge of the sensors. An overview of recent accomplishments of the PPS (Planar Pixel Sensors) R&D project is given. The performance in terms of charge collection and tracking efficiency, evaluated with radioactive sources in the laboratory and from beam tests, is presented. Sensors with different thicknesses (ranging from 75 to 300 μm) were irradiated to several fluences up to 2 ×1016neqcm-2 to study the effect of varying thickness on the radiation hardness. The significant progresses made towards the reduction of the edge distance are reported.

  19. Development of a custom on-line ultrasonic vapour analyzer/flowmeter for the ATLAS inner detector, with application to gaseous tracking and Cherenkov detectors

    NASA Astrophysics Data System (ADS)

    Bates, R.; Battistin, M.; Berry, S.; Berthoud, J.; Bitadze, A.; Bonneau, P.; Botelho-Direito, J.; Bousson, N.; Boyd, G.; Bozza, G.; Da Riva, E.; Degeorge, C.; DiGirolamo, B.; Doubek, M.; Godlewski, J.; Hallewell, G.; Katunin, S.; Lombard, D.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rossi, C.; Rozanov, A.; Vacek, V.; Vitek, M.; Zwalinski, L.

    2013-01-01

    Precision sound velocity measurements can simultaneously determine binary gas composition and flow. We have developed an analyzer with custom electronics, currently in use in the ATLAS inner detector, with numerous potential applications. The instrument has demonstrated ~ 0.3% mixture precision for C3F8/C2F6 mixtures and < 10-4 resolution for N2/C3F8 mixtures. Moderate and high flow versions of the instrument have demonstrated flow resolutions of ± 2% of full scale for flows up to 250 l min-1, and ± 1.9% of full scale for linear flow velocities up to 15 m s-1 the latter flow approaching that expected in the vapour return of the thermosiphon fluorocarbon coolant recirculator being built for the ATLAS silicon tracker.

  20. Space Shuttle Star Tracker Challenges

    NASA Technical Reports Server (NTRS)

    Herrera, Linda M.

    2010-01-01

    The space shuttle fleet of avionics was originally designed in the 1970's. Many of the subsystems have been upgraded and replaced, however some original hardware continues to fly. Not only fly, but has proven to be the best design available to perform its designated task. The shuttle star tracker system is currently flying as a mixture of old and new designs, each with a unique purpose to fill for the mission. Orbiter missions have tackled many varied missions in space over the years. As the orbiters began flying to the International Space Station (ISS), new challenges were discovered and overcome as new trusses and modules were added. For the star tracker subsystem, the growing ISS posed an unusual problem, bright light. With two star trackers on board, the 1970's vintage image dissector tube (IDT) star trackers track the ISS, while the new solid state design is used for dim star tracking. This presentation focuses on the challenges and solutions used to ensure star trackers can complete the shuttle missions successfully. Topics include KSC team and industry partner methods used to correct pressurized case failures and track system performance.

  1. Achievements of the ATLAS upgrade Planar Pixel Sensors R&D Project

    NASA Astrophysics Data System (ADS)

    Nellist, C.

    2015-01-01

    In the framework of the HL-LHC upgrade, the ATLAS experiment plans to introduce an all-silicon inner tracker to cope with the elevated occupancy. To investigate the suitability of pixel sensors using the proven planar technology for the upgraded tracker, the ATLAS Planar Pixel Sensor R&D Project (PPS) was established comprising 19 institutes and more than 90 scientists. The paper provides an overview of the research and development project and highlights accomplishments, among them: beam test results with planar sensors up to innermost layer fluences (>1016 neq cm-2) measurements obtained with irradiated thin edgeless n-in-p pixel assemblies; recent studies of the SCP technique to obtain almost active edges by post-processing already existing sensors based on scribing, cleaving and edge passivation; an update on prototyping efforts for large areas: sensor design improvements and concepts for low-cost hybridisation; comparison between Secondary Ion Mass Spectrometry results and TCAD simulations. Together, these results allow an assessment of the state-of-the-art with respect to radiation-hard position-sensitive tracking detectors suited for the instrumentation of large areas.

  2. Environmental Test Activity on the Flight Modules of the GLAST LAT Tracker

    SciTech Connect

    Brigida, M.; Caliandro, A.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M.N.; Mirizzi, N.; Raino, S.; Spinelli, P.; /Bari U. /INFN, Bari

    2007-02-15

    The GLAST Large Area Telescope (LAT) is a gamma-ray telescope consisting of a silicon micro-strip detector tracker followed by a segmented CsI calorimeter and covered by a segmented scintillator anticoincidence system that will search for {gamma}-rays in the 20 MeV-300 GeV energy range. The results of the environmental tests performed on the flight modules (towers) of the Tracker are presented. The aim of the environmental tests is to verify the performance of the silicon detectors in the expected mission environment. The tower modules are subjected to dynamic tests that simulate the launch environment and thermal vacuum test that reproduce the thermal gradients expected on orbit. The tower performance is continuously monitored during the whole test sequence. The environmental test activity, the results of the tests and the silicon tracker performance are presented.

  3. TacNet Tracker Software

    SciTech Connect

    WISEMAN, JAMES; & STEVENS, JAMES

    2008-08-04

    The TacNet Tracker will be used for the monitoring and real-time tracking of personnel and assets in an unlimited number of specific applications. The TacNet Tracker software is a VxWorks Operating System based programming package that controls the functionality for the wearable Tracker. One main use of the TacNet Tracker is in Blue Force Tracking, the ability to track the good guys in an adversarial situation or in a force-on-force or real battle conditions. The purpose of blue force tracking is to provide situational awareness to the battlefield commanders and personnel. There are practical military applications with the TacNet Tracker.The mesh network is a wireless IP communications network that moves data packets from source IP addresses to specific destination IP addresses. Addresses on the TacNet infrastructure utilize an 8-bit network mask (255.0.0.0). In other words, valid TacNet addresses range from 10.0.0.1 to 10.254.254.254. The TacNet software design uses uni-cast transmission techniques because earlier mesh network software releases did not provide for the ability to utilize multi-cast data movement. The TacNet design employs a list of addresses to move information within the TacNet infrastructure. For example, a convoy text file containing the IP addresses of all valid receivers of TacNet information could be used for transmitting the information and for limiting transmission to addresses on the list.

  4. TacNet Tracker Software

    2008-08-04

    The TacNet Tracker will be used for the monitoring and real-time tracking of personnel and assets in an unlimited number of specific applications. The TacNet Tracker software is a VxWorks Operating System based programming package that controls the functionality for the wearable Tracker. One main use of the TacNet Tracker is in Blue Force Tracking, the ability to track the good guys in an adversarial situation or in a force-on-force or real battle conditions. Themore » purpose of blue force tracking is to provide situational awareness to the battlefield commanders and personnel. There are practical military applications with the TacNet Tracker.The mesh network is a wireless IP communications network that moves data packets from source IP addresses to specific destination IP addresses. Addresses on the TacNet infrastructure utilize an 8-bit network mask (255.0.0.0). In other words, valid TacNet addresses range from 10.0.0.1 to 10.254.254.254. The TacNet software design uses uni-cast transmission techniques because earlier mesh network software releases did not provide for the ability to utilize multi-cast data movement. The TacNet design employs a list of addresses to move information within the TacNet infrastructure. For example, a convoy text file containing the IP addresses of all valid receivers of TacNet information could be used for transmitting the information and for limiting transmission to addresses on the list.« less

  5. Introduction to Mini Muon Tracker

    SciTech Connect

    Borozdin, Konstantin N.

    2012-08-13

    Using a mini muon tracker developed at the Los Alamos National Laboratory we performed experiments of simple landscapes of various materials, including TNT, 9501, lead, tungsten, aluminium, and water. Most common scenes are four two inches thick step wedges of different dimensions: 12-inch x 12-inch, 12-inch x 9-inch, 12-inch x 6-inch, and 12-inch x 3-inch; and a one three inches thick hemisphere of lead with spherical hollow, and a similar full lead sphere.

  6. Cryo-Tracker® Mass Gauging System Testing in a Launch Vehicle Simulation

    NASA Astrophysics Data System (ADS)

    Schieb, Daniel J.; Haberbusch, Mark S.; Yeckley, Alexander J.

    2006-04-01

    Sierra Lobo successfully tested its patented Cryo-Tracker® probe and mass gauging system in an Expendable Launch Vehicle (ELV) liquid oxygen tank simulation for NASA's Launch Service Providers Directorate. The effort involved collaboration between Sierra Lobo, NASA Kennedy Space Center (KSC), and Lockheed Martin personnel. Testing simulated filling and expulsion operations of Lockheed Martin's Atlas V liquid oxygen (LOX) tank and characterized the 10.06 m (33-ft) Cryo-Tracker's performance. Sierra Lobo designed a 9.14 m (30-ft) tall liquid nitrogen test tank to simulate the Atlas V LOX tank flow conditions and validate Cryo-Tracker® data via other sensors and visualization. This test package was fabricated at Sierra Lobo's Cryogenics Testbed at NASA KSC. All test objectives were met or exceeded. Key accomplishments include: fabrication of the longest Cryo-Tracker® probe to date; installation technique proven with only two attachment points at top and bottom of tank; probe survived a harsh environment with no loss of signal or structural integrity; probe successfully measured liquid levels and temperatures under all conditions and successfully demonstrated its feasibility as an engine cut-off signal.

  7. Activity trackers: a critical review.

    PubMed

    Lee, Jeon; Finkelstein, Joseph

    2014-01-01

    The wearable consumer health devices can be mainly divided into activity trackers, sleep trackers, and stress management devices. These devices are widely advertised to provide positive effects on the user's daily behaviours and overall heath. However, objective evidence supporting these claims appears to be missing. The goal of this study was to review available evidence pertaining to performance of activity trackers. A comprehensive review of available information has been conducted for seven representative devices and the validity of marketing claims was assessed. The device assessment was based on availability of verified output metrics, theoretical frameworks, systematic evaluation, and FDA clearance. The review identified critical absence of supporting evidence of advertised functions and benefits for the majority of the devices. Six out of seven devices did not provide any information on sensor accuracy and output validity at all. Possible underestimation or overestimation of specific health indicators reported to consumers was not clearly disclosed to the public. Furthermore, significant limitations of these devices which can be categorized into user restrictions, user responsibilities and company disclaimers could not be easily found or comprehended by unsophisticated users and may represent a serious health hazard.

  8. Performance of the Integrated Tracker Towers of the GLAST Large Area Telescope

    SciTech Connect

    Brigida, M.; Caliandro, A.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M.N.; Mirizzi, N.; Raino, S.; Spinelli, P.; /Bari U. /INFN, Bari

    2007-02-15

    The GLAST Large Area Telescope (LAT) is a high energy gamma ray observatory, mounted on a satellite that will be own in 2007. The LAT tracker consists of an array of tower modules, equipped with planes of silicon strip detectors (SSDs) interleaved with tungsten converter layers. Photon detection is based on the pair conversion process; silicon strip detectors will reconstruct tracks of electrons and positrons. The instrument is actually being assembled. The first towers have been already tested and integrated at Stanford Linear Accelerator Center (SLAC). An overview of the integration stages of the main components of the tracker and a description of the pre-launch tests will be given. Experimental results on the performance of the tracker towers will be also discussed.

  9. The ATLAS TRT Barrel Detector

    NASA Astrophysics Data System (ADS)

    ATLAS TRT Collaboration; Abat, E.; Addy, T. N.; Åkesson, T. P. A.; Alison, J.; Anghinolfi, F.; Arik, E.; Arik, M.; Atoian, G.; Auerbach, B.; Baker, O. K.; Banas, E.; Baron, S.; Bault, C.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Blampey, H.; Bocci, A.; Bochenek, M.; Bondarenko, V. G.; Bychkov, V.; Callahan, J.; Capeáns Garrido, M.; Cardiel Sas, L.; Catinaccio, A.; Cetin, S. A.; Chandler, T.; Chritin, R.; Cwetanski, P.; Dam, M.; Danielsson, H.; Danilevich, E.; David, E.; Degenhardt, J.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dogan, O. B.; Dolgoshein, B. A.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Egede, U.; Egorov, K.; Evans, H.; Farthouat, P.; Fedin, O. L.; Fowler, A. J.; Fratina, S.; Froidevaux, D.; Fry, A.; Gagnon, P.; Gavrilenko, I. L.; Gay, C.; Ghodbane, N.; Godlewski, J.; Goulette, M.; Gousakov, I.; Grigalashvili, N.; Grishkevich, Y.; Grognuz, J.; Hajduk, Z.; Hance, M.; Hansen, F.; Hansen, J. B.; Hansen, P. H.; Hanson, G.; Hare, G. A.; Harvey, A., Jr.; Hauviller, C.; High, A.; Hulsbergen, W.; Huta, W.; Issakov, V.; Istin, S.; Jain, V.; Jarlskog, G.; Jeanty, L.; Kantserov, V. A.; Kaplan, B.; Kapliy, A. S.; Katounine, S.; Kayumov, F.; Keener, P. T.; Kekelidze, G. D.; Khabarova, E.; Khristachev, A.; Kisielewski, B.; Kittelmann, T. H.; Kline, C.; Klinkby, E. B.; Klopov, N. V.; Ko, B. R.; Koffas, T.; Kondratieva, N. V.; Konovalov, S. P.; Koperny, S.; Korsmo, H.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; LeBihan, A.-C.; LeGeyt, B. C.; Levterov, K.; Lichard, P.; Lindahl, A.; Lisan, V.; Lobastov, S.; Loginov, A.; Loh, C. W.; Lokwitz, S.; Long, M. C.; Lucas, S.; Lucotte, A.; Luehring, F.; Lundberg, B.; Mackeprang, R.; Maleev, V. P.; Manara, A.; Mandl, M.; Martin, A. J.; Martin, F. F.; Mashinistov, R.; Mayers, G. M.; McFarlane, K. W.; Mialkovski, V.; Mills, B. M.; Mindur, B.; Mitsou, V. A.; Mjörnmark, J. U.; Morozov, S. V.; Morris, E.; Mouraviev, S. V.; Muir, A. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Nikitin, N.; Novgorodova, O.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olivito, D.; Olszowska, J.; Ostrowicz, W.; Passmore, M. S.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; Petersen, T. C.; Petti, R.; Placci, A.; Poblaguev, A.; Pons, X.; Price, M. J.; hne, O. Rø; Reece, R. D.; Reilly, M. B.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Söderberg, M.; Savenkov, A.; Saxon, J.; Scandurra, M.; Schegelsky, V. A.; Scherzer, M. I.; Schmidt, M. P.; Schmitt, C.; Sedykh, E.; Seliverstov, D. M.; Shin, T.; Shmeleva, A.; Sivoklokov, S.; Smirnov, S. Yu; Smirnova, L.; Smirnova, O.; Smith, P.; Sosnovtsev, V. V.; Sprachmann, G.; Subramania, S.; Suchkov, S. I.; Sulin, V. V.; Szczygiel, R. R.; Tartarelli, G.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vassilakopoulos, V. I.; Vassilieva, L.; Wagner, P.; Wall, R.; Wang, C.; Whittington, D.; Williams, H. H.; Zhelezko, A.; Zhukov, K.

    2008-02-01

    The ATLAS TRT barrel is a tracking drift chamber using 52,544 individual tubular drift tubes. It is one part of the ATLAS Inner Detector, which consists of three sub-systems: the pixel detector spanning the radius range 4 to 20 cm, the semiconductor tracker (SCT) from 30 to 52 cm, and the transition radiation tracker (TRT) from 56 to 108 cm. The TRT barrel covers the central pseudo-rapidity region |η|< 1, and the TRT while endcaps cover the forward and backward eta regions. These TRT systems provide a combination of continuous tracking with many measurements in individual drift tubes (or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. This paper describes the recently-completed construction of the TRT Barrel detector, including the quality control procedures used in the fabrication of the detector.

  10. CO2 cooling for the CMS tracker at SLHC

    NASA Astrophysics Data System (ADS)

    Feld, L.; Karpinski, W.; Merz, J.; Wlochal, M.

    2011-01-01

    For a new CMS tracker at SLHC cooling of the silicon sensors and their electronics is a crucial issue. Currently under investigation is an evaporative CO2 cooling system, being able to provide more cooling power at a lower mass than a mono-phase liquid system. Furthermore carbon dioxide could allow for lower operating temperatures, which are beneficial for the sensor performance and lifetime. The CO2 cooling test system at RWTH Aachen University is being presented. First measurements and results are shown, demonstrating the functionality of the system.

  11. SDC conceptual design: Scintillating fiber outer tracker

    SciTech Connect

    Adams, D.; Baumbaugh, A.; Bird, F.; SDC Collaboration

    1992-01-22

    The authors propose an all-scintillating fiber detector for the purpose of outer tracking for the SDC. The objectives of this tracking system are to: (1) provide a first level trigger for {vert_bar}{eta}{vert_bar} < 2.3 with sharp p{sub T} threshold with the ability to resolve individual beam crossings; (2) provide pattern recognition capability and momentum resolution which complements and extends the capabilities of the inner silicon tracking system; (3) provide three dimensional linkage with outer detection systems including the shower maximum detector, muon detectors, and calorimetry; (4) provide robust tracking and track-triggering at the highest luminosities expected at the SSC. The many attractive features of a fiber tracker include good position resolution, low occupancy, low mass in the active volume, and excellent resistance to radiation damage. An additional important feature, especially at the SSC, is the intrinsically prompt response time of a scintillating fiber. This property is exploited in the construction of a level 1 trigger sensitive to individual beam crossings.

  12. Optical filtering for star trackers

    NASA Technical Reports Server (NTRS)

    Wilson, R. E.

    1973-01-01

    The optimization of optical filtering was investigated for tracking faint stars, down to the fifth magnitude. The effective wavelength and bandwidth for tracking pre-selected guide stars are discussed along with the results of an all-electronic tracker with a star tracking photomultiplier, which was tested with a simulated second magnitude star. Tables which give the sum of zodiacal light and galactic background light over the entire sky for intervals of five degrees in declination, and twenty minutes in right ascension are included.

  13. Progress on the MICE Tracker Solenoid

    SciTech Connect

    Green, Michael A.; Virostek, Steve P.; Lau, W.; Yang, Stephanie Q.

    2006-06-10

    This report describes the 400 mm warm bore tracker solenoid for the Muon Ionization Cooling Experiment (MICE). The 2.923 m long tracker solenoid module includes the radiation shutter between the end absorber focus coil modules and the tracker as well as the 2.735 m long magnet cryostat vacuum vessel. The 2.554 m long tracker solenoid cold mass consists of two sections, a three-coil spectrometer magnet and a two-coil matching section that matches the uniform field 4 T spectrometer solenoid into the MICE cooling channel. The two tracker magnets are used to provide a uniform magnetic field for the fiber detectors that are used to measure the muon beam emittance at the two ends of the cooling channel. This paper describes the design for the tracker magnet coils and the 4.2 K cryogenic coolers that are used to cool the superconducting magnet. Interfaces between the magnet and the detectors are discussed.

  14. Silicon microstrip detectors in 3D technology for the sLHC

    NASA Astrophysics Data System (ADS)

    Parzefall, Ulrich; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kühn, Susanne; Pahn, Gregor; Parkes, Chris; Pennicard, David; Ronchin, Sabina; Zoboli, Andrea; Zorzi, Nicola

    2009-08-01

    The projected luminosity upgrade of the large hadron collider (LHC), the sLHC, will constitute a challenging radiation environment for tracking detectors. Massive improvements in radiation hardness are required with respect to the LHC. In the layout for the new ATLAS tracker, silicon strip detectors (SSDs) with short strips cover the region from 28 to 60 cm distance to the beam. These SSDs will be exposed to fluences up to 1015 Neq/cm2, hence radiation resistance is the major concern. It is advantageous to fuse the superior radiation hardness of the 3D design originally conceived for pixel-style applications with the benefits of the well-known planar technology for strip detectors. This is achieved by ganging rows of 3D columns together to form strips. Several prototype sLHC detector modules using 3D SSD with short strips, processed on p-type silicon, and LHC-speed front-end electronics from the present ATLAS semi-conductor tracker (SCT) were built. The modules were tested before and after irradiation to fluences of 1015 Neq/cm2. The tests were performed with three systems: a highly focused IR-laser with 5 μm spot size to make position-resolved scans of the charge collection efficiency (CCE), a Sr90β-source set-up to measure the signal levels for a minimum ionizing particles (MIPs), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the performance of these 3D modules, and draws conclusions about options for using 3D strip sensors as tracking detectors at the sLHC.

  15. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  16. Star tracker for the Apollo telescope mount

    NASA Technical Reports Server (NTRS)

    Lee, C. E.

    1971-01-01

    The star tracker for the Apollo Telescope Mount (ATM) has been designed specifically to meet the requirements of the Skylab vehicle and mission. The functions of the star tracker are presented, as well as descriptions of the optical-mechanical assembly (OMA) and the star tracker electronics (STE). Also included are the electronic and mechanical specifications, interface and operational requirements, support equipment and test requirements, and occultation information. Laboratory functional tests, environmental qualification tests, and life tests have provided a high confidence factor in the performance of the star tracker in the laboratory and on the Skylab mission.

  17. Commissioning of the ATLAS pixel detector

    SciTech Connect

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of the ATLAS pixel system are presented.

  18. Tracking parameter simulation for the Turkish accelerator center particle factory tracker system

    NASA Astrophysics Data System (ADS)

    Tapan, I.; Pilicer, E.; Pilicer, F. B.

    2016-09-01

    The silicon tracker part of the Turkish Accelerator Center super charm particle factory detector was designed for effectively tracking charged particles with momentum values up to 2.0 GeV/c. In this work, the FLUKA simulation code has been used to estimate the track parameters and their resolutions in the designed tracker system. These results have been compared with those obtained by the tkLayout software package. The simulated track parameter resolutions are compatible with the physics goals of the tracking detector.

  19. Ruby on Rails Issue Tracker

    NASA Technical Reports Server (NTRS)

    Rodriguez, Juan Jared

    2014-01-01

    The purpose of this report is to detail the tasks accomplished as a NASA NIFS intern for the summer 2014 session. This internship opportunity is to develop an issue tracker Ruby on Rails web application to improve the communication of developmental anomalies between the Support Software Computer Software Configuration Item (CSCI) teams, System Build and Information Architecture. As many may know software development is an arduous, time consuming, collaborative effort. It involves nearly as much work designing, planning, collaborating, discussing, and resolving issues as effort expended in actual development. This internship opportunity was put in place to help alleviate the amount of time spent discussing issues such as bugs, missing tests, new requirements, and usability concerns that arise during development and throughout the life cycle of software applications once in production.

  20. Status of the AFP project in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Taševský, Marek

    2015-04-01

    Status of the AFP project in the ATLAS experiment is summarized. The AFP system is composed of a tracker to detect intact, diffractively scattered protons, and of a time-of-flight detector serving to suppress background from pile-up interactions. The whole system, located around 210 m from the main ATLAS detector, is placed in Roman Pots which move detectors from and to the incident proton beams. A typical distance of the closest approach of the tracker to these beams is 2-3 mm. The main physics motivation lies in measuring diffractive processes in runs with not a very high amount of pile-up.

  1. Status of the AFP project in the ATLAS experiment

    SciTech Connect

    Taševský, Marek

    2015-04-10

    Status of the AFP project in the ATLAS experiment is summarized. The AFP system is composed of a tracker to detect intact, diffractively scattered protons, and of a time-of-flight detector serving to suppress background from pile-up interactions. The whole system, located around 210 m from the main ATLAS detector, is placed in Roman Pots which move detectors from and to the incident proton beams. A typical distance of the closest approach of the tracker to these beams is 2–3 mm. The main physics motivation lies in measuring diffractive processes in runs with not a very high amount of pile-up.

  2. Surface metrology using laser trackers

    NASA Astrophysics Data System (ADS)

    Enriquez, Rogerio; Sampieri, Cesar E.

    2005-02-01

    During the process of manufacture or measuring large components, position and orientation are needed thus; a method based in surveying the surface can be used to describe them. This method requires an ensemble of measurements of fixed points whose coordinates are unknown. Afterwards resulting observations are manipulated to determinate objects position in order to apply surface metrology. In this work, a methodology to reduce uncertainties in surface measuring is presented. When measuring large surfaces, numerical methods can reduce uncertainties in the measures, and this can be done with instruments as such as the Laser Tracker (LT). Calculations use range and angles measures, in order to determinate the coordinates of tridimensional unknown positions from differents surveying points. The purpose of this work, is to solve problems of surface metrology with given tolerances; with advantages in resources and results, instead of making time sacrifices. Here, a hybrid methodology is developed, combining Laser Tracker with GPS theories and analysis. Such a measuring position system can be used in applications where the use of others systems are unpractical, mainly because this kind of measuring instruments are portables and capable to track and report results in real-time, it can be used in virtually anyplace. Simulations to measure panels for the Large Millimetric Telescope (LMT/GTM) in Mexico were done. A first benefit from using this method is that instrument is not isolated from its measuring environment. Instead, the system is thought as a whole with operator, measuring environment and targets. This solution provides an effective way, and a more precise measurement, because it does optimize the use of the instrument and uses additional information to strength the solution.

  3. The Chesapeake Laser Tracker in Industrial Metrology

    SciTech Connect

    Ruland, Robert E.; /SLAC

    2005-08-16

    In the summer of 1992, the survey and alignment team at the Stanford Linear Accelerator Center acquired a CMS3000 laser tracker manufactured by Chesapeake Laser Systems in Lanham, Maryland. This paper gives a description of the principles of operation and calibration of the tracker. Several applications are explained and the results shared.

  4. A Rollercoaster Viewed through Motion Tracker Data

    ERIC Educational Resources Information Center

    Pendrill, Ann-Marie; Rodjegard, Henrik

    2005-01-01

    A motion tracker measures acceleration and rotation in three dimensions, sufficient for a complete determination of the motion. In this article, a rollercoaster ride is analysed with reference to motion tracker data. The use of this type of data in education is discussed as a way to deepen students' understanding of concepts related to force and…

  5. A heuristic multiple target tracker

    NASA Astrophysics Data System (ADS)

    Beaupre, J. C. F.; Farooq, M.; Roy, J. M. J.

    1992-04-01

    The potential of applying recent developments in expert systems to multiple target tracking (MTT) is investigated. Standard MTT algorithms can generate relatively unreliable target state estimates. The multiple hypotheses tracker (MHT) is a very powerful algorithm, and demanding in computer resources, which can handle difficult situations by differing the formulation of hard decisions and which forms hypothetical tracks with associated probability values. It is proposed that heuristics can be formulated to improve MHT performance. These rules act on the tracks, hypotheses, and corresponding probability values to decide which hypotheses are most representative of reality. In effect, the MHT algorithm is modified to accept and process knowledge of the context or environment in which it operates and on its own strengths and weaknesses. To evaluate the performance of this concept, a prototype has been built which simulates the environment of a small military flight training school as viewed through the returns of a modified area surveillance radar. In a scenario involving nine targets behaving within regulated directives, the tracking prototype successfully displays timely, accurate, and dependable information.

  6. Personal Activity Trackers and the Quantified Self.

    PubMed

    Hoy, Matthew B

    2016-01-01

    Personal activity trackers are an inexpensive and easy way for people to record their physical activity and simple biometric data. As these devices have increased in availability and sophistication, their use in daily life and in medicine has grown. This column will briefly explore what these devices are, what types of data they can track, and how that data can be used. It will also discuss potential problems with trackers and how librarians can help patients and physicians manage and protect activity data. A brief list of currently available activity trackers is also included.

  7. My Game Plan: Food and Activity Tracker

    MedlinePlus

    ... MY GAME PLAN THIS WEEK… FOR CUTTING FAT GRAMS: FOR CUTTING CALORIES: FOR GETTING MORE PHYSICAL ACTIVITY: ... FOOD AND DRINK TRACKER AMOUNT /NAME /DESCRIPTION FAT GRAMS CALORIES 1/2 cup oatmeal 1 73 1 ...

  8. Power distribution studies for CMS forward tracker

    SciTech Connect

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.; /Fermilab

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R&D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  9. Power Studies for the CMS Pixel Tracker

    SciTech Connect

    Todri, A.; Turqueti, M.; Rivera, R.; Kwan, S.; /Fermilab

    2009-01-01

    The Electronic Systems Engineering Department of the Computing Division at the Fermi National Accelerator Laboratory is carrying out R&D investigations for the upgrade of the power distribution system of the Compact Muon Solenoid (CMS) Pixel Tracker at the Large Hadron Collider (LHC). Among the goals of this effort is that of analyzing the feasibility of alternative powering schemes for the forward tracker, including DC to DC voltage conversion techniques using commercially available and custom switching regulator circuits. Tests of these approaches are performed using the PSI46 pixel readout chip currently in use at the CMS Tracker. Performance measures of the detector electronics will include pixel noise and threshold dispersion results. Issues related to susceptibility to switching noise will be studied and presented. In this paper, we describe the current power distribution network of the CMS Tracker, study the implications of the proposed upgrade with DC-DC converters powering scheme and perform noise susceptibility analysis.

  10. Technology transfer: Imaging tracker to robotic controller

    NASA Technical Reports Server (NTRS)

    Otaguro, M. S.; Kesler, L. O.; Land, Ken; Erwin, Harry; Rhoades, Don

    1988-01-01

    The transformation of an imaging tracker to a robotic controller is described. A multimode tracker was developed for fire and forget missile systems. The tracker locks on to target images within an acquisition window using multiple image tracking algorithms to provide guidance commands to missile control systems. This basic tracker technology is used with the addition of a ranging algorithm based on sizing a cooperative target to perform autonomous guidance and control of a platform for an Advanced Development Project on automation and robotics. A ranging tracker is required to provide the positioning necessary for robotic control. A simple functional demonstration of the feasibility of this approach was performed and described. More realistic demonstrations are under way at NASA-JSC. In particular, this modified tracker, or robotic controller, will be used to autonomously guide the Man Maneuvering Unit (MMU) to targets such as disabled astronauts or tools as part of the EVA Retriever efforts. It will also be used to control the orbiter's Remote Manipulator Systems (RMS) in autonomous approach and positioning demonstrations. These efforts will also be discussed.

  11. The ATLAS TRT end-cap detectors

    NASA Astrophysics Data System (ADS)

    ATLAS TRT Collaboration; Abat, E.; Addy, T. N.; Åkesson, T. P. A.; Alison, J.; Anghinolfi, F.; Arik, E.; Arik, M.; Atoian, G.; Auerbach, B.; Baker, O. K.; Banas, E.; Baron, S.; Bault, C.; Becerici, N.; Beddall, A.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Blampey, H.; Bocci, A.; Bochenek, M.; Bondarenko, V. G.; Bychkov, V.; Callahan, J.; Capeáns Garrido, M.; Cardiel Sas, L.; Catinaccio, A.; Cetin, S. A.; Chandler, T.; Chritin, R.; Cwetanski, P.; Dam, M.; Danielsson, H.; Danilevich, E.; David, E.; Degenhardt, J.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dobos, D.; Dogan, O. B.; Dolgoshein, B. A.; Dressnandt, N.; Driouchi, C.; Ebenstein, W. L.; Eerola, P.; Egede, U.; Egorov, K.; Evans, H.; Farthouat, P.; Fedin, O. L.; Fowler, A. J.; Fratina, S.; Froidevaux, D.; Fry, A.; Gagnon, P.; Gavrilenko, I. L.; Gay, C.; Ghodbane, N.; Godlewski, J.; Goulette, M.; Gousakov, I.; Grigalashvili, N.; Grishkevich, Y.; Grognuz, J.; Hajduk, Z.; Hance, M.; Hansen, F.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hare, G. A.; Harvey, A., Jr.; Hauviller, C.; High, A.; Hulsbergen, W.; Huta, W.; Issakov, V.; Istin, S.; Jain, V.; Jarlskog, G.; Jeanty, L.; Kantserov, V. A.; Kaplan, B.; Kapliy, A. S.; Katounine, S.; Kayumov, F.; Keener, P. T.; Kekelidze, G. D.; Khabarova, E.; Khristachev, A.; Kisielewski, B.; Kittelmann, T. H.; Kline, C.; Klinkby, E. B.; Klopov, N. V.; Ko, B. R.; Koffas, T.; Kondratieva, N. V.; Konovalov, S. P.; Koperny, S.; Korsmo, H.; Kovalenko, S.; Kowalski, T. Z.; Krüger, K.; Kramarenko, V.; Kudin, L. G.; LeBihan, A.-C.; LeGeyt, B. C.; Levterov, K.; Lichard, P.; Lindahl, A.; Lisan, V.; Lobastov, S.; Loginov, A.; Loh, C. W.; Lokwitz, S.; Long, M. C.; Lucas, S.; Lucotte, A.; Luehring, F.; Lundberg, B.; Mackeprang, R.; Maleev, V. P.; Manara, A.; Mandl, M.; Martin, A. J.; Martin, F. F.; Mashinistov, R.; Mayers, G. M.; McFarlane, K. W.; Mialkovski, V.; Mills, B. M.; Mindur, B.; Mitsou, V. A.; Mjörnmark, J. U.; Morozov, S. V.; Morris, E.; Mouraviev, S. V.; Muir, A. M.; Munar, A.; Nadtochi, A. V.; Nesterov, S. Y.; Newcomer, F. M.; Nikitin, N.; Novgorodova, O.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olivito, D.; Olszowska, J.; Ostrowicz, W.; Passmore, M. S.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; Petersen, T. C.; Petti, R.; Placci, A.; Poblaguev, A.; Pons, X.; Price, M. J.; hne, O. Rø; Reece, R. D.; Reilly, M. B.; Rembser, C.; Romaniouk, A.; Rousseau, D.; Rust, D.; Ryabov, Y. F.; Ryjov, V.; Söderberg, M.; Savenkov, A.; Saxon, J.; Scandurra, M.; Schegelsky, V. A.; Scherzer, M. I.; Schmidt, M. P.; Schmitt, C.; Sedykh, E.; Seliverstov, D. M.; Shin, T.; Shmeleva, A.; Sivoklokov, S.; Smirnov, S. Yu; Smirnova, L.; Smirnova, O.; Smith, P.; Sosnovtsev, V. V.; Sprachmann, G.; Subramania, S.; Suchkov, S. I.; Sulin, V. V.; Szczygiel, R. R.; Tartarelli, G.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vassilakopoulos, V. I.; Vassilieva, L.; Wagner, P.; Wall, R.; Wang, C.; Whittington, D.; Williams, H. H.; Zhelezko, A.; Zhukov, K.

    2008-10-01

    The ATLAS TRT end-cap is a tracking drift chamber using 245,760 individual tubular drift tubes. It is a part of the TRT tracker which consist of the barrel and two end-caps. The TRT end-caps cover the forward and backward pseudo-rapidity region 1.0 < |η| < 2.0, while the TRT barrel central η region |η| < 1.0. The TRT system provides a combination of continuous tracking with many measurements in individual drift tubes (or straws) and of electron identification based on transition radiation from fibers or foils interleaved between the straws themselves. Along with other two sub-system, namely the Pixel detector and Semi Conductor Tracker (SCT), the TRT constitutes the ATLAS Inner Detector. This paper describes the recently completed and installed TRT end-cap detectors, their design, assembly, integration and the acceptance tests applied during the construction.

  12. Tracking Efficiency And Charge Sharing of 3D Silicon Sensors at Different Angles in a 1.4T Magnetic Field

    SciTech Connect

    Gjersdal, H.; Bolle, E.; Borri, M.; Da Via, C.; Dorholt, O.; Fazio, S.; Grenier, P.; Grinstein, S. Hansson, P.; Hasi, J.; Hugging, F.; Jackson, P.; Kenney, C.; Kocian, M.; La Rosa, A.; Mastroberardino, A.; Nordahl, P.; Rivero, F.; Rohne, O.; Sandaker, H.; Sjobaek, K.; /Oslo U. /Prague, Tech. U. /SLAC /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-05-07

    A 3D silicon sensor fabricated at Stanford with electrodes penetrating throughout the entire silicon wafer and with active edges was tested in a 1.4 T magnetic field with a 180 GeV/c pion beam at the CERN SPS in May 2009. The device under test was bump-bonded to the ATLAS pixel FE-I3 readout electronics chip. Three readout electrodes were used to cover the 400 {micro}m long pixel side, this resulting in a p-n inter-electrode distance of {approx} 71 {micro}m. Its behavior was confronted with a planar sensor of the type presently installed in the ATLAS inner tracker. Time over threshold, charge sharing and tracking efficiency data were collected at zero and 15{sup o} angles with and without magnetic field. The latest is the angular configuration expected for the modules of the Insertable B-Layer (IBL) currently under study for the LHC phase 1 upgrade expected in 2014.

  13. Development of a digital mobile solar tracker

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Kille, Natalie; Ortega, Ivan; Sinreich, Roman; Thomson, David; Hannigan, James; Volkamer, Rainer

    2016-03-01

    We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and Fourier transform infrared spectrometers, making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun differential optical absorption spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.

  14. Development of a digital mobile solar tracker

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Kille, N.; Ortega, I.; Sinreich, R.; Thomson, D.; Hannigan, J.; Volkamer, R.

    2015-11-01

    We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and FTIR spectrometers making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun Differential Optical Absorption Spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Photochemistry and Pollution Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives, and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution, and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.

  15. Star Tracker Performance Estimate with IMU

    NASA Technical Reports Server (NTRS)

    Aretskin-Hariton, Eliot D.; Swank, Aaron J.

    2015-01-01

    A software tool for estimating cross-boresight error of a star tracker combined with an inertial measurement unit (IMU) was developed to support trade studies for the Integrated Radio and Optical Communication project (iROC) at the National Aeronautics and Space Administration Glenn Research Center. Typical laser communication systems, such as the Lunar Laser Communication Demonstration (LLCD) and the Laser Communication Relay Demonstration (LCRD), use a beacon to locate ground stations. iROC is investigating the use of beaconless precision laser pointing to enable laser communication at Mars orbits and beyond. Precision attitude knowledge is essential to the iROC mission to enable high-speed steering of the optical link. The preliminary concept to achieve this precision attitude knowledge is to use star trackers combined with an IMU. The Star Tracker Accuracy (STAcc) software was developed to rapidly assess the capabilities of star tracker and IMU configurations. STAcc determines the overall cross-boresight error of a star tracker with an IMU given the characteristic parameters: quantum efficiency, aperture, apparent star magnitude, exposure time, field of view, photon spread, detector pixels, spacecraft slew rate, maximum stars used for quaternion estimation, and IMU angular random walk. This paper discusses the supporting theory used to construct STAcc, verification of the program and sample results.

  16. SimTracker, Version 5.0

    2004-08-27

    SimTracker is a product of the Metadata Tools subproject under the ASC Scientific Data Management effort. SimTracker is an extensible web-based application that provides the capability to view and organize large volumes of simulation data. SimTracker automatically generates metadata summaries that provide a quick overview and index to the archived results of simulations. The summaries provide access to the data sets and associated data analysis tools. They include graphical snapshots, pointers to associated simulation inputmore » and output files, and assorted annotations. The ability to add personal annotations to simulation data sets is supported. All metadata is stored in XML files suitable for searching by the generator of the data or other scientists.« less

  17. Quintessence reconstructed: New constraints and tracker viability

    SciTech Connect

    Sahlen, Martin; Liddle, Andrew R.; Parkinson, David

    2007-01-15

    We update and extend our previous work reconstructing the potential of a quintessence field from current observational data. We extend the cosmological data set to include new supernova data, plus information from the cosmic microwave background and from baryon acoustic oscillations. We extend the modeling by considering Pade approximant expansions as well as Taylor series, and by using observations to assess the viability of the tracker hypothesis. We find that parameter constraints have improved by a factor of 2, with a strengthening of the preference of the cosmological constant over evolving quintessence models. Present data show some signs, though inconclusive, of favoring tracker models over nontracker models under our assumptions.

  18. Optical contacting for gravity probe star tracker

    NASA Technical Reports Server (NTRS)

    Wright, J. J.; Zissa, D. E.

    1984-01-01

    A star-tracker telescope, constructed entirely of fused silica elements optically contacted together, has been proposed to provide submilliarc-second pointing accuracy for Gravity Probe. A bibliography and discussion on optical contacting (the bonding of very flat, highly polished surfaces without the use of adhesives) are presented. Then results from preliminary experiments on the strength of optical contacts including a tensile strength test in liquid helium are discussed. Suggestions are made for further study to verify an optical contacting method for the Gravity Probe star-tracker telescope.

  19. A microprocessor-controlled CCD star tracker

    NASA Technical Reports Server (NTRS)

    Salomon, P. M.; Goss, W. C.

    1976-01-01

    The STELLAR (Star Tracker for Economical Long Life Attitude Reference) utilizes an image sensing Charge-Coupled Device (CCD) operating under microprocessor control. This approach results in a new type of high-accuracy star tracker which can be adapted to a wide variety of different space flight applications through software changes only. The STELLAR determines two-axis star positions by computing the element and the interelement interpolated centroid positions of the star images. As many as 10 stars may be tracked simultaneously, providing significantly increased stability and accuracy. A detailed description of the STELLAR is presented along with measurements of system performance obtained from an operating breadboard model.

  20. Results from the MSGC tracker at SMC

    NASA Astrophysics Data System (ADS)

    Ballintijn, M. K.; van den Berg, F. D.; van Dantzig, R.; Gracia, G.; de Groot, N.; Hartjes, F. G.; Horisberger, R.; Kaandorp, D.; Ketel, T. J.; Litmaath, M. F.; Niessink, J. J.; Ogawa, A.; Sichtermann, E. P.; Udo, F.; de Winter, A. R.

    1995-11-01

    A tracker consisting of 16 MSGCs has been installed in the high intensity muon beam of the SMC experiment[1] at CERN. Each MSGC has an active surface of 10 × 10 cm 2, covered by 496 anode strips. As a front-end amplifier the APC 64 is used. Results are presented about the efficiency, both at a high rate and at a low rate, and the position resolution. Using the data of the MSGC tracker the definition of the beam tracks in SMC significantly improved.

  1. The power supply system of the CLEO III silicon detector

    NASA Astrophysics Data System (ADS)

    von Toerne, E.; Burns, J.; Duboscq, J.; Eckhart, E.; Honscheid, K.; Kagan, H.; Kass, R.; Larsen, D.; Rush, C.; Smith, S.; Thayer, J. B.

    2002-04-01

    The CLEO III detector has recently commenced data taking at the Cornell Electron Storage Ring (CESR). One important component of this detector is a four layer double-sided silicon tracker with 93% solid angle coverage. This detector ranges in size and number of readout channels between the LEP and LHC silicon detectors. In order to reach the detector performance goals of signal-to-noise ratios greater than 15 : 1 low noise front-end electronics together with highly regulated low noise power supplies were used. In this paper, we describe the low-noise power supply system and associated monitoring and safety features used by the CLEO III silicon tracker.

  2. Progress with the MICE scintillating fiber trackers

    NASA Astrophysics Data System (ADS)

    Overton, Edward

    2013-12-01

    The International Muon Ionization Cooling Experiment (MICE) is a proof of principle demonstration of ionization cooling, for application in a future neutrino factory or muon collider. MICE is under construction at the Rutherford Appleton Laboratory (UK), where a dedicated beam line has been commissioned to transport particles produced inside the ISIS accelerator facility. The beam emittance will be measured using two scintillating fiber trackers on each side of the cooling channel, which will be mounted inside a 4 T solenoid. As particles pass through the tracker, their position will be measured at 5 stations, each of which provides a position resolution of less than 0.5 mm. The fiber trackers have been validated using cosmic ray tests, which have allowed the light yield to be found. In addition, a spare tracking station was exposed to the MICE beam, which has enabled the tracker readout to be integrated with the MICE DAQ for the first time. This test required the integration gate on the D0 AFE-IIt readout boards to be synchronized with particle arrival by using diagnostic signals from the ISIS accelerator.

  3. Sun Tracker Operates a Year Between Calibrations

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1984-01-01

    Low-cost modification of Sun tracker automatically compensates equation of time and seasonal variations in declination of Sun. Output of Scotch Yoke drive mechanism adjusted through proper sizing of crank, yoke and other components and through choice of gear ratios to approximate seasonal northand south motion of Sun. Used for industrial solar-energy monitoring and in remote meteorological stations.

  4. jTracker and Monte Carlo Comparison

    NASA Astrophysics Data System (ADS)

    Selensky, Lauren; SeaQuest/E906 Collaboration

    2015-10-01

    SeaQuest is designed to observe the characteristics and behavior of `sea-quarks' in a proton by reconstructing them from the subatomic particles produced in a collision. The 120 GeV beam from the main injector collides with a fixed target and then passes through a series of detectors which records information about the particles produced in the collision. However, this data becomes meaningful only after it has been processed, stored, analyzed, and interpreted. Several programs are involved in this process. jTracker (sqerp) reads wire or hodoscope hits and reconstructs the tracks of potential dimuon pairs from a run, and Geant4 Monte Carlo simulates dimuon production and background noise from the beam. During track reconstruction, an event must meet the criteria set by the tracker to be considered a viable dimuon pair; this ensures that relevant data is retained. As a check, a comparison between a new version of jTracker and Monte Carlo was made in order to see how accurately jTracker could reconstruct the events created by Monte Carlo. In this presentation, the results of the inquest and their potential effects on the programming will be shown. This work is supported by U.S. DOE MENP Grant DE-FG02-03ER41243.

  5. A Heavy Flavor Tracker for STAR

    SciTech Connect

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Surrow,B.; Van Nieuwenhuizen, G.; Bieser, F.; Gareus, R.; Greiner, L.; Lesser,F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for the STAR experiment at RHIC. The HFT will bring new physics capabilities to STAR and it will significantly enhance the physics capabilities of the STAR detector at central rapidities. The HFT will ensure that STAR will be able to take heavy flavor data at all luminosities attainable throughout the proposed RHIC II era.

  6. A Heavy Flavor Tracker for STAR

    SciTech Connect

    Xu, Z.; Chen, Y.; Kleinfelder, S.; Koohi, A.; Li, S.; Huang, H.; Tai, A.; Kushpil, V.; Sumbera, M.; Colledani, C.; Dulinski, W.; Himmi,A.; Hu, C.; Shabetai, A.; Szelezniak, M.; Valin, I.; Winter, M.; Miller,M.; Surrow, B.; Van Nieuwenhuizen G.; Bieser, F.; Gareus, R.; Greiner,L.; Lesser, F.; Matis, H.S.; Oldenburg, M.; Ritter, H.G.; Pierpoint, L.; Retiere, F.; Rose, A.; Schweda, K.; Sichtermann, E.; Thomas, J.H.; Wieman, H.; Yamamoto, E.; Kotov, I.

    2005-03-14

    We propose to construct a Heavy Flavor Tracker (HFT) for theSTAR experiment at RHIC. The HFT will bring new physics capabilities toSTAR and it will significantly enhance the physics capabilities of theSTAR detector at central rapidities. The HFT will ensure that STAR willbe able to take heavy flavor data at all luminosities attainablethroughout the proposed RHIC II era.

  7. Alignment of the ATLAS inner detector tracking system

    NASA Astrophysics Data System (ADS)

    Kollár, Daniel; ATLAS Collaboration

    2010-04-01

    The Large Hadron Collider (LHC) at CERN is the world's largest particle accelerator. ATLAS is one of the two general purpose experiments. The inner tracking system of ATLAS, the Inner Detector, is built on two technologies: silicon detectors and drift tube based detectors. The required precision for the alignment of the most sensitive coordinates of the Silicon sensors is just a few microns. Therefore the alignment of the ATLAS Inner Detector is performed using complex algorithms requiring extensive CPU and memory usage. The proposed alignment algorithms were exercised on several applications. This proceedings present the outline of the alignment approach and results from Cosmic Ray runs and large scale computing simulation of physics samples mimicking the ATLAS operation during real data-taking. The full alignment chain was tested using these samples and alignment constants were produced and validated within 24 hours. Early alignment of the ATLAS Inner Detector is provided even before the LHC start up by analysing Cosmic Ray data.

  8. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers.

    PubMed

    Lesaint, Florian; Sigaud, Olivier; Clark, Jeremy J; Flagel, Shelly B; Khamassi, Mehdi

    2015-01-01

    Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers. PMID:24954026

  9. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers.

    PubMed

    Lesaint, Florian; Sigaud, Olivier; Clark, Jeremy J; Flagel, Shelly B; Khamassi, Mehdi

    2015-01-01

    Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers.

  10. Experimental predictions drawn from a computational model of sign-trackers and goal-trackers

    PubMed Central

    Lesaint, Florian; Sigaud, Olivier; Clark, Jeremy J.; Flagel, Shelly B.; Khamassi, Mehdi

    2014-01-01

    Gaining a better understanding of the biological mechanisms underlying the individual variation observed in response to rewards and reward cues could help to identify and treat individuals more prone to disorders of impulsive control, such as addiction. Variation in response to reward cues is captured in rats undergoing autoshaping experiments where the appearance of a lever precedes food delivery. Although no response is required for food to be delivered, some rats (goal-trackers) learn to approach and avidly engage the magazine until food delivery, whereas other rats (sign-trackers) come to approach and engage avidly the lever. The impulsive and often maladaptive characteristics of the latter response are reminiscent of addictive behaviour in humans. In a previous article, we developed a computational model accounting for a set of experimental data regarding sign-trackers and goal-trackers. Here we show new simulations of the model to draw experimental predictions that could help further validate or refute the model. In particular, we apply the model to new experimental protocols such as injecting flupentixol locally into the core of the nucleus accumbens rather than systemically, and lesioning of the core of the nucleus accumbens before or after conditioning. In addition, we discuss the possibility of removing the food magazine during the inter-trial interval. The predictions from this revised model will help us better understand the role of different brain regions in the behaviours expressed by sign-trackers and goal-trackers. PMID:24954026

  11. The GLAST Mission: Using Scintillating Fibers as Both the Tracker and the Calorimeter

    NASA Technical Reports Server (NTRS)

    Fisman, Gerald J.

    1997-01-01

    The Gamma-Ray Large Area Space Telescope (GLAST) has been identified as the next major NASA mission in gamma-ray astronomy. It will operate at energies above 20 MeV to study some of the most energetic objects in the Universe. While the baseline tracker detector for GLAST during the study phase is based on silicon strips, we believe that scintillating fibers have considerable advantages for this purpose. Among the performance advantages are: larger effective area, better angular resolution at low energies and larger field of view. Practical advantages include: lower cost, the use of a common technology for both the tracker and the calorimeter, lower power consumption, and a simplified thermal design. Several alternative readout schemes for the fibers are under study.

  12. Performance of the LHCb Outer Tracker

    NASA Astrophysics Data System (ADS)

    2014-01-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5 × 6 m2 with 12 double layers of straw tubes. The detector with its services are described together with the commissioning and calibration procedures. Based on data of the first LHC running period from 2010 to 2012, the performance of the readout electronics and the single hit resolution and efficiency are presented. The efficiency to detect a hit in the central half of the straw is estimated to be 99.2%, and the position resolution is determined to be approximately 200 μm. The Outer Tracker received a dose in the hottest region corresponding to 0.12 C/cm, and no signs of gain deterioration or other ageing effects are observed.

  13. Muon trackers for imaging a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Kume, N.; Miyadera, H.; Morris, C. L.; Bacon, J.; Borozdin, K. N.; Durham, J. M.; Fuzita, K.; Guardincerri, E.; Izumi, M.; Nakayama, K.; Saltus, M.; Sugita, T.; Takakura, K.; Yoshioka, K.

    2016-09-01

    A detector system for assessing damage to the cores of the Fukushima Daiichi nuclear reactors by using cosmic-ray muon tomography was developed. The system consists of a pair of drift-tube tracking detectors of 7.2× 7.2-m2 area. Each muon tracker consists of 6 x-layer and 6 y-layer drift-tube detectors. Each tracker is capable of measuring muon tracks with 12 mrad angular resolutions, and is capable of operating under 50-μ Sv/h radiation environment by removing gamma induced background with a novel time-coincidence logic. An estimated resolution to observe nuclear fuel debris at Fukushima Daiichi is 0.3 m when the core is imaged from outside the reactor building.

  14. Equation of state of tracker fields

    SciTech Connect

    Chiba, Takeshi

    2010-01-15

    We derive the equation of state of tracker fields, which are typical examples of freezing quintessence (quintessence with the equation of state approaching toward -1), taking into account of the late-time departure from the tracker solution due to the nonzero density parameter of dark energy {Omega}{sub {phi}.} We calculate the equation of state as a function of {Omega}{sub {phi}}for constant {Gamma}=VV{sup ''}/(V{sup '}){sup 2} (during matter era) models. The derived equation of state contains a single parameter, w{sub (0)}, which parametrizes the equation of state during the matter-dominated epoch. We derive observational constraints on w{sub (0)} and find that observational data are consistent with the cosmological constant: -1.11

  15. Optical model and calibration of a sun tracker

    NASA Astrophysics Data System (ADS)

    Volkov, Sergei N.; Samokhvalov, Ignatii V.; Cheong, Hai Du; Kim, Dukhyeon

    2016-09-01

    Sun trackers are widely used to investigate scattering and absorption of solar radiation in the Earth's atmosphere. We present a method for optimization of the optical altazimuth sun tracker model with output radiation direction aligned with the axis of a stationary spectrometer. The method solves the problem of stability loss in tracker pointing at the Sun near the zenith. An optimal method for tracker calibration at the measurement site is proposed in the present work. A method of moving calibration is suggested for mobile applications in the presence of large temperature differences and errors in the alignment of the optical system of the tracker.

  16. Upgrade of the Upstream Tracker at LHCb

    NASA Astrophysics Data System (ADS)

    Andrews, Jason; LHCb Collaboration

    2015-04-01

    The LHCb detector will be upgraded to allow it operate at higher collider luminosity without the need for a hardware trigger stage. Flavor enriched events will be selected in a software based, high level trigger, using fully reconstructed events. This presentation will describe the design, optimization and the expected performance of the Upstream Tracker (UT), which has a critical role in high level trigger scheme.

  17. ILC Vertex Tracker R&D

    SciTech Connect

    Battaglia, Marco; Bussat, Jean-Marie; Contarato, Devis; Denes,Peter; Glesener, Lindsay; Greiner, Leo; Hooberman, Benjamin; Shuman,Derek; Tompkins, Lauren; Vu, Chinh; Bisello, Dario; Giubilato, Piero; Pantano, Devis; Costa, Marco; La Rosa, Alessandro; Bolla, Gino; Bortoletto, Daniela; Children, Isaac

    2007-10-01

    This document summarizes past achievements, current activities and future goals of the R&D program aimed at the design, prototyping and characterization of a full detector module, equipped with monolithic pixel sensors, matching the requirements for the Vertex Tracker at the ILC. We provide a plan of activities to obtain a demonstrator multi-layered vertex tracker equipped with sensors matching the ILC requirements and realistic lightweight ladders in FY11, under the assumption that ILC detector proto-collaborations will be choosing technologies and designs for the Vertex Tracker by that time. The R&D program discussed here started at LBNL in 2004, supported by a Laboratory Directed R&D (LDRD) grant and by funding allocated from the core budget of the LBNL Physics Division and from the Department of Physics at UC Berkeley. Subsequently additional funding has been awarded under the NSF-DOE LCRD program and also personnel have become available through collaborative research with other groups. The aim of the R&D program carried out by our collaboration is to provide a well-integrated, inclusive research effort starting from physics requirements for the ILC Vertex Tracker and addressing Si sensor design and characterization, engineered ladder design, module system issues, tracking and vertex performances and beam test validation. The broad scope of this program is made possible by important synergies with existing know-how and concurrent programs both at LBNL and at the other collaborating institutions. In particular, significant overlaps with LHC detector design, SLHC R&D as well as prototyping for the STAR upgrade have been exploited to optimize the cost per deliverable of our program. This activity is carried out as a collaborative effort together with Accelerator and Fusion Research, the Engineering and the Nuclear Science Divisions at LBNL, INFN and the Department of Physics in Padova, Italy, INFN and the Department of Physics in Torino, Italy and the Department

  18. Autonomous star tracker based on active pixel sensors (APS)

    NASA Astrophysics Data System (ADS)

    Schmidt, U.

    2004-06-01

    Star trackers are opto-electronic sensors used onboard of satellites for the autonomous inertial attitude determination. During the last years, star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The Jena-Optronik GmbH is active in the field of opto-electronic sensors like star trackers since the early 80-ties. Today, with the product family ASTRO5, ASTRO10 and ASTRO15, all marked segments like earth observation, scientific applications and geo-telecom are supplied to European and Overseas customers. A new generation of star trackers can be designed based on the APS detector technical features. The measurement performance of the current CCD based star trackers can be maintained, the star tracker functionality, reliability and robustness can be increased while the unit costs are saved.

  19. Robust visual tracking with dual spatio-temporal context trackers

    NASA Astrophysics Data System (ADS)

    Sun, Shiyan; Zhang, Hong; Yuan, Ding

    2015-12-01

    Visual tracking is a challenging problem in computer vision. Recent years, significant numbers of trackers have been proposed. Among these trackers, tracking with dense spatio-temporal context has been proved to be an efficient and accurate method. Other than trackers with online trained classifier that struggle to meet the requirement of real-time tracking task, a tracker with spatio-temporal context can run at hundreds of frames per second with Fast Fourier Transform (FFT). Nevertheless, the performance of the tracker with Spatio-temporal context relies heavily on the learning rate of the context, which restricts the robustness of the tracker. In this paper, we proposed a tracking method with dual spatio-temporal context trackers that hold different learning rate during tracking. The tracker with high learning rate could track the target smoothly when the appearance of target changes, while the tracker with low learning rate could percepts the occlusion occurring and continues to track when the target starts to emerge again. To find the target among the candidates from these two trackers, we adopt Normalized Correlation Coefficient (NCC) to evaluate the confidence of each sample. Experimental results show that the proposed algorithm performs robustly against several state-of-the-art tracking methods.

  20. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  1. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  2. Optimization Method for Solution Model of Laser Tracker Multilateration Measurement

    NASA Astrophysics Data System (ADS)

    Chen, Hongfang; Tan, Zhi; Shi, Zhaoyao; Song, Huixu; Yan, Hao

    2016-08-01

    Multilateration measurement using laser trackers suffers from a cumbersome solution method for high-precision measurements. Errors are induced by the self-calibration routines of the laser tracker software. This paper describes an optimization solution model for laser tracker multilateration measurement, which effectively inhibits the negative effect of this self-calibration, and further, analyzes the accuracy of the singular value decomposition for the described solution model. Experimental verification for the solution model based on laser tracker and coordinate measuring machine (CMM) was performed. The experiment results show that the described optimization model for laser tracker multilateration measurement has good accuracy control, and has potentially broad application in the field of laser tracker spatial localization.

  3. Ocean Topography Experiment (TOPEX) star tracker performance data

    NASA Astrophysics Data System (ADS)

    Flynn, David J.

    1992-08-01

    Two major technological developments have benefited stars sensors in recent years: the charge-coupled device (CCD) detector and the microprocessor. The ASTRA-1 star tracker developed by Hughes Danbury Optical Systems, Inc. (HDOS) is a CCD, microprocessor-based replacement for the NASA Standard Fixed Head Star Tracker. This paper will provide an overview of the measured performance of the ASTRA-1 star trackers delivered to Fairchild Space Company for use on the TOPEX/POSEIDON mission scheduled for July 1992.

  4. The precision tracker of the OPERA detector

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Ebert, J.; Hagner, C.; Koppitz, B.; Saveliev, V.; Schmidt-Parzefall, W.; Sewing, J.; Zaitsev, Y.

    2005-12-01

    The Precision Tracker of the muon spectrometer of the OPERA detector consists of ˜10000 aluminum drift tubes of 8 m length. They have an outer diameter of 38 mm and a wall thickness of 0.85 mm. The challenge of the detector design originates from the 8 m length of the drift tubes, a detector length, which has not been used before. Tight mechanical tolerances for positioning and alignment of the signal wires are required in order to make a significant measurement of the sign of the muon charge. The detector is manufactured in modules, which are 50 cm wide, each consisting of four adjacent drift tube planes. This guarantees high efficiency and complete rejection of the left-right ambiguity. The details of the novel mechanical design are described in this paper. For safety reasons, the drift tubes are operated with an Argon/CO2 gas mixture. The gas volume of the drift tubes is entirely sealed with O-rings, in order to avoid ageing problems. The total gas volume amounts to about 80 m3. The front end electronics of the drift tubes consist of a bootstrap amplifier followed by a commercial ultrafast comparator. Thus only digital LVDS signals are transmitted over large distances. We report on the development and performance of the first two prototype modules of the precision tracker including test measurements of the resolution and efficiency obtained.

  5. Atlas Mountains

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are the Anti-Atlas Mountains, part of the Atlas Mountain range in southern Morocco, Africa. The region contains some of the world's largest and most diverse mineral resources, most of which are still untouched. This image was acquired by Landsat 7's Enhanced Thematic Mapper plus (ETM+) sensor on June 22, 2001. This is a false-color composite image made using shortwave infrared, infrared, and red wavelengths. Image provided by the USGS EROS Data Center Satellite Systems Branch.

  6. A multi-hypothesis tracker for clicking whales.

    PubMed

    Baggenstoss, Paul M

    2015-05-01

    This paper describes a tracker specially designed to track clicking beaked whales using widely spaced bottom-mounted hydrophones, although it can be adapted to different species and sensors. The input to the tracker is a sequence of static localization solutions obtained using time difference of arrival information at widely spaced hydrophones. To effectively handle input localizations with high ambiguity, the tracker is based on multi-hypothesis tracker concepts, so it considers all potential association hypotheses and keeps a large number of potential tracks in memory. The method is demonstrated on actual data and shown to successfully track multiple beaked whales at depth.

  7. Mechatronic Prototype of Parabolic Solar Tracker

    PubMed Central

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-01-01

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses. PMID:27314359

  8. Mechatronic Prototype of Parabolic Solar Tracker.

    PubMed

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-06-15

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses.

  9. 3D technology for intelligent trackers

    NASA Astrophysics Data System (ADS)

    Lipton, Ronald

    2010-10-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  10. 3D Technology for intelligent trackers

    SciTech Connect

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  11. Infrared tracker for a portable missile launcher

    SciTech Connect

    Carlson, J.J.

    1993-07-13

    An infrared beam tracker is described for arrangement to a housing that is unitary with a portable missile launcher, comprising: a rotating beam splitter positioned to intercept the infrared beam passing a first portion of the beam through the beam splitter along a first direction and reflecting the remaining portion along a different direction; a first infrared detector for receiving the beam reflected portion from the beam splitter and produce electric signals responsive thereto; a second infrared detector for receiving the beam portion that passes through the beam splitter and providing electric signals responsive thereto; and means interconnected to the first and second infrared detectors and responsive to the electric signals generated by said detectors for determining errors in missile flight direction and communicating course correction information to the missile.

  12. Generic evaluation tracker database for OTH radar

    NASA Astrophysics Data System (ADS)

    Flanders, Lorraine E.; Hartnett, Michael P.; Vannicola, Vincent C.

    1999-10-01

    This paper provides a real world target and clutter model for evaluation of radar signal processing algorithms. The procedure is given for target and clutter data collection which is then followed by the equalization and superposition method. We show how the model allows one to vary the target signal to clutter noise ratio so that system performance may be assessed over a wide range of target amplitudes, i.e. detection probability versus target signal to noise ratio. Three candidate pre-track algorithms are evaluated and compared using this model as input in conjunction with an advanced tracker algorithm as a post processor. Data used for the model represents airborne traffic operating over the body of water bounded by North, Central, and South America. The processors relate to the deployment of Over the Horizon Radar for drug interdiction. All the components of this work, model as well as the processors, are in software.

  13. Mechatronic Prototype of Parabolic Solar Tracker.

    PubMed

    Morón, Carlos; Díaz, Jorge Pablo; Ferrández, Daniel; Ramos, Mari Paz

    2016-01-01

    In the last 30 years numerous attempts have been made to improve the efficiency of the parabolic collectors in the electric power production, although most of the studies have focused on the industrial production of thermoelectric power. This research focuses on the application of this concentrating solar thermal power in the unexplored field of building construction. To that end, a mechatronic prototype of a hybrid paraboloidal and cylindrical-parabolic tracker based on the Arduido technology has been designed. The prototype is able to measure meteorological data autonomously in order to quantify the energy potential of any location. In this way, it is possible to reliably model real commercial equipment behavior before its deployment in buildings and single family houses. PMID:27314359

  14. Optical alignment of the Global Precipitation Measurements (GPM) star trackers

    NASA Astrophysics Data System (ADS)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; McLean, Kyle

    2013-09-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite autocollimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  15. Laser tracker error determination using a network measurement

    NASA Astrophysics Data System (ADS)

    Hughes, Ben; Forbes, Alistair; Lewis, Andrew; Sun, Wenjuan; Veal, Dan; Nasr, Karim

    2011-04-01

    We report on a fast, easily implemented method to determine all the geometrical alignment errors of a laser tracker, to high precision. The technique requires no specialist equipment and can be performed in less than an hour. The technique is based on the determination of parameters of a geometric model of the laser tracker, using measurements of a set of fixed target locations, from multiple locations of the tracker. After fitting of the model parameters to the observed data, the model can be used to perform error correction of the raw laser tracker data or to derive correction parameters in the format of the tracker manufacturer's internal error map. In addition to determination of the model parameters, the method also determines the uncertainties and correlations associated with the parameters. We have tested the technique on a commercial laser tracker in the following way. We disabled the tracker's internal error compensation, and used a five-position, fifteen-target network to estimate all the geometric errors of the instrument. Using the error map generated from this network test, the tracker was able to pass a full performance validation test, conducted according to a recognized specification standard (ASME B89.4.19-2006). We conclude that the error correction determined from the network test is as effective as the manufacturer's own error correction methodologies.

  16. Visible-spectrum remote eye tracker for gaze communication

    NASA Astrophysics Data System (ADS)

    Imabuchi, Takashi; Prima, Oky Dicky A.; Kikuchi, Hikaru; Horie, Yusuke; Ito, Hisayoshi

    2015-03-01

    Many approaches have been proposed to create an eye tracker based on visible-spectrum. These efforts provide a possibility to create inexpensive eye tracker capable to operate outdoor. Although the resulted tracking accuracy is acceptable for a visible-spectrum head-mounted eye tracker, there are many limitations of these approaches to create a remote eye tracker. In this study, we propose a high-accuracy remote eye tracker that uses visible-spectrum imaging and several gaze communication interfaces suited to the tracker. The gaze communication interfaces are designed to assist people with motor disability. Our results show that the proposed eye tracker achieved an average accuracy of 0.77° and a frame rate of 28 fps with a personal computer. With a tablet device, the proposed eye tracker achieved an average accuracy of 0.82° and a frame rate of 25 fps. The proposed gaze communication interfaces enable users to type a complete sentence containing eleven Japanese characters in about a minute.

  17. Performance of the Microwave Anisotropy Probe AST-201 Star Trackers

    NASA Technical Reports Server (NTRS)

    Ward, David K.; vanBezooijen, Roelof; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) was launched to create a full-sky map of the cosmic microwave background. MAP incorporates two modified Lockheed Martin AST-201 (Autonomous Star Tracker) star trackers. The AST-201 employs an eight element radiation hardened lens assembly which is used to focus an image on a charge coupled device (CCD). The CCD image is then processed by a star identification algorithm which outputs a three-axis attitude. A CCD-shift algorithm called Time Delayed Integration (TDI) was also included in each star tracker. In order to provide some radiation effect filtering during MAP's three to five phasing loop passes through the Van Allen radiation belts, a simple pixel filtering scheme was implemented, rather than using a more complex, but more robust windowing algorithm. The trackers also include a fiber optic data interface. This paper details the ground testing that was accomplished on the MAP trackers.

  18. Flight performance of TOPEX/POSEIDON star trackers

    NASA Astrophysics Data System (ADS)

    Flynn, David J.; Fowski, Walter J.; Kia, Tooraj

    1993-09-01

    The TOPEX/POSEIDON spacecraft was launched on August 10, 1992. This paper presents data on the measured performance of the ASTRA Star Trackers supplied by Hughes Danbury Optical Systems (HDOS) for this satellite. The HDOS ASTRA Star Tracker is a charge coupled device (CCD), microprocessor based replacement for the NASA Standard Fixed Head Star Tracker. The position and magnitude accuracy of the star trackers computed from measured flight data are compared with ground measurements and system models. The performance of novel transient rejection algorithms implemented in the ASTRA Star Tracker which allows uninterrupted operation in the South Atlantic Anomaly (SAA) where the sensor is subjected to high proton flux levels, also are presented.

  19. The Design Parameters for the MICE Tracker Solenoid

    SciTech Connect

    Green, Michael A.; Chen, C.Y.; Juang, Tiki; Lau, Wing W.; Taylor,Clyde; Virostek, Steve P.; Wahrer, Robert; Wang, S.T.; Witte, Holger; Yang, Stephanie Q.

    2006-08-20

    The first superconducting magnets to be installed in the muon ionization cooling experiment (MICE) will be the tracker solenoids. The tracker solenoid module is a five coil superconducting solenoid with a 400 mm diameter warm bore that is used to provide a 4 T magnetic field for the experiment tracker module. Three of the coils are used to produce a uniform field (up to 4 T with better than 1 percent uniformity) in a region that is 300 mm in diameter and 1000 mm long. The other two coils are used to match the muon beam into the MICE cooling channel. Two 2.94-meter long superconducting tracker solenoid modules have been ordered for MICE. The tracker solenoid will be cooled using two-coolers that produce 1.5 W each at 4.2 K. The magnet system is described. The decisions that drive the magnet design will be discussed in this report.

  20. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  1. Laboratory assessment of a miniature electromagnetic tracker

    NASA Astrophysics Data System (ADS)

    Hummel, Johann; Birkfellner, Wolfgang; Figl, Michael; Haider, C.; Hanel, Rudolf A.; Bergmann, Helmar

    2002-05-01

    With the invention of miniaturized electromagnetic digitizers comes a variety of potential clinical applications for computer aided interventions using flexible instruments; it has become possible to track endoscopes or catheters within the body. To evaluate the reliability of a new commercial tracking system, we measured the systematic distortions induced by various materials such as closed metallic loops, wire guides, catheters and ultrasound scan heads. The system under evaluation was the electromagnetic tracking system Aurora (Mednetix/CH, NDI/Can); data were acquired using the serial port of a PC running SuSE Linux 7.1 (SuSE, Gmbh, Nuernberg). The objects suspected to cause distortions were brought into the digitizer volume. Beside this, we evaluated the influence of a C-arm fluoroscopy unit. To quantify the reliability of the system, the miniaturized sensor was mounted on a nonmetallic measurement rack while the transmitter was fixed at three different distances within the digitizer range. The tracker is more sensitive to distortions caused by materials close to the emitter (average value 13.6 mm +/- 16.6mm) for wire loops positioned at a distance between 100 mm and 200 mm from the emitter). Distortions caused by materials near the sensor (distances smaller than 100 mm) are small (typical error: 2.2 mm +/- 1.9 mm) in comparison to the errors of other electromagnetic systems published in an earlier study of our group where we found an average error of 3.4 mm. Considerable distortions are caused by the C-arm fluoroscopy unit and limits the reliability of the tracker (error: 18.6 mm +/- 24.9 mm). The US scan head was found to cause significant distortions only at a distance between the emitter and the scan head less than 100 mm from the emitter in contrast to the average error of 3.8 mm +/- 6.3 mm at distances greater than 100 mm. Taking into account that significant distortions only occur in the presence of metallic objects close to the emitter, these results

  2. Advanced electro-optical tracker/ranger

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Defoe, D. N.

    1980-06-01

    The preliminary engineering design study of an Advanced Electro-Optical Tracker/Ranger (AEOTR) to provide passive target tracking and rangefinding for air to air gun fire control is described. Area correlation processing is used in the comparison of stereo image pairs for stereometric ranging and in the comparison of successive images for tracking. The application of these techniques to the AEOTR, the limitations imposed by packaging, environmental and state-of-the-art sensor and processing hardware constraints, and the projected performance are evaluated. Principal emphasis is given to the use of AEOTR in the gun director engagement mode in which target track and range data is provided to a gun fire control computer. The feasibility of use of the AEOTR to provide target video as an aid to visual target identification, and to provide automatic airborne target detection, is also evaluated. The necessary functions and subsystems are defined and integrated into a preliminary design, whose performance is estimated and compared with the program goals. In addition, a preliminary mounting location study for the F-15, F-16 and F-18 advanced fighters is included. CAI-built hardware was used to successfully demonstrate the feasibility of the ranging and tracking concepts employed in the AEOTR.

  3. High Energy Astronomy Observatory star tracker search program

    NASA Technical Reports Server (NTRS)

    Weiler, W. J.

    1972-01-01

    The development of a control system to accommodate the scientific payload of the High Energy Astronomy Observatory (HEAO) is discussed. One of the critical elements of the system is the star tracker subsystem, which defines an accurate three-axis attitude reference. A digital computer program has been developed to evaluate the ability of a particular star tracker configuration to meet the requirements for attitude reference at various vehicle orientations. Used in conjuction with an adequate star catalog, the computer program provides information on availability of stars for each tracker and on the ability of the system to maintain three-axis attitude reference throughout a representative sequence of vehicle orientations.

  4. The CDF-II silicon tracking system

    SciTech Connect

    Timothy K. Nelson

    2001-12-07

    The CDF silicon tracking system for Run II of the Fermilab Tevatron consists of eight layers arranged in cylinders spanning radii from 1.35cm to 28cm, and lengths from 90cm to nearly two meters for a total of six square meters of silicon and 722,000 readout channels. With an innermost layer (Layer 00) utilizing radiation tolerant p{sup +}-in-n silicon and low-mass readout cables between the sensors and readout electronics, double-sided vertexing layers (SVXII) designed for use with a deadtimeless secondary-vertex trigger, and outermost layers (ISL) utilizing mass-producible modules attached to a carbon fiber spaceframe, this system is a starting point for the next generation of silicon trackers for the LHC and Tevatron.

  5. PACIFIC: the readout ASIC for the SciFi Tracker of the upgraded LHCb detector

    NASA Astrophysics Data System (ADS)

    Mazorra, J.; Chanal, H.; Comerma, A.; Gascón, D.; Gómez, S.; Han, X.; Pillet, N.; Vandaele, R.

    2016-02-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and will switch to a 40 MHz readout rate using a trigger-less software based system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with the higher detector occupancy and radiation damage. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed and a custom ASIC, called the low-Power ASIC for the sCIntillating FIbres traCker (PACIFIC), will be used to digitise the signals from the SiPMs. This article presents an overview of the R&D for the PACIFIC. It is a 64-channel ASIC implemented in 130 nm CMOS technology, aiming at a radiation tolerant design with a power consumption below 10 mW per channel. It interfaces directly with the SiPM anode through a current mode input, and provides a configurable non-linear 2-bit per channel digital output. The SiPM signal is acquired by a current conveyor and processed with a fast shaper and a gated integrator. The digitization is performed using a three threshold non-linear flash ADC operating at 40 MHz. Simulation and test results show the PACIFIC chip prototypes functioning well.

  6. A low-cost, CCD solid state star tracker

    NASA Technical Reports Server (NTRS)

    Chmielowski, M.; Wynne, D.

    1992-01-01

    Applied Research Corporation (ARC) has developed an engineering model of a multi-star CCD-based tracker for space applications requiring radiation hardness, high reliability and low power consumption. The engineering unit compared favorably in functional performance tests to the standard NASA single-star tracker. Characteristics of the ARC star tracker are: field of view = 10 deg x 7.5 deg, sensitivity range of -1 to +5 star magnitude, NEA = 3 in x 3 in, linearity = 5 in x 5 in, and power consumption of 1-3 W (operating mode dependent). The software is upgradable through a remote link. The hardware-limited acquisition rate is 1-5 Hz for stars of +2 to +5 magnitude and 10-30 Hz for -1 to +2 magnitude stars. Mechanical and electrical interfaces are identical to the standard NASA star tracker.

  7. HETDEX tracker control system design and implementation

    NASA Astrophysics Data System (ADS)

    Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian

    2012-09-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.

  8. Breadboard stellar tracker system test report, volume 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Complete data from a test program designed to evaluate the performance of a star tracker, a breadboard tracker system, is presented in tabular form. All data presented was normalized to the pixel dimension of 20 micrometers. Data from determination of maximum spatial noise as it applies to the coarse and fine acquisition modes is presented. Pointing accuracy test data, raw pixel data for the track cycle, and data from equipment related tests is also presented.

  9. Optical Alignment of the Global Precipitation Measurement (GPM) Star Trackers

    NASA Technical Reports Server (NTRS)

    Hetherington, Samuel; Osgood, Dean; McMann, Joe; Roberts, Viki; Gill, James; Mclean, Kyle

    2013-01-01

    The optical alignment of the star trackers on the Global Precipitation Measurement (GPM) core spacecraft at NASA Goddard Space Flight Center (GSFC) was challenging due to the layout and structural design of the GPM Lower Bus Structure (LBS) in which the star trackers are mounted as well as the presence of the star tracker shades that blocked line-of-sight to the primary star tracker optical references. The initial solution was to negotiate minor changes in the original LBS design to allow for the installation of a removable item of ground support equipment (GSE) that could be installed whenever measurements of the star tracker optical references were needed. However, this GSE could only be used to measure secondary optical reference cube faces not used by the star tracker vendor to obtain the relationship information and matrix transformations necessary to determine star tracker alignment. Unfortunately, due to unexpectedly large orthogonality errors between the measured secondary adjacent cube faces and the lack of cube calibration data, we required a method that could be used to measure the same reference cube faces as originally measured by the vendor. We describe an alternative technique to theodolite auto-collimation for measurement of an optical reference mirror pointing direction when normal incidence measurements are not possible. This technique was used to successfully align the GPM star trackers and has been used on a number of other NASA flight projects. We also discuss alignment theory as well as a GSFC-developed theodolite data analysis package used to analyze angular metrology data.

  10. Breadboard stellar tracker system test report, volume 1

    NASA Astrophysics Data System (ADS)

    Kollodge, J. C.; Hubbard, M. W.; Jain, S.; Schons, C. A.

    1981-08-01

    The performance of a star tracker equipped with a focal plane detector was evaluated. The CID board is an array of 256 x 256 pixels which are 20 x 20 micrometers in dimension. The tracker used for test was a breadboard tracker system developed by BASD. Unique acquisition and tracking algorithms are employed to enhance performance. A pattern recognition process is used to test for proper image spread function and to avoid false acquisition on noise. A very linear, high gain, interpixel transfer function is derived for interpolating star position. The lens used in the tracker has an EFL of 100 mm. The tracker has an FOV of 2.93 degrees resulting in a pixel angular subtense of 41.253 arc sec in each axis. The test procedure used for the program presented a star to the tracker in a circular pattern of positions; the pattern was formed by projecting a simulated star through a rotatable deviation wedge. Further tests determined readout noise, Noise Equivalent Displacement during track, and spatial noise during acquisition by taking related data and reducing it.

  11. Breadboard stellar tracker system test report, volume 1

    NASA Technical Reports Server (NTRS)

    Kollodge, J. C.; Hubbard, M. W.; Jain, S.; Schons, C. A.

    1981-01-01

    The performance of a star tracker equipped with a focal plane detector was evaluated. The CID board is an array of 256 x 256 pixels which are 20 x 20 micrometers in dimension. The tracker used for test was a breadboard tracker system developed by BASD. Unique acquisition and tracking algorithms are employed to enhance performance. A pattern recognition process is used to test for proper image spread function and to avoid false acquisition on noise. A very linear, high gain, interpixel transfer function is derived for interpolating star position. The lens used in the tracker has an EFL of 100 mm. The tracker has an FOV of 2.93 degrees resulting in a pixel angular subtense of 41.253 arc sec in each axis. The test procedure used for the program presented a star to the tracker in a circular pattern of positions; the pattern was formed by projecting a simulated star through a rotatable deviation wedge. Further tests determined readout noise, Noise Equivalent Displacement during track, and spatial noise during acquisition by taking related data and reducing it.

  12. Multi-expert tracking algorithm based on improved compressive tracker

    NASA Astrophysics Data System (ADS)

    Feng, Yachun; Zhang, Hong; Yuan, Ding

    2015-12-01

    Object tracking is a challenging task in computer vision. Most state-of-the-art methods maintain an object model and update the object model by using new examples obtained incoming frames in order to deal with the variation in the appearance. It will inevitably introduce the model drift problem into the object model updating frame-by-frame without any censorship mechanism. In this paper, we adopt a multi-expert tracking framework, which is able to correct the effect of bad updates after they happened such as the bad updates caused by the severe occlusion. Hence, the proposed framework exactly has the ability which a robust tracking method should process. The expert ensemble is constructed of a base tracker and its formal snapshot. The tracking result is produced by the current tracker that is selected by means of a simple loss function. We adopt an improved compressive tracker as the base tracker in our work and modify it to fit the multi-expert framework. The proposed multi-expert tracking algorithm significantly improves the robustness of the base tracker, especially in the scenes with frequent occlusions and illumination variations. Experiments on challenging video sequences with comparisons to several state-of-the-art trackers demonstrate the effectiveness of our method and our tracking algorithm can run at real-time.

  13. Deployment of the CMS Tracker AMC as backend for the CMS pixel detector

    NASA Astrophysics Data System (ADS)

    Auzinger, G.

    2016-01-01

    The silicon pixel detector of the CMS experiment at CERN will be replaced with an upgraded version at the beginning of 2017 with the new detector featuring an additional barrel- and end-cap layer resulting in an increased number of fully digital read-out links running at 400 Mbps. New versions of the PSI46 Read-Out Chip and Token Bit Manager have been developed to operate at higher rates and reduce data loss. Front-End Controller and Front-End Driver boards, based on the μTCA compatible CMS Tracker AMC, a variant of the FC7 card, are being developed using different mezzanines to host the optical links for the digital read-out and control system. An overview of the system architecture is presented, with details on the implementation, and first results obtained from test systems.

  14. The AMchip04 and the processing unit prototype for the FastTracker

    NASA Astrophysics Data System (ADS)

    Andreani, A.; Annovi, A.; Beretta, M.; Bogdan, M.; Citterio, M.; Alberti, F.; Giannetti, P.; Lanza, A.; Magalotti, D.; Piendibene, M.; Shochet, M.; Stabile, A.; Tang, J.; Tompkins, L.; Volpi, G.

    2012-08-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment`s complexity, the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive event selection. We present the first prototype of a new Processing Unit (PU), the core of the FastTracker processor (FTK). FTK is a real time tracking device for the ATLAS experiment`s trigger upgrade. The computing power of the PU is such that a few hundred of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV/c in ATLAS events up to Phase II instantaneous luminosities (3 × 1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below a hundred microseconds. The PU provides massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generally referred to as the ``combinatorial challenge'', is solved by the Associative Memory (AM) technology exploiting parallelism to the maximum extent; it compares the event to all pre-calculated ``expectations'' or ``patterns'' (pattern matching) simultaneously, looking for candidate tracks called ``roads''. This approach reduces to a linear behavior the typical exponential complexity of the CPU based algorithms. Pattern recognition is completed by the time data are loaded into the AM devices. We report on the design of the first Processing Unit prototypes. The design had to address the most challenging aspects of this technology: a huge number of detector clusters (``hits'') must be distributed at high rate with very large fan-out to all patterns (10 Million patterns will be located on 128 chips placed on a single board) and a huge number of roads must be collected and sent back to the FTK post-pattern-recognition functions. A network of high speed serial links is used to solve the data distribution problem.

  15. Future trends of 3D silicon sensors

    NASA Astrophysics Data System (ADS)

    Da Vià, Cinzia; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Haughton, Iain; Grenier, Philippe; Grinstein, Sebastian; Hansen, Thor-Erik; Hasi, Jasmine; Kenney, Christopher; Kok, Angela; Parker, Sherwood; Pellegrini, Giulio; Povoli, Marco; Tzhnevyi, Vladislav; Watts, Stephen J.

    2013-12-01

    Vertex detectors for the next LHC experiments upgrades will need to have low mass while at the same time be radiation hard and with sufficient granularity to fulfil the physics challenges of the next decade. Based on the gained experience with 3D silicon sensors for the ATLAS IBL project and the on-going developments on light materials, interconnectivity and cooling, this paper will discuss possible solutions to these requirements.

  16. Human factor requirements of helmet trackers for HMDs

    NASA Astrophysics Data System (ADS)

    Martinsen, Gary L.; Havig, Paul R.; Post, David L.; Reis, George A.; Simpson, Matthew A.

    2003-09-01

    A helmet tracker is a critical element in the path that delivers targeting and other sensor data to the user of a helmet-mounted display (HMD) in a military aircraft. The original purpose of an HMD was to serve as a helmet-mounted sight and provide a means to fully utilize the capabilities of off-boresight munitions. Recently, the role of the HMD has evolved from being strictly a targeting tool to providing detailed flight path and situation awareness information. These changes, however, have placed even greater value on the visual information that is transferred through the helmet tracker to the HMD. Specifically, the timeliness and accuracy of the information, which is of critical importance when the HMD is used as a targeting aid, is of even greater importance when the HMD is used to display flight reference information. This is especially relevant since it has been proposed to build new military aircraft without a physical head-up display (HUD) and display HUD information virtually with an HMD. In this paper, we review the current state of helmet tracker technology with respect to use in military aviation. We also identify the parameters of helmet trackers that offer the greatest risk when using an HMD to provide information beyond targeting data to the user. Finally, we discuss the human factors limitations of helmet tracker systems for delivering both targeting and flight reference information to a military pilot.

  17. Construction and commissioning of the SuperNEMO detector tracker

    NASA Astrophysics Data System (ADS)

    Cascella, Michele

    2016-07-01

    The SuperNEMO detector will search for neutrinoless double beta decay at the Modane Underground Laboratory; the detector design allows complete topological reconstruction of the decay event enabling excellent levels of background rejection and, in the event of a discovery, the ability to determine the nature of the lepton number violating process. In order to demonstrate the feasibility of the full experiment, we are building a Demonstrator Module containing 7 kg of 82Se, with an expected sensitivity of |mββ | < 0.2 - 0.4 eV after 2.5 yr. The demonstrator tracker is currently being assembled in the UK; the main challenge in the tracker design is the high radiopurity required to limit the background. For this reason the cell wiring is automated and every step of the tracker assembly happens in a clean environment. All components are carefully screened for radiopurity and each section of the tracker, once assembled, is sealed and checked for Radon emanation. We present the detector design, the current status of the construction and present the first results from the surface commissioning of one section of the Demonstrator Module tracker.

  18. Exposure time optimization for highly dynamic star trackers.

    PubMed

    Wei, Xinguo; Tan, Wei; Li, Jian; Zhang, Guangjun

    2014-03-11

    Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers.

  19. Pointing knowledge accuracy of the star tracker based ATP system

    NASA Astrophysics Data System (ADS)

    Lee, Shinhak; Ortiz, Gerardo G.; Alexander, James W.

    2005-04-01

    The pointing knowledge for the deep space optical communications should be accurate and the estimate update rate needs to be sufficiently higher to compensate the spacecraft vibration. Our objective is to meet these two requirements, high accuracy and update rate, using the combinations of star trackers and inertial sensors. Star trackers are very accurate and provide absolute pointing knowledge with low update rate depending on the star magnitude. On the other hand, inertial sensors provide relative pointing knowledge with high update rates. In this paper, we describe how the star tracker and inertial sensor measurements are combined to reduce the pointing knowledge jitter. This method is based on the 'iterative averaging' of the star tracker and gyro measurements. Angle sensor measurements are to fill in between the two gyro measurements for higher update rate and the total RMS error (or jitter) increases in RSS (Root-Sum-Squared) sense. The estimated pointing jitter is on the order of 150 nrad which is well below the typical requirements of the deep space optical communications. This 150 nrad jitter can be achieved with 8 cm diameter of telescope aperture. Additional expectations include 1/25 pixel accuracy per star, SIRTF class gyros (ARW = 0.0001 deg/root-hr), 5 Hz star trackers with ~5.0 degree FOV, detector of 1000 by 1000 pixels, and stars of roughly 9 to 9.5 magnitudes.

  20. Design and Initial Tests of the Tracker-Converter ofthe Gamma-ray Large Area Space Telescope

    SciTech Connect

    Atwood, W.B.; Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; De Angelis, A.; Drell, P.; Favuzzi, C.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Germani, S.; Giannitrapani, R.; Giglietto, N.; /UC, Santa Cruz /INFN, Pisa /Pisa U. /INFN, Trieste /INFN, Rome /Rome U.,Tor Vergata /SLAC /INFN, Bari /Bari U. /INFN, Perugia /Perugia U. /Udine U. /Hiroshima U. /NASA, Goddard /Maryland U. /Tokyo Inst. Tech. /INFN, Padua /Padua U. /Pisa, Scuola Normale Superiore

    2007-04-16

    The Tracker subsystem of the Large Area Telescope (LAT) science instrument of the Gamma-ray Large Area Space Telescope (GLAST) mission has been completed and tested. It is the central detector subsystem of the LAT and serves both to convert an incident gamma-ray into an electron-positron pair and to track the pair in order to measure the gamma-ray direction. It also provides the principal trigger for the LAT. The Tracker uses silicon strip detectors, read out by custom electronics, to detect charged particles. The detectors and electronics are packaged, along with tungsten converter foils, in 16 modular, high-precision carbon-composite structures. It is the largest silicon-strip detector system ever built for launch into space, and its aggressive design emphasizes very low power consumption, passive cooling, low noise, high efficiency, minimal dead area, and a structure that is highly transparent to charged particles. The test program has demonstrated that the system meets or surpasses all of its performance specifications as well as environmental requirements. It is now installed in the completed LAT, which is being prepared for launch in early 2008.

  1. The Reconstruction Software for the Muon Ionization Cooling Experiment Trackers

    NASA Astrophysics Data System (ADS)

    Dobbs, A.; Long, K.; Santos, E.; Adey, D.; Hanlet, P.; Heidt, C.

    2014-06-01

    The international Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the principle of muon ionization cooling, for application to a future Neutrino Factory or Muon Collider. In order to measure the change in emittance, MICE is equipped with a pair of high precision scintillating fibre trackers. The trackers are required to measure a 10% change in emittance to 1% accuracy (giving an overall precision of 0.1%). This paper describes the tracker reconstruction software, as a part of the overall MICE software framework, MAUS. Channel clustering is described, proceeding to the formation of space-points, which are then associated with particle tracks using pattern recognition algorithms. Finally a full custom Kalman track fit is performed, to account for energy loss and multiple scattering. Exemplar results are shown for Monte Carlo data.

  2. The tracker systems for the muon ionization cooling experiment

    NASA Astrophysics Data System (ADS)

    Heidt, C.

    2013-08-01

    The Muon Ionization Cooling Experiment (MICE) will be the first experiment to demonstrate muon ionization cooling in the momentum range of 140-240 MeV/c. The experiment is a single-particle experiment where the input and output beam emittances are constructed from an ensemble of selected single-muon candidates. The fiber trackers are placed in a solenoidal field of 4 T (one before and one after the cooling channel) to measure the muon 4-momentum and provide the basic information for determining the emittances. This paper gives a brief overview of MICE and then describes the details of the fiber tracker assemblies, the unique construction technique used (which for the first time used 350 μm diameter scintillating fiber), the readout electronics and performance with respect to light yield, hit resolution and tracking efficiency as measured in a recent cosmic-ray test of the two final tracker systems.

  3. Laser Tracker Test Facility at SLAC - Progress Report

    SciTech Connect

    Gassner, G.L.; Ruland, R.E.; /SLAC

    2008-02-22

    Physics experiments at SLAC require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser Tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. In order to improve and get a better understanding of laser tracker measurement tolerances we extended our laboratory with a rotary calibration table (Kugler GmbH) providing an accuracy of better than 0.2 arcsec. This paper gives an overview of the calibration table and its evaluation. Results of tests on two of our Laser Trackers utilizing the new rotary table as well as the SLAC interferometer bench are presented.

  4. The Reconstruction Software for the Muon Ionization Cooling Experiment Trackers

    SciTech Connect

    Dobbs, A.; Long, K.; Santos, E.; Adey, D.; Hanlet, P.; Heidt, C.

    2014-01-01

    The international Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the principle of muon ionization cooling, for application to a future Neutrino Factory or Muon Collider. In order to measure the change in emittance, MICE is equipped with a pair of high precision scintillating fibre trackers. The trackers are required to measure a 10% change in emittance to 1% accuracy (giving an overall precision of 0.1%). This paper describes the tracker reconstruction software, as a part of the overall MICE software framework, MAUS. Channel clustering is described, proceeding to the formation of space-points, which are then associated with particle tracks using pattern recognition algorithms. Finally a full custom Kalman track fit is performed, to account for energy loss and multiple scattering. Exemplar results are shown for Monte Carlo data.

  5. Combinations of 148 navigation stars and the star tracker

    NASA Technical Reports Server (NTRS)

    Duncan, R.

    1980-01-01

    The angular separation of all star combinations for 148 nav star on the onboard software for space transportation system-3 flight and following missions is presented as well as the separation of each pair that satisfies the viewing constraints of using both star trackers simultaneously. Tables show (1) shuttle star catalog 1980 star position in M 1950 coordinates; (2) two star combination of 148 nav stars; and (3) summary of two star-combinations of the star tracker 5 deg filter. These 148 stars present 10,875 combinations. For the star tracker filters of plus or minus 5 deg, there are 875 combinations. Formalhaut (nav star 26) has the best number of combinations, which is 33.

  6. Report to users of ATLAS

    SciTech Connect

    Ahmad, I.; Glagola, B.

    1995-05-01

    This report contains discussing in the following areas: Status of the Atlas accelerator; highlights of recent research at Atlas; concept for an advanced exotic beam facility based on Atlas; program advisory committee; Atlas executive committee; and Atlas and ANL physics division on the world wide web.

  7. Prospects for heavy-flavour measurements with the ALICE inner and forward tracker upgrade

    NASA Astrophysics Data System (ADS)

    Fionda, F.

    2016-01-01

    During the second long shutdown (LS2) of the LHC the ALICE detector will be improved with the installation of an upgraded Inner Tracking System (ITS) and a new Muon Forward Tracker (MFT). These detectors will crucially contribute to the precise characterization of the high-temperature, strongly-interacting medium created in ultra-relativistic Pb-Pb collisions at √sNN = 5.5 TeV. In the central barrel, the upgraded ITS will consist of seven cylindrical layers of silicon pixel detectors, starting at a radial distance of 22.4 mm from the beam axis. At forward rapidity, the MFT will be composed of five silicon pixel planes added in the acceptance of the existing Muon Spectrometer (-4 < ƞ < -2.5), upstream to the hadron absorber. Detailed results on the expected performances for heavy-flavour (HF) measurements down to low transverse momentum, with the upgraded ITS and MFT, will be given for central Pb-Pb collisions for various benchmark analyses, assuming an integrated luminosity of 10 nb-1, as foreseen for the ALICE upgrade programme.

  8. Improving the measurement quality of small satellite star trackers

    NASA Astrophysics Data System (ADS)

    Dzamba, Tom

    Recent demand from the small satellite community has led to the development of a new series of star trackers that are specifically designed for small satellites. These units represent substantial improvements in mass, power consumption and cost over traditional star trackers, but suffer slightly in terms of accuracy and availability performance. The primary factors inhibiting their performance are the use of significantly smaller optics, and commercial off the shelf components (COTS). This thesis presents a series of strategies for improving the performance of small satellite star trackers (SSSTs). These goals are realized through the development of offline calibration procedures, flight software, validation tests, and optical trade studies to guide future development. This thesis begins with the development of a target-based focusing procedure that enables precision control over the focus of the sensor optics. This improves the detection performance for dim stars, and ultimately increases the availability of the attitude solution. Flight software is developed to compensate for the effects of electronic rolling shutters, which reside on most COTS image detectors. Combined with a developed camera calibration procedure, these tools reduce the uncertainty with which a star tracker can measure the direction vectors to stars in view, ultimately increasing sensor accuracy. Integrated tests are performed to validate detection performance in dynamic conditions. These tests specifically examine the effect of slew rate on star tracker detection, and availability performance. Lastly, this thesis presents a series of optical trades studies that seek to identify design requirements for high performance SSSTs. The trends in availability and accuracy performance are examined as a function of different lens/detector configurations as well dual/triple-head sensor configurations. Together, these strategies represent tools that aim to improve small satellite star tracker performance

  9. Application analysis of enhanced video tracker in space optical communication

    NASA Astrophysics Data System (ADS)

    Zhai, Xuhua; Zhang, Hongtao; Zhao, Haishan; Zhang, Zhiping

    2011-06-01

    Relay mirror is used to track ground-based beacon accurately in space optical communication. It is unreliable to track the beam by the ordinary quadrant. DBA video tracker applies avalanche photo diode quadrant to enhance, which can improve the performance of the relay mirror tracking system. However, the sight line disturbance followed is unacceptable. By the continuous designs we present the scheme of enhanced video tracker with high-passed high bandwidth quadrant, and it is proved that it is successful for the relay mirror experiment.

  10. Environmental testing results over a tracker drive train

    NASA Astrophysics Data System (ADS)

    Martínez, María; Calvo-Parra, Gustavo; Gil, Eduardo; de la Rubia, Oscar; Hillebrand, Mario; Rubio, Francisca; Aipperspach, Wolfgang; Gombert, Andreas

    2014-09-01

    Environmental testing following the draft of the IEC62817 standard has been carried out at ISFOC using a Soitec Solar tracker drive. The objective of this work is twofold; first to assure that the tracker design can perform under varying conditions and survive under extreme conditions and secondly to test the viability and usefulness of the tests described in the standard. After some changes in the device under test (specifically, gear-box oil) the drive system produced satisfactory results, assuring its performance under operational temperatures. Therefore, this work has demonstrated that the tests described in the standard are useful for detecting early failures.

  11. Environmental Tests of the Flight GLAST LAT Tracker Towers

    SciTech Connect

    Bagagli, R.; Baldini, L.; Bellazzini, R.; Barbiellini, G.; Belli, F.; Borden, T.; Brez, A.; Brigida, M.; Caliandro, G.A.; Cecchi, C.; Cohen-Tanugi, J.; Angelis, A.De; Drell, P.; Favuzzi, C.; Fusco, P.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Goodman, J.; Himel, T.

    2008-03-12

    The Gamma-ray Large Area Space telescope (GLAST) is a gamma-ray satellite scheduled for launch in 2008. Before the assembly of the Tracker subsystem of the Large Area Telescope (LAT) science instrument of GLAST, every component (tray) and module (tower) has been subjected to extensive ground testing required to ensure successful launch and on-orbit operation. This paper describes the sequence and results of the environmental tests performed on an engineering model and all the flight hardware of the GLAST LAT Tracker. Environmental tests include vibration testing, thermal cycles and thermal-vacuum cycles of every tray and tower as well as the verification of their electrical performance.

  12. Retroreflector field tracker. [noncontact optical position sensor for space application

    NASA Technical Reports Server (NTRS)

    Wargocki, F. E.; Ray, A. J.; Hall, G. E.

    1984-01-01

    An electrooptical position-measuring instrument, the Retroreflector Field Tracker or RFT, is described. It is part of the Dynamic Augmentation Experiment - a part of the payload of Space Shuttle flight 41-D in Summer 1984. The tracker measures and outputs the position of 23 reflective targets placed on a 32-m solar array to provide data for determination of the dynamics of the lightweight structure. The sensor uses a 256 x 256 pixel CID detector; the processor electronics include three Z-80 microprocessors. A pulsed laser diode illuminator is used.

  13. System and method for calibrating inter-star-tracker misalignments in a stellar inertial attitude determination system

    NASA Technical Reports Server (NTRS)

    Li, Rongsheng (Inventor); Wu, Yeong-Wei Andy (Inventor); Hein, Douglas H. (Inventor)

    2004-01-01

    A method and apparatus for determining star tracker misalignments is disclosed. The method comprises the steps of defining a defining a reference frame for the star tracker assembly according to a boresight of the primary star tracker and a boresight of a second star tracker wherein the boresight of the primary star tracker and a plane spanned by the boresight of the primary star tracker and the boresight of the second star tracker at least partially define a datum for the reference frame for the star tracker assembly; and determining the misalignment of the at least one star tracker as a rotation of the defined reference frame.

  14. ATLAS F MISSILE FIELDS IN THE UNITED STATES, ATLAS F ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ATLAS F MISSILE FIELDS IN THE UNITED STATES, ATLAS F- TEXAS RING OF TWELVE - Dyess Air Force Base, Atlas F Missle Site S-8, Approximately 3 miles east of Winters, 500 feet southwest of Highway 177, Winters, Runnels County, TX

  15. ATLAS measurements of isolated photon cross-sections

    NASA Astrophysics Data System (ADS)

    Fanti, Marcello; Atlas Collaboration

    2012-09-01

    This document presents measurements of the cross-sections for the inclusive production of isolated prompt photons and di-photon events in proton-proton collisions at a centre-of-mass energy √s = 7 TeV, performed by the ATLAS experiment at the LHC. Photon candidates are identified by combining information from the calorimeters and from the inner tracker. Residual background in the selected sample is estimated from data based on the observed distribution of the transverse isolation energy in a narrow cone around the photon candidate. The results are compared to predictions from next-to-leading order perturbative QCD calculations.

  16. Gas gain stabilisation in the ATLAS TRT detector

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Åkesson, T. P. A.; Anghinolfi, F.; Antonov, A.; Arslan, O.; Baker, O. K.; Banas, E.; Bault, C.; Beddall, A. J.; Bendotti, J.; Benjamin, D. P.; Bertelsen, H.; Bingul, A.; Bocci, A.; Boldyrev, A. S.; Brock, I.; Capeáns Garrido, M.; Catinaccio, A.; Celebi, E.; Cetin, S. A.; Choi, K.; Dam, M.; Danielsson, H.; Davis, D.; Degeorge, C.; Derendarz, D.; Desch, K.; Di Girolamo, B.; Dittus, F.; Dixon, N.; Dressnandt, N.; Dubinin, F. A.; Evans, H.; Farthouat, P.; Fedin, O. L.; Froidevaux, D.; Gavrilenko, I. L.; Gay, C.; Gecse, Z.; Godlewski, J.; Grefe, C.; Gurbuz, S.; Hajduk, Z.; Hance, M.; Haney, B.; Hansen, J. B.; Hansen, P. H.; Hawkins, A. D.; Heim, S.; Holway, K.; Kantserov, V. A.; Katounine, S.; Kayumov, F.; Keener, P. T.; Kisielewski, B.; Klopov, N. V.; Konovalov, S. P.; Koperny, S.; Korotkova, N. A.; Kowalski, T. Z.; Kramarenko, V.; Krasnopevtsev, D.; Kruse, M.; Kudin, L. G.; Lichard, P.; Loginov, A.; Martinez, N. Lorenzo; Lucotte, A.; Luehring, F.; Lytken, E.; Maleev, V. P.; Maevskiy, A. S.; Manjarres Ramos, J.; Mashinistov, R. Y.; Meyer, C.; Mialkovski, V.; Mistry, K.; Mitsou, V. A.; Nadtochi, A. V.; Newcomer, F. M.; Novodvorski, E. G.; Ogren, H.; Oh, S. H.; Oleshko, S. B.; Olszowska, J.; Ostrowicz, W.; Palacino, G.; Patrichev, S.; Penwell, J.; Perez-Gomez, F.; Peshekhonov, V. D.; RØhne, O.; Reilly, M. B.; Rembser, C.; Ricken, O.; Romaniouk, A.; Rousseau, D.; Ryjov, V.; Sasmaz, U.; Schaepe, S.; Schegelsky, V. A.; Shmeleva, A. P.; Shulga, E.; Sivoklokov, S.; Smirnov, S.; Smirnov, Yu.; Smirnova, L. N.; Soldatov, E.; Sulin, V. V.; Tartarelli, G.; Taylor, W.; Thomson, E.; Tikhomirov, V. O.; Tipton, P.; Valls Ferrer, J. A.; Van Berg, R.; Vasquez, J.; Vasilyeva, L. F.; Vlazlo, O.; Weinert, B.; Williams, H. H.; Wong, V.; Zhukov, K. I.; Zieminska, D.

    2016-04-01

    The ATLAS (one of two general purpose detectors at the LHC) Transition Radiation Tracker (TRT) is the outermost of the three tracking subsystems of the ATLAS Inner Detector. It is a large straw-based detector and contains about 350,000 electronics channels. The performance of the TRT as tracking and particularly particle identification detector strongly depends on stability of the operation parameters with most important parameter being the gas gain which must be kept constant across the detector volume. The gas gain in the straws can vary significantly with atmospheric pressure, temperature, and gas mixture composition changes. This paper presents a concept of the gas gain stabilisation in the TRT and describes in detail the Gas Gain Stabilisation System (GGSS) integrated into the Detector Control System (DCS). Operation stability of the GGSS during Run-1 is demonstrated.

  17. Status of the ATLAS Forward Physics (AFP) project

    NASA Astrophysics Data System (ADS)

    Chytka, Ladislav; Atlas Collaboration

    2013-04-01

    The ATLAS Forward Physics (AFP) project plans to add a set of detectors - silicon 3D pixel tracking detectors and QUARTIC time of flight detectors - in the forward region of the ATLAS experiment at the LHC. The AFP detectors will be placed around 210 m from the interaction point and are meant to detect protons produced at small angles. The detectors are to be housed in the so called Hamburg beam pipe - a movable beam pipe allowing horizontal movement of the detectors. The AFP is currently under approval with possible installation in 2014/15.

  18. Silicon spintronics.

    PubMed

    Jansen, Ron

    2012-04-23

    Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

  19. The Measurement of Spectral Characteristics and Composition of Radiation in Atlas with MEDIPIX2-USB Devices

    NASA Astrophysics Data System (ADS)

    Campbell, M.; Doležal, Z.; Greiffenberg, D.; Heijne, E.; Holy, T.; Idárraga, J.; Jakůbek, J.; Král, V.; Králík, M.; Lebel, C.; Leroy, C.; Llopart, X.; Lord, G.; Maneuski, D.; Ouellette, O.; Sochor, V.; Pospíšil, S.; Suk, M.; Tlustos, L.; Vykydal, Z.; Wilhelm, I.

    2008-06-01

    A network of devices to perform real-time measurements of the spectral characteristics and composition of radiation in the ATLAS detector and cavern during its operation is being built. This system of detectors will be a stand alone system fully capable of delivering real-time images of fluxes and spectral composition of different particle species including slow and fast neutrons. The devices are based on MEDIPIX2 pixel silicon detectors that will be operated via active USB cables and USB-Ethernet extenders through an Ethernet network by a PC located in the USA15 ATLAS control room. The installation of 14 devices inside ATLAS (detector and cavern) is in progress.

  20. CMS tracker performance and readiness for LHC Run II

    NASA Astrophysics Data System (ADS)

    Viliani, L.

    2016-07-01

    The CMS tracker performance during LHC Run I is reviewed. The latest results of both pixel and strip detectors following the first LHC Long Shutdown (LS1) are then presented. Results from detector calibration and commissioning, together with a description of operations and repairs done during LS1, will be shown.

  1. Star tracker operation in a high density proton field

    NASA Astrophysics Data System (ADS)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-02-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  2. Star tracker operation in a high density proton field

    NASA Technical Reports Server (NTRS)

    Miklus, Kenneth J.; Kissh, Frank; Flynn, David J.

    1993-01-01

    Algorithms that reject transient signals due to proton effects on charge coupled device (CCD) sensors have been implemented in the HDOS ASTRA-l Star Trackers to be flown on the TOPEX mission scheduled for launch in July 1992. A unique technique for simulating a proton-rich environment to test trackers is described, as well as the test results obtained. Solar flares or an orbit that passes through the South Atlantic Anomaly can subject the vehicle to very high proton flux levels. There are three ways in which spurious proton generated signals can impact tracker performance: the many false signals can prevent or extend the time to acquire a star; a proton-generated signal can compromise the accuracy of the star's reported magnitude and position; and the tracked star can be lost, requiring reacquisition. Tests simulating a proton-rich environment were performed on two ASTRA-1 Star Trackers utilizing these new algorithms. There were no false acquisitions, no lost stars, and a significant reduction in reported position errors due to these improvements.

  3. The CDF II eXtremely fast tracker upgrade

    SciTech Connect

    Abulencia, A.; Azzurri, P.; Cochran, E.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; Flanagan, G.; Forrest, R.; /Illinois U., Urbana /INFN, Pisa /Pisa U. /Ohio State U. /Baylor U. /UC, Davis /Athens Natl. Capodistrian U. /Purdue U. /Fermilab

    2006-09-01

    The CDF II Extremely Fast Tracker is the trigger track processor which reconstructs charged particle tracks in the transverse plane of the CDF II central outer tracking chamber. The system is now being upgraded to perform a three dimensional track reconstruction. A review of the upgrade is presented here.

  4. Using "Tracker" to Prove the Simple Harmonic Motion Equation

    ERIC Educational Resources Information Center

    Kinchin, John

    2016-01-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; "Tracker", we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  5. Using Tracker to prove the simple harmonic motion equation

    NASA Astrophysics Data System (ADS)

    Kinchin, John

    2016-09-01

    Simple harmonic motion (SHM) is a common topic for many students to study. Using the free, though versatile, motion tracking software; Tracker, we can extend the students experience and show that the general equation for SHM does lead to the correct period of a simple pendulum.

  6. Neutrino Induced Coherent ρ Production in a Fine Grained Tracker

    NASA Astrophysics Data System (ADS)

    Jiang, Libo; Kullenberg, Christpher; Tian, Xinchun; Mishra, Sanjib; LBNE Collaboration

    2015-04-01

    We present simulation of neutrino induced coherent ρ-meson production in charged and neutral current interactions. Sensitivity studies of this process is presented in a fine grain tracker, a near detector option for LBNE. Measurements of coherent ρ0 and ρ+ production in NOMAD are reported.

  7. Opportunity Science Using the Juno Magnetometer Investigation Star Trackers

    NASA Astrophysics Data System (ADS)

    Joergensen, J. L.; Connerney, J. E.; Bang, A. M.; Denver, T.; Oliversen, R. J.; Benn, M.; Lawton, P.

    2013-12-01

    The magnetometer experiment onboard Juno is equipped with four non-magnetic star tracker camera heads, two of which reside on each of the magnetometer sensor optical benches. These are located 10 and 12 m from the spacecraft body at the end of one of the three solar panel wings. The star tracker, collectively referred to as the Advanced Stellar Compass (ASC), provides high accuracy attitude information for the magnetometer sensors throughout science operations. The star tracker camera heads are pointed +/- 13 deg off the spin vector, in the anti-sun direction, imaging a 13 x 20 deg field of view every ¼ second as Juno rotates at 1 or 2 rpm. The ASC is a fully autonomous star tracker, producing a time series of attitude quaternions for each camera head, utilizing a suite of internal support functions. These include imaging capabilities, autonomous object tracking, automatic dark-sky monitoring, and related capabilities; these internal functions may be accessed via telecommand. During Juno's cruise phase, this capability can be tapped to provide unique science and engineering data available along the Juno trajectory. We present a few examples of the JUNO ASC opportunity science here. As the Juno spacecraft approached the Earth-Moon system for the close encounter with the Earth on October 9, 2013, one of the ASC camera heads obtained imagery of the Earth-Moon system while the other three remained in full science (attitude determination) operation. This enabled the first movie of the Earth and Moon obtained by a spacecraft flying past the Earth in gravity assist. We also use the many artificial satellites in orbit about the Earth as calibration targets for the autonomous asteroid detection system inherent to the ASC autonomous star tracker. We shall also profile the zodiacal dust disk, using the interstellar image data, and present the outlook for small asteroid body detection and distribution being performed during Juno's passage from Earth flyby to Jovian orbit

  8. Development of a read out driver for ATLAS micromegas based on the Scalable Readout System

    NASA Astrophysics Data System (ADS)

    Zibell, A.

    2014-01-01

    With future LHC luminosity upgrades, part of the ATLAS muon spectrometer has to be changed, to cope with the increased flux of uncorrelated neutron and gamma particles. Micromegas detectors were chosen as precision tracker for the New Small Wheels, that will replace the current Small Wheel muon detector stations during the LHC shutdown foreseen for 2018. To read out these detectors together with all other ATLAS subsystems, a readout driver was developed to integrate these micromegas detectors into the ATLAS data acquisition infrastructure. The readout driver is based on the Scalable Readout System, and its tasks include trigger handling, slow control, event building and data transmission to the high-level readout systems. This article describes the layout and functionalities of this readout driver and its components, as well as a test of its functionalities in the cosmic ray facility of Ludwig-Maximilians University Munich.

  9. SVX II a silicon vertex detector for run II of the tevatron

    SciTech Connect

    Bortoletto, D.

    1994-11-01

    A microstrip silicon detector SVX II has been proposed for the upgrade of the vertex detector of the CDF experiment to be installed for run II of the Tevatron in 1998. Three barrels of four layers of double sided detectors will cover the interaction region. The requirement of the silicon tracker and the specification of the sensors are discussed together with the proposed R&D to verify the performance of the prototypes detectors produced by Sintef, Micron and Hamamatsu.

  10. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  11. Mechanical properties of D0 Run IIB silicon detector staves

    SciTech Connect

    Lanfranco, Giobatta; Fast, James; /Fermilab

    2001-06-01

    A proposed stave design for the D0 Run IIb silicon tracker outer layers featuring central cooling channels and a composite shell mechanical structure is evaluated for self-deflection and deflection due to external loads. This paper contains an introduction to the stave structure, a section devoted to composite lamina and laminate properties and finally a section discussing the beam deflections expected for assembled staves using these laminates.

  12. Tracker: Image-Processing and Object-Tracking System Developed

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in

  13. Detailed performance of the Outer Tracker at LHCb

    NASA Astrophysics Data System (ADS)

    Tuning, N.

    2014-01-01

    The LHCb Outer Tracker is a gaseous detector covering an area of 5 × 6 m2 with 12 double layers of straw tubes. Based on data of the first LHC running period from 2010 to 2012, the performance in terms of the single hit resolution and efficiency are presented. Details on the ionization length and subtle effects regarding signal reflections and the subsequent time-walk correction are given. The efficiency to detect a hit in the central half of the straw is estimated to be 99.2%, and the position resolution is determined to be approximately 200 μm, depending on the detailed implementation of the internal alignment of individual detector modules. The Outer Tracker received a dose in the hottest region corresponding to 0.12 C/cm, and no signs of gain deterioration or other ageing effects are observed.

  14. TMT tertiary mirror axis calibration with laser tracker

    NASA Astrophysics Data System (ADS)

    An, Qi-chang; Zhang, Jing-xu; Yang, Fei; Sun, Jing-wei

    2015-03-01

    To calibrate the tracing performance of the thirty meter telescope (TMT) tertiary mirror, for the special requirement of the TMT, the laser tracker is used to verify the motion. Firstly, the deviation is divided into two parts, namely, the repeatable error and the unrepeatable part. Then, based on the laser tracker, the mearturement and evalutation methods of the rigid body motion for the mirror are established, and the Monte Carol method is used to determine the accuracy of the mothod. Lastly, the mothod is applied to the turn table of a classical telescope and the residual error is about 4 arc second. The work of this paper will guide the next desgin and construction work of the thirty meter telescope tertiary mirror.

  15. Measurement uncertainty analysis on laser tracker combined with articulated CMM

    NASA Astrophysics Data System (ADS)

    Zhao, Hui-ning; Yu, Lian-dong; Du, Yun; Zhang, Hai-yan

    2013-10-01

    The combined measurement technology plays an increasingly important role in the digitalized assembly. This paper introduces a combined measurement system consists of a Laser tracker and a FACMM,with the applications in the inspection of the position of the inner parts in a large-scale device. When these measurement instruments are combined, the resulting coordinate data set contains uncertainties that are a function of the base data sets and complex interactions between the measurement sets. Combined with the characteristics of Laser Tracker and Flexible Articulated Coordinate Measuring Machine (FACMM),Monte-Claro simulation mothed is employed in the uncertainty evaluation of combined measurement systems. A case study is given to demonstrate the practical applications of this research.

  16. Clementine Star Tracker Stellar Compass: Final report part 1

    SciTech Connect

    Priest, R.E.; Kordas, J.F.; Lewis, I.T.

    1995-07-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. Two star stracker stellar compasses (star tracker camera + stellar compass software) were included on the spacecraft, serving a primary function of providing angle updates to the guidance and navigation system. These cameras served a secondary function by providing a wide field of view imaging capability for lunar horizon glow and other dark-side imaging data. This 290 g camera using a 576 x 384 focal plane array and a 17 mm entrance pupil, detected and centroided stars as dim and dimmer than 4.5 m{sub v}, providing rms pointing accuracy of better than 100 {mu}rad pitch and yaw and 450 {mu}rad roll. A description of this light-weight, low power star tracker camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights. Documentation generated during the design, analysis, build, test and characterization of the star tracker cameras are presented. Collectively, this documentation represents a small library of information for this camera, and may be used as a framework for producing copy units by commercial enterprises, and therefore satisfies a Department of Defense and Department of Energy goal to transfer technology to industry. However, the considerable knowledge gained from the experience of the individuals involved in the system trades, design, analysis, production, testing and characterization of the star tracker stellar compass is not contained in this documentation.

  17. Resonance interaction in LBNE fine-grained-tracker near detector

    SciTech Connect

    Duyang, Hongyue; Tian, Xinchun; Mishra, Sanjib R.

    2015-10-15

    This talk is devoted to resonance interaction (RES) in the proposed fine-grained tracker detector (FGT) for LBNE experiment. We use fast MC to study the sensitivity of FGT to RES, and use this measurement as a handle to constrain nuclear effects. Similar analysis is performed on NOMAD data for validation and better understanding. Preliminary RES measurement result using NOMAD data will be reported.

  18. ASTROS - A sub-arcsec CCD star tracker

    NASA Technical Reports Server (NTRS)

    Stanton, R. H.; Alexander, J. W.; Dennison, E. W.; Glavich, T. A.; Salomon, P. M.

    1984-01-01

    The design and application of ASTROS (Advanced Star and Target Reference Optical Sensor) are described, with emphasis on performance test results acquired with a prototype system. The ASTROS tracker provides extremely precise measurements of star image coordinates as inputs to the Image Motion Compensation (IMC) system used to stabilize the science instrument focal planes. Performance levels achieved are dramatic improvements over the levels achieved with image dissector designs with comparable fields of view.

  19. Resonance interaction in LBNE fine-grained-tracker near detector

    NASA Astrophysics Data System (ADS)

    Duyang, Hongyue; Tian, Xinchun; Mishra, Sanjib R.

    2015-10-01

    This talk is devoted to resonance interaction (RES) in the proposed fine-grained tracker detector (FGT) for LBNE experiment. We use fast MC to study the sensitivity of FGT to RES, and use this measurement as a handle to constrain nuclear effects. Similar analysis is performed on NOMAD data for validation and better understanding. Preliminary RES measurement result using NOMAD data will be reported.

  20. Planar pixel sensors for the ATLAS upgrade: beam tests results

    NASA Astrophysics Data System (ADS)

    Weingarten, J.; Altenheiner, S.; Beimforde, M.; Benoit, M.; Bomben, M.; Calderini, G.; Gallrapp, C.; George, M.; Gibson, S.; Grinstein, S.; Janoska, Z.; Jentzsch, J.; Jinnouchi, O.; Kishida, T.; La Rosa, A.; Libov, V.; Macchiolo, A.; Marchiori, G.; Muenstermann, D.; Nagai, R.; Piacquadio, G.; Ristic, B.; Rubinskiy, I.; Rummler, A.; Takubo, Y.; Troska, G.; Tsiskaridtze, S.; Tsurin, I.; Unno, Y.; Weigell, P.; Wittig, T.

    2012-10-01

    The performance of planar silicon pixel sensors, in development for the ATLAS Insertable B-Layer and High Luminosity LHC (HL-LHC) upgrades, has been examined in a series of beam tests at the CERN SPS facilities since 2009. Salient results are reported on the key parameters, including the spatial resolution, the charge collection and the charge sharing between adjacent cells, for different bulk materials and sensor geometries. Measurements are presented for n+-in-n pixel sensors irradiated with a range of fluences and for p-type silicon sensors with various layouts from different vendors. All tested sensors were connected via bump-bonding to the ATLAS Pixel read-out chip. The tests reveal that both n-type and p-type planar sensors are able to collect significant charge even after the lifetime fluence expected at the HL-LHC.

  1. Star tracker stellar compass for the Clementine mission

    SciTech Connect

    Kordas, J.F.; Lewis, I.T.; Wilson, B.A.

    1995-04-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared regions. More than 1.7 million images of the moon, earth and space were returned from this mission. Two star tracker stellar compasses (star tracker camera + stellar compass software) were included on the spacecraft, serving a primary function of providing angle updates to the guidance and navigation system. These cameras served a secondary function by providing a wide field of view imaging capability for lunar horizon glow and other dark-side imaging data. This 290 g camera using a 576 x 384 FPA and a 17 mm entrance pupil, detected and centroided stars as dim and dimmer than 4.5 m{sub v}, providing rms pointing accuracy of better than 100 {micro}rad pitch and yaw and 450 {micro}rad roll. A description of this light-weight, low power star tracker camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission`s primary objective for flight qualifying the sensors for future Department of Defense flights.

  2. Star tracker stellar compass for the Clementine mission

    NASA Astrophysics Data System (ADS)

    Kordas, Joseph F.; Lewis, Isabella T.; Wilson, Bruce A.; Nielsen, Darron P.; Park, Hye-Sook; Priest, Robert E.; Hills, Robert F.; Shannon, Michael J.; Ledebuhr, Arno G.; Pleasance, Lyn D.

    1995-06-01

    The Clementine mission provided the first ever complete, systematic surface mapping of the moon from the ultra-violet to the near-infrared region. More than 1.7 million images of the moon, earth and space were returned from this mission. Two star tracker stellar compasses (star tracker camera + stellar compass software) were included on the spacecraft, serving a primary function of providing angle updates to the guidance and navigation system. These cameras served as a secondary function by providing a wide field of view imaging capability for lunar horizon glow and other dark-side imaging data. This 290 g camera using a 576 X 384 FPA and a 17 mm entrance pupil, detected and centroided stars as dim and dimmer than 4.5 mv, providing rms pointing accuracy of better than 100 (mu) rad pitch and yaw and 450 (mu) rad roll. A description of this light-weight, low power star tracker camera along with a summary of lessons learned is presented. Design goals and preliminary on-orbit performance estimates are addressed in terms of meeting the mission's primary objective for flight qualifying the sensors for future Department of Defense flights.

  3. Geometric Summary of the 9 Chip Ladder for the D0 Silicon Tracker

    SciTech Connect

    Ratzmann, P.; Cooper, W.; Goloskie, D.; Kowalski, J.; Lipton, R.; Rapidis, P.; Serritella, C.; /Fermilab

    1997-11-18

    Two hybrids types are required to accomodate the flipping of ladders within each bulkhead layer, in order to account for the pigtail routing. Left and right versions are shown below, following the definitions laid out by Mike Matulik. These drawings are not to proper scale in the sketches below. The dimensionally correct versions of the 9 chip hybrids are stored in DCS under drawing number 3823.112-MD-317803 for the lefthanded version, and 3823.112-MD-317804 for the right handed version. Handedness of the hybrids are designated as shown in the figures and table below. There are long and short versions of both the left and the right, for four total 9 chip hdi designs. The pigtail lengths of the long and short are shown in a table in the hybrid drawings which reside in DCS. The chamfer in the hybrid corners (N side) is placed in order to enable the hybrid to be glued to the beryllium substrate, whereas the rectangular cuttout on the same side is to allow direct gluing of a temperature sensor to the substrate metal. The oblong shape on the N side of both hybrids is a 'stay-clear' region (defined in the final drawings) where pressure will be applied to the hybrid during the second stage of ladder construction.

  4. The commercial Atlas today

    NASA Astrophysics Data System (ADS)

    Patzer, Mike; White, Robert C.

    1990-07-01

    Spanning more than three decades, the General Dynamics Atlas launch vehicle program has contributed greatly to the productive exploitation of space. This paper briefly reviews Atlas history and achievements and then focuses on present Atlas launch vehicle configurations, capabilities, and propulsion systems. The four-vehicle Atlas family is described, inluding manufacturing, performance, and design differences. Vehicle launch options including the fairing and spacecraft adapter are discussed. A mission profile, flight environments, and a nominal sequence of events are described for a standard GTO mission. Details on vehicle enhancements are presented including the addition of solid rocket motors, booster and Centaur engine uprates, and avionics improvements.

  5. The annotation and the usage of scientific databases could be improved with public issue tracker software

    PubMed Central

    Dall'Olio, Giovanni Marco; Bertranpetit, Jaume; Laayouni, Hafid

    2010-01-01

    Since the publication of their longtime predecessor The Atlas of Protein Sequences and Structures in 1965 by Margaret Dayhoff, scientific databases have become a key factor in the organization of modern science. All the information and knowledge described in the novel scientific literature is translated into entries in many different scientific databases, making it possible to obtain very accurate information on a biological entity like genes or proteins without having to manually review the literature on it. However, even for the databases with the finest annotation procedures, errors or unclear parts sometimes appear in the publicly released version and influence the research of unaware scientists using them. The researcher that finds an error in a database is often left in a uncertain state, and often abandons the effort of reporting it because of a lack of a standard procedure to do so. In the present work, we propose that the simple adoption of a public error tracker application, as in many open software projects, could improve the quality of the annotations in many databases and encourage feedback from the scientific community on the data annotated publicly. In order to illustrate the situation, we describe a series of errors that we found and helped solve on the genes of a very well-known pathway in various biomedically relevant databases. We would like to show that, even if a majority of the most important scientific databases have procedures for reporting errors, these are usually not publicly visible, making the process of reporting errors time consuming and not useful. Also, the effort made by the user that reports the error often goes unacknowledged, putting him in a discouraging position. PMID:21186182

  6. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    DOE PAGES

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam ontomore » the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.« less

  7. Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rotations

    SciTech Connect

    Riley, Daniel; Hansen, Clifford W.

    2014-12-30

    Dual axis trackers employing azimuth and elevation rotations are common in the field of photovoltaic (PV) energy generation. Accurate sun-tracking algorithms are widely available. However, a steering algorithm has not been available to accurately point the tracker away from the sun such that a vector projection of the sun beam onto the tracker face falls along a desired path relative to the tracker face. We have developed an algorithm which produces the appropriate azimuth and elevation angles for a dual axis tracker when given the sun position, desired angle of incidence, and the desired projection of the sun beam onto the tracker face. Development of this algorithm was inspired by the need to accurately steer a tracker to desired sun-relative positions in order to better characterize the electro-optical properties of PV and CPV modules.

  8. BNL ATLAS Grid Computing

    ScienceCinema

    Michael Ernst

    2016-07-12

    As the sole Tier-1 computing facility for ATLAS in the United States and the largest ATLAS computing center worldwide Brookhaven provides a large portion of the overall computing resources for U.S. collaborators and serves as the central hub for storing,

  9. BNL ATLAS Grid Computing

    SciTech Connect

    Michael Ernst

    2008-10-02

    As the sole Tier-1 computing facility for ATLAS in the United States and the largest ATLAS computing center worldwide Brookhaven provides a large portion of the overall computing resources for U.S. collaborators and serves as the central hub for storing,

  10. ATLAS ACCEPTANCE TEST

    SciTech Connect

    Cochrane, J. C. , Jr.; Parker, J. V.; Hinckley, W. B.; Hosack, K. W.; Mills, D.; Parsons, W. M.; Scudder, D. W.; Stokes, J. L.; Tabaka, L. J.; Thompson, M. C.; Wysocki, Frederick Joseph; Campbell, T. N.; Lancaster, D. L.; Tom, C. Y.

    2001-01-01

    The acceptance test program for Atlas, a 23 MJ pulsed power facility for use in the Los Alamos High Energy Density Hydrodynamics program, has been completed. Completion of this program officially releases Atlas from the construction phase and readies it for experiments. Details of the acceptance test program results and of machine capabilities for experiments will be presented.

  11. Language Industries Atlas.

    ERIC Educational Resources Information Center

    Hearn, P. M., Ed.; Button, D. F., Ed.

    This atlas describes the activities of public and private organizations that create the infrastructure within which languages are able to develop and interact in the European Community (EC). It contains over 1,000 descriptions of activities that play a role in shaping the language industries, from a user or provider perspective. The atlas is…

  12. National Atlas maps

    USGS Publications Warehouse

    ,

    1991-01-01

    The National Atlas of the United States of America was published by the U.S. Geological Survey in 1970. Its 765 maps and charts are on 335 14- by 19-inch pages. Many of the maps span facing pages. It's worth a quick trip to the library just to leaf through all 335 pages of this book. Rapid scanning of its thematic maps yields rich insights to the geography of issues of continuing national interest. On most maps, the geographic patterns are still valid, though the data are not current. The atlas is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. The maps dated after 1970 are either revisions of original atlas maps, or new maps published in atlas format. The titles of the separate maps are listed here.

  13. Diabetes Interactive Atlas.

    PubMed

    Kirtland, Karen A; Burrows, Nilka R; Geiss, Linda S

    2014-02-06

    The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas' maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity.

  14. A Glimpse of Atlas

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Saturn's little moon Atlas orbits Saturn between the outer edge of the A ring and the fascinating, twisted F ring. This image just barely resolves the disk of Atlas, and also shows some of the knotted structure for which the F ring is known. Atlas is 32 kilometers (20 miles) across.

    The bright outer edge of the A ring is overexposed here, but farther down the image several bright ring features can be seen.

    The image was taken in visible light with the Cassini spacecraft narrow-angle camera on April 25, 2005, at a distance of approximately 2.4 million kilometers (1.5 million miles) from Atlas and at a Sun-Atlas-spacecraft, or phase, angle of 60 degrees. Resolution in the original image was 14 kilometers (9 miles) per pixel.

  15. A new inner layer silicon micro-strip detector for D0

    SciTech Connect

    Weber, Michael S.; /Fermilab

    2006-01-01

    The D{O} experiment at the Fermilab Tevatron is building a new inner layer detector (Layer-0) to be installed inside the existing D{O} Silicon Micro-strip Tracker (SMT). The Layer-0 detector is based on R&D performed for the RunIIb silicon upgrade, which was canceled in the fall of 2003. Layer-0 will be installed between the bean pipe and the the 2.2cm radius opening available in the SMT support structure. The radius of the first sampling will be reduced from 2.7cm to 1.6cm. Layer-0 will be radiation harder than the current SMT, thus ensuring that the silicon tracker remains viable through Tevatron RunII.

  16. Thermal/Optical analysis of optical system of star tracker

    NASA Astrophysics Data System (ADS)

    Lu, Si-yu; Huang, Yi-fan

    2011-08-01

    Spacecraft would be expected to encounter diverse extreme environmental (EE) conditions throughout their mission phases. These EE conditions are often coupled. Star tracker is a high accurate 3-axis attitude measuring instrument used in various spacecrafts. In this paper, an effective scheme to the thermal/optical analysis in optical system of star sensor was described and the concept of thermal optical analysis of star tracker optical system was introduced in detail. Using finite element analysis (FEA) and ray tracing, we can study the relationship of optical properties of optical systems and optical system's temperature distribution . A lens system configuration having six uncemented elements was discussed. The lens system was a 56mm EFL, which was different from common lens used in imaging system that this lens system was required to have a high resolving power in design thoughts. It was designed to determine the attitude of space platform by detecting and mapping the geometric pattern of stars. Based on this system, the FEA models of the optical system were established for temperature distribution calculation and for thermal-elastic structural deformation analysis respectively. Using the models, the steady-state temperature distributions of the tracker were simulated. The rigid body displacements of the optical components under homogeneous temperature changes and certain temperature distributions were derived out. It is convenient to use Zernike polynomials as the data transmission between optical and structural analysis programs. Here, Zernike polynomials and their fitting method are used as an example to determine the thermal induced optical degradations of the optical system.

  17. Inverse sparse tracker with a locally weighted distance metric.

    PubMed

    Wang, Dong; Lu, Huchuan; Xiao, Ziyang; Yang, Ming-Hsuan

    2015-09-01

    Sparse representation has been recently extensively studied for visual tracking and generally facilitates more accurate tracking results than classic methods. In this paper, we propose a sparsity-based tracking algorithm that is featured with two components: 1) an inverse sparse representation formulation and 2) a locally weighted distance metric. In the inverse sparse representation formulation, the target template is reconstructed with particles, which enables the tracker to compute the weights of all particles by solving only one l1 optimization problem and thereby provides a quite efficient model. This is in direct contrast to most previous sparse trackers that entail solving one optimization problem for each particle. However, we notice that this formulation with normal Euclidean distance metric is sensitive to partial noise like occlusion and illumination changes. To this end, we design a locally weighted distance metric to replace the Euclidean one. Similar ideas of using local features appear in other works, but only being supported by popular assumptions like local models could handle partial noise better than holistic models, without any solid theoretical analysis. In this paper, we attempt to explicitly explain it from a mathematical view. On that basis, we further propose a method to assign local weights by exploiting the temporal and spatial continuity. In the proposed method, appearance changes caused by partial occlusion and shape deformation are carefully considered, thereby facilitating accurate similarity measurement and model update. The experimental validation is conducted from two aspects: 1) self validation on key components and 2) comparison with other state-of-the-art algorithms. Results over 15 challenging sequences show that the proposed tracking algorithm performs favorably against the existing sparsity-based trackers and the other state-of-the-art methods. PMID:25935033

  18. Monitoring with Trackers Based on Semi-Quantitative Models

    NASA Technical Reports Server (NTRS)

    Kuipers, Benjamin

    1997-01-01

    In three years of NASA-sponsored research preceding this project, we successfully developed a technology for: (1) building qualitative and semi-quantitative models from libraries of model-fragments, (2) simulating these models to predict future behaviors with the guarantee that all possible behaviors are covered, (3) assimilating observations into behaviors, shrinking uncertainty so that incorrect models are eventually refuted and correct models make stronger predictions for the future. In our object-oriented framework, a tracker is an object which embodies the hypothesis that the available observation stream is consistent with a particular behavior of a particular model. The tracker maintains its own status (consistent, superceded, or refuted), and answers questions about its explanation for past observations and its predictions for the future. In the MIMIC approach to monitoring of continuous systems, a number of trackers are active in parallel, representing alternate hypotheses about the behavior of a system. This approach is motivated by the need to avoid 'system accidents' [Perrow, 1985] due to operator fixation on a single hypothesis, as for example at Three Mile Island. As we began to address these issues, we focused on three major research directions that we planned to pursue over a three-year project: (1) tractable qualitative simulation, (2) semiquantitative inference, and (3) tracking set management. Unfortunately, funding limitations made it impossible to continue past year one. Nonetheless, we made major progress in the first two of these areas. Progress in the third area as slower because the graduate student working on that aspect of the project decided to leave school and take a job in industry. I enclosed a set of abstract of selected papers on the work describe below. Several papers that draw on the research supported during this period appeared in print after the grant period ended.

  19. Calibration of the Heavy Flavor Tracker (HFT) detector in star experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Alanazi, Norah

    This project is in the area of Relativistic Nuclear collisions and the commissioning of a new silicon vertex detector, the Heavy Flavor Tracker (HFT) in the STAR experiment at Brookhaven National Laboratory (BNL). BNL hosts RHIC, the Relativistic Heavy Ion Collider, the world's most advanced dedicated heavy ion and polarized proton accelerator facility. Heavy Ion collisions at RHIC provide a unique probe into the understanding of several aspects of the behavior of nuclear, i.e. strongly inter- acting, matter. Among the many insights that can be provided is the description of parton interaction inside the hot and dense medium produced in the early stages of a collision. It also allows us to search for evidence for a phase transition in nuclear matter, a phase where partons [quarks and gluons] can move freely over an extended volume. Production of heavy quarks in high-energy nuclear collisions at RHIC occurs mainly during the initial collisions where energetic gluon and quark interactions can create heavy quarks. Thus, heavy flavor provides an ideal probe in studying the hot and dense medium created in the early phases of high-energy nuclear collisions. A detailed study of heavy flavor is essential to better understand the parton dynamics and select among competing theoretical approaches, however, precise measurements of heavy flavor are difficult to obtain due to relatively low production rates and short lifetimes of heavy flavor hadrons. The combinatorial background in nuclear collisions makes the measurement of heavy flavor a challenging task. One approach to dramatically reduce the combinatorial background by several orders of magnitude is to separate the heavy-flavor hadron's decay vertex from the background. This is done with the help of high resolution vertex detectors. The Heavy Flavor Tracker upgrade for the STAR experiment, which made its debut during the year 2014 RHIC run (Run14), greatly improved the experiment's track pointing capabilities making STAR

  20. Microprocessor-controlled laser tracker for atmospheric sensing

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Webster, C. R.; Menzies, R. T.

    1985-01-01

    An optical tracking system comprising a visible HeNe laser, an imaging detector, and a microprocessor-controlled mirror, has been designed to track a moving retroreflector located up to 500 m away from an atmospheric instrument and simultaneously direct spectrally tunable infrared laser radiation to the retroreflector for double-ended, long-path absorption measurements of atmospheric species. The tracker has been tested during the recent flight of a balloon-borne tunable diode laser absorption spectrometer which monitors the concentrations of stratospheric species within a volume defined by a 0.14-m-diameter retroreflector lowered 500 m below the instrument gondola.

  1. Physics sensitivity studies of Fine-Grained Tracker

    SciTech Connect

    Tian, Xinchun; Mishra, Sanjib R.; Petti, Roberto; Hongyue, Duyang

    2015-10-15

    The reference design of the near detector for the LBNE experiment is a high-resolution Fine-Grained Tracker (FGT). We performed sensitivity studies – critical to constraining the systematics in oscillation searches – of measurements of (1) the absolute neutrino flux, (2) neutrino-nucleon quasi-elastic (QE) and (3) resonance (Res) interactions. In QE and Res emphasis is laid in identifying in situ measurables that help constrain nuclear effects such as initial state pair wise correlations and final state interactions.

  2. The design and construction of a double-sided Silicon Microvertex Detector for the L3 experiment at CERN

    SciTech Connect

    Adam, A.; Ahlen, S.; Marin, A.; Zhou, B.; Ambrosi, G.; Babucci, E.; Bertucci, B.; Biasini, M.; Bilei, G.M.; Caria, M.; Checcucci, B.; Easo, S.; Fiandrini, E.; Krastev, V.R.; Massetti, R.; Pauluzzi, M.; Santocchia, A.; Servoli, L. |; Bencze, G.Y.L.; Kornis, J.; Toth, J.; Brooks, M.L.; Coan, T.E.; Kapustinsky, J.S.; Kinnison, W.W.; Lee, D.M.; Mills, G.B.; Thompson, T.C.; Busenitz, J.; DiBitonto, D.; Camps, C.; Commichau, V.; Hangartner, K.; Schmitz, P.; Castellini, G.; Hauviller, C.; Herve, A.; Josa, I.; Landi, G.; Lecomte, P.; Viertel, G.M.; Waldmeier, S.; Leiste, R. |; Lejeune, E.; Weill, R.; Lohmann, W.; Nowak, H.; Sachwitz, M.; Schoeniech, B.; Tonisch, F.; Trowitzsch, G.; Vogt, H.; Passaleva, G.

    1993-12-01

    A Silicon Microvertex Detector (SMD) has been commissioned for the L3 experiment at the Large Electron-Positron colliding-beam accelerator (LEP) at the European Center for Nuclear Physics, (CERN). The SMD is a 72,672 channel, two layer barrel tracker that is comprised of 96 ac-coupled, double-sided silicon detectors. Details of the design and construction are presented.

  3. ASTRA1 solid state star trackers for Martin Marietta's modular attitude control system module

    NASA Astrophysics Data System (ADS)

    Gullapalli, Sarma N.; Flynn, David J.; Kissh, Frank J.; Gauthier, Albert G.; Kenney, Thomas M.

    1993-09-01

    The HD-1002 (also known as MACS) solid state star trackers being built by Hughes Danbury Optical Systems, Inc. (HDOS) for Martin Marietta Astro Space Division for use in their Modular Attitude Control Systems (MACS) Module are improved and modified versions of the ASTRA1 star trackers now in use on board the TOPEX/POSEIDON satellite. The ASTRA1 design was based on the pioneering work accomplished at HDOS over the past decade. Along with the set of trackers being built by HDOS for Space Station Freedom, these trackers answer a variety of application requirements for spacecraft attitude control systems. This paper addresses the main features of the MACS trackers, their role in the MACS Module, and summarizes the excellent preliminary performance results of the tracker, as supported by measured test data.

  4. Alignment of the ATLAS inner detector tracking system

    NASA Astrophysics Data System (ADS)

    Moles-Valls, Regina

    2010-05-01

    The CERN's Large Hadron Collider (LHC) is the world largest particle accelerator. ATLAS (A Toroidal LHC ApparatuS) is one of the two general purpose experiments equipped with a charged particle tracking system built on two technologies: silicon and drift tube based detectors, composing the ATLAS Inner Detector (ID). The alignment of the tracking system poses a challenge as one should solve a linear equation with almost 36 000 degrees of freedom. The required precision for the alignment of the most sensitive coordinates of the silicon sensors is just few microns. This limit comes from the requirement that the misalignment should not worsen the resolution of the track parameter measurements by more than 20%. Therefore the alignment of the ATLAS ID requires complex algorithms with extensive CPU and memory usage. So far the proposed alignment algorithms are exercised on several applications. We will present the outline of the alignment approach and results from Cosmic Ray runs and large scale computing simulation of physics samples mimicking the ATLAS operation during real data taking. For the later application the trigger of the experiment is simulated and the event filter is applied in order to produce an alignment input data stream. The full alignment chain is tested using that stream and alignment constants are produced and validated within 24 h. Cosmic ray data serves to produce an early alignment of the real ATLAS Inner Detector even before the LHC start up. Beyond all tracking information, the assembly survey database contains essential information in order to determine the relative position of one module with respect to its neighbors. Finally a hardware system measuring an array of grid lines in the modules support structure with a Frequency Scan Interferometer monitors short time system deformations.

  5. Performance Testing using Silicon Devices - Analysis of Accuracy: Preprint

    SciTech Connect

    Sengupta, M.; Gotseff, P.; Myers, D.; Stoffel, T.

    2012-06-01

    Accurately determining PV module performance in the field requires accurate measurements of solar irradiance reaching the PV panel (i.e., Plane-of-Array - POA Irradiance) with known measurement uncertainty. Pyranometers are commonly based on thermopile or silicon photodiode detectors. Silicon detectors, including PV reference cells, are an attractive choice for reasons that include faster time response (10 us) than thermopile detectors (1 s to 5 s), lower cost and maintenance. The main drawback of silicon detectors is their limited spectral response. Therefore, to determine broadband POA solar irradiance, a pyranometer calibration factor that converts the narrowband response to broadband is required. Normally this calibration factor is a single number determined under clear-sky conditions with respect to a broadband reference radiometer. The pyranometer is then used for various scenarios including varying airmass, panel orientation and atmospheric conditions. This would not be an issue if all irradiance wavelengths that form the broadband spectrum responded uniformly to atmospheric constituents. Unfortunately, the scattering and absorption signature varies widely with wavelength and the calibration factor for the silicon photodiode pyranometer is not appropriate for other conditions. This paper reviews the issues that will arise from the use of silicon detectors for PV performance measurement in the field based on measurements from a group of pyranometers mounted on a 1-axis solar tracker. Also we will present a comparison of simultaneous spectral and broadband measurements from silicon and thermopile detectors and estimated measurement errors when using silicon devices for both array performance and resource assessment.

  6. Solar kinetics` photovoltaic concentrator module and tracker development

    SciTech Connect

    White, D.L.; Howell, B.

    1995-11-01

    Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

  7. An adaptive tracker for ShipIR/NTCS

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.

    2015-05-01

    A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and the gating of the selected target to further improve tracker performance. This paper will describe a new adaptive tracker algorithm added to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). The new adaptive tracking algorithm is an optional feature used with any of the existing internal NTCS or user-defined seeker algorithms (e.g., binary centroid, intensity centroid, and threshold intensity centroid). The algorithm segments the detected pixels into clusters, and the smallest set of clusters that meet the detection criterion is obtained by using a knapsack algorithm to identify the set of clusters that should not be used. The rectangular area containing the chosen clusters defines an inner boundary, from which a weighted centroid is calculated as the aim-point. A track-gate is then positioned around the clusters, taking into account the rate of change of the bounding area and compensating for any gimbal displacement. A sequence of scenarios is used to test the new tracking algorithm on a generic unclassified DDG ShipIR model, with and without flares, and demonstrate how some of the key seeker signals are impacted by both the ship and flare intrinsic signatures.

  8. Low-background tracker development for SuperNEMO

    SciTech Connect

    Mott, James; Collaboration: SuperNEMO Collaboration; and others

    2013-08-08

    The SuperNEMO experiment will search for neutrinoless double beta decay (0νββ) with a target sensitivity of T{sub 1/2}(0ν) > 10{sup 26} years, corresponding to an effective neutrino mass of 50-100 meV. At its heart there is a low-background gaseous tracking detector which allows for extremely efficient background rejection and, if 0νββ is observed, may provide important insights into the mechanism via which it may be mediated. Radon inside the tracker, which can mimic rare ββ events, is one of the most dangerous backgrounds for SuperNEMO. To reach the target sensitivity the radon concentration inside the tracking volume must be < 0.15 mBq/m{sup 3}. To reach this challengingly-low level of radon, a considerable program of R and D has been undertaken. This includes automation of the tracker-wiring process, development of a dedicated setup to measure radon diffusion and a 'radon concentration line' which will be able to measure levels of radon in the μBq/m{sup 3} range.

  9. Research and development of the laser tracker measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Z. L.; Zhou, W. H.; Lao, D. B.; Yuan, J.; Dong, D. F. F.; Ji, R. Y. Y.

    2013-01-01

    The working principle and system design of the laser tracker measurement system are introduced, as well as the key technologies and solutions in the implementation of the system. The design and implementation of the hardware and configuration of the software are mainly researched. The components of the hardware include distance measuring unit, angle measuring unit, tracking and servo control unit and electronic control unit. The distance measuring devices include the relative distance measuring device (IFM) and the absolute distance measuring device (ADM). The main component of the angle measuring device, the precision rotating stage, is mainly comprised of the precision axis and the encoders which are both set in the tracking head. The data processing unit, tracking and control unit and power supply unit are all set in the control box. The software module is comprised of the communication module, calibration and error compensation module, data analysis module, database management module, 3D display module and the man-machine interface module. The prototype of the laser tracker system has been accomplished and experiments have been carried out to verify the proposed strategies of the hardware and software modules. The experiments showed that the IFM distance measuring error is within 0.15mm, the ADM distance measuring error is within 3.5mm and the angle measuring error is within 3〞which demonstrates that the preliminary prototype can realize fundamental measurement tasks.

  10. Dynamic imaging model and parameter optimization for a star tracker.

    PubMed

    Yan, Jinyun; Jiang, Jie; Zhang, Guangjun

    2016-03-21

    Under dynamic conditions, star spots move across the image plane of a star tracker and form a smeared star image. This smearing effect increases errors in star position estimation and degrades attitude accuracy. First, an analytical energy distribution model of a smeared star spot is established based on a line segment spread function because the dynamic imaging process of a star tracker is equivalent to the static imaging process of linear light sources. The proposed model, which has a clear physical meaning, explicitly reflects the key parameters of the imaging process, including incident flux, exposure time, velocity of a star spot in an image plane, and Gaussian radius. Furthermore, an analytical expression of the centroiding error of the smeared star spot is derived using the proposed model. An accurate and comprehensive evaluation of centroiding accuracy is obtained based on the expression. Moreover, analytical solutions of the optimal parameters are derived to achieve the best performance in centroid estimation. Finally, we perform numerical simulations and a night sky experiment to validate the correctness of the dynamic imaging model, the centroiding error expression, and the optimal parameters.

  11. Data correction for seven activity trackers based on regression models.

    PubMed

    Andalibi, Vafa; Honko, Harri; Christophe, Francois; Viik, Jari

    2015-08-01

    Using an activity tracker for measuring activity-related parameters, e.g. steps and energy expenditure (EE), can be very helpful in assisting a person's fitness improvement. Unlike the measuring of number of steps, an accurate EE estimation requires additional personal information as well as accurate velocity of movement, which is hard to achieve due to inaccuracy of sensors. In this paper, we have evaluated regression-based models to improve the precision for both steps and EE estimation. For this purpose, data of seven activity trackers and two reference devices was collected from 20 young adult volunteers wearing all devices at once in three different tests, namely 60-minute office work, 6-hour overall activity and 60-minute walking. Reference data is used to create regression models for each device and relative percentage errors of adjusted values are then statistically compared to that of original values. The effectiveness of regression models are determined based on the result of a statistical test. During a walking period, EE measurement was improved in all devices. The step measurement was also improved in five of them. The results show that improvement of EE estimation is possible only with low-cost implementation of fitting model over the collected data e.g. in the app or in corresponding service back-end. PMID:26736578

  12. Precision Attitude Determination System (PADS) system design and analysis: Single-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The feasibility is evaluated of an evolutionary development for use of a single-axis gimbal star tracker from prior two-axis gimbal star tracker based system applications. Detailed evaluation of the star tracker gimbal encoder is considered. A brief system description is given including the aspects of tracker evolution and encoder evaluation. System analysis includes evaluation of star availability and mounting constraints for the geosynchronous orbit application, and a covariance simulation analysis to evaluate performance potential. Star availability and covariance analysis digital computer programs are included.

  13. The Millennium Star Atlas

    NASA Astrophysics Data System (ADS)

    Sinnott, R. W.

    1997-08-01

    Derived from Hipparcos and Tycho observations, the Millennium Star Atlas is a set of 1548 charts covering the entire sky to about magnitude 11. It stands apart from all previous printed atlases in completeness to magnitude 10 and in uniformity around the sky. The generous chart scale has made possible a number of innovations never before seen in a star atlas: arrows on high-proper-motion stars, double-star ticks conveying separation and position angle for a specific modern epoch, distance labels for nearby stars, and variable stars coded by amplitude, period, and type. Among the nonstellar objects plotted, more than 8000 galaxies are shown with aspect ratio and orientation.

  14. 2D/3D Visual Tracker for Rover Mast

    NASA Technical Reports Server (NTRS)

    Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria

    2006-01-01

    A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems

  15. ATLAS Metadata Task Force

    SciTech Connect

    ATLAS Collaboration; Costanzo, D.; Cranshaw, J.; Gadomski, S.; Jezequel, S.; Klimentov, A.; Lehmann Miotto, G.; Malon, D.; Mornacchi, G.; Nemethy, P.; Pauly, T.; von der Schmitt, H.; Barberis, D.; Gianotti, F.; Hinchliffe, I.; Mapelli, L.; Quarrie, D.; Stapnes, S.

    2007-04-04

    This document provides an overview of the metadata, which are needed to characterizeATLAS event data at different levels (a complete run, data streams within a run, luminosity blocks within a run, individual events).

  16. Diabetes Interactive Atlas

    PubMed Central

    Burrows, Nilka R.; Geiss, Linda S.

    2014-01-01

    The Diabetes Interactive Atlas is a recently released Web-based collection of maps that allows users to view geographic patterns and examine trends in diabetes and its risk factors over time across the United States and within states. The atlas provides maps, tables, graphs, and motion charts that depict national, state, and county data. Large amounts of data can be viewed in various ways simultaneously. In this article, we describe the design and technical issues for developing the atlas and provide an overview of the atlas’ maps and graphs. The Diabetes Interactive Atlas improves visualization of geographic patterns, highlights observation of trends, and demonstrates the concomitant geographic and temporal growth of diabetes and obesity. PMID:24503340

  17. Circumnutation Tracker: novel software for investigation of circumnutation

    PubMed Central

    2014-01-01

    Background An endogenous, helical plant organ movement named circumnutation is ubiquitous in the plant kingdom. Plant shoots, stems, tendrils, leaves, and roots commonly circumnutate but their appearance is still poorly described. To support such investigations, novel software Circumnutation Tracker (CT) for spatial-temporal analysis of circumnutation has been developed. Results CT works on time-lapse video and collected circumnutation parameters: period, length, rate, shape, angle, and clockwise- and counterclockwise directions. The CT combines a filtering algorithm with a graph-based method to describe the parameters of circumnutation. The parameters of circumnutation of Helianthus annuus hypocotyls and the relationship between cotyledon arrangement and circumnutation geometry are presented here to demonstrate the CT options. Conclusions We have established that CT facilitates and accelerates analysis of circumnutation. In combination with the physiological, molecular, and genetic methods, this software may be a powerful tool also for investigations of gravitropism, biological clock, and membrane transport, i.e. processes involved in the mechanism of circumnutation.

  18. Standard metrics for a plug-and-play tracker

    NASA Astrophysics Data System (ADS)

    Antonisse, Jim; Young, Darrell

    2012-06-01

    The Motion Imagery Standards Board (MISB) has previously established a metadata "micro-architecture" for standards-based tracking. The intent of this work is to facilitate both the collaborative development of competent tracking systems, and the potentially distributed and dispersed execution of tracker system components in real-world execution environments. The approach standardizes a set of five quasi-sequential modules in image-based tracking. However, in order to make the plug-and-play architecture truly useful we need metrics associated with each module (so that, for instance, a researcher who "plugs in" a new component can ascertain whether he/she did better or worse with the component). This paper proposes the choice of a new, unifying set of metrics based on an informationtheoretic approach to tracking, which the MISB is nominating as DoD/IC/NATO standards.

  19. LoyalTracker: Visualizing Loyalty Dynamics in Search Engines.

    PubMed

    Shi, Conglei; Wu, Yingcai; Liu, Shixia; Zhou, Hong; Qu, Huamin

    2014-12-01

    The huge amount of user log data collected by search engine providers creates new opportunities to understand user loyalty and defection behavior at an unprecedented scale. However, this also poses a great challenge to analyze the behavior and glean insights into the complex, large data. In this paper, we introduce LoyalTracker, a visual analytics system to track user loyalty and switching behavior towards multiple search engines from the vast amount of user log data. We propose a new interactive visualization technique (flow view) based on a flow metaphor, which conveys a proper visual summary of the dynamics of user loyalty of thousands of users over time. Two other visualization techniques, a density map and a word cloud, are integrated to enable analysts to gain further insights into the patterns identified by the flow view. Case studies and the interview with domain experts are conducted to demonstrate the usefulness of our technique in understanding user loyalty and switching behavior in search engines.

  20. The Tevatron tune tracker pll - theory, implementation and measurements

    SciTech Connect

    Tan, Cheng-Yang; /Fermilab

    2004-12-01

    The Tevatron tune tracker is based on the idea that the transverse phase response of the beam can be measured quickly and accurately enough to allow us to track the betatron tune with a phase locked loop (PLL). The goal of this paper is to show the progress of the PLL project at Fermilab. We will divide this paper into three parts: theory, implementation and measurements. In the theory section, we will use a simple linear model to show that our design will track the betatron tune under conditions that occur in the Tevatron. In the implementation section we will break down and examine each part of the PLL and in some cases calculate the actual PLL parameters used in our system from beam measurements. And finally in the measurements section we will show the results of the PLL performance.

  1. Two-axis tracker for solar panels and the like

    SciTech Connect

    Liao, Henry H.

    2013-04-16

    A tracker including an outer post having elongated bore and a lower end mounted on a sub-structure, an inner pole rotatably received in the elongated bore, a lower bearing in the bore adjacent a lower end of the outer post and attached thereto to be constrained from lateral movement and mounted on the sub-structure such that a lower end of the inner pole rests on and is supported by the lower bearing, an upper bearing near an upper end of the outer post, a circumferential drive supported on the outer post for rotating the inner pole relative to the outer post, such that substantially a full weight of a load on the inner pole is directly transmitted to the sub-structure and lateral force and torque leverage are placed on a full length of the outer post by way of the upper and lower bearing.

  2. How do we see art: an eye-tracker study.

    PubMed

    Quiroga, Rodrigo Quian; Pedreira, Carlos

    2011-01-01

    We describe the pattern of fixations of subjects looking at figurative and abstract paintings from different artists (Molina, Mondrian, Rembrandt, della Francesca) and at modified versions in which different aspects of these art pieces were altered with simple digital manipulations. We show that the fixations of the subjects followed some general common principles (e.g., being attracted to saliency regions) but with a large variability for the figurative paintings, according to the subject's personal appreciation and knowledge. In particular, we found different gazing patterns depending on whether the subject saw the original or the modified version of the painting first. We conclude that the study of gazing patterns obtained by using the eye-tracker technology gives a useful approach to quantify how subjects observe art.

  3. Design and Performance of the Keck Angle Tracker

    NASA Technical Reports Server (NTRS)

    Crawford, Samuel L.; Ragland, S.; Booth, A.; Colavita, M. M.; Hovland, E.

    2006-01-01

    The Keck Angle Tracker (KAT) is a key subsystem in the NASA-funded Keck Interferometer at the Keck Observatory on the summit of Mauna Kea in Hawaii. KAT, which has been in operation since the achievement of first fringes in March 2001, senses the tilt of the stellar wavefront for each of the beams from the interferometer telescopes and provides tilt error signals to fast tip/tilt mirrors for high-bandwidth, wavefront tilt correction. In addition, KAT passes low-bandwidth, desaturation offsets to the adaptive optics system of the Keck telescopes to correct for slow pointing drifts. We present an overview of the instrument design and recent performance of KAT in support of the V2 science and nulling observing modes of the Keck Interferometer.

  4. Higher throughput high resolution multi-worm tracker

    NASA Astrophysics Data System (ADS)

    Javer, Avelino; Li, Kezhi; Gyenes, Bertalan; Brown, Andre; Behavioural Genomics Team

    2015-03-01

    We have developed a high throughput imaging system for tracking multiple nematode worms at high resolution. The tracker consists of 6 cameras mounted on a motorized gantry so that up to 48 plates (each with approximately 30 worms) can be imaged without user intervention. To deal with the high data rate of the cameras we use real time processing to find worms and only save the immediately surrounding pixels. The system is also equipped with automatic oxygen and carbon dioxide control for observing stimulus response behaviour. We will describe the design and performance of the new system, some of the challenges of truly high throughput behaviour recording, and report preliminary results on inter-individual variation in behaviour as well as a quantitative analysis of C. elegans response to hypoxia, oxygen reperfusion, and carbon dioxide. Funding provided by the Medical Research Council.

  5. On-Orbit Performance of Autonomous Star Trackers

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Sedlak, J.; Hashmall, J.

    2001-01-01

    This paper presents the results of a performance study of the autonomous star trackers (ASTs) on the IMAGE and the EO-1 spacecraft. IMAGE is a spinning spacecraft without gyros or redundant precision attitude sensors, so the statistical properties of the AST are estimated simply by comparing the output observed quaternions with a rigid rotator model with constant angular momentum. The initial conditions are determined by a least-squares fit to minimize the AST residuals. An additional fit is used to remove the remaining systematic error and to obtain the inherent sensor noise. Gyro rate data are available for the EO-1 mission, so the AST noise statistics are obtained from the residuals after solving for an epoch attitude and gyro bias also using a least-squares method.

  6. Echo tracker/range finder for radars and sonars

    NASA Technical Reports Server (NTRS)

    Constantinides, N. J. (Inventor)

    1982-01-01

    An echo tracker/range finder or altimeter is described. The pulse repetition frequency (PFR) of a predetermined plurality of transmitted pulses is adjusted so that echo pulses received from a reflecting object are positioned between transmitted pulses and divided their interpulse time interval into two time intervals having a predetermined ratio with respect to each other. The invention described provides a means whereby the arrival time of a plurality of echo pulses is defined as the time at which a composite echo pulse formed of a sum of the individual echo pulses has the highest amplitude. The invention is applicable to radar systems, sonar systems, or any other kind of system in which pulses are transmitted and echoes received therefrom.

  7. Articulated Arm Coordinate Measuring Machine Calibration by Laser Tracker Multilateration

    PubMed Central

    Majarena, Ana C.; Brau, Agustín; Velázquez, Jesús

    2014-01-01

    A new procedure for the calibration of an articulated arm coordinate measuring machine (AACMM) is presented in this paper. First, a self-calibration algorithm of four laser trackers (LTs) is developed. The spatial localization of a retroreflector target, placed in different positions within the workspace, is determined by means of a geometric multilateration system constructed from the four LTs. Next, a nonlinear optimization algorithm for the identification procedure of the AACMM is explained. An objective function based on Euclidean distances and standard deviations is developed. This function is obtained from the captured nominal data (given by the LTs used as a gauge instrument) and the data obtained by the AACMM and compares the measured and calculated coordinates of the target to obtain the identified model parameters that minimize this difference. Finally, results show that the procedure presented, using the measurements of the LTs as a gauge instrument, is very effective by improving the AACMM precision. PMID:24688418

  8. Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Sadrozinski, Hartmut

    2014-03-01

    The use of silicon detectors has experienced an exponential growth in accelerator and space based experiments, similar to trends in the semiconductor industry as a whole, usually paraphrased as ``Moore's Law.'' Some of the essentials for this phenomenon will be presented, together with examples of the exciting science results which it enabled. With the establishment of a ``semiconductor culture'' in universities and laboratories around the world, an increased understanding of the sensors results in thinner, faster, more radiation-resistant detectors, spawning an amazing wealth of new technologies and applications, which will be the main subject of the presentation.

  9. The alcohol tracker application: an initial evaluation of user preferences

    PubMed Central

    Zhang, Melvyn W B; Ward, John; Ying, John J B; Pan, Fang; Ho, Roger C M

    2016-01-01

    Background The prevalence of at-risk drinking and alcohol use disorders is increasing. Advances in technology have resulted in numerous smartphone applications for this disorder. However, there are still concerns about the evidence base of previously developed alcohol applications. Objective The following study aims to illustrate how the authors have made use of innovative methodologies to overcome the issues relating to the accuracy of tracking the amount of alcohol one has consumed; it also aims to determine user perceptions about the innovative tracker and various other features of an alcohol self-management application among a group of individuals from the general population of a developed country (Canada). Methodology A native alcohol self-management application was developed. In order to determine user perspectives towards this new innovative application, the authors took advantage and made use of crowdsourcing to acquire user perspectives. Results Our results showed that smartphone ownership is highest among the age group of 35–44 years (91%) and lowest for those aged between 55 and 64 (58%). Our analysis also showed that 25–34-year-olds and 35–44-year-olds drink more frequently than the other groups. Results suggest that notification and information were the two most useful functions, with psychotherapy expected to be the least useful. Females indicated that notification service was the most useful function, while males preferred the information component. Conclusions This study has demonstrated how the authors have made use of innovative technologies to overcome the existing concerns pertaining to the utilisation of the blood alcohol concentration levels as a tracker. In addition, the authors have managed to highlight user preferences with regard to an alcohol application. PMID:27019744

  10. Laser Tracker Calibration - Testing the Angle Measurement System -

    SciTech Connect

    Gassner, Georg; Ruland, Robert; /SLAC

    2008-12-05

    Physics experiments at the SLAC National Accelerator Laboratory (SLAC) usually require high accuracy positioning, e. g. 100 {micro}m over a distance of 150 m or 25 {micro}m in a 10 x 10 x 3 meter volume. Laser tracker measurement systems have become one of the most important tools for achieving these accuracies when mapping components. The accuracy of these measurements is related to the manufacturing tolerances of various individual components, the resolutions of measurement systems, the overall precision of the assembly, and how well imperfections can be modeled. As with theodolites and total stations, one can remove the effects of most assembly and calibration errors by measuring targets in both direct and reverse positions and computing the mean to obtain the result. However, this approach does not compensate for errors originating from the encoder system. In order to improve and gain a better understanding of laser tracker angle measurement tolerances we extended our laboratory's capabilities with the addition of a horizontal angle calibration test stand. This setup is based on the use of a high precision rotary table providing an angular accuracy of better than 0.2 arcsec. Presently, our setup permits only tests of the horizontal angle measurement system. A test stand for vertical angle calibration is under construction. Distance measurements (LECOCQ & FUSS, 2000) are compared to an interferometer bench for distances of up to 32 m. Together both tests provide a better understanding of the instrument and how it should be operated. The observations also provide a reasonable estimate of covariance information of the measurements according to their actual performance for network adjustments.

  11. ATLAS@AWS

    NASA Astrophysics Data System (ADS)

    Gehrcke, Jan-Philip; Kluth, Stefan; Stonjek, Stefan

    2010-04-01

    We show how the ATLAS offline software is ported on the Amazon Elastic Compute Cloud (EC2). We prepare an Amazon Machine Image (AMI) on the basis of the standard ATLAS platform Scientific Linux 4 (SL4). Then an instance of the SLC4 AMI is started on EC2 and we install and validate a recent release of the ATLAS offline software distribution kit. The installed software is archived as an image on the Amazon Simple Storage Service (S3) and can be quickly retrieved and connected to new SL4 AMI instances using the Amazon Elastic Block Store (EBS). ATLAS jobs can then configure against the release kit using the ATLAS configuration management tool (cmt) in the standard way. The output of jobs is exported to S3 before the SL4 AMI is terminated. Job status information is transferred to the Amazon SimpleDB service. The whole process of launching instances of our AMI, starting, monitoring and stopping jobs and retrieving job output from S3 is controlled from a client machine using python scripts implementing the Amazon EC2/S3 API via the boto library working together with small scripts embedded in the SL4 AMI. We report our experience with setting up and operating the system using standard ATLAS job transforms.

  12. Adaptive Neural Star Tracker Calibration for Precision Spacecraft Pointing and Tracking

    NASA Technical Reports Server (NTRS)

    Bayard, David S.

    1996-01-01

    The Star Tracker is an essential sensor for precision pointing and tracking in most 3-axis stabilized spacecraft. In the interest (of) improving pointing performance by taking advantage of dramatic increases in flight computer power and memory anticipated over the next decade, this paper investigates the use of a neural net for adaptive in-flight calibration of the Star Tracker.

  13. Lightweight dual-axis tracker designs for dish-based HCPV

    NASA Astrophysics Data System (ADS)

    Angel, Roger; Cuerden, Brian; Whiteside, Andy

    2014-09-01

    Dish-based HCPV holds the promise of solar electricity at lower cost than for flat panel PV, provided that the dual-axis tracker cost can be minimized. Here we outline first and second generation lightweight tracker designs that include supports for a rectangular array of square dish mirrors and receivers located at their foci.

  14. Silicon micromachining based on porous silicon formation

    SciTech Connect

    Guilinger, T.R.; Kelly, M.J.; Stevenson, J.O.; Howard, A.; Houston, J.E.; Tsao, S.S.

    1991-12-31

    We describe a new electrochemical processing technique based on porous silicon formation that can produce surface and buried insulators, conductors, and sacrificial layers required for silicon micromachining to fabricate micromechanical devices and sensors. Porosity and thickness of porous silicon layers for micromachining can be controlled to a relative precision better than 0.3% for porosities ranging from 20--80% and thicknesses ranging from sub- micron to hundreds of microns. The technique of using porous silicon has important implications for microfabrication of silicon electromechanical devices and sensors. The high relative precision in realizing a given thickness is superior to that obtained with conventional chemical etches. 8 refs.

  15. Silicon micromachining based on porous silicon formation

    SciTech Connect

    Guilinger, T.R.; Kelly, M.J.; Stevenson, J.O.; Howard, A.; Houston, J.E.; Tsao, S.S.

    1991-01-01

    We describe a new electrochemical processing technique based on porous silicon formation that can produce surface and buried insulators, conductors, and sacrificial layers required for silicon micromachining to fabricate micromechanical devices and sensors. Porosity and thickness of porous silicon layers for micromachining can be controlled to a relative precision better than 0.3% for porosities ranging from 20--80% and thicknesses ranging from sub- micron to hundreds of microns. The technique of using porous silicon has important implications for microfabrication of silicon electromechanical devices and sensors. The high relative precision in realizing a given thickness is superior to that obtained with conventional chemical etches. 8 refs.

  16. The ATLAS Detector: Status and Performance in Run-II

    NASA Astrophysics Data System (ADS)

    Schramm, Steven

    2016-07-01

    During the first extended shutdown of the LHC, in 2013 and 2014, the ATLAS detector has undergone several improvements. A new silicon pixel detector layer has been added inside of the existing layers, enhancing vertex identification, while the coverage of the muon detector has been significantly expanded. Many other detector systems have been upgraded to handle the higher expected pileup conditions in the coming years and to generally improve their performance. This document describes these upgrades and the resulting impact on the reconstruction and performance of standard physics objects. Preliminary results using the first ˜ 80pb-1 of 2015 data at s = 13 Tev are presented, demonstrating the capability of ATLAS to perform both searches and measurements.

  17. Study of surface properties of ATLAS12 strip sensors and their radiation resistance

    NASA Astrophysics Data System (ADS)

    Mikestikova, M.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Hommels, L. B. A.; Ullan, M.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Sevilla, S. Gonzalez; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O'Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    A radiation hard n+-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the High Luminosity Large Hadron Collider (HL-LHC) has been developed by the "ATLAS ITk Strip Sensor collaboration" and produced by Hamamatsu Photonics. Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been studied before and after irradiation. The tested barrel sensors vary in "punch-through protection" (PTP) structure, and the end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have been irradiated with proton fluences of up to 1×1016 neq/cm2, by reactor neutron fluence of 1×1015 neq/cm2 and by gamma rays from 60Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is presented including a comparison of results from different irradiation sites. The measured characteristics are compared with the previous prototype of the sensor design, ATLAS07.

  18. Upgrading Metallurgical-Grade Silicon

    NASA Technical Reports Server (NTRS)

    Woerner, L. M.; Moore, E. B.

    1985-01-01

    Closed-loop process produces semiconductor-grade silicon. Metallurgical-grade silicon converted to ultrapure silicon by reacting with hydrogen and silicon tetrahalide to form trihalosilane, purifying this intermediate and again decomposing to high purity silicon in third stage. Heterogeneously and homogeneously nucleated polycrystalline silicon used in semiconductor device applications and in silicon photovoltaic solar cell fabrication.

  19. Thin silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hall, R. B.; Bacon, C.; Direda, V.; Ford, D. H.; Ingram, A. E.; Cotter, J.; Hughes-Lampros, T.; Rand, J. A.; Ruffins, T. R.; Barnett, A. M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (less than 50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  20. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  1. A new micro-strip tracker for the new generation of experiments at hadron colliders

    SciTech Connect

    Dinardo, Mauro E.

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Zo's or W±'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  2. Performance verification testing for HET wide-field upgrade tracker in the laboratory

    NASA Astrophysics Data System (ADS)

    Good, John; Hayes, Richard; Beno, Joseph; Booth, John; Cornell, Mark E.; Hill, Gary J.; Lee, Hanshin; Mock, Jason; Rafal, Marc; Savage, Richard; Soukup, Ian

    2010-07-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX), the McDonald Observatory (MDO) and the Center for Electro-mechanics (CEM) at the University of Texas at Austin are developing a new HET tracker in support of the Wide-Field Upgrade (WFU) and the Visible Integral-Field Replicable Unit Spectrograph (VIRUS). The precision tracker is required to maintain the position of a 3,100 kg payload within ten microns of its desired position relative to the telescope's primary mirror. The hardware system to accomplish this has ten precision controlled actuators. Prior to installation on the telescope, full performance verification is required of the completed tracker in CEM's lab, without a primary mirror or the telescope's final instrument package. This requires the development of a laboratory test stand capable of supporting the completed tracker over its full range of motion, as well as means of measurement and methodology that can verify the accuracy of the tracker motion over full travel (4m diameter circle, 400 mm deep, with 9 degrees of tip and tilt) at a cost and schedule in keeping with the HET WFU requirements. Several techniques have been evaluated to complete this series of tests including: photogrammetry, laser tracker, autocollimator, and a distance measuring interferometer, with the laser tracker ultimately being identified as the most viable method. The design of the proposed system and its implementation in the lab is presented along with the test processes, predicted accuracy, and the basis for using the chosen method*.

  3. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  4. Distributed analysis in ATLAS

    NASA Astrophysics Data System (ADS)

    Dewhurst, A.; Legger, F.

    2015-12-01

    The ATLAS experiment accumulated more than 140 PB of data during the first run of the Large Hadron Collider (LHC) at CERN. The analysis of such an amount of data is a challenging task for the distributed physics community. The Distributed Analysis (DA) system of the ATLAS experiment is an established and stable component of the ATLAS distributed computing operations. About half a million user jobs are running daily on DA resources, submitted by more than 1500 ATLAS physicists. The reliability of the DA system during the first run of the LHC and the following shutdown period has been high thanks to the continuous automatic validation of the distributed analysis sites and the user support provided by a dedicated team of expert shifters. During the LHC shutdown, the ATLAS computing model has undergone several changes to improve the analysis workflows, including the re-design of the production system, a new analysis data format and event model, and the development of common reduction and analysis frameworks. We report on the impact such changes have on the DA infrastructure, describe the new DA components, and include recent performance measurements.

  5. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  6. Volumetric verification of multiaxis machine tool using laser tracker.

    PubMed

    Aguado, Sergio; Samper, David; Santolaria, Jorge; Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space.

  7. An expert system for shuttle and satellite radar tracker scheduling

    NASA Technical Reports Server (NTRS)

    Mitchell, Paul

    1988-01-01

    This expert system automates and optimizes radar tracker selection for shuttle missions. The expert system is written in the FORTRAN and C languages on an HP9000. It is portable to any UNIX machine having both ANSI-77 FORTRAN and C language compilers. It is a rule based expert system that selects tracking stations from the S-band and C-band radar stations and the TDRSS east and TDRSS west satellites under a variety of conditions. The expert system was prototyped on the Symbolics in the Automated Reasoning Tool (ART) and ZetaLisp. After the prototype demonstrated an acceptable automation of the process of selecting tracking stations to support the orbit determination requirements of Shuttle missions, the basic ART rules of the prototype were ported to the HP9000 computer using the CLIPS language. CLIPS is a forward-chaining rule-based expert system language written in C. Prior to the development of this expert system the selection process was a tedious manual process and expensive in terms of human resources. Manual tracking station selection required from 1 to 2 man weeks per mission; whereas the expert system can complete the selection process in about 2 hours.

  8. Planar waveguide concentrator used with a seasonal tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2012-10-01

    Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

  9. Gaussian Analytic Centroiding method of star image of star tracker

    NASA Astrophysics Data System (ADS)

    Wang, Haiyong; Xu, Ershuai; Li, Zhifeng; Li, Jingjin; Qin, Tianmu

    2015-11-01

    The energy distribution of an actual star image coincides with the Gaussian law statistically in most cases, so the optimized processing algorithm about star image centroiding should be constructed also by following Gaussian law. For a star image spot covering a certain number of pixels, the marginal distribution of the gray accumulation on rows and columns are shown and analyzed, based on which the formulas of Gaussian Analytic Centroiding method (GAC) are deduced, and the robustness is also promoted due to the inherited filtering effect of gray accumulation. Ideal reference star images are simulated by the PSF (point spread function) with integral form. Precision and speed tests for the Gaussian Analytic formulas are conducted under three scenarios of Gaussian radius (0.5, 0.671, 0.8 pixel), The simulation results show that the precision of GAC method is better than that of the other given algorithms when the Gaussian radius is not bigger than 5 × 5 pixel window, a widely used parameter. Above all, the algorithm which consumes the least time is still the novel GAC method. GAC method helps to promote the comprehensive performance in the attitude determination of a star tracker.

  10. The optimization of an optical missile guidance tracker.

    PubMed

    Spiro, I J

    1969-07-01

    An antitank missile guidance system is described, which employs a tracker using two parallel optical paths and a pyrotechnic flare. Both optical channels are spectrally filtered; one rejects the target and views only the flare image; the other rejects the flare and views only the target. In performing the guidance tracking task, the operator superimposes the flare image on the target, thus providing steering signals to the missile. This paper describes an optimum flare as one with maximum luminous spectral emittance, minimum bandwidth, and minimum noise. Then with the selected flare as a basis, the optical components are matched individually and as an assembly to obtain maximum flare-filter system output. Calculated improvements of 100 to 250% were obtained in the performance of critical components which were reflected in the system operation and were subsequently verified by system field tests. The transmission ratios, visibility coefficients, improvement factors, and other bases for improvement are stated and discussed. Finally, the experiments performed and improvements achieved are described.

  11. Kinematics investigations of cylinders rolling down a ramp using tracker

    NASA Astrophysics Data System (ADS)

    Prima, Eka Cahya; Mawaddah, Menurseto; Winarno, Nanang; Sriwulan, Wiwin

    2016-02-01

    Nowadays, students' exploration as well as students' interaction in the application stage of learning cycle can be improved by directly model real-world objects based on Newton's Law using Open Source Physics (OSP) computer-modeling tools. In a case of studying an object rolling down a ramp, a traditional experiment method commonly uses a ticker tape sliding through a ticker timer. However, some kinematics parameters such as the instantaneous acceleration and the instantaneous speed of object cannot be investigated directly. By using the Tracker video analysis method, all kinematics parameters of cylinders rolling down a ramp can be investigated by direct visual inspection. The result shows that (1) there are no relations of cylinders' mass as well as cylinders' radius towards their kinetics parameters. (2) Excluding acceleration data, the speed and position as function of time follow the theory. (3) The acceleration data are in the random order, but their trend-lines closely fit the theory with 0.15% error. (4) The decrease of acceleration implicitly occurs due to the air friction acting on the cylinder during rolling down. (5) The cylinder's inertial moment constant has been obtained experimentally with 3.00% error. (6) The ramp angle linearly influences the cylinders' acceleration with 2.36% error. This research implied that the program can be further applied to physics educational purposes.

  12. Iterative alignment of reflector segments using a laser tracker

    NASA Astrophysics Data System (ADS)

    Cabrera Cuevas, Lizeth; Lucero Alvarez, Maribel; Leon-Huerta, Andrea; Hernandez Rios, Emilio; Hernandez Lázaro, Josefina; Tzile Torres, Carlos; Castro Santos, David; Gale, David M.; Wilson, Grant; Narayanan, Gopal; Smith, David R.

    2013-04-01

    The Large Millimeter Telescope (LMT) is a 50m diameter millimetre-wave radio telescope situated on the summit of Sierra Negra, Puebla, at an altitude of 4600 meters. The reflector surface of the LMT currently employs84 segments arranged in three annular rings. Each segment is comprised of 8 precision composite subpanels located on five threaded adjusters. During the current primary surface refurbishment, individual segments are aligned in the telescope basement using a laser tracker. This allows increased spatial resolution in shorter timescales, resulting in the opportunity for improved logistics and increased alignment precision. To perform segment alignment an iterative process is carried out whereby the surface is measured and subpanel deformations are corrected with the goal of 40 microns RMS. In practice we have been able to achieve RMS errors of almost 20 microns, with 35 microns typical. The number of iterations varies from around ten to over 20, depending mainly on the behaviour of the mechanical adjusters that support the individual subpanels. Cross marks scribed on the reflector surface are used as fiducials, because their positions on the paraboloid are well known. Measurement data is processed using a robust curve fitting algorithm which provides a map of the surface showing the subpanel deviations. From this map the required subpanel adjuster movements are calculated allowing surface improvement in a stepwise manner.

  13. Commodity Tracker: Mobile Application for Food Security Monitoring in Haiti

    NASA Astrophysics Data System (ADS)

    Chiu, M. T.; Huang, X.; Baird, J.; Gourley, J. R.; Morelli, R.; de Lanerolle, T. R.; Haiti Food Security Monitoring Mobile App Team

    2011-12-01

    Megan Chiu, Jason Baird, Xu Huang, Trishan de Lanerolle, Ralph Morelli, Jonathan Gourley Trinity College, Computer Science Department and Environmental Science Program, 300 Summit Street, Hartford, CT 06106 megan.chiu@trincoll.edu, Jason.baird@trincoll.edu, xu.huang@trincoll.edu, trishan.delanerolle@trincoll.edu, ralph.morelli@trincoll.edu, jonathan.gourley@trincoll.edu Price data for Haiti commodities such as rice and potatoes have been traditionally recorded by hand on paper forms for many years. The information is then entered onto computer manually, thus making the process a long and arduous one. With the development of the Haiti Commodity Tracker mobile app, we are able to make this commodity price data recording process more efficient. Officials may use this information for making inferences about the difference in commodity prices and for food distribution during critical time after natural disasters. This information can also be utilized by governments and aid agencies on their food assistance programs. Agronomists record the item prices from several sample sites in a marketplace and compare those results from other markets across the region. Due to limited connectivity in rural areas, data is first saved to the phone's database and then retransmitted to a central server via SMS messaging. The mobile app is currently being field tested by an international NGO providing agricultural aid and support in rural Haiti.

  14. Geometric error detection and calibration in laser trackers

    NASA Astrophysics Data System (ADS)

    Zhang, Zili; Lao, Dabao; Dong, Dengfeng; Zhou, Weihu

    2015-08-01

    Geometric errors in laser trackers such as light offset and transit tilt have essential influence on the system measurement errors. Thus error detection and calibration are very important for producers and customers to execute error compensation. Different methods are developed to detect and calibrate errors. However, the commonly used methods such as length measurement and two-face measurement are sensitive to several misalignments which cannot calibrate errors directly and separately. In this paper a series of methods for detecting and calibrating geometric errors such as mirror tilt, beam tilt and transit tilt were presented which can calibrate geometric errors individually and precisely. The mirror tilt could be detected with the help of two autocollimators and one polygon. Then the beam tilt and offset errors were calibrated using a CCD camera and condenser lenses. Finally the transit tilt error was calibrated using a gradient and a vertical plane. Experiments and error assessment were executed to show that the accuracy of the calibration methods can meet the user's demand.

  15. Operational Experience with Autonomous Star Trackers on ESA Interplanetary Spacecraft

    NASA Technical Reports Server (NTRS)

    Lauer, Mathias; Jauregui, Libe; Kielbassa, Sabine

    2007-01-01

    Mars Express (MEX), Rosetta and Venus Express (VEX) are ESA interplanetary spacecrafts (S/C) launched in June 2003, March 2004 and November 2005, respectively. Mars Express was injected into Mars orbit end of 2003 with routine operations starting in spring 2004. Rosetta is since launch on its way to rendezvous comet Churyumov-Gerasimenko in 2014. It has completed several test and commissioning activities and is performing several planetary swingbys (Earth in spring 2005, Mars in spring 2007, Earth in autumn 2007 and again two years later). Venus Express has also started routine operations since the completion of the Venus orbit insertion maneuver sequence beginning of May 2006. All three S/C are three axes stabilized with a similar attitude and orbit control system (AOCS). The attitude is estimated on board using star and rate sensors and controlled using four reaction wheels. A bipropellant reaction control system with 10N thrusters serves for wheel off loadings and attitude control in safe mode. Mars Express and Venus Express have an additional 400N engine for the planetary orbit insertion. Nominal Earth communication is accomplished through a high gain antenna. All three S/C are equipped with a redundant set of autonomous star trackers (STR) which are based on almost the same hardware. The STR software is especially adapted for the respective mission. This paper addresses several topics related to the experience gained with the STR operations on board the three S/C so far.

  16. Planar waveguide concentrator used with a seasonal tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2012-10-01

    Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker. PMID:23033102

  17. Volumetric Verification of Multiaxis Machine Tool Using Laser Tracker

    PubMed Central

    Aguilar, Juan José

    2014-01-01

    This paper aims to present a method of volumetric verification in machine tools with linear and rotary axes using a laser tracker. Beyond a method for a particular machine, it presents a methodology that can be used in any machine type. Along this paper, the schema and kinematic model of a machine with three axes of movement, two linear and one rotational axes, including the measurement system and the nominal rotation matrix of the rotational axis are presented. Using this, the machine tool volumetric error is obtained and nonlinear optimization techniques are employed to improve the accuracy of the machine tool. The verification provides a mathematical, not physical, compensation, in less time than other methods of verification by means of the indirect measurement of geometric errors of the machine from the linear and rotary axes. This paper presents an extensive study about the appropriateness and drawbacks of the regression function employed depending on the types of movement of the axes of any machine. In the same way, strengths and weaknesses of measurement methods and optimization techniques depending on the space available to place the measurement system are presented. These studies provide the most appropriate strategies to verify each machine tool taking into consideration its configuration and its available work space. PMID:25202744

  18. Research of measuring accuracy of laser tracker system

    NASA Astrophysics Data System (ADS)

    Ouyang, Jianfei; Liang, Zhiyong; Zhang, Haixin; Yan, Yonggang

    2006-11-01

    This paper presents the achievement of a China NSFC project. The Laser Tracker System (LTS) is a portable 3D large size measuring system. The measuring conditions such as time and temperature can greatly affect the measuring accuracy of LTS. This paper pays a great attention to study how the time and temperature affect the measuring accuracy of LTS. Coordinate Measuring Machine (CMM) is employed as a high-level measuring instrument to validate LTS. The experiments have been done to find how the time and temperature affect the measuring accuracy of LTS. The experiments show the LTS can work well with the highest measuring accuracy just after three-hour warm-up. However, the LTS becomes unstable and the measuring accuracy decreases after 10 hours. The LTS needs calibration and compensation every 10 hours. The experiments show that the measuring error can be up to 29.6μm when the measuring temperature is 30.5°C even if the measuring error is less than 5.9μm while the temperature is between 20°C and 23.8°C. The research provides a very useful guidance for application of LTS.

  19. Conceptual design report for the Solenoidal Tracker at RHIC

    SciTech Connect

    Not Available

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it's experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  20. Conceptual design report for the Solenoidal Tracker at RHIC

    SciTech Connect

    The STAR Collaboration

    1992-06-15

    The Solenoidal Tracker At RHIC (STAR) will search for signatures of quark-gluon plasma (QGP) formation and investigate the behavior of strongly interacting matter at high energy density. The emphasis win be the correlation of many observables on an event-by-event basis. In the absence of definitive signatures for the QGP, it is imperative that such correlations be used to identify special events and possible signatures. This requires a flexible detection system that can simultaneously measure many experimental observables. The physics goals dictate the design of star and it`s experiment. To meet the design criteria, tracking, momentum analysis, and particle identification of most of the charged particles at midrapidity are necessary. The tracking must operate in conditions at higher than the expected maximum charged particle multiplicities for central Au + Au collisions. Particle identification of pions/kaons for p < 0.7 GeV/c and kaons/protons for p < 1 GeV/c, as well as measurement of decay particles and reconstruction of secondary vertices will be possible. A two-track resolution of 2 cm at 2 m radial distance from, the interaction is expected. Momentum resolution of {Delta}p/p {approximately} 0.02 at p = 0.1 GeV/c is required to accomplish the physics, and,{Delta}p/p of several percent at p = 10 GeV/c is sufficient to accurately measure the rapidly failing spectra at high Pt and particles from mini-jets and jets.

  1. eXtremely Fast Tracker trigger upgrade at CDF

    SciTech Connect

    Abulencia, A.; Azzurri, P.; Cochran, E.; Cox, C.; Cox, D.; Dittmann, J.; Donati, S.; Efron, J.; Erbacher, R.; Errede, D.; Fedorko, I.; /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /Purdue U.

    2009-01-01

    The CDF II eXtremely Fast Tracker (XFT) is a trigger processor which reconstructs charged particle tracks in the transverse plane of the central tracking chamber. The XFT tracks are also extrapolated to the electromagnetic calorimeter and muon chambers to generate trigger electron and muon candidates. The XFT is crucial for the entire CDF II physics program: it detects high P{sub t} lepton from W/Z and heavy flavors decay and, in conjunction with the level 2 processor, it identifies secondary vertices from beauty decay. The XFT has thus been crucial for the recent measurement of the B{sub s}{sup 0} oscillation and {Sigma}{sub b}. The increase of the Tevatron instantaneous luminosity demanded an upgrade of the system to cope with the higher occupancy of the chamber. In the upgraded XFT, three-dimensional tracking reduces the level of fake tracks and measures the longitudinal track parameters, which strongly reinforce the trigger selection. This allows to maintain the trigger perfectly efficient at the record luminosities 2-3 x 10{sup 32} cm{sup -2} s{sup -1} and to maintain intact the CDF II high luminosity physics program, which includes the Higgs search. In this paper we review the architecture, the used technology, the performance and the impact of the upgraded XFT on the entire CDF II trigger strategy.

  2. Features of design and development of the optical head of star tracker

    NASA Astrophysics Data System (ADS)

    Moldabekov, M.; Akhmedov, D.; Yelubayev, S.; Ten, V.; Albazarov, B.; Shamro, Alexander; Alipbayev, Kuanysh; Bopeyev, Timur; Sukhenko, A.

    2014-10-01

    The paper presents an approach to the design and development of the optical head of the star tracker and its hood for satellites. The main stages of the optical system design including development of requirements, selection of the optical system by analyzing with help of CAD, hood design with help of simulation, as well as the main stages of its components(lenses) manufacturing and control of quality of manufacturing the optical system are described. Engineering model of the optical head of star tracker which can be used as the basis for the development of the star tracker prototype for use in Kazakhstan's satellites was developed in accordance with the requirements.

  3. Optimal Spacing of Dual-axis Trackers for Concentrating Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Kim, Yong Sin; Winston, Roland

    2011-12-01

    The levelized cost of energy (LCOE) is widely used to compare the cost of energy generation across technologies. In a utility-scale concentrating photovoltaic (CPV) system, the spacing of dual-axis trackers must be balanced with total energy harvested from modules to minimize LCOE. In this paper, a spacing method of dual-axis trackers in a CPV system is presented. Based on the definition of LCOE, a cost function is defined and optimized in terms of spacing related parameters. Various methods to estimate hourly direct normal irradiance (DNI) are investigated and m-by-n tracker array configurations to minimize the cost function are discussed.

  4. Compensation for Time-Dependent Star Tracker Thermal Deformation on the Aqua Spacecraft

    NASA Technical Reports Server (NTRS)

    Hashmall, Joseph A.; Natanson, Gregory; Glickman, Jonathan; Sedlak, Joseph

    2004-01-01

    Analysis of attitude sensor data from the Aqua mission showed small but systematic differences between batch least-squares and extended Kalman filter attitudes. These differences were also found to be correlated with star tracker residuals, gyro bias estimates, and star tracker baseplate temperatures. This paper describes the analysis that shows that these correlations are all consistent with a single cause: time-dependent thermal deformation of star tracker alignments. These varying alignments can be separated into relative and common components. The relative misalignments can be determined and compensated for. The common misalignments can only be determined in special cases.

  5. Silicon material technology status

    NASA Astrophysics Data System (ADS)

    Lutwack, R.

    Silicon has been the basic element for the electronic and photovoltaic industries. The use of silicon as the primary element for terrestrial photovoltaic solar arrays is projected to continue. The reasons for this projection are related to the maturity of silicon technology, the ready availability of extremely pure silicon, the performance of silicon solar cells, and the considerable present investment in technology and manufacturing facilities. The technologies for producing semiconductor grade silicon and, to a lesser extent, refined metallurgical grade silicon are considered. It is pointed out that nearly all of the semiconductor grade silicon is produced by processes based on the Siemens deposition reactor, a technology developed 26 years ago. The state-of-the-art for producing silicon by this process is discussed. It is expected that efforts to reduce polysilicon process costs will continue.

  6. Purified silicon production system

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2004-03-30

    Method and apparatus for producing purified bulk silicon from highly impure metallurgical-grade silicon source material at atmospheric pressure. Method involves: (1) initially reacting iodine and metallurgical-grade silicon to create silicon tetraiodide and impurity iodide byproducts in a cold-wall reactor chamber; (2) isolating silicon tetraiodide from the impurity iodide byproducts and purifying it by distillation in a distillation chamber; and (3) transferring the purified silicon tetraiodide back to the cold-wall reactor chamber, reacting it with additional iodine and metallurgical-grade silicon to produce silicon diiodide and depositing the silicon diiodide onto a substrate within the cold-wall reactor chamber. The two chambers are at atmospheric pressure and the system is open to allow the introduction of additional source material and to remove and replace finished substrates.

  7. Real time tracking with a silicon telescope prototype using the "artificial retina" algorithm

    NASA Astrophysics Data System (ADS)

    Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Coelli, S.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Monti, M.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.

    2016-07-01

    We present the first prototype of a silicon tracker using the artificial retina algorithm for fast track finding. The algorithm is inspired by the neurobiological mechanism of recognition of edges in mammals visual cortex. It is based on extensive parallelization and is implemented on commercial FPGAs allowing us to reconstruct real time tracks with offline-like quality and < 1 μs latencies. The practical device consists of a telescope with 8 single-sided silicon strip sensors and custom DAQ boards equipped with Xilinx Kintex 7 FPGAs that perform the readout of the sensors and the track reconstruction in real time.

  8. Analysis Preservation in ATLAS

    NASA Astrophysics Data System (ADS)

    Cranmer, Kyle; Heinrich, Lukas; Jones, Roger; South, David M.

    2015-12-01

    Long before data taking, ATLAS established a policy that all analyses need to be preserved. In the initial data-taking period, this has been achieved by various tools and techniques. ATLAS is now reviewing the analysis preservation with the aim of bringing coherence and robustness to the process and with a clearer view of the level of reproducibility that is reasonably achievable. The secondary aim is to reduce the load on the analysts. Once complete, this will serve for our internal preservation needs but also provide a basis for any subsequent sharing of analysis results with external parties.

  9. The Herschel ATLAS

    NASA Technical Reports Server (NTRS)

    Eales, S.; Dunne, L.; Clements, D.; Cooray, A.; De Zotti, G.; Dye, S.; Ivison, R.; Jarvis, M.; Lagache, G.; Maddox, S.; Negrello, M.; Serjeant, S.; Thompson, M. A.; Van Kampen, E.; Amblard, A.; Andreani, P.; Baes, M.; Beelen, A.; Bendo, G. J.; Bertoldi, F.; Benford, D.; Bock, J.

    2010-01-01

    The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 sq deg of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.

  10. Detailed studies of full-size ATLAS12 sensors

    NASA Astrophysics Data System (ADS)

    Hommels, L. B. A.; Allport, P. P.; Baca, M.; Broughton, J.; Chisholm, A.; Nikolopoulos, K.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Kuczewski, P.; Lynn, D.; Arratia, M.; Klein, C. T.; Ullan, M.; Fleta, C.; Fernandez-Tejero, J.; Bloch, I.; Gregor, I. M.; Lohwasser, K.; Poley, L.; Tackmann, K.; Trofimov, A.; Yildirim, E.; Hauser, M.; Jakobs, K.; Kuehn, S.; Mahboubi, K.; Mori, R.; Parzefall, U.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Unno, Y.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandić, I.; Mikuž, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Stastny, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Milke, C.; Domingo, M.; Fadeyev, V.; Galloway, Z.; Hibbard-Lubow, D.; Liang, Z.; Sadrozinski, H. F.-W.; Seiden, A.; To, K.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Jinnouchi, O.; Hara, K.; Sato, K.; Sato, K.; Hagihara, M.; Iwabuchi, S.; Bernabeu, J.; Civera, J. V.; Garcia, C.; Lacasta, C.; Marti i Garcia, S.; Rodriguez, D.; Santoyo, D.; Solaz, C.; Soldevila, U.

    2016-09-01

    The "ATLAS ITk Strip Sensor Collaboration" R&D group has developed a second iteration of single-sided n+-in-p type micro-strip sensors for use in the tracker upgrade of the ATLAS experiment at the High-Luminosity (HL) LHC. The full size sensors measure approximately 97 × 97mm2 and are designed for tolerance against the 1.1 ×1015neq /cm2 fluence expected at the HL-LHC. Each sensor has 4 columns of 1280 individual 23.9 mm long channels, arranged at 74.5 μm pitch. Four batches comprising 120 sensors produced by Hamamatsu Photonics were evaluated for their mechanical, and electrical bulk and strip characteristics. Optical microscopy measurements were performed to obtain the sensor surface profile. Leakage current and bulk capacitance properties were measured for each individual sensor. For sample strips across the sensor batches, the inter-strip capacitance and resistance as well as properties of the punch-through protection structure were measured. A multi-channel probecard was used to measure leakage current, coupling capacitance and bias resistance for each individual channel of 100 sensors in three batches. The compiled results for 120 unirradiated sensors are presented in this paper, including summary results for almost 500,000 strips probed. Results on the reverse bias voltage dependence of various parameters and frequency dependence of tested capacitances are included for validation of the experimental methods used. Comparing results with specified values, almost all sensors fall well within specification.

  11. Thick silicon microstrip detectors simulation for PACT: Pair and Compton Telescope

    NASA Astrophysics Data System (ADS)

    Khalil, M.; Laurent, P.; Lebrun, F.; Tatischeff, V.; Dolgorouky, Y.; Bertoli, W.; Breelle, E.

    2016-11-01

    PACT is a space borne Pair and Compton Telescope that aims to make a sensitive survey of the gamma-ray sky between 100 keV and 100 MeV. It is based upon two main components: a silicon-based gamma-ray tracker and a crystal-based calorimeter. In this paper we will explain the imaging technique of PACT as a Multi-layered Compton telescope (0.1-10 MeV) and its major improvements over its predecessor COMPTEL. Then we will present a simulation study to optimize the silicon tracker of PACT. This tracker is formed of thousands of identical silicon double sided strip detectors (DSSDs). We have developed a simulation model (using SILVACO) to simulate the DSSD performance while varying its thickness, impurity concentration of the bulk material, electrode pitch, and electrode width. We will present a comprehensive overview of the impact of each varied parameter on the DSSD performance, in view of the application to PACT. The considered DSSD parameters are its depletion voltage, capacitance, and leakage current. After the selection of the PACT DSSD, we will present a simulation of the performance of the PACT telescope in the 0.1-10 MeV range.

  12. Precision Attitude Determination System (PADS) design and analysis. Two-axis gimbal star tracker

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Development of the Precision Attitude Determination System (PADS) focused chiefly on the two-axis gimballed star tracker and electronics design improved from that of Precision Pointing Control System (PPCS), and application of the improved tracker for PADS at geosynchronous altitude. System design, system analysis, software design, and hardware design activities are reported. The system design encompasses the PADS configuration, system performance characteristics, component design summaries, and interface considerations. The PADS design and performance analysis includes error analysis, performance analysis via attitude determination simulation, and star tracker servo design analysis. The design of the star tracker and electronics are discussed. Sensor electronics schematics are included. A detailed characterization of the application software algorithms and computer requirements is provided.

  13. Spacecraft attitude control systems with dynamic methods and structures for processing star tracker signals

    NASA Technical Reports Server (NTRS)

    Liu, Yong (Inventor); Wu, Yeong-Wei Andy (Inventor); Li, Rongsheng (Inventor)

    2001-01-01

    Methods are provided for dynamically processing successively-generated star tracker data frames and associated valid flags to generate processed star tracker signals that have reduced noise and a probability greater than a selected probability P.sub.slctd of being valid. These methods maintain accurate spacecraft attitude control in the presence of spurious inputs (e.g., impinging protons) that corrupt collected charges in spacecraft star trackers. The methods of the invention enhance the probability of generating valid star tracker signals because they respond to a current frame probability P.sub.frm by dynamically selecting the largest valid frame combination whose combination probability P.sub.cmb satisfies a selected probability P.sub.slctd. Noise is thus reduced while the probability of finding a valid frame combination is enhanced. Spacecraft structures are also provided for practicing the methods of the invention.

  14. Preliminary results from a study of the impact of digital activity trackers on health risk status.

    PubMed

    Rowe-Roberts, Dinah; Cercos, Robert; Mueller, Florian 'Floyd'

    2014-01-01

    Digital activity trackers are becoming increasingly more widespread and affordable, providing new opportunities to support participatory e-health programs in which participants take an active role. However, there is limited knowledge of how to deploy these activity trackers within these programs. In response, we conducted a 7-month study with 212 employees using a wireless activity tracker to log step count. Our results suggest that these devices can support improving physical activity levels and consequently reduce diabetes risk factors. Furthermore, the intervention seems more effective for people with higher risk factors. With our work we aim to contribute to a better understanding of the issues and challenges involved in the design of participatory e-health programs that include activity trackers. PMID:25087541

  15. A novel method for measuring transit tilt error in laser trackers

    NASA Astrophysics Data System (ADS)

    Zhang, Zili; Zhou, Weihu; Zhu, Han; Lin, Xinlong

    2015-02-01

    A novel method was proposed to measure the tilt error between the transit axis and standing axis of the laser tracker. A gradienter was first used to make the standing axis of the laser tracker perpendicular to the horizontal plane. The laser beam of the tracker was then projected onto a vertical plane set at a certain distance from the tracker with equal horizontal angles and diverse vertical angles in two-face mode. The contrail of the laser beam was recorded while the simulation was manipulated to estimate the beam trail under the same circumstance. The tilt error was thus obtained according to the comparison of the actual result against the simulated one. Experimental results showed that the accuracy of the tilt measuring method could meet the user's demand.

  16. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    SciTech Connect

    Beddo, M.E.; Bielick, E.; Dawson, J.W.; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  17. Calibration Test Set for a Phase-Comparison Digital Tracker

    NASA Technical Reports Server (NTRS)

    Boas, Amy; Li, Samuel; McMaster, Robert

    2007-01-01

    An apparatus that generates four signals at a frequency of 7.1 GHz having precisely controlled relative phases and equal amplitudes has been designed and built. This apparatus is intended mainly for use in computer-controlled automated calibration and testing of a phase-comparison digital tracker (PCDT) that measures the relative phases of replicas of the same X-band signal received by four antenna elements in an array. (The relative direction of incidence of the signal on the array is then computed from the relative phases.) The present apparatus can also be used to generate precisely phased signals for steering a beam transmitted from a phased antenna array. The apparatus (see figure) includes a 7.1-GHz signal generator, the output of which is fed to a four-way splitter. Each of the four splitter outputs is attenuated by 10 dB and fed as input to a vector modulator, wherein DC bias voltages are used to control the in-phase (I) and quadrature (Q) signal components. The bias voltages are generated by digital-to-analog- converter circuits on a control board that receives its digital control input from a computer running a LabVIEW program. The outputs of the vector modulators are further attenuated by 10 dB, then presented at high-grade radio-frequency connectors. The attenuation reduces the effects of changing mismatch and reflections. The apparatus was calibrated in a process in which the bias voltages were first stepped through all possible IQ settings. Then in a reverse interpolation performed by use of MATLAB software, a lookup table containing 3,600 IQ settings, representing equal amplitude and phase increments of 0.1 , was created for each vector modulator. During operation of the apparatus, these lookup tables are used in calibrating the PCDT.

  18. DCPT: A dual-continua random walk particle tracker fortransport

    SciTech Connect

    Pan, L.; Liu, H.H.; Cushey, M.; Bodvarsson, G.S.

    2000-04-11

    Accurate and efficient simulation of chemical transport processes in the unsaturated zone of Yucca Mountain is important to evaluate the performance of the potential repository. The scale of the unsaturated zone model domain for Yucca Mountain (50 km{sup 2} area with a 600 meter depth to the water table) requires a large gridblock approach to efficiently analyze complex flow & transport processes. The conventional schemes based on finite element or finite difference methods perform well for dispersion-dominated transport, but are subject to considerable numerical dilution/dispersion for advection-dominated transport, especially when a large gridblock size is used. Numerical dispersion is an artificial, grid-dependent chemical spreading, especially for otherwise steep concentration fronts. One effective scheme to deal with numerical dispersion is the random walk particle method (RWPM). While significant progress has been made in developing RWPM algorithms and codes for single continuum systems, a random walk particle tracker, which can handle chemical transport in dual-continua (fractured porous media) associated with irregular grid systems, is still absent (to our knowledge) in the public domain. This is largely due to the lacking of rigorous schemes to deal with particle transfer between the continua, and efficient schemes to track particles in irregular grid systems. The main objectives of this study are (1) to develop approaches to extend RWPM from a single continuum to a dual-continua system; (2) to develop an efficient algorithm for tracking particles in 3D irregular grids; and (3) to integrate these approaches into an efficient and user-friendly software, DCPT, for simulating chemical transport in fractured porous media.

  19. The design, construction and performance of the MICE scintillating fibre trackers

    NASA Astrophysics Data System (ADS)

    Ellis, M.; Hobson, P. R.; Kyberd, P.; Nebrensky, J. J.; Bross, A.; Fagan, J.; Fitzpatrick, T.; Flores, R.; Kubinski, R.; Krider, J.; Rucinski, R.; Rubinov, P.; Tolian, C.; Hart, T. L.; Kaplan, D. M.; Luebke, W.; Freemire, B.; Wojcik, M.; Barber, G.; Clark, D.; Clark, I.; Dornan, P. J.; Fish, A.; Greenwood, S.; Hare, R.; Jamdagni, A.; Kasey, V.; Khaleeq, M.; Leaver, J.; Long, K. R.; McKigney, E.; Matsushita, T.; Rogers, C.; Sashalmi, T.; Savage, P.; Takahashi, M.; Tapper, A.; Yoshimura, K.; Cooke, P.; Gamet, R.; Sakamoto, H.; Kuno, Y.; Sato, A.; Yano, T.; Yoshida, M.; MacWaters, C.; Coney, L.; Hanson, G.; Klier, A.; Cline, D.; Yang, X.; Adey, D.

    2011-12-01

    Charged-particle tracking in the international Muon Ionisation Cooling Experiment (MICE) will be performed using two solenoidal spectrometers, each instrumented with a tracking detector based on 350 μm diameter scintillating fibres. The design and construction of the trackers is described along with the quality-assurance procedures, photon-detection system, readout electronics, reconstruction and simulation software and the data-acquisition system. Finally, the performance of the MICE tracker, determined using cosmic rays, is presented.

  20. Intelligent error correction method applied on an active pixel sensor based star tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe

    2005-10-01

    Star trackers are opto-electronic sensors used on-board of satellites for the autonomous inertial attitude determination. During the last years star trackers became more and more important in the field of the attitude and orbit control system (AOCS) sensors. High performance star trackers are based up today on charge coupled device (CCD) optical camera heads. The active pixel sensor (APS) technology, introduced in the early 90-ties, allows now the beneficial replacement of CCD detectors by APS detectors with respect to performance, reliability, power, mass and cost. The company's heritage in star tracker design started in the early 80-ties with the launch of the worldwide first fully autonomous star tracker system ASTRO1 to the Russian MIR space station. Jena-Optronik recently developed an active pixel sensor based autonomous star tracker "ASTRO APS" as successor of the CCD based star tracker product series ASTRO1, ASTRO5, ASTRO10 and ASTRO15. Key features of the APS detector technology are, a true xy-address random access, the multiple windowing read out and the on-chip signal processing including the analogue to digital conversion. These features can be used for robust star tracking at high slew rates and under worse conditions like stray light and solar flare induced single event upsets. A special algorithm have been developed to manage the typical APS detector error contributors like fixed pattern noise (FPN), dark signal non-uniformity (DSNU) and white spots. The algorithm works fully autonomous and adapts to e.g. increasing DSNU and up-coming white spots automatically without ground maintenance or re-calibration. In contrast to conventional correction methods the described algorithm does not need calibration data memory like full image sized calibration data sets. The application of the presented algorithm managing the typical APS detector error contributors is a key element for the design of star trackers for long term satellite applications like

  1. Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade

    NASA Astrophysics Data System (ADS)

    Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.

    2010-07-01

    The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.

  2. A smart car for the surface shape measurement of large antenna based on laser tracker

    NASA Astrophysics Data System (ADS)

    Gu, Yonggang; Hu, Jing; Jin, Yi; Zhai, Chao

    2012-09-01

    The geometric accuracy of the surface shape of large antenna is an important indicator of antenna’s quality. Currently, high-precision measurement of large antenna surface shape can be performed in two ways: photogrammetry and laser tracker. Photogrammetry is a rapid method, but its accuracy is not enough good. Laser tracker can achieve high precision, but it is very inconvenient to move the reflector (target mirror) on the surface of the antenna by hand during the measurement. So, a smart car is designed to carry the reflector in this paper. The car, controlled by wireless, has a small weight and a strong ability for climbing, and there is a holding bracket gripping the reflector and controlling reflector rise up and drop down on the car. During the measurement of laser tracker, the laser beam between laser tracker and the reflector must not be interrupted, so two high-precision three-dimensional miniature electronic compasses, which can real-time monitor the relative angle between the holding bracket and the laser tracker’s head, are both equipped on the car and the head of laser tracker to achieve automatic alignment between reflector and laser beam. With the aid of the smart car, the measurement of laser tracker has the advantages of high precision and rapidity.

  3. Large Gas Electron Multiplier Trackers for Super Bigbite Spectrometer at Jefferson lab Hall A

    NASA Astrophysics Data System (ADS)

    Saenboonruang, K.; Gnanvo, K.; Liyanage, N.; Nelyubin, V.; Sacher, S.; Cisbani, E.; Musico, P.; Wojtsekhowski, B.

    2013-04-01

    The 12 GeV upgrade at Jefferson Lab (JLAB) makes many exciting nuclear experiments possible. These experiments also require new high performance instrumentation. The Super Bigbite Spectrometer (SBS) was proposed to perform a series of high precision nucleon form factor experiments at large momentum transfer. The SBS will be capable of operating at a very high luminosity and provide a large solid angle acceptance of 76 msr. SBS will be equipped with a double focal plane polarimeter. Thus, SBS will have three large trackers made of Gas Electron Multiplier (GEM) chambers. The first, second, and third trackers will consist of six, four, and four tracking layers respectively. When completed in 2017, the SBS GEM trackers will form one of the largest sets of GEM chambers in the world. The GEM trackers allow the SBS to operate under high background rates over 500 kHz/cm^2, while providing an excellent spatial resolution of 70 μm. The first tracker will be constructed at the Istituto Nazionale di Fisica Nucleare in Italy, while the second and third trackers will be built at the University of Virginia. In 2012, the first UVa SBS GEM chamber prototype was successfully constructed and tested. The GEM chamber construction details and test results will be presented in this talk.

  4. Optical System Error Analysis and Calibration Method of High-Accuracy Star Trackers

    PubMed Central

    Sun, Ting; Xing, Fei; You, Zheng

    2013-01-01

    The star tracker is a high-accuracy attitude measurement device widely used in spacecraft. Its performance depends largely on the precision of the optical system parameters. Therefore, the analysis of the optical system parameter errors and a precise calibration model are crucial to the accuracy of the star tracker. Research in this field is relatively lacking a systematic and universal analysis up to now. This paper proposes in detail an approach for the synthetic error analysis of the star tracker, without the complicated theoretical derivation. This approach can determine the error propagation relationship of the star tracker, and can build intuitively and systematically an error model. The analysis results can be used as a foundation and a guide for the optical design, calibration, and compensation of the star tracker. A calibration experiment is designed and conducted. Excellent calibration results are achieved based on the calibration model. To summarize, the error analysis approach and the calibration method are proved to be adequate and precise, and could provide an important guarantee for the design, manufacture, and measurement of high-accuracy star trackers. PMID:23567527

  5. Big Sky Carbon Atlas

    DOE Data Explorer

    The Big Sky Carbon Atlas is an online geoportal designed for you to discover, interpret, and access geospatial data and maps relevant to decision support and education on carbon sequestration in the Big Sky Region. In serving as the public face of the Partnership's spatial Data Libraries, the Atlas provides a gateway to geographic information characterizing CO2 sources, potential geologic sinks, terrestrial carbon fluxes, civil and energy infrastructure, energy use, and related themes. In addition to directly serving the BSCSP and its stakeholders, the Atlas feeds regional data to the NatCarb Portal, contributing to a national perspective on carbon sequestration. Established components of the Atlas include a gallery of thematic maps and an interactive map that allows you to: • Navigate and explore regional characterization data through a user-friendly interface • Print your map views or publish them as PDFs • Identify technical references relevant to specific areas of interest • Calculate straight-line or pipeline-constrained distances from point sources of CO2 to potential geologic sink features • Download regional data layers (feature under development) (Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

  6. An Icelandic wind atlas

    NASA Astrophysics Data System (ADS)

    Nawri, Nikolai; Nína Petersen, Gudrun; Bjornsson, Halldór; Arason, Þórður; Jónasson, Kristján

    2013-04-01

    While Iceland has ample wind, its use for energy production has been limited. Electricity in Iceland is generated from renewable hydro- and geothermal source and adding wind energy has not be considered practical or even necessary. However, adding wind into the energy mix is becoming a more viable options as opportunities for new hydro or geothermal power installation become limited. In order to obtain an estimate of the wind energy potential of Iceland a wind atlas has been developed as a part of the Nordic project "Improved Forecast of Wind, Waves and Icing" (IceWind). The atlas is based on mesoscale model runs produced with the Weather Research and Forecasting (WRF) Model and high-resolution regional analyses obtained through the Wind Atlas Analysis and Application Program (WAsP). The wind atlas shows that the wind energy potential is considerable. The regions with the strongest average wind are nevertheless impractical for wind farms, due to distance from road infrastructure and power grid as well as harsh winter climate. However, even in easily accessible regions wind energy potential in Iceland, as measured by annual average power density, is among the highest in Western Europe. There is a strong seasonal cycle, with wintertime power densities throughout the island being at least a factor of two higher than during summer. Calculations show that a modest wind farm of ten medium size turbines would produce more energy throughout the year than a small hydro power plants making wind energy a viable additional option.

  7. Atlas of NATO.

    ERIC Educational Resources Information Center

    Young, Harry F.

    This atlas provides basic information about the North Atlantic Treaty Organization (NATO). Formed in response to growing concern for the security of Western Europe after World War II, NATO is a vehicle for Western efforts to reduce East-West tensions and the level of armaments. NATO promotes political and economic collaboration as well as military…

  8. Process for producing silicon

    DOEpatents

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  9. Producing Silicon Carbide/Silicon Nitride Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Manufacturing process makes CxSiyNz fibers. Precursor fibers spun from extruding machine charged with polycarbosilazane resin. When pyrolyzed, resin converted to cross-linked mixture of silicon carbide and silicon nitride, still in fiber form. CxSiyNz fibers promising substitutes for carbon fibers in high-strength, low-weight composites where high electrical conductivity unwanted.

  10. Electrodeposition of molten silicon

    DOEpatents

    De Mattei, Robert C.; Elwell, Dennis; Feigelson, Robert S.

    1981-01-01

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is removed from the bath.

  11. Efficient Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Hill, D. M.; Jewett, D. N.

    1983-01-01

    High-purity silicon efficiently produced and transferred by continuous two-cycle reactor. New reactor operates in relatively-narrow temperature rate and uses large surfaces area to minimize heat expenditure and processing time in producing silicon by hydrogen reduction of trichlorosilane. Two cycles of reactor consists of silicon production and removal.

  12. Electrodeposition of molten silicon

    SciTech Connect

    De Mattei, R.C.; Elwell, D.; Feigelson, R.S.

    1981-09-29

    Silicon dioxide is dissolved in a molten electrolytic bath, preferably comprising barium oxide and barium fluoride. A direct current is passed between an anode and a cathode in the bath to reduce the dissolved silicon dioxide to non-alloyed silicon in molten form, which is then removed from the bath.

  13. Digital solar edge tracker for the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E., III; Moore, A. S.; Stump, C. W.; Mayo, L. S.

    1987-01-01

    The optical and electronic design of the Halogen Occultation Experiment (Haloe) elevation sun sensor is described. The Haloe instrument is a gas-correlation radiometer now being developed at NASA Langley for the Upper Atmosphere Research Satellite. The system uses a Galilean telescope to form a solar image on a linear silicon photodiode array. The array is a self-scanned monolithic CCD. The addresses of both solar edges imaged on the array are used by the control/pointing system to scan the Haloe science instantaneous field of view (IFOV) across the vertical solar diameter during instrument calibration and then to maintain the science IFOV 4 arcmin below the top edge during the science data occultation event. Vertical resolution of 16 arcsec and a radiometric dynamic range of 100 are achieved at the 700-nm operating wavelength. The design provides for loss of individual photodiode elements without loss of angular tracking capability.

  14. tkLayout: a design tool for innovative silicon tracking detectors

    NASA Astrophysics Data System (ADS)

    Bianchi, G.

    2014-03-01

    and simulation experts to focus their efforts on other important or specific issues. Even if tkLayout was designed for the CMS tracker upgrade project, its flexibility makes it experiment-agnostic, so that it could be easily adapted to model other tracking detectors. The technology behind tkLayout is presented, as well as some of the results obtained in the context of the CMS silicon tracker design studies.

  15. The D/Ø Silicon Track Trigger

    NASA Astrophysics Data System (ADS)

    Steinbrück, Georg

    2003-09-01

    We describe a trigger preprocessor to be used by the D Ø experiment for selecting events with tracks from the decay of long-lived particles. This Level 2 impact parameter trigger utilizes information from the Silicon Microstrip Tracker to reconstruct tracks with improved spatial and momentum resolutions compared to those obtained by the Level 1 tracking trigger. It is constructed of VME boards with much of the logic existing in programmable processors. A common motherboard provides the I/O infrastructure and three different daughter boards perform the tasks of identifying the roads from the tracking trigger data, finding the clusters in the roads in the silicon detector, and fitting tracks to the clusters. This approach provides flexibility for the design, testing and maintenance phases of the project. The track parameters are provided to the trigger framework in 25 μs. The effective impact parameter resolution for high-momentum tracks is 35 μm, dominated by the size of the Tevatron beam.

  16. Improving atlas methodology

    USGS Publications Warehouse

    Robbins, C.S.; Dowell, B.A.; O'Brien, J.

    1987-01-01

    We are studying a sample of Maryland (2 %) and New Hampshire (4 %) Atlas blocks and a small sample in Maine. These three States used different sampling methods and block sizes. We compare sampling techniques, roadside with off-road coverage, our coverage with that of the volunteers, and different methods of quantifying Atlas results. The 7 1/2' (12-km) blocks used in the Maine Atlas are satisfactory for coarse mapping, but are too large to enable changes to be detected in the future. Most states are subdividing the standard 7 1/2' maps into six 5-km blocks. The random 1/6 sample of 5-km blocks used in New Hampshire, Vermont (published 1985), and many other states has the advantage of permitting detection of some changes in the future, but the disadvantage of leaving important habitats unsampled. The Maryland system of atlasing all 1,200 5-km blocks and covering one out of each six by quarterblocks (2 1/2-km) is far superior if enough observers can be found. A good compromise, not yet attempted, would be to Atlas a 1/6 random sample of 5-km blocks and also one other carefully selected (non-random) block on the same 7 1/2' map--the block that would include the best sample of habitats or elevations not in the random block. In our sample the second block raised the percentage of birds found from 86% of the birds recorded in the 7 1/2' quadrangle to 93%. It was helpful to list the expected species in each block and to revise this list annually. We estimate that 90-100 species could be found with intensive effort in most Maryland blocks; perhaps 95-105 in New Hampshire. It was also helpful to know which species were under-sampled so we could make a special effort to search for these. A total of 75 species per block (or 75% of the expected species in blocks with very restricted habitat diversity) is considered a practical and adequate goal in these States. When fewer than 60 species are found per block, a high proportion of the rarer species are missed, as well as some of

  17. Cross modality registration of video and magnetic tracker data for 3D appearance and structure modeling

    NASA Astrophysics Data System (ADS)

    Sargent, Dusty; Chen, Chao-I.; Wang, Yuan-Fang

    2010-02-01

    The paper reports a fully-automated, cross-modality sensor data registration scheme between video and magnetic tracker data. This registration scheme is intended for use in computerized imaging systems to model the appearance, structure, and dimension of human anatomy in three dimensions (3D) from endoscopic videos, particularly colonoscopic videos, for cancer research and clinical practices. The proposed cross-modality calibration procedure operates this way: Before a colonoscopic procedure, the surgeon inserts a magnetic tracker into the working channel of the endoscope or otherwise fixes the tracker's position on the scope. The surgeon then maneuvers the scope-tracker assembly to view a checkerboard calibration pattern from a few different viewpoints for a few seconds. The calibration procedure is then completed, and the relative pose (translation and rotation) between the reference frames of the magnetic tracker and the scope is determined. During the colonoscopic procedure, the readings from the magnetic tracker are used to automatically deduce the pose (both position and orientation) of the scope's reference frame over time, without complicated image analysis. Knowing the scope movement over time then allows us to infer the 3D appearance and structure of the organs and tissues in the scene. While there are other well-established mechanisms for inferring the movement of the camera (scope) from images, they are often sensitive to mistakes in image analysis, error accumulation, and structure deformation. The proposed method using a magnetic tracker to establish the camera motion parameters thus provides a robust and efficient alternative for 3D model construction. Furthermore, the calibration procedure does not require special training nor use expensive calibration equipment (except for a camera calibration pattern-a checkerboard pattern-that can be printed on any laser or inkjet printer).

  18. Behavior Change Techniques Present in Wearable Activity Trackers: A Critical Analysis

    PubMed Central

    Mercer, Kathryn; Li, Melissa; Giangregorio, Lora; Burns, Catherine

    2016-01-01

    Background Wearable activity trackers are promising as interventions that offer guidance and support for increasing physical activity and health-focused tracking. Most adults do not meet their recommended daily activity guidelines, and wearable fitness trackers are increasingly cited as having great potential to improve the physical activity levels of adults. Objective The objective of this study was to use the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy to examine if the design of wearable activity trackers incorporates behavior change techniques (BCTs). A secondary objective was to critically analyze whether the BCTs present relate to known drivers of behavior change, such as self-efficacy, with the intention of extending applicability to older adults in addition to the overall population. Methods Wearing each device for a period of 1 week, two independent raters used CALO-RE taxonomy to code the BCTs of the seven wearable activity trackers available in Canada as of March 2014. These included Fitbit Flex, Misfit Shine, Withings Pulse, Jawbone UP24, Spark Activity Tracker by SparkPeople, Nike+ FuelBand SE, and Polar Loop. We calculated interrater reliability using Cohen's kappa. Results The average number of BCTs identified was 16.3/40. Withings Pulse had the highest number of BCTs and Misfit Shine had the lowest. Most techniques centered around self-monitoring and self-regulation, all of which have been associated with improved physical activity in older adults. Techniques related to planning and providing instructions were scarce. Conclusions Overall, wearable activity trackers contain several BCTs that have been shown to increase physical activity in older adults. Although more research and development must be done to fully understand the potential of wearables as health interventions, the current wearable trackers offer significant potential with regard to BCTs relevant to uptake by all populations, including older adults. PMID:27122452

  19. Glass-silicon column

    DOEpatents

    Yu, Conrad M.

    2003-12-30

    A glass-silicon column that can operate in temperature variations between room temperature and about 450.degree. C. The glass-silicon column includes large area glass, such as a thin Corning 7740 boron-silicate glass bonded to a silicon wafer, with an electrode embedded in or mounted on glass of the column, and with a self alignment silicon post/glass hole structure. The glass/silicon components are bonded, for example be anodic bonding. In one embodiment, the column includes two outer layers of silicon each bonded to an inner layer of glass, with an electrode imbedded between the layers of glass, and with at least one self alignment hole and post arrangement. The electrode functions as a column heater, and one glass/silicon component is provided with a number of flow channels adjacent the bonded surfaces.

  20. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M.

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  1. Mercury-Atlas Test Launch

    NASA Technical Reports Server (NTRS)

    1961-01-01

    A NASA Project Mercury spacecraft was test launched at 11:15 AM EST on April 25, 1961 from Cape Canaveral, Florida, in a test designed to qualify the Mercury Spacecraft and all systems, which must function during orbit and reentry from orbit. The Mercury-Atlas vehicle was destroyed by Range Safety Officer about 40 seconds after liftoff. The spacecraft was recovered and appeared to be in good condition. Atlas was designed to launch payloads into low Earth orbit, geosynchronous transfer orbit or geosynchronous orbit. NASA first launched Atlas as a space launch vehicle in 1958. Project SCORE, the first communications satellite that transmitted President Eisenhower's pre-recorded Christmas speech around the world, was launched on an Atlas. For all three robotic lunar exploration programs, Atlas was used. Atlas/ Centaur vehicles launched both Mariner and Pioneer planetary probes. The current operational Atlas II family has a 100% mission success rating. For more information about Atlas, please see Chapter 2 in Roger Launius and Dennis Jenkins' book To Reach the High Frontier published by The University Press of Kentucky in 2002.

  2. Assessment Atlas, 1982-83.

    ERIC Educational Resources Information Center

    Yosemite Community Coll. District, Modesto, CA.

    Designed to provide information of value in establishing a base for decisionmaking in the Yosemite Community College District (YCCD), this assessment atlas graphically presents statistical data on the District as a whole, its two campuses, and YCCD Central Services for 1982-83. After an introduction to the use of the assessment atlas and…

  3. Assessment Atlas, 1983-84.

    ERIC Educational Resources Information Center

    Yosemite Community Coll. District, Modesto, CA.

    Designed to provide information of value in establishing a base for decision making in the Yosemite Community College District (YCCD), this assessment atlas graphically presents statistical data for the District as a whole, its two campuses, and YCCD Central Services for 1983-84. After an introduction to the use of the assessment atlas and…

  4. Brain templates and atlases.

    PubMed

    Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain

    2012-08-15

    The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease

  5. Brain templates and atlases.

    PubMed

    Evans, Alan C; Janke, Andrew L; Collins, D Louis; Baillet, Sylvain

    2012-08-15

    The core concept within the field of brain mapping is the use of a standardized, or "stereotaxic", 3D coordinate frame for data analysis and reporting of findings from neuroimaging experiments. This simple construct allows brain researchers to combine data from many subjects such that group-averaged signals, be they structural or functional, can be detected above the background noise that would swamp subtle signals from any single subject. Where the signal is robust enough to be detected in individuals, it allows for the exploration of inter-individual variance in the location of that signal. From a larger perspective, it provides a powerful medium for comparison and/or combination of brain mapping findings from different imaging modalities and laboratories around the world. Finally, it provides a framework for the creation of large-scale neuroimaging databases or "atlases" that capture the population mean and variance in anatomical or physiological metrics as a function of age or disease. However, while the above benefits are not in question at first order, there are a number of conceptual and practical challenges that introduce second-order incompatibilities among experimental data. Stereotaxic mapping requires two basic components: (i) the specification of the 3D stereotaxic coordinate space, and (ii) a mapping function that transforms a 3D brain image from "native" space, i.e. the coordinate frame of the scanner at data acquisition, to that stereotaxic space. The first component is usually expressed by the choice of a representative 3D MR image that serves as target "template" or atlas. The native image is re-sampled from native to stereotaxic space under the mapping function that may have few or many degrees of freedom, depending upon the experimental design. The optimal choice of atlas template and mapping function depend upon considerations of age, gender, hemispheric asymmetry, anatomical correspondence, spatial normalization methodology and disease

  6. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-03-07

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers.

  7. A Brightness-Referenced Star Identification Algorithm for APS Star Trackers

    PubMed Central

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-01-01

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4∼5 times that of the pyramid method and 35∼37 times that of the geometric method. PMID:25299950

  8. Tracker: A three-dimensional raytracing program for ionospheric radio propagation

    SciTech Connect

    Argo, P.E.; DeLapp, D.; Sutherland, C.D.; Farrer, R.G.

    1994-12-01

    TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuous raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.

  9. Effects of attachment position and shoulder orientation during calibration on the accuracy of the acromial tracker.

    PubMed

    Shaheen, A F; Alexander, C M; Bull, A M J

    2011-04-29

    The acromial tracker is used to measure scapular rotations during dynamic movements. The method has low accuracy in high elevations and is sensitive to its attachment location on the acromion. The aim of this study was to investigate the effect of the attachment position and shoulder orientation during calibration on the tracker accuracy. The tracker was attached to one of three positions: near the anterior edge of the acromion process, just above the acromial angle and the meeting point between the acromion and the scapular spine. The scapula locator was used to track the scapula during bilateral abduction simultaneously. The locator was used to calibrate the tracker at: no abduction, 30°, 60°, 90° and 120° humerothoracic abduction. ANOVA tests compared RMS errors for different attachment positions and calibration angles. The results showed that attaching the device at the meeting point between the acromion and the scapular spine gave the smallest errors and it was best to calibrate the device at 60° for elevations ≤90°, at 120° for elevations >90° and at 90°or 120° for the full range of abduction. The accuracy of the tracker is significantly improved if attached appropriately and calibrated for the range of movement being measured.

  10. An accuracy measurement method for star trackers based on direct astronomic observation

    PubMed Central

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  11. A brightness-referenced star identification algorithm for APS star trackers.

    PubMed

    Zhang, Peng; Zhao, Qile; Liu, Jingnan; Liu, Ning

    2014-10-08

    Star trackers are currently the most accurate spacecraft attitude sensors. As a result, they are widely used in remote sensing satellites. Since traditional charge-coupled device (CCD)-based star trackers have a limited sensitivity range and dynamic range, the matching process for a star tracker is typically not very sensitive to star brightness. For active pixel sensor (APS) star trackers, the intensity of an imaged star is valuable information that can be used in star identification process. In this paper an improved brightness referenced star identification algorithm is presented. This algorithm utilizes the k-vector search theory and adds imaged stars' intensities to narrow the search scope and therefore increase the efficiency of the matching process. Based on different imaging conditions (slew, bright bodies, etc.) the developed matching algorithm operates in one of two identification modes: a three-star mode, and a four-star mode. If the reference bright stars (the stars brighter than three magnitude) show up, the algorithm runs the three-star mode and efficiency is further improved. The proposed method was compared with other two distinctive methods the pyramid and geometric voting methods. All three methods were tested with simulation data and actual in orbit data from the APS star tracker of ZY-3. Using a catalog composed of 1500 stars, the results show that without false stars the efficiency of this new method is 4~5 times that of the pyramid method and 35~37 times that of the geometric method.

  12. An accuracy measurement method for star trackers based on direct astronomic observation.

    PubMed

    Sun, Ting; Xing, Fei; Wang, Xiaochu; You, Zheng; Chu, Daping

    2016-01-01

    Star tracker is one of the most promising optical attitude measurement devices and it is widely used in spacecraft for its high accuracy. However, how to realize and verify such an accuracy remains a crucial but unsolved issue until now. The authenticity of the accuracy measurement method of a star tracker will eventually determine the satellite performance. A new and robust accuracy measurement method for a star tracker based on the direct astronomical observation is proposed here. In comparison with the conventional method with simulated stars, this method utilizes real navigation stars as observation targets which makes the measurement results more authoritative and authentic. Transformations between different coordinate systems are conducted on the account of the precision movements of the Earth, and the error curves of directional vectors are obtained along the three axes. Based on error analysis and accuracy definitions, a three-axis accuracy evaluation criterion has been proposed in this paper, which could determine pointing and rolling accuracy of a star tracker directly. Experimental measurements confirm that this method is effective and convenient to implement. Such a measurement environment is close to the in-orbit conditions and it can satisfy the stringent requirement for high-accuracy star trackers. PMID:26948412

  13. A Laser Testing Facility for the Characterization of Silicon Strip Detectors

    NASA Astrophysics Data System (ADS)

    Phillips, Sarah

    2011-04-01

    Silicon strip detectors are used for high-precision tracking systems in particle physics experiments. During the 12 GeV upgrade to the accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The University of New Hampshire is part of the collaboration designing and building CLAS12. Among the detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is vital to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before installation in CLAS12. UNH is designing and building a laser testing facility to perform this task. The design consists of an infrared laser system and a precision computer-controlled positioning system that scans the laser light on the detector. The detector signals are read out by a data acquisition system for analysis. The facility includes a cleanroom area and a dry storage containment system. The facility allows the characterization of the large number of detectors before the final assembly of the silicon vertex tracker.

  14. ATLAS-1 Logo

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The primary payload for the Space Shuttle mission STS-45, launched March 24, 1992, was the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1)which was mounted on nondeployable Spacelab pallets in the orbiter cargo bay. Eight countries, th U.S., France, Germany, Belgium, United Kingdom, Switzerland, The Netherlands, and Japan, provided 12 instruments designed to perform 14 investigations in four fields. Atmospheric science instruments/investigations: Atmospheric Lyman-Alpha Emissions (ALAE); Atmospheric Trace Molecule Spectroscopy (ATMOS); Grille Spectrometer (GRILLE); Imaging Spectrometric Observatory (ISO); Millimeter-Wave Atmospheric Sounder (MAS). Solar Science: Active Cavity Radiometer Irradiance Monitor (ACRIM); Measurement of the Solar Constant (SOLCON); Solar Spectrum from 180 to 3,200 Nanometers (SOLSPEC); Solar Ultraviolet Spectral Irradiance Monitor (SUSIM). Space Plasma Physics: Atmospheric Emissions Photometric Imaging (AEPI); Space Experiments with Particle Accelerators (SEPAC). Ultraviolet astronomy: Far Ultraviolet Space Telescope (FAUST). This is the logo or emblem that was designed to represent the ATLAS-1 payload.

  15. Chandra Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Anderson, Craig; Burke, Doug; Fabbiano, Giuseppina; Fruscione, Antonella; Lauer, Jennifer L.; McCollough, Michael L.; Morgan, Doug; Mossman, Amy; O'Sullivan, Ewan; Paggi, Alessandro; Trinchieri, Ginevra

    2016-01-01

    We present the new results from the Chandra Galaxy Atlas prpject. We have systematically analyzed the archival Chandra data of 50 early type galaxies to study their hot ISM. Taking full advantage of the Chandra capabilities, we produced spatially resolved data products with additional spectral information. We will make these products publicly available and use them for our focused science goals, e.g., gas morphology, scaling relation, X-ray based mass profile, circum-nuclear gas.

  16. Topographical atlas sheets

    USGS Publications Warehouse

    Wheeler, George Montague

    1876-01-01

    The following topographical atlas sheets, accompanying Appendix J.J. of the Annual Report of the Chief of Engineers, U.S. Army-being Annual Report upon U. S. Geographical Surveys-have been published during the fiscal year ending June 30, 1876, and are a portion of the series projected to embrace the territory of the United States lying west of the 100th meridian.

  17. WESTCARB Carbon Atlas

    DOE Data Explorer

    The West Coast Regional Carbon Sequestration Partnership (known as WESTCARB) was established in Fall 2003. It is one of seven research partnerships co-funded by DOE to characterize regional carbon sequestration opportunities and conduct pilot-scale validation tests. The California Energy Commission manages WESTCARB and is a major co-funder. WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas, NATCARB

  18. ATLAS reliability analysis

    SciTech Connect

    Bartsch, R.R.

    1995-09-01

    Key elements of the 36 MJ ATLAS capacitor bank have been evaluated for individual probabilities of failure. These have been combined to estimate system reliability which is to be greater than 95% on each experimental shot. This analysis utilizes Weibull or Weibull-like distributions with increasing probability of failure with the number of shots. For transmission line insulation, a minimum thickness is obtained and for the railgaps, a method for obtaining a maintenance interval from forthcoming life tests is suggested.

  19. The MROI fringe tracker: closing the loop on ICoNN

    NASA Astrophysics Data System (ADS)

    McCracken, T. M.; Jurgenson, C. A.; Santoro, F.; Shtromberg, A. V.; Alvidrez, V.; Torres, N.; Dahl, C.; Farris, A.; Buscher, D. F.; Haniff, C. A.; Young, J. S.; Seneta, E. B.; Creech-Eakman, M. J.

    2012-07-01

    The characterization of ICoNN, the Magdalena Ridge Observatory Interferometer's fringe tracker, through labor­ tory simulations is presented. The performance limits of an interferometer are set by its ability to keep the optical path difference between combination partners minimized. This is the job of the fringe tracker. Understanding the behavior and limits of the fringe tracker in a controlled environment is key to maximize the science output. This is being done with laboratory simulations of on-sky fringe tracking, termed the closed-loop fringe experi­ ment. The closed-loop fringe experiment includes synthesizing a white light source and atmospheric piston with estimation of the tracking error being fed back to mock delay lines in real-time. We report here on the progress of the closed-loop fringe experiment detailing its design, layout, controls and software.

  20. Combined Feature Based and Shape Based Visual Tracker for Robot Navigation

    NASA Technical Reports Server (NTRS)

    Deans, J.; Kunz, C.; Sargent, R.; Park, E.; Pedersen, L.

    2005-01-01

    We have developed a combined feature based and shape based visual tracking system designed to enable a planetary rover to visually track and servo to specific points chosen by a user with centimeter precision. The feature based tracker uses invariant feature detection and matching across a stereo pair, as well as matching pairs before and after robot movement in order to compute an incremental 6-DOF motion at each tracker update. This tracking method is subject to drift over time, which can be compensated by the shape based method. The shape based tracking method consists of 3D model registration, which recovers 6-DOF motion given sufficient shape and proper initialization. By integrating complementary algorithms, the combined tracker leverages the efficiency and robustness of feature based methods with the precision and accuracy of model registration. In this paper, we present the algorithms and their integration into a combined visual tracking system.

  1. CMS Tracker upgrade for HL-LHC: R&D plans, present status and perspectives

    NASA Astrophysics Data System (ADS)

    Ravera, F.

    2016-07-01

    During the high luminosity phase of the LHC (HL-LHC), the machine is expected to deliver an instantaneous luminosity of 5 ×1034cm-2s-1. A total of 3000 fb-1 of data is foreseen to be delivered, with the opening of new physics potential for the LHC experiments, but also new challenges from the point of view of both detector and electronics capabilities and radiation hardness. In order to maintain its physics reach, CMS will build a new Tracker, including a completely new Pixel Detector and Outer Tracker. The ongoing R&D activities on both pixel and strip sensors will be presented. The present status of the Inner and Outer Tracker projects will be illustrated, and the possible perspectives will be discussed.

  2. Silicone oil and fluorosilicone.

    PubMed

    Yamamoto, S; Takeuchi, S

    2000-03-01

    Silicone oil has been used to fill the vitreous cavity for long-term or permanent internal tamponade in eyes with proliferative vitreoretinopathy or complicated retinal detachment due to ocular trauma, giant retinal tears, proliferative diabetic retinopathy, and cytomegalovirus retinitis. Reports from the Silicone Study confirmed its efficacy in the treatment of proliferative vitreoretinopathy and addressed outcome differences in vitrectomized and nonvitrectomized eyes, combined retinotomy, silicone oil removal, and complications associated with silicone oil tamponade, such as intraocular pressure abnormalities and corneal abnormalities. Because silicone oil is lighter than water and not adequate in supporting the inferior quadrants, several heavier-than-water materials have been introduced for intraocular tamponade. Silicone oil can be a potential vehicle for delivering antiproliferative agents to treat proliferative vitreoretinopathy.

  3. Silicon micro-mold

    DOEpatents

    Morales, Alfredo M.

    2006-10-24

    The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.

  4. ATLAS: Forecasting Falling Rocks

    NASA Astrophysics Data System (ADS)

    Heinze, Aren; Tonry, John L.; Denneau, Larry; Stalder, Brian; Sherstyuk, Andrei

    2016-10-01

    The Asteroid Terrestrial-impact Last Alert System (ATLAS) is a new asteroid survey aimed at detecting small (10-100 meter) asteroids inbound for impact with Earth. Relative to the larger objects targeted by most surveys, these small asteroids pose very different threats to our planet. Large asteroids can be seen at great distances and measured over many years, resulting in precise orbits that enable long-term impact predictions. If an impact were predicted, a costly deflection mission would be warranted to avert global catastrophe -- but a large asteroid impact is very unlikely in the next century. By contrast, impacts from small asteroids are inevitable. Such objects can be detected only during close encounters with Earth -- encounters too brief to yield long-term predictions. Only a few days' warning could be expected for an impactor in the 10-100 meter range, but fortunately the impact of such an asteroid would cause only regional damage. As in the case of a hurricane, a quixotic attempt to deflect or destroy it would be more expensive than the damage from its impact. A better response is to save human lives by evacuating the impact zone, and then rebuild. Only a few days warning are needed for this purpose, and ATLAS is unique among asteroid surveys in being optimized to provide it. While the optimization has many facets, the most important is rapidly surveying the entire accessible sky. A small asteroid could come from any direction and go from invisibility to impact in less than a week: ATLAS must look everywhere, all the time. Sky coverage is more important than exquisite sensitivity to faint objects, because asteroids inbound for impact will eventually become quite bright. This makes ATLAS complementary to other surveys, which scan the sky at a more leisurely pace but are able to detect asteroids at greater distances. We report on ATLAS' first year of survey operations, including the maturing of robotic observation and detection strategies, and asteroid and

  5. Comparison analysis of self-shading loss in pedestal and carousel tracker systems

    NASA Astrophysics Data System (ADS)

    Ijiro, Toshikazu; Yamada, Noboru

    2013-09-01

    This paper describes the results of a self-shading loss analysis of a high concentration photovoltaic (HCPV) plant based on pedestal and carousel solar tacking systems. To determine the best possible tracker array configuration to minimize self-shading loss, a multiobjective genetic algorithm (MOGA) was used with a theoretical shadow model and cloudless solar spectrum model. As a result of MOGA optimization, the trade-off between land-use efficiency and the capacity factor in the optimized tracker arrays was characterized and compared.

  6. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  7. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  8. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Jalali, Bahram

    2009-03-01

    We propose a new class of photonic devices based on periodic stress fields in silicon that enable second-order nonlinearity as well as quasi-phase matching. Periodically poled silicon (PePSi) adds the periodic poling capability to silicon photonics and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on second-order nonlinear effects. As an example of the utility of the PePSi technology, we present simulations showing that midwave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50%.

  9. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  10. The CDFII Silicon Detector

    SciTech Connect

    Julia Thom

    2004-07-23

    The CDFII silicon detector consists of 8 layers of double-sided silicon micro-strip sensors totaling 722,432 readout channels, making it one of the largest silicon detectors in present use by an HEP experiment. After two years of data taking, we report on our experience operating the complex device. The performance of the CDFII silicon detector is presented and its impact on physics analyses is discussed. We have already observed measurable effects from radiation damage. These results and their impact on the expected lifetime of the detector are briefly reviewed.

  11. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  12. Automated Loads Analysis System (ATLAS)

    NASA Technical Reports Server (NTRS)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  13. Methodology of Lithuanian climate atlas mapping

    NASA Astrophysics Data System (ADS)

    Valiukas, Donatas; Galvonaitė, Audronė; Česnulevičius, Algimantas

    2015-06-01

    Climate atlases summarize large sets of quantitative and qualitative data and are results of complex analytical cartographic work. These special geographical publications summarize long term meteorological observations, provide maps and figures which characterise different climate elements. Visual information is supplemented with explanatory texts. A lot of information on short and long term changes of climate elements were provided in published Lithuanian atlases (Atlas of Lithuanian SDR, 1981; Climate Atlas of Lithuania, 2013), as well as in prepared but unpublished Lithuanian Atlas (1989) and in upcoming new national atlas publications (National Atlas of Lithuania. 1st part, 2014). Climate atlases has to be constantly updated to be relevant and to describe current climate conditions. Comprehensive indicators of Lithuanian climate are provided in different cartographic publications. Different time periods, various data sets and diverse cartographic data analysis tools and visualisation methods were used in these different publications.

  14. MarsAtlas: A cortical parcellation atlas for functional mapping.

    PubMed

    Auzias, Guillaume; Coulon, Olivier; Brovelli, Andrea

    2016-04-01

    An open question in neuroimaging is how to develop anatomical brain atlases for the analysis of functional data. Here, we present a cortical parcellation model based on macroanatomical information and test its validity on visuomotor-related cortical functional networks. The parcellation model is based on a recently developed cortical parameterization method (Auzias et al., [2013]: IEEE Trans Med Imaging 32:873-887), called HIP-HOP. This method exploits a set of primary and secondary sulci to create an orthogonal coordinate system on the cortical surface. A natural parcellation scheme arises from the axes of the HIP-HOP model running along the fundus of selected sulci. The resulting parcellation scheme, called MarsAtlas, complies with dorsoventral/rostrocaudal direction fields and allows inter-subject matching. To test it for functional mapping, we analyzed a MEG dataset collected from human participants performing an arbitrary visuomotor mapping task. Single-trial high-gamma activity, HGA (60-120 Hz), was estimated using spectral analysis and beamforming techniques at cortical areas arising from a Talairach atlas (i.e., Brodmann areas) and MarsAtlas. Using both atlases, we confirmed that visuomotor associations involve an increase in HGA over the sensorimotor and fronto-parietal network, in addition to medial prefrontal areas. However, MarsAtlas provided: (1) crucial functional information along both the dorsolateral and rostrocaudal direction; (2) an increase in statistical significance. To conclude, our results suggest that the MarsAtlas is a valid anatomical atlas for functional mapping, and represents a potential anatomical framework for integration of functional data arising from multiple techniques such as MEG, intracranial EEG and fMRI. PMID:26813563

  15. SALT, a dedicated readout chip for high precision tracking silicon strip detectors at the LHCb Upgrade

    NASA Astrophysics Data System (ADS)

    Bugiel, Sz.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kuczynska, M.; Moron, J.; Swientek, K.; Szumlak, T.

    2016-02-01

    The Upstream Tracker (UT) silicon strip detector, one of the central parts of the tracker system of the modernised LHCb experiment, will use a new 128-channel readout ASIC called SALT. It will extract and digitise analogue signals from the UT sensors, perform digital signal processing and transmit a serial output data. The SALT is being designed in CMOS 130 nm process and uses a novel architecture comprising of analog front-end and fast (40 MSps) ultra-low power (<0.5 mW) 6-bit ADC in each channel. The prototype ASICs of important functional blocks, like analogue front-end, 6-bit SAR ADC, PLL, and DLL, were designed, fabricated and tested. A prototype of an 8-channel version of the SALT chip, comprising all important functionalities was also designed and fabricated. The architecture and design of the SALT, together with the selected preliminary tests results, are presented.

  16. FPGA-based signal processing for the LHCb silicon strip detectors

    NASA Astrophysics Data System (ADS)

    Haefeli, G.; Bay, A.; Gong, A.

    2006-12-01

    We have developed an electronic board (TELL1) to interface the DAQ system of the LHCb experiment at CERN. Two hundred and eighty-nine TELL1 boards are needed to read out the different subdetectors including the silicon VEertex LOcator (VELO) (172 k strips), the Trigger Tracker (TT) (147 k strips) and the Inner Tracker (129 k strips). Each board can handle either 64 analog or 24 digital optical links. The TELL1 mother board provides common mode correction, zero suppression, data formatting, and a large network interface buffer. To satisfy the different requirements we have adopted a flexible FPGA design and made use of mezzanine cards. Mezzanines are used for data input from digital optical and analog copper links as well as for the Gigabit Ethernet interface to DAQ.

  17. Microgravity silicon zoning investigation

    NASA Technical Reports Server (NTRS)

    Kern, E. L.; Gill, G. L., Jr.

    1983-01-01

    A resistance heated zoner, suitable for early zoning experiments with silicon, was designed and put into operation. The initial power usage and size was designed for an shown to be compatible with payload carriers contemplated for the Shuttle. This equipment will be used in the definition and development of flight experiments and apparatus for float zoning silicon and other materials in microgravity.

  18. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  19. Periodically poled silicon

    NASA Astrophysics Data System (ADS)

    Hon, Nick K.; Tsia, Kevin K.; Solli, Daniel R.; Khurgin, Jacob B.; Jalali, Bahram

    2010-02-01

    Bulk centrosymmetric silicon lacks second-order optical nonlinearity χ(2) - a foundational component of nonlinear optics. Here, we propose a new class of photonic device which enables χ(2) as well as quasi-phase matching based on periodic stress fields in silicon - periodically-poled silicon (PePSi). This concept adds the periodic poling capability to silicon photonics, and allows the excellent crystal quality and advanced manufacturing capabilities of silicon to be harnessed for devices based on χ(2)) effects. The concept can also be simply achieved by having periodic arrangement of stressed thin films along a silicon waveguide. As an example of the utility, we present simulations showing that mid-wave infrared radiation can be efficiently generated through difference frequency generation from near-infrared with a conversion efficiency of 50% based on χ(2) values measurements for strained silicon reported in the literature [Jacobson et al. Nature 441, 199 (2006)]. The use of PePSi for frequency conversion can also be extended to terahertz generation. With integrated piezoelectric material, dynamically control of χ(2)nonlinearity in PePSi waveguide may also be achieved. The successful realization of PePSi based devices depends on the strength of the stress induced χ(2) in silicon. Presently, there exists a significant discrepancy in the literature between the theoretical and experimentally measured values. We present a simple theoretical model that produces result consistent with prior theoretical works and use this model to identify possible reasons for this discrepancy.

  20. Silicon Stokes terahertz laser

    SciTech Connect

    Pavlov, S. G.; Huebers, H.-W.; Hovenier, J. N.; Klaassen, T. O.; Carder, D. A.; Phillips, P. J.; Redlich, B.; Riemann, H.; Zhukavin, R. Kh.; Shastin, V. N.

    2007-04-10

    A Raman-type silicon laser at terahertz frequencies has been realized. Stokes-shifted stimulated emission has been observed from silicon crystals doped by antimony donors when optically excited by an infrared free electron laser. The Raman lasing was obtained due to resonant scattering on electronic states of a donor atom.

  1. Cleaning up Silicon

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A development program that started in 1975 between Union Carbide and JPL, led to Advanced Silicon Materials LLC's, formerly ASiMI, commercial process for producing silane in viable quantities. The process was expanded to include the production of high-purity polysilicon for electronic devices. The technology came out of JPL's Low Cost Silicon Array Project.

  2. Silicon research and technology

    NASA Technical Reports Server (NTRS)

    Meulenberg, A.

    1982-01-01

    The development of solar cells suitable for space applications are discussed, along with the advantages and disadvantages of silicon and gallium arsenide solar cells. The goal of a silicon solar cell with 18% efficiency has not been reached and does not appear promising in the near future.

  3. Silicon carbide ceramic production

    NASA Technical Reports Server (NTRS)

    Suzuki, K.; Shinohara, N.

    1984-01-01

    A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.

  4. Ground Testing Strategies for Verifying the Slew Rate Tolerance of Star Trackers

    PubMed Central

    Dzamba, Tom; Enright, John

    2014-01-01

    The performance of a star tracker is largely based on the availability of its attitude solution. Several methods exist to assess star tracker availability under both static and dynamic imaging conditions. However, these methods typically make various idealizations that can limit the accuracy of these results. This study aims to increase the fidelity of star tracker availability modeling by accounting for the effects of detection logic and pixel saturation on star detection. We achieve this by developing an analytical model for the focal plane intensity distribution of a star in the presence of sensor slew. Using the developed model, we examine the effects of slew rate on star detection using simulations and lab tests. The developed approach allows us to determine the maximum slew rate for which a star of a given stellar magnitude can still be detected. This information can then be used to describe the availability of a star tracker attitude solution as a function of slew rate, both spatially, across the entire celestial sphere, or locally, along a specified orientation track. PMID:24577522

  5. Interrogation of Patient Smartphone Activity Tracker to Assist Arrhythmia Management.

    PubMed

    Rudner, Joshua; McDougall, Carol; Sailam, Vivek; Smith, Monika; Sacchetti, Alfred

    2016-09-01

    A 42-year-old man presented to the emergency department (ED) with newly diagnosed atrial fibrillation of unknown duration. Interrogation of the patient's wrist-worn activity tracker and smartphone application identified the onset of the arrhythmia as within the previous 3 hours, permitting electrocardioversion and discharge of the patient from the ED.

  6. Increasing Physical Activity in Preschool: A Pilot Study to Evaluate Animal Trackers

    ERIC Educational Resources Information Center

    Williams, Christine L.; Carter, Betty Jean; Kibbe, Debra L.; Dennison, David

    2009-01-01

    Objective: This report describes a pilot study to evaluate Animal Trackers (AT), a preschool program designed to (1) increase structured physical activity (PA) during the preschool day; (2) increase practice of gross motor skills; (3) provide teachers with an easy-to-use PA program regardless of teacher experience; and (4) implement a teacher…

  7. Bittracker-a bitmap tracker for visual tracking under very general conditions.

    PubMed

    Leichter, Ido; Lindenbaum, Michael; Rivlin, Ehud

    2008-09-01

    This paper addresses the problem of visual tracking under very general conditions: a possibly non-rigid target whose appearance may drastically change over time; general camera motion; a 3D scene; and no a priori information except initialization. This is in contrast to the vast majority of trackers which rely on some limited model in which, for example, the target's appearance is known a priori or restricted, the scene is planar, or a pan tilt zoom camera is used. Their goal is to achieve speed and robustness, but their limited context may cause them to fail in the more general case. The proposed tracker works by approximating, in each frame, a PDF (probability distribution function) of the target's bitmap and then estimating the maximum a posteriori bitmap. The PDF is marginalized over all possible motions per pixel, thus avoiding the stage in which optical flow is determined. This is an advantage over other general-context trackers that do not use the motion cue at all or rely on the error-prone calculation of optical flow. Using a Gibbs distribution with respect to the first-order neighborhood system yields a bitmap PDF whose maximization may be transformed into that of a quadratic pseudo-Boolean function, the maximum of which is approximated via a reduction to a maximum-flow problem. Many experiments were conducted to demonstrate that the tracker is able to track under the aforementioned general context. PMID:18617716

  8. Investigating the Magnetic Interaction with Geomag and Tracker Video Analysis: Static Equilibrium and Anharmonic Dynamics

    ERIC Educational Resources Information Center

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2012-01-01

    In this paper, we describe how simple experiments realizable by using easily found and low-cost materials allow students to explore quantitatively the magnetic interaction thanks to the help of an Open Source Physics tool, the Tracker Video Analysis software. The static equilibrium of a "column" of permanents magnets is carefully investigated by…

  9. EyeTribe Tracker Data Accuracy Evaluation and Its Interconnection with Hypothesis Software for Cartographic Purposes

    PubMed Central

    Stachoň, Zdeněk; Šašinka, Čeněk; Doležalová, Jitka

    2016-01-01

    The mixed research design is a progressive methodological discourse that combines the advantages of quantitative and qualitative methods. Its possibilities of application are, however, dependent on the efficiency with which the particular research techniques are used and combined. The aim of the paper is to introduce the possible combination of Hypothesis with EyeTribe tracker. The Hypothesis is intended for quantitative data acquisition and the EyeTribe is intended for qualitative (eye-tracking) data recording. In the first part of the paper, Hypothesis software is described. The Hypothesis platform provides an environment for web-based computerized experiment design and mass data collection. Then, evaluation of the accuracy of data recorded by EyeTribe tracker was performed with the use of concurrent recording together with the SMI RED 250 eye-tracker. Both qualitative and quantitative results showed that data accuracy is sufficient for cartographic research. In the third part of the paper, a system for connecting EyeTribe tracker and Hypothesis software is presented. The interconnection was performed with the help of developed web application HypOgama. The created system uses open-source software OGAMA for recording the eye-movements of participants together with quantitative data from Hypothesis. The final part of the paper describes the integrated research system combining Hypothesis and EyeTribe. PMID:27087805

  10. Correcting Students' Misconceptions about Automobile Braking Distances and Video Analysis Using Interactive Program Tracker

    ERIC Educational Resources Information Center

    Hockicko, Peter; Trpišová, Beáta; Ondruš, Ján

    2014-01-01

    The present paper informs about an analysis of students' conceptions about car braking distances and also presents one of the novel methods of learning: an interactive computer program Tracker that we used to analyse the process of braking of a car. The analysis of the students' conceptions about car braking distances consisted in…

  11. Rotation Angle for the Optimum Tracking of One-Axis Trackers

    SciTech Connect

    Marion, W. F.; Dobos, A. P.

    2013-07-01

    An equation for the rotation angle for optimum tracking of one-axis trackers is derived along with equations giving the relationships between the rotation angle and the surface tilt and azimuth angles. These equations are useful for improved modeling of the solar radiation available to a collector with tracking constraints and for determining the appropriate motor revolutions for optimum tracking.

  12. Hard-wired digital data preprocessing applied within a modular star and target tracker

    NASA Astrophysics Data System (ADS)

    Schmidt, Uwe; Wunder, Dietmar

    1997-10-01

    Star sensors developed in the last years can be enhanced in terms of mass reduction, lower power consumption, and operational flexibility, by taking advantage of improvements in the detector technology and the electronics components. Jena-Optronik GmbH developed an intelligent modular star and target named 'stellar and extended target intelligent sensor' (SETIS). Emphasis was placed to increase the sensor adaptability to meet specific mission requirements. The intelligent modular star and target tracker shall generate positional information regarding a number of celestial targets or shall act as a navigation camera. The targets will be either stars or extended objects like comets and planetary objects, or both simultaneously. Deign drivers like simultaneous tracking of extended targets and stars or searching for new objects during tracking of already detected objects require a powerful hard-wired digital data preprocessing. An advanced rad-tolerant ASIC- technology is used for the star tracker preprocessor electronics. All of the necessary preprocessing star tracker functions like pixel defect correction, filtering, on-line background estimation, thresholding, object detection and extraction and pixel centroiding are realized in the ASIC design. The technical approach for the intelligent modular star and target tracker is presented in detail. Emphasis is placed on the description of the powerful signal preprocessing capabilities.

  13. Ground testing strategies for verifying the slew rate tolerance of star trackers.

    PubMed

    Dzamba, Tom; Enright, John

    2014-02-26

    The performance of a star tracker is largely based on the availability of its attitude solution. Several methods exist to assess star tracker availability under both static and dynamic imaging conditions. However, these methods typically make various idealizations that can limit the accuracy of these results. This study aims to increase the fidelity of star tracker availability modeling by accounting for the effects of detection logic and pixel saturation on star detection. We achieve this by developing an analytical model for the focal plane intensity distribution of a star in the presence of sensor slew. Using the developed model, we examine the effects of slew rate on star detection using simulations and lab tests. The developed approach allows us to determine the maximum slew rate for which a star of a given stellar magnitude can still be detected. This information can then be used to describe the availability of a star tracker attitude solution as a function of slew rate, both spatially, across the entire celestial sphere, or locally, along a specified orientation track.

  14. EyeTribe Tracker Data Accuracy Evaluation and Its Interconnection with Hypothesis Software for Cartographic Purposes.

    PubMed

    Popelka, Stanislav; Stachoň, Zdeněk; Šašinka, Čeněk; Doležalová, Jitka

    2016-01-01

    The mixed research design is a progressive methodological discourse that combines the advantages of quantitative and qualitative methods. Its possibilities of application are, however, dependent on the efficiency with which the particular research techniques are used and combined. The aim of the paper is to introduce the possible combination of Hypothesis with EyeTribe tracker. The Hypothesis is intended for quantitative data acquisition and the EyeTribe is intended for qualitative (eye-tracking) data recording. In the first part of the paper, Hypothesis software is described. The Hypothesis platform provides an environment for web-based computerized experiment design and mass data collection. Then, evaluation of the accuracy of data recorded by EyeTribe tracker was performed with the use of concurrent recording together with the SMI RED 250 eye-tracker. Both qualitative and quantitative results showed that data accuracy is sufficient for cartographic research. In the third part of the paper, a system for connecting EyeTribe tracker and Hypothesis software is presented. The interconnection was performed with the help of developed web application HypOgama. The created system uses open-source software OGAMA for recording the eye-movements of participants together with quantitative data from Hypothesis. The final part of the paper describes the integrated research system combining Hypothesis and EyeTribe.

  15. Using Tracker to Understand "Toss Up" and Free Fall Motion: A Case Study

    ERIC Educational Resources Information Center

    Wee, Loo Kang; Tan, Kim Kia; Leong, Tze Kwang; Tan, Ching

    2015-01-01

    This paper reports the use of Tracker as a computer-based learning tool to support effective learning and teaching of "toss up" and free fall motion for beginning secondary three (15?year-old) students. The case study involved (N = 123) students from express pure physics classes at a mainstream school in Singapore. We used eight…

  16. FMT (Flight Software Memory Tracker) For Cassini Spacecraft-Software Engineering Using JAVA

    NASA Technical Reports Server (NTRS)

    Kan, Edwin P.; Uffelman, Hal; Wax, Allan H.

    1997-01-01

    The software engineering design of the Flight Software Memory Tracker (FMT) Tool is discussed in this paper. FMT is a ground analysis software set, consisting of utilities and procedures, designed to track the flight software, i.e., images of memory load and updatable parameters of the computers on-board Cassini spacecraft. FMT is implemented in Java.

  17. BioFuels Atlas (Presentation)

    SciTech Connect

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  18. Ceres' sunlight atlas

    NASA Astrophysics Data System (ADS)

    Molaro, P.; Centurión, M.

    2011-01-01

    Context. Astronomical research dealing with accurate radial velocity measurements need reliable astronomical standards to calibrate the spectrographs and to assess possible systematics. Stellar radial velocity standards offer a reference at the level of a few hundred m s-1 and are not adequate for most present needs. Aims: We aim to show that sunlight reflected by asteroids is a fairly accessible way to record a high-resolution solar spectrum from the whole disk, which can therefore be used as a radial velocity standard and can improve the uncertainties of solar line positions. Methods: We used solar light reflected by the asteroid Ceres observed with HARPS to measure solar lines' wavelengths. Results: We provide a new solar atlas with 491 line wavelengths in the range 540-690 nm and 222 lines in the range 400-410 nm obtained from reflected solar spectrum of Ceres. These measurements are consistent with those of Allende Prieto & Garcia Lopez (1998b) based on FTS solar atlases but with a factor 3 higher precision. Conclusions: This atlas provides a benchmark for wavelength calibration to check radial velocity accuracy down to 44 m s-1 locally and a few m s-1 globally. The asteroid-based technique could provide a new way to track radial velocity shifts with solar activity cycle, as well as to derive convective shifts suitable for comparison with theoretical atmospheric models. It could also be used to study radial velocity deviations in spectrographs such as those recently detected in HIRES and UVES. Dedicated HARPS observations of other asteroids could improve present results substantially and these investigations have been solicited. Full Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/525/A74

  19. SimTracker - Using the Web to track computer simulation results

    SciTech Connect

    Long, J.; Spencer, P.; Springmeyer, R.

    1998-08-26

    Large-scale computer simulations, a hallmark of computing at Lawrence Livermore National Laboratory (LLNL), often take days to run and can produce massive amounts of output. The typical environment of many LLNL scientists includes multiple hardware platforms, a large collection of eclectic software applications, data stored on many devices in many formats, and little standard metadata, which is accessible documentation about the data. The exploration of simulation results typically proceeds as a laborious process requiring knowledge of this complex environment and many application programs. We have addressed this problem by developing a web-based approach for exploring simulation results via the automatic generation of metadata summaries which provide convenient access to the data sets and associated analysis tools. In this paper we will describe the SimTracker tool for automatically generating metadata that serves as a quick overview and index to the archived results of simulations. The SimTracker application consists of two parts - a generation component and a viewing component. The generation component captures and generates calculation metadata from a simulation. These metadata include graphical snapshots from various stages of the run, pointers to the input and output files from the simulation, and assorted annotations describing the run. SimTracker generation can be done either during a simulation or afterwards. When integrated with a code system, SimTracker does its work on the fly, allowing the user to monitor a calculation while it is running. The viewing component of SimTracker provides a web-based mechanism for both quick perusing and careful analysis of simulation results. HTML is created on the fly from a series of Perl CGI scripts and metadata extracted from a database. A variety of views are provided, ranging from a high-level table of contents showing all of one's simulations, to an in-depth results page from which numeric values can be extracted

  20. CarbonTracker-Lagrange: A model-data assimilation system for North American carbon flux estimates

    NASA Astrophysics Data System (ADS)

    He, Wei; Chen, Huilin; van der Velde, Ivar; Andrews, Arlyn; Sweeney, Colm; Baker, Ian; Ju, Weimin; van der Laan-Luijkx, Ingrid; Tans, Pieter; Peters, Wouter

    2016-04-01

    Understanding the regional carbon fluxes is of great importance for climate-related studies. To derive these carbon fluxes, atmospheric inverse modeling methods are often used. Different from global inverse modeling, regional studies need to deal with lateral boundary conditions (BCs) at the outer atmospheric domain studied. Also, regional inverse modeling systems typically use a higher spatial resolution and can be more computation-intensive. In this study, we implement a regional inverse modeling system for atmospheric CO₂ based on the CarbonTracker framework. We combine it with a high-resolution Lagrangian transport model, the Stochastic Time-Inverted Lagrangian Transport model driven by the Weather Forecast and Research meteorological fields (WRF-STILT). The new system uses independent information from aircraft CO₂ profiles to optimize lateral BCs, while simultaneously optimizing biosphere fluxes with near-surface CO₂ observations from tall towers. This Lagrangian transport model with precalculated footprints is computational more efficient than using an Eulerian model. We take SiBCASA biosphere model results as prior NEE from the terrestrial biosphere. Three different lateral BCs, derived from CarbonTracker North America mole fraction fields, CarbonTracker Europe mole fraction fields and an empirical BC from NOAA aircraft profiles, are employed to investigate the influence of BCs. To estimate the uncertainties of the optimized fluxes from the system and to determine the impacts of system setup on biosphere flux covariances, BC uncertainties and model-data mismatches, we tested various prior biosphere fluxes and BCs. To estimate the transport uncertainties, we also tested an alternative Lagrangian transport model Hybrid Single Particle Lagrangian Integrated Trajectory Model driven by the North American Mesoscale Forecast System meteorological fields (HYSPLIT-NAM12). Based on the above tests, we achieved an ensemble of inverse estimates from our system

  1. Reversible Cycling of Silicon and Silicon Alloys

    NASA Astrophysics Data System (ADS)

    Obrovac, Mark

    2012-02-01

    Lithium ion batteries typically use a graphite negative electrode. Silicon can store more lithium than any other element and has long been considered as an attractive replacement for graphite. The theoretical lithium storage capacity of silicon is nearly ten times higher than graphite volumetrically and three times higher gravimetrically. The equilibrium Si-Li binary system is well known. Completely new phase behaviors are observed at room temperature. This includes the formation of a new phase, Li15Si4, which is the highest lithium containing phase at room temperature [1]. The formation of Li15Si4 is accompanied by a 280 percent volume expansion of silicon. During de-alloying this phase contracts, forming amorphous silicon. The volume expansion of alloys can cause intra-particle fracture and inter-particle disconnection; leading to loss of cycle life. To overcome issues with volume expansion requires a detailed knowledge of Li-Si phase behavior, careful design of the composition and nanostructure of the alloy and the microstructure of the negative electrode [2]. In this presentation the phase behavior of the Li-Si system will be described. Using this knowledge alone, strategies can be developed so that silicon can be reversibly cycled in a battery hundreds of times. Further increases in energy density and efficiency can be gained by alloying silicon with other elements, while controlling microstructure [2]. Coupled with negative electrode design strategies, practical negative electrodes for lithium ion cells can be developed based on bulk materials, with significant energy density improvement over conventional electrodes. [4pt] [1] M.N. Obrovac and L.J. Krause, J. Electrochem. Soc., 154 (2007) A103. [0pt] [2] M.N. Obrovac, Leif Christensen, Dinh Ba Le, and J.R. Dahn, J. Electrochem. Soc., 154 (2007) A849

  2. Silicone-containing composition

    SciTech Connect

    Mohamed, Mustafa

    2012-01-24

    A silicone-containing composition comprises the reaction product of a first component and an excess of an isocyanate component relative to the first component to form an isocyanated intermediary. The first component is selected from one of a polysiloxane and a silicone resin. The first component includes a carbon-bonded functional group selected from one of a hydroxyl group and an amine group. The isocyanate component is reactive with the carbon-bonded functional group of the first component. The isocyanated intermediary includes a plurality of isocyanate functional groups. The silicone-containing composition comprises the further reaction product of a second component, which is selected from the other of the polysiloxane and the silicone resin. The second component includes a plurality of carbon-bonded functional groups reactive with the isocyanate functional groups of the isocyanated intermediary for preparing the silicone-containing composition.

  3. Intraventricular Silicone Oil

    PubMed Central

    Mathis, Stéphane; Boissonnot, Michèle; Tasu, Jean-Pierre; Simonet, Charles; Ciron, Jonathan; Neau, Jean-Philippe

    2016-01-01

    Abstract Intracranial silicone oil is a rare complication of intraocular endotamponade with silicone oil. We describe a case of intraventricular silicone oil fortuitously observed 38 months after an intraocular tamponade for a complicated retinal detachment in an 82 year-old woman admitted in the Department of Neurology for a stroke. We confirm the migration of silicone oil along the optic nerve. We discuss this rare entity with a review of the few other cases reported in the medical literature. Intraventricular migration of silicone oil after intraocular endotamponade is usually asymptomatic but have to be known of the neurologists and the radiologists because of its differential diagnosis that are intraventricular hemorrhage and tumor. PMID:26735537

  4. Alaska marine ice atlas

    SciTech Connect

    LaBelle, J.C.; Wise, J.L.; Voelker, R.P.; Schulze, R.H.; Wohl, G.M.

    1982-01-01

    A comprehensive Atlas of Alaska marine ice is presented. It includes information on pack and landfast sea ice and calving tidewater glacier ice. It also gives information on ice and related environmental conditions collected over several years time and indicates the normal and extreme conditions that might be expected in Alaska coastal waters. Much of the information on ice conditions in Alaska coastal waters has emanated from research activities in outer continental shelf regions under assessment for oil and gas exploration and development potential. (DMC)

  5. Neonatal Atlas Construction Using Sparse Representation

    PubMed Central

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases. PMID:24638883

  6. ATLAS Series of Shuttle Missions. Volume 23

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This technical paper contains selected papers from Geophysical Research Letters (Volume 23, Number 17) on ATLAS series of shuttle missions. The ATLAS space shuttle missions were conducted in March 1992, April 1993, and November 1994. This paper discusses solar irradiance, middle atmospheric temperatures, and trace gas concentrations measurements made by the ATLAS payload and companion instruments.

  7. 27 CFR 9.140 - Atlas Peak.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Atlas Peak. 9.140 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.140 Atlas Peak. (a) Name. The name of the viticultural area described in this section is “Atlas Peak.”...

  8. On-Orbit Solar Dynamics Observatory (SDO) Star Tracker Warm Pixel Analysis

    NASA Technical Reports Server (NTRS)

    Felikson, Denis; Ekinci, Matthew; Hashmall, Joseph A.; Vess, Melissa

    2011-01-01

    This paper describes the process of identification and analysis of warm pixels in two autonomous star trackers on the Solar Dynamics Observatory (SDO) mission. A brief description of the mission orbit and attitude regimes is discussed and pertinent star tracker hardware specifications are given. Warm pixels are defined and the Quality Index parameter is introduced, which can be explained qualitatively as a manifestation of a possible warm pixel event. A description of the algorithm used to identify warm pixel candidates is given. Finally, analysis of dumps of on-orbit star tracker charge coupled devices (CCD) images is presented and an operational plan going forward is discussed. SDO, launched on February 11, 2010, is operated from the NASA Goddard Space Flight Center (GSFC). SDO is in a geosynchronous orbit with a 28.5 inclination. The nominal mission attitude points the spacecraft X-axis at the Sun, with the spacecraft Z-axis roughly aligned with the Solar North Pole. The spacecraft Y-axis completes the triad. In attitude, SDO moves approximately 0.04 per hour, mostly about the spacecraft Z-axis. The SDO star trackers, manufactured by Galileo Avionica, project the images of stars in their 16.4deg x 16.4deg fields-of-view onto CCD detectors consisting of 512 x 512 pixels. The trackers autonomously identify the star patterns and provide an attitude estimate. Each unit is able to track up to 9 stars. Additionally, each tracker calculates a parameter called the Quality Index, which is a measure of the quality of the attitude solution. Each pixel in the CCD measures the intensity of light and a warns pixel is defined as having a measurement consistently and significantly higher than the mean background intensity level. A warns pixel should also have lower intensity than a pixel containing a star image and will not move across the field of view as the attitude changes (as would a dim star image). It should be noted that the maximum error introduced in the star tracker

  9. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-09-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  10. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-06-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  11. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-08-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  12. ATLAS discoveries of optical transients

    NASA Astrophysics Data System (ADS)

    Tonry, J.; Denneau, L.; Stalder, B.; Heinze, A.; Sherstyuk, A.; Rest, A.; Smith, K. W.; Smartt, S. J.

    2016-10-01

    We report the following transients found by the ATLAS survey (see Tonry et al. ATel #8680). ATLAS is a twin 0.5m telescope system on Haleakala and Mauna Loa. The first unit is operational on Haleakala is robotically surveying the sky. Two filters are used, cyan and orange (denoted c and o, all mags in AB system), more information is on http://www.fallingstar.com.

  13. The EnzymeTracker: an open-source laboratory information management system for sample tracking

    PubMed Central

    2012-01-01

    Background In many laboratories, researchers store experimental data on their own workstation using spreadsheets. However, this approach poses a number of problems, ranging from sharing issues to inefficient data-mining. Standard spreadsheets are also error-prone, as data do not undergo any validation process. To overcome spreadsheets inherent limitations, a number of proprietary systems have been developed, which laboratories need to pay expensive license fees for. Those costs are usually prohibitive for most laboratories and prevent scientists from benefiting from more sophisticated data management systems. Results In this paper, we propose the EnzymeTracker, a web-based laboratory information management system for sample tracking, as an open-source and flexible alternative that aims at facilitating entry, mining and sharing of experimental biological data. The EnzymeTracker features online spreadsheets and tools for monitoring numerous experiments conducted by several collaborators to identify and characterize samples. It also provides libraries of shared data such as protocols, and administration tools for data access control using OpenID and user/team management. Our system relies on a database management system for efficient data indexing and management and a user-friendly AJAX interface that can be accessed over the Internet. The EnzymeTracker facilitates data entry by dynamically suggesting entries and providing smart data-mining tools to effectively retrieve data. Our system features a number of tools to visualize and annotate experimental data, and export highly customizable reports. It also supports QR matrix barcoding to facilitate sample tracking. Conclusions The EnzymeTracker was designed to be easy to use and offers many benefits over spreadsheets, thus presenting the characteristics required to facilitate acceptance by the scientific community. It has been successfully used for 20 months on a daily basis by over 50 scientists. The EnzymeTracker is

  14. Real-time dataflow and workflow with the CMS tracker data

    NASA Astrophysics Data System (ADS)

    Filippis, N. D.; Bagliesi, G.; Bainbridge, R.; Boccali, T.; Ciulli, V.; Giordano, D.; Hufnagel, D.; Mason, D.; Mirabito, L.; Noeding, C.; Palla, F.; Piedra, J.; Sarkar, S.

    2008-07-01

    The Tracker detector took data with cosmics rays at the Tracker Integration Facility (TIF) at CERN. First on-line monitoring tasks were executed at the Tracker Analysis Centre (TAC) which is a dedicated Control Room at TIF with limited computing resources. A set of software agents were developed to perform the real-time data conversion in a standard format, to archive data on tape at CERN and to publish them in the official CMS data bookkeeping systems. According to the CMS computing and analysis model, most of the subsequent data processing has to be done in remote Tier-1 and Tier-2 sites, so data were automatically transferred from CERN to the sites interested to analyze them, currently Fermilab, Bari and Pisa. Official reconstruction in the distributed environment was triggered in real-time by using the tool currently used for the processing of simulated events. Automatic end-user analysis of data was performed in a distributed environment, in order to derive the distributions of important physics variables. The tracker data processing is currently migrating to the Tier-0 CERN as a prototype for the global data taking chain. Tracker data were also registered into the most recent version of the data bookkeeping system, DBS-2, by profiting from the new features to handle real data. A description of the dataflow/workflow and of the tools developed is given, together with the results about the performance of the real-time chain. Almost 7.2 million events were officially registered, moved, reconstructed and analyzed in remote sites by using the distributed environment.

  15. Potential application of Kanade-Lucas-Tomasi tracker on satellite images for automatic change detection

    NASA Astrophysics Data System (ADS)

    Ahmed, Tasneem; Singh, Dharmendra; Raman, Balasubramanian

    2016-04-01

    Monitoring agricultural areas is still a very challenging task. Various models and methodologies have been developed for monitoring the agricultural areas with satellite images, but their practical applicability is limited due to the complexity in processing and dependence on a priori information. Therefore, in this paper, an attempt has been made to investigate the utility of the Kanade-Lucas-Tomasi (KLT) tracker, which is generally useful for tracking objects in video images, for monitoring agricultural areas. The KLT tracker was proposed to deal with the problem of image registration, but the use of the KLT tracker in satellite images for land cover monitoring is rarely reported. Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) data has been used to identify and track the agricultural areas. The tracked pixels were compared with the agriculture pixels obtained from a decision tree algorithm and both results are closely matched. An image differencing change detection technique has been applied after KLT tracker implementation to observe the "change" and "no change" pixels in agricultural areas. It is observed that two kinds of changes are being detected. The areas where agriculture was not there earlier, but now is present, the changes are called positive changes. In the areas where agriculture was present earlier, but now is not present, those changes are referred to as negative changes. Unchanged areas retrieved from both the images are labeled as "no change" pixels. The novelty of the proposed algorithm is that it uses a simplified version of the KLT tracker to efficiently select and track the agriculture features on the basis of their spatial information and does not require a priori information every time.

  16. Into the deep: Evaluation of SourceTracker for assessment of faecal contamination of coastal waters.

    PubMed

    Henry, Rebekah; Schang, Christelle; Coutts, Scott; Kolotelo, Peter; Prosser, Toby; Crosbie, Nick; Grant, Trish; Cottam, Darren; O'Brien, Peter; Deletic, Ana; McCarthy, David

    2016-04-15

    Faecal contamination of recreational waters is an increasing global health concern. Tracing the source of the contaminant is a vital step towards mitigation and disease prevention. Total 16S rRNA amplicon data for a specific environment (faeces, water, soil) and computational tools such as the Markov-Chain Monte Carlo based SourceTracker can be applied to microbial source tracking (MST) and attribution studies. The current study applied artificial and in-laboratory derived bacterial communities to define the potential and limitations associated with the use of SourceTracker, prior to its application for faecal source tracking at three recreational beaches near Port Phillip Bay (Victoria, Australia). The results demonstrated that at minimum multiple model runs of the SourceTracker modelling tool (i.e. technical replicates) were required to identify potential false positive predictions. The calculation of relative standard deviations (RSDs) for each attributed source improved overall predictive confidence in the results. In general, default parameter settings provided high sensitivity, specificity, accuracy and precision. Application of SourceTracker to recreational beach samples identified treated effluent as major source of human-derived faecal contamination, present in 69% of samples. Site-specific sources, such as raw sewage, stormwater and bacterial populations associated with the Yarra River estuary were also identified. Rainfall and associated sand resuspension at each location correlated with observed human faecal indicators. The results of the optimised SourceTracker analysis suggests that local sources of contamination have the greatest effect on recreational coastal water quality. PMID:26921850

  17. In-flight star tracker SED 12 performances on-board the SIGMA experiment

    NASA Astrophysics Data System (ADS)

    Jouret, M.; Sebbag, I.; Vandermarcq, M. Q.; Krebs, J. P.; Le Goff, R.; Vilaire, D.; Tulet, M. M.

    The multimission SED 12 star tracker using a CCD matrix array has been designed by SODERN in cooperation with Matra-Marconi Space (F), respectively in charge of the optical head and software development for one and processing electronics and associated interfaces for the other. It has been selected for the French SIGMA experiment on board the Soviet GRANAT spacecraft which was launched on December 2, 1989. SIGMA is a French hard X-ray/medium energy gamma ray (30 keV-2 MeV) experiment aimed at imaging selected regions of the sky with a resolution of about one arc minute and has been developed and manufactured under the overall management of CNES (the French National Space Agency). The experiment package demands a pointing stability of a few arc-seconds over periods of several hours corresponding to the long exposure times required to build up images of the target gamma sources. As the GRANAT satellite is not able to maintain such high precision attitude stability, incorporated into the gamma telescope are two SED 12 sensors aligned together with the telescope. The development of this star tracker was started in 1985 under a CNES contract, the qualification was successfully performed in 1987 and the delivery of 2 flight models was completed in 1988. The expected life time of the experiment was 1.5 year and since the launch date the mission is still operating without any significant performance degradation of the star tracker. The purpose of this paper is, on the one hand to present the multimission tracker design trade-offs and the SED 12 device: description, main features, operating modes and performances, and on the other hand, to analyze the on ground and in-flight star tracker data. This analysis has been mainly led according to the following criteria: performance results in angular position and magnitude measurement, dark current evolution versus time and radiation dose, correlation between visual and instrumental magnitudes.

  18. Electromagnetic Levitation of Silicon and Silicon-Iron Alloy Droplets

    NASA Astrophysics Data System (ADS)

    Wu, Paul; Yang, Yindong; Barati, Mansoor; McLean, Alex

    2014-09-01

    In this paper, the design of an electromagnetic levitation system and a technique for non-conductive silicon heating and conductive silicon levitation is described. The aim of the work is to describe the various parameters including coil design, applied power and specimen weight that govern the temperature of levitated silicon and silicon-iron alloy droplets.

  19. Structure, defects, and strain in silicon-silicon oxide interfaces

    SciTech Connect

    Kovačević, Goran Pivac, Branko

    2014-01-28

    The structure of the interfaces between silicon and silicon-oxide is responsible for proper functioning of MOSFET devices while defects in the interface can deteriorate this function and lead to their failure. In this paper we modeled this interface and characterized its defects and strain. MD simulations were used for reconstructing interfaces into a thermodynamically stable configuration. In all modeled interfaces, defects were found in the form of three-coordinated silicon atom, five coordinated silicon atom, threefold-coordinated oxygen atom, or displaced oxygen atom. Three-coordinated oxygen atom can be created if dangling bonds on silicon are close enough. The structure and stability of three-coordinated silicon atoms (P{sub b} defect) depend on the charge as well as on the electric field across the interface. The negatively charged P{sub b} defect is the most stable one, but the electric field resulting from the interface reduces that stability. Interfaces with large differences in periodic constants of silicon and silicon oxide can be stabilized by buckling of silicon layer. The mechanical stress resulted from the interface between silicon and silicon oxide is greater in the silicon oxide layer. Ab initio modeling of clusters representing silicon and silicon oxide shows about three time larger susceptibility to strain in silicon oxide than in silicon if exposed to the same deformation.

  20. Method for producing silicon nitride/silicon carbide composite

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-07-23

    Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.

  1. ATLAS Cloud R&D

    NASA Astrophysics Data System (ADS)

    Panitkin, Sergey; Barreiro Megino, Fernando; Caballero Bejar, Jose; Benjamin, Doug; Di Girolamo, Alessandro; Gable, Ian; Hendrix, Val; Hover, John; Kucharczyk, Katarzyna; Medrano Llamas, Ramon; Love, Peter; Ohman, Henrik; Paterson, Michael; Sobie, Randall; Taylor, Ryan; Walker, Rodney; Zaytsev, Alexander; Atlas Collaboration

    2014-06-01

    The computing model of the ATLAS experiment was designed around the concept of grid computing and, since the start of data taking, this model has proven very successful. However, new cloud computing technologies bring attractive features to improve the operations and elasticity of scientific distributed computing. ATLAS sees grid and cloud computing as complementary technologies that will coexist at different levels of resource abstraction, and two years ago created an R&D working group to investigate the different integration scenarios. The ATLAS Cloud Computing R&D has been able to demonstrate the feasibility of offloading work from grid to cloud sites and, as of today, is able to integrate transparently various cloud resources into the PanDA workload management system. The ATLAS Cloud Computing R&D is operating various PanDA queues on private and public resources and has provided several hundred thousand CPU days to the experiment. As a result, the ATLAS Cloud Computing R&D group has gained a significant insight into the cloud computing landscape and has identified points that still need to be addressed in order to fully utilize this technology. This contribution will explain the cloud integration models that are being evaluated and will discuss ATLAS' learning during the collaboration with leading commercial and academic cloud providers.

  2. Tampa Bay environmental atlas

    SciTech Connect

    Kunneke, J.T.; Palik, T.F.

    1984-12-01

    Biological and water resource data for Tampa Bay were compiled and mapped at a scale of 1:24,000. This atlas consists of (1) composited information overlain on 18 biological and 20 water resource base maps and (2) an accompanying map narrative. Subjects mapped on the water resource maps are contours of the mean middepth specific conductivity which can be converted to salinity; bathymetry, sediments, tidal currents, the freshwater/saltwater interface, dredge spoil disposal sites; locations of industrial and municipal point source discharges, tide stations, and water quality sampling stations. The point source discharge locations show permitted capacity and the water quality sampling stations show 5-year averages for chlorophyll, conductivity, turbidity, temperature, and total nitrogen. The subjects shown on the biological resource maps are clam and oyster beds, shellfish harvest areas, colonial bird nesting sites, manatee habitat, seagrass beds and artificial reefs. Spawning seasons, nursery habitats, and adult habitats are identified for major fish species. The atlas will provide useful information for coastal planning and management in Tampa Bay.

  3. ATLAS DBM Module Qualification

    SciTech Connect

    Soha, Aria; Gorisek, Andrej; Zavrtanik, Marko; Sokhranyi, Grygorii; McGoldrick, Garrin; Cerv, Matevz

    2014-06-18

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of Jozef Stefan Institute, CERN, and University of Toronto who have committed to participate in beam tests to be carried out during the 2014 Fermilab Test Beam Facility program. Chemical Vapour Deposition (CVD) diamond has a number of properties that make it attractive for high energy physics detector applications. Its large band-gap (5.5 eV) and large displacement energy (42 eV/atom) make it a material that is inherently radiation tolerant with very low leakage currents and high thermal conductivity. CVD diamond is being investigated by the RD42 Collaboration for use very close to LHC interaction regions, where the most extreme radiation conditions are found. This document builds on that work and proposes a highly spatially segmented diamond based luminosity monitor to complement the time segmented ATLAS Beam Conditions Monitor (BCM) so that when Minimum Bias Trigger Scintillators (MTBS) and LUCID (LUminosity measurement using a Cherenkov Integrating Detector) have difficulty functioning the ATLAS luminosity measurement is not compromised.

  4. Atlas Distributed Analysis Tools

    NASA Astrophysics Data System (ADS)

    de La Hoz, Santiago Gonzalez; Ruiz, Luis March; Liko, Dietrich

    2008-06-01

    The ATLAS production system has been successfully used to run production of simulation data at an unprecedented scale. Up to 10000 jobs were processed in one day. The experiences obtained operating the system on several grid flavours was essential to perform a user analysis using grid resources. First tests of the distributed analysis system were then performed. In the preparation phase data was registered in the LHC File Catalog (LFC) and replicated in external sites. For the main test, few resources were used. All these tests are only a first step towards the validation of the computing model. The ATLAS management computing board decided to integrate the collaboration efforts in distributed analysis in only one project, GANGA. The goal is to test the reconstruction and analysis software in a large scale Data production using Grid flavors in several sites. GANGA allows trivial switching between running test jobs on a local batch system and running large-scale analyses on the Grid; it provides job splitting and merging, and includes automated job monitoring and output retrieval.

  5. An atlas of two-dimensional materials.

    PubMed

    Miró, Pere; Audiffred, Martha; Heine, Thomas

    2014-09-21

    The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls. PMID:24825454

  6. An atlas of two-dimensional materials.

    PubMed

    Miró, Pere; Audiffred, Martha; Heine, Thomas

    2014-09-21

    The discovery of graphene and other two-dimensional (2D) materials together with recent advances in exfoliation techniques have set the foundations for the manufacturing of single layered sheets from any layered 3D material. The family of 2D materials encompasses a wide selection of compositions including almost all the elements of the periodic table. This derives into a rich variety of electronic properties including metals, semimetals, insulators and semiconductors with direct and indirect band gaps ranging from ultraviolet to infrared throughout the visible range. Thus, they have the potential to play a fundamental role in the future of nanoelectronics, optoelectronics and the assembly of novel ultrathin and flexible devices. We categorize the 2D materials according to their structure, composition and electronic properties. In this review we distinguish atomically thin materials (graphene, silicene, germanene, and their saturated forms; hexagonal boron nitride; silicon carbide), rare earth, semimetals, transition metal chalcogenides and halides, and finally synthetic organic 2D materials, exemplified by 2D covalent organic frameworks. Our exhaustive data collection presented in this Atlas demonstrates the large diversity of electronic properties, including band gaps and electron mobilities. The key points of modern computational approaches applied to 2D materials are presented with special emphasis to cover their range of application, peculiarities and pitfalls.

  7. Process for purification of silicon

    NASA Technical Reports Server (NTRS)

    Rath, H. J.; Sirtl, E.; Pfeiffer, W.

    1981-01-01

    The purification of metallurgically pure silicon having a silicon content of more than 95% by weight is accomplished by leaching with an acidic solution which substantially does not attack silicon. A mechanical treatment leading to continuous particle size reduction of the granulated silicon to be purified is combined with the chemical purification step.

  8. Hydrogen in amorphous silicon

    SciTech Connect

    Peercy, P. S.

    1980-01-01

    The structural aspects of amorphous silicon and the role of hydrogen in this structure are reviewed with emphasis on ion implantation studies. In amorphous silicon produced by Si ion implantation of crystalline silicon, the material reconstructs into a metastable amorphous structure which has optical and electrical properties qualitatively similar to the corresponding properties in high-purity evaporated amorphous silicon. Hydrogen studies further indicate that these structures will accomodate less than or equal to 5 at.% hydrogen and this hydrogen is bonded predominantly in a monohydride (SiH/sub 1/) site. Larger hydrogen concentrations than this can be achieved under certain conditions, but the excess hydrogen may be attributed to defects and voids in the material. Similarly, glow discharge or sputter deposited amorphous silicon has more desirable electrical and optical properties when the material is prepared with low hydrogen concentration and monohydride bonding. Results of structural studies and hydrogen incorporation in amorphous silicon were discussed relative to the different models proposed for amorphous silicon.

  9. Roadmap on silicon photonics

    NASA Astrophysics Data System (ADS)

    Thomson, David; Zilkie, Aaron; Bowers, John E.; Komljenovic, Tin; Reed, Graham T.; Vivien, Laurent; Marris-Morini, Delphine; Cassan, Eric; Virot, Léopold; Fédéli, Jean-Marc; Hartmann, Jean-Michel; Schmid, Jens H.; Xu, Dan-Xia; Boeuf, Frédéric; O'Brien, Peter; Mashanovich, Goran Z.; Nedeljkovic, M.

    2016-07-01

    Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with

  10. A Photographic Atlas of Selected Regions of the Milky Way

    NASA Astrophysics Data System (ADS)

    Barnard, Edward Emerson; Orin Dobek, Foreword by Gerald

    2014-08-01

    Foreword Gerald Orin Dobek; Preface from the original Atlas; Introduction from the original Atlas; Bibliography from the original Atlas; Catalogue of 349 dark objects in the sky; Biography of Edward Emerson Barnard.

  11. The bonded unipolar silicon-silicon junction

    NASA Astrophysics Data System (ADS)

    Bengtsson, Stefan; Andersson, Gert I.; Andersson, Mats O.; Engström, Olof

    1992-07-01

    The electrical and optical properties of wafer bonded unipolar silicon-silicon junctions were investigated. The interfaces, both n-n type and p-p type, were prepared using wafers with hydrophilic surfaces. The current versus voltage characteristics, the current transients following stepwise changes in the applied bias, and the capacitance versus voltage characteristics as well as the temperature dependence of the current and capacitance were experimentally obtained and theoretically modeled. The proposed model assumes two distributions of interface states, one of acceptors and one of donors, causing a potential barrier at the bonded interface. It is argued that the origins of the interface states are impurities and crystallographic defects in the interfacial region. The capacitance of the bonded structures includes contributions from the depletion regions as well as from minority carriers. When bonded n-n type samples were illuminated with light of photon energies larger than the silicon band gap the current across the junction increased. This is caused by the photogenerated increase in the minority carrier concentration in the interfacial region, which results in a lowering of the potential barrier. Illumination of n-n type structures with light of photon energies lower than the band gap caused a considerable photocurrent at low temperatures. In this case the observed behavior cannot be explained by interaction with the interface states. Instead, the mechanism is the change in the occupancy of deep electron traps caused by the illumination. These traps are located in the silicon in a small volume around the bonded interface with energies close to the center of the band gap and with a peak concentration of about 1013 cm-3. Impurities present on the silicon surfaces before bonding and impurities gettered to the bonded interface are possible reasons for the increased concentration of deep electron traps in the vicinity of the bonded interface.

  12. Porous silicon gettering

    SciTech Connect

    Tsuo, Y.S.; Menna, P.; Pitts, J.R.

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  13. Emissivity of microstructured silicon.

    PubMed

    Maloney, Patrick G; Smith, Peter; King, Vernon; Billman, Curtis; Winkler, Mark; Mazur, Eric

    2010-03-01

    Infrared transmittance and hemispherical-directional reflectance data from 2.5 to 25 microm on microstructured silicon surfaces have been measured, and spectral emissivity has been calculated for this wavelength range. Hemispherical-total emissivity is calculated for the samples and found to be 0.84 before a measurement-induced annealing and 0.65 after the measurement for the sulfur-doped sample. Secondary samples lack a measurement-induced anneal, and reasons for this discrepancy are presented. Emissivity numbers are plotted and compared with a silicon substrate, and Aeroglaze Z306 black paint. Use of microstructured silicon as a blackbody or microbolometer surface is modeled and presented, respectively.

  14. Recrystallization of polycrystalline silicon

    NASA Technical Reports Server (NTRS)

    Lall, C.; Kulkarni, S. B.; Graham, C. D., Jr.; Pope, D. P.

    1981-01-01

    Optical metallography is used to investigate the recrystallization properties of polycrystalline semiconductor-grade silicon. It is found that polycrystalline silicon recrystallizes at 1380 C in relatively short times, provided that the prior deformation is greater than 30%. For a prior deformation of about 40%, the recrystallization process is essentially complete in about 30 minutes. Silicon recrystallizes at a substantially slower rate than metals at equivalent homologous temperatures. The recrystallized grain size is insensitive to the amount of prestrain for strains in the range of 10-50%.

  15. The ATLAS TRT straw proportional tubes: performance at very high counting rate

    NASA Astrophysics Data System (ADS)

    Åkesson, T.; Carling, H.; Dolgoshein, B.; Fabjan, C. W.; Farthouat, Ph; Froidevaux, D.; Fuchs, W.; Gavrilenko, I.; Holder, M.; Ivochkin, V. G.; Malecki, P.; Kondratiev, O.; Konovalov, S.; Lichard, P.; Muraviev, S.; Nadtochi, A.; Nevski, P.; Norton, P. R.; Peshekhonov, V.; Pavlenko, S.; Richter, R.; Romaniouk, A.; Saxon, D. H.; Schegelsky, V. A.; Shmeleva, A.; Semenov, S.; Smirnov, S.; Sosnovtsev, V.; Spiridenkov, E. M.; Stavrianakou, M.; Schuh, S.; White, D. J.; RD6 Collaboration

    1995-12-01

    Results on analog front-end electronics and straw performance studies at high counting rates are described. Prototypes of the electronics have been tested at counting rates up to 17.5 MHz. A drift-time accuracy of 180 μm and a drift-time measurement efficiency of 53% were obtained at 17.5 MHz. The expected counting rate is between 5 and 15 MHz (depending on straw position) for the Atlas straw tracker at LHC design luminosity, leading to an estimated drift-time accuracy at 160 μm and hit registration efficiency of 68% for the average counting rate of 10 MHz. These results are in a good agreement with detailed MC simulations and could be improved with better front-end electronics.

  16. Advanced silicon on insulator technology

    NASA Technical Reports Server (NTRS)

    Godbey, D.; Hughes, H.; Kub, F.

    1991-01-01

    Undoped, thin-layer silicon-on-insulator was fabricated using wafer bonding and selective etching techniques employing a molecular beam epitaxy (MBE) grown Si0.7Ge0.3 layer as an etch stop. Defect free, undoped 200-350 nm silicon layers over silicon dioxide are routinely fabricated using this procedure. A new selective silicon-germanium etch was developed that significantly improves the ease of fabrication of the bond and etch back silicon insulator (BESOI) material.

  17. National Atlas of the United States Maps

    USGS Publications Warehouse

    ,

    2001-01-01

    The 'National Atlas of the United States of America?', published by the U.S. Geological Survey (USGS) in 1970, is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. Maps dated after 1970 and before 1997 are either revisions of original atlas maps or new maps published in the original atlas format. The USGS and its partners in government and industry began work on a new 'National Atlas' in 1997. Though most new atlas products are designed for the World Wide Web, we are continuing our tradition of printing high-quality maps of America. In 1998, the first completely redesigned maps of the 'National Atlas of the United States?' were published.

  18. Anti-Atlas Mountains, Morocco

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Anti-Atlas Mountains of northern Africa and the nearby Atlas mountains were created by the prolonged collision of the African and Eurasian tectonic plates, beginning about 80 million years ago. Massive sandstone and limestone layers have been crumpled and uplifted more than 4,000 meters in the High Atlas and to lower elevations in the Anti-Atlas. Between more continuous major fold structures, such as the Jbel Ouarkziz in the southwestern Anti-Atlas, tighter secondary folds (arrow) have developed. Earlier, the supercontinent of Pangea rifted apart to form precursors to the Mediterranean and the Atlantic Ocean (Beauchamp and others, 1996). In those seas sands, clays, limey sediments, and evaporite layers (gypsum, rock salt) were deposited. Later, during the mountain-building plate collision, the gypsum layers flowed under the pressure and provided a slippery surface on which overlying rigid rocks could glide (Burkhard, 2001). The broad, open style of folds seen in this view is common where evaporites are involved in the deformation. Other examples can be found in the Southern Zagros of Iran and the Sierra Madre Oriental of Mexico. Information Sources: Beauchamp, W., Barazangi, M., Demnati, A., and El Alji, M., 1996, Intracontinental rifting and inversion: Missour Basin and Atlas Mountains, Morocco: Tulsa, American Association of Petroleum Geologists Bulletin, v. 80, No. 9, p. 1459-1482. Burkhard, Martin, 2001, Tectonics of the Anti-Atlas of Morocco -- Thin-skin/thick-skin relationships in an atypical foreland fold belt. University of Neuchatel, Switzerland: http://www-geol.unine.ch/Structural/Antiatlas.html (accessed 1/29/02). STS108-711-25 was taken in December, 2001 by the crew of Space Shuttle mission 108 using a Hasselblad camera with 250-mm lens. The image is provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography

  19. Efficient data transmission from silicon wafer strip detectors

    SciTech Connect

    Cooke, B.J.; Lackner, K.S.; Palounek, A.P.T.; Sharp, D.H.; Winter, L.; Ziock, H.J.

    1991-12-31

    An architecture for on-wafer processing is proposed for central silicon-strip tracker systems as they are currently designed for high energy physics experiments at the SSC, and for heavy ion experiments at RHIC. The data compression achievable with on-wafer processing would make it possible to transmit all data generated to the outside of the detector system. A set of data which completely describes the state of the wafer for low occupancy events and which contains important statistical information for more complex events can be transmitted immediately. This information could be used in early trigger decisions. Additional data packages which complete the description of the state of the wafer vary in size and are sent through a second channel. By buffering this channel the required bandwidth can be kept far below the peak data rates which occur in rate but interesting events. 18 refs.

  20. Silicon microfabricated beam expander

    SciTech Connect

    Othman, A. Ibrahim, M. N.; Hamzah, I. H.; Sulaiman, A. A.; Ain, M. F.

    2015-03-30

    The feasibility design and development methods of silicon microfabricated beam expander are described. Silicon bulk micromachining fabrication technology is used in producing features of the structure. A high-precision complex 3-D shape of the expander can be formed by exploiting the predictable anisotropic wet etching characteristics of single-crystal silicon in aqueous Potassium-Hydroxide (KOH) solution. The beam-expander consist of two elements, a micromachined silicon reflector chamber and micro-Fresnel zone plate. The micro-Fresnel element is patterned using lithographic methods. The reflector chamber element has a depth of 40 µm, a diameter of 15 mm and gold-coated surfaces. The impact on the depth, diameter of the chamber and absorption for improved performance are discussed.

  1. Silicone azide fireproof material

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Finely powdered titanium oxide was added to silicone azide as the sintering agent to produce a nonflammable material. Mixing proportions, physical properties, and chemical composition of the fireproofing material are included.

  2. Porous silicon nanowires.

    PubMed

    Qu, Yongquan; Zhou, Hailong; Duan, Xiangfeng

    2011-10-01

    In this mini-review, we summarize recent progress in the synthesis, properties and applications of a new type of one-dimensional nanostructures-single crystalline porous silicon nanowires. The growth of porous silicon nanowires starting from both p- and n-type Si wafers with a variety of dopant concentrations can be achieved through either one-step or two-step reactions. The mechanistic studies indicate the dopant concentration of Si wafers, oxidizer concentration, etching time and temperature can affect the morphology of the as-etched silicon nanowires. The porous silicon nanowires are both optically and electronically active and have been explored for potential applications in diverse areas including photocatalysis, lithium ion batteries, gas sensors and drug delivery.

  3. Silicon-electroceramics integration

    SciTech Connect

    Tuller, H.L.

    1996-12-31

    Electroceramics provides unique functionality as sensors, transducers, and non-volatile storage media while silicon is nearly unique in its signal processing and micromechanical properties. We discuss how these two materials technologies, when integrated, provide unique devices and structures.

  4. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Engineering design of the third distillation column in the process was accomplished. The initial design is based on a 94.35% recovery of dichlorosilane in the distillate and a 99.9% recovery of trichlorosilane in the bottoms. The specified separation is achieved at a reflux ratio of 15 with 20 trays (equilibrium stages). Additional specifications and results are reported including equipment size, temperatures and pressure. Specific raw material requirements necessary to produce the silicon in the process are presented. The primary raw materials include metallurgical grade silicon, silicon tetrachloride, hydrogen, copper (catalyst) and lime (waste treatment). Hydrogen chloride is produced as by product in the silicon deposition. Cost analysis of the process was initiated during this reporting period.

  5. Silicon production process evaluations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The chemical engineering analysis of the preliminary process design of a process for producing solar cell grade silicon from dichlorosilane is presented. A plant to produce 1,000 MT/yr of silicon is analyzed. Progress and status for the plant design are reported for the primary activities of base case conditions (60 percent), reaction chemistry (50 percent), process flow diagram (35 percent), energy balance (10 percent), property data (10 percent) and equipment design (5 percent).

  6. SPS silicon reference system

    NASA Technical Reports Server (NTRS)

    Woodcock, G. R.

    1980-01-01

    The design analysis of a silicon power conversion system for the solar power satellite (SPS) is summarized. The solar array, consisting of glass encapsulated 50 micrometer silicon solar cells, is described. The general scheme for power distribution to the array/antenna interface is described. Degradation by proton irradiation is considered. The interface between the solar array and the klystron equipped power transmitter is described.

  7. Radiation hardness and lifetime studies of LEDs and VCSELs for the optical readout of the ATLAS SCT

    NASA Astrophysics Data System (ADS)

    Beringer, J.; Borer, K.; Mommsen, R. K.; Nickerson, R. B.; Weidberg, A. R.; Monnier, E.; Hou, H. Q.; Lear, K. L.

    1999-10-01

    We study the radiation hardness and the lifetime of Light Emitting Diodes (LEDs) and Vertical Cavity Surface Emitting Laser diodes (VCSELs) in the context of the development of the optical readout for the ATLAS SemiConductor Tracker (SCT) at LHC. About 170 LEDs from two different manufacturers and about 130 VCSELs were irradiated with neutron and proton fluences equivalent to (and in some cases more than twice as high as) the combined neutral and charged particle fluence of about 5×10 14 n (1 MeV eq. in GaAs)/cm 2 expected in the ATLAS inner detector. We report on the radiation damage and the conditions required for its partial annealing under forward bias, we calculate radiation damage constants, and we present post-irradiation failure rates for LEDs and VCSELs. The lifetime after irradiation was investigated by operating the diodes at an elevated temperature of 50°C for several months, resulting in operating times corresponding to up to 70 years of operation in the ATLAS SCT. From our results we estimate the signal-to-noise ratio and the failure rate of optical links using LEDs developed specifically for application at LHC.

  8. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System.

    PubMed

    Liu, Chunmei; Wang, Yirui; Gao, Shangce

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  9. Transmission lines implementation on HDI flex circuits for the CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Blanchot, G.; De Canio, F.; Gadek, T.; Honma, A.; Kovacs, M.; Rose, P.; Traversi, G.

    2016-01-01

    The upgrade of the CMS tracker at the HL-LHC relies on hybrid modules built on high density interconnecting flexible circuits. They contain several flip chip readout ASICs having high speed digital ports required for configuration and data readout, implemented as customized Scalable Low-Voltage Signalling (SLVS) differential pairs. This paper presents the connectivity requirements on the CMS tracker hybrids; it compares several transmission line implementations in terms of board area, achievable impedances and expected crosstalk. The properties obtained by means of simulations are compared with measurements made on a dedicated test circuit. The different transmission line implementations are also tested using a custom 65nm SLVS driver and receiver prototype ASIC.

  10. Adaptive Shape Kernel-Based Mean Shift Tracker in Robot Vision System

    PubMed Central

    2016-01-01

    This paper proposes an adaptive shape kernel-based mean shift tracker using a single static camera for the robot vision system. The question that we address in this paper is how to construct such a kernel shape that is adaptive to the object shape. We perform nonlinear manifold learning technique to obtain the low-dimensional shape space which is trained by training data with the same view as the tracking video. The proposed kernel searches the shape in the low-dimensional shape space obtained by nonlinear manifold learning technique and constructs the adaptive kernel shape in the high-dimensional shape space. It can improve mean shift tracker performance to track object position and object contour and avoid the background clutter. In the experimental part, we take the walking human as example to validate that our method is accurate and robust to track human position and describe human contour. PMID:27379165

  11. A large area TOF-tracker device based on multi-gap Resistive Plate Chambers

    NASA Astrophysics Data System (ADS)

    Assis, P.; Bernardino, A.; Blanco, A.; Clemêncio, F.; Carolino, N.; Cunha, O.; Ferreira, M.; Fonte, P.; Lopes, L.; Loureiro, C.; Luz, R.; Mendes, L.; Michel, J.; Neiser, A.; Pereira, A.; Pimenta, M.; Shellard, R.; Traxler, M.

    2016-10-01

    The TOF-tracker concept, the simultaneous measurement of accurate time and bi-dimensional space coordinates in a single gaseous detector, has been previously demonstrated. The detector yielded a time resolution of 77 ps σ along with a bi-dimensional position resolution of 38 μm σ over a full active area of 60 × 60 mm2. In here, we report about a large area, 1550 × 1250 mm2, TOF-tracker device, tested by tracking cosmic muons, yielding a position resolution down to 1.33 mm σ, a simultaneous time resolution of 150 ps σ and 92% detection efficiency, over the entire area of the detector. The sub-millimetre electronic resolution of the readout chain suggests that the position resolution here reported could be dominated by non-corrected systematic effects and therefore it could be yet significantly improved.

  12. Star trackers, star catalogs, and attitude determination - Probabilistic aspects of system design

    NASA Technical Reports Server (NTRS)

    Vedder, John D.

    1992-01-01

    Optimizing spacecraft attitude determination systems that use onboard star trackers requires analysis and evaluation of some probabilistic aspects of system design. This paper discusses methods of constructing or compiling optimum star catalogs, which are defined as uniform distributions on a sphere. Both local and global measures of uniformity on a sphere are defined. Application of these methods and measures to a specific problem is also discussed. In addition, Poisson models of star tracker acquisition probabilities are formulated to provide a useful analytical basis for designing and optimizing attitude determination systems. These analytical models and methods lead to rapid and realistic quantitative results, and should therefore facilitate making system performance trades. Use of such methods should also reduce the need for performing tedious computer simulations to obtain analogous results.

  13. A tracker based on a CPHD filter approach for infrared applications

    NASA Astrophysics Data System (ADS)

    Petetin, Y.; Clark, D.; Ristic, B.; Maltese, D.

    2011-06-01

    Since the derivation of PHD filter, a number of track management schemes have been proposed to adapt the PHD filter for determining the tracks of multiple objects. Nevertheless, the problem remains that such approaches can fail when targets are too close or are crossing. In this paper, we propose to improve the tracking by maintaining a set of locally-based trackers and managing the tracks with an assignment method. Furthermore, the new algorithm is based on a Gaussian mixture implementation of the CPHD filter, by clustering neighbouring Gaussians before the update step and updating each cluster with the CPHD filter update. In order to be computationally efficient, the algorithm includes gating techniques for the local trackers and constructs local cardinality distributions for the targets and clutter within the gated regions. An improvement in multi-object estimation performance has been experienced on both synthetic and real IR data scenarios.

  14. Cassini Tour Atlas Automated Generation

    NASA Technical Reports Server (NTRS)

    Grazier, Kevin R.; Roumeliotis, Chris; Lange, Robert D.

    2011-01-01

    During the Cassini spacecraft s cruise phase and nominal mission, the Cassini Science Planning Team developed and maintained an online database of geometric and timing information called the Cassini Tour Atlas. The Tour Atlas consisted of several hundreds of megabytes of EVENTS mission planning software outputs, tables, plots, and images used by mission scientists for observation planning. Each time the nominal mission trajectory was altered or tweaked, a new Tour Atlas had to be regenerated manually. In the early phases of Cassini s Equinox Mission planning, an a priori estimate suggested that mission tour designers would develop approximately 30 candidate tours within a short period of time. So that Cassini scientists could properly analyze the science opportunities in each candidate tour quickly and thoroughly so that the optimal series of orbits for science return could be selected, a separate Tour Atlas was required for each trajectory. The task of manually generating the number of trajectory analyses in the allotted time would have been impossible, so the entire task was automated using code written in five different programming languages. This software automates the generation of the Cassini Tour Atlas database. It performs with one UNIX command what previously took a day or two of human labor.

  15. Chandra Galaxy Atlas

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Woo; Mossman, Amy; Fruscione, Antonella; Anderson, Craig; Morgan, Doug; Burke, Douglas J.; O'Sullivan, E. J; Fabbiano, Giuseppina; Lauer, Jennifer; McCollough, Mike

    2014-06-01

    The hot ISM in early type galaxies plays a crucial role for understanding their formation and evolution. Structural features of the hot ISM identified by Chandra (including jets, cavities, cold fronts, filaments and tails) point to key evolutionary mechanisms, e.g., AGN feedback, merging history, accretion/stripping and star formation and its quenching. In our new project, Chandra Galaxy Atlas, we will systematically analyze the archival Chandra data of 137 ETGs to study the hot ISM. Taking full advantage of the Chandra capabilities, we will derive uniform data products of spatially resolved dataset with additional spectral information. We will make these products publicly available and use them for our focused science goals.

  16. Atlas of Nuclear Isomers

    SciTech Connect

    Jain, Ashok Kumar; Maheshwari, Bhoomika; Garg, Swati; Patial, Monika; Singh, Balraj

    2015-09-15

    We present an atlas of nuclear isomers containing the experimental data for the isomers with a half-life ≥ 10 ns together with their various properties such as excitation-energy, half-life, decay mode(s), spin-parity, energies and multipolarities of emitted gamma transitions, etc. The ENSDF database complemented by the XUNDL database has been extensively used in extracting the relevant data. Recent literature from primary nuclear physics journals, and the NSR bibliographic database have been searched to ensure that the compiled data Table is as complete and current as possible. The data from NUBASE-12 have also been checked for completeness, but as far as possible original references have been cited. Many interesting systematic features of nuclear isomers emerge, some of them new; these are discussed and presented in various graphs and figures. The cutoff date for the extraction of data from the literature is August 15, 2015.

  17. Consumer Energy Atlas

    SciTech Connect

    Not Available

    1980-06-01

    This first edition of the Atlas provides, in reference form, a central source of information to consumers on key contacts concerned with energy in the US. Energy consumers need information appropriate to local climates and characteristics - best provided by state and local governments. The Department of Energy recognizes the authority of state and local governments to manage energy programs on their own. Therefore, emphasis has been given to government organizations on both the national and state level that influence, formulate, or administer policies affecting energy production, distribution, and use, or that provide information of interest to consumers and non-specialists. In addition, hundreds of non-government energy-related membership organizations, industry trade associations, and energy publications are included.

  18. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  19. Oxygen defect processes in silicon and silicon germanium

    NASA Astrophysics Data System (ADS)

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-01

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.

  20. Oxygen defect processes in silicon and silicon germanium

    SciTech Connect

    Chroneos, A.; Sgourou, E. N.; Londos, C. A.; Schwingenschlögl, U.

    2015-06-15

    Silicon and silicon germanium are the archetypical elemental and alloy semiconductor materials for nanoelectronic, sensor, and photovoltaic applications. The investigation of radiation induced defects involving oxygen, carbon, and intrinsic defects is important for the improvement of devices as these defects can have a deleterious impact on the properties of silicon and silicon germanium. In the present review, we mainly focus on oxygen-related defects and the impact of isovalent doping on their properties in silicon and silicon germanium. The efficacy of the isovalent doping strategies to constrain the oxygen-related defects is discussed in view of recent infrared spectroscopy and density functional theory studies.