NASA Technical Reports Server (NTRS)
Sud, Y. C.; Chao, Winston C.; Walker, G. K.
1992-01-01
The influence of a cumulus convection scheme on the simulated atmospheric circulation and hydrologic cycle is investigated by means of a coarse version of the GCM. Two sets of integrations, each containing an ensemble of three summer simulations, were produced. The ensemble sets of control and experiment simulations are compared and differentially analyzed to determine the influence of a cumulus convection scheme on the simulated circulation and hydrologic cycle. The results show that cumulus parameterization has a very significant influence on the simulation circulation and precipitation. The upper-level condensation heating over the ITCZ is much smaller for the experiment simulations as compared to the control simulations; correspondingly, the Hadley and Walker cells for the control simulations are also weaker and are accompanied by a weaker Ferrel cell in the Southern Hemisphere. Overall, the difference fields show that experiment simulations (without cumulus convection) produce a cooler and less energetic atmosphere.
NASA Technical Reports Server (NTRS)
Dave, J. V.
1977-01-01
Results are presented on the effect of atmospheric aerosols on the value of total ozone, in an atmospheric column of the terrestrial atmosphere, estimated from the simulated measurements of the ultraviolet radiation back scattered by the earth atmosphere models. Simulated measurements were used in five (configuration of the BUV experiment of Nimbus-4 satellite), and in six (configuration of the TOMS section of the SBUV/TOMS experiment on Nimbus-G) narrow spectral regions in the ultraviolet part of the spectrum.
Possible formation of amino acid precursors in the lower atmosphere of Titan
NASA Astrophysics Data System (ADS)
Kobayashi, K.; Taniuchi, T.; Kaneko, T.; Al-Hanbali, H.; Yamori, A.; Miyakawa, S.; Takano, Y.
Titan is a quite interesting satellite of Saturn from the point of view of astrobiology and origins of life It has ca 0 15 MPa atmosphere mainly composed of nitrogen and methane which can give us the possible implication of primitive Earth environments There have been a great number of experiments simulating chemical reactions in Titan atmosphere In most experiments electric discharges and ultraviolet light were used as energy sources The former is simulation of charged particles trapped in Saturn s magnetosphere and the latter is simulation of solar light Thus it can be said that these experiments simulate chemical reaction in the upper thin atmosphere Cosmic rays are another possible energy source available in Titan atmosphere Their energy is so high that they can penetrate into the lower atmosphere of Titan The energy flux of cosmic rays in the lower Titan atmosphere was estimated as to 9 0 x 10 -3 erg cm -2 s -1 Sagan and Thompson 1984 In order to simulate the action of cosmic rays in Titan atmosphere we irradiated simulated Titan atmosphere with high-energy protons A gas mixture of methane 1-10 and nitrogen balance total pressure was 700 Torr was sealed in a Pyrex tube with a window of Havar foil 0 01 mm thick It was irradiated with 3 MeV protons from a van de Graaff accelerator Tokyo Institute of Technology The products were dissolved in water dichloromethane tetrahydrofuran or benzene They were evaporated to dryness and then acid-hydrolyzed Amino acids were analyzed by cation exchange HPLC
Comparing the Degree of Land-Atmosphere Interaction in Four Atmospheric General Circulation Models
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Dirmeyer, Paul A.; Hahmann, Andrea N.; Ijpelaar, Ruben; Tyahla, Lori; Cox, Peter; Suarez, Max J.; Houser, Paul R. (Technical Monitor)
2001-01-01
Land-atmosphere feedback, by which (for example) precipitation-induced moisture anomalies at the land surface affect the overlying atmosphere and thereby the subsequent generation of precipitation, has been examined and quantified with many atmospheric general circulation models (AGCMs). Generally missing from such studies, however, is an indication of the extent to which the simulated feedback strength is model dependent. Four modeling groups have recently performed a highly controlled numerical experiment that allows an objective inter-model comparison of land-atmosphere feedback strength. The experiment essentially consists of an ensemble of simulations in which each member simulation artificially maintains the same time series of surface prognostic variables. Differences in atmospheric behavior between the ensemble members then indicates the degree to which the state of the land surface controls atmospheric processes in that model. A comparison of the four sets of experimental results shows that feedback strength does indeed vary significantly between the AGCMs.
Hurricanes and Climate: the U.S. CLIVAR Working Group on Hurricanes
NASA Technical Reports Server (NTRS)
Walsh, Kevin; Camargo, Suzana J.; Vecchi, Gabriel A.; Daloz, Anne Sophie; Elsner, James; Emanuel, Kerry; Horn, Michael; Lim, Young-Kwon; Roberts, Malcolm; Patricola, Christina;
2015-01-01
While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. The idealized experiments of the Hurricane Working Group of U.S. CLIVAR, combined with results from other model simulations, have suggested relationships between tropical cyclone formation rates and climate variables such as mid-tropospheric vertical velocity. Systematic differences are shown between experiments in which only sea surface temperature is increases versus experiments where only atmospheric carbon dioxide is increased, with the carbon dioxide experiments more likely to demonstrate a decrease in numbers. Further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.
NASA Technical Reports Server (NTRS)
Steffes, P. G.
1986-01-01
The recognition of the need to make laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressure which correspond to the altitudes probed by radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. Construction was completed of the outer planets simulator and measurements were conducted of the microwave absorption and refraction from nitrogen under simulated Titan conditions. The results of these and previous laboratory measurements were applied to a wide range of microwave opacity measurements, in order to derive constituent densities and distributions in planetary atmospheres such as Venus.
Reflectivity of the atmosphere-inhomogeneous surfaces system Laboratory simulation
NASA Technical Reports Server (NTRS)
Mekler, Y.; Kaufman, Y. J.; Fraser, R. S.
1984-01-01
Theoretical two- and three-dimensional solutions of the radiative transfer equation have been applied to the earth-atmosphere system. Such solutions have not been verified experimentally. A laboratory experiment simulates such a system to test the theory. The atmosphere was simulated by latex spheres suspended in water and the ground by a nonuniform surface, half white and half black. A stable radiation source provided uniform illumination over the hydrosol. The upward radiance along a line orthogonal to the boundary of the two-halves field was recorded for different amounts of the hydrosol. The simulation is a well-defined radiative transfer experiment to test radiative transfer models involving nonuniform surfaces. Good agreement is obtained between the measured and theoretical results.
Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model
NASA Technical Reports Server (NTRS)
Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.
1975-01-01
Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.
Climate and atmosphere simulator for experiments on ecological systems in changing environments.
Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François
2014-01-01
Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.
New Approaches to Quantifying Transport Model Error in Atmospheric CO2 Simulations
NASA Technical Reports Server (NTRS)
Ott, L.; Pawson, S.; Zhu, Z.; Nielsen, J. E.; Collatz, G. J.; Gregg, W. W.
2012-01-01
In recent years, much progress has been made in observing CO2 distributions from space. However, the use of these observations to infer source/sink distributions in inversion studies continues to be complicated by difficulty in quantifying atmospheric transport model errors. We will present results from several different experiments designed to quantify different aspects of transport error using the Goddard Earth Observing System, Version 5 (GEOS-5) Atmospheric General Circulation Model (AGCM). In the first set of experiments, an ensemble of simulations is constructed using perturbations to parameters in the model s moist physics and turbulence parameterizations that control sub-grid scale transport of trace gases. Analysis of the ensemble spread and scales of temporal and spatial variability among the simulations allows insight into how parameterized, small-scale transport processes influence simulated CO2 distributions. In the second set of experiments, atmospheric tracers representing model error are constructed using observation minus analysis statistics from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA). The goal of these simulations is to understand how errors in large scale dynamics are distributed, and how they propagate in space and time, affecting trace gas distributions. These simulations will also be compared to results from NASA's Carbon Monitoring System Flux Pilot Project that quantified the impact of uncertainty in satellite constrained CO2 flux estimates on atmospheric mixing ratios to assess the major factors governing uncertainty in global and regional trace gas distributions.
Vertical laser beam propagation through the troposphere
NASA Technical Reports Server (NTRS)
Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.
1974-01-01
The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.
NASA Astrophysics Data System (ADS)
Yao, Zhixiong; Tang, Youmin; Chen, Dake; Zhou, Lei; Li, Xiaojing; Lian, Tao; Ul Islam, Siraj
2016-12-01
This study examines the possible impacts of coupling processes on simulations of the Indian Ocean Dipole (IOD). Emphasis is placed on the atmospheric model resolution and physics. Five experiments were conducted for this purpose, including one control run of the ocean-only model, four coupled experiments using two different versions of the Community Atmosphere Model (CAM4 and CAM5) and two different resolutions. The results show that the control run could effectively simulate various features of the IOD. The coupled experiments run at the higher resolution yielded more realistic IOD period and intensity than their counterparts at the low resolution. The coupled experiments using CAM5 generally showed a better simulation skill in the tropical Indian SST climatology and phase-locking than those using CAM4, but the wind anomalies were stronger and the IOD period were longer in the former experiments than in the latter. In all coupled experiments, the IOD intensity was much stronger than the observed intensity, which is attributable to wind-thermocline depth feedback and thermocline depth-subsurface temperature feedback. The CAM5 physics seems beneficial for the simulation of summer rainfall over the eastern equatorial Indian Ocean and the CAM4 physics tends to produce less biases over the western equatorial Indian Ocean, whereas the higher resolution tends to generate unrealistically strong meridional winds. The IOD-ENSO relationship was captured reasonably well in coupled experiments, with improvements in CAM5 relative to CAM4. However, the teleconnection of the IOD-Indian summer monsoon and ENSO-Indian summer monsoon was not realistically simulated in all experiments.
Synchronizing Two AGCMs via Ocean-Atmosphere Coupling (Invited)
NASA Astrophysics Data System (ADS)
Kirtman, B. P.
2009-12-01
A new approach for fusing or synchronizing to very different Atmospheric General Circulation Models (AGCMs) is described. The approach is also well suited for understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
Aqueous Alteration of Basaltic Glass Under a Simulated Mars Atmosphere
NASA Technical Reports Server (NTRS)
Bullock, M. A.; Moore, J. M.
2005-01-01
For the past several years we have been performing experiments designed to produce brines under Mars-simulated conditions. Previously, we had generated and analyzed Mars-analog brines by allowing a mixture of minerals derived from SNC mineralogy to soak in pure water under a synthetic current-Mars atmosphere and under a gas similar to the present Mars atmosphere but with added acidic gases. The latest version of these experiments incubates basaltic glass, obtained from recent Kilauea flows (Mother's Day flow in December 2002), in pure water under a present-day Mars analog atmosphere at 25 C. This abstract and our presentation will discuss the composition of these Mars-analog brines and implications for Mars surface chemistry.
Composition of Simulated Martian Brines and Implications for the Origin of Martian Salts
NASA Technical Reports Server (NTRS)
Bullock, M. A.; Moore, J. M.; Mellon, M. T.
2004-01-01
We report on laboratory experiments that have produced dilute brines under controlled conditions meant to simulate past and present Mars. We allowed an SNC-derived mineral mix to react with pure water under a simulated present-Mars atmosphere for seven months. We then subjected the same mineral mix to a similar aqueous environment for one year, but with a simulated Mars atmosphere that contained the added gases SO2, HCl and NO2. The addition of acidic gases was designed to mimic the effects of volcanic gases that may have been present in the martian atmosphere during periods of increased volcanic activity. The experiments were performed at one bar and at two different temperatures in order to simulate subsurface conditions where liquid water and rock are likely to interact on Mars. The dominant cations dissolved in the solutions we produced were Ca(2+), Mg(2+), Al(3+) and Na(+), while the major anions are dissolved C, F(-), SO4(2-) and Cl(-). Typical solution pH was 4.2 to 6.0 for experiments run with a Mars analog atmosphere, and 3.6-5.0 for experiments with acidic gases added. Abundance patterns of elements in the synthetic sulfate-chloride brines produced under acidic conditions were distinctly unlike those of terrestrial ocean water, terrestrial continental waters, and those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. In particular, the S/Cl ratio in these experiments was about 200, compared with an average value of approx. 5 in martian fines. In contrast, abundance patterns of elements in the brines produced under a present day Mars analog atmosphere were quite similar to those measured in the martian fines at the Mars Pathfinder and Viking 1 and 2 landing sites. This suggests that salts present in the martian regolith may have formed over time as a result of the interaction of surface or subsurface liquid water with basalts in the presence of a martian atmosphere similar in composition to that of today, rather than in an atmosphere higher in acidic volatiles.
Local Infrasound Variability Related to In Situ Atmospheric Observation
NASA Astrophysics Data System (ADS)
Kim, Keehoon; Rodgers, Arthur; Seastrand, Douglas
2018-04-01
Local infrasound is widely used to constrain source parameters of near-surface events (e.g., chemical explosions and volcanic eruptions). While atmospheric conditions are critical to infrasound propagation and source parameter inversion, local atmospheric variability is often ignored by assuming homogeneous atmospheres, and their impact on the source inversion uncertainty has never been accounted for due to the lack of quantitative understanding of infrasound variability. We investigate atmospheric impacts on local infrasound propagation by repeated explosion experiments with a dense acoustic network and in situ atmospheric measurement. We perform full 3-D waveform simulations with local atmospheric data and numerical weather forecast model to quantify atmosphere-dependent infrasound variability and address the advantage and restriction of local weather data/numerical weather model for sound propagation simulation. Numerical simulations with stochastic atmosphere models also showed nonnegligible influence of atmospheric heterogeneity on infrasound amplitude, suggesting an important role of local turbulence.
Atmospheric Chemistry of Micrometeoritic Organic Compounds
NASA Technical Reports Server (NTRS)
Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.
2011-01-01
Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.
Primordial organic chemistry and the origin of life.
NASA Technical Reports Server (NTRS)
Ponnamperuma, C.
1971-01-01
Aspects of Darwinian revolution are discussed together with spontaneous generation, the inorganic chemical evolution, the primitive atmosphere, and interstellar matter. The significance of the change of the earth's reducing atmosphere to an atmosphere with oxidizing characteristics is considered. Experiments regarding the abiogenic synthesis of nucleic acids and proteins are reported. It was found that micromolecules can be formed in simulation experiments. The condensation reaction taking place in the presence of water was studied together with the condensation reaction taking place in the relative absence of water or under hypohydrous conditions. Jupiter simulation studies were conducted, and lunar and meteorite material was analyzed.
NASA Astrophysics Data System (ADS)
Sassi, Fabrizio; Siskind, David E.; Tate, Jennifer L.; Liu, Han-Li; Randall, Cora E.
2018-04-01
We investigate the benefit of high-altitude nudging in simulations of the structure and short-term variability of the upper mesosphere and lower thermosphere (UMLT) dynamical meteorology during boreal winter, specifically around the time of the January 2009 sudden stratospheric warming. We compare simulations using the Specified Dynamics, Whole Atmosphere Community Climate Model, extended version, nudged using atmospheric specifications generated by the Navy Operational Global Atmospheric Prediction System, Advanced Level Physics High Altitude. Two sets of simulations are carried out: one uses nudging over a vertical domain from 0 to 90 km; the other uses nudging over a vertical domain from 0 to 50 km. The dynamical behavior is diagnosed from ensemble mean and standard deviation of winds, temperature, and zonal accelerations due to resolved and parameterized waves. We show that the dynamical behavior of the UMLT is quite different in the two experiments, with prominent differences in the structure and variability of constituent transport. We compare the results of our numerical experiments to observations of carbon monoxide by the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer to show that the high-altitude nudging is capable of reproducing with high fidelity the observed variability, and traveling planetary waves are a crucial component of the dynamics. The results of this study indicate that to capture the key physical processes that affect short-term variability (defined as the atmospheric behavior within about 10 days of a stratospheric warming) in the UMLT, specification of the atmospheric state in the stratosphere alone is not sufficient, and upper atmospheric specifications are needed.
Atmospheric microphysical experiments on an orbital platform
NASA Technical Reports Server (NTRS)
Eaton, L. R.
1974-01-01
The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.
Numerical Modeling Studies of Wake Vortices: Real Case Simulations
NASA Technical Reports Server (NTRS)
Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.
1999-01-01
A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.
Geophysical Fluid Dynamics Outreach Films
NASA Astrophysics Data System (ADS)
Aurnou, J. M.; Schwarz, J. W.; Noguez, G.
2012-12-01
Here we will present high definition films of laboratory experiments demonstrating basic fluid motions similar to those occurring in atmospheres and oceans. In these experiments, we use water to simulate the fluid dynamics of both the liquid (oceans) and gaseous (atmospheric) envelopes. To simulate the spinning of the earth, we carry out the experiments on a rotating table. For each experiment, we begin by looking at our system first without the effects of rotation. Then, we include rotation to see how the behavior of the fluid changes due to the Coriolis accelerations. Our hope is that by viewing these experiments one will develop a sense for how fluids behave both in rotating and non-rotating systems. By noting the differences between the experiments, it should then be possible to establish a basis to think about large-scale fluid motions that exist in Earth's oceans and atmospheres as well as on planets other than Earth.Plan view image of vortices in a rotating tank of fluid. Movies of such flows make accessible the often difficult to comprehend fluid dynamical processes that occur in planetary atmospheres and oceans.
Wen, Sheng; Yu, Yingxin; Guo, Songjun; Feng, Yanli; Sheng, Guoying; Wang, Xinming; Bi, Xinhui; Fu, Jiamo; Jia, Wanglu
2006-01-01
Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented. Copyright 2006 John Wiley & Sons, Ltd.
Laboratory investigation on super-Earths atmospheres
NASA Astrophysics Data System (ADS)
Erculiani, M. S.; Claudi, R. U.; Lessio, L.; Farisato, G.; Giro, E.; Cocola, L.; Billi, D.; D'alessandro, M.; Pace, E.; Schierano, D.; Benatti, S.; Bonavita, M.; Galletta, G.
2014-04-01
In the framework of Atmosphere in a Test Tube, at the Astronomical Observatory of Padova (INAF) we are going to perform experiments aimed to understand the possible modification of the atmosphere by photosynthetic biota present on the planet surface. This goal can be achieved simulating M star planetary environmental conditions. The bacteria that are being studied are Acaryochloris marina, Chroococcidiopsis spp. and Halomicronema hingdechloris. Tests will be performed with LISA or MINI-LISA ambient simulator in the laboratory of the Padova Astronomic Observatory. In this paper we describe the whole road map to follow in order to perform experiments and to obtain useful data to be compared with the real ones that will be obtained by the future space missions. Starting by a fiducial experiment we will modify either environmental and thermodynamical properties in order to simulate both real irradiation by an M star and gas mixture mimicing super earths atmospheres. These laboratory tests could be used as a guideline in order to understand whether chemical disequilibrium of O2, CO2 and CH4 could be ascribed to biotic life forms.
A New Approach for Coupled GCM Sensitivity Studies
NASA Astrophysics Data System (ADS)
Kirtman, B. P.; Duane, G. S.
2011-12-01
A new multi-model approach for coupled GCM sensitivity studies is presented. The purpose of the sensitivity experiments is to understand why two different coupled models have such large differences in their respective climate simulations. In the application presented here, the differences between the coupled models using the Center for Ocean-Land-Atmosphere Studies (COLA) and the National Center for Atmospheric Research (NCAR) atmospheric general circulation models (AGCMs) are examined. The intent is to isolate which component of the air-sea fluxes is most responsible for the differences between the coupled models and for the errors in their respective coupled simulations. The procedure is to simultaneously couple the two different atmospheric component models to a single ocean general circulation model (OGCM), in this case the Modular Ocean Model (MOM) developed at the Geophysical Fluid Dynamics Laboratory (GFDL). Each atmospheric component model experiences the same SST produced by the OGCM, but the OGCM is simultaneously coupled to both AGCMs using a cross coupling strategy. In the first experiment, the OGCM is coupled to the heat and fresh water flux from the NCAR AGCM (Community Atmospheric Model; CAM) and the momentum flux from the COLA AGCM. Both AGCMs feel the same SST. In the second experiment, the OGCM is coupled to the heat and fresh water flux from the COLA AGCM and the momentum flux from the CAM AGCM. Again, both atmospheric component models experience the same SST. By comparing these two experimental simulations with control simulations where only one AGCM is used, it is possible to argue which of the flux components are most responsible for the differences in the simulations and their respective errors. Based on these sensitivity experiments we conclude that the tropical ocean warm bias in the COLA coupled model is due to errors in the heat flux, and that the erroneous westward shift in the tropical Pacific cold tongue minimum in the NCAR model is due errors in the momentum flux. All the coupled simulations presented here have warm biases along the eastern boundary of the tropical oceans suggesting that the problem is common to both AGCMs. In terms of interannual variability in the tropical Pacific, the CAM momentum flux is responsible for the erroneous westward extension of the sea surface temperature anomalies (SSTA) and errors in the COLA momentum flux cause the erroneous eastward migration of the El Niño-Southern Oscillation (ENSO) events. These conclusions depend on assuming that the error due to the OGCM can be neglected.
NASA Technical Reports Server (NTRS)
Macaraeg, M. G.
1986-01-01
For a Spacelab flight, a model experiment of the earth's atmospheric circulation has been proposed. This experiment is known as the Atmospheric General Circulation Experiment (AGCE). In the experiment concentric spheres will rotate as a solid body, while a dielectric fluid is confined in a portion of the gap between the spheres. A zero gravity environment will be required in the context of the simulation of the gravitational body force on the atmosphere. The present study is concerned with the development of pseudospectral/finite difference (PS/FD) model and its subsequent application to physical cases relevant to the AGCE. The model is based on a hybrid scheme involving a pseudospectral latitudinal formulation, and finite difference radial and time discretization. The advantages of the use of the hybrid PS/FD method compared to a pure second-order accurate finite difference (FD) method are discussed, taking into account the higher accuracy and efficiency of the PS/FD method.
Three-dimensional computer model for the atmospheric general circulation experiment
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1984-01-01
An efficient, flexible, three-dimensional, hydrodynamic, computer code has been developed for a spherical cap geometry. The code will be used to simulate NASA's Atmospheric General Circulation Experiment (AGCE). The AGCE is a spherical, baroclinic experiment which will model the large-scale dynamics of our atmosphere; it has been proposed to NASA for future Spacelab flights. In the AGCE a radial dielectric body force will simulate gravity, with hot fluid tending to move outwards. In order that this force be dominant, the AGCE must be operated in a low gravity environment such as Spacelab. The full potential of the AGCE will only be realized by working in conjunction with an accurate computer model. Proposed experimental parameter settings will be checked first using model runs. Then actual experimental results will be compared with the model predictions. This interaction between experiment and theory will be very valuable in determining the nature of the AGCE flows and hence their relationship to analytical theories and actual atmospheric dynamics.
An Electrostatic Precipitator System for the Martian Environment
NASA Technical Reports Server (NTRS)
Calle, C. I.; Mackey, P. J.; Hogue, M. D.; Johansen, M. R.; Phillips, J. R., III; Clements, J. S.
2012-01-01
Human exploration missions to Mars will require the development of technologies for the utilization of the planet's own resources for the production of commodities. However, the Martian atmosphere contains large amounts of dust. The extraction of commodities from this atmosphere requires prior removal of this dust. We report on our development of an electrostatic precipitator able to collect Martian simulated dust particles in atmospheric conditions approaching those of Mars. Extensive experiments with an initial prototype in a simulated Martian atmosphere showed efficiencies of 99%. The design of a second prototype with aerosolized Martian simulated dust in a flow-through is described. Keywords: Space applications, electrostatic precipitator, particle control, particle charging
Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard-design nuclear power plants. The main objective of the study was to compare the dispersion in the wakes of the plants with that in a simulated atmospheric bound...
NASA Technical Reports Server (NTRS)
Diak, George R.; Smith, William L.
1992-01-01
A flexible system for performing observing system simulation experiments which made contributions to meteorology across all elements of the observing system simulation experiment (OSSE) components was developed. Future work will seek better understanding of the links between satellite-measured radiation and radiative transfer in the clear, cloudy and precipitating atmosphere and investigate how that understanding might be applied to improve the depiction of the initial state and the treatment of physical processes in forecast models of the atmosphere.
Evaluation of standard radiation atmosphere aerosol models for a coastal environment
NASA Technical Reports Server (NTRS)
Whitlock, C. H.; Suttles, J. T.; Sebacher, D. I.; Fuller, W. H.; Lecroy, S. R.
1986-01-01
Calculations are compared with data from an experiment to evaluate the utility of standard radiation atmosphere (SRA) models for defining aerosol properties in atmospheric radiation computations. Initial calculations with only SRA aerosols in a four-layer atmospheric column simulation allowed a sensitivity study and the detection of spectral trends in optical depth, which differed from measurements. Subsequently, a more detailed analysis provided a revision in the stratospheric layer, which brought calculations in line with both optical depth and skylight radiance data. The simulation procedure allows determination of which atmospheric layers influence both downwelling and upwelling radiation spectra.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1997-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements completed under this grant (NAGW-533), have shown that the opacity from, SO2 under simulated Venus conditions is best described by a different lineshape than was previously used in theoretical predictions. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1987-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorping properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurement of the microwave properties of atmospheric gases under simulated conditions for the outer planets were conducted. Results of these measurements are discussed.
Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Kevin J. E.; Camargo, Suzana J.; Vecchi, Gabriel A.
While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results frommore » other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased compared with experiments where only atmospheric carbon dioxide is increased. Experiments where only carbon dioxide is increased are more likely to demonstrate a decrease in tropical cyclone numbers, similar to the decreases simulated by many climate models for a future, warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Lastly, further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.« less
Hurricanes and Climate: The U.S. CLIVAR Working Group on Hurricanes
Walsh, Kevin J. E.; Camargo, Suzana J.; Vecchi, Gabriel A.; ...
2015-06-01
While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results frommore » other model simulations, has strengthened relationships between tropical cyclone formation rates and climate variables such as midtropospheric vertical velocity, with decreased climatological vertical velocities leading to decreased tropical cyclone formation. Systematic differences are shown between experiments in which only sea surface temperature is increased compared with experiments where only atmospheric carbon dioxide is increased. Experiments where only carbon dioxide is increased are more likely to demonstrate a decrease in tropical cyclone numbers, similar to the decreases simulated by many climate models for a future, warmer climate. Experiments where the two effects are combined also show decreases in numbers, but these tend to be less for models that demonstrate a strong tropical cyclone response to increased sea surface temperatures. Lastly, further experiments are proposed that may improve our understanding of the relationship between climate and tropical cyclone formation, including experiments with two-way interaction between the ocean and the atmosphere and variations in atmospheric aerosols.« less
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1992-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. The goal of this investigation was to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines
NASA Astrophysics Data System (ADS)
Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.
2016-12-01
Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.
NASA Technical Reports Server (NTRS)
Moehlmann, D.; Kochan, H.
1992-01-01
The Space Simulator of the German Aerospace Research Establishment at Cologne, formerly used for testing satellites, is now, since 1987, the central unit within the research sub-program 'Comet-Simulation' (KOSI). The KOSI team has investigated physical processes relevant to comets and their surfaces. As a byproduct we gained experience in sample-handling under simulated space conditions. In broadening the scope of the research activities of the DLR Institute of Space Simulation an extension to 'Laboratory-Planetology' is planned. Following the KOSI-experiments a Mars Surface-Simulation with realistic minerals and surface soil in a suited environment (temperature, pressure, and CO2-atmosphere) is foreseen as the next step. Here, our main interest is centered on thermophysical properties of the Martian surface and energy transport (and related gas transport) through the surface. These laboratory simulation activities can be related to space missions as typical pre-mission and during-the-mission support of the experiments design and operations (simulation in parallel). Post mission experiments for confirmation and interpretation of results are of great value. The physical dimensions of the Space Simulator (cylinder of about 2.5 m diameter and 5 m length) allows for testing and qualification of experimental hardware under realistic Martian conditions.
NASA Technical Reports Server (NTRS)
Chang, Chia-Bo
1994-01-01
This study is intended to examine the impact of the synthetic relative humidity on the model simulation of mesoscale convective storm environment. The synthetic relative humidity is derived from the National Weather Services surface observations, and non-conventional sources including aircraft, radar, and satellite observations. The latter sources provide the mesoscale data of very high spatial and temporal resolution. The synthetic humidity data is used to complement the National Weather Services rawinsonde observations. It is believed that a realistic representation of initial moisture field in a mesoscale model is critical for the model simulation of thunderstorm development, and the formation of non-convective clouds as well as their effects on the surface energy budget. The impact will be investigated based on a real-data case study using the mesoscale atmospheric simulation system developed by Mesoscale Environmental Simulations Operations, Inc. The mesoscale atmospheric simulation system consists of objective analysis and initialization codes, and the coarse-mesh and fine-mesh dynamic prediction models. Both models are a three dimensional, primitive equation model containing the essential moist physics for simulating and forecasting mesoscale convective processes in the atmosphere. The modeling system is currently implemented at the Applied Meteorology Unit, Kennedy Space Center. Two procedures involving the synthetic relative humidity to define the model initial moisture fields are considered. It is proposed to perform several short-range (approximately 6 hours) comparative coarse-mesh simulation experiments with and without the synthetic data. They are aimed at revealing the model sensitivities should allow us both to refine the specification of the observational requirements, and to develop more accurate and efficient objective analysis schemes. The goal is to advance the MASS (Mesoscal Atmospheric Simulation System) modeling expertise so that the model output can provide reliable guidance for thunderstorm forecasting.
Ion Counting from Explicit-Solvent Simulations and 3D-RISM
Giambaşu, George M.; Luchko, Tyler; Herschlag, Daniel; York, Darrin M.; Case, David A.
2014-01-01
The ionic atmosphere around nucleic acids remains only partially understood at atomic-level detail. Ion counting (IC) experiments provide a quantitative measure of the ionic atmosphere around nucleic acids and, as such, are a natural route for testing quantitative theoretical approaches. In this article, we replicate IC experiments involving duplex DNA in NaCl(aq) using molecular dynamics (MD) simulation, the three-dimensional reference interaction site model (3D-RISM), and nonlinear Poisson-Boltzmann (NLPB) calculations and test against recent buffer-equilibration atomic emission spectroscopy measurements. Further, we outline the statistical mechanical basis for interpreting IC experiments and clarify the use of specific concentration scales. Near physiological concentrations, MD simulation and 3D-RISM estimates are close to experimental results, but at higher concentrations (>0.7 M), both methods underestimate the number of condensed cations and overestimate the number of excluded anions. The effect of DNA charge on ion and water atmosphere extends 20–25 Å from its surface, yielding layered density profiles. Overall, ion distributions from 3D-RISMs are relatively close to those from corresponding MD simulations, but with less Na+ binding in grooves and tighter binding to phosphates. NLPB calculations, on the other hand, systematically underestimate the number of condensed cations at almost all concentrations and yield nearly structureless ion distributions that are qualitatively distinct from those generated by both MD simulation and 3D-RISM. These results suggest that MD simulation and 3D-RISM may be further developed to provide quantitative insight into the characterization of the ion atmosphere around nucleic acids and their effect on structure and stability. PMID:24559991
The Outdoor Atmospheric Simulation Chamber of Orleans-France (HELIOS)
NASA Astrophysics Data System (ADS)
Mellouki, A.; Véronique, D.; Grosselin, B.; Peyroux, F.; Benoit, R.; Ren, Y.; Idir, M.
2016-12-01
Atmospheric simulation chambers are among the most advanced tools for investigating the atmospheric processes to derive physico-chemical parameters which are required for air quality and climate models. Recently, the ICARE-CNRS at Orléans (France) has set up a new large outdoor simulation chamber, HELIOS. HELIOS is one of the most advanced simulation chambers in Europe. It is one of the largest outdoor chambers and is especially suited to processes studies performed under realistic atmospheric conditions. HELIOS is a large hemispherical outdoor simulation chamber (volume of 90 m3) positioned on the top of ICARE-CNRS building at Orléans (47°50'18.39N; 1°56'40.03E). The chamber is made of FEP film ensuring more than 90 % solar light transmission. The chamber is protected against severe meteorological conditions by a moveable "box" which contains a series of Xenon lamps enabling to conduct experiments using artificial light. This special design makes HELIOS a unique platform where experiments can be made using both types of irradiations. HELIOS is dedicated mainly to the investigation of the chemical processes under different conditions (sunlight, artificial light and dark). The platform allows conducting the same type of experiments under both natural and artificial light irradiation. The available large range of complementary and highly sensitive instruments allows investigating the radical chemistry, gas phase processes and aerosol formation under realistic conditions. The characteristics of HELIOS will be presented as well as the first series of experimental results obtained so far.
Simulating super earth atmospheres in the laboratory
NASA Astrophysics Data System (ADS)
Claudi, R.; Erculiani, M. S.; Galletta, G.; Billi, D.; Pace, E.; Schierano, D.; Giro, E.; D'Alessandro, M.
2016-01-01
Several space missions, such as JWST, TESS and the very recently proposed ARIEL, or ground-based experiments, as SPHERE and GPI, have been proposed to measure the atmospheric transmission, reflection and emission spectra of extrasolar planets. The planet atmosphere characteristics and possible biosignatures will be inferred by studying planetary spectra in order to identify the emission/absorption lines/bands from atmospheric molecules such as water (H2O), carbon monoxide (CO), methane (CH4), ammonia (NH3), etc. In particular, it is important to know in detail the optical characteristics of gases in the typical physical conditions of the planetary atmospheres and how these characteristics could be affected by radiation driven photochemical and biochemical reaction. The main aim of the project `Atmosphere in a Test Tube' is to provide insights on exoplanet atmosphere modification due to biological intervention. This can be achieved simulating planetary atmosphere at different pressure and temperature conditions under the effects of radiation sources, used as proxies of different bands of the stellar emission. We are tackling the characterization of extrasolar planet atmospheres by mean of innovative laboratory experiments described in this paper. The experiments are intended to reproduce the conditions on warm earths and super earths hosted by low-mass M dwarfs primaries with the aim to understand if a cyanobacteria population hosted on a Earth-like planet orbiting an M0 star is able to maintain its photosynthetic activity and produce traceable signatures.
Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela
2016-06-01
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m(2) of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.
NASA Astrophysics Data System (ADS)
Baqué, Mickael; Verseux, Cyprien; Böttger, Ute; Rabbow, Elke; de Vera, Jean-Pierre Paul; Billi, Daniela
2016-06-01
The space mission EXPOSE-R2 launched on the 24th of July 2014 to the International Space Station is carrying the BIOMEX (BIOlogy and Mars EXperiment) experiment aimed at investigating the endurance of extremophiles and stability of biomolecules under space and Mars-like conditions. In order to prepare the analyses of the returned samples, ground-based simulations were carried out in Planetary and Space Simulation facilities. During the ground-based simulations, Chroococcidiopsis cells mixed with two Martian mineral analogues (phyllosilicatic and sulfatic Mars regolith simulants) were exposed to a Martian simulated atmosphere combined or not with UV irradiation corresponding to the dose received during a 1-year-exposure in low Earth orbit (or half a Martian year on Mars). Cell survival and preservation of potential biomarkers such as photosynthetic and photoprotective pigments or DNA were assessed by colony forming ability assays, confocal laser scanning microscopy, Raman spectroscopy and PCR-based assays. DNA and photoprotective pigments (carotenoids) were detectable after simulations of the space mission (570 MJ/m2 of UV 200-400 nm irradiation and Martian simulated atmosphere), even though signals were attenuated by the treatment. The fluorescence signal from photosynthetic pigments was differently preserved after UV irradiation, depending on the thickness of the samples. UV irradiation caused a high background fluorescence of the Martian mineral analogues, as revealed by Raman spectroscopy. Further investigation will be needed to ensure unambiguous identification and operations of future Mars missions. However, a 3-month exposure to a Martian simulated atmosphere showed no significant damaging effect on the tested cyanobacterial biosignatures, pointing out the relevance of the latter for future investigations after the EXPOSE-R2 mission. Data gathered during the ground-based simulations will contribute to interpret results from space experiments and guide our search for life on Mars.
NASA Astrophysics Data System (ADS)
Obland, Michael D.; Campbell, Joel; Kooi, Susan; Fan, Tai-Fang; Carrion, William; Hicks, Jonathan; Lin, Bing; Nehrir, Amin R.; Browell, Edward V.; Meadows, Byron; Davis, Kenneth J.
2018-04-01
This work describes advances in critical lidar technologies and techniques developed as part of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons CarbonHawk Experiment Simulator system for measuring atmospheric column carbon dioxide (CO2) mixing ratios. This work provides an overview of these technologies and results from recent test flights during the NASA Atmospheric Carbon and Transport - America (ACT-America) Earth Venture Suborbital summer 2016 flight campaign.
Haze production rates in super-Earth and mini-Neptune atmosphere experiments
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique
2018-04-01
Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.
Haze production rates in super-Earth and mini-Neptune atmosphere experiments
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; He, Chao; Lewis, Nikole K.; Kempton, Eliza M.-R.; Marley, Mark S.; Morley, Caroline V.; Moses, Julianne I.; Valenti, Jeff A.; Vuitton, Véronique
2018-03-01
Numerous Solar System atmospheres possess photochemically generated hazes, including the characteristic organic hazes of Titan and Pluto. Haze particles substantially impact atmospheric temperature structures and may provide organic material to the surface of a world, potentially affecting its habitability. Observations of exoplanet atmospheres suggest the presence of aerosols, especially in cooler (<800 K), smaller (<0.3× Jupiter's mass) exoplanets. It remains unclear whether the aerosols muting the spectroscopic features of exoplanet atmospheres are condensate clouds or photochemical hazes1-3, which is difficult to predict from theory alone4. Here, we present laboratory haze simulation experiments that probe a broad range of atmospheric parameters relevant to super-Earth- and mini-Neptune-type planets5, the most frequently occurring type of planet in our galaxy6. It is expected that photochemical haze will play a much greater role in the atmospheres of planets with average temperatures below 1,000 K (ref. 7), especially those planets that may have enhanced atmospheric metallicity and/or enhanced C/O ratios, such as super-Earths and Neptune-mass planets8-12. We explored temperatures from 300 to 600 K and a range of atmospheric metallicities (100×, 1,000× and 10,000× solar). All simulated atmospheres produced particles, and the cooler (300 and 400 K) 1,000× solar metallicity (`H2O-dominated' and CH4-rich) experiments exhibited haze production rates higher than our standard Titan simulation ( 10 mg h-1 versus 7.4 mg h-1 for Titan13). However, the particle production rates varied greatly, with measured rates as low as 0.04 mg h-1 (for the case with 100× solar metallicity at 600 K). Here, we show that we should expect great diversity in haze production rates, as some—but not all—super-Earth and mini-Neptune atmospheres will possess photochemically generated haze.
Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds
NASA Technical Reports Server (NTRS)
Jarzembski, M. A.; Srivastava, V.
1995-01-01
Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.
NASA Astrophysics Data System (ADS)
Wilcox, William Edward, Jr.
1995-01-01
A computer program (LIDAR-PC) and associated atmospheric spectral databases have been developed which accurately simulate the laser remote sensing of the atmosphere and the system performance of a direct-detection Lidar or tunable Differential Absorption Lidar (DIAL) system. This simulation program allows, for the first time, the use of several different large atmospheric spectral databases to be coupled with Lidar parameter simulations on the same computer platform to provide a real-time, interactive, and easy to use design tool for atmospheric Lidar simulation and modeling. LIDAR -PC has been used for a range of different Lidar simulations and compared to experimental Lidar data. In general, the simulations agreed very well with the experimental measurements. In addition, the simulation offered, for the first time, the analysis and comparison of experimental Lidar data to easily determine the range-resolved attenuation coefficient of the atmosphere and the effect of telescope overlap factor. The software and databases operate on an IBM-PC or compatible computer platform, and thus are very useful to the research community for Lidar analysis. The complete Lidar and atmospheric spectral transmission modeling program uses the HITRAN database for high-resolution molecular absorption lines of the atmosphere, the BACKSCAT/LOWTRAN computer databases and models for the effects of aerosol and cloud backscatter and attenuation, and the range-resolved Lidar equation. The program can calculate the Lidar backscattered signal-to-noise for a slant path geometry from space and simulate the effect of high resolution, tunable, single frequency, and moderate line width lasers on the Lidar/DIAL signal. The program was used to model and analyze the experimental Lidar data obtained from several measurements. A fixed wavelength, Ho:YSGG aerosol Lidar (Sugimoto, 1990) developed at USF and a tunable Ho:YSGG DIAL system (Cha, 1991) for measuring atmospheric water vapor at 2.1 μm were analyzed. The simulations agreed very well with the measurements, and also yielded, for the first time, the ability to easily deduce the atmospheric attentuation coefficient, alpha, from the Lidar data. Simulations and analysis of other Lidar measurements included that of a 1.57 mu m OPO aerosol Lidar system developed at USF (Harrell, 1995) and of the NASA LITE (Laser-in-Space Technology Experiment) Lidar recently flown in the Space shuttle. Finally, an extensive series of laboratory experiments were made with the 1.57 μm OPO Lidar system to test calculations of the telescope/laser overlap and the effect of different telescope sizes and designs. The simulations agreed well with the experimental data for the telescope diameter and central obscuration test cases. The LIDAR-PC programs are available on the Internet from the USAF Lidar Home Page Web site, http://www.cas.usf.edu/physics/lidar.html/.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
2002-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based or spacecraft-based radio astronomical (emission) observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or the use of laboratory measurements of such properties taken under environmental conditions that are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. Laboratory measurements have shown that the centimeter-wavelength opacity from gaseous phosphine (PH3) under simulated conditions for the outer planets far exceeds that predicted from theory over a wide range of temperatures and pressures. This fundamentally changed the resulting interpretation of Voyager radio occultation data at Saturn and Neptune. It also directly impacts planning and scientific goals for study of Saturn's atmosphere with the Cassini Radio Science Experiment and the Rossini RADAR instrument. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both spacecraft entry probe and orbiter (or flyby) radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft- and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres,
Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1997-01-01
ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.
Aeolian Erosion on Mars - a New Threshold for Saltation
NASA Astrophysics Data System (ADS)
Teiser, J.; Musiolik, G.; Kruss, M.; Demirci, T.; Schrinski, B.; Daerden, F.; Smith, M. D.; Neary, L.; Wurm, G.
2017-12-01
The Martian atmosphere shows a large variety of dust activity, ranging from local dust devils to global dust storms. Also, sand motion has been observed in form of moving dunes. The dust entrainment into the Martian atmosphere is not well understood due to the small atmospheric pressure of only a few mbar. Laboratory experiments on Earth and numerical models were developed to understand these processes leading to dust lifting and saltation. Experiments so far suggested that large wind velocities are needed to reach the threshold shear velocity and to entrain dust into the atmosphere. In global circulation models this threshold shear velocity is typically reduced artificially to reproduce the observed dust activity. Although preceding experiments were designed to simulate Martian conditions, no experiment so far could scale all parameters to Martian conditions, as either the atmospheric or the gravitational conditions were not scaled. In this work, a first experimental study of saltation under Martian conditions is presented. Martian gravity is reached by a centrifuge on a parabolic flight, while pressure (6 mbar) and atmospheric composition (95% CO2, 5% air) are adjusted to Martian levels. A sample of JSC 1A (grain sizes from 10 - 100 µm) was used to simulate Martian regolith. The experiments showed that the reduced gravity (0.38 g) not only affects the weight of the dust particles, but also influences the packing density within the soil and therefore also the cohesive forces. The measured threshold shear velocity of 0.82 m/s is significantly lower than the measured value for 1 g in ground experiments (1.01 m/s). Feeding the measured value into a Global Circulation Model showed that no artificial reduction of the threshold shear velocity might be needed to reproduce the global dust distribution in the Martian atmosphere.
NASA Technical Reports Server (NTRS)
daSilva, Arlinda
2012-01-01
A model-based Observing System Simulation Experiment (OSSE) is a framework for numerical experimentation in which observables are simulated from fields generated by an earth system model, including a parameterized description of observational error characteristics. Simulated observations can be used for sampling studies, quantifying errors in analysis or retrieval algorithms, and ultimately being a planning tool for designing new observing missions. While this framework has traditionally been used to assess the impact of observations on numerical weather prediction, it has a much broader applicability, in particular to aerosols and chemical constituents. In this talk we will give a general overview of Observing System Simulation Experiments (OSSE) activities at NASA's Global Modeling and Assimilation Office, with focus on its emerging atmospheric composition component.
Experimental Method of Generating Electromagnetic Gaussian Schell-model Beams
2015-03-26
attracted special attention for the potential use in free-space optical communications, imaging through turbulence , and remote sensing applications [11...successful experiment demonstrated a reduction in scintillation of a completely unpolarized EGSM beam propagated through simulated 1 atmospheric turbulence [1...propagate through the atmosphere using either an atmospheric phase wheel or using additional SLMs to display atmospheric phase screens. Further, the source
Small Impacts on Mars: Atmospheric Effects
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Nemtchinov, Ivan V.
2002-01-01
The objectives of this investigation were to study the interaction of the atmosphere with the surface of Mars through the impact of small objects that would generate dust and set the dust into motion in the atmosphere. The approach involved numerical simulations of impacts and experiments under controlled conditions. Attachment: Atmospheric disturbances and radiation impulses caused by large-meteoroid impact in the surface of Mars.
Application of radiosonde data to VERITAS simulations
NASA Astrophysics Data System (ADS)
Daniel, M. K.
The atmosphere is a vital component of the detector in an atmospheric Cherenkov telescope. In order to understand observations from these instruments and reduce systematic uncertainties and biases in their data it is important to correctly model the atmosphere in simulations of the extensive air showers they detect. The Very High Energy Telescope Array (VERITAS) is a system of 4 such telescopes located at the Whipple Observatory in Southern Arizona. Daily radiosonde measurements from the nearby Tucson airport allow an accurate model of the atmosphere for the VERITAS experiment to be constructed. Comparison of the radiosonde data to existing atmospheric models is performed and the expected effects on the systematic uncertainties are summarised here.
NASA Astrophysics Data System (ADS)
Egbers, Christoph; Futterer, Birgit; Zaussinger, Florian; Harlander, Uwe
2014-05-01
Baroclinic waves are responsible for the transport of heat and momentum in the oceans, in the Earth's atmosphere as well as in other planetary atmospheres. The talk will give an overview on possibilities to simulate such large scale as well as co-existing small scale structures with the help of well defined laboratory experiments like the baroclinic wave tank (annulus experiment). The analogy between the Earth's atmosphere and the rotating cylindrical annulus experiment only driven by rotation and differential heating between polar and equatorial regions is obvious. From the Gulf stream single vortices seperate from time to time. The same dynamics and the co-existence of small and large scale structures and their separation can be also observed in laboratory experiments as in the rotating cylindrical annulus experiment. This experiment represents the mid latitude dynamics quite well and is part as a central reference experiment in the German-wide DFG priority research programme ("METSTRÖM", SPP 1276) yielding as a benchmark for lot of different numerical methods. On the other hand, those laboratory experiments in cylindrical geometry are limited due to the fact, that the surface and real interaction between polar and equatorial region and their different dynamics can not be really studied. Therefore, I demonstrate how to use the very successful Geoflow I and Geoflow II space experiment hardware on ISS with future modifications for simulations of small and large scale planetary atmospheric motion in spherical geometry with differential heating between inner and outer spheres as well as between the polar and equatorial regions. References: Harlander, U., Wenzel, J., Wang, Y., Alexandrov, K. & Egbers, Ch., 2012, Simultaneous PIV- and thermography measurements of partially blocked flow in a heated rotating annulus, Exp. in Fluids, 52 (4), 1077-1087 Futterer, B., Krebs, A., Plesa, A.-C., Zaussinger, F., Hollerbach, R., Breuer, D. & Egbers, Ch., 2013, Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., vol. 75, p 647-683
NASA Astrophysics Data System (ADS)
Prasad, K.; Thorpe, A. K.; Duren, R. M.; Thompson, D. R.; Whetstone, J. R.
2016-12-01
The National Institute of Standards and Technology (NIST) has supported the development and demonstration of a measurement capability to accurately locate greenhouse gas sources and measure their flux to the atmosphere over urban domains. However, uncertainties in transport models which form the basis of all top-down approaches can significantly affect our capability to attribute sources and predict their flux to the atmosphere. Reducing uncertainties between bottom-up and top-down models will require high resolution transport models as well as validation and verification of dispersion models over an urban domain. Tracer experiments involving the release of Perfluorocarbon Tracers (PFTs) at known flow rates offer the best approach for validating dispersion / transport models. However, tracer experiments are limited by cost, ability to make continuous measurements, and environmental concerns. Natural tracer experiments, such as the leak from the Aliso Canyon underground storage facility offers a unique opportunity to improve and validate high resolution transport models, test leak hypothesis, and to estimate the amount of methane released.High spatial resolution (10 m) Large Eddy Simulations (LES) coupled with WRF atmospheric transport models were performed to simulate the dynamics of the Aliso Canyon methane plume and to quantify the source. High resolution forward simulation results were combined with aircraft and tower based in-situ measurements as well as data from NASA airborne imaging spectrometers. Comparison of simulation results with measurement data demonstrate the capability of the LES models to accurately model transport and dispersion of methane plumes over urban domains.
NASA Technical Reports Server (NTRS)
Johnson, Daniel E.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Einaudi, Franco (Technical Monitor)
2001-01-01
Interactions between deep tropical clouds over the western Pacific warm pool and the larger-scale environment are key to understanding climate change. Cloud models are an extremely useful tool in simulating and providing statistical information on heat and moisture transfer processes between cloud systems and the environment, and can therefore be utilized to substantially improve cloud parameterizations in climate models. In this paper, the Goddard Cumulus Ensemble (GCE) cloud-resolving model is used in multi-day simulations of deep tropical convective activity over the Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE). Large-scale temperature and moisture advective tendencies, and horizontal momentum from the TOGA-COARE Intensive Flux Array (IFA) region, are applied to the GCE version which incorporates cyclical boundary conditions. Sensitivity experiments show that grid domain size produces the largest response to domain-mean temperature and moisture deviations, as well as cloudiness, when compared to grid horizontal or vertical resolution, and advection scheme. It is found that a minimum grid-domain size of 500 km is needed to adequately resolve the convective cloud features. The control experiment shows that the atmospheric heating and moistening is primarily a response to cloud latent processes of condensation/evaporation, and deposition/sublimation, and to a lesser extent, melting of ice particles. Air-sea exchange of heat and moisture is found to be significant, but of secondary importance, while the radiational response is small. The simulated rainfall and atmospheric heating and moistening, agrees well with observations, and performs favorably to other models simulating this case.
The controllability of the aeroassist flight experiment atmospheric skip trajectory
NASA Technical Reports Server (NTRS)
Wood, R.
1989-01-01
The Aeroassist Flight Experiment (AFE) will be the first vehicle to simulate a return from geosynchronous orbit, deplete energy during an aerobraking maneuver, and navigate back out of the atmosphere to a low earth orbit It will gather scientific data necessary for future Aeroasisted Orbitl Transfer Vehicles (AOTV's). Critical to mission success is the ability of the atmospheric guidance to accurately attain a targeted post-aeropass orbital apogee while nulling inclination errors and compensating for dispersions in state, aerodynamic, and atmospheric parameters. In typing to satisfy mission constraints, atmospheric entry-interface (EI) conditions, guidance gains, and trajectory. The results of the investigation are presented; emphasizing the adverse effects of dispersed atmospheres on trajectory controllability.
2015-09-30
hired to conduct WRF model experiments. • We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with... WRF simulations under different synoptic conditions will help to more 10 clearly identify the deficiencies in the representation of these processes
Effect of pollutant gases on ozone production by simulated solar radiation
NASA Technical Reports Server (NTRS)
Wong, E. L.; Bittker, D. A.
1974-01-01
Experiments using simulated solar radiation in a chamber, with a controlled atmospheric pressure near 1 atmosphere, were conducted to evaluate O3 production. The effects of CO and H2O were analyzed to determine if the CO and H2O addition could reduce NO destruction of O3. The results show that NO is destroyed while destroying O3.
NASA Astrophysics Data System (ADS)
Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.
1999-04-01
A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is highly non-local and enhanced in the coupled simulation.
NASA Technical Reports Server (NTRS)
Emmitt, G. D.; Wood, S. A.; Morris, M.
1990-01-01
Lidar Atmospheric Wind Sounder (LAWS) Simulation Models (LSM) were developed to evaluate the potential impact of global wind observations on the basic understanding of the Earth's atmosphere and on the predictive skills of current forecast models (GCM and regional scale). Fully integrated top to bottom LAWS Simulation Models for global and regional scale simulations were developed. The algorithm development incorporated the effects of aerosols, water vapor, clouds, terrain, and atmospheric turbulence into the models. Other additions include a new satellite orbiter, signal processor, line of sight uncertainty model, new Multi-Paired Algorithm and wind error analysis code. An atmospheric wind field library containing control fields, meteorological fields, phenomena fields, and new European Center for Medium Range Weather Forecasting (ECMWF) data was also added. The LSM was used to address some key LAWS issues and trades such as accuracy and interpretation of LAWS information, data density, signal strength, cloud obscuration, and temporal data resolution.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1989-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. Work performed has shown that laboratory measurements of the millimeter-wave opacity of ammonia between 7.5 mm and 9.3 mm and also at the 3.2 mm wavelength require a different lineshape to be used in the theoretical prediction for millimeter-wave ammonia opacity than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both radio occultation experiments and radio astronomical observations, and over a range of frequencies which correspond to those used in both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1998-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments, entry probe radio signal absorption measurements, and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or using laboratory measurements of such properties taken under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often leads to significant misinterpretation of available opacity data. For example, laboratory measurements completed recently by Kolodner and Steffes (ICARUS 132, pp. 151-169, March 1998, attached as Appendix A) under this grant (NAGS-4190), have shown that the opacity from gaseous H2SO4 under simulated Venus conditions is best described by a different formalism than was previously used. The recognition of the need to make such laboratory measurements of simulated planetary atmospheres over a range of temperatures and pressures which correspond to the altitudes probed by both spacecraft entry probe and orbiter radio occultation experiments and by radio astronomical observations, and over a range of frequencies which correspond to those used in such experiments, has led to the development of a facility at Georgia Tech which is capable of making such measurements. It has been the goal of this investigation to conduct such measurements and to apply the results to a wide range of planetary observations, both spacecraft and earth-based, in order to determine the identity and abundance profiles of constituents in those planetary atmospheres.
Simulation of seasonal anomalies of atmospheric circulation using coupled atmosphere-ocean model
NASA Astrophysics Data System (ADS)
Tolstykh, M. A.; Diansky, N. A.; Gusev, A. V.; Kiktev, D. B.
2014-03-01
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989-2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997-1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.
Land-atmosphere interactions over the continental United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Xubin
This paper briefly discusses four suggested modifications for land surface modeling in climate models. The impact of the modifications on climate simulations is analyzed with the Biosphere-Atmosphere Transfer Scheme (BATS) land surface model. It is found that the modifications can improve BATS simulations. In particular, the sensitivity of BATS to the prescribed value of physical root fraction which cannot be observed from satellite remote sensing or field experiments is improved. These modifications significantly reduce the excessive summer land surface temperature over the continental United States simulated by the National Center for Atmospheric Research Community Climate Model (CCM2) coupled with BATS.more » A land-atmosphere interaction mechanism involving energy and water cycles is proposed to explain the results. 9 refs., 1 fig.« less
Simulations of the general circulation of the Martian atmosphere. I - Polar processes
NASA Technical Reports Server (NTRS)
Pollack, James B.; Haberle, Robert M.; Schaeffer, James; Lee, Hilda
1990-01-01
Numerical simulations of the Martian atmosphere general circulation are carried out for 50 simulated days, using a three-dimensional model, based on the primitive equations of meteorology, which incorporated the radiative effects of atmospheric dust on solar and thermal radiation. A large number of numerical experiments were conducted for alternative choices of seasonal date and dust optical depth. It was found that, as the dust content of the winter polar region increased, the rate of atmospheric CO2 condensation increased sharply. It is shown that the strong seasonal variation in the atmospheric dust content observed might cause a number of hemispheric asymmetries. These asymmetries include the greater prevalence of polar hoods in the northern polar region during winter, the lower albedo of the northern polar cap during spring, and the total dissipation of the northern CO2 ice cap during the warmer seasons.
2013-04-03
In a laboratory experiment at NASA Jet Propulsion Laboratory, Pasadena, Calif., scientists simulate the atmosphere of Saturn moon Titan. In this picture, molecules of dicyanoacetylene are seen on a special film on a sapphire window.
Global Scale Atmospheric Processes Research Program Review
NASA Technical Reports Server (NTRS)
Worley, B. A. (Editor); Peslen, C. A. (Editor)
1984-01-01
Global modeling; satellite data assimilation and initialization; simulation of future observing systems; model and observed energetics; dynamics of planetary waves; First Global Atmospheric Research Program Global Experiment (FGGE) diagnosis studies; and National Research Council Research Associateship Program are discussed.
Improved atmospheric 3D BSDF model in earthlike exoplanet using ray-tracing based method
NASA Astrophysics Data System (ADS)
Ryu, Dongok; Kim, Sug-Whan; Seong, Sehyun
2012-10-01
The studies on planetary radiative transfer computation have become important elements to disk-averaged spectral characterization of potential exoplanets. In this paper, we report an improved ray-tracing based atmospheric simulation model as a part of 3-D earth-like planet model with 3 principle sub-components i.e. land, sea and atmosphere. Any changes in ray paths and their characteristics such as radiative power and direction are computed as they experience reflection, refraction, transmission, absorption and scattering. Improved atmospheric BSDF algorithms uses Q.Liu's combined Rayleigh and aerosol Henrey-Greenstein scattering phase function. The input cloud-free atmosphere model consists of 48 layers with vertical absorption profiles and a scattering layer with their input characteristics using the GIOVANNI database. Total Solar Irradiance data are obtained from Solar Radiation and Climate Experiment (SORCE) mission. Using aerosol scattering computation, we first tested the atmospheric scattering effects with imaging simulation with HRIV, EPOXI. Then we examined the computational validity of atmospheric model with the measurements of global, direct and diffuse radiation taken from NREL(National Renewable Energy Laboratory)s pyranometers and pyrheliometers on a ground station for cases of single incident angle and for simultaneous multiple incident angles of the solar beam.
NASA Astrophysics Data System (ADS)
Hagan, Maura; Häusler, Kathrin; Lu, Gang; Forbes, Jeffrey; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean
2014-05-01
We present the results of an investigation of the upper atmosphere during April 2010 when it was disturbed by a fast-moving coronal mass ejection. Our study is based on comparative analysis of observations made by the Gravity field and steady-state Ocean Circulation Explorer (GOCE), Challenging Minisatellite Payload (CHAMP), and Gravity Recovery And Climate Experiment (GRACE) satellites and a set of simulations with the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM). We compare and contrast the satellite observations with TIME-GCM results from a realistic simulation based on prevailing meteorological and solar geomagnetic conditions. We diagnose the comparative importance of the upper atmospheric signatures attributable to meteorological forcing with those attributable to storm effects by diagnosing a series of complementary control TIME-GCM simulations. These results also quantify the extent to which lower and middle atmospheric sources of upper atmospheric variability precondition its response to the solar geomagnetic storm.
NASA Technical Reports Server (NTRS)
Lutz, R. J.; Spar, J.
1978-01-01
The Hansen atmospheric model was used to compute five monthly forecasts (October 1976 through February 1977). The comparison is based on an energetics analysis, meridional and vertical profiles, error statistics, and prognostic and observed mean maps. The monthly mean model simulations suffer from several defects. There is, in general, no skill in the simulation of the monthly mean sea-level pressure field, and only marginal skill is indicated for the 850 mb temperatures and 500 mb heights. The coarse-mesh model appears to generate a less satisfactory monthly mean simulation than the finer mesh GISS model.
2015-09-30
to conduct WRF model experiments. We conducted Weather Research and Forecast ( WRF ) model simulations for the summer of 2014 and compared with the...level winds might be more important forcing for sea ice. In addition, evaluation of Polar- WRF simulations under different synoptic conditions will help
Mesoscale simulations of atmospheric flow and tracer transport in Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Wang, Ge; Ostoja-Starzewski, Martin
2006-09-01
Large urban centres located within confining rugged or complex terrain can frequently experience episodes of high concentrations of lower atmospheric pollution. Metropolitan Phoenix, Arizona (United States), is a good example, as the general population is occasionally subjected to high levels of lower atmospheric ozone, carbon monoxide and suspended particulate matter. As a result of dramatic but continuous increase in population, the accompanying environmental stresses and the local atmospheric circulation that dominates the background flow, an accurate simulation of the mesoscale pollutant transport across Phoenix and similar urban areas is becoming increasingly important. This is particularly the case in an airshed, such as that of Phoenix, where the local atmospheric circulation is complicated by the complex terrain of the area.
A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR
NASA Astrophysics Data System (ADS)
Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.
2015-11-01
A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.
Solar forcing synchronizes decadal North Atlantic climate variability.
Thiéblemont, Rémi; Matthes, Katja; Omrani, Nour-Eddine; Kodera, Kunihiko; Hansen, Felicitas
2015-09-15
Quasi-decadal variability in solar irradiance has been suggested to exert a substantial effect on Earth's regional climate. In the North Atlantic sector, the 11-year solar signal has been proposed to project onto a pattern resembling the North Atlantic Oscillation (NAO), with a lag of a few years due to ocean-atmosphere interactions. The solar/NAO relationship is, however, highly misrepresented in climate model simulations with realistic observed forcings. In addition, its detection is particularly complicated since NAO quasi-decadal fluctuations can be intrinsically generated by the coupled ocean-atmosphere system. Here we compare two multi-decadal ocean-atmosphere chemistry-climate simulations with and without solar forcing variability. While the experiment including solar variability simulates a 1-2-year lagged solar/NAO relationship, comparison of both experiments suggests that the 11-year solar cycle synchronizes quasi-decadal NAO variability intrinsic to the model. The synchronization is consistent with the downward propagation of the solar signal from the stratosphere to the surface.
The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation
NASA Astrophysics Data System (ADS)
Lofverstrom, Marcus; Liakka, Johan
2018-04-01
Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr -1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Nevertheless, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
Ito, Akihiko; Inatomi, Motoko; Huntzinger, Deborah N.; ...
2016-05-12
The seasonal-cycle amplitude (SCA) of the atmosphere–ecosystem carbon dioxide (CO 2) exchange rate is a useful metric of the responsiveness of the terrestrial biosphere to environmental variations. It is unclear, however, what underlying mechanisms are responsible for the observed increasing trend of SCA in atmospheric CO 2 concentration. Using output data from the Multi-scale Terrestrial Model Intercomparison Project (MsTMIP), we investigated how well the SCA of atmosphere–ecosystem CO 2 exchange was simulated with 15 contemporary terrestrial ecosystem models during the period 1901–2010. Also, we made attempt to evaluate the contributions of potential mechanisms such as atmospheric CO 2, climate, land-use,more » and nitrogen deposition, through factorial experiments using different combinations of forcing data. Under contemporary conditions, the simulated global-scale SCA of the cumulative net ecosystem carbon flux of most models was comparable in magnitude with the SCA of atmospheric CO 2 concentrations. Results from factorial simulation experiments showed that elevated atmospheric CO 2 exerted a strong influence on the seasonality amplification. When the model considered not only climate change but also land-use and atmospheric CO 2 changes, the majority of the models showed amplification trends of the SCAs of photosynthesis, respiration, and net ecosystem production (+0.19 % to +0.50 % yr –1). In the case of land-use change, it was difficult to separate the contribution of agricultural management to SCA because of inadequacies in both the data and models. The simulated amplification of SCA was approximately consistent with the observational evidence of the SCA in atmospheric CO 2 concentrations. Large inter-model differences remained, however, in the simulated global tendencies and spatial patterns of CO 2 exchanges. Further studies are required to identify a consistent explanation for the simulated and observed amplification trends, including their underlying mechanisms. Furthermore, this study implied that monitoring of ecosystem seasonality would provide useful insights concerning ecosystem dynamics.« less
NASA Astrophysics Data System (ADS)
Colarco, P. R.; Gasso, S.; Jethva, H. T.; Buchard, V.; Ahn, C.; Torres, O.; daSilva, A.
2016-12-01
Output from the NASA Goddard Earth Observing System, version 5 (GEOS-5) Earth system model is used to simulate the top-of-atmosphere 354 and 388 nm radiances observed by the Ozone Monitoring Instrument (OMI) onboard the Aura spacecraft. The principle purpose of developing this simulator tool is to compute from the modeled fields the so-called OMI Aerosol Index (AI), which is a more fundamental retrieval product than higher level products such as the aerosol optical depth (AOD) or absorbing aerosol optical depth (AAOD). This lays the groundwork for eventually developing a capability to assimilate either the OMI AI or its radiances, which would provide further constraint on aerosol loading and absorption properties for global models. We extend the use of the simulator capability to understand the nature of the OMI aerosol retrieval algorithms themselves in an Observing System Simulation Experiment (OSSE). The simulated radiances are used to calculate the AI from the modeled fields. These radiances are also provided to the OMI aerosol algorithms, which return their own retrievals of the AI, AOD, and AAOD. Our assessment reveals that the OMI-retrieved AI can be mostly harmonized with the model-derived AI given the same radiances provided a common surface pressure field is assumed. This is important because the operational OMI algorithms presently assume a fixed pressure field, while the contribution of molecular scattering to the actual OMI signal in fact responds to the actual atmospheric pressure profile, which is accounted for in our OSSE by using GEOS-5 produced atmospheric reanalyses. Other differences between the model and OMI AI are discussed, and we present a preliminary assessment of the OMI AOD and AAOD products with respect to the known inputs from the GEOS-5 simulation.
NASA Astrophysics Data System (ADS)
Moran, Michael D.; Pielke, Roger A.
1996-03-01
The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations.
NASA Technical Reports Server (NTRS)
Fowlis, W. W. (Editor); Davis, M. H. (Editor)
1981-01-01
The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.
NASA Technical Reports Server (NTRS)
Malila, W. A.; Cicone, R. C.; Gleason, J. M.
1976-01-01
Simulated scanner system data values generated in support of LACIE (Large Area Crop Inventory Experiment) research and development efforts are presented. Synthetic inband (LANDSAT) wheat radiances and radiance components were computed and are presented for various wheat canopy and atmospheric conditions and scanner view geometries. Values include: (1) inband bidirectional reflectances for seven stages of wheat crop growth; (2) inband atmospheric features; and (3) inband radiances corresponding to the various combinations of wheat canopy and atmospheric conditions. Analyses of these data values are presented in the main report.
Preliminary Analysis of Pyrite Reactivity Under Venusian Temperature and Atmosphere
NASA Technical Reports Server (NTRS)
Radoman-Shaw, B. G.; Harvey, R. P.; Jacobson, N. S.; Costa, G. C. C.
2015-01-01
Measurements of Venus surface chemistry suggest a basaltic composition with a predominantly CO2 atmosphere. In order to understand the reactivity of certain possible mineral species on the surface, previous simulation chambers conduct experiments at 1 atmosphere with a simplified CO2 atmosphere. Following this procedure, pyrite (FeS2) samples are used to estimate the reactivity of sulfide minerals under a Venusian atmosphere and climate. Sulfurous gas species have been identified and quantified in the Venusian atmosphere, and sulfurous gas and mineral species are known to be created through volcanism, which is suggested to still occur on the surface of Venus. This experimentation is necessary to constrain reactions that could occur between the surface and atmosphere of Venus to understand terrestrial geology in a thick and hot greenhouse atmosphere. Quantifying this reaction can lead to approximations necessary for further experimentation in more complex environments such as those in the GEER chamber at Glenn Research Center that can simulate pressure along with temperature and a more inclusive and representative Venusian atmosphere.
Importance of convective parameterization in ENSO predictions
NASA Astrophysics Data System (ADS)
Zhu, Jieshun; Kumar, Arun; Wang, Wanqiu; Hu, Zeng-Zhen; Huang, Bohua; Balmaseda, Magdalena A.
2017-06-01
This letter explored the influence of atmospheric convection scheme on El Niño-Southern Oscillation (ENSO) predictions using a set of hindcast experiments. Specifically, a low-resolution version of the Climate Forecast System version 2 is used for 12 month hindcasts starting from each April during 1982-2011. The hindcast experiments are repeated with three atmospheric convection schemes. All three hindcasts apply the identical initialization with ocean initial conditions taken from the European Centre for Medium-Range Weather Forecasts and atmosphere/land initial states from the National Centers for Environmental Prediction. Assessments indicate a substantial sensitivity of the sea surface temperature prediction skill to the different convection schemes, particularly over the eastern tropical Pacific. For the Niño 3.4 index, the anomaly correlation skill can differ by 0.1-0.2 at lead times longer than 2 months. Long-term simulations are further conducted with the three convection schemes to understand the differences in prediction skill. By conducting heat budget analyses for the mixed-layer temperature anomalies, it is suggested that the convection scheme having the highest skill simulates stronger and more realistic coupled feedbacks related to ENSO. Particularly, the strength of the Ekman pumping feedback is better represented, which is traced to more realistic simulation of surface wind stress. Our results imply that improving the mean state simulations in coupled (ocean-atmosphere) general circulation model (e.g., ameliorating the Intertropical Convergence Zone simulation) might further improve our ENSO prediction capability.
NASA Astrophysics Data System (ADS)
Eichhorn, Astrid; Bader, Jürgen
2017-09-01
As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.
A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR
NASA Astrophysics Data System (ADS)
Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.
2016-03-01
A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.
A method for simulating the atmospheric entry of long-range ballistic missiles
NASA Technical Reports Server (NTRS)
Eggers, A J , Jr
1958-01-01
It is demonstrated with the aid of similitude arguments that a model launched from a hypervelocity gun upstream through a special supersonic nozzle should experience aerodynamic heating and resulting thermal stresses like those encountered by a long-range ballistic missile entering the earth's atmosphere. This demonstration hinges on the requirements that model and missile be geometrically similar and made of the same material, and that they have the same flight speed and Reynolds number (based on conditions just outside the boundary layer) at corresponding points in their trajectories. The hypervelocity gun provides the model with the required initial speed, while the nozzle scales the atmosphere, in terms of density variation, to provide the model with speeds and Reynolds numbers over its entire trajectory. Since both the motion and aerodynamic heating of a missile tend to be simulated in the model tests, this combination of hypervelocity gun and supersonic nozzle is termed an atmosphere entry simulator.
Experimental and theoretical simulations of Titan's VUV photochemistry
NASA Astrophysics Data System (ADS)
Peng, Z.; Carrasco, N.; Pernot, P.
2013-12-01
A new reactor, named APSIS (Atmospheric Photochemistry SImulated by Synchrotron), has been designed to simulate planetary atmospheric photochemistry [Peng et al. JGR-E. 2013, 118, 778]. We report here a study focusing on Titan's upper atmosphere. A nitrogen-methane gas flow was irradiated by a continuous 60-350 nm VUV beam provided by the DISCO line at SOLEIL synchrotron radiation facility. The production of C2-C4 hydrocarbons as well as several nitriles (HCN, CH3 CN and C2N2) was detected by in situ mass spectrometry, in agreement with Cassini's INMS observations at Titan, and ex situ GC-MS of a cryogenic experiment. We compared the mass spectra with those obtained by a plasma experiment [Carrasco et al. Icarus. 2012, 219, 230] and with another synchrotron-based experiment [Imanaka and Smith. PNAS. 2010, 107, 12423], and with the in situ measurements of the INMS instrument onboard Cassini probing the neutral content of Titan's upper atmosphere. In spite of lower photochemical production efficiency and different environmental conditions, the APSIS reactor seems to simulate Titan's neutral composition rather well. To interpret these experimental data, we developed a fully coupled ion-neutral photochemical model of the reactor, with uncertainty management, based on the neutral model of Hébrard et al. [J. Photochem. Photobiol. A. 2006, 7, 211], the model of ion chemistry of Plessis et al. [J. Chem. Phys. 2010, 133, 134110], and a new representation of photolysis cross-sections and branching ratios [Gans et al. Icarus. 2013, 223, 330]. Compared to the measurements, the production in Cn blocks is in good agreement. Ion chemistry and the full dissociative recombination scheme have been demonstrated to be important features of the model. The photolysis was confirmed to be globally influential by sensivity analysis. We observed the importance of the addition of small (C1 or C2) units in molecular growth, as well as 3 growth families, promoted by C2H2, C2H4 and C2H5/C2H6, respectively. Among the three, the C2H2 family, in which the growth pathways of unsaturated species via ion chemistry are the most efficient, is clearly prominent. Our model was also used to interpret the results of the INMS data and Imanaka and Smith's experiments. Through variants of the reference model of the APSIS experiments, we showed that low pressure and low temperature favor the growth of unsaturated species. These conditions are fulfilled in Titan's ionosphere. The INMS neutral spectrum, in which there is mainly the signal of unsaturated species, can be well reproduced by our simulated MS. Compared to the experimental MS of the APSIS experiments and Imanaka and Smith's experiments, the simulated MS systematically underestimate the intensities of the saturated part of each band. After the consideration of the recombinations catalyzed by the reactor's walls, we improved the simulated MS significantly. This suggests the existence of wall effects in the laboratory simulation setups of atmospheric chemistry, leading to an overestimation of the saturated products compared to Titan's chemical products.
Wang, Weiguo; Liu, Xiaohong; Xie, Shaocheng; ...
2009-07-23
Here, cloud properties have been simulated with a new double-moment microphysics scheme under the framework of the single-column version of NCAR Community Atmospheric Model version 3 (CAM3). For comparison, the same simulation was made with the standard single-moment microphysics scheme of CAM3. Results from both simulations compared favorably with observations during the Tropical Warm Pool–International Cloud Experiment by the U.S. Department of Energy Atmospheric Radiation Measurement Program in terms of the temporal variation and vertical distribution of cloud fraction and cloud condensate. Major differences between the two simulations are in the magnitude and distribution of ice water content within themore » mixed-phase cloud during the monsoon period, though the total frozen water (snow plus ice) contents are similar. The ice mass content in the mixed-phase cloud from the new scheme is larger than that from the standard scheme, and ice water content extends 2 km further downward, which is in better agreement with observations. The dependence of the frozen water mass fraction on temperature from the new scheme is also in better agreement with available observations. Outgoing longwave radiation (OLR) at the top of the atmosphere (TOA) from the simulation with the new scheme is, in general, larger than that with the standard scheme, while the surface downward longwave radiation is similar. Sensitivity tests suggest that different treatments of the ice crystal effective radius contribute significantly to the difference in the calculations of TOA OLR, in addition to cloud water path. Numerical experiments show that cloud properties in the new scheme can respond reasonably to changes in the concentration of aerosols and emphasize the importance of correctly simulating aerosol effects in climate models for aerosol-cloud interactions. Further evaluation, especially for ice cloud properties based on in-situ data, is needed.« less
3D visualization of ultra-fine ICON climate simulation data
NASA Astrophysics Data System (ADS)
Röber, Niklas; Spickermann, Dela; Böttinger, Michael
2016-04-01
Advances in high performance computing and model development allow the simulation of finer and more detailed climate experiments. The new ICON model is based on an unstructured triangular grid and can be used for a wide range of applications, ranging from global coupled climate simulations down to very detailed and high resolution regional experiments. It consists of an atmospheric and an oceanic component and scales very well for high numbers of cores. This allows us to conduct very detailed climate experiments with ultra-fine resolutions. ICON is jointly developed in partnership with DKRZ by the Max Planck Institute for Meteorology and the German Weather Service. This presentation discusses our current workflow for analyzing and visualizing this high resolution data. The ICON model has been used for eddy resolving (<10km) ocean simulations, as well as for ultra-fine cloud resolving (120m) atmospheric simulations. This results in very large 3D time dependent multi-variate data that need to be displayed and analyzed. We have developed specific plugins for the free available visualization software ParaView and Vapor, which allows us to read and handle that much data. Within ParaView, we can additionally compare prognostic variables with performance data side by side to investigate the performance and scalability of the model. With the simulation running in parallel on several hundred nodes, an equal load balance is imperative. In our presentation we show visualizations of high-resolution ICON oceanographic and HDCP2 atmospheric simulations that were created using ParaView and Vapor. Furthermore we discuss our current efforts to improve our visualization capabilities, thereby exploring the potential of regular in-situ visualization, as well as of in-situ compression / post visualization.
Introduction to the project DUNE, a DUst experiment in a low Nutrient, low chlorophyll Ecosystem
NASA Astrophysics Data System (ADS)
Guieu, C.; Dulac, F.; Ridame, C.; Pondaven, P.
2013-07-01
The main goal of the project DUNE was to estimate the impact of atmospheric deposition on an oligotrophic ecosystem based on mesocosm experiments simulating strong atmospheric inputs of Aeolian dust. Atmospheric deposition is now recognized as a significant source of macro- and micro-nutrients for the surface ocean, but the quantification of its role on the biological carbon pump is still poorly determined. We proposed in DUNE to investigate the role of atmospheric inputs on the functioning of an oligotrophic system particularly well adapted to this kind of study: the Mediterranean Sea. The Mediterranean Sea - etymologically, sea surrounded by land - is submitted to atmospheric inputs that are very variable both in frequency and intensity. During the thermal stratification period, only atmospheric deposition is prone to fertilize Mediterranean surface waters which has become very oligotrophic due to the nutrient depletion (after the spring bloom). This paper describes the objectives of DUNE and the implementation plan of a series of mesocosms experiments during which either wet or dry and a succession of two wet deposition fluxes of 10 g m-2 of Saharan dust have been simulated. After the presentation of the main biogeochemical initial conditions of the site at the time of each experiment, a general overview of the papers published in this special issue is presented, including laboratory results on the solubility of trace elements in erodible soils in addition to results from the mesocosm experiments. Our mesocosm experiments aimed at being representative of real atmospheric deposition events onto the surface of oligotrophic marine waters and were an original attempt to consider the vertical dimension in the study of the fate of atmospheric deposition within surface waters. Results obtained can be more easily extrapolated to quantify budgets and parameterize processes such as particle migration through a "captured water column". The strong simulated dust deposition events were found to impact the dissolved concentrations of inorganic dissolved phosphorus, nitrogen, iron and other trace elements. In the case of Fe, adsorption on sinking particles yields a decrease in dissolved concentration unless binding ligands were produced following a former deposition input and associated fertilization. For the first time, a quantification of the C export induced by the aerosol addition was possible. Description and parameterization of biotic (heterotrophs and autotrophs, including diazotrophs) and abiotic processes (ballast effect due to lithogenic particles) after dust addition in sea surface water, result in a net particulate organic carbon export in part controlled by the "lithogenic carbon pump".
A Mercury Model of Atmospheric Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christensen, Alex B.; Chodash, Perry A.; Procassini, R. J.
Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.
ATMOSPHERIC RELEASES FROM STANDARDIZED NUCLEAR POWER PLANTS: A WIND TUNNEL STUDY
Laboratory experiments were conducted to simulate radiopollutant effluents released to the atmosphere from two standard design nuclear power plants. The main objective of the study was to compare the dispersion in the wake of the standardized nuclear power plants with that in a s...
NASA Astrophysics Data System (ADS)
Otto-Bliesner, Bette L.; Braconnot, Pascale; Harrison, Sandy P.; Lunt, Daniel J.; Abe-Ouchi, Ayako; Albani, Samuel; Bartlein, Patrick J.; Capron, Emilie; Carlson, Anders E.; Dutton, Andrea; Fischer, Hubertus; Goelzer, Heiko; Govin, Aline; Haywood, Alan; Joos, Fortunat; LeGrande, Allegra N.; Lipscomb, William H.; Lohmann, Gerrit; Mahowald, Natalie; Nehrbass-Ahles, Christoph; Pausata, Francesco S. R.; Peterschmitt, Jean-Yves; Phipps, Steven J.; Renssen, Hans; Zhang, Qiong
2017-11-01
Two interglacial epochs are included in the suite of Paleoclimate Modeling Intercomparison Project (PMIP4) simulations in the Coupled Model Intercomparison Project (CMIP6). The experimental protocols for simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127 000 years before present) are described here. These equilibrium simulations are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern ones. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments, to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.
Preliminary SAGE Simulations of Volcanic Jets Into a Stratified Atmosphere
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G. R.; Glatzmaier, G. A.
2007-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. The goal of modeling volcanic eruptions is to better develop a code's predictive capabilities in order to understand the dynamics that govern the overall behavior of real eruption columns. To achieve this goal, we focus on the dynamics of underexpended jets, one of the fundamental physical processes important to explosive eruptions. Previous simulations of laboratory jets modeled in cylindrical coordinates were benchmarked with simulations in CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), and showed close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.We compare gas density contours of these previous simulations with the same initial conditions in cylindrical and Cartesian geometries to laboratory experiments to determine both the validity of the model and the robustness of the code. The SAGE results in both geometries are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. To expand our study into a volcanic regime, we simulate large-scale jets in a stratified atmosphere to establish the code's ability to model a sustained jet into a stable atmosphere.
Optical intensity scintillation in the simulated atmospherical environment
NASA Astrophysics Data System (ADS)
Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir
2016-09-01
There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.
Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai
2008-06-01
We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N(2) can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140 degrees C), low atmospheric pressure (5-10 mbar), and a gas composition like that of Mars during long-term experiments.
NASA Astrophysics Data System (ADS)
Jensen, Lars Liengaard; Merrison, Jonathan; Hansen, Aviaja Anna; Mikkelsen, Karina Aarup; Kristoffersen, Tommy; Nørnberg, Per; Lomstein, Bente Aagaard; Finster, Kai
2008-06-01
We describe the design, construction, and pilot operation of a Mars simulation facility comprised of a cryogenic environmental chamber, an atmospheric gas analyzer, and a xenon/mercury discharge source for UV generation. The Mars Environmental Simulation Chamber (MESCH) consists of a double-walled cylindrical chamber. The double wall provides a cooling mantle through which liquid N2 can be circulated. A load-lock system that consists of a small pressure-exchange chamber, which can be evacuated, allows for the exchange of samples without changing the chamber environment. Fitted within the MESCH is a carousel, which holds up to 10 steel sample tubes. Rotation of the carousel is controlled by an external motor. Each sample in the carousel can be placed at any desired position. Environmental data, such as temperature, pressure, and UV exposure time, are computer logged and used in automated feedback mechanisms, enabling a wide variety of experiments that include time series. Tests of the simulation facility have successfully demonstrated its ability to produce temperature cycles and maintain low temperature (down to -140°C), low atmospheric pressure (5 10 mbar), and a gas composition like that of Mars during long-term experiments.
Characterization of complex organics produced by proton irradiation of simulated Titan atmosphere
NASA Astrophysics Data System (ADS)
Taniuchi, T.; Hosogai, T.; Kaneko, T.; Kobayashi, K.
Titan the biggest satellite of Saturn has dense atmosphere that mainly consists of nitrogen and methane Voyager observation showed the presence of organic haze in Titan atmosphere Some scientists suggested the existence liquid hydrocarbon and water ice on surface Recently Huygens probe sent the analytical data about organic aerosol in Titan atmosphere to the Earth while in the Cassini-Huygens Mission It is supposed that Titan has somewhat similar environments to the primitive Earth so many observations and simulation experiments have been done where mainly UV light or electric discharges are used as energy sources Khare and Sagan reported that the organic materials produced by electric discharges in simulated Titan atmosphere tholin had structure with hydrocarbons nitriles hetero aromatic compounds and so on and that tholin yielded amino acids after hydrolysis They simulated the condition of upper atmosphere of Titan Though cosmic rays are possible effective energy source near the surface on Titan for the formation of organic compounds there were few laboratory simulations of cosmic ray tholin In this study we irradiated proton beam to the mixture of nitrogen and methane to verify the possibile formation of cosmic ray tholin in lower Titan atmosphere A mixture of methane 1-5 and nitrogen balance was irradiated with 3 MeV proton from a van de Graaff accelerator The resulting tholin was analyzed by Pyrolysis Py -GC MS and 1 H NMR to estimate the structure Gel permeation chromatography GPC and
Laboratory Simulations on Haze Formation in Cool Exoplanet Atmospheres
NASA Astrophysics Data System (ADS)
He, Chao; Horst, Sarah; Lewis, Nikole; Yu, Xinting; McGuiggan, Patricia; Moses, Julianne I.
2017-10-01
The Kepler mission has shown that the most abundant types of planets are super-Earths and mini-Neptunes among ~3500 confirmed exoplanets, and these types of exoplanets are expected to exhibit a wide variety of atmospheric compositions. Recent transit spectra have demonstrated that clouds and/or hazes could play a significant role in these planetary atmospheres (Deming et al. 2013, Knutson et al. 2014, Kreidberg et al. 2014, Pont, et al. 2013). However, very little laboratory work has been done to understand the formation of haze over a broad range of atmospheric compositions. Here we conducted a series of laboratory simulations to investigate haze formation in a range of planetary atmospheres using our newly built Planetary HAZE Research (PHAZER) chamber (He et al. 2017). We ran experimental simulations for nine different atmospheres: three temperatures (300 K, 400 K, and 600 K) and three metallicities (100, 1000, and 10000 times solar metallicity) using AC glow discharge as an energy source to irradiate gas mixtures. We found that haze particles are formed in all nine experiments, but the haze production rates are dramatically different for different cases. We investigated the particle sizes of the haze particles deposited on quartz discs using atomic force microscopy (AFM). The AFM images show that the particle size varies from 30 nm to 200 nm. The haze particles are more uniform for 100x solar metallicity experiments (30 nm to 40 nm) while the particles sizes for 1000x and 10000x solar metallicity experiments have wider distributions (30 nm to 200 nm). The particle size affects the scattering of light, and thus the temperature structure of planetary atmospheres. The haze production rates and particle size distributions obtained here can serve as critical inputs to atmospheric physical and chemical tools to understand the exoplanetary atmospheres and help guide future TESS and JWST observations of super-Earths and mini-Neptunes.Ref:Deming, D., et al. 2013, ApJ, 774, 95.He, C., et al. 2017, APJL, 841, L31.Knutson, H. A., et al. 2014, Nat. 505, 66.Kreidberg, L., et al. 2014, Nat. 505, 69.Pont, F., et al. 2013, MNRAS, 432, 2917.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veneziani, Carmela
Two sets of simulations were performed within this allocation: 1) a 12-year fully-coupled experiment in preindustrial conditions, using the CICE4 version of the sea-ice model; 2) a set of multi-decadal ocean-ice-only experiments, forced with CORE-I atmospheric fields and using the CICE5 version of the sea-ice model. Results from simulation 1) are presented in Figures 1-3, and specific results from a simulation in 2) with tracer releases are presented in Figure 4.
NASA Technical Reports Server (NTRS)
Aune, Robert M.; Uccellini, Louis W.; Peterson, Ralph A.; Tuccillo, James J.
1987-01-01
Numerical experiments to assess the impact of incorporating temperature data from the VISSR Atmospheric Sounder (VAS) using the assimilation technique developed by Gal-Chen (1986) modified for use in the Mesoscale Atmospheric Simulation System (MASS) model were conducted. The scheme is designed to utilize the high temporal and horizontal resolution of satellite retrievals while maintaining the fine vertical structure generated by the model. This is accomplished by adjusting the model lapse rates to reflect thicknesses retrieved from VAS and applying a three-dimensional variational that preserves the distribution of the geopotential fields in the model. A nudging technique whereby the model temperature fields are gradually adjusted toward the updated temperature fields during model integration is also tested. An adiabatic version of MASS is used in all experiments to better isolate mass-momentum imbalances. The method has a sustained impact over an 18 hr model simulation.
Correlative measurement opportunities between ATLAS-1 and UARS experiments
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.
1992-01-01
The first ATmospheric Laboratory for Applications and Science (ATLAS-1) mission was flown aboard the Space Shuttle from March 24 to April 2, 1992. The ATLAS-1 instruments provided a large number of measurements which were coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). During the ATLAS-1 mission, simulations were performed to predict when and where coincident measurements between ATLAS and UARS instruments would occur. These predictions were used to develop instrument operation schedules to maximize the correlative opportunities between the two satellites. Results of the simulations provide valuable information for the ATLAS and UARS scientists to compare measurements between various instruments on the two satellites.
Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.
2012-01-01
A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements for better aviation safety. This research is part of a larger effort at NASA to study the impact of the growing complexity of operations, information, and systems on crew decision-making and response effectiveness; and then to recommend methods for improving future designs.
Endogeneous sources: atmospheric organic syntheses, tholins and ground trust
NASA Astrophysics Data System (ADS)
Raulin, F.; Bernard, J.; Coll, P.; Nna Mvondo, D.; Ramirez, S.; Navarro-Gonzalez, R.
From the many simulation experiments which have been carried out for the last 50 years on gas phase organic synthesis but also from several theoretical modeling works, it is clear today that in situ production of organic molecules in planetary atmosphere is efficient only if the starting atmosphere is chemically reduced. In that case many simple organics can be produced like formaldehyde, (HCHO), hydrogen cyanide (HCN), cyanoacetylene (HC3N) and other nitriles, but also more complex refractory organics - usually named "tholins" - are obtained. Those tholins are still of very poorly known composition, but are of great exobiological interest since they are the precursors of many compounds of biological interest, in particular amino acids, purines and pyrimidines bases. How realistic are those experimental as well as theoretical simulations? The many planetary data which have been obtained until now on the so diversified planetary atmospheres of the solar system provide a fantastic opportunity to answer such question and validate the laboratory data with "ground trust". Indeed, at the exception of the Earth atmosphere (in which Life is the essential source of organics), any organic compound has been detected in the inner planets. On the contrary, all the outer planets, from Jupiter to Neptune (and even Pluto) involve organic chemical processes, through the chemistry of their atmosphere, and methane photochemistry. They are also present in the dense atmosphere of Titan, the largest satellite of Saturn, (in the gas and aerosol phases), in the much thinner atmosphere of Triton, the largest satellite of Neptune (mainly in the solid phase, on its surface), and on the surface of many of the other satellites of the outer planets. Thus, although we have so far no real direct evidence for this assumption, laboratory data strongly suggest that extraterrestrial organic chemistry systematically involves tholins-like matter. The different aspects of extraterrestrial atmospheric organic chemistry will be presented and discussed, on the basis of recent laboratory data, in particular from simulation experiments related to oxidized and reduced atmospheres and planetary observations.
NASA Technical Reports Server (NTRS)
Hartley, Dana E.; Williamson, David L.; Rasch, Philip J.; Prinn, Ronald G.
1994-01-01
The latest version of the National Center for Atmospheric Research (NCAR) community climate model (CCM2) contains a semi-Lagrangian tracer transport scheme for the purpose of advecting water vapor and for including chemistry in the climate model. One way to diagnose the CCM2 transport is to simulate CFCl3 in the CCM2 since it has a well-known industry-based source distribution and a photochemical sink and to compare the model results to Atmospheric Lifetime Experiment/Global Atmospheric Gases Experiment ALE/GAGE observations around the globe. In this paper we focus on this comparison and discuss the synoptic scale issues of tracer transport where appropriate. We compare the model and observations on both 12-hour and monthly timescales. The higher-frequency events allow us to diagnose the synoptic scale transport in the CCM2 associated with the observational sites and to determine uncertainties in our high-resolution source distribution. We find that the CCM2 does simulate many of the key features such as pollution events and some seasonal transports, but there are still some dynamical features of tracer transport such as the storm track dynamics and cross-equatorial flow that merit further study in both the model and the real atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Miroslav; Kljenak, Ivo; Mavko, Borut
2006-07-01
The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the proposed work was to assess the capabilities of the CFD code to reproduce the atmosphere structure with a three-dimensional model, coupled with condensation models proposed by the authors. A three-dimensional modelmore » of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also included. Calculated time-dependent variables together with temperature and volume fraction distributions at the end of different experiment phases are compared to experimental results. (authors)« less
Climate and marine biogeochemistry during the Holocene from transient model simulations
NASA Astrophysics Data System (ADS)
Segschneider, Joachim; Schneider, Birgit; Khon, Vyacheslav
2018-06-01
Climate and marine biogeochemistry changes over the Holocene are investigated based on transient global climate and biogeochemistry model simulations over the last 9500 years. The simulations are forced by accelerated and non-accelerated orbital parameters, respectively, and atmospheric pCO2, CH4, and N2O. The analysis focusses on key climatic parameters of relevance to the marine biogeochemistry, and on the physical and biogeochemical processes that drive atmosphere-ocean carbon fluxes and changes in the oxygen minimum zones (OMZs). The simulated global mean ocean temperature is characterized by a mid-Holocene cooling and a late Holocene warming, a common feature among Holocene climate simulations which, however, contradicts a proxy-derived mid-Holocene climate optimum. As the most significant result, and only in the non-accelerated simulation, we find a substantial increase in volume of the OMZ in the eastern equatorial Pacific (EEP) continuing into the late Holocene. The concurrent increase in apparent oxygen utilization (AOU) and age of the water mass within the EEP OMZ can be attributed to a weakening of the deep northward inflow into the Pacific. This results in a large-scale mid-to-late Holocene increase in AOU in most of the Pacific and hence the source regions of the EEP OMZ waters. The simulated expansion of the EEP OMZ raises the question of whether the deoxygenation that has been observed over the last 5 decades could be a - perhaps accelerated - continuation of an orbitally driven decline in oxygen. Changes in global mean biological production and export of detritus remain of the order of 10 %, with generally lower values in the mid-Holocene. The simulated atmosphere-ocean CO2 flux would result in atmospheric pCO2 changes of similar magnitudes to those observed for the Holocene, but with different timing. More technically, as the increase in EEP OMZ volume can only be simulated with the non-accelerated model simulation, non-accelerated model simulations are required for an analysis of the marine biogeochemistry in the Holocene. Notably, the long control experiment also displays similar magnitude variability to the transient experiment for some parameters. This indicates that also long control runs are required when investigating Holocene climate and marine biogeochemistry, and that some of the Holocene variations could be attributed to internal variability of the atmosphere-ocean system.
Oceanic response to tropical cyclone `Phailin' in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Pant, V.; Prakash, K. R.
2016-02-01
Vertical mixing largely explains surface cooling induced by Tropical Cyclones (TCs). However, TC-induced upwelling of deeper waters plays an important role as it partly balances the warming of subsurface waters induced by vertical mixing. Below 100 m, vertical advection results in cooling that persists for a few days after the storm. The present study investigates the integrated ocean response to tropical cyclone `Phaillin' (10-14 October 2013) in the Bay of Bengal (BoB) through both coupled and stand-alone ocean-atmosphere models. Two numerical experiments with different coupling configurations between Regional Ocean Modelling System (ROMS) and Weather Research and Forecasting (WRF) were performed to investigate the impact of Phailin cyclone on the surface and sub-surface oceanic parameters. In the first experiment, ocean circulation model ROMS observe surface wind forcing from a mesoscale atmospheric model (WRF with nested damin setup), while rest forcing parameters are supplied to ROMS from NCEP data. In the second experiment, all surface forcing data to ROMS directly comes from WRF. The modeling components and data fields exchanged between atmospheric and oceanic models are described. The coupled modeling system is used to identify model sensitivity by exchanging prognostic variable fields between the two model components during simulation of Phallin cyclone (10-14 October 2013) in the BoB.In general, the simulated Phailin cyclone track and intensities agree well with observations in WRF simulations. Further, the inter-comparison between stand-alone and coupled model simulations validated against observations highlights better performance of coupled modeling system in simulating the oceanic conditions during the Phailin cyclone event.
NASA Astrophysics Data System (ADS)
Illangasekare, T. H.; Trautz, A. C.; Howington, S. E.; Cihan, A.
2017-12-01
It is a well-established fact that the land and atmosphere form a continuum in which the individual domains are coupled by heat and mass transfer processes such as bare-soil evaporation. Soil moisture dynamics can be simulated at the representative elementary volume (REV) scale using decoupled and fully coupled Darcy/Navier-Stokes models. Decoupled modeling is an asynchronous approach in which flow and transport in the soil and atmosphere is simulated independently; the two domains are coupled out of time-step via prescribed flux parameterizations. Fully coupled modeling in contrast, solves the governing equations for flow and transport in both domains simultaneously with the use of coupling interface boundary conditions. This latter approach, while being able to provide real-time two-dimensional feedbacks, is considerably more complex and computationally intensive. In this study, we investigate whether fully coupled models are necessary, or if the simpler decoupled models can sufficiently capture soil moisture dynamics under varying land preparations. A series of intermediate-scale physical and numerical experiments were conducted in which soil moisture distributions and evaporation estimates were monitored at high spatiotemporal resolutions for different heterogeneous packing and soil roughness scenarios. All experimentation was conducted at the newly developed Center for Experimental Study of Subsurface Environmental Processes (CESEP) wind tunnel-porous media user test-facility at the Colorado School of. Near-surface atmospheric measurements made during the experiments demonstrate that the land-atmosphere coupling was relatively weak and insensitive to the applied edaphic and surface conditions. Simulations with a decoupled multiphase heat and mass transfer model similarly show little sensitivity to local variations in atmospheric forcing; a single, simple flux parameterization can sufficiently capture the soil moisture dynamics (evaporation and redistribution) as long as the subsurface conditions (i.e., heterogeneity) are properly described. These findings suggest that significant improvements to simulations results should not be expected if fully coupled modeling were adopted in scenarios of weak land-atmosphere coupling in the context of bare soil evaporation.
Does air-sea coupling influence model projections of the effects of the Paris Agreement?
NASA Astrophysics Data System (ADS)
Klingaman, Nicholas; Suckling, Emma; Sutton, Rowan; Dong, Buwen
2017-04-01
The 2015 Paris Agreement includes the long-term goal to hold global-mean temperature to "well below 2°C above pre-industrial levels", with the further stated aim of limiting the global-mean warming to 1.5°C, in the belief that this would "significantly reduce the risks and impacts of climate change". However, it is not clear which risks and impacts would be avoided, or reduced, by achieving a 1.5°C warming instead of a 2.0°C warming. Initial efforts to quantify changes in risk have focused on analysis of existing CMIP5 simulations at levels of global-mean warming close to 1.5°C or 2.0°C, by taking averages over ≈20 year periods. This framework suffers from several drawbacks, however, including the effect of model internal multi-decadal variability, the influence of coupled-model systematic errors on regional circulation patterns, and the presence of a warming trend across the averaging period (i.e., the model is not in steady state). To address these issues, the "Half a degree Additional warming, Prognosis and Projected Impacts" (HAPPI) project is performing large ensembles of atmosphere-only experiments with prescribed sea-surface temperatures (SSTs) for present-day and 1.5°C and 2.0°C scenarios. While these experiments reduce the complications from a limited dataset and coupled-model systematic errors, the use of atmosphere-only models neglects feedbacks between the atmosphere and ocean, which may have substantial effects on the representation of local and regional extremes, and hence on the response of these extremes to global-mean warming. We introduce a set of atmosphere-ocean coupled simulations that incorporate much of the HAPPI experiment design, yet retain a representation of air-sea feedbacks. We use the Met Office Unified Model Global Ocean Mixed Layer (MetUM-GOML) model, which comprises the MetUM atmospheric model coupled to many columns of the one-dimensional K Profile Parameterization mixed-layer ocean. Critically, the MetUM-GOML ocean mean state can be controlled by prescribed, seasonally varying corrections to temperature and salinity, which substantially reduce SST biases without damping variability. This allows the present-day MetUM-GOML experiment to have a ocean mean state very close to the observed climatology (global RMSE ≈ 0.25°C). We perform three 150-year experiments with MetUM-GOML for (a) present-day (1976-2005 climatology) and for future scenarios with global-mean temperatures (b) 1.5°C and (c) 2.0°C above pre-industrial levels. For (b) and (c), we achieve these warming levels by increasing the CO2 concentrations in MetUM-GOML, as well as by adjusting the prescribed sea ice using change factors derived from a transient simulation with the fully coupled Met Office model. We analyse projected global and regional changes in temperature, precipitation and atmospheric circulation in our MetUM-GOML simulations, focusing on seasonal means, multi-annual persistence of seasonal extremes (e.g., the probability of consecutive wet summers) and intra-seasonal extremes (e.g., heatwaves, droughts, floods). To identify the influence of air-sea coupling on these projections, we compare the MetUM-GOML simulations to 150-year atmosphere-only simulations with prescribed daily SSTs from the corresponding MetUM-GOML runs. This comparison demonstrates whether atmosphere-ocean feedbacks influence the projections of changes hydro-meteorological extremes in a warmer world, as well as whether these feedbacks affect the assessment of the impacts avoided by limiting global-mean temperature change to 1.5°C. Our results will inform the choice of model framework for, and hence the experiment design of, further efforts to characterise the response to a fixed global-mean temperature increase, as well as future climate-change attribution experiments.
NASA Technical Reports Server (NTRS)
Radoman-Shaw, Brandon; Harvey, Ralph; Costa, Gustavo; Nakley, Leah Michelle; Jacobson, Nathan S.
2016-01-01
Both historical and current investigations of Venus suggest that atmosphererock interactions play a critical role in the evolution of its atmosphere and crust. We have begun a series of systematic experiments designed to further our understanding of atmosphere-driven weathering and secondary mineralization of basaltic materials that may be occurring on Venus today. Our experiments expose representative igneous phases (mineral, glasses and rocks) to a high-fidelity simulation of Venus surface conditions using the NASA Glenn Extreme Environment Rig (GEER) located at the NASA Glenn Research Center in Cleveland, Ohio. GEER is a very large (800L) vessel capable of producing a long-term, high fidelity simulation of both the physical conditions (750 K and 92 bar) and atmospheric chemistry (down to the ppb-level) asso-ciated with the Venusian surface. As of this writing we have just finished the first of several planned experiments: a 42-day exposure of selected mineral, rocks and volcanic glasses. Our goal is to identify and prioritize the reactions taking place and better our understanding of their importance in Venus' climate history.
Cosmic-rays induced Titan tholins and their astrobiological significances
NASA Astrophysics Data System (ADS)
Kobayashi, Kensei; Taniuchi, Toshinori; Hosogai, Tomohiro; Kaneko, Takeo; Takano, Yoshinori; Khare, Bishun; McKay, Chris
Titan is the largest satellite of Saturn. It is quite unique satellite since it has a dense atmosphere composed of nitrogen and methane, and has been sometimes considered as a model of primitive Earth. In Titan atmosphere, a wide variety of organic compounds and mists made of complex organics. Such solid complex organics are often referred to as tholins. A number of laboratory experiments simulating reactions in Titan atmosphere have been conducted. In most of them, ultraviolet light and discharges (simulating actions of electrons in Saturn magnetosphere) were used, which were simulation of the reactions in upper dilute atmosphere of Titan. We examined possible formation of organic compounds in the lower dense atmosphere of Titan, where cosmic rays are major energies. A Mixture of 35 Torr of methane and 665 Torr of nitrogen was irradiated with high-energy protons (3 MeV) from a van de Graaff accelerator (TIT, Japan) or from a Tandem accelerator (TIARA, QUBS, JAEA, Japan). In some experiments, 13 C-labelled methane was used. We also performed plasma discharges in a mixture of methane (10 %) and nitrogen (90 %) to simulate the reactions in the upper atmosphere of Titan. Solid products by proton irradiation and those by plasma discharges are hereafter referred to as PI-tholins and PD-tholins, respectively. The resulting PI-tholins were observed with SEM and AFM. They were characterized by pyrolysis-GC/MS, gel permeation chromatography, FT-IR, etc. Amino acids in PI-and PD-tholins were analyzed by HPLC, GC/MS and MALDI-TOF-MS after acid hydrolysis. 18 O-Labelled water was used in some cases during hydrolysis. Filamentary and/or globular-like structures were observed by SEM and AFM. By pyrolysis-GC/MS of PI-tholins, ammonia and hydrogen cyanide were detected, which was the same as the results obtained in Titan atmosphere during the Huygens mission. A wide variety of amino acids were detected after hydrolysis of both tholins. It was proved that oxygen atoms in the amino acids in PI-tholins were incorporated from water during hydrolysis by the experiments with 18 O-Labelled water. Estimating from the G-values of amino acids and the flux of each energy in Titan atmosphere, it is strongly suggested that amino acid precursors in the form of tholins can be produced mainly in the lower Titan atmosphere by cosmic rays. The tholins containing amino acid precursors could be concentrated on some part of Titan surface by the flow of liquid methane. Amino acid precursors on the surface of Titan is promising targets in future Titan missions.
NASA Astrophysics Data System (ADS)
Almazroui, Mansour; Raju, P. V. S.; Yusef, A.; Hussein, M. A. A.; Omar, M.
2018-04-01
In this paper, a nonhydrostatic Weather Research and Forecasting (WRF) model has been used to simulate the extreme precipitation event of 25 November 2009, over Jeddah, Saudi Arabia. The model is integrated in three nested (27, 9, and 3 km) domains with the initial and boundary forcing derived from the NCEP reanalysis datasets. As a control experiment, the model integrated for 48 h initiated at 0000 UTC on 24 November 2009. The simulated rainfall in the control experiment depicts in well agreement with Tropical Rainfall Measurement Mission rainfall estimates in terms of intensity as well as spatio-temporal distribution. Results indicate that a strong low-level (850 hPa) wind over Jeddah and surrounding regions enhanced the moisture and temperature gradient and created a conditionally unstable atmosphere that favored the development of the mesoscale system. The influences of topography and heat exchange process in the atmosphere were investigated on the development of extreme precipitation event; two sensitivity experiments are carried out: one without topography and another without exchange of surface heating to the atmosphere. The results depict that both surface heating and topography played crucial role in determining the spatial distribution and intensity of the extreme rainfall over Jeddah. The topography favored enhanced uplift motion that further strengthened the low-level jet and hence the rainfall over Jeddah and adjacent areas. On the other hand, the absence of surface heating considerably reduced the simulated rainfall by 30% as compared to the observations.
NASA Technical Reports Server (NTRS)
Randall, David A.; Fowler, Laura D.; Lin, Xin
1998-01-01
In order to improve our understanding of the interactions between clouds, radiation, and the hydrological cycle simulated in the Colorado State University General Circulation Model (CSU GCM), we focused our research on the analysis of the diurnal cycle of precipitation, top-of-the-atmosphere and surface radiation budgets, and cloudiness using 10-year long Atmospheric Model Intercomparison Project (AMIP) simulations. Comparisons the simulated diurnal cycle were made against the diurnal cycle of Earth Radiation Budget Experiment (ERBE) radiation budget and International Satellite Cloud Climatology Project (ISCCP) cloud products. This report summarizes our major findings over the Amazon Basin.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1987-01-01
Laboratory measurements were conducted to evaluate properties of atmospheric gases under simulated conditions for the outer planets. A significant addition to this effort was the capability to make such measurements at millimeter wavelengths. Measurements should soon be completed on the millimeter wave absorption from ammonia under Jovian conditions. Also studied will be the feasibility of measuring the microwave and millimeter wave properties of phosphine (PH3) under simulated Jovian conditions. Further analysis and application of the laboratory results to microwave and millimeter wave absorption data for the outer planet, such as Voyager Radio Occultation experiments, will be pursued.
Theory, Image Simulation, and Data Analysis of Chemical Release Experiments
NASA Technical Reports Server (NTRS)
Wescott, Eugene M.
1994-01-01
The final phase of Grant NAG6-1 involved analysis of physics of chemical releases in the upper atmosphere and analysis of data obtained on previous NASA sponsored chemical release rocket experiments. Several lines of investigation of past chemical release experiments and computer simulations have been proceeding in parallel. This report summarizes the work performed and the resulting publications. The following topics are addressed: analysis of the 1987 Greenland rocket experiments; calculation of emission rates for barium, strontium, and calcium; the CRIT 1 and 2 experiments (Collisional Ionization Cross Section experiments); image calibration using background stars; rapid ray motions in ionospheric plasma clouds; and the NOONCUSP rocket experiments.
Results from a Set of Three-Dimensional Numerical Experiments of a Hot Jupiter Atmosphere
NASA Technical Reports Server (NTRS)
Mayne, Nathan J.; Debras, Flirian; Baraffe, Isabelle; Thuburn, John; Amundsen, David S.; Acreman, David M.; Smith, Chris; Browning, Matthew K.; Manners, James; Wood Nigel
2017-01-01
We present highlights from a large set of simulations of a hot Jupiter atmosphere, nominally based on HD 209458b, aimed at exploring both the evolution of the deep atmosphere, and the acceleration of the zonal flow or jet. We find the occurrence of a super-rotating equatorial jet is robust to changes in various parameters, and over long timescales, even in the absence of strong inner or bottom boundary drag. This jet is diminished in one simulation only, where we strongly force the deep atmosphere equator-to-pole temperature gradient over long timescales. Finally, although the eddy momentum fluxes in our atmosphere show similarities with the proposed mechanism for accelerating jets on tidally-locked planets, the picture appears more complex. We present tentative evidence for a jet driven by a combination of eddy momentum transport and mean flow.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1988-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The key activity for this grant year has continued to be laboratory measurements of the microwave and millimeter-wave properties of the simulated atmospheres of the outer planets and their satellites. A Fabry-Perot spectrometer system capable of operation from 32 to 41 GHz was developed. Initially this spectrometer was used to complete laboratory measurements of the 7.5 to 9.3 mm absorption spectrum of ammonia. Laboratory measurements were begun at wavelengths near 3.2 mm, where a large number of observations of the emission from the outer planets were made. A description of this system is presented.
NASA Technical Reports Server (NTRS)
Goetz, Michael B.
2011-01-01
The Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) entered its third and final year of development with an overall goal of providing a unified tool to simulate active and passive space borne atmospheric remote sensing instruments. These simulations focus on the atmosphere ranging from UV to microwaves. ISSARS handles all assumptions and uses various models on scattering and microphysics to fill the gaps left unspecified by the atmospheric models to create each instrument's measurements. This will help benefit mission design and reduce mission cost, create efficient implementation of multi-instrument/platform Observing System Simulation Experiments (OSSE), and improve existing models as well as new advanced models in development. In this effort, various aerosol particles are incorporated into the system, and a simulation of input wavelength and spectral refractive indices related to each spherical test particle(s) generate its scattering properties and phase functions. These atmospheric particles being integrated into the system comprise the ones observed by the Multi-angle Imaging SpectroRadiometer(MISR) and by the Multiangle SpectroPolarimetric Imager(MSPI). In addition, a complex scattering database generated by Prof. Ping Yang (Texas A&M) is also incorporated into this aerosol database. Future development with a radiative transfer code will generate a series of results that can be validated with results obtained by the MISR and MSPI instruments; nevertheless, test cases are simulated to determine the validity of various plugin libraries used to determine or gather the scattering properties of particles studied by MISR and MSPI, or within the Single-scattering properties of tri-axial ellipsoidal mineral dust particles database created by Prof. Ping Yang.
Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol
NASA Astrophysics Data System (ADS)
Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila
2013-04-01
The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.
Atmospheres in a Test Tube: state of the art at the Astronomical Observatory of Padova.
NASA Astrophysics Data System (ADS)
Erculiani, M. S.; Claudi, R.; Cocola, L.; Giro, E.; La Rocca, N.; Morosinotto, T.; Poletto, L.; Barbisan, D.; Billi, D.; Bonato, M.; D'Alessandro, M.; Galletta, G.; Meneghini, M.; Trivellin, N.; Cestelli Guidi, M.; Pace, E.; Schierano, D.; Micela, G.
At the Astronomical observatory of Padova we are trying to answer some questions about the detectability of biosignatures in the exoplanetary atmospheres, working in the framework of the project Atmosphere in a Test Tube. In particular we are investigating how the presence of photosynthetic biota living on the surface of a planet orbiting in the HZ of an M type star may modify the atmospheric gas abundances. This can be achieved in laboratory with an environmental simulator called MINI - LISA. The simulator allows to modify the temperature and the pressure inside a test chamber, where a selected population of photosynthetic bacteria is arranged. We'll focalize our experiments on the following bacteria: Acaryochloris marina, Halomicronema hongdechloris, Leptolyngbya sp.1 and Chlorogloeopsis fritschii. The first two bacteria are naturally provided with NIR light metabolizers, like Chl-d and Chl-f, while the last two can develop such pigments if grown in NIR light. The experiment will lead us to obtain useful data to be compared with the ones expected either by the future space missions (JWST, ARIEL) and ground based new instrumentation (SPHERE@VLT; GPI@GEMINI; PCS@E-ELT). In this talk we discuss the layout of the experiment and its state of art.
VISSR Atmospheric Sounder (VAS) simulation experiment for a severe storm environment
NASA Technical Reports Server (NTRS)
Chesters, D.; Uccellini, L. W.; Mostek, A.
1981-01-01
Radiance fields were simulated for prethunderstorm environments in Oklahoma to demonstrate three points: (1) significant moisture gradients can be seen directly in images of the VISSIR Atmospheric Sounder (VAS) channels; (2) temperature and moisture profiles can be retrieved from VAS radiances with sufficient accuracy to be useful for mesoscale analysis of a severe storm environment; and (3) the quality of VAS mesoscale soundings improves with conditioning by local weather statistics. The results represent the optimum retrievability of mesoscale information from VAS radiance without the use of ancillary data. The simulations suggest that VAS data will yield the best soundings when a human being classifies the scene, picks relatively clear areas for retrieval, and applies a "local" statistical data base to resolve the ambiguities of satellite observations in favor of the most probable atmospheric structure.
NASA Astrophysics Data System (ADS)
Kanzawa, H.; Emori, S.; Nishimura, T.; Suzuki, T.; Inoue, T.; Hasumi, H.; Saito, F.; Abe-Ouchi, A.; Kimoto, M.; Sumi, A.
2002-12-01
The fastest supercomputer of the world, the Earth Simulator (total peak performance 40TFLOPS) has recently been available for climate researches in Yokohama, Japan. We are planning to conduct a series of future climate change projection experiments on the Earth Simulator with a high-resolution coupled ocean-atmosphere climate model. The main scientific aims for the experiments are to investigate 1) the change in global ocean circulation with an eddy-permitting ocean model, 2) the regional details of the climate change including Asian monsoon rainfall pattern, tropical cyclones and so on, and 3) the change in natural climate variability with a high-resolution model of the coupled ocean-atmosphere system. To meet these aims, an atmospheric GCM, CCSR/NIES AGCM, with T106(~1.1o) horizontal resolution and 56 vertical layers is to be coupled with an oceanic GCM, COCO, with ~ 0.28ox 0.19o horizontal resolution and 48 vertical layers. This coupled ocean-atmosphere climate model, named MIROC, also includes a land-surface model, a dynamic-thermodynamic seaice model, and a river routing model. The poles of the oceanic model grid system are rotated from the geographic poles so that they are placed in Greenland and Antarctic land masses to avoild the singularity of the grid system. Each of the atmospheric and the oceanic parts of the model is parallelized with the Message Passing Interface (MPI) technique. The coupling of the two is to be done with a Multi Program Multi Data (MPMD) fashion. A 100-model-year integration will be possible in one actual month with 720 vector processors (which is only 14% of the full resources of the Earth Simulator).
Scattering of sound by atmospheric turbulence predictions in a refractive shadow zone
NASA Technical Reports Server (NTRS)
Mcbride, Walton E.; Bass, Henry E.; Raspet, Richard; Gilbert, Kenneth E.
1990-01-01
According to ray theory, regions exist in an upward refracting atmosphere where no sound should be present. Experiments show, however, that appreciable sound levels penetrate these so-called shadow zones. Two mechanisms contribute to sound in the shadow zone: diffraction and turbulent scattering of sound. Diffractive effects can be pronounced at lower frequencies but are small at high frequencies. In the short wavelength limit, then, scattering due to turbulence should be the predominant mechanism involved in producing the sound levels measured in shadow zones. No existing analytical method includes turbulence effects in the prediction of sound pressure levels in upward refractive shadow zones. In order to obtain quantitative average sound pressure level predictions, a numerical simulation of the effect of atmospheric turbulence on sound propagation is performed. The simulation is based on scattering from randomly distributed scattering centers ('turbules'). Sound pressure levels are computed for many realizations of a turbulent atmosphere. Predictions from the numerical simulation are compared with existing theories and experimental data.
NASA Technical Reports Server (NTRS)
Kung, E. C.
1984-01-01
Energetics characteristics of Goddard Laboratory for Atmospheric Sciences (GLAS) General Circulation Models (GCM) as they are reflected on the First GARD GLobal Experiment (FGGE) analysis data set are discussed. Energetics descriptions of GLAS GCM forecast experiments are discussed as well as Eneretics response of GLAS GCM climatic simulation experiments.
NASA Technical Reports Server (NTRS)
Miele, A.; Wang, T.; Lee, W. Y.; Zhao, Z. G.
1989-01-01
The determination of optimal trajectories for the aero-assisted flight experiment (AFE) is investigated. The intent of this experiment is to simulate a GEO-to-LEO transfer, where GEO denotes a geosynchronous Earth orbit and LEO denotes a low Earth orbit. The trajectories of an AFE spacecraft are analyzed in a 3D-space, employing the full system of 6 ODEs describing the atmospheric pass. The atmospheric entry conditions are given, and the atmospheric exit conditions are adjusted in such a way that the following conditions are satisfied: (1) the atmospheric velocity depletion is such that, after exiting, the AFE spacecraft first ascends to a specified apogee and then descends to a specified perigee; and (2) the exit orbital plane is identical with the entry orbital plane. The final maneuver, not analyzed here, includes the rendezvous with and the capture by the space shuttle.
NASA Astrophysics Data System (ADS)
Linton, M.; Leake, J. E.; Schuck, P. W.
2016-12-01
The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solar activity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of emerging magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution. We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data. These investigations will then be used to outline future prospects and challenges for using observed photospheric data to drive such solar atmospheric simulations. This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian
2014-05-01
Atmospheric flow simulations over and around the Soufriere Hills volcano in the island of Montserrat in the Caribbean are studied, through a series of numerical model experiments, in order to link interactions between the volcano and the atmosphere. A heated surface is added on the top of the mountain, in order to simulate the dome of an active volcano that is not undergoing an eruption. A series of simulations with different atmospheric conditions and control parameters for the volcano will be presented. Simulations are made using the Weather Research and Forecasting (WRF) model, with a high resolution digital elevation map of Montserrat. Simulations with an idealised topography have also been examined, in order for the results to have general applicability to similar-sized volcanoes located in the Tropics. The model was initialised with soundings from representative days of qualitatively different atmospheric conditions from the rainy season. The heated volcanic dome changes the orographic flow response significantly, depending upon the atmospheric conditions and the magnitude of the dome surface temperature anomaly. The flow regime and qualitative characteristic features, such orographic clouds and rainfall patterns, can all change significantly. For example, the orographic rainfall over the volcano can be significantly enhanced with increased dome temperatures. The implications of these changes on the eruptive behaviour of the volcano and resulting secondary volcanic hazards, such as lahars, will be discussed.
LAWS simulation: Sampling strategies and wind computation algorithms
NASA Technical Reports Server (NTRS)
Emmitt, G. D. A.; Wood, S. A.; Houston, S. H.
1989-01-01
In general, work has continued on developing and evaluating algorithms designed to manage the Laser Atmospheric Wind Sounder (LAWS) lidar pulses and to compute the horizontal wind vectors from the line-of-sight (LOS) measurements. These efforts fall into three categories: Improvements to the shot management and multi-pair algorithms (SMA/MPA); observing system simulation experiments; and ground-based simulations of LAWS.
NASA Astrophysics Data System (ADS)
Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu
2016-11-01
Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.
NASA Technical Reports Server (NTRS)
Steffes, P. G.
1985-01-01
Radio absorptivity data for planetary atmospheres obtained from spacecraft radio occultation experiments and Earth-based radio astronomical observations can be used to infer abundances of microwave absorbing atmospheric constituents in those atmospheres, as long as reliable information regarding the microwave absorbing properties of potential constituents is available. The use of theoretically-derived microwave absorption properties for such atmospheric constituents, or laboratory measurements of such properties under environmental conditions which are significantly different than those of the planetary atmosphere being studied, often lead to significant misinterpretation of available opacity data. Steffes and Eshleman showed that under environmental conditions corresponding to the middle atmosphere of Venus, the microwave absorption due to atmospheric SO2 was 50 percent greater than that calculated from Van Vleck-Weiskopff theory. Similarly, the opacity from gaseous H2SO4 was found to be a factor of 7 greater than theoretically predicted for conditions of the Venus middle atmosphere. The recognition of the need to make such measurements over a range of temperatures and pressures which correspond to the periapsis altitudes of radio occultation experiments, and over a range of frequencies which correspond to both radio occultation experiments and radio astronomical observations, has led to the development of a facility at Georgia Tech which is capable of making such measurements.
NASA Astrophysics Data System (ADS)
Sarnela, Nina; Jokinen, Tuija; Duplissy, Jonathan; Yan, Chao; Nieminen, Tuomo; Ehn, Mikael; Schobesberger, Siegfried; Heinritzi, Martin; Ehrhart, Sebastian; Lehtipalo, Katrianne; Tröstl, Jasmin; Simon, Mario; Kürten, Andreas; Leiminger, Markus; Lawler, Michael J.; Rissanen, Matti P.; Bianchi, Federico; Praplan, Arnaud P.; Hakala, Jani; Amorim, Antonio; Gonin, Marc; Hansel, Armin; Kirkby, Jasper; Dommen, Josef; Curtius, Joachim; Smith, James N.; Petäjä, Tuukka; Worsnop, Douglas R.; Kulmala, Markku; Donahue, Neil M.; Sipilä, Mikko
2018-02-01
Atmospheric oxidation is an important phenomenon which produces large quantities of low-volatility compounds such as sulfuric acid and oxidized organic compounds. Such species may be involved in the nucleation of particles and enhance their subsequent growth to reach the size of cloud condensation nuclei (CCN). In this study, we investigate α-pinene, the most abundant monoterpene globally, and its oxidation products formed through ozonolysis in the Cosmic Leaving OUtdoor Droplets (CLOUD) chamber at CERN (the European Organization for Nuclear Research). By scavenging hydroxyl radicals (OH) with hydrogen (H2), we were able to investigate the formation of highly oxygenated molecules (HOMs) purely driven by ozonolysis and study the oxidation of sulfur dioxide (SO2) driven by stabilized Criegee intermediates (sCIs). We measured the concentrations of HOM and sulfuric acid with a chemical ionization atmospheric-pressure interface time-of-flight (CI-APi-TOF) mass spectrometer and compared the measured concentrations with simulated concentrations calculated with a kinetic model. We found molar yields in the range of 3.5-6.5 % for HOM formation and 22-32 % for the formation of stabilized Criegee intermediates by fitting our model to the measured sulfuric acid concentrations. The simulated time evolution of the ozonolysis products was in good agreement with measured concentrations except that in some of the experiments sulfuric acid formation was faster than simulated. In those experiments the simulated and measured concentrations met when the concentration reached a plateau but the plateau was reached 20-50 min later in the simulations. The results shown here are consistent with the recently published yields for HOM formation from different laboratory experiments. Together with the sCI yields, these results help us to understand atmospheric oxidation processes better and make the reaction parameters more comprehensive for broader use.
Numerical and experimental studies of particle flow in a high-pressure boundary-layer wind tunnel
NASA Technical Reports Server (NTRS)
White, B. R.
1984-01-01
The approach was to simulate the surface environment of Venus as closely as practicable and to conduct experiments to determine threshold wind speeds, particle flux, particle velocities, and the characteristics of various aeolian bedforms. The Venus Wind Tunnel (VWT) is described and the experimental procedures that were developed to make the high-pressure wind tunnel measurements are presented. In terrestrial simulations of aeolian activity, it is possible to conduct experiments under pressures and temperatures found in natural environments. Because of the high pressures and temperatures, Venusian simulations are difficult to achieve in this regard. Consequently, extrapolation of results to Venue potentially involves unknown factors. The experimental rationale was developed in the following way: The VWT enables the density of the Venusian atmosphere to be reproduced. Density is the principal atmospheric property for governing saltation threshold, particle flux, and the ballistics of airborne particles (equivalent density maintains dynamic similarity of gas flow). When operated at or near Earth's ambient temperature, VWT achieves Venusian atmospheric density at pressures of about 30 bar, or about one third less than those on Venus, although still maintaining dynamic similarity to Venus.
A Model of Titan-like Chemistry to Connect Experiments and Cassini Observations
NASA Astrophysics Data System (ADS)
Raymond, Alexander W.; Sciamma-O’Brien, Ella; Salama, Farid; Mazur, Eric
2018-02-01
A numerical model is presented for interpreting the chemical pathways that lead to the experimental mass spectra acquired in the Titan Haze Simulation (THS) laboratory experiments and for comparing the electron density and temperature of the THS plasma to observations made at Titan by the Cassini spacecraft. The THS plasma is a pulsed glow-discharge experiment designed to simulate the reaction of N2/CH4-dominated gas in Titan's upper atmosphere. The transient, one-dimensional model of THS chemistry tracks the evolution of more than 120 species in the direction of the plasma flow. As the minor species C2H2 and C2H4 are added to the N2/CH4-based mixture, the model correctly predicts the emergence of reaction products with up to five carbon atoms in relative abundances that agree well with measured mass spectra. Chemical growth in Titan's upper atmosphere transpires through ion–neutral and neutral–neutral chemistry, and the main reactions involving a series of known atmospheric species are retrieved from the calculation. The model indicates that the electron density and chemistry are steady during more than 99% of the 300 μs long discharge pulse. The model also suggests that the THS ionization fraction and electron temperature are comparable to those measured in Titan's upper atmosphere. These findings reaffirm that the THS plasma is a controlled analog environment for studying the first and intermediate steps of chemistry in Titan's upper atmosphere.
A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars
NASA Astrophysics Data System (ADS)
Zou, Hong; Ye, Yu Guang; Wang, Jin Song; Nielsen, Erling; Cui, Jun; Wang, Xiao Dong
2016-04-01
A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars is introduced in this study. The neutral densities at 130 km can be derived from the ionospheric and atmospheric measurements of the Radio Science experiment on board Mars Global Surveyor (MGS). The derived neutral densities cover a large longitude range in northern high latitudes from summer to late autumn during 3 Martian years, which fills the gap of the previous observations for the upper atmosphere of Mars. The simulations of the Laboratoire de Météorologie Dynamique Mars global circulation model can be corrected with a simple linear equation to fit the neutral densities derived from the first MGS/RS (Radio Science) data sets (EDS1). The corrected simulations with the same correction parameters as for EDS1 match the derived neutral densities from two other MGS/RS data sets (EDS2 and EDS3) very well. The derived neutral density from EDS3 shows a dust storm effect, which is in accord with the Mars Express (MEX) Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars measurement. The neutral density derived from the MGS/RS measurements can be used to validate the Martian atmospheric models. The method presented in this study can be applied to other radio occultation measurements, such as the result of the Radio Science experiment on board MEX.
NASA Astrophysics Data System (ADS)
Qi, Zhong; Zhang, Teng; Han, Ge; Li, Dongcang; Ma, Xin; Gong, Wei
2017-04-01
The current acquisition system of a lidar detects return signals in two modes (i.e., analog and photon counting); resulting in the lower (below 1500 m) and upper (higher than 1100 m) atmospheric parameters need analog and photon counting signal to retrieve, respectively. Hence, a lidar cannot obtain a continuous column of the concentrations of atmospheric components. For carbon cycle studies, the range-resolved concentration of atmospheric CO2 in the lower troposphere (below 1500 m) is one of the most significant parameters that should be determined. This study proposes a novel gluing method that merges the CO2 signal detected by ground-based DIAL in the lower troposphere. Through simulation experiments, the best uniform approximation polynomial theorem is utilized to determine the transformation coefficient to correlate signals from the different modes perfectly. The experimental results (both simulation experiments and actual measurement of signals) show that the proposed method is suitable and feasible for merging data in the region below 1500 m. Hence, the photon-counting signals whose SNRs are higher than those of the analog signals can be used to retrieve atmospheric parameters at an increased near range, facilitating atmospheric soundings using ground-based lidar in various fields.
Recovery of atmospheric refractivity profiles from simulated satellite-to-satellite tracking data
NASA Technical Reports Server (NTRS)
Murray, C. W., Jr.; Rangaswamy, S.
1975-01-01
Techniques for recovering atmospheric refractivity profiles from simulated satellite-to-satellite tracking data are documented. Examples are given using the geometric configuration of the ATS-6/NIMBUS-6 Tracking Experiment. The underlying refractivity model for the lower atmosphere has the spherically symmetric form N = exp P(s) where P(s) is a polynomial in the normalized height s. For the simulation used, the Herglotz-Wiechert technique recovered values which were 0.4% and 40% different from the input values at the surface and at a height of 33 kilometers, respectively. Using the same input data, the model fitting technique recovered refractivity values 0.05% and 1% different from the input values at the surface and at a height of 50 kilometers, respectively. It is also shown that if ionospheric and water vapor effects can be properly modelled or effectively removed from the data, pressure and temperature distributions can be obtained.
A random walk model to simulate the atmospheric dispersion of radionuclide
NASA Astrophysics Data System (ADS)
Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong
2018-01-01
To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.
Numerical simulation of small-scale thermal convection in the atmosphere
NASA Technical Reports Server (NTRS)
Somerville, R. C. J.
1973-01-01
A Boussinesq system is integrated numerically in three dimensions and time in a study of nonhydrostatic convection in the atmosphere. Simulation of cloud convection is achieved by the inclusion of parametrized effects of latent heat and small-scale turbulence. The results are compared with the cell structure observed in Rayleigh-Benard laboratory conversion experiments in air. At a Rayleigh number of 4000, the numerical model adequately simulates the experimentally observed evolution, including some prominent transients of a flow from a randomly perturbed initial conductive state into the final state of steady large-amplitude two-dimensional rolls. At Rayleigh number 9000, the model reproduces the experimentally observed unsteady equilibrium of vertically coherent oscillatory waves superimposed on rolls.
NASA Technical Reports Server (NTRS)
1975-01-01
A data simulation is presented for instruments and associated control and display functions required to perform controlled active experiments of the atmosphere. A comprehensive user's guide is given for the data requirements and software developed for the following experiments: (1) electromagnetic wave transmission; (2) passive observation of ambient plasmas; (3) ionospheric measurements with a subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustic gravity waves in the sodium layer using lasers. A complete description of each experiment is given.
NASA/ESA CV-990 spacelab simulation
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.
1976-01-01
Simplified techniques were applied to conduct an extensive spacelab simulation using the airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy. The mission was successful and provided extensive data relevant to spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for spacelab experiment operators; and schedule requirements to prepare for such a spacelab mission.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1991-01-01
Laboratory measurements of microwave and millimeter wave properties of the simulated atmosphere of the outer planets and their satellites has continued. One of the focuses is on the development of a radiative transfer model of the Jovian atmosphere at wavelengths from 1 mm to 10 cm. This modeling effort led to laboratory measurements of the millimeter wave opacity of hydrogen sulfide (H2S) under simulated Jovian conditions. Descriptions of the modeling effort, the Laboratory experiment, and the observations are presented. Correlative studies of measurements with Pioneer-Venus radio occultation measurements with longer wavelength emission measurements have provided new ways for characterizing temporal and spatial variations in the abundance of both gases H2SO4 and SO2, and for modeling their roles in the subcloud atmosphere. Laboratory measurements were conducted on 1.35 cm (and 13 cm) opacity of gaseous SO2 and absorptivity of gaseous SO2 at the 3.2 mm wavelength under simulated Venus conditions. Laboratory measurements were completed on millimeter wave dielectric properties of liquid H2SO4, in order to model the effects of the opacity of the clouds of Venus onto millimeter wave emission spectrum.
Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry
NASA Astrophysics Data System (ADS)
Kobayashi, Kensei; Geppert, Wolf D.; Carrasco, Nathalie; Holm, Nils G.; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J. Hunter; Watanabe, Naoki; Ziurys, Lucy M.
2017-08-01
To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution.
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
NASA Astrophysics Data System (ADS)
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; Senior, Catherine A.; Bellucci, Alessio; Bao, Qing; Chang, Ping; Corti, Susanna; Fučkar, Neven S.; Guemas, Virginie; von Hardenberg, Jost; Hazeleger, Wilco; Kodama, Chihiro; Koenigk, Torben; Leung, L. Ruby; Lu, Jian; Luo, Jing-Jia; Mao, Jiafu; Mizielinski, Matthew S.; Mizuta, Ryo; Nobre, Paulo; Satoh, Masaki; Scoccimarro, Enrico; Semmler, Tido; Small, Justin; von Storch, Jin-Song
2016-11-01
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relatively few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950-2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. HighResMIP thereby focuses on one of the CMIP6 broad questions, "what are the origins and consequences of systematic model biases?", but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.
Airborne simulation of Shuttle/Spacelab management and operation
NASA Technical Reports Server (NTRS)
Mulholland, D. R.; Neel, C. B.
1976-01-01
The ASSESS (Airborne Science/Spacelab Experiments System Simulation) program is discussed. A simulated Spacelab operation was carried out aboard the CV-990 airborne laboratory at Ames Research Center. A scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England and the U.S. Two experiment operators (EOs) from the U.S. and two from Europe were trained to function as proxies for the principal investigators in operating, maintaining, and repairing the scientific instruments. The simulated mission, in which the EOs and a Mission Manager were confined to the aircraft and living quarters for a 1-week period while making scientific observations during nightly flights, provided experience in the overall management of a complex international payload, experiment preparation, testing, and integration, the training and selection of proxy operators, and data handling.
NASA Astrophysics Data System (ADS)
Chirskaia, Natalia; Novikov, Lev; Voronina, Ekaterina
2016-07-01
Atomic oxygen (AO) of the upper atmosphere is one of the most important space factors that can cause degradation of spacecraft surface. In our previous mathematical model the Monte Carlo method and the "large particles" approximation were used for simulating processes of polymer etching under the influence of AO [1]. The interaction of enlarged AO particles with the polymer was described in terms of probabilities of reactions such as etching of polymer and specular and diffuse scattering of the AO particles on polymer. The effects of atomic oxygen on protected polymers and microfiller containing composites were simulated. The simulation results were in quite good agreement with the results of laboratory experiments on magnetoplasmadynamic accelerator of the oxygen plasma of SINP MSU [2]. In this paper we present a new model that describes the reactions of AO interactions with polymeric materials in more detail. Reactions of formation and further emission of chemical compounds such as CO, CO _{2}, H _{2}O, etc. cause the modification of the chemical composition of the polymer and change the probabilities of its consequent interaction with the AO. The simulation results are compared with the results of previous simulation and with the results of laboratory experiments. The reasons for the differences between the results of natural experiments on spacecraft, laboratory experiments and simulations are discussed. N. Chirskaya, M. Samokhina, Computer modeling of polymer structures degradation under the atomic oxygen exposure, WDS'12 Proceedings of Contributed Papers: Part III - Physics, Matfyzpress Prague, 2012, pp. 30-35. E. Voronina, L. Novikov, V. Chernik, N. Chirskaya, K. Vernigorov, G. Bondarenko, and A. Gaidar, Mathematical and experimental simulation of impact of atomic oxygen of the earth's upper atmosphere on nanostructures and polymer composites, Inorganic Materials: Applied Research, 2012, vol. 3, no. 2, pp. 95-101.
NASA Astrophysics Data System (ADS)
BéRanger, Karine; Drillet, Yann; Houssais, Marie-NoëLle; Testor, Pierre; Bourdallé-Badie, Romain; Alhammoud, Bahjat; Bozec, Alexandra; Mortier, Laurent; Bouruet-Aubertot, Pascale; CréPon, Michel
2010-12-01
The impact of the atmospheric forcing on the winter ocean convection in the Mediterranean Sea was studied with a high-resolution ocean general circulation model. The major areas of focus are the Levantine basin, the Aegean-Cretan Sea, the Adriatic Sea, and the Gulf of Lion. Two companion simulations differing by the horizontal resolution of the atmospheric forcing were compared. The first simulation (MED16-ERA40) was forced by air-sea fields from ERA40, which is the ECMWF reanalysis. The second simulation (MED16-ECMWF) was forced by the ECMWF-analyzed surface fields that have a horizontal resolution twice as high as those of ERA40. The analysis of the standard deviations of the atmospheric fields shows that increasing the resolution of the atmospheric forcing leads in all regions to a better channeling of the winds by mountains and to the generation of atmospheric mesoscale patterns. Comparing the companion ocean simulation results with available observations in the Adriatic Sea and in the Gulf of Lion shows that MED16-ECMWF is more realistic than MED16-ERA40. In the eastern Mediterranean, although deep water formation occurs in the two experiments, the depth reached by the convection is deeper in MED16-ECMWF. In the Gulf of Lion, deep water formation occurs only in MED16-ECMWF. This larger sensitivity of the western Mediterranean convection to the forcing resolution is investigated by running a set of sensitivity experiments to analyze the impact of different time-space resolutions of the forcing on the intense winter convection event in winter 1998-1999. The sensitivity to the forcing appears to be mainly related to the effect of wind channeling by the land orography, which can only be reproduced in atmospheric models of sufficient resolution. Thus, well-positioned patterns of enhanced wind stress and ocean surface heat loss are able to maintain a vigorous gyre circulation favoring efficient preconditioning of the area at the beginning of winter and to drive realistic buoyancy loss and mixing responsible for strong convection at the end of winter.
THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werth, D.; Kurzeja, R.; Parker, M.
A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motionsmore » within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.« less
Sim, Adelene Y L
2016-06-01
Nucleic acids are biopolymers that carry genetic information and are also involved in various gene regulation functions such as gene silencing and protein translation. Because of their negatively charged backbones, nucleic acids are polyelectrolytes. To adequately understand nucleic acid folding and function, we need to properly describe its i) polymer/polyelectrolyte properties and ii) associating ion atmosphere. While various theories and simulation models have been developed to describe nucleic acids and the ions around them, many of these theories/simulations have not been well evaluated due to complexities in comparison with experiment. In this review, I discuss some recent experiments that have been strategically designed for straightforward comparison with theories and simulation models. Such data serve as excellent benchmarks to identify limitations in prevailing theories and simulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
A Study of the Electrostatic Interaction Between Insulators and Martian/Lunar Soil Simulants
NASA Technical Reports Server (NTRS)
Mantovani, James G.
2001-01-01
Using our previous experience with the Mars Environmental Compatibility Assessment (MECA) electrometer, we have designed a new type of aerodynamic electrometer. The goal of the research was to measure the buildup of electrostatic surface charge on a stationary cylindrical insulator after windborne granular particles have collided with the insulator surface in a simulated dust storm. The experiments are performed inside a vacuum chamber. This allows the atmospheric composition and pressure to be controlled in order to simulate the atmospheric conditions near the equator on the Martian surface. An impeller fan was used to propel the dust particles at a cylindrically shaped insulator under low vacuum conditions. We tested the new electrometer in a 10 mbar CO2 atmosphere by exposing two types of cylindrical insulators, Teflon (1.9 cm diameter) and Fiberglass (2.5 cm diameter), to a variety of windborne granular particulate materials. The granular materials tested were JSC Mars-1 simulant, which is a mixture of coarse and fine (<5microns diameter) particle sizes, and some of the major mineral constituents of the Martian soil. The minerals included Ottawa sand (SiO2), iron oxide (Fe2O3), aluminum oxide (Al2O3) and magnesium oxide (MgO). We also constructed a MECA-like electrometer that contained an insulator capped planar electrode for measuring the amount of electrostatic charge produced by rubbing an insulator surface over Martian and lunar soil simulants. The results of this study indicate that it is possible to detect triboelectric charging of insulator surfaces by windborne Martian soil simulant, and by individual mineral constituents of the soil simulant. We have also found that Teflon and Fiberglass insulator surfaces respond in different ways by developing opposite polarity surface charge, which decays at different rates after the particle impacts cease.
Simulated atmospheric response to Gulf Stream variability
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Latif, Mojib; Minobe, Shoshiro
2010-05-01
Though the ocean variability has a distinct low-frequent component on interannual to interdecadal timescales, a better understanding of the main features of air-sea interaction in the extratropical ocean might increase the predictive skill of climate models significantly. An insufficiently understood region in this context are the sharp SST-fronts connected to western boundary currents, which interact with the overlaying atmosphere by forcing low-level winds and evaporation. Recent studies show, that this response extends beyond the marine boundary layer and so might influence also the large-scale atmospheric circulation. In this work a 5 member ensemble of model runs from the AGCM ECHAM5 was analyzed focussing on the atmospheric response to the Gulf Stream. The analyzed experiment covered a time period of 138 years from 1870 to 2007 and was forced by observed SSTs and sea-ice concentration from the HadISST dataset. The experiment was performed at T106 horizontal resolution (~100km) and with 31 vertical levels up to 1 hPa. Simulated seasonal mean circulation indicate a convective response of the atmosphere in the Gulf Stream region similar to observations, with distinct low-level wind convergence, strong upward motion, and low-pressure over the warm SST flank of the Gulf Stream. An analysis of variance (ANOVA) suggests, that up to 25-30% of the variability of the summer precipitation in the Gulf Stream region are connected to the boundary conditions. The link between oceanic and atmospheric variability on seasonal to interannual timescales is investigated with composite and linear regression analysis. Results indicate that increased (decreased) precipitation is associated with stronger (weaker) low-level wind convergence, enhanced (reduced) upward motion, low (high) pressure, and warm (cold) SST anomalies in the region of the Gulf Stream. Currently sensitivity experiments with the same AGCM configuration are in progress.
N2O and CO production by electric discharge - Atmospheric implications. [Venus atmosphere simulation
NASA Technical Reports Server (NTRS)
Levine, J. S.; Howell, W. E.; Hughes, R. E.; Chameides, W. L.
1979-01-01
Enhanced levels of N2O and CO were measured in tropospheric air samples exposed to a 17,500-J laboratory discharge. These enhanced levels correspond to an N2O production rate of about 4 trillion molecules/J and a CO production rate of about 10 to the 14th molecules/J. The CO measurements suggest that the primary region of chemical production in the discharge is the shocked air surrounding the lightning channel, as opposed to the slower-cooling inner core. Additional experiments in a simulated Venus atmosphere (CO2 - 95%, N2 - 5%, at one atmosphere) indicate an enhancement of CO from less than 0.1 ppm prior to the laboratory discharge to more than 2000 ppm after the discharge. Comparison with theoretical calculations appears to confirm the ability of a shock-wave/thermochemical model to predict the rate of production of trace species by an electrical discharge.
Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems
NASA Astrophysics Data System (ADS)
Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang
2016-09-01
Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.
Current status of the prebiotic synthesis of small molecules
NASA Technical Reports Server (NTRS)
Miller, Stanley L.
1986-01-01
Experiments designed to simulate conditions on the primitive earth and to demonstrate how the organic compounds that made up the first living organisms were synthesized are described. Simulated atmospheres with CH4, N2, NH3, and H2O were found to be most effective for synthesis of small prebiotic molecules, although atmospheres with H2, CO, N2, and H2O, and with H2, CO2, N2, and H2O also give good yields of organic compounds provided the H2/CO and H2/CO2 ratios are above 1 and 2, respectively. The spark discharge (which is a good source of HCN) and UV light are also important. Reasonable prebiotic syntheses were worked out for the amino acids that occur in proteins (with the exception of lysine, arginine, and histidine), and for purines, pyrimidines, sugars, and nicotinic acid. Many of the molecules that have been produced in these simulated primitive-earth experiments are found in carbonaceous chondrites.
NASA Astrophysics Data System (ADS)
Judt, Falko
2017-04-01
A tremendous increase in computing power has facilitated the advent of global convection-resolving numerical weather prediction (NWP) models. Although this technological breakthrough allows for the seamless prediction of weather from local to global scales, the predictability of multiscale weather phenomena in these models is not very well known. To address this issue, we conducted a global high-resolution (4-km) predictability experiment using the Model for Prediction Across Scales (MPAS), a state-of-the-art global NWP model developed at the National Center for Atmospheric Research. The goals of this experiment are to investigate error growth from convective to planetary scales and to quantify the intrinsic, scale-dependent predictability limits of atmospheric motions. The globally uniform resolution of 4 km allows for the explicit treatment of organized deep moist convection, alleviating grave limitations of previous predictability studies that either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. Error growth is analyzed within the context of an "identical twin" experiment setup: the error is defined as the difference between a 20-day long "nature run" and a simulation that was perturbed with small-amplitude noise, but is otherwise identical. It is found that in convectively active regions, errors grow by several orders of magnitude within the first 24 h ("super-exponential growth"). The errors then spread to larger scales and begin a phase of exponential growth after 2-3 days when contaminating the baroclinic zones. After 16 days, the globally averaged error saturates—suggesting that the intrinsic limit of atmospheric predictability (in a general sense) is about two weeks, which is in line with earlier estimates. However, error growth rates differ between the tropics and mid-latitudes as well as between the troposphere and stratosphere, highlighting that atmospheric predictability is a complex problem. The comparatively slower error growth in the tropics and in the stratosphere indicates that certain weather phenomena could potentially have longer predictability than currently thought.
Atmospheric-like rotating annulus experiment: gravity wave emission from baroclinic jets
NASA Astrophysics Data System (ADS)
Rodda, Costanza; Borcia, Ion; Harlander, Uwe
2017-04-01
Large-scale balanced flows can spontaneously radiate meso-scale inertia-gravity waves (IGWs) and are thus in fact unbalanced. While flow-dependent parameterizations for the radiation of IGWs from orographic and convective sources do exist, the situation is less developed for spontaneously emitted IGWs. Observations identify increased IGW activity in the vicinity of jet exit regions. A direct interpretation of those based on geostrophic adjustment might be tempting. However, directly applying this concept to the parameterization of spontaneous imbalance is difficult since the dynamics itself is continuously re-establishing an unbalanced flow which then sheds imbalances by GW radiation. Examining spontaneous IGW emission in the atmosphere and validating parameterization schemes confronts the scientist with particular challenges. Due to its extreme complexity, GW emission will always be embedded in the interaction of a multitude of interdependent processes, many of which are hardly detectable from analysis or campaign data. The benefits of repeated and more detailed measurements, while representing the only source of information about the real atmosphere, are limited by the non-repeatability of an atmospheric situation. The same event never occurs twice. This argues for complementary laboratory experiments, which can provide a more focused dialogue between experiment and theory. Indeed, life cycles are also examined in rotating- annulus laboratory experiments. Thus, these experiments might form a useful empirical benchmark for theoretical and modelling work that is also independent of any sort of subgrid model. In addition, the more direct correspondence between experimental and model data and the data reproducibility makes lab experiments a powerful testbed for parameterizations. Joint laboratory experiment and numerical simulation have been conducted. The comparison between the data obtained from the experiment and the numerical simulations shows a very good agreement for the large scale baroclinic wave regime. Moreover, in both cases a clear signal of horizontal divergence, embedded in the baroclinic wave front, appears suggesting IGWs emission.
Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion
NASA Astrophysics Data System (ADS)
Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.
2014-12-01
The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations, and FDS influence functions will be compared with those generated from WRF and the Lagrangian Particle Dispersion Model. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions.
NASA Astrophysics Data System (ADS)
Abel, Rafael; Boening, Claus
2015-04-01
Current practice in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in conjunction with a prescribed, and unresponsive, atmospheric state as given, e.g., by reanalysis products. This forcing formulation corresponds to assuming an atmosphere with infinite heat capacity, and effectively damps SST anomalies even on basin scales. It thus curtails an important negative feedback between meridional ocean heat transport and SST in the North Atlantic, rendering simulations of the AMOC in such models excessively sensitive to details in the freshwater fluxes. As a consequence, such simulations are known for spurious drift behaviors which can only partially controlled by introducing some (and sometimes strong) unphysical restoring of sea surface salinity. There have been several suggestions during the last 20 years for at least partially alleviating the problem by including some simplified model of the atmospheric boundary layer (AML) which allows a feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the surface fluxes. We here present simulations with a simple, only thermally active AML formulation (based on the 'CheapAML' proposed by Deremble et al., 2013) implemented in a global model configuration based on NEMO (ORCA05). In a suite of experiments building on the CORE-bulk forcing methodology, we examine some general features of the AML-solutions (in which only the winds are prescribed) in comparison to solutions with a prescribed atmosperic state. The focus is on the North Atlantic, where we find that the adaptation of the atmospheric temperature the simulated ocean state can lead to strong local modifications in the surface heat fluxes in frontal regions (e.g., the 'Northwest Corner'). We particularly assess the potential of the AML-forcing concept for obtaining AMOC-simulations with reduced spurious drift, without employing the traditional remedy of salinity restoring.
NASA Technical Reports Server (NTRS)
Fogleman, Guy (Editor); Huntington, Judith L. (Editor); Schwartz, Deborah E. (Editor); Fonda, Mark L. (Editor)
1989-01-01
An overview of the Gas-Grain Simulation Facility (GGSF) project and its current status is provided. The proceedings of the Gas-Grain Simulation Facility Experiments Workshop are recorded. The goal of the workshop was to define experiments for the GGSF--a small particle microgravity research facility. The workshop addressed the opportunity for performing, in Earth orbit, a wide variety of experiments that involve single small particles (grains) or clouds of particles. Twenty experiments from the fields of exobiology, planetary science, astrophysics, atmospheric science, biology, physics, and chemistry were described at the workshop and are outlined in Volume 2. Each experiment description included specific scientific objectives, an outline of the experimental procedure, and the anticipated GGSF performance requirements. Since these experiments represent the types of studies that will ultimately be proposed for the facility, they will be used to define the general science requirements of the GGSF. Also included in the second volume is a physics feasibility study and abstracts of example Gas-Grain Simulation Facility experiments and related experiments in progress.
High Resolution Imaging Using Phase Retrieval. Volume 2
1991-10-01
aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude
Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions.
Yates, S R; Ashworth, D J
2018-04-15
Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.
Aben, Ilse; Tanzi, Cristina P; Hartmann, Wouter; Stam, Daphne M; Stammes, Piet
2003-06-20
A method is presented for in-flight validation of space-based polarization measurements based on approximation of the direction of polarization of scattered sunlight by the Rayleigh single-scattering value. This approximation is verified by simulations of radiative transfer calculations for various atmospheric conditions. The simulations show locations along an orbit where the scattering geometries are such that the intensities of the parallel and orthogonal polarization components of the light are equal, regardless of the observed atmosphere and surface. The method can be applied to any space-based instrument that measures the polarization of reflected solar light. We successfully applied the method to validate the Global Ozone Monitoring Experiment (GOME) polarization measurements. The error in the GOME's three broadband polarization measurements appears to be approximately 1%.
Midlatitude atmosphere-ocean interaction during El Nino. Part I. The north Pacific ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, M.A.
Atmosphere-ocean modeling experiments are used to investigate the formation of sea surface temperature (SST) anomalies in the North Pacific Ocean during fall and winter of the El Nino year. Experiments in which the NCAR Community Climate Model (CCM) surface fields are used to force a mixed-layer ocean model in the North Pacific (no air-sea feedback) are compared to simulations in which the CCM and North Pacific Ocean model are coupled. Anomalies in the atmosphere and the North Pacific Ocean during El Nino are obtained from the difference between simulations with and without prescribed warm SST anomalies in the tropical Pacific.more » In both the forced and coupled experiments, the anomaly pattern resembles a composite of the actual SST anomaly field during El Nino: warm SSTs develop along the coast of North America and cold SSTs form in the central Pacific. In the coupled simulations, air-sea interaction results in a 25% to 50% reduction in the magnitude of the SST and mixed-layer depth anomalies, resulting in more realistic SST fields. Coupling also decreases the SST anomaly variance; as a result, the anomaly centers remain statistically significant even though the magnitude of the anomalies is reduced. Three additional sensitivity studies indicate that air-sea feedback and entrainment act to damp SST anomalies while Ekman pumping has a negligible effect on mixed-layer depth and SST anomalies in midatitudes.« less
NASA Astrophysics Data System (ADS)
Wada, Akiyoshi; Kunii, Masaru
2017-05-01
For improving analyses of tropical cyclone (TC) and sea surface temperature (SST) and thereby TC simulations, a regional mesoscale strongly coupled atmosphere-ocean data assimilation system was developed with the local ensemble transform Kalman filter (LETKF) implemented with the Japan Meteorological Agency's nonhydrostatic model (NHM) coupled with a multilayer ocean model and the third-generation ocean wave model. The NHM-LETKF coupled data assimilation system was applied to Typhoon Sinlaku (2008) along with the original NHM-LETKF system to investigate the sensitivity of Sinlaku to SST assimilation with the Level 2 Pre-processed (L2P) standard product of satellite SST. SST calculated in the coupled-assimilation experiment with the coupled data assimilation system and the satellite SST (CPL) showed a better correlation with Optimally Interpolated SST than SST used in the control experiment with the original NHM-LETKF (CNTL) and SST calculated in the succession experiment with the coupled system without satellite SST (SUCC). The time series in the CPL experiment well captured the variation in the SST observed at the Kuroshio Extension Observation buoy site. In addition, TC-induced sea surface cooling was analyzed more realistically in the CPL experiment than that in the CNTL and SUCC experiments. However, the central pressure analyzed in each three experiments was overestimated compared with the Regional Specialized Meteorological Center Tokyo best-track central pressure, mainly due to the coarse horizontal resolution of 15 km. The 96 h TC simulations indicated that the CPL experiment provided more favorable initial and boundary conditions than the CNTL experiment to simulate TC tracks more accurately.
Experimental basis for a Titan probe organic analysis
NASA Technical Reports Server (NTRS)
Mckay, C. P.; Scattergood, T. W.; Borucki, W. J.; Kasting, J. F.; Miller, S. L.
1986-01-01
The recent Voyager flyby of Titan produced evidence for at least nine organic compounds in that atmosphere that are heavier than methane. Several models of Titan's atmosphere, as well as laboratory simulations, suggest the presence of organics considerably more complex that those observed. To ensure that the in situ measurements are definitive with respect to Titan's atmosphere, experiment concepts, and the related instrumentation, must be carefully developed specifically for such a mission. To this end, the possible composition of the environment to be analyzed must be bracketed and model samples must be provided for instrumentation development studies. Laboratory studies to define the optimum flight experiment and sampling strategy for a Titan entry probe are currently being conducted. Titan mixtures are being subjected to a variety of energy sources including high voltage electron from a DC discharge, high current electric shock, and laser detonation. Gaseous and solid products are produced which are then analyzed. Samples from these experiements are also provided to candidate flight experiments as models for instrument development studies. Preliminary results show that existing theoretical models for chemistry in Titan's atmosphere cannot adequetely explain the presence and abundance of all trace gases observed in these experiments.
NASA Astrophysics Data System (ADS)
Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole
2017-10-01
We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.
NASA Astrophysics Data System (ADS)
Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.
2015-12-01
Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation. Implications for field studies and needs for future research are discussed.
NASA Astrophysics Data System (ADS)
Xue, Y.; Liu, Y.; Cox, P. M.; De Sales, F.; Lee, J.; Marx, L.; Hartman, M. D.; Yang, R.; Parton, W. J.; Qiu, B.; Ek, M. B.
2016-12-01
Evaluations of several dynamic vegetation models' (DVM) performances in the offline experiments and in the CMIP5 simulations suggest that most of the DVMs substantially overestimate leaf area index (LAI) and length of the growing season, which contribute to overestimation in their coupled models' precipitation. These results suggest important deficiencies in today's DVMs but also show the importance of proper ecological processes in the Earth System Modeling. We have developed a water-carbon-energy balance-based ecosystem model (SSiB4/TRIFFID) and verified it with field and satellite measurement at seasonal to decadal and longer scales. In the global offline tests, the model was integrated from 1950 to 2010 driven by observed meteorological forcing. The simulated trend and decadal variabilities in surface ecosystem conditions (e.g., Plant functional types, LAI, GPP), and surface water and energy balances are analyzed; further experiments and analyses are carried to isolate the contribution due to elevated atmospheric carbon concentration, global warming, soil moisture, and climate variability. How nitrogen processes simulated by the DayCent model Climate Forecast System (CFS) model, which has consistently shown improvements in simulated atmospheric & ocean conditions compared with those runs with specified vegetation conditions. In an experiment, two parametrizations that calculate the mean water potential in soil layers, which affect transpiration and plants' mortality, are tested. It shows that these two methods have substantial impact on global decadal variability of precipitation and surface temperature, with even opposite signs over some regions in the worlds. These results show the uncertainty in DVM modeling with significant implication for the future prediction. It is imperative to evaluate DVMs with comprehensive observational data.
Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry.
Kobayashi, Kensei; Geppert, Wolf D; Carrasco, Nathalie; Holm, Nils G; Mousis, Olivier; Palumbo, Maria Elisabetta; Waite, J Hunter; Watanabe, Naoki; Ziurys, Lucy M
2017-08-01
To examine how prebiotic chemical evolution took place on Earth prior to the emergence of life, laboratory experiments have been conducted since the 1950s. Methane has been one of the key molecules in these investigations. In earlier studies, strongly reducing gas mixtures containing methane and ammonia were used to simulate possible reactions in the primitive atmosphere of Earth, producing amino acids and other organic compounds. Since Earth's early atmosphere is now considered to be less reducing, the contribution of extraterrestrial organics to chemical evolution has taken on an important role. Such organic molecules may have come from molecular clouds and regions of star formation that created protoplanetary disks, planets, asteroids, and comets. The interstellar origin of organics has been examined both experimentally and theoretically, including laboratory investigations that simulate interstellar molecular reactions. Endogenous and exogenous organics could also have been supplied to the primitive ocean, making submarine hydrothermal systems plausible sites of the generation of life. Experiments that simulate such hydrothermal systems where methane played an important role have consequently been conducted. Processes that occur in other Solar System bodies offer clues to the prebiotic chemistry of Earth. Titan and other icy bodies, where methane plays significant roles, are especially good targets. In the case of Titan, methane is both in the atmosphere and in liquidospheres that are composed of methane and other hydrocarbons, and these have been studied in simulation experiments. Here, we review the wide range of experimental work in which these various terrestrial and extraterrestrial environments have been modeled, and we examine the possible role of methane in chemical evolution. Key Words: Methane-Interstellar environments-Submarine hydrothermal systems-Titan-Origin of life. Astrobiology 17, 786-812.
NASA Technical Reports Server (NTRS)
Rogers, C. W.; Eadie, W. J.; Katz, U.; Kocmond, W. C.
1975-01-01
A two-dimensional numerical model was used to investigate the formation of marine advection fog. The model predicts the evolution of potential temperature, horizontal wind, water vapor content, and liquid water content in a vertical cross section of the atmosphere as determined by vertical turbulent transfer and horizontal advection, as well as radiative cooling and drop sedimentation. The model is designed to simulate the formation, development, or dissipation of advection fog in response to transfer of heat and moisture between the atmosphere and the surface as driven by advection over horizontal discontinuities in the surface temperature. Results from numerical simulations of advection fog formation are discussed with reference to observations of marine fog. A survey of candidate fog or cloud microphysics experiments which might be performed in the low gravity environment of a shuttle-type spacecraft in presented. Recommendations are given for relatively simple experiments which are relevent to fog modification problems.
Formation Of Amino Acids And Nucleotide Bases In A Titan Atmosphere Simulation Experiment
NASA Astrophysics Data System (ADS)
Horst, Sarah; Yelle, R. V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O'Brien, E.; Smith, M. A.; Somogyi, A.; Szopa, C.; Thissen, R.; Vuitton, V.
2010-10-01
Titan has been a subject of astrobiological interest since the Voyager spacecraft first revealed the diversity of the organic chemistry occurring in the atmosphere. However, it was not until the arrival of Cassini-Huygens that the chemical complexity of Titan's atmosphere was fully appreciated. The Cassini Plasma Spectrometer (CAPS) observed negative ions with m/z values up to 10,000 u/q at 950 km [1] and positive ions with m/z up to 400 u/q [2]. CAPS has also observed O+ flowing into Titan's atmosphere [3]. While Titan's atmosphere is relatively oxygen poor compared to terrestrial planets, CO is the fourth most abundant molecule in the atmosphere (˜50 ppm). The fact that the observed O+ flux is deposited in the region now known to contain large organic molecules leads to the exciting possibility that oxygen can be incorporated into these molecules resulting in the production of prebiotic molecules. In this work, Titan aerosol analogues (or "tholins") produced in PAMPRE, a Titan atmosphere simulation experiment, have been analyzed in a very high resolution LTQ Orbitrap mass spectrometer. These PAMPRE tholins were produced by capacitively coupled RF discharge in a mixture of N2, CH4 and CO. The tholins were found to contain 18 molecules with molecular formulae corresponding to biological amino acids and nucleotide bases. GC-MS measurements have confirmed the structure of seven: adenine, cytosine, uracil, thymine, guanine, glycine and alanine. The production of prebiotic molecules under atmospheric conditions presents a new source of prebiotic material and may increase the range of planets where life could begin. [1] Coates AJ, et al. (2007). Geophys. Res. Lett. 34:22103- +. [2] Crary FJ, et al. (2009). Planet. Space Sci. 57:1847- 1856. [3] Hartle RE, et al. (2006). Geophys. Res. Lett. 33:8201-+.
BEATBOX v1.0: Background Error Analysis Testbed with Box Models
NASA Astrophysics Data System (ADS)
Knote, Christoph; Barré, Jérôme; Eckl, Max
2018-02-01
The Background Error Analysis Testbed (BEATBOX) is a new data assimilation framework for box models. Based on the BOX Model eXtension (BOXMOX) to the Kinetic Pre-Processor (KPP), this framework allows users to conduct performance evaluations of data assimilation experiments, sensitivity analyses, and detailed chemical scheme diagnostics from an observation simulation system experiment (OSSE) point of view. The BEATBOX framework incorporates an observation simulator and a data assimilation system with the possibility of choosing ensemble, adjoint, or combined sensitivities. A user-friendly, Python-based interface allows for the tuning of many parameters for atmospheric chemistry and data assimilation research as well as for educational purposes, for example observation error, model covariances, ensemble size, perturbation distribution in the initial conditions, and so on. In this work, the testbed is described and two case studies are presented to illustrate the design of a typical OSSE experiment, data assimilation experiments, a sensitivity analysis, and a method for diagnosing model errors. BEATBOX is released as an open source tool for the atmospheric chemistry and data assimilation communities.
A Modeling Study of the Spring 2011 Extreme US Weather Activity
NASA Technical Reports Server (NTRS)
Schubert, S.; Suarez, M.; Chang, Y.
2012-01-01
The spring of 2011 was characterized by record-breaking tornadic activity with substantial loss of life and destruction of property. While a waning La Nina and other atmospheric teleconnections have been implicated in the development of these extreme weather events, a quantitative assessment of their causes is still lacking. This study uses high resolution (1/4 lat/lon) GEOS-5 AGCM experiments to quantify the role of SSTs and soil moisture in the development of the extreme weather activity with a focus on April - the month of peak tornadic activity. The simulations, consisting of 22-member ensembles of three-month long simulations (initialized March 1st) reproduce the main features of the observed large-scale changes including the below-normal temperature and above-normal precipitation in the Central US, and the hot and dry conditions to the south. Various sensitivity experiments are conducted to separate the roles of the SST, soil moisture and the initial atmospheric conditions in the development and predictability of the atmospheric conditions (wind shear, moisture, etc.) favoring the severe weather activity and flooding.
NASA Astrophysics Data System (ADS)
Linton, Mark; Leake, James; Schuck, Peter W.
2016-05-01
The magnetic field of the solar atmosphere is the primary driver of solar activity. Understanding the magnetic state of the solar atmosphere is therefore of key importance to predicting solaractivity. One promising means of studying the magnetic atmosphere is to dynamically build up and evolve this atmosphere from the time evolution of the magnetic field at the photosphere, where it can be measured with current solar vector magnetograms at high temporal and spatial resolution.We report here on a series of numerical experiments investigating the capabilities and limits of magnetohydrodynamical simulations of such a process, where a magnetic corona is dynamically built up and evolved from a time series of synthetic photospheric data. These synthetic data are composed of photospheric slices taken from self consistent convection zone to corona simulations of flux emergence. The driven coronae are then quantitatively compared against the coronae of the original simulations. We investigate and report on the fidelity of these driven simulations, both as a function of the emergence timescale of the magnetic flux, and as a function of the driving cadence of the input data.This work was supported by the Chief of Naval Research and the NASA Living with a Star and Heliophysics Supporting Research programs.
Formation of amino acids and nucleotide bases in a Titan atmosphere simulation experiment.
Hörst, S M; Yelle, R V; Buch, A; Carrasco, N; Cernogora, G; Dutuit, O; Quirico, E; Sciamma-O'Brien, E; Smith, M A; Somogyi, A; Szopa, C; Thissen, R; Vuitton, V
2012-09-01
The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N(2)/CH(4)/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C(4)H(5)N(3)O, C(4)H(4)N(2)O(2), C(5)H(6)N(2)O(2), C(5)H(5)N(5), and C(6)H(9)N(3)O(2) are produced by chemistry in the simulation chamber. Gas chromatography-mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C(4)H(5)N(3)O), uracil (C(5)H(4)N(2)O(2)), thymine (C(5)H(6)N(2)O(2)), guanine (C(5)H(5)N(5)O), glycine (C(2)H(5)NO(2)), and alanine (C(3)H(7)NO(2)). Adenine (C(5)H(5)N(5)) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin.
Comparison of OH reactivity instruments in the atmosphere simulation chamber SAPHIR
NASA Astrophysics Data System (ADS)
Fuchs, Hendrik
2016-04-01
OH reactivity measurement has become an important measurement to constrain the total OH loss frequency in field experiments. Different techniques have been developed by various groups. They can be based on flow-tube or pump and probe techniques, which include direct OH detection by fluorescence, or on a comparative method, in which the OH loss of a reference species competes with the OH loss of trace gases in the sampled air. In order to ensure that these techniques deliver equivalent results, a comparison exercise was performed under controlled conditions. Nine OH reactivity instruments measured together in the atmosphere simulation chamber SAPHIR (volume 270 m3) during ten daylong experiments in October 2015 at ambient temperature (5 to 10° C) and pressure (990-1010 hPa). The chemical complexity of air mixtures in these experiments varied from CO in pure synthetic air to emissions from real plants and VOC/NOx mixtures representative of urban atmospheres. Potential differences between measurements were systematically investigated by changing the amount of reactants (including isoprene, monoterpenes and sesquiterpenes), water vapour, and nitrogen oxides. Some of the experiments also included the oxidation of reactants with ozone or hydroxyl radicals, in order to elaborate, if the presence of oxidation products leads to systematic differences between measurements of different instruments. Here we present first results of this comparison exercise.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.
2012-09-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon cycle range. These high end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real world climate sensitivity constraints which, if achieved, would lead to reductions on the uppper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present day observables and future changes while the large spread of future projected changes, highlights the ongoing need for such work.
Assessment of geophysical flows for zero-gravity simulation
NASA Technical Reports Server (NTRS)
Winn, C. B.; Cox, A.; Srivatsangam, R.
1976-01-01
The results of research relating to the feasibility of using a low gravity environment to model geophysical flows are presented. Atmospheric and solid earth flows are considered. Possible experiments and their required apparatus are suggested.
2007-09-26
Todd White uses the Data Parallel Line Relaxation (DPLR) software to simulate the intense heating, shear stresses and pressures human and robotic spacecraft experience as they travel through atmospheres to land on Earth or other planets.
NASA Technical Reports Server (NTRS)
Baker, David R.; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo; Simpson, Joanne
2000-01-01
Idealized numerical simulations are performed with a coupled atmosphere/land-surface model to identify the roles of initial soil moisture, coastline curvature, and land breeze circulations on sea breeze initiated precipitation. Data collected on 27 July 1991 during the Convection and Precipitation Electrification Experiment (CAPE) in central Florida are used. The 3D Goddard Cumulus Ensemble (GCE) cloud resolving model is coupled with the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, thus providing a tool to simulate more realistically land-surface/atmosphere interaction and convective initiation. Eight simulations are conducted with either straight or curved coast-lines, initially homogeneous soil moisture or initially variable soil moisture, and initially homogeneous horizontal winds or initially variable horizontal winds (land breezes). All model simulations capture the diurnal evolution and general distribution of sea-breeze initiated precipitation over central Florida. The distribution of initial soil moisture influences the timing, intensity and location of subsequent precipitation. Soil moisture acts as a moisture source for the atmosphere, increases the connectively available potential energy, and thus preferentially focuses heavy precipitation over existing wet soil. Strong soil moisture-induced mesoscale circulations are not evident in these simulations. Coastline curvature has a major impact on the timing and location of precipitation. Earlier low-level convergence occurs inland of convex coastlines, and subsequent precipitation occurs earlier in simulations with curved coastlines. The presence of initial land breezes alone has little impact on subsequent precipitation. however, simulations with both coastline curvature and initial land breezes produce significantly larger peak rain rates due to nonlinear interactions.
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Kaplan, Michael L.
1993-01-01
The Control-B simulation experiment was designed to improve on the Control-A experiment performed with the GMASS model. This experiment addressed several inadequacies with the first smooth terrain numerical simulation by including: (1) increased nested-grid resolution to better define the simulated gravity waves, (2) increased horizontal diffusion to remove outflow boundary condition noise, and (3) the use of reanalyzed rawinsonde data and surface observations in the initial state to increase the definition of the observed jet streak as well as other low-level features. A smoothed-terrain dry simulation with the nested-grid GMASS model has revealed many important aspects of the processes which resulted in the generation of gravity waves in the region and time when and where they were observed. However, the vertical structure, number, and characteristics of the waves are still quite different from observed waves as diagnosed thus necessitating future improved simulations. However, this control simulation has produced substantial insight into processes which occur on many spatial scales over a 30 hour time period thus allowing one to draw promising inferences as to the mechanisms for the complex process which occurred in nature during the CCOPE case study. The theoretical aspects of the project have focus on understanding the nature of the ageostrophic circulations which are produced in idealized models of the atmosphere in which the troposphere is modeled in one of two ways. The first model assumes that the lower atmosphere can be represented as a single layer of homogeneous fluid whose upper surface is free to exhibit vertical displacement. Two-dimensional internal convergence (divergence) occurring during the adjustment to an asymptotic equilibrium state from an ageostrophic initial state whose momentum structure is representative of a midlatitude localized zonal wind anomaly will cause the free upper surface of the homogeneous atmosphere to rise (fall), and therefore the response can be viewed as being physically three-dimensional. The second model assumes that the troposphere can be represented by an unbounded continuously stratified Boussinesq fluid of constant Brunt-Vaisala frequency N, where the vertical gradient of the basic state potential temperature profile allows for the existence of vertically propagating internal inertia-gravity waves.
The Development of Atmospheric Cherenkov Detectors at Milagro to Measure Cosmic-Ray Composition
NASA Astrophysics Data System (ADS)
Atkins, Robert; Dingus, Brenda; Benbow, Wystan; Coyne, Don; Kelley, Linda; Williams, David; Goodman, Jordan; Haines, Todd; Hoffman, Cyrus; Samuelson, Frank; Sinnis, Gus; McEnery, Julie; Mohanty, Gora; Stephens, Tom; Stochaj, Steve; Tumer, Tumay; Yodh, Gaurang
2002-04-01
Cosmic-ray composition in the region of the knee is being measured with the array of wide angle Cherenkov telescopes (WACT). WACT consists of six atmospheric Cherenkov telescopes (ACTs) located around the Milagro experiment. WACT is at an atmospheric depth of 750 g/cm^2 and is located 40 miles west of Los Alamos National Lab. WACT measures composition by examining the lateral distribution of Cherenkov light produced by cosmic-ray induced extensive air showers. Simulation and preliminary data analysis from the winter 2001/2002 observing campaign will be presented.
NASA Astrophysics Data System (ADS)
Stepanov, Dmitry; Gusev, Anatoly; Diansky, Nikolay
2016-04-01
Based on numerical simulations the study investigates impact of atmospheric forcing on heat content variability of the sub-surface layer in Japan/East Sea (JES), 1948-2009. We developed a model configuration based on a INMOM model and atmospheric forcing extracted from the CORE phase II experiment dataset 1948-2009, which enables to assess impact of only atmospheric forcing on heat content variability of the sub-surface layer of the JES. An analysis of kinetic energy (KE) and total heat content (THC) in the JES obtained from our numerical simulations showed that the simulated circulation of the JES is being quasi-steady state. It was found that the year-mean KE variations obtained from our numerical simulations are similar those extracted from the SODA reanalysis. Comparison of the simulated THC and that extracted from the SODA reanalysis showed significant consistence between them. An analysis of numerical simulations showed that the simulated circulation structure is very similar that obtained from the PALACE floats in the intermediate and abyssal layers in the JES. Using empirical orthogonal function analysis we studied spatial-temporal variability of the heat content of the sub-surface layer in the JES. Based on comparison of the simulated heat content variations with those obtained from natural observations an assessment of the atmospheric forcing impact on the heat content variability was obtained. Using singular value decomposition analysis we considered relationships between the heat content variability and wind stress curl as well as sensible heat flux in winter. It was established the major role of sensible heat flux in decadal variability of the heat content of the sub-surface layer in the JES. The research was supported by the Russian Foundation for Basic Research (grant N 14-05-00255) and the Council on the Russian Federation President Grants (grant N MK-3241.2015.5)
NASA Astrophysics Data System (ADS)
Hahn, J.; de los Reyes, R.; Bernlöhr, K.; Krüger, P.; Lo, Y. T. E.; Chadwick, P. M.; Daniel, M. K.; Deil, C.; Gast, H.; Kosack, K.; Marandon, V.
2014-02-01
The Earth's atmosphere is an integral part of the detector in ground-based imaging atmospheric Cherenkov telescope (IACT) experiments and has to be taken into account in the calibration. Atmospheric and hardware-related deviations from simulated conditions can result in the mis-reconstruction of primary particle energies and therefore of source spectra. During the eight years of observations with the High Energy Stereoscopic System (H.E.S.S.) in Namibia, the overall yield in Cherenkov photons has varied strongly with time due to gradual hardware aging, together with adjustments of the hardware components, and natural, as well as anthropogenic, variations of the atmospheric transparency. Here we present robust data selection criteria that minimize these effects over the full data set of the H.E.S.S. experiment and introduce the Cherenkov transparency coefficient as a new atmospheric monitoring quantity. The influence of atmospheric transparency, as quantified by this coefficient, on energy reconstruction and spectral parameters is examined and its correlation with the aerosol optical depth (AOD) of independent MISR satellite measurements and local measurements of atmospheric clarity is investigated.
1995-10-20
This drawing depicts one set of flow patterns simulated in the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. Silicone oil served as the atmosphere around a rotating steel hemisphere (dotted circle) and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)
1995-10-10
This composite image depicts one set of flow patterns simulated in the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. Silicone oil served as the atmosphere around a rotating steel hemisphere (dotted circle) and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. GFFC flew on Spacelab-3 in 1985 and U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)
Effects of Density Stratification in Compressible Polytropic Convection
NASA Astrophysics Data System (ADS)
Manduca, Cathryn M.; Anders, Evan H.; Bordwell, Baylee; Brown, Benjamin P.; Burns, Keaton J.; Lecoanet, Daniel; Oishi, Jeffrey S.; Vasil, Geoffrey M.
2017-11-01
We study compressible convection in polytropically-stratified atmospheres, exploring the effect of varying the total density stratification. Using the Dedalus pseudospectral framework, we perform 2D and 3D simulations. In these experiments we vary the number of density scale heights, studying atmospheres with little stratification (1 density scale height) and significant stratification (5 density scale heights). We vary the level of convective driving (quantified by the Rayleigh number), and study flows at similar Mach numbers by fixing the initial superadiabaticity. We explore the differences between 2D and 3D simulations, and in particular study the equilibration between different reservoirs of energy (kinetic, potential and internal) in the evolved states.
NASA Astrophysics Data System (ADS)
Khodayar, S.; Sehlinger, A.; Feldmann, H.; Kottmeier, C.
2015-12-01
The impact of soil initialization is investigated through perturbation simulations with the regional climate model COSMO-CLM. The focus of the investigation is to assess the sensitivity of simulated extreme periods, dry and wet, to soil moisture initialization in different climatic regions over Europe and to establish the necessary spin up time within the framework of decadal predictions for these regions. Sensitivity experiments consisted of a reference simulation from 1968 to 1999 and 5 simulations from 1972 to 1983. The Effective Drought Index (EDI) is used to select and quantify drought status in the reference run to establish the simulation time period for the sensitivity experiments. Different soil initialization procedures are investigated. The sensitivity of the decadal predictions to soil moisture initial conditions is investigated through the analysis of water cycle components' (WCC) variability. In an episodic time scale the local effects of soil moisture on the boundary-layer and the propagated effects on the large-scale dynamics are analysed. The results show: (a) COSMO-CLM reproduces the observed features of the drought index. (b) Soil moisture initialization exerts a relevant impact on WCC, e.g., precipitation distribution and intensity. (c) Regional characteristics strongly impact the response of the WCC. Precipitation and evapotranspiration deviations are larger for humid regions. (d) The initial soil conditions (wet/dry), the regional characteristics (humid/dry) and the annual period (wet/dry) play a key role in the time that soil needs to restore quasi-equilibrium and the impact on the atmospheric conditions. Humid areas, and for all regions, a humid initialization, exhibit shorter spin up times, also soil reacts more sensitive when initialised during dry periods. (e) The initial soil perturbation may markedly modify atmospheric pressure field, wind circulation systems and atmospheric water vapour distribution affecting atmospheric stability conditions, thus modifying precipitation intensity and distribution even several years after the initialization.
NASA Technical Reports Server (NTRS)
Keyser, G.
1978-01-01
The design philosophy and performance characteristics of the continuous flow diffusion chamber developed for use in ground-based simulation of some of the experiments planned for the atmospheric cloud physics laboratory during the first Spacelab flight are discussed. Topics covered include principle of operation, thermal control, temperature measurement, tem-powered heat exchangers, wettable metal surfaces, sample injection system, and control electronics.
NASA Astrophysics Data System (ADS)
Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.
2015-09-01
We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.
A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments
NASA Astrophysics Data System (ADS)
Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue
2013-03-01
The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.
NASA Technical Reports Server (NTRS)
Huntington, J. L.; Schwartz, D. E.; Marshall, J. R.
1991-01-01
The Gas-Grain Simulation Facility (GGSF) will provide a microgravity environment where undesirable environmental effects are reduced, and thus, experiments involving interactions between small particles and grains can be more suitably performed. Slated for flight aboard the Shuttle in 1992, the ESA glovebox will serve as a scientific and technological testbed for GGSF exobiology experiments as well as generating some basic scientific data. Initial glovebox experiments will test a method of generating a stable, mono-dispersed cloud of fine particles using a vibrating sprinkler system. In the absence of gravity and atmospheric turbulence, it will be possible to determine the influence of interparticle forces in controlling the rate and mode of aggregation. The experimental chamber can be purged of suspended matter to enable multiple repetitions of the experiments. Of particular interest will be the number of particles per unit volume of the chamber, because it is suspected that aggregation will occur extremely rapidly if the number exceeds a critical value. All aggregation events will be recorded on high-resolution video film. Changes in the experimental procedure as a result of surprise events will be accompanied by real-time interaction with the mission specialist during the Shuttle flight.
NASA Technical Reports Server (NTRS)
Yung, Y. L.; Lee, A. Y.; Irion, F. W.; DeMore, W. B.; Wen, J.
1997-01-01
Atmospheric heavy ozone is enriched in the isotopes 18O and 17O. The magnitude of this enhancement, of the order of 100%, is very large compared with that commonly known in atmospheric chemistry and geochemistry. The heavy oxygen atom in heavy ozone is therefore useful as a tracer of chemical species and pathways that involve ozone or its derived products. As a test of the isotopic exchange reactions, we successfully carry out a series of numerical experiments to simulate the results of the laboratory experiments performed by Wen and Thiemens [1993] on ozone and CO2. A small discrepancy between the experimental and the model values for 17O exchange is also revealed. The results are used to compute the magnitude of isotopic exchange between ozone and carbon dioxide via the excited atom O(1D) in the middle atmosphere. The model for 18O is in good agreement with the observed values.
NASA Technical Reports Server (NTRS)
Ferri, F.; Fulchignoni, M.; Colombatti, G.; Stoppato, P. F. Lion; Zarnecki, J. C.; Harri, A. M.; Schwingenschuh, K.; Hamelin, M.; Flamini, E.; Bianchini, G.;
2005-01-01
The Huygens ASI is a multi-sensor package resulting from an international cooperation, it has been designed to measure the physical quantities characterizing Titan's atmosphere during the Huygens probe mission. On 14th January, 2005, HASI will measure acceleration, pressure, temperature and electrical properties all along the Huygens probe descent on Titan in order to study Titan s atmospheric structure, dynamics and electric properties. Monitoring axial and normal accelerations and providing direct pressure and temperature measurements during the descent, HASI will mainly contribute to the Huygens probe entry and trajectory reconstruction. In order to simulate the Huygens probe descent and verify HASI sensors performance in terrestrial environment, stratospheric balloon flight experiment campaigns have been performed, in collaboration with the Italian Space Agency (ASI). The results of flight experiments have allowed to determine the atmospheric vertical profiles and to obtain a set of data for the analysis of probe trajectory and attitude reconstruction.
High Resolution Model Intercomparison Project (HighResMIP v1.0) for CMIP6
Haarsma, Reindert J.; Roberts, Malcolm J.; Vidale, Pier Luigi; ...
2016-11-22
Robust projections and predictions of climate variability and change, particularly at regional scales, rely on the driving processes being represented with fidelity in model simulations. The role of enhanced horizontal resolution in improved process representation in all components of the climate system is of growing interest, particularly as some recent simulations suggest both the possibility of significant changes in large-scale aspects of circulation as well as improvements in small-scale processes and extremes. However, such high-resolution global simulations at climate timescales, with resolutions of at least 50 km in the atmosphere and 0.25° in the ocean, have been performed at relativelymore » few research centres and generally without overall coordination, primarily due to their computational cost. Assessing the robustness of the response of simulated climate to model resolution requires a large multi-model ensemble using a coordinated set of experiments. The Coupled Model Intercomparison Project 6 (CMIP6) is the ideal framework within which to conduct such a study, due to the strong link to models being developed for the CMIP DECK experiments and other model intercomparison projects (MIPs). Increases in high-performance computing (HPC) resources, as well as the revised experimental design for CMIP6, now enable a detailed investigation of the impact of increased resolution up to synoptic weather scales on the simulated mean climate and its variability. The High Resolution Model Intercomparison Project (HighResMIP) presented in this paper applies, for the first time, a multi-model approach to the systematic investigation of the impact of horizontal resolution. A coordinated set of experiments has been designed to assess both a standard and an enhanced horizontal-resolution simulation in the atmosphere and ocean. The set of HighResMIP experiments is divided into three tiers consisting of atmosphere-only and coupled runs and spanning the period 1950–2050, with the possibility of extending to 2100, together with some additional targeted experiments. This paper describes the experimental set-up of HighResMIP, the analysis plan, the connection with the other CMIP6 endorsed MIPs, as well as the DECK and CMIP6 historical simulations. Lastly, HighResMIP thereby focuses on one of the CMIP6 broad questions, “what are the origins and consequences of systematic model biases?”, but we also discuss how it addresses the World Climate Research Program (WCRP) grand challenges.« less
Effects of the Atmosphere on the Propagation of 10.6-micro Laser Beams.
Hayes, J N; Ulrich, P B; Aitken, A H
1972-02-01
This paper gives an overview of the use of a wave optics computer code to model the propagation of high power CO(2) laser beams in the atmosphere. The nonlinear effects of atmospheric heating and kinetic cooling phenomena are included in the analysis. Only steady-state, nonturbulent cases are studied. Thermal conduction and free convection are assumed negligible compared to other effects included in the calculation. Results showing the important effect of water vapor concentration on beam quality are given. Beam slewing is also studied. Comparison is made with geometrical optics results, and good agreement is found with laboratory experiments that simulate atmospheric propagation.
In Situ Resource Utilization (ISRU) Experiments for Mars Exploration
NASA Technical Reports Server (NTRS)
Marone, Matt
2005-01-01
In situ resource utilization can best be described as living off the land. In our case the land is the planet Mars. ISRU is based on the idea that some fraction of the consumables, life support and propellant materials do not have to be flown from earth. Rather, they can be manufactured or extracted from resources already present on Mars. The primary resources on Mars are the atmosphere, polar caps and regolith. The atmosphere of Mars is mostly carbon dioxide as shown in the table below. The proportion of oxygen on the other hand is quite small. Still, there is quite a bit of oxygen in the Martian atmosphere, but it is unfortunately tied up with carbon. Thus, one of the goals of ISRU is the separation of breathable oxygen from the carbon dioxide. Several means of separation have been proposed. We have begun experiments on another approach for production of oxygen with carbon monoxide as a useful by product. Our work on a CO2 separator is described later in this report. Regolith melting is another means of obtaining materials. Two materials of interest are iron and silicon. Iron oxide is plentiful on Mars and is of obvious importance for structural components. Silicon is the foundation of solid state devices. Power generation on Mars may be accomplished using silicon solar cells. There is discussion of the feasibility of in situ production of solar cells. This would require a means of extracting silicon from the regolith. We have conducted several experiments concerning melting and glassification of the Mars soil simulant. Other summer faculty fellows have tried various means of processing the stimulant material. These include furnace melting, microwave melting and laser ablation. We have conducted several furnace melting experiments in both air and carbon dioxide environments. We have also carried out experiments to test spark melting in a carbon dioxide atmosphere. These experiments suggest the possibility of using arc melting in a reducing atmosphere. It is important to keep in mind that we are working with a soil stimulant. Any simulant, no matter how chemically similar it is to Martian regolith, may differ in mineralogy. The underlying assumption in this work is that once a glass is formed, any differences between simulant and regolith are unimportant. The exact means of forming the glass do, however, depend on the mineralogy of the regolith. A sample return mission is required to help answer these questions.
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven
2003-01-01
One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.
NASA Astrophysics Data System (ADS)
Marseille, Gert-Jan; Stoffelen, Ad; Barkmeijer, Jan
2008-03-01
Lacking an established methodology to test the potential impact of prospective extensions to the global observing system (GOS) in real atmospheric cases we developed such a method, called Sensitivity Observing System Experiment (SOSE). For example, since the GOS is non uniform it is of interest to investigate the benefit of complementary observing systems filling its gaps. In a SOSE adjoint sensitivity structures are used to define a pseudo true atmospheric state for the simulation of the prospective observing system. Next, the synthetic observations are used together with real observations from the existing GOS in a state-of-the-art Numerical Weather Prediction (NWP) model to assess the potential added value of the new observing system. Unlike full observing system simulation experiments (OSSE), SOSE can be applied to real extreme events that were badly forecast operationally and only requires the simulation of the new instrument. As such SOSE is an effective tool, for example, to define observation requirements for extensions to the GOS. These observation requirements may serve as input for the design of an operational network of prospective observing systems. In a companion paper we use SOSE to simulate potential future space borne Doppler Wind Lidar (DWL) scenarios and assess their capability to sample meteorologically sensitive areas not well captured by the current GOS, in particular over the Northern Hemisphere oceans.
Dynamical Coupling Between the Stratosphere and the Troposphere: The Influence of External Forcings
NASA Astrophysics Data System (ADS)
Hansen, Felicitas; Matthes, Katja
2013-04-01
The dynamical coupling between the stratosphere and the troposphere is dominated by planetary waves that are generated in the troposphere by orography and land-sea contrasts. These waves travel upward into the stratosphere where they either dissipate or are reflected downward to impact the troposphere again. Through the interaction with the zonal mean flow planetary waves can induce stratospheric sudden warmings (SSWs), i.e., conditions during NH winter where the stratospheric polar vortex is disturbed so that the zonal mean zonal wind in the NH stratospheric jet becomes easterly and the polar cap meridional temperature gradient reverses. Since strong major SSWs can propagate down into the troposphere and even affect surface weather, SSWs present a strong and clear manifestation of the dynamical coupling in the stratosphere-troposphere system. We will investigate the influence of some external forcings, namely sea surface temperatures (SSTs), anthropogenic greenhouse gases and the quasi-biennial oscillation (QBO), on these coupling processes. Thereby we are interested in how the distribution of SSWs in the winter months changes due to the different forcings, whether the events evolve differently, and whether they show differences in their preconditioning, e.g. a different wave geometry. We will also investigate whether and how vertical reflective surfaces in the stratosphere, which can reflect upward propagating planetary waves, influence the evolution of SSWs. To address these questions, we performed a set of model simulations with NCAR's Community Earth System Model (CESM), a coupled model system including an interactive ocean (POP2), land (CLM4), sea ice (CICE) and atmosphere (NCAR's Whole Atmosphere Community Climate Model (WACCM)) component. Our control experiment is a 140-year simulation with the fully coupled atmosphere-ocean version of CESM. A second experiment is a 55-year simulation with only CESM's atmospheric component WACCM, a fully interactive chemistry-climate model extending from the Earth's surface through the thermosphere (about 140 km), with underlying climatological SSTs obtained from the coupled CESM control run. A third 55-year simulation is performed without the nudging of the equatorial QBO. All three simulations develop under conditions where greenhouse gases are held constant at the 1960 level. In a fourth simulations, the greenhouse gases follow the RCP8.5 scenario. From the differences of the individual simulations to the control experiment we can estimate the respective roles of SSTs, the QBO and anthropogenic greenhouse gases for the stratosphere-troposphere coupling. The model results will be compared to the Modern Era Retrospective-Analysis for Research and Applications (MERRA) dataset.
A Global Carbon Assimilation System using a modified EnKF assimilation method
NASA Astrophysics Data System (ADS)
Zhang, S.; Zheng, X.; Chen, Z.; Dan, B.; Chen, J. M.; Yi, X.; Wang, L.; Wu, G.
2014-10-01
A Global Carbon Assimilation System based on Ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 abundance data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is based on the ensemble Kalman filter (EnKF), but with several new developments, including using analysis states to iteratively estimate ensemble forecast errors, and a maximum likelihood estimation of the inflation factors of the forecast and observation errors. The proposed assimilation approach is tested in observing system simulation experiments and then used to estimate the terrestrial ecosystem carbon fluxes and atmospheric CO2 distributions from 2002 to 2008. The results showed that this assimilation approach can effectively reduce the biases and uncertainties of the carbon fluxes simulated by the ecosystem model.
Omens of coupled model biases in the CMIP5 AMIP simulations
NASA Astrophysics Data System (ADS)
Găinuşă-Bogdan, Alina; Hourdin, Frédéric; Traore, Abdoul Khadre; Braconnot, Pascale
2018-02-01
Despite decades of efforts and improvements in the representation of processes as well as in model resolution, current global climate models still suffer from a set of important, systematic biases in sea surface temperature (SST), not much different from the previous generation of climate models. Many studies have looked at errors in the wind field, cloud representation or oceanic upwelling in coupled models to explain the SST errors. In this paper we highlight the relationship between latent heat flux (LH) biases in forced atmospheric simulations and the SST biases models develop in coupled mode, at the scale of the entire intertropical domain. By analyzing 22 pairs of forced atmospheric and coupled ocean-atmosphere simulations from the CMIP5 database, we show a systematic, negative correlation between the spatial patterns of these two biases. This link between forced and coupled bias patterns is also confirmed by two sets of dedicated sensitivity experiments with the IPSL-CM5A-LR model. The analysis of the sources of the atmospheric LH bias pattern reveals that the near-surface wind speed bias dominates the zonal structure of the LH bias and that the near-surface relative humidity dominates the east-west contrasts.
Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C
2018-02-03
During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.
Investigation of the β-pinene photooxidation by OH in the atmosphere simulation chamber SAPHIR
NASA Astrophysics Data System (ADS)
Kaminski, Martin; Fuchs, Hendrik; Acir, Ismail-Hakki; Bohn, Birger; Brauers, Theo; Dorn, Hans-Peter; Häseler, Rolf; Hofzumahaus, Andreas; Li, Xin; Lutz, Anna; Nehr, Sascha; Rohrer, Franz; Tillmann, Ralf; Vereecken, Luc; Wegener, Robert; Wahner, Andreas
2017-06-01
Besides isoprene, monoterpenes are the non-methane volatile organic compounds (VOCs) with the highest global emission rates. Due to their high reactivity towards OH, monoterpenes can dominate the radical chemistry of the atmosphere in forested areas. In the present study the photochemical degradation mechanism of β-pinene was investigated in the Jülich atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber). One focus of this study is on the OH budget in the degradation process. Therefore, the SAPHIR chamber was equipped with instrumentation to measure radicals (OH, HO2, RO2), the total OH reactivity, important OH precursors (O3, HONO, HCHO), the parent VOC β-pinene, its main oxidation products, acetone and nopinone and photolysis frequencies. All experiments were carried out under low-NO conditions ( ≤ 300 ppt) and at atmospheric β-pinene concentrations ( ≤ 5 ppb) with and without addition of ozone. For the investigation of the OH budget, the OH production and destruction rates were calculated from measured quantities. Within the limits of accuracy of the instruments, the OH budget was balanced in all β-pinene oxidation experiments. However, even though the OH budget was closed, simulation results from the Master Chemical Mechanism (MCM) 3.2 showed that the OH production and destruction rates were underestimated by the model. The measured OH and HO2 concentrations were underestimated by up to a factor of 2, whereas the total OH reactivity was slightly overestimated because the model predicted a nopinone mixing ratio which was 3 times higher than measured. A new, theory-derived, first-generation product distribution by Vereecken and Peeters (2012) was able to reproduce the measured nopinone time series and the total OH reactivity. Nevertheless, the measured OH and HO2 concentrations remained underestimated by the numerical simulations. These observations together with the fact that the measured OH budget was closed suggest the existence of unaccounted sources of HO2. Although the mechanism of additional HO2 formation could not be resolved, our model studies suggest that an activated alkoxy radical intermediate proposed in the model of Vereecken and Peeters (2012) generates HO2 in a new pathway, whose importance has been underestimated so far. The proposed reaction path involves unimolecular rearrangement and decomposition reactions and photolysis of dicarbonyl products, yielding additional HO2 and CO. Further experiments and quantum chemical calculations have to be made to completely unravel the pathway of HO2 formation.
Large-scale experimental technology with remote sensing in land surface hydrology and meteorology
NASA Technical Reports Server (NTRS)
Brutsaert, Wilfried; Schmugge, Thomas J.; Sellers, Piers J.; Hall, Forrest G.
1988-01-01
Two field experiments to study atmospheric and land surface processes and their interactions are summarized. The Hydrologic-Atmospheric Pilot Experiment, which tested techniques for measuring evaporation, soil moisture storage, and runoff at scales of about 100 km, was conducted over a 100 X 100 km area in France from mid-1985 to early 1987. The first International Satellite Land Surface Climatology Program field experiment was conducted in 1987 to develop and use relationships between current satellite measurements and hydrologic, climatic, and biophysical variables at the earth's surface and to validate these relationships with ground truth. This experiment also validated surface parameterization methods for simulation models that describe surface processes from the scale of vegetation leaves up to scales appropriate to satellite remote sensing.
NASA Technical Reports Server (NTRS)
Bosilovich, Michael G.; Sud, Yogesh; Schubert, Siegfried D.; Walker, Gregory K.
2003-01-01
There are several important research questions that the Global Energy and Water Cycle Experiment (GEWEX) is actively pursuing, namely: What is the intensity of the water cycle and how does it change? And what is the sustainability of water resources? Much of the research to address these questions is directed at understanding the atmospheric water cycle. In this paper, we have used a new diagnostic tool, called Water Vapor Tracers (WVTs), to quantify the how much precipitation originated as continental or oceanic evaporation. This shows how long water can remain in the atmosphere and how far it can travel. The model-simulated data are analyzed over regions of interest to the GEWEX community, specifically, their Continental Scale Experiments (CSEs) that are in place in the United States, Europe, Asia, Brazil, Africa and Canada. The paper presents quantitative data on how much each continent and ocean on Earth supplies water for each CSE. Furthermore, the analysis also shows the seasonal variation of the water sources. For example, in the United States, summertime precipitation is dominated by continental (land surface) sources of water, while wintertime precipitation is dominated by the Pacific Ocean sources of water. We also analyze the residence time of water in the atmosphere. The new diagnostic shows a longer residence time for water (9.2 days) than more traditional estimates (7.5 days). We emphasize that the results are based on model simulations and they depend on the model s veracity. However, there are many potential uses for the new diagnostic tool in understanding weather processes and large and small scales.
Blast from pressurized carbon dioxide released into a vented atmospheric chamber
NASA Astrophysics Data System (ADS)
Hansen, P. M.; Gaathaug, A. V.; Bjerketvedt, D.; Vaagsaether, K.
2018-03-01
This study describes the blast from pressurized carbon dioxide (CO2) released from a high-pressure reservoir into an openly vented atmospheric chamber. Small-scale experiments with pure vapor and liquid/vapor mixtures were conducted and compared with simulations. A motivation was to investigate the effects of vent size and liquid content on the peak overpressure and impulse response in the atmospheric chamber. The comparison of vapor-phase CO2 test results with simulations showed good agreement. This numerical code described single-phase gas dynamics inside a closed chamber, but did not model any phase transitions. Hence, the simulations described a vapor-only test into an unvented chamber. Nevertheless, the simulations reproduced the incident shock wave, the shock reflections, and the jet release inside the atmospheric chamber. The rapid phase transition did not contribute to the initial shock strength in the current test geometry. The evaporation rate was too low to contribute to the measured peak overpressure that was in the range of 15-20 kPa. The simulation results produced a calculated peak overpressure of 12 kPa. The liquid tests showed a significantly higher impulse compared to tests with pure vapor. Reducing the vent opening from 0.1 to 0.01 m2 resulted in a slightly higher impulse calculated at 100 ms. The influence of the vent area on the calculated impulse was significant in the vapor-phase tests, but not so clear in the liquid/vapor mixture tests.
NASA Astrophysics Data System (ADS)
Zhang, Huqiang; Zhao, Y.; Moise, A.; Ye, H.; Colman, R.; Roff, G.; Zhao, M.
2018-02-01
Significant uncertainty exists in regional climate change projections, particularly for rainfall and other hydro-climate variables. In this study, we conduct a series of Atmospheric General Circulation Model (AGCM) experiments with different future sea surface temperature (SST) warming simulated by a range of coupled climate models. They allow us to assess the extent to which uncertainty from current coupled climate model rainfall projections can be attributed to their simulated SST warming. Nine CMIP5 model-simulated global SST warming anomalies have been super-imposed onto the current SSTs simulated by the Australian climate model ACCESS1.3. The ACCESS1.3 SST-forced experiments closely reproduce rainfall means and interannual variations as in its own fully coupled experiments. Although different global SST warming intensities explain well the inter-model difference in global mean precipitation changes, at regional scales the SST influence vary significantly. SST warming explains about 20-25% of the patterns of precipitation changes in each of the four/five models in its rainfall projections over the oceans in the Indo-Pacific domain, but there are also a couple of models in which different SST warming explains little of their precipitation pattern changes. The influence is weaker again for rainfall changes over land. Roughly similar levels of contribution can be attributed to different atmospheric responses to SST warming in these models. The weak SST influence in our study could be due to the experimental setup applied: superimposing different SST warming anomalies onto the same SSTs simulated for current climate by ACCESS1.3 rather than directly using model-simulated past and future SSTs. Similar modelling and analysis from other modelling groups with more carefully designed experiments are needed to tease out uncertainties caused by different SST warming patterns, different SST mean biases and different model physical/dynamical responses to the same underlying SST forcing.
Entrainment in Laboratory Simulations of Cumulus Cloud Flows
NASA Astrophysics Data System (ADS)
Narasimha, R.; Diwan, S.; Subrahmanyam, D.; Sreenivas, K. R.; Bhat, G. S.
2010-12-01
A variety of cumulus cloud flows, including congestus (both shallow bubble and tall tower types), mediocris and fractus have been generated in a water tank by simulating the release of latent heat in real clouds. The simulation is achieved through ohmic heating, injected volumetrically into the flow by applying suitable voltages between diametral cross-sections of starting jets and plumes of electrically conducting fluid (acidified water). Dynamical similarity between atmospheric and laboratory cloud flows is achieved by duplicating values of an appropriate non-dimensional heat release number. Velocity measurements, made by laser instrumentation, show that the Taylor entrainment coefficient generally increases just above the level of commencement of heat injection (corresponding to condensation level in the real cloud). Subsequently the coefficient reaches a maximum before declining to the very low values that characterize tall cumulus towers. The experiments also simulate the protected core of real clouds. Cumulus Congestus : Atmospheric cloud (left), simulated laboratory cloud (right). Panels below show respectively total heat injected and vertical profile of heating in the laboratory cloud.
Global land-atmosphere coupling associated with cold climate processes
NASA Astrophysics Data System (ADS)
Dutra, Emanuel
This dissertation constitutes an assessment of the role of cold processes, associated with snow cover, in controlling the land-atmosphere coupling. The work was based on model simulations, including offline simulations with the land surface model HTESSEL, and coupled atmosphere simulations with the EC-EARTH climate model. A revised snow scheme was developed and tested in HTESSEL and EC-EARTH. The snow scheme is currently operational at the European Centre for Medium-Range Weather Forecasts integrated forecast system, and in the default configuration of EC-EARTH. The improved representation of the snowpack dynamics in HTESSEL resulted in improvements in the near surface temperature simulations of EC-EARTH. The new snow scheme development was complemented with the option of multi-layer version that showed its potential in modeling thick snowpacks. A key process was the snow thermal insulation that led to significant improvements of the surface water and energy balance components. Similar findings were observed when coupling the snow scheme to lake ice, where lake ice duration was significantly improved. An assessment on the snow cover sensitivity to horizontal resolution, parameterizations and atmospheric forcing within HTESSEL highlighted the role of the atmospheric forcing accuracy and snowpack parameterizations in detriment of horizontal resolution over flat regions. A set of experiments with and without free snow evolution was carried out with EC-EARTH to assess the impact of the interannual variability of snow cover on near surface and soil temperatures. It was found that snow cover interannual variability explained up to 60% of the total interannual variability of near surface temperature over snow covered regions. Although these findings are model dependent, the results showed consistency with previously published work. Furthermore, the detailed validation of the snow dynamics simulations in HTESSEL and EC-EARTH guarantees consistency of the results.
A Numerical Study of Micrometeoroids Entering Titan's Atmosphere
NASA Technical Reports Server (NTRS)
Templeton, M.; Kress, M. E.
2011-01-01
A study using numerical integration techniques has been performed to analyze the temperature profiles of micrometeors entering the atmosphere of Saturn s moon Titan. Due to Titan's low gravity and dense atmosphere, arriving meteoroids experience a significant cushioning effect compared to those entering the Earth's atmosphere. Temperature profiles are presented as a function of time and altitude for a number of different meteoroid sizes and entry velocities, at an entry angle of 45. Titan's micrometeoroids require several minutes to reach peak heating (ranging from 200 to 1200 K), which occurs at an altitude of about 600 km. Gentle heating may allow for gradual evaporation of volatile components over a wide range of altitudes. Computer simulations have been performed using the Cassini/Huygens atmospheric data for Titan. Keywords micrometeoroid Titan atmosphere 1 Introduction On Earth, incoming micrometeoroids (100 m diameter) are slowed by collisions with air molecules in a relatively compact atmosphere, resulting in extremely rapid deceleration and a short heating pulse, often accompanied by brilliant meteor displays. On Titan, lower gravity leads to an atmospheric scale height that is much larger than on Earth. Thus, deceleration of meteors is less rapid and these particles undergo more gradual heating. This study uses techniques similar to those used for Earth meteoroid studies [1], exchanging Earth s planetary characteristics (e.g., mass and atmospheric profile) for those of Titan. Cassini/Huygens atmospheric data for Titan were obtained from the NASA Planetary Atmospheres Data Node [4]. The objectives of this study were 1) to model atmospheric heating of meteoroids for a range of micrometeor entry velocities for Titan, 2) to determine peak heating temperatures and rates for micrometeoroids entering Titan s atmosphere, and 3) to create a general simulation environment that can be extended to incorporate additional parameters and variables, including different atmospheric, meteoroid and planetary data. The micrometeoroid entry simulations made using Titan atmospheric data assume that, as on Earth, micrometeors are heated by collision with molecules in the atmosphere. Unlike on Earth where heating pulses last a few seconds and reach temperatures sufficient to melt silicates (> 1600 K [1]),
Gerber, R Benny; Varner, Mychel E; Hammerich, Audrey D; Riikonen, Sampsa; Murdachaew, Garold; Shemesh, Dorit; Finlayson-Pitts, Barbara J
2015-02-17
CONSPECTUS: Reactions on water and ice surfaces and in other aqueous media are ubiquitous in the atmosphere, but the microscopic mechanisms of most of these processes are as yet unknown. This Account examines recent progress in atomistic simulations of such reactions and the insights provided into mechanisms and interpretation of experiments. Illustrative examples are discussed. The main computational approaches employed are classical trajectory simulations using interaction potentials derived from quantum chemical methods. This comprises both ab initio molecular dynamics (AIMD) and semiempirical molecular dynamics (SEMD), the latter referring to semiempirical quantum chemical methods. Presented examples are as follows: (i) Reaction of the (NO(+))(NO3(-)) ion pair with a water cluster to produce the atmospherically important HONO and HNO3. The simulations show that a cluster with four water molecules describes the reaction. This provides a hydrogen-bonding network supporting the transition state. The reaction is triggered by thermal structural fluctuations, and ultrafast changes in atomic partial charges play a key role. This is an example where a reaction in a small cluster can provide a model for a corresponding bulk process. The results support the proposed mechanism for production of HONO by hydrolysis of NO2 (N2O4). (ii) The reactions of gaseous HCl with N2O4 and N2O5 on liquid water surfaces. Ionization of HCl at the water/air interface is followed by nucleophilic attack of Cl(-) on N2O4 or N2O5. Both reactions proceed by an SN2 mechanism. The products are ClNO and ClNO2, precursors of atmospheric atomic chlorine. Because this mechanism cannot result from a cluster too small for HCl ionization, an extended water film model was simulated. The results explain ClNO formation experiments. Predicted ClNO2 formation is less efficient. (iii) Ionization of acids at ice surfaces. No ionization is found on ideal crystalline surfaces, but the process is efficient on isolated defects where it involves formation of H3O(+)-acid anion contact ion pairs. This behavior is found in simulations of a model of the ice quasi-liquid layer corresponding to large defect concentrations in crystalline ice. The results are in accord with experiments. (iv) Ionization of acids on wet quartz. A monolayer of water on hydroxylated silica is ordered even at room temperature, but the surface lattice constant differs significantly from that of crystalline ice. The ionization processes of HCl and H2SO4 are of high yield and occur in a few picoseconds. The results are in accord with experimental spectroscopy. (v) Photochemical reactions on water and ice. These simulations require excited state quantum chemical methods. The electronic absorption spectrum of methyl hydroperoxide adsorbed on a large ice cluster is strongly blue-shifted relative to the isolated molecule. The measured and calculated adsorption band low-frequency tails are in agreement. A simple model of photodynamics assumes prompt electronic relaxation of the excited peroxide due to the ice surface. SEMD simulations support this, with the important finding that the photochemistry takes place mainly on the ground state. In conclusion, dynamics simulations using quantum chemical potentials are a useful tool in atmospheric chemistry of water media, capable of comparison with experiment.
NASA Astrophysics Data System (ADS)
Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.
2015-12-01
The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.
Regolith-atmosphere exchange of water in Mars' recent past
NASA Astrophysics Data System (ADS)
Steele, Liam J.; Balme, Matthew R.; Lewis, Stephen R.
2017-03-01
We investigate the exchange of water vapour between the regolith and atmosphere of Mars, and how it varies with different orbital parameters, atmospheric dust contents and surface water ice reservoirs. This is achieved through the coupling of a global circulation model (GCM) and a regolith diffusion model. GCM simulations are performed for hundreds of Mars years, with additional one-dimensional simulations performed for 50 kyr. At obliquities ɛ =15∘ and 30°, the thermal inertia and albedo of the regolith have more control on the subsurface water distribution than changes to the eccentricity or solar longitude of perihelion. At ɛ =45∘ , atmospheric water vapour abundances become much larger, allowing stable subsurface ice to form in the tropics and mid-latitudes. The circulation of the atmosphere is important in producing the subsurface water distribution, with increased water content in various locations due to vapour transport by topographically-steered flows and stationary waves. As these circulation patterns are due to topographic features, it is likely the same regions will also experience locally large amounts of subsurface water at different epochs. The dustiness of the atmosphere plays an important role in the distribution of subsurface water, with a dusty atmosphere resulting in a wetter water cycle and increased stability of subsurface ice deposits.
NASA Astrophysics Data System (ADS)
Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D. M. H.
2013-04-01
We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission-driven rather than concentration-driven perturbed parameter ensemble of a global climate model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration-driven simulations (with 10-90th percentile ranges of 1.7 K for the aggressive mitigation scenario, up to 3.9 K for the high-end, business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 K (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission-driven experiments, they do not change existing expectations (based on previous concentration-driven experiments) on the timescales over which different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in the case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration scenarios used to drive GCM ensembles, lies towards the lower end of our simulated distribution. This design decision (a legacy of previous assessments) is likely to lead concentration-driven experiments to under-sample strong feedback responses in future projections. Our ensemble of emission-driven simulations span the global temperature response of the CMIP5 emission-driven simulations, except at the low end. Combinations of low climate sensitivity and low carbon cycle feedbacks lead to a number of CMIP5 responses to lie below our ensemble range. The ensemble simulates a number of high-end responses which lie above the CMIP5 carbon cycle range. These high-end simulations can be linked to sampling a number of stronger carbon cycle feedbacks and to sampling climate sensitivities above 4.5 K. This latter aspect highlights the priority in identifying real-world climate-sensitivity constraints which, if achieved, would lead to reductions on the upper bound of projected global mean temperature change. The ensembles of simulations presented here provides a framework to explore relationships between present-day observables and future changes, while the large spread of future-projected changes highlights the ongoing need for such work.
NASA Astrophysics Data System (ADS)
Aur, K. A.; Poppeliers, C.; Preston, L. A.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
NASA Astrophysics Data System (ADS)
Johnson, Christopher M.; Fan, Xingang; Mahmood, Rezaul; Groves, Chris; Polk, Jason S.; Yan, Jun
2018-03-01
Due to their particular physiographic, geomorphic, soil cover, and complex surface-subsurface hydrologic conditions, karst regions produce distinct land-atmosphere interactions. It has been found that floods and droughts over karst regions can be more pronounced than those in non-karst regions following a given rainfall event. Five convective weather events are simulated using the Weather Research and Forecasting model to explore the potential impacts of land-surface conditions on weather simulations over karst regions. Since no existing weather or climate model has the ability to represent karst landscapes, simulation experiments in this exploratory study consist of a control (default land-cover/soil types) and three land-surface conditions, including barren ground, forest, and sandy soils over the karst areas, which mimic certain karst characteristics. Results from sensitivity experiments are compared with the control simulation, as well as with the National Centers for Environmental Prediction multi-sensor precipitation analysis Stage-IV data, and near-surface atmospheric observations. Mesoscale features of surface energy partition, surface water and energy exchange, the resulting surface-air temperature and humidity, and low-level instability and convective energy are analyzed to investigate the potential land-surface impact on weather over karst regions. We conclude that: (1) barren ground used over karst regions has a pronounced effect on the overall simulation of precipitation. Barren ground provides the overall lowest root-mean-square errors and bias scores in precipitation over the peak-rain periods. Contingency table-based equitable threat and frequency bias scores suggest that the barren and forest experiments are more successful in simulating light to moderate rainfall. Variables dependent on local surface conditions show stronger contrasts between karst and non-karst regions than variables dominated by large-scale synoptic systems; (2) significant sensitivity responses are found over the karst regions, including pronounced warming and cooling effects on the near-surface atmosphere from barren and forested land cover, respectively; (3) the barren ground in the karst regions provides conditions favourable for convective development under certain conditions. Therefore, it is suggested that karst and non-karst landscapes should be distinguished, and their physical processes should be considered for future model development.
Estimation of the uncertainty of a climate model using an ensemble simulation
NASA Astrophysics Data System (ADS)
Barth, A.; Mathiot, P.; Goosse, H.
2012-04-01
The atmospheric forcings play an important role in the study of the ocean and sea-ice dynamics of the Southern Ocean. Error in the atmospheric forcings will inevitably result in uncertain model results. The sensitivity of the model results to errors in the atmospheric forcings are studied with ensemble simulations using multivariate perturbations of the atmospheric forcing fields. The numerical ocean model used is the NEMO-LIM in a global configuration with an horizontal resolution of 2°. NCEP reanalyses are used to provide air temperature and wind data to force the ocean model over the last 50 years. A climatological mean is used to prescribe relative humidity, cloud cover and precipitation. In a first step, the model results is compared with OSTIA SST and OSI SAF sea ice concentration of the southern hemisphere. The seasonal behavior of the RMS difference and bias in SST and ice concentration is highlighted as well as the regions with relatively high RMS errors and biases such as the Antarctic Circumpolar Current and near the ice-edge. Ensemble simulations are performed to statistically characterize the model error due to uncertainties in the atmospheric forcings. Such information is a crucial element for future data assimilation experiments. Ensemble simulations are performed with perturbed air temperature and wind forcings. A Fourier decomposition of the NCEP wind vectors and air temperature for 2007 is used to generate ensemble perturbations. The perturbations are scaled such that the resulting ensemble spread matches approximately the RMS differences between the satellite SST and sea ice concentration. The ensemble spread and covariance are analyzed for the minimum and maximum sea ice extent. It is shown that errors in the atmospheric forcings can extend to several hundred meters in depth near the Antarctic Circumpolar Current.
NASA Astrophysics Data System (ADS)
Xue, Tong; Xu, Jianjun; Guan, Zhaoyong; Chen, Han-Ching; Chiu, Long S.; Shao, Min
2017-07-01
Using the National Oceanic and Atmospheric Administration's Gridpoint Statistical Interpolation data assimilation system and the National Center for Atmospheric Research's Advanced Research Weather Research and Forecasting (WRF-ARW) regional model, the impact of assimilating Advanced Technology Microwave Sounder (ATMS) and Cross-track Infrared Sounder (CrIS) satellite data on precipitation prediction over the Tibetan Plateau in July 2015 was evaluated. Four experiments were designed: a control experiment and three data assimilation experiments with different data sets injected: conventional data only, a combination of conventional and ATMS satellite data, and a combination of conventional and CrIS satellite data. The results showed that the monthly mean of precipitation is shifted northward in the simulations and showed an orographic bias described as an overestimation upwind of the mountains and an underestimation in the south of the rain belt. The rain shadow mainly influenced prediction of the quantity of precipitation, although the main rainfall pattern was well simulated. For the first 24 h and last 24 h of accumulated daily precipitation, the model generally overestimated the amount of precipitation, but it was underestimated in the heavy-rainfall periods of 3-5, 13-16, and 22-25 July. The observed water vapor conveyance from the southeastern Tibetan Plateau was larger than in the model simulations, which induced inaccuracies in the forecast of heavy rain on 3-5 July. The data assimilation experiments, particularly the ATMS assimilation, were closer to the observations for the heavy-rainfall process than the control. Overall, based on the experiments in July 2015, the satellite data assimilation improved to some extent the prediction of the precipitation pattern over the Tibetan Plateau, although the simulation of the rain belt without data assimilation shows the regional shifting.
The Role of Ocean Eddies in the Southern Ocean Response to Observed Greenhouse Gas Forcing
NASA Astrophysics Data System (ADS)
Bilgen, S. I.; Kirtman, B. P.
2017-12-01
The Southern Ocean (SO) is crucial to understanding the possible future response to a changing climate. This is a principal region where energy is conveyed to the ocean by the westerly winds and it is here that mesoscale ocean eddies field dominate meridional heat and momentum transport. Compared to the Arctic, the Antarctic and the surrounding SO have a "delayed warming" anthropogenic greenhouse gas (GHG) response. Understanding the role of the ocean dynamics in modulating the mesoscale atmosphere-ocean interactions in the SO in a fully coupled regime is crucial to efforts aimed at predicting the consequences of the warming and variability to the climate system. The response of model run at multiple resolutions (eddy permitting, eddy resolving) to both GHG forcing and historical forcing are examined in NCAR CCSM4 with four experiments. The first simulation, 0.5° atmosphere coupled to ocean and sea ice components with 1° resolution (LR). The second simulation uses the identical atmospheric model but coupled to 0.1° ocean and sea ice component models (HR). For the third and fourth experiments, the global ocean is simulated for LR an HR models, and a climate change scenario are produced by applying a fixed (present-day) CO2 concentration. The analysis focuses on the last 55 years of two individual 155 year simulations. We discuss results from a set of state-of-art model experiments in comparison with observational estimates and explore mechanisms by examining sea surface temperature, westerly winds, surface heat flux, ocean heat transport. In LR simulations, the patterns and mechanisms of SO changes under GHG forcing are similar to those over the historical period: warming is damped southward of the ACC and enhanced to the north, however major changes between the HR simulations are explored. We find that in recent decades the Southern Annual Mode has shown a distinct upward trend, the result of an anthropogenic global warming. Also, HR simulations show that strengthening of the SAM and associated surface wind stress have been invoked to posit enhancement in the strength of the upwelling of the MOC, and increases eddy activity of the ACC. The results also indicate that eddy-permitting models are not able to capture the eddy-driven SST response since ocean dynamics is playing crucial role in the HR simulation but not in the LR models.
Planetary Boundary Layer Simulation Using TASS
NASA Technical Reports Server (NTRS)
Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael
1996-01-01
Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.
Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton
2008-01-01
Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446
NASA Technical Reports Server (NTRS)
Sivjee, G. G.
1977-01-01
Results from a comparative study of the feasibility of employing experiment operators on the space shuttle to acquire scientifically worthwhile data are presented. The experiments performed during these tests included spectral observations of the Sun and Venus in the near ultraviolet region. The solar measurements were analyzed to determine ozone abundance in the terrestrial atmosphere. Using a detailed spectral matching technique to compare airborne solar UV measurements with synthetic spectral profiles of sunlight, it is deduced that in winter the total atmospheric ozone abundance is about 0.33 atm/cm at midlatitudes in the northern hemisphere.
NASA Astrophysics Data System (ADS)
Hong, Yong C.; Kim, Jeong H.; Uhm, Han S.
2004-02-01
The threat of chemical and biological warfare agents in a domestic terrorist attack and in military conflict is increasing worldwide. Elimination and decontamination of chemical and biological warfare (CBW) agents are immediately required after such an attack. Simulated experiment for elimination of CBW agents by making use of atmospheric-pressure microwave plasma torches is carried out. Elimination of biological warfare agents indicated by the vitrification or burnout of sewage sludge powders and decomposition of toluene gas as a chemical agent stimulant are presented. A detailed characterization for the elimination of the simulant chemicals using Fourier transform infrared and gas chromatography is also presented.
ATLAS-3 correlative measurement opportunities with UARS and surface observations
NASA Technical Reports Server (NTRS)
Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.
1995-01-01
The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.
NASA Technical Reports Server (NTRS)
Brooks, D. R.
1980-01-01
Orbit dynamics of the solar occultation technique for satellite measurements of the Earth's atmosphere are described. A one-year mission is simulated and the orbit and mission design implications are discussed in detail. Geographical coverage capabilities are examined parametrically for a range of orbit conditions. The hypothetical mission is used to produce a simulated one-year data base of solar occultation measurements; each occultation event is assumed to produce a single number, or 'measurement' and some statistical properties of the data set are examined. A simple model is fitted to the data to demonstrate a procedure for examining global distributions of atmospheric constitutents with the solar occultation technique.
NASA Astrophysics Data System (ADS)
Mocchiutti, E.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Boezio, M.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.
2003-07-01
We report a measurement of the composition and spectra of both the primary and secondary cosmic ray particles at different depths in the atmosphere. The data were collected by the balloon-b orne experiment CAPRICE98 during the ascent of the payload on 28 May 1998 from Fort Sumner, New Mexico. The identification of various kinds of particles, such as, protons, deuterons, helium nuclei, electrons and positrons was possible in various energy ranges depending on the kind of particle and the particle background at different residual atmosphere. These measurements, together with the atmospheric muon spectra, will allow fine-tuning of models used in air shower simulations.
Optical contamination on the Atmosphere Explorer-E satellite
NASA Technical Reports Server (NTRS)
Yee, J. H.; Abreu, V. J.
1983-01-01
Atmospheric optical emission measurements by the Visible Airglow Experiment (VAE) on board the Atmosphere Explorer (AE-C, D and E) satellites have been analyzed and found to be contaminated at low altitudes. The contamination maximizes in the forward direction along the spacecraft velocity and is sensitive to the composition and density of the ambient atmosphere. Analysis at two different wavelengths suggests that the contamination is likely to have a diffuse band spectrum which is brighter toward the red. Some unknown processes which involve satellite surface materials and the incoming ambient particles are believed to be responsible for the contamination. A simulation model is presented here to account for the observed angular dependence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churchfield, M.; Wang, Q.; Scholbrock, A.
Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less
NASA Astrophysics Data System (ADS)
Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.
2016-09-01
We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.
Churchfield, M.; Wang, Q.; Scholbrock, A.; ...
2016-10-03
Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less
Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Miller, James R.; Rind, David; Ruedy, Reto A.; Schmidt, Gavin A.; Sheth, Sukeshi
1999-01-01
Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.
Studies of dynamic processes related to active experiments in space plasmas
NASA Technical Reports Server (NTRS)
Banks, Peter M.; Neubert, Torsten
1992-01-01
This is the final report for grant NAGw-2055, 'Studies of Dynamic Processes Related to Active Experiments in Space Plasmas', covering research performed at the University of Michigan. The grant was awarded to study: (1) theoretical and data analysis of data from the CHARGE-2 rocket experiment (1keV; 1-46 mA electron beam ejections) and the Spacelab-2 shuttle experiment (1keV; 100 mA); (2) studies of the interaction of an electron beam, emitted from an ionospheric platform, with the ambient neutral atmosphere and plasma by means of a newly developed computer simulation model, relating model predictions with CHARGE-2 observations of return currents observed during electron beam emissions; and (3) development of a self-consistent model for the charge distribution on a moving conducting tether in a magnetized plasma and for the potential structure in the plasma surrounding the tether. Our main results include: (1) the computer code developed for the interaction of electrons beams with the neutral atmosphere and plasma is able to model observed return fluxes to the CHARGE-2 sounding rocket payload; and (2) a 3-D electromagnetic and relativistic particle simulation code was developed.
Featured Image: Experimental Simulation of Melting Meteoroids
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-03-01
Ever wonder what experimental astronomy looks like? Some days, it looks like this piece of rock in a wind tunnel (click for a betterlook!). In this photo, a piece of agrillite (a terrestrial rock) is exposed to conditions in a plasma wind tunnel as a team of scientists led by Stefan Loehle (Stuttgart University) simulate what happens to a meteoroid as it hurtles through Earths atmosphere. With these experiments, the scientists hope to better understand meteoroid ablation the process by which meteoroids are heated, melt, and evaporateas they pass through our atmosphere so that we can learn more from the meteorite fragments that make it to the ground. In the scientists experiment, the rock samples were exposed to plasma flow until they disintegrated, and this process was simultaneously studied via photography, video, high-speed imaging, thermography, and Echelle emission spectroscopy. To find out what the team learned from these experiments, you can check out the original article below.CitationStefan Loehle et al 2017 ApJ 837 112. doi:10.3847/1538-4357/aa5cb5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molenkamp, C.R.; Grossman, A.
1999-12-20
A network of small balloon-borne transponders which gather very high resolution wind and temperature data for use by modern numerical weather predication models has been proposed to improve the reliability of long-range weather forecasts. The global distribution of an array of such transponders is simulated using LLNL's atmospheric parcel transport model (GRANTOUR) with winds supplied by two different general circulation models. An initial study used winds from CCM3 with a horizontal resolution of about 3 degrees in latitude and longitude, and a second study used winds from NOGAPS with a 0.75 degree horizontal resolution. Results from both simulations show thatmore » reasonable global coverage can be attained by releasing balloons from an appropriate set of launch sites.« less
Radiation environment study of near space in China area
NASA Astrophysics Data System (ADS)
Fan, Dongdong; Chen, Xingfeng; Li, Zhengqiang; Mei, Xiaodong
2015-10-01
Aerospace activity becomes research hotspot for worldwide aviation big countries. Solar radiation study is the prerequisite for aerospace activity to carry out, but lack of observation in near space layer becomes the barrier. Based on reanalysis data, input key parameters are determined and simulation experiments are tried separately to simulate downward solar radiation and ultraviolet radiation transfer process of near space in China area. Results show that atmospheric influence on the solar radiation and ultraviolet radiation transfer process has regional characteristic. As key factors such as ozone are affected by atmospheric action both on its density, horizontal and vertical distribution, meteorological data of stratosphere needs to been considered and near space in China area is divided by its activity feature. Simulated results show that solar and ultraviolet radiation is time, latitude and ozone density-variant and has complicated variation characteristics.
NASA Astrophysics Data System (ADS)
Maher, Penelope; Vallis, Geoffrey K.; Sherwood, Steven C.; Webb, Mark J.; Sansom, Philip G.
2018-04-01
Convective parameterizations are widely believed to be essential for realistic simulations of the atmosphere. However, their deficiencies also result in model biases. The role of convection schemes in modern atmospheric models is examined using Selected Process On/Off Klima Intercomparison Experiment simulations without parameterized convection and forced with observed sea surface temperatures. Convection schemes are not required for reasonable climatological precipitation. However, they are essential for reasonable daily precipitation and constraining extreme daily precipitation that otherwise develops. Systematic effects on lapse rate and humidity are likewise modest compared with the intermodel spread. Without parameterized convection Kelvin waves are more realistic. An unexpectedly large moist Southern Hemisphere storm track bias is identified. This storm track bias persists without convection schemes, as does the double Intertropical Convergence Zone and excessive ocean precipitation biases. This suggests that model biases originate from processes other than convection or that convection schemes are missing key processes.
1-D Photochemical Modeling of the Martian Atmosphere: Seasonal Variations
NASA Astrophysics Data System (ADS)
Boxe, C.; Emmanuel, S.; Hafsa, U.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Smith, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Blue, S.; Gurung, D.; Salako, O.
2016-12-01
High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), utilize Caltech/JPL's one-dimensional atmospheric, photochemical models. These sophisticated models, were built over the course of the last four decades, describing all planetary bodies in our Solar System and selected extrasolar planets. Specifically, students employed the Martian one-dimensional photochemical model to assess the seasonal variability of molecules in its atmosphere. Students learned the overall model construct, running a baseline simulation, and fluctuating parameters (e.g., obliquity, orbital eccentricity) which affects the incoming solar radiation on Mars, temperature and pressure induce by seasonal variations. Students also attain a `real-world' experience that exemplifies the required level of coding competency and innovativeness needed for building an environment that can simulate observations and forecast. Such skills permeate STEM-related occupations that model systems and/or predict how that system may/will behave.
2017-12-08
NASA models and supercomputing have created a colorful new view of aerosol movement. Satellites, balloon-borne instruments and ground-based devices make 30 million observations of the atmosphere each day. Yet these measurements still give an incomplete picture of the complex interactions within the membrane surrounding Earth. Enter climate models. Through mathematical experiments, modelers can move Earth forward or backward in time to create a dynamic portrait of the planet. Researchers from NASA Goddard’s Global Modeling and Assimilation Office recently ran a simulation of the atmosphere that captured how winds whip aerosols around the world. Such simulations allow scientists to better understand how these tiny particulates travel in the atmosphere and influence weather and climate. In the visualization below, covering August 2006 to April 2007, watch as dust and sea salt swirl inside cyclones, carbon bursts from fires, sulfate streams from volcanoes—and see how these aerosols paint the modeled world. Credit: NASA/Goddard Space Flight Center
The Atmospheric Response to a Future Warming Deficit in North Atlantic SSTs
NASA Astrophysics Data System (ADS)
Gervais, M.; Shaman, J. L.; Kushnir, Y.
2017-12-01
As SSTs increase globally over the 21st century, global climate models project a significant deficit in warming within the subpolar gyre of the North Atlantic Ocean. This study investigates the impact of this warming deficit on atmosphere circulation. A series of large ensemble experiments are conducted using the Community Atmosphere Model 5 forced with specified sea ice and SSTs for the early (2010-2019), mid (2050-2059), and late (2090-2099) 21stcentury. SST and sea ice fields from the Community Earth System Model Large Ensemble experiment are used as boundary conditions for the control simulations. Experiments with either a filled or deepened warming hole are conducted by adding a SST perturbation field to these time-varying SST boundary conditions. Results from these experiments demonstrate that the warming hole has significant local and remote impacts on the atmosphere. Filling (deepening) the warming hole results in a local increase (decrease) in turbulent heat fluxes relative to the control run and consequentially an increase (decrease) in temperature in the overlying lower troposphere that spreads over Europe. There are significant impacts on the location and strength of both the North Atlantic and North Pacific jets as well as on the North Atlantic Oscillation. These impacts of the warming hole on both the mean state and variability of the atmosphere have important implications for sensible weather in the Northern Hemisphere and in particular over Europe.
Simulation of tracer dispersion from elevated and surface releases in complex terrain
NASA Astrophysics Data System (ADS)
Hernández, J. F.; Cremades, L.; Baldasano, J. M.
A new version of an advanced mesoscale dispersion modeling system for simulating passive air pollutant dispersion in the real atmospheric planetary boundary layer (PBL), is presented. The system comprises a diagnostic mass-consistent meteorological model and a Lagrangian particle dispersion model (LADISMO). The former version of LADISMO, developed according to Zannetti (Air pollution modelling, 1990), was based on the Monte Carlo technique and included calculation of higher-order moments of vertical random forcing for convective conditions. Its ability to simulate complex flow dispersion has been stated in a previous paper (Hernández et al. 1995, Atmospheric Environment, 29A, 1331-1341). The new version follows Thomson's scheme (1984, Q. Jl Roy. Met. Soc.110, 1107-1120). It is also based on Langevin equation and follows the ideas given by Brusasca et al. (1992, Atmospheric Environment26A, 707-723) and Anfossi et al. (1992, Nuovo Cemento 15c, 139-158). The model is used to simulate the dispersion and predict the ground level concentration (g.l.c.) of a tracer (SF 6) released from both an elevated source ( case a) and a ground level source ( case b) in a highly complex mountainous terrain during neutral and synoptically dominated conditions ( case a) and light and apparently stable conditions ( case b). The last case is considered as being a specially difficult task to simulate. In fact, few works have reported situations with valley drainage flows in complex terrains and real stable atmospheric conditions with weak winds. The model assumes that nearly calm situations associated to strong stability and air stagnation, make the lowest layers of PBL poorly diffusive (Brusasca et al., 1992, Atmospheric Environment26A, 707-723). Model results are verified against experimental data from Guardo-90 tracer experiments, an intensive field campaign conducted in the Carrion river valley (Northern Spain) to study atmospheric diffusion within a steep walled valley in mountainous terrain (Ibarra, 1992, Energia, No. 1, 74-85).
NASA Astrophysics Data System (ADS)
Shen, Wenqiang; Tang, Jianping; Wang, Yuan; Wang, Shuyu; Niu, Xiaorui
2017-04-01
In this study, the characteristics of tropical cyclones (TCs) over the East Asia Coordinated Regional Downscaling Experiment domain are examined with the Weather Research and Forecasting (WRF) model. Eight 20-year (1989-2008) simulations are performed using the WRF model, with lateral boundary forcing from the ERA-Interim reanalysis, to test the sensitivity of TC simulation to interior spectral nudging (SN, including nudging time interval, nudging variables) and radiation schemes [Community Atmosphere Model (CAM), Rapid Radiative Transfer Model (RRTM)]. The simulated TCs are compared with the observation from the Regional Specialized Meteorological Centers TC best tracks. It is found that all WRF runs can simulate the climatology of key TC features such as the tracks and location/frequency of genesis reasonably well, and reproduce the inter-annual variations and seasonal cycle of TC counts. The SN runs produce enhanced TC activity compare to the runs without SN. The thermodynamic profile suggests that nudging with horizontal wind increases the unstable of thermodynamic states in tropics, which results in excessive TCs genesis. The experiments with wind and temperature nudging improve the overestimation of TCs numbers, especially suppress the TCs intensification by correct the thermodynamic profile. Weak SN coefficient enhances TCs activity significantly even with wind and temperature nudging. The analysis of TCs numbers and large scale circulation shows that the SN parameters adopted in our experiments do not appear to suppress the formation of TC. The excessive TCs activity in CAM runs relative to RRTM runs are also due to the enhanced atmospheric instability.
SAGE Validations of Volcanic Jet Simulations
NASA Astrophysics Data System (ADS)
Peterson, A. H.; Wohletz, K. H.; Ogden, D. E.; Gisler, G.; Glatzmaier, G.
2006-12-01
The SAGE (SAIC Adaptive Grid Eulerian) code employs adaptive mesh refinement in solving Eulerian equations of complex fluid flow desirable for simulation of volcanic eruptions. Preliminary eruption simulations demonstrate its ability to resolve multi-material flows over large domains where dynamics are concentrated in small regions. In order to validate further application of this code to numerical simulation of explosive eruption phenomena, we focus on one of the fundamental physical processes important to the problem, namely the dynamics of an underexpanded jet. Observations of volcanic eruption plumes and laboratory experiments on analog systems document the eruption of overpressured fluid in a supersonic jet that is governed by vent diameter and level of overpressure. The jet is dominated by inertia (very high Reynolds number) and feeds a thermally convective plume controlled by turbulent admixture of the atmosphere. The height above the vent at which the jet looses its inertia is important to know for convective plume predictions that are used to calculate atmospheric dispersal of volcanic products. We simulate a set of well documented laboratory experiments that provide detail on underexpanded jet structure by gas density contours, showing the shape and size of the Mach stem. SAGE results are within several percent of the experiments for position and density of the incident (intercepting) and reflected shocks, slip lines, shear layers, and Mach disk. The simulations also resolve vorticity at the jet margins near the Mach disk, showing turbulent velocity fields down to a scale of 30 micrometers. Benchmarking these results with those of CFDLib (Los Alamos National Laboratory), which solves the full Navier-Stokes equations (includes viscous stress tensor), shows close agreement, indicating that adaptive mesh refinement used in SAGE may offset the need for explicit calculation of viscous dissipation.
NASA Astrophysics Data System (ADS)
Sawada, Yohei; Nakaegawa, Tosiyuki; Miyoshi, Takemasa
2018-01-01
We examine the potential of assimilating river discharge observations into the atmosphere by strongly coupled river-atmosphere ensemble data assimilation. The Japan Meteorological Agency's Non-Hydrostatic atmospheric Model (JMA-NHM) is first coupled with a simple rainfall-runoff model. Next, the local ensemble transform Kalman filter is used for this coupled model to assimilate the observations of the rainfall-runoff model variables into the JMA-NHM model variables. This system makes it possible to do hydrometeorology backward, i.e., to inversely estimate atmospheric conditions from the information of river flows or a flood on land surfaces. We perform a proof-of-concept Observing System Simulation Experiment, which reveals that the assimilation of river discharge observations into the atmospheric model variables can improve the skill of the short-term severe rainfall forecast.
Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain
NASA Astrophysics Data System (ADS)
Markfort, Corey D.
The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved modeling framework for wind farm - atmosphere interaction, 2) to determine how heterogeneous patches of forest affect the structure of the ABL and its interactions with clearings and water bodies, 3) to investigate how landscape heterogeneity, including wakes, may be parameterized in regional-scale weather and climate models to improve the representation of surface fluxes, e.g. from lakes/wetlands and forest clearings. To achieve these objectives, this research employs an interdisciplinary strategy, utilizing concepts and methods from fluid mechanics, micrometeorology, ecosystem ecology and environmental sciences, and combines laboratory and field experiments. In particular, a) wind tunnel experiments of flow through and over model wind farms and model forest canopies were used to improve our fundamental understanding of how wakes affect land-atmosphere coupling, including surface fluxes, after wind farm installation and for heterogeneous landscapes of canopies and clearings or lakes, and b) extensive field studies over lakes and wetlands were undertaken to study the effects of wakes downwind of forest canopies and the effect of wind sheltering on lake stratification dynamics and gas fluxes. These experiments were also used to improve and validate numerical simulation techniques for the atmospheric boundary layer, specifically the large eddy simulation technique, which is used to simulate flow in wind farms and flow over heterogeneous terrain.
NASA Technical Reports Server (NTRS)
Likhanskii, Alexandre
2012-01-01
This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.
Stationary Waves of the Ice Age Climate.
NASA Astrophysics Data System (ADS)
Cook, Kerry H.; Held, Isaac M.
1988-08-01
A linearized, steady state, primitive equation model is used to simulate the climatological zonal asymmetries (stationary eddies) in the wind and temperature fields of the 18 000 YBP climate during winter. We compare these results with the eddies simulated in the ice age experiments of Broccoli and Manabe, who used CLIMAP boundary conditions and reduced atmospheric CO2 in an atmospheric general circulation model (GCM) coupled with a static mixed layer ocean model. The agreement between the models is good, indicating that the linear model can be used to evaluate the relative influences of orography, diabatic heating, and transient eddy heat and momentum transports in generating stationary waves. We find that orographic forcing dominates in the ice age climate. The mechanical influence of the continental ice sheets on the atmosphere is responsible for most of the changes between the present day and ice age stationary eddies. This concept of the ice age climate is complicated by the sensitivity of the stationary eddies to the large increase in the magnitude of the zonal mean meridional temperature gradient simulated in the ice age GCM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Forrest M; Randerson, Jim; Thornton, Peter E
2009-01-01
The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) providesmore » a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.« less
Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions
NASA Astrophysics Data System (ADS)
Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.
2017-12-01
Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified combustion efficiency, initial aerosol concentrations and composition, aerosol size, oxidant exposure, VOC:NOx ratios, and emissions and speciation of SOA precursors.
PLUME DISPERSION IN STABLY STRATIFIED FLOWS OVER COMPLEX TERRAIN, PHASE 2
Laboratory experiments were conducted in a stratified towing tank to investigate plume dispersion in stably stratified flows. First, plume dispersion over an idealized terrain model with a simulated elevated inversion in the atmosphere was investigated. These results were compare...
Host Model Uncertainty in Aerosol Radiative Forcing Estimates - The AeroCom Prescribed Experiment
NASA Astrophysics Data System (ADS)
Stier, P.; Kinne, S.; Bellouin, N.; Myhre, G.; Takemura, T.; Yu, H.; Randles, C.; Chung, C. E.
2012-04-01
Anthropogenic and natural aerosol radiative effects are recognized to affect global and regional climate. However, even for the case of identical aerosol emissions, the simulated direct aerosol radiative forcings show significant diversity among the AeroCom models (Schulz et al., 2006). Our analysis of aerosol absorption in the AeroCom models indicates a larger diversity in the translation from given aerosol radiative properties (absorption optical depth) to actual atmospheric absorption than in the translation of a given atmospheric burden of black carbon to the radiative properties (absorption optical depth). The large diversity is caused by differences in the simulated cloud fields, radiative transfer, the relative vertical distribution of aerosols and clouds, and the effective surface albedo. This indicates that differences in host model (GCM or CTM hosting the aerosol module) parameterizations contribute significantly to the simulated diversity of aerosol radiative forcing. The magnitude of these host model effects in global aerosol model and satellites retrieved aerosol radiative forcing estimates cannot be estimated from the diagnostics of the "standard" AeroCom forcing experiments. To quantify the contribution of differences in the host models to the simulated aerosol radiative forcing and absorption we conduct the AeroCom Prescribed experiment, a simple aerosol model and satellite retrieval intercomparison with prescribed highly idealised aerosol fields. Quality checks, such as diagnostic output of the 3D aerosol fields as implemented in each model, ensure the comparability of the aerosol implementation in the participating models. The simulated forcing variability among the models and retrievals is a direct measure of the contribution of host model assumptions to the uncertainty in the assessment of the aerosol radiative effects. We will present the results from the AeroCom prescribed experiment with focus on the attribution to the simulated variability to parametric and structural model uncertainties. This work will help to prioritise areas for future model improvements and ultimately lead to uncertainty reduction.
GLACE: The Global Land-Atmosphere Coupling Experiment. Part 1; Overview
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Guo, Zhi-Chang; Dirmeyer, Paul A.; Bonan, Gordon; Chan, Edmond; Cox, Peter; Davies, Harvey; Gordon, C. T.; Kanae, Shinjiro; Kowalczyk, Eva
2005-01-01
GLACE is a model intercomparison study focusing on a typically neglected yet critical element of numerical weather and climate modeling: land-atmosphere coupling strength, or the degree to which anomalies in land surface state (e.g., soil moisture) can affect rainfall generation and other atmospheric processes. The twelve AGCM groups participating in GLACE performed a series of simple numerical experiments that allow the objective quantification of this element. The derived coupling strengths vary widely. Some similarity, however, is found in the spatial patterns generated by the models, enough similarity to pinpoint multi-model "hot spots" of land-atmosphere coupling. For boreal summer, such hot spots for precipitation and temperature are found over large regions of Africa, central North America and India; a hot spot for temperature is also found over eastern China. The design of the GLACE simulations are described in full detail so that any interested modeling group can repeat them easily and thereby place their model s coupling strength within the broad range of those documented here.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2007-10-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical biogeochemical ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
NASA Astrophysics Data System (ADS)
Ohara, N.; Kavvas, M. L.; Anderson, M.; Chen, Z. Q.; Ishida, K.
2016-12-01
This study investigated physical maximum precipitation rates for the next generation of flood management strategies under evolving climate conditions using a regional atmospheric model. The model experiments using a non-hydrostatic atmospheric models, MM5, revealed the precipitation mechanism affected by topography and non-linear dynamics of the atmosphere in the Pacific Coast of the US during the Atmospheric River (AR) events. Significant historical storm events were identified based on the continuous weather simulations for the Feather, Yuba, and American river watersheds in California. For these historical storms, the basin precipitations were maximized by setting fully saturated atmospheric layers at the boundary of the outer nesting domain. It was found that maximizing the atmospheric moisture supply at the model boundary does not always increase the precipitation in Feather and Yuba River basins. The pattern of the precipitation increase and decrease by the maximization suggested the rain shadow effect of the Coast Range causing this unexpected precipitation reduction by the moisture maximization. The ground precipitation seems to be controlled by the AR orientation to the topography as well as the precipitable water. Finally, the steady-state precipitation experiments were performed to find an optimum AR orientation to yield the most significant continuous precipitation rate in the Feather, Yuba, and American River basins. This physically-based numerical experiment can potentially incorporate the climate change effects, explicitly.
The impact on atmospheric CO2 of iron fertilization induced changes in the ocean's biological pump
NASA Astrophysics Data System (ADS)
Jin, X.; Gruber, N.; Frenzel, H.; Doney, S. C.; McWilliams, J. C.
2008-03-01
Using numerical simulations, we quantify the impact of changes in the ocean's biological pump on the air-sea balance of CO2 by fertilizing a small surface patch in the high-nutrient, low-chlorophyll region of the eastern tropical Pacific with iron. Decade-long fertilization experiments are conducted in a basin-scale, eddy-permitting coupled physical/biogeochemical/ecological model. In contrast to previous studies, we find that most of the dissolved inorganic carbon (DIC) removed from the euphotic zone by the enhanced biological export is replaced by uptake of CO2 from the atmosphere. Atmospheric uptake efficiencies, the ratio of the perturbation in air-sea CO2 flux to the perturbation in export flux across 100 m, integrated over 10 years, are 0.75 to 0.93 in our patch size-scale experiments. The atmospheric uptake efficiency is insensitive to the duration of the experiment. The primary factor controlling the atmospheric uptake efficiency is the vertical distribution of the enhanced biological production and export. Iron fertilization at the surface tends to induce production anomalies primarily near the surface, leading to high efficiencies. In contrast, mechanisms that induce deep production anomalies (e.g. altered light availability) tend to have a low uptake efficiency, since most of the removed DIC is replaced by lateral and vertical transport and mixing. Despite high atmospheric uptake efficiencies, patch-scale iron fertilization of the ocean's biological pump tends to remove little CO2 from the atmosphere over the decadal timescale considered here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Ping
Recent studies have revealed that among all the tropical oceans, the tropical Atlantic has experienced the most pronounced warming trend over the 20th century. Many extreme climate events affecting the U.S., such as hurricanes, severe precipitation and drought events, are influenced by conditions in the Gulf of Mexico and the Atlantic Ocean. It is therefore imperative to have accurate simulations of the climatic mean and variability in the Atlantic region to be able to make credible projections of future climate change affecting the U.S. and other countries adjoining the Atlantic Ocean. Unfortunately, almost all global climate models exhibit large biasesmore » in their simulations of tropical Atlantic climate. The atmospheric convection simulation errors in the Amazon region and the associated errors in the trade wind simulations are hypothesized to be a leading cause of the tropical Atlantic biases in climate models. As global climate models have resolutions that are too coarse to resolve some of the atmospheric and oceanic processes responsible for the model biases, we propose to use a high-resolution coupled regional climate model (CRCM) framework to address the tropical bias issue. We propose to combine the expertise in tropical coupled atmosphere-ocean modeling at Texas A&M University (TAMU) and the coupled land-atmosphere modeling expertise at Pacific Northwest National Laboratory (PNNL) to develop a comprehensive CRCM for the Atlantic sector within a general and flexible modeling framework. The atmospheric component of the CRCM will be the NCAR WRF model and the oceanic component will be the Rutgers/UCLA ROMS. For the land component, we will use CLM modified at PNNL to include more detailed representations of vegetation and soil hydrology processes. The combined TAMU-PNNL CRCM model will be used to simulate the Atlantic climate, and the associated land-atmosphere-ocean interactions at a horizontal resolution of 9 km or finer. A particular focus of the model development effort will be to optimize the performance of WRF and ROMS over several thousand of cores by focusing on both the parallel communication libraries and the I/O interfaces, in order to achieve the sustained throughput needed to perform simulations on such fine resolution grids. The CRCM model will be developed within the framework of the Coupler (CPL7) software that is part of the NCAR Community Earth System Model (CESM). Through efforts at PNNL and within the community, WRF and CLM have already been coupled via CPL7. Using the flux coupler approach for the whole CRCM model will allow us to flexibly couple WRF, ROMS, and CLM with each model running on its own grid at different resolutions. In addition, this framework will allow us to easily port parameterizations between CESM and the CRCM, and potentially allow partial coupling between the CESM and the CRCM. TAMU and PNNL will contribute cooperatively to this research endeavor. The TAMU team led by Chang and Saravanan has considerable experience in studying atmosphere-ocean interactions within tropical Atlantic sector and will focus on modeling issues that relate to coupling WRF and ROMS. The PNNL team led by Leung has extensive expertise in atmosphere-land interaction and will be responsible for improving the land surface parameterization. Both teams will jointly work on integrating WRF-ROMS and WRF-CLM to couple WRF, ROMS, and CLM through CPL7. Montuoro of the TAMU Supercomputing Center will be responsible for improving the MPI and Parallel IO interfaces of the CRCM. Both teams will contribute to the design and execution of the proposed numerical experiments and jointly perform analysis of the numerical experiments.« less
Midlatitude atmospheric OH response to the most recent 11-y solar cycle.
Wang, Shuhui; Li, King-Fai; Pongetti, Thomas J; Sander, Stanley P; Yung, Yuk L; Liang, Mao-Chang; Livesey, Nathaniel J; Santee, Michelle L; Harder, Jerald W; Snow, Martin; Mills, Franklin P
2013-02-05
The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O(3)) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O(3) chemistry. Here, we present an effort to investigate such OH variability using long-term observations (from space and the surface) and model simulations. Ground-based measurements and data from the Microwave Limb Sounder on the National Aeronautics and Space Administration's Aura satellite suggest an ∼7-10% decrease in OH column abundance from solar maximum to solar minimum that is highly correlated with changes in total solar irradiance, solar Mg-II index, and Lyman-α index during SC 23. However, model simulations using a commonly accepted solar UV variability parameterization give much smaller OH variability (∼3%). Although this discrepancy could result partially from the limitations in our current understanding of middle atmospheric chemistry, recently published solar spectral irradiance data from the Solar Radiation and Climate Experiment suggest a solar UV variability that is much larger than previously believed. With a solar forcing derived from the Solar Radiation and Climate Experiment data, modeled OH variability (∼6-7%) agrees much better with observations. Model simulations reveal the detailed chemical mechanisms, suggesting that such OH variability and the corresponding catalytic chemistry may dominate the O(3) SC signal in the upper stratosphere. Continuing measurements through SC 24 are required to understand this OH variability and its impacts on O(3) further.
Midlatitude atmospheric OH response to the most recent 11-y solar cycle
Wang, Shuhui; Li, King-Fai; Pongetti, Thomas J.; Sander, Stanley P.; Yung, Yuk L.; Liang, Mao-Chang; Livesey, Nathaniel J.; Santee, Michelle L.; Harder, Jerald W.; Snow, Martin; Mills, Franklin P.
2013-01-01
The hydroxyl radical (OH) plays an important role in middle atmospheric photochemistry, particularly in ozone (O3) chemistry. Because it is mainly produced through photolysis and has a short chemical lifetime, OH is expected to show rapid responses to solar forcing [e.g., the 11-y solar cycle (SC)], resulting in variabilities in related middle atmospheric O3 chemistry. Here, we present an effort to investigate such OH variability using long-term observations (from space and the surface) and model simulations. Ground-based measurements and data from the Microwave Limb Sounder on the National Aeronautics and Space Administration’s Aura satellite suggest an ∼7–10% decrease in OH column abundance from solar maximum to solar minimum that is highly correlated with changes in total solar irradiance, solar Mg-II index, and Lyman-α index during SC 23. However, model simulations using a commonly accepted solar UV variability parameterization give much smaller OH variability (∼3%). Although this discrepancy could result partially from the limitations in our current understanding of middle atmospheric chemistry, recently published solar spectral irradiance data from the Solar Radiation and Climate Experiment suggest a solar UV variability that is much larger than previously believed. With a solar forcing derived from the Solar Radiation and Climate Experiment data, modeled OH variability (∼6–7%) agrees much better with observations. Model simulations reveal the detailed chemical mechanisms, suggesting that such OH variability and the corresponding catalytic chemistry may dominate the O3 SC signal in the upper stratosphere. Continuing measurements through SC 24 are required to understand this OH variability and its impacts on O3 further. PMID:23341617
NASA Astrophysics Data System (ADS)
Romand, F.; Payan, S.; Croize, L.
2017-12-01
Since their first observation in 1989, effect of TLEs on the atmospheric composition has become an open and important question. The lack of suitable experimental data is a shortcoming that hampers our understanding of the physics and chemistry induced by these effects. HALESIS (High-Altitude Luminous Events Studied by Infrared Spectro-imagery) is a future experiment dedicated to the measurement of the atmospheric perturbation induced by a TLE in the minutes following its occurrence, from a stratospheric balloon flying at an altitude of 25 km to 40 km. This work aims to quantify the local chemical impact of sprites in the stratosphere and mesosphere. In this paper, we will present the development of a tool which simulates (i) the impact of a sprite on the vibrational chemistry, (ii) the resulting infrared signature and (iii) the propagation of this signature through the atmosphere to an observer. First the Non Local Thermodynamic Equilibrium populations of a background atmosphere were computed using SAMM2 code. The initial thermodynamic and chemical description of atmosphere comes from the Whole Atmosphere community Climate Model (WACCM). Then a perturbation was applied to simulate a sprite. Chemistry due to TLEs was computed using Gordillo-Vazquez kinetic model. Rate coefficients that depend on the electron energy distribution function were calculated from collision cross-section data by solving the electron Boltzmann equation (BE). Time evolutions of the species densities and of vibrational populations in the non-thermal plasma consecutive to sprite discharge were simulated using the computer code ZDPlasKin (S. Pancheshn et al.). Finally, the resulting infrared signatures were propagated from the disturbed area through the atmosphere to an instrument placed in a limb line of sight using a line by line radiative transfer model. We will conclude that sprite could produce a significant infrared signature that last a few tens of seconds after the visible flash.
Land–atmosphere feedbacks amplify aridity increase over land under global warming
Berg, Alexis; Findell, Kirsten; Lintner, Benjamin; Giannini, Alessandra; Seneviratne, Sonia I.; van den Hurk, Bart; Lorenz, Ruth; Pitman, Andy; Hagemann, Stefan; Meier, Arndt; Cheruy, Frédérique; Ducharne, Agnès; Malyshev, Sergey; Milly, Paul C. D.
2016-01-01
The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.
NASA Astrophysics Data System (ADS)
Flinker, R. H.; Cardenas, M.; Caldwell, T. G.; Rich, R.; Reich, P.
2013-12-01
The BioCON (Biodiversity, CO2 and N) experiment has been continuously running since 1997. Operated by the University of Minnesota and located within the Cedar Creek Ecosystem Science Reserve in Minnesota, USA, BioCON is a Free-Air CO2 Enrichment (FACE) experiment that investigates plant community response to three key environmental variables: nitrogen, atmospheric CO2 and biodiversity. More recently rainfall exclusion and temperature manipulation were added to the experiment which amounts to 371 plots. The site attempts to replicate predicted average temperature increases and a northern shift of plant species and any associated consequences. FACE experiments have been conducted for a number of years in different countries, but the focus has generally been on how plant communities, soil respiration and microbes respond. Minimal work has been focused on the hydrologic aspects of these experiments which are potentially valuable for investigating global warming effects on local and plot-scale ecohydrology. Thus, the objective of this work is to characterize and model unsaturated flow for different CO2 and rainfall treatments in order to see how they affect soil moisture dynamics and groundwater recharge on grasslands of central Minnesota. Our study focuses on simulating soil moisture dynamics in eighteen of the BioCON plots: six bare plots with regular rainfall regimes (zero plant species, three plots with elevated atmospheric CO2 levels), six regular rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels) and six reduced rainfall regimes (nine plant species, three plots with elevated atmospheric CO2 levels). The Simultaneous Heat and Water (SHAW) model, which solves the Richards equation for unsaturated zone water flow coupled to a comprehensive energy balance model, was parameterized with a combination of field and lab estimates of soil properties. Field estimates of saturated hydraulic conductivity using tension infiltrometers ranged from 9.8 x 10-4 to 6.7 x 10-3 cm/s. Soil cores were collected and analyzed for soil hydraulic properties (texture, unsaturated hydraulic conductivity and moisture retention). From the grain size analyzes of soil samples collected every 10 cm until 1m depth, the soil is homogenous and on average 87% sand, 11% silt and 2% clay. We will be presenting results from the simulations and statistical comparisons to observations of soil moisture at four depths in each plot.
NASA Technical Reports Server (NTRS)
Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.;
2013-01-01
The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.
Photochemical Haze Formation in the Atmospheres of Super-Earths and Mini-Neptunes
NASA Technical Reports Server (NTRS)
He, Chao; Hoerst, Sarah M.; Lewis, Nikole K.; Yu, Xinting; Moses, Julianne I.; Kempton, Eliza M.- R.; Marley, Mark S.; McGuiggan, Patricia; Morley, Caroline V.; Valenti, Jeff A.;
2018-01-01
UV (ultraviolet) radiation can induce photochemical processes in the atmospheres of exoplanet and produce haze particles. Recent transmission spectra of super-Earths and mini-Neptunes have demonstrated the possibility that exoplanets have haze/cloud layers at high altitudes in their atmospheres. Haze particles play an important role in planetary atmospheres because they affect the chemistry, dynamics, and radiation flux in planetary atmospheres, and may provide a source of organic material to the surface which may impact the origin or evolution of life. However, very little information is known about photochemical processes in cool, high-metallicity exoplanetary atmospheres. We present here photochemical haze formation in laboratory simulation experiments with UV radiation; we explored temperatures ranging from 300 to 600 degrees Kelvin and a range of atmospheric metallicities (100 times, 1000 times, and 10000 times solar metallicity). We find that photochemical hazes are generated in all simulated atmospheres, but the haze production rates appear to be temperature dependent: the particles produced in each metallicity group decrease as the temperature increases. The images taken with an atomic force microscope (AFM) show that the particle size (15 nanometers to 190 nanometers) varies with temperature and metallicity. Our results provide useful laboratory data on the photochemical haze formation and particle properties, which can serve as critical inputs for exoplanet atmosphere modeling, and guide future observations of exoplanets with the Transiting Exoplanet Survey Satellite (TESS), the James Webb Space Telescope (JWST), and the Wide-Field Infrared Survey Telescope (WFIRST).
Formation of Amino Acids and Nucleotide Bases in a Titan Atmosphere Simulation Experiment
Yelle, R.V.; Buch, A.; Carrasco, N.; Cernogora, G.; Dutuit, O.; Quirico, E.; Sciamma-O'Brien, E.; Smith, M.A.; Somogyi, Á.; Szopa, C.; Thissen, R.; Vuitton, V.
2012-01-01
Abstract The discovery of large (>100 u) molecules in Titan's upper atmosphere has heightened astrobiological interest in this unique satellite. In particular, complex organic aerosols produced in atmospheres containing C, N, O, and H, like that of Titan, could be a source of prebiotic molecules. In this work, aerosols produced in a Titan atmosphere simulation experiment with enhanced CO (N2/CH4/CO gas mixtures of 96.2%/2.0%/1.8% and 93.2%/5.0%/1.8%) were found to contain 18 molecules with molecular formulae that correspond to biological amino acids and nucleotide bases. Very high-resolution mass spectrometry of isotopically labeled samples confirmed that C4H5N3O, C4H4N2O2, C5H6N2O2, C5H5N5, and C6H9N3O2 are produced by chemistry in the simulation chamber. Gas chromatography–mass spectrometry (GC-MS) analyses of the non-isotopic samples confirmed the presence of cytosine (C4H5N3O), uracil (C5H4N2O2), thymine (C5H6N2O2), guanine (C5H5N5O), glycine (C2H5NO2), and alanine (C3H7NO2). Adenine (C5H5N5) was detected by GC-MS in isotopically labeled samples. The remaining prebiotic molecules were detected in unlabeled samples only and may have been affected by contamination in the chamber. These results demonstrate that prebiotic molecules can be formed by the high-energy chemistry similar to that which occurs in planetary upper atmospheres and therefore identifies a new source of prebiotic material, potentially increasing the range of planets where life could begin. Key Words: Astrochemistry—Planetary atmospheres—Titan—Astrobiology. Astrobiology 12, 809–817. PMID:22917035
NASA Technical Reports Server (NTRS)
Sciamma-O'Brien, Ella; Salama, Farid
2013-01-01
Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.
Atmospheric dynamics and habitability range in Earth-like aquaplanets obliquity simulations
NASA Astrophysics Data System (ADS)
Nowajewski, Priscilla; Rojas, M.; Rojo, P.; Kimeswenger, S.
2018-05-01
We present the evolution of the atmospheric variables that affect planetary climate by increasing the obliquity by using a general circulation model (PlaSim) coupled to a slab ocean with mixed layer flux correction. We increase the obliquity between 30° and 90° in 16 aquaplanets with liquid sea surface and perform the simulation allowing the sea ice cover formation to be a consequence of its atmospheric dynamics. Insolation is maintained constant in each experiment, but changing the obliquity affects the radiation budget and the large scale circulation. Earth-like atmospheric dynamics is observed for planets with obliquity under 54°. Above this value, the latitudinal temperature gradient is reversed giving place to a new regime of jet streams, affecting the shape of Hadley and Ferrel cells and changing the position of the InterTropical Convergence Zone. As humidity and high temperatures determine Earth's habitability, we introduce the wet bulb temperature as an atmospheric index of habitability for Earth-like aquaplanets with above freezing temperatures. The aquaplanets are habitable all year round at all latitudes for values under 54°; above this value habitability decreases toward the poles due to high temperatures.
NASA Astrophysics Data System (ADS)
Sun, Ruiyu
It is possible due to present day computing power to produce a fluid dynamical physically-based numerical solution to wildfire behavior, at least in the research mode. This type of wildfire modeling affords a flexibility and produces details that are not available in either current operational wildfire behavior models or field experiments. However before using these models to study wildfire, validation is necessary, and model results need to be systematically and objectively analyzed and compared to real fires. Plume theory and data from the Meteotron experiment, which was specially designed to provide results from measurements for the theoretical study of a convective plume produced by a high heat source at the ground, are used here to evaluate the fire plume properties simulated by two numerical wildfire models, the Fire Dynamics Simulator or FDS, and the Clark coupled atmosphere-fire model. The study indicates that the FDS produces good agreement with the plume theory and the Meteotron results. The study also suggests that the coupled atmosphere-fire model, a less explicit and ideally less computationally demanding model than the FDS; can produce good agreement, but that the agreement is sensitive to the method of putting the energy released from the fire into the atmosphere. The WFDS (Wildfire and wildland-urban interface FDS), an extension of the FDS to the vegetative fuel, and the Australian grass fire experiments are used to evaluate and improve the UULES-wildfire coupled model. Despite the simple fire parameterization in the UULES-wildfire coupled model, the fireline is fairly well predicted in terms of both shape and location in the simulation of Australian grass fire experiment F19. Finally, the UULES-wildfire coupled model is used to examine how the turbulent flow in the atmospheric boundary layer (ABL) affects the growth of the grass fires. The model fires showed significant randomness in fire growth: Fire spread is not deterministic in the ABL, and a probabilistic prediction method is warranted. Of the two contributors to the variability in fire growth in the grass fire simulations in the ABL, fire-induced convection, as opposed to the turbulent ABL wind, appears to be the more important one. One mechanism associated with enhanced fire-induced flow is the downdraft behind the frontal fireline. The downdraft is the direct result of the random interaction between the fire plume and the large eddies in the ABL. This study indicates a connection between fire variability in rate of spread and area burnt and so-called convective velocity scale, and it may be possible to use this boundary-layer scale parameter to account for the effects of ABL turbulence on fire spread and fire behavior in today's operational fire prediction systems.
NASA Astrophysics Data System (ADS)
Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai
2017-09-01
The results of the Labeled Release and the Gas Exchange experiments conducted on Mars by the Viking Landers show that compounds in the Martian soil can cause oxidation of organics and a release of oxygen in the presence of water. Several sources have been proposed for the oxidizing compounds, but none has been validated in situ and the cause of the observed oxidation has not been resolved. In this study, laboratory simulations of saltation were conducted to examine if and under which conditions wind abrasion of silicates, a process that is common on the Martian surface, can give rise to oxidants in the form of hydrogen peroxide (H2O2) and hydroxyl radicals (ṡOH). We found that silicate samples abraded in simulated Martian atmospheres gave rise to a significant production of H2O2 and ṡOH upon contact with water. Our experiments demonstrated that abraded silicates could lead to a production of H2O2 facilitated by atmospheric O2 and inhibited by carbon dioxide. Furthermore, during simulated saltation the silicate particles became triboelectrically charged and at pressures similar to the Martian surface pressure we observed glow discharges. Electrical discharges can cause dissociation of CO2 and through subsequent reactions lead to a production of H2O2. These results indicate that the reactions linked to electrical discharges are the dominant source of H2O2 during saltation of silicates in a simulated Martian atmosphere, given the low pressure and the relatively high concentration of CO2. Our experiments provide evidence that wind driven abrasion could enhance the reactivity of the Martian soil and thereby could have contributed to the oxidation of organic compounds and the O2 release observed in the Labeled Release and the Gas Exchange experiments. Furthermore, the release of H2O2 and ṡOH from abraded silicates could have a negative effect on the persistence of organic compounds in the Martian soil and the habitability of the Martian surface.
Systems report for payload G-652: Project origins
NASA Technical Reports Server (NTRS)
Bellina, J.; Muckerheide, M. C.; Clark, J.; Petry, M.; Seeley, D.; Sportiello, R.; Sprecher, R.; Theiler, M.
1988-01-01
Experiments conducted to investigate possible hardware configurations and methodologies for a Get Away Special payload designated G-652 are discussed. Test data collected from the operation of a free electron laser wiggler using simulated ram glow phenomenon are described. Results of an experiment to synthesize organic compounds within a primordial atmosphere using a laser induced plasma are discussed. An experiment is described which utilized neutron bombardment to assess the risk of genetic alterations in embyros in space.
NASA Technical Reports Server (NTRS)
Diak, George R.; Smith, William L.
1993-01-01
The goals of this research endeavor have been to develop a flexible and relatively complete framework for the investigation of current and future satellite data sources in numerical meteorology. In order to realistically model how satellite information might be used for these purposes, it is necessary that Observing System Simulation Experiments (OSSEs) be as complete as possible. It is therefore desirable that these experiments simulate in entirety the sequence of steps involved in bringing satellite information from the radiance level through product retrieval to a realistic analysis and forecast sequence. In this project we have worked to make this sequence realistic by synthesizing raw satellite data from surrogate atmospheres, deriving satellite products from these data and subsequently producing analyses and forecasts using the retrieved products. The accomplishments made in 1991 are presented. The emphasis was on examining atmospheric soundings and microphysical products which we expect to produce with the launch of the Advanced Microwave Sounding Unit (AMSU), slated for flight in mid 1994.
Desert Test Site Uniformity Analysis
NASA Technical Reports Server (NTRS)
Kerola, Dana X.; Bruegge, Carol J.
2009-01-01
Desert test sites such as Railroad Valley (RRV) Nevada, Egypt-1, and Libya-4 are commonly targeted to assess the on-orbit radiometric performance of sensors. Railroad Valley is used for vicarious calibration experiments, where a field-team makes ground measurements to produce accurate estimates of top-of-atmosphere (TOA) radiances. The Sahara desert test sites are not instrumented, but provide a stable target that can be used for sensor cross-comparisons, or for stability monitoring of a single sensor. These sites are of interest to NASA's Atmospheric Carbon Observation from Space (ACOS) and JAXA's Greenhouse Gas Observation SATellite (GOSAT) programs. This study assesses the utility of these three test sites to the ACOS and GOSAT calibration teams. To simulate errors in sensor-measured radiance with pointing errors, simulated data have been created using MODIS Aqua data. MODIS data are further utilized to validate the campaign data acquired from June 22 through July 5, 2009. The first GOSAT vicarious calibration experiment was conducted during this timeframe.
Experiments on integral length scale control in atmospheric boundary layer wind tunnel
NASA Astrophysics Data System (ADS)
Varshney, Kapil; Poddar, Kamal
2011-11-01
Accurate predictions of turbulent characteristics in the atmospheric boundary layer (ABL) depends on understanding the effects of surface roughness on the spatial distribution of velocity, turbulence intensity, and turbulence length scales. Simulation of the ABL characteristics have been performed in a short test section length wind tunnel to determine the appropriate length scale factor for modeling, which ensures correct aeroelastic behavior of structural models for non-aerodynamic applications. The ABL characteristics have been simulated by using various configurations of passive devices such as vortex generators, air barriers, and slot in the test section floor which was extended into the contraction cone. Mean velocity and velocity fluctuations have been measured using a hot-wire anemometry system. Mean velocity, turbulence intensity, turbulence scale, and power spectral density of velocity fluctuations have been obtained from the experiments for various configuration of the passive devices. It is shown that the integral length scale factor can be controlled using various combinations of the passive devices.
NASA Astrophysics Data System (ADS)
Tao, C.; Jin, H.; Shinagawa, H.; Fujiwara, H.; Miyoshi, Y.
2017-12-01
The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.
NASA Astrophysics Data System (ADS)
Tao, Chihiro; Jin, Hidekatsu; Shinagawa, Hiroyuki; Fujiwara, Hitoshi; Miyoshi, Yasunobu
2017-09-01
The effects of decreasing the intrinsic magnetic field on the upper atmospheric dynamics at low to middle latitudes are investigated using the Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy (GAIA). GAIA incorporates a meteorological reanalysis data set at low altitudes (<30 km), which enables us to investigate the atmospheric response to various waves under dynamic and chemical interactions with the ionosphere. In this simulation experiment, we reduced the magnetic field strength to as low as 10% of the current value. The averaged neutral velocity, density, and temperature at low to middle latitudes at 300 km altitude show little change with the magnetic field variation, while the dynamo field, current density, and the ionospheric conductivities are modified significantly. The wind velocity and tidal wave amplitude in the thermosphere remain large owing to the small constraint on plasma motion for a small field. On the other hand, the superrotation feature at the dip equator is weakened by 20% for a 10% magnetic field because the increase in ion drag for the small magnetic field prevents the superrotation.
Testing the QGSJET01 and QGSJETII-04 models with the help of atmospheric muons
NASA Astrophysics Data System (ADS)
Dedenko, Leonid G.; Lukyashin, Anton V.; Roganova, Tatiana M.; Fedorova, Galina F.
2017-06-01
More accurate original calculations of the atmospheric vertical muon energy spectra at energies 102 - 105 GeV have been carried out in terms of the QGSJET01 and QGSJETII-04 models. The Gaisser-Honda approximations of the measured energy spectra of primary protons, helium and nitrogen nuclei have been used. The CORSIKA package has been used to simulate cascades in the standard atmosphere induced by different primary particles with various fixed energies E. Statistics of simulated cascades for secondary particles with energies (0.01 - 1) · E was increased up to 106. It has been shown that predictions of the QGSJET01 and QGSJETII-04 models for these muon fluxes are below the data of the classical experiments L3 + Cosmic, MACRO and LVD by factors of ˜ 1.7-2 at energies above 102 GeV. It has been concluded that these tested models underestimate the production of the most energetic secondary particles, namely, π-mesons and K-mesons, in interactions of primary protons and other primary nuclei with nuclei in the atmosphere by the same factors.
Testing of the DPMJET and VENUS hadronic interaction models with help of the atmospheric muons
NASA Astrophysics Data System (ADS)
Dedenko, L. G.; Lukyashin, A. V.; Roganova, T. M.; Fedorova, G. F.
2017-01-01
The more accurate original calculations of the atmospheric vertical muon energy spectra at energies 102 - 105 GeV have been carried out in terms of DPMJET and VENUS models. The Gaisser-Honda approximations of the measured energy spectra of primary protons, helium and nitrogen nuclei have been used. The package CORSIKA has been used to simulate cascades in the standard atmosphere induced by different primary particles with various fixed energies E. Statistics of simulated cascades for secondary particles with energies (0.01-1)·E was increased up to 106. It has been shown that predictions of the DPMJET and VENUS models for these muon fluxes are below the data of the classical experiments L3 + Cosmic, MACRO and LVD by factors of ˜ 1.6-1.95 at energies above 102 GeV. It has been concluded that these tested models underestimate the production of the most energetic secondary particles, namely, π-mesons and K-mesons, in interactions of the primary protons and other primary nuclei with nuclei in the atmosphere by the same factors.
Analysis of the August and November dynamical structures in the MLT region
NASA Astrophysics Data System (ADS)
Gusev, O.; Grossmann, K.-U.; Schmidt, H.
The inversion of the infrared limb radiance measurements made by {CR}yogenic {I}nfrared {S}pectrometers and {T}elescopes for the {A}tmosphere (CRISTA) satellite experiment provided a global dataset of pressures, temperatures and atmospheric gas number densities for November 1994 and August 1997 in the altitude range 7-180 km. The {HAM}burg {MO}del of the {N}eutral and {I}onized {A}tmosphere (HAMMONIA) is a general circulation and chemistry model covering the atmosphere from the Earth's surface up to about 250 km. To simulate the conditions found during both CRISTA time periods a special HAMMONIA run was performed. We discuss the MLT dynamical parameters found by analysing the measured and modelled data, their similarities and differences.
The effect of clouds on the earth's radiation balance
NASA Technical Reports Server (NTRS)
Herman, G. F.; Wu, M. L. C.; Johnson, W. T.
1979-01-01
The effect of global cloudiness on the radiation balance at the top of the atmosphere is studied in general circulation model experiments. Wintertime simulations were conducted with clouds that had realistic optical properties, and were compared with simulations in which the clouds were transparent to either solar or thermal radiation. Clouds increase the net balance by limiting longwave loss to space, but decrease it by reflecting solar radiation. It is found that the net result of cloudiness is to maintain net radiation which is less than would be realized under clear conditions: Clouds cause the net radiation at the top of the atmosphere to increase due to longwave absorption, but to decrease even more due to cloud reflectance of solar radiation.
Ozone budget over the Amazon - Regional effects from biomass-burning emissions
NASA Technical Reports Server (NTRS)
Richardson, Jennifer L.; Fishman, Jack; Gregory, Gerald L.
1991-01-01
Data from the NASA dry-season Amazon boundary layer experiment (ABLE2A) is used with a 1D tropospheric photochemical model to analyze the atmospheric chemistry in the region and determine the impact of the long-range transport of biomass-burning emissions. Inputs of surface sources and the deposition of various species measured during ABLE2A are employed to simulate the background atmosphere, and haze characteristics are introduced for a 12-hr simulation. The in situ ozone production rate doubles during the period of haze when hydrocarbons are present. The model predicts that the production of ozone is enhanced during the dry season, and that increased ozone during the southern tropical burning season is related to the regional transport of haze.
Stability of sonic boom metrics regarding signature distortions from atmospheric turbulence.
Doebler, William J; Sparrow, Victor W
2017-06-01
The degree of insensitivity to atmospheric turbulence was evaluated for five metrics (A-, B-, E-weighted sound exposure level, Stevens Mark VII Perceived Level, and NASA's Indoor Sonic Boom Annoyance Predictor) that correlate to human annoyance from sonic booms. Eight N-wave shaped sonic booms from NASA's FaINT experiment and five simulated "low-boom" sonic booms were turbulized by Locey's ten atmospheric filter functions. The B-weighted sound exposure level value changed the least due to the turbulence filters for twelve of thirteen booms. This makes it the most turbulence stable metric which may be useful for quiet supersonic aircraft certification.
NASA Technical Reports Server (NTRS)
Gerasimov, M. V.; Dikov, Yu. P.; Yakovlev, O. I.; Wlotzka, F.
1993-01-01
The origin of planetary atmospheres is thought to be the result of bombardment of a growing planet by massive planetesimals. According to some models, the accumulation of released water vapor and/or carbon dioxide can result in the formation of a dense and hot primordial atmosphere. Among source and sink processes of atmospheric water vapor the formation of hydroxides was considered mainly as rehydration of dehydrated minerals (foresterite and enstatite). From our point of view, the formation of hydroxides is not limited to rehydration. Condensation of small silicate particles in a spreading vapor cloud and their interaction with a wet atmosphere can also result in the origin of hydrated phases which have no genetic connections with initial water bearing minerals. We present results of two experiments of a simulated interaction of condensed silicate matter which originated during vaporization of dry clinopyroxene in a wet helium atmosphere.
Monthly mean simulation experiments with a course-mesh global atmospheric model
NASA Technical Reports Server (NTRS)
Spar, J.; Klugman, R.; Lutz, R. J.; Notario, J. J.
1978-01-01
Substitution of observed monthly mean sea-surface temperatures (SSTs) as lower boundary conditions, in place of climatological SSTs, failed to improve the model simulations. While the impact of SST anomalies on the model output is greater at sea level than at upper levels the impact on the monthly mean simulations is not beneficial at any level. Shifts of one and two days in initialization time produced small, but non-trivial, changes in the model-generated monthly mean synoptic fields. No improvements in the mean simulations resulted from the use of either time-averaged initial data or re-initialization with time-averaged early model output. The noise level of the model, as determined from a multiple initial state perturbation experiment, was found to be generally low, but with a noisier response to initial state errors in high latitudes than the tropics.
Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments
2014-05-15
atmospheric fields, including sea level pressure ( SLP ), on daily and sub-daily time scales at 2° horizontal resolution. A higher-resolution and more...its 21st-century simulation. Extreme cyclones were defined as occurrences of daily mean SLP at least 40 hPa below the climatological annual-average... SLP at a grid point. As such, no cyclone-tracking algorithm was employed, because the purpose here is to identify instances of extremely strong
Simulation of Extreme Arctic Cyclones in IPCC AR5 Experiments
2012-09-30
of the present-day Arctic atmosphere in CCSM4. J. Climate, 2676-2695. Overeem, I ., R . S. Anderson, C. W. Wobus, G. D. Clow, F. E. Urban, and N...intensity of extreme Arctic cyclones? APPROACH I am targeting these objectives through a retrospective analysis of the transient 20th century...simulations (spanning years 1850-2005) among the GCMs participating in the latest Coupled Model Intercomparison Project (CMIP5). I am including 14
Particle kinetic simulation of high altitude hypervelocity flight
NASA Technical Reports Server (NTRS)
Boyd, Iain; Haas, Brian L.
1994-01-01
Rarefied flows about hypersonic vehicles entering the upper atmosphere or through nozzles expanding into a near vacuum may only be simulated accurately with a direct simulation Monte Carlo (DSMC) method. Under this grant, researchers enhanced the models employed in the DSMC method and performed simulations in support of existing NASA projects or missions. DSMC models were developed and validated for simulating rotational, vibrational, and chemical relaxation in high-temperature flows, including effects of quantized anharmonic oscillators and temperature-dependent relaxation rates. State-of-the-art advancements were made in simulating coupled vibration-dissociation recombination for post-shock flows. Models were also developed to compute vehicle surface temperatures directly in the code rather than requiring isothermal estimates. These codes were instrumental in simulating aerobraking of NASA's Magellan spacecraft during orbital maneuvers to assess heat transfer and aerodynamic properties of the delicate satellite. NASA also depended upon simulations of entry of the Galileo probe into the atmosphere of Jupiter to provide drag and flow field information essential for accurate interpretation of an onboard experiment. Finally, the codes have been used extensively to simulate expanding nozzle flows in low-power thrusters in support of propulsion activities at NASA-Lewis. Detailed comparisons between continuum calculations and DSMC results helped to quantify the limitations of continuum CFD codes in rarefied applications.
Cottin, Hervé; Guan, Yuan Yong; Noblet, Audrey; Poch, Olivier; Saiagh, Kafila; Cloix, Mégane; Macari, Frédérique; Jérome, Murielle; Coll, Patrice; Raulin, François; Stalport, Fabien; Szopa, Cyril; Bertrand, Marylène; Chabin, Annie; Westall, Frances; Chaput, Didier; Demets, René; Brack, André
2012-05-01
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.
Measurement of optical blurring in a turbulent cloud chamber
NASA Astrophysics Data System (ADS)
Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.
2016-10-01
Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the proposal of a closure experiment for verification of theoretical aerosol effects using actual clouds in a controlled laboratory setting.
NASA Technical Reports Server (NTRS)
Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.
1999-01-01
A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.
NASA Astrophysics Data System (ADS)
Koseki, Shunya; Keenlyside, Noel; Demissie, Teferi; Toniazzo, Thomas; Counillon, Francois; Bethke, Ingo; Ilicak, Mehmet; Shen, Mao-Lin
2018-06-01
We have investigated the causes of the sea surface temperature (SST) bias in the Angola-Benguela Frontal Zone (ABFZ) of the southeastern Atlantic Ocean simulated by the Norwegian Earth System Model (NorESM). Similar to other coupled-models, NorESM has a warm SST bias in the ABFZ of up to 8 °C in the annual mean. Our analysis of NorESM reveals that a cyclonic surface wind bias over the ABFZ drives a locally excessively strong southward (0.05 m/s (relative to observation)) Angola Current displacing the ABFZ southward. A series of uncoupled stand-alone atmosphere and ocean model simulations are performed to investigate the cause of the coupled model bias. The stand-alone atmosphere model driven with observed SST exhibits a similar cyclonic surface circulation bias; while the stand-alone ocean model forced with the reanalysis data produces a warm SST in the ABFZ with a magnitude approximately half of that in the coupled NorESM simulation. An additional uncoupled sensitivity experiment shows that the atmospheric model's local negative surface wind curl generates anomalously strong Angola Current at the ocean surface. Consequently, this contributes to the warm SST bias in the ABFZ by 2 °C (compared to the reanalysis forced simulation). There is no evidence that local air-sea feedbacks among wind stress curl, SST, and sea level pressure (SLP) affect the ABFZ SST bias. Turbulent surface heat flux differences between coupled and uncoupled experiments explain the remaining 2 °C warm SST bias in NorESM. Ocean circulation, upwelling and turbulent heat flux errors all modulate the intensity and the seasonality of the ABFZ errors.
Formation of nucleobases in a Miller-Urey reducing atmosphere.
Ferus, Martin; Pietrucci, Fabio; Saitta, Antonino Marco; Knížek, Antonín; Kubelík, Petr; Ivanek, Ondřej; Shestivska, Violetta; Civiš, Svatopluk
2017-04-25
The Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH 3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results.
Formation of nucleobases in a Miller–Urey reducing atmosphere
Ferus, Martin; Pietrucci, Fabio; Saitta, Antonino Marco; Knížek, Antonín; Kubelík, Petr; Ivanek, Ondřej; Shestivska, Violetta; Civiš, Svatopluk
2017-01-01
The Miller–Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results. PMID:28396441
NASA Technical Reports Server (NTRS)
Jenkins, Gregory S.
1993-01-01
Solar energy at the top of the atmosphere (solar constant), rotation rate, and carbon dioxide (CO2) may have varied significantly over Earth's history, especially during the earliest times. The sensitivity of a general circulation model to faster rotation, enhanced CO2 concentration, and reduced solar constant is presented. The control simulation of this study has a solar constant reduced by 10% the present amount, zero land fraction using a swamp ocean surface, CO2 concentrations of 330 ppmv, present-day rotation rate, and is integrated under mean diurnal and seasonal solar forcing. Four sensitivity test are performed under zero land fraction and reduced solar constant conditions by varying the earth's rotation rate atmospheric CO2 concentration and solar constant. The global mean sea surface temperatures (SSTs) compared to the control simulation: were 6.6 K to 12 K higher than the control's global mean temperature of 264.7 K. Sea ice is confined to higher latitudes in each experiment compared to the control, with ice-free areas equatorward of the subtropics. The warm SSTs are associated with a 20% reduction in clouds for the rotation rate experiments and higher CO2 concentrations in the other experiments. These results are in contrast to previous studies that have used energy balance and radiative convective models. Previous studies required a much larger atmospheric CO2 increase to prevent an ice-covered Earth. The results of the study, suggest that because of its possible feedback with clouds, the general circulation of the atmosphere should be taken into account in understanding the climate of early Earth. While higher CO2 concentrations are likely in view of the results, very large atmospheric CO2 concentrations may not be necessary to counterbalance the lower solar constant that existed early in Earth's history.
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, K. M.; Wu, H. T.; Kim, Maeng-Ki; Cho, Chunho
2012-01-01
The Russia heat wave and wild fires of the summer of 2010 was the most extreme weather event in the history of the country. Studies show that the root cause of the 2010 Russia heat wave/wild fires was an atmospheric blocking event which started to develop at the end of June and peaked around late July and early August. Atmospheric blocking in the summer of 2010 was anomalous in terms of the size, duration, and the location, which shifted to the east from the normal location. This and other similar continental scale severe summertime heat waves and blocking events in recent years have raised the question of whether such events are occurring more frequently and with higher intensity in a warmer climate induced by greenhouse gases. We studied the spatial and temporal distributions of the occurrence and intensity of atmospheric blocking and associated heat waves for northern summer over Eurasia based on CMIPS model simulations. To examine the global warming induced change of atmospheric blocking and heat waves, experiments for a high emissions scenario (RCP8.S) and a medium mitigation scenario (RCP4.S) are compared to the 20th century simulations (historical). Most models simulate the mean distributions of blockings reasonably well, including major blocking centers over Eurasia, northern Pacific, and northern Atlantic. However, the models tend to underestimate the number of blockings compared to MERRA and NCEPIDOE reanalysis, especially in western Siberia. Models also reproduced associated heat waves in terms of the shifting in the probability distribution function of near surface temperature. Seven out of eight models used in this study show that the frequency of atmospheric blocking over the Europe will likely decrease in a warmer climate, but slightly increase over the western Siberia. This spatial pattern resembles the blocking in the summer of 2010, indicating the possibility of more frequent occurrences of heat waves in western Siberia. In this talk, we will also discuss the potential effect of atmosphere-land feedback, particularly how the wetter spring affects the frequency and intensity of atmospheric blocking and heat wave during summer.
NASA Astrophysics Data System (ADS)
Sever, G.; Collis, S. M.; Ghate, V. P.
2017-12-01
Three-dimensional numerical experiments are performed to explore the mechanical and thermal impacts of Graciosa Island on the sampling of oceanic airflow and cloud evolution. Ideal and real configurations of flow and terrain are planned using high-resolution, large-eddy resolving (e.g., Δ < 100 meter) simulations. Ideal configurations include model initializations with ideal dry and moist temperature and wind profiles to capture flow features over an island-like topography. Real configurations will use observations from different climatological background states over the Eastern Northern Atlantic, Atmospheric Radiation Measurement (ENA-ARM) site on Graciosa Island. Initial small-domain large-eddy simulations (LES) of dry airflow produce cold-pool formation upstream of an ideal two-kilometer island, with von Kármán like vortices propagation downstream. Although the peak height of Graciosa is less than half kilometer, the Azores island chain has a mountain over 2 km, which may be leading to more complex flow patterns when simulations are extended to a larger domain. Preliminary idealized low-resolution moist simulations indicate that the cloud field is impacted due to the presence of the island. Longer simulations that are performed to capture diurnal evolution of island boundary layer show distinct land/sea breeze formations under quiescent flow conditions. Further numerical experiments are planned to extend moist simulations to include realistic atmospheric profiles and observations of surface fluxes coupled with radiative effects. This work is intended to produce a useful simulation framework coupled with instruments to guide airborne and ground sampling strategies during the ACE-ENA field campaign which is aimed to better characterize marine boundary layer clouds.
Introduction to the Laser-HANE Experiment and Summary of Low-Pressure Interaction Results.
1984-02-22
NUMBER ORGANIZATION Efi .FFUcablej Defense Nuclear Agency r____________________ S. ADDRESS IC0lY.7f ande~ ZIP Code# 10. SOURCE O FUNDING NOS. PROGRAM...of Atmospheric Effects (RAAE), initiated a laser-target HANE-simulation experiment at the Naval Research Laboratory in early 1982. The objective of...The experiment involves focusing beams from the NRL-Pharos II Nd-laser (1.05 ljm wavelength) onto a small (< 1 rmm dia, few-microns thick foil ) solid
NASA/ESA CV-990 airborne simulation of Spacelab
NASA Technical Reports Server (NTRS)
Mulholland, D.; Neel, C.; De Waard, J.; Lovelett, R.; Weaver, L.; Parker, R.
1975-01-01
The paper describes the joint NASA/ESA extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to conduct studies in upper atmospheric physics and infrared astronomy. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); and schedule requirements to prepare for such a Spacelab mission.
NASA Astrophysics Data System (ADS)
Kemp, E. M.; Putman, W. M.; Gurganus, J.; Burns, R. W.; Damon, M. R.; McConaughy, G. R.; Seablom, M. S.; Wojcik, G. S.
2009-12-01
We present a regional downscaling system (RDS) suitable for high-resolution weather and climate simulations in multiple supercomputing environments. The RDS is built on the NASA Workflow Tool, a software framework for configuring, running, and managing computer models on multiple platforms with a graphical user interface. The Workflow Tool is used to run the NASA Goddard Earth Observing System Model Version 5 (GEOS-5), a global atmospheric-ocean model for weather and climate simulations down to 1/4 degree resolution; the NASA Land Information System Version 6 (LIS-6), a land surface modeling system that can simulate soil temperature and moisture profiles; and the Weather Research and Forecasting (WRF) community model, a limited-area atmospheric model for weather and climate simulations down to 1-km resolution. The Workflow Tool allows users to customize model settings to user needs; saves and organizes simulation experiments; distributes model runs across different computer clusters (e.g., the DISCOVER cluster at Goddard Space Flight Center, the Cray CX-1 Desktop Supercomputer, etc.); and handles all file transfers and network communications (e.g., scp connections). Together, the RDS is intended to aid researchers by making simulations as easy as possible to generate on the computer resources available. Initial conditions for LIS-6 and GEOS-5 are provided by Modern Era Retrospective-Analysis for Research and Applications (MERRA) reanalysis data stored on DISCOVER. The LIS-6 is first run for 2-4 years forced by MERRA atmospheric analyses, generating initial conditions for the WRF soil physics. GEOS-5 is then initialized from MERRA data and run for the period of interest. Large-scale atmospheric data, sea-surface temperatures, and sea ice coverage from GEOS-5 are used as boundary conditions for WRF, which is run for the same period of interest. Multiply nested grids are used for both LIS-6 and WRF, with the innermost grid run at a resolution sufficient for typical local weather features (terrain, convection, etc.) All model runs, restarts, and file transfers are coordinated by the Workflow Tool. Two use cases are being pursued. First, the RDS generates regional climate simulations down to 4-km for the Chesapeake Bay region, with WRF output provided as input to more specialized models (e.g., ocean/lake, hydrological, marine biology, and air pollution). This will allow assessment of climate impact on local interests (e.g., changes in Bay water levels and temperatures, innundation, fish kills, etc.) Second, the RDS generates high-resolution hurricane simulations in the tropical North Atlantic. This use case will support Observing System Simulation Experiments (OSSEs) of dynamically-targeted lidar observations as part of the NASA Sensor Web Simulator project. Sample results will be presented at the AGU Fall Meeting.
Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO(2).
Leuzinger, Sebastian; Bader, Martin K-F
2012-01-01
Rising levels of atmospheric CO(2) have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO(2) concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO(2) enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35-40 m tall CO(2)-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550-700 ppm atmospheric CO(2)), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO(2) concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response.
Laboratory experiments in the study of the chemistry of the outer planets.
Scattergood, T W
1987-01-01
The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed.
HALESIS projet: Hight Altitude Luminous Events Studied by Infrared Spectro-imagery
NASA Astrophysics Data System (ADS)
Croizé, Laurence; Payan, Sébastien; Bureau, Jérome; Duruisseau, Fabrice; Huret, Nathalie
2014-05-01
During the last two decades, the discovery of transient luminous events (TLEs) in the high atmosphere [1], as well as the observation of gamma ray flashes of terrestrial origin (Terrestrial Gamma Flashes or TGF) [2] demonstrated the existence of another interaction processes between the different atmospheric layers (troposphere, stratosphere, mesosphere and ionosphere). Indeed, the frequency of occurrence of these phenomena over thunderstorm cells, and the energies involved provide evidence for an impulsive energy transfer between the troposphere and the highest atmospheric layers, which was not considered before. HALESIS (High Altitude Luminous Events Studied by Infrared Spectro-imagery) is an innovative project based on hyperspectral imagery. The purpose of this experience is to measure the atmospheric perturbation in the minutes following the occurrence of Transient Luminous Events (TLEs) from a stratospheric balloon in the altitude range of 20 to 40 km. The first part of the study has been dedicated to establish the project feasibility. To do that, we have simulated spectral perturbation induced by an isolated blue jet. Theoretical predictions [3] have been used to simulate the radiative perturbation due to O3, NO, NO2, NO+ concentration induced by the blue jet. Simulations have been performed using the line by line radiative transfer model LBLRM [4] taking into account of the Non Local Thermodynamic Equilibrium hypotheses. Then, the expected signatures have been compared to the available instrumentation. During this talk, HALESIS project and the results of the feasibility study will be presented. Then, the estimated spectral signatures will be confronted with the technical capabilities of different kind of hyperspectral imagers. We will conclude on the project feasibility, but also on the challenges that lie ahead for an imager perfectly suited for experiences like HALESIS. 1. Franz R, Nemzek R, Winckler J. Television image of a large upward electrical discharge above a thunderstorm system. Science 1990,249:48-51. 2. Fishman GJ, Bhat P, Mallozzi R, Horack J, Koshut T, Kouveliotou C, et al. Discovery of intense gamma-ray flashes of atmospheric origin: National Aeronautics and Space Administration; 1994. 3. Duruisseau Fabrice, Huret N. Private communication In. 4. Clough SA, Iacono MJ, Moncet JL. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. Journal of Geophysical Research: Atmospheres (1984-2012) 1992,97:15761-15785.
Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010)
NASA Astrophysics Data System (ADS)
Kanada, Sachie; Tsujino, Satoki; Aiki, Hidenori; Yoshioka, Mayumi K.; Miyazawa, Yasumasa; Tsuboki, Kazuhisa; Takayabu, Izuru
2017-12-01
Typhoon Megi (2010), a very intense tropical cyclone with a minimum central pressure of 885 hPa, was characterized by especially rapid intensification. We investigated this intensification process by a simulation experiment using a high-resolution (0.02° × 0.02°) three-dimensional atmosphere-ocean coupled regional model. We also performed a sensitivity experiment with a time-fixed sea surface temperature (SST). The coupled model successfully simulated the minimum central pressure of Typhoon Megi, whereas the fixed SST experiment simulated an excessively low minimum central pressure of 839 hPa. The simulation results also showed a close relationship between the radial SST profiles and the rapid intensification process. Because the warm sea increased near-surface water vapor and hence the convective available potential energy, the high SST in the eye region facilitated tall and intense updrafts inside the radius of maximum wind speed and led to the start of rapid intensification. In contrast, high SST outside this radius induced local secondary updrafts that inhibited rapid intensification even if the mean SST in the core region exceeded 29.0°C. These secondary updrafts moved inward and eventually merged with the primary eyewall updrafts. Then the storm intensified rapidly when the high SST appeared in the eye region. Thus, the changes in the local SST pattern around the storm center strongly affected the rapid intensification process by modulating the radial structure of core convection. Our results also show that the use of a high-resolution three-dimensional atmosphere-ocean coupled model offers promise for improving intensity forecasts of tropical cyclones.
Adam, J.
2016-01-19
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. Here, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. Our analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more thanmore » 100 reconstructed muons and corresponding to a muon areal density rho(mu) > 5.9 m(-2). Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10(16) eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. Furthermore, the development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less
NASA Astrophysics Data System (ADS)
Kobayashi, Kensei; Kurihara, Hironari; Hirako, Tomoaki; Obayashi, Yumiko; Kaneko, Takeo; Takano, Yoshinori; Yoshimura, Yoshitaka
Since late 1970's a great number of submarine hydrothermal systems (SHSs) has been dis-covered, and they are considered possible sites of chemical evolution and generation of life on the Earth since their discovery in late 1970s. A number of experiments simulating the con-ditions of SHSs were conducted, and abiotic production and polymerization of amino acids were reported. Free amino acids were frequently used as starting materials to examine possible organic reactions in the simulation experiments. In our early studies, not free amino acids but complex amino acids precursors with large molecular weights were formed abiotically from simulated primitive Earth atmosphere (a mixture of CO, N2 and H2 O) (Takano et al., 2004). Such complex organics (hereafter referred as to CNWs) should have been delivered to SHSs in Primitive Ocean, where they were subjected to further alteration. We examined possible alteration of the complex organics in high-temperature high-pressure environments by the su-percritical water flow reactor (SCWFR) (Islam et al.. 2003) and an autoclave. CNWs were quite hydrophilic compounds whose molecular weights were ca. 3000. After heating 573 K for 2 min in the SCWFR, aggregates of organics were formed, which were separated from aque-ous solution with a Nucleopore filter (pore size: 200 nm). We propose the following scenario of chemical evolution: (1) Complex organics including amino acid precursors were formed in primitive atmosphere and/or extraterrestrial environments, (ii) they were delivered to primor-dial SHSs, (iii) hydrothermal alteration occurred in SHSs to give organic aggregates, (iv) quite primitive molecular systems with subtle biological functions were generated in the competition among such aggregates. References: Islam, Md. N., Kaneko, T., and Kobayashi, K (2003). Reactions of Amino Acids with a Newly ConstructedSupercritical Water Flow Reactor Simulating Submarine Hydrothermal Systems. Bull. Chem. Soc. Jpn., 76, 1171. Takano, Y., Marumo, K., Yabashi, S., Kaneko, T., and Kobayashi, K., (2004). Curie-Point Pyrolysis of Complex Organics Simulated by Cosmic Rays Irradiation of Simple Inorganic Gas Mixture. Appl Phys. Lett., 85, 1633.
Synchronous atmospheric radiation correction of GF-2 satellite multispectral image
NASA Astrophysics Data System (ADS)
Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan
2018-02-01
GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Wenhua; Sui, Chung-Hsiung; Fan, Jiwen
Cloud microphysical properties and precipitation over the Tibetan Plateau (TP) are unique because of the high terrains, clean atmosphere, and sufficient water vapor. With dual-polarization precipitation radar and cloud radar measurements during the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III), the simulated microphysics and precipitation by the Weather Research and Forecasting model (WRF) with the Chinese Academy of Meteorological Sciences (CAMS) microphysics and other microphysical schemes are investigated through a typical plateau rainfall event on 22 July 2014. Results show that the WRF-CAMS simulation reasonably reproduces the spatial distribution of 24-h accumulated precipitation, but has limitations in simulating time evolutionmore » of precipitation rates. The model-calculated polarimetric radar variables have biases as well, suggesting bias in modeled hydrometeor types. The raindrop sizes in convective region are larger than those in stratiform region indicated by the small intercept of raindrop size distribution in the former. The sensitivity experiments show that precipitation processes are sensitive to the changes of warm rain processes in condensation and nucleated droplet size (but less sensitive to evaporation process). Increasing droplet condensation produces the best area-averaged rain rate during weak convection period compared with the observation, suggesting a considerable bias in thermodynamics in the baseline simulation. Increasing the initial cloud droplet size causes the rain rate reduced by half, an opposite effect to that of increasing droplet condensation.« less
Measurements of radon concentrations in the lunar atmosphere
NASA Technical Reports Server (NTRS)
Brodzinski, R. L.; Jackson, P. O.; Langford, J. C.
1977-01-01
The radon concentrations in the lunar atmosphere were determined by measuring the Po-210 progeny activity in artifacts returned from the moon. Experiments performed on a section of the polished aluminum strut from Surveyor 3 and data obtained from the Apollo 16 Cosmic Ray Detector Experiment Teflon thermal shield are compared with other values of the lunar radon concentration obtained at different times and different locations and by various techniques. Possible sources and release mechanisms compatible with all of the data are discussed. An experimental procedure to determine the relative retention coefficients of various types of material for radon progeny in a simulated lunar environment is described. The results of several experiments are given, and their effect on lunar radon progeny measurements is discussed. An analytical procedure is given for the analysis of a Teflon matrix for trace constituents.
The radiative impact of cumulus cloudiness in a general circulation model
NASA Technical Reports Server (NTRS)
Moeng, C. H.; Randall, D. A.
1982-01-01
The effect of cumulus cloudiness on the radiational heating and, on other aspects of the climate were simulated by the GLAS Climate Model. An experiment in which the cumulus cloudiness is neglected completely for purposes of the solar and terrestrial radiation parameterizations was performed. The results are compared with those of a control run, in which 100% cumulus cloud cover is assumed. The net solar radiation input into the Earth atmosphere system is more realistic in the experiment, and the model's underprediction of the global mean outgoing thermal radiation at the top of the atmosphere is reduced. The results suggest that there is a positive feedback between cumulus convection and the radiation field. The upper troposphere is warmer in the experiment, the surface air temperature increases over land, and the thermal lows over the continents intensity.
NASA Astrophysics Data System (ADS)
Boukabara, S. A.; Eymard, L.; Guillou, C.; Lemaire, D.; Sobieski, P.; Guissard, A.
2002-08-01
Spaceborne microwave remote sensing allows the determination of oceanic and atmospheric parameters. Operational payloads such as ERS-1 and ERS-2 and TOPEX/Poseidon as well as missions such as Jason (from NASA-Centre National d'Etudes) or Envisat (from the European Space Agency), have contained or contain paired microwave instruments looking at the nadir direction. This combination consists of microwave radiometers and a radar-altimeter. For the frequencies chosen in oceanographic satellite payloads, the active mode signal is mostly dependent on the surface state through its reflectivity and thus used for the near-surface wind speed retrieval. The active mode can also be attenuated by the atmosphere. On the other hand, the passive mode is related to the surface emissivity and the atmospheric radiation through the radiative transfer equation. Until now, the oceanic and atmospheric parameters have been retrieved separately, the latter being used to correct radar measurements. However, the reflectivity and the emissivity of a target are not independent quantities; hence the synergistic use of these two kinds of microwave measurements should allow one to improve the retrieval quality of the sea and atmosphere parameters. For this purpose, a unified model has been developed for the simulation of both the microwave backscattering coefficient σ° (active measurement) and the microwave emissivity, an important factor for the brightness temperature TB simulation, for every configuration (incidence angles, frequency, polarizations), taking into account the fact that the reflectivity and the emissivity are complementary to unity. The atmospheric absorption is computed following a widely used model from the literature. This paper gives a description and a first attempt of validation of this approach through a comparison with real data. The performance of the model is assessed by comparing the simulations to both brightness temperatures and backscattering coefficients from ERS-1 and TOPEX/Poseidon's instruments during the SEMAPHORE experiment, over a two-month period.
Is Climate Simulation in Growth Chambers Necessary?
Z.M. Wang; K.H. Johnsen; M.J. Lechowicz
1999-01-01
In the expression of their genetic potential as phenotypes, trees respond to environmental cues such as photoperiod, temperature and soil and atmospheric water. However, growth chamber experiments often utilize simple and standard environmental conditions that might not provide these important environmental signals. We conducted a study to compare seedling growth in...
NASA Astrophysics Data System (ADS)
Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian
2016-11-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, D.R.; Algieri, C.A.; Ong, J.R.
2011-04-01
Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top-of-atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensivelymore » validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present-day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.« less
Description of the LASSO Alpha 1 Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Vogelmann, Andrew M.; Cheng, Xiaoping
The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability has been named the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project. The availability of LES simulations with concurrent observations will serve many purposes. LES helps bridge the scale gap between DOE ARM observations and models, and the use of routine LES adds value to observations. It provides a self-consistent representation of the atmosphere and a dynamical context for the observations. Further,more » it elucidates unobservable processes and properties. LASSO will generate a simulation library for researchers that enables statistical approaches beyond a single-case mentality. It will also provide tools necessary for modelers to reproduce the LES and conduct their own sensitivity experiments. Many different uses are envisioned for the combined LASSO LES and observational library. For an observationalist, LASSO can help inform instrument remote-sensing retrievals, conduct Observation System Simulation Experiments (OSSEs), and test implications of radar scan strategies or flight paths. For a theoretician, LASSO will help calculate estimates of fluxes and co-variability of values, and test relationships without having to run the model yourself. For a modeler, LASSO will help one know ahead of time which days have good forcing, have co-registered observations at high-resolution scales, and have simulation inputs and corresponding outputs to test parameterizations. Further details on the overall LASSO project are available at http://www.arm. gov/science/themes/lasso.« less
The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes
NASA Astrophysics Data System (ADS)
Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.
2018-02-01
The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.
Zambon, Joseph B.; He, Ruoying; Warner, John C.
2014-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) model is used to hindcast Hurricane Ivan (2004), an extremely intense tropical cyclone (TC) translating through the Gulf of Mexico. Sensitivity experiments with increasing complexity in ocean–atmosphere–wave coupled exchange processes are performed to assess the impacts of coupling on the predictions of the atmosphere, ocean, and wave environments during the occurrence of a TC. Modest improvement in track but significant improvement in intensity are found when using the fully atmosphere–ocean-wave coupled configuration versus uncoupled (e.g., standalone atmosphere, ocean, or wave) model simulations. Surface wave fields generated in the fully coupled configuration also demonstrates good agreement with in situ buoy measurements. Coupled and uncoupled model-simulated sea surface temperature (SST) fields are compared with both in situ and remote observations. Detailed heat budget analysis reveals that the mixed layer temperature cooling in the deep ocean (on the shelf) is caused primarily by advection (equally by advection and diffusion).
Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; ...
2008-02-27
[1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less
Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE
NASA Astrophysics Data System (ADS)
Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven
2008-02-01
Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.
NASA Astrophysics Data System (ADS)
Vergnes, Jean-Pierre; Decharme, Bertrand; Habets, Florence
2014-05-01
Groundwater is a key component of the global hydrological cycle. It sustains base flow in humid climate while it receives seepage in arid region. Moreover, groundwater influences soil moisture through water capillary rise into the soil and potentially affects the energy and water budget between the land surface and the atmosphere. Despite its importance, most global climate models do not account for groundwater and their possible interaction with both the surface hydrology and the overlying atmosphere. This study assesses the impact of capillary rise from shallow groundwater on the simulated water budget over France. The groundwater scheme implemented in the Total Runoff Integrated Pathways (TRIP) river routing model in a previous study is coupled with the Interaction between Soil Biosphere Atmosphere (ISBA) land surface model. In this coupling, the simulated water table depth acts as the lower boundary condition for the soil moisture diffusivity equation. An original parameterization accounting for the subgrid elevation inside each grid cell is proposed in order to compute this fully-coupled soil lower boundary condition. Simulations are performed at high (1/12°) and low (0.5°) resolutions and evaluated over the 1989-2009 period. Compared to a free-drain experiment, upward capillary fluxes at the bottom of soil increase the mean annual evapotranspiration simulated over the aquifer domain by 3.12 % and 1.54 % at fine and low resolutions respectively. This process logically induces a decrease of the simulated recharge from ISBA to the aquifers and contributes to enhance the soil moisture memory. The simulated water table depths are then lowered, which induces a slight decrease of the simulated mean annual river discharges. However, the fully-coupled simulations compare well with river discharge and water table depth observations which confirms the relevance of the coupling formalism.
Orographic Flow over an Active Volcano
NASA Astrophysics Data System (ADS)
Poulidis, Alexandros-Panagiotis; Renfrew, Ian; Matthews, Adrian
2014-05-01
Orographic flows over and around an isolated volcano are studied through a series of numerical model experiments. The volcano top has a heated surface, so can be thought of as "active" but not erupting. A series of simulations with different atmospheric conditions and using both idealised and realistic configurations of the Weather Research and Forecast (WRF) model have been carried out. The study is based on the Soufriere Hills volcano, located on the island of Montserrat in the Caribbean. This is a dome-building volcano, leading to a sharp increase in the surface skin temperature at the top of the volcano - up to tens of degrees higher than ambient values. The majority of the simulations use an idealised topography, in order for the results to have general applicability to similar-sized volcanoes located in the tropics. The model is initialised with idealised atmospheric soundings, representative of qualitatively different atmospheric conditions from the rainy season in the tropics. The simulations reveal significant changes to the orographic flow response, depending upon the size of the temperature anomaly and the atmospheric conditions. The flow regime and characteristic features such as gravity waves, orographic clouds and orographic rainfall patterns can all be qualitatively changed by the surface heating anomaly. Orographic rainfall over the volcano can be significantly enhanced with increased temperature anomaly. The implications for the eruptive behaviour of the volcano and resulting secondary volcanic hazards will also be discussed.
Simulation and Comparison of Martian Surface Ionization Radiation
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Zeitlin, Cary; Hassler, Donald M.; Cucinotta, Francis A.
2013-01-01
The spectrum of energetic particle radiation and corresponding doses at the surface of Mars is being characterized by the Radiation Assessment Detector (RAD), one of ten science instruments on the Mars Science Laboratory (MSL) Curiosity Rover. The time series of dose rate for the first 300 Sols after landing on Mars on August 6, 2012 is presented here. For the comparison to RAD measurements of dose rate, Martian surface ionization radiation is simulated by utilizing observed space quantities. The GCR primary radiation spectrum is calculated by using the Badhwar-O'Neill 2011 (BO11) galactic cosmic ray (GCR) model, which has been developed by utilizing all balloon and satellite GCR measurements since 1955 and the newer 1997-2012 Advanced Composition Explorer (ACE) measurements. In the BO11 model, solar modulation of the GCR primary radiation spectrum is described in terms of the international smoothed sunspot number and a time delay function. For the transport of the impingent GCR primary radiation through Mars atmosphere, a vertical distribution of atmospheric thickness at each elevation is calculated using the vertical profiles of atmospheric temperature and pressure made by Mars Global Surveyor measurements. At Gale Crater in the southern hemisphere, the seasonal variation of atmospheric thickness is accounted for the daily atmospheric pressure measurements of the MSL Rover Environmental Monitoring Station (REMS) by using low- and high-density models for cool- and warm-season, respectively. The spherically distributed atmospheric distance is traced along the slant path, and the resultant directional shielding by Martian atmosphere is coupled with Curiosity vehicle for dose estimates. We present predictions of dose rate and comparison to the RAD measurements. The simulation agrees to within +/- 20% with the RAD measurements showing clearly the variation of dose rate by heliospheric conditions, and presenting the sensitivity of dose rate by atmospheric pressure, which has been found from the RAD experiments and driven by thermal tides on Martian surface.
A simulation of the OMEGA/Mars Express observations: Analysis of the atmospheric contribution
NASA Astrophysics Data System (ADS)
Melchiorri, R.; Drossart, P.; Fouchet, T.; Bézard, B.; Forget, F.; Gendrin, A.; Bibring, J. P.; Manaud, N.; OMEGA Team; Berthé, M.; Bibring, J.-P.; Langevin, Y.; Forni, O.; Gendrin, A.; Gondet, B.; Manaud, N.; Poulet, F.; Poulleau, G.; Soufflot, A.; Mangold, N.; Bonello, G.; Forget, F.; Bezard, B.; Combes, M.; Drossart, P.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Erard, S.; Bellucci, G.; Altieri, F.; Formisano, V.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Moroz, V.; Titov, D.; Zasova, L.; Pinet, P.; Schmitt, B.; Sotin, C.; Hauber, E.; Hoffmann, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbary, T.
2006-08-01
Spectral images of Mars obtained by the Mars Express/OMEGA experiment in the near infrared are the result of a complex combination of atmospheric, aerosol and ground features. Retrieving the atmospheric information from the data is important, not only to decorrelate mineralogical against atmospheric features, but also to retrieve the atmospheric variability. Once the illumination conditions have been taken into account, the main source of variation on the CO2 absorption is due to the altitude of the surface, which governs atmospheric pressure variation by more than an order of magnitude between the summit of Olympus Mons down to the bottom of Valles Marineris. In this article we present a simplified atmospheric spectral model without scattering, specially developed for the OMEGA observations, which is used to retrieve the local topography through the analysis of the 2.0μmCO2 band. OMEGA atmospheric observations increase the horizontal resolution compared to MOLA altimetry measurements, and therefore complement the mineralogical studies from the same instrument. Finally, residual variations of the pressure can be related to atmospheric structure variation.
NASA Astrophysics Data System (ADS)
Macris, C. A.; Badro, J.; Eiler, J. M.; Stolper, E. M.
2016-12-01
The aerodynamic levitation laser apparatus is an instrument in which spherical samples are freely floated on top of a stream of gas while being heated with a CO2laser to temperatures up to about 3500 °C. Laser heated samples, ranging in size from 0.5 to 3.5 mm diameter, can be levitated in a variety of chemically active or inert atmospheres in a gas-mixing chamber (e.g., Hennet et al. 2006; Pack et al. 2010). This allows for containerless, controlled-atmosphere, high temperature experiments with potential for applications in earth and planetary science. A relatively new technique, aerodynamic levitation has been used mostly for studies of the physical properties of liquids at high temperatures (Kohara et al. 2011), crystallization behavior of silicates and oxides (Arai et al. 2004), and to prepare glasses from compositions known to crystallize upon quenching (Tangeman et al. 2001). More recently, however, aerodynamic levitation with laser heating has been used as an experimental technique to simulate planetary processes. Pack et al. (2010) used levitation and melting experiments to simulate chondrule formation by using Ar-H2 as the flow gas, thus imposing a reducing atmosphere, resulting in reduction of FeO, Fe2O3, and NiO to metal alloys. Macris et al. (2015) used laser heating with aerodynamic levitation to reproduce the textures and diffusion profiles of major and minor elements observed in impact ejecta from the Australasian strewn field, by melting a powdered natural tektite mixed with 60-100 μm quartz grains on a flow of pure Ar gas. These experiments resulted in quantitative modeling of Si and Al diffusion, which allowed for interpretations regarding the thermal histories of natural tektites and their interactions with the surrounding impact vapor plume. Future experiments will employ gas mixing (CO, CO2, H2, O, Ar) in a controlled atmosphere levitation chamber to explore the range of fO2applicable to melt-forming impacts on other rocky planetary bodies, including the Moon and Mars. Arai et al., Rev. Sci. Instrum. 75, 2262-2265 (2004) Hennet et al., Rev. Sci. Instrum. 73, 124-129 (2001) Kohara et al., P. Natl. Acad. Sci.USA 108, 14780-14785 (2011) Macris et al., GSA Abstracts with Programs 47, 437 (2015) Pack et al., Geochem. T. 11, 1-16 (2010) Tangeman et al., Geophys. Res. Lett. 28, 2517-2520 (2001)
NASA/ESA CT-990 Spacelab simulation. Appendix A: The experiment operator
NASA Technical Reports Server (NTRS)
Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.
1976-01-01
A joint NASA/ESA endeavor was established to conduct an extensive spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Two experiment operators from Europe and two from the U.S. were selected to live aboard the aircraft along with a mission manager for a six-day period and operate the experiments in behalf of the principal scientists. This appendix discusses the experiment operators and their relationship to the joint mission under the following general headings: selection criteria, training programs, and performance. The performance of the proxy operators was assessed in terms of adequacy of training, amount of scientific data obtained, quality of data obtained, and reactions to problems that arose in experiment operation.
Comparison of OH Reactivity Instruments in the Atmosphere Simulation Chamber SAPHIR.
NASA Astrophysics Data System (ADS)
Fuchs, H.; Novelli, A.; Rolletter, M.; Hofzumahaus, A.; Pfannerstill, E.; Edtbauer, A.; Kessel, S.; Williams, J.; Michoud, V.; Dusanter, S.; Locoge, N.; Zannoni, N.; Gros, V.; Truong, F.; Sarda Esteve, R.; Cryer, D. R.; Brumby, C.; Whalley, L.; Stone, D. J.; Seakins, P. W.; Heard, D. E.; Schoemaecker, C.; Blocquet, M.; Fittschen, C. M.; Thames, A. B.; Coudert, S.; Brune, W. H.; Batut, S.; Tatum Ernest, C.; Harder, H.; Elste, T.; Bohn, B.; Hohaus, T.; Holland, F.; Muller, J. B. A.; Li, X.; Rohrer, F.; Kubistin, D.; Kiendler-Scharr, A.; Tillmann, R.; Andres, S.; Wegener, R.; Yu, Z.; Zou, Q.; Wahner, A.
2017-12-01
Two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016 to compare hydroxyl (OH) radical reactivity (kOH) measurements. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapor, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements is higher for instruments directly detecting hydroxyl radicals (OH), whereas the indirect Comparative Reactivity Method (CRM) has a higher limit of detection of 2s-1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapor or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected in the chamber to simulate urban and forested environments. Overall, the results show that instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to the reference were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds. In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied in order to account for known effects of, for example, deviations from pseudo-first order conditions, nitrogen oxides or water vapor on the measurement. Methods to derive these corrections vary among the different CRM instruments. Measurements by a flow-tube instrument combined with the direct detection of OH by chemical ionization mass spectrometry (CIMS) show limitations, but were accurate for low reactivity (< 15s -1) and low NO (< 5 ppbv) conditions.
A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI)
NASA Astrophysics Data System (ADS)
Fulchignoni, M.; Aboudan, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Flamini, E.; Gaborit, V.; Ghafoor, N.; Hathi, B.; Harri, A.-M.; Lehto, A.; Lion Stoppato, P. F.; Patel, M. R.; Zarnecki, J. C.
2004-08-01
We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over 30 km to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher. The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of 1 kHz. Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy. The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base "Luigi Broglio" in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of 32 km and released to perform a parachuted descent lasting 53 min, to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan. We present here the results of this experiment discussing their relevance in the analysis of the data which will be obtained during the Huygens mission at Titan.
NASA Technical Reports Server (NTRS)
Yang, Fanglin; Schlesinger, Michael E.; Andranova, Natasha; Zubov, Vladimir A.; Rozanov, Eugene V.; Callis, Lin B.
2003-01-01
The sensitivity of the middle atmospheric temperature and circulation to the treatment of mean- flow forcing due to breaking gravity waves was investigated using the University of Illinois at Urbana-Champaign 40-layer Mesosphere-Stratosphere-Troposphere General Circulation Model (MST-GCM). Three GCM experiments were performed. The gravity-wave forcing was represented first by Rayleigh friction, and then by the Alexander and Dunkerton (AD) parameterization with weak and strong breaking effects of gravity waves. In all experiments, the Palmer et al. parameterization was included to treat the breaking of topographic gravity waves in the troposphere and lower stratosphere. Overall, the experiment with the strong breaking effect simulates best the middle atmospheric temperature and circulation. With Rayleigh friction and the weak breaking effect, a large warm bias of up to 60 C was found in the summer upper mesosphere and lower thermosphere. This warm bias was linked to the inability of the GCM to simulate the reversal of the zonal winds from easterly to westerly crossing the mesopause in the summer hemisphere. With the strong breaking effect, the GCM was able to simulate this reversal, and essentially eliminated the warm bias. This improvement was the result of a much stronger meridional transport circulation that possesses a strong vertical ascending branch in the summer upper mesosphere, and hence large adiabatic cooling. Budget analysis indicates that 'in the middle atmosphere the forces that act to maintain a steady zonal-mean zonal wind are primarily those associated with the meridional transport circulation and breaking gravity waves. Contributions from the interaction of the model-resolved eddies with the mean flow are small. To obtain a transport circulation in the mesosphere of the UIUC MST-GCM that is strong enough to produce the observed cold summer mesopause, gravity-wave forcing larger than 100 m/s/day in magnitude is required near the summer mesopause. In the tropics, only with the AD parameterization can the model produce realistic semiannual oscillations.
Earth Adventure: Virtual Globe-based Suborbital Atmospheric Greenhouse Gases Exploration
NASA Astrophysics Data System (ADS)
Wei, Y.; Landolt, K.; Boyer, A.; Santhana Vannan, S. K.; Wei, Z.; Wang, E.
2016-12-01
The Earth Venture Suborbital (EVS) mission is an important component of NASA's Earth System Science Pathfinder program that aims at making substantial advances in Earth system science through measurements from suborbital platforms and modeling researches. For example, the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) project of EVS-1 collected measurements of greenhouse gases (GHG) on local to regional scales in the Alaskan Arctic. The Atmospheric Carbon and Transport - America (ACT-America) project of EVS-2 will provide advanced, high-resolution measurements of atmospheric profiles and horizontal gradients of CO2 and CH4.As the long-term archival center for CARVE and the future ACT-America data, the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) has been developing a versatile data management system for CARVE data to maximize their usability. One of these efforts is the virtual globe-based Suborbital Atmospheric GHG Exploration application. It leverages Google Earth to simulate the 185 flights flew by the C-23 Sherpa aircraft in 2012-2015 for the CARVE project. Based on Google Earth's 3D modeling capability and the precise coordinates, altitude, pitch, roll, and heading info of the aircraft recorded in every second during each flight, the application provides users accurate and vivid simulation of flight experiences, with an active 3D visualization of a C-23 Sherpa aircraft in view. This application provides dynamic visualization of GHG, including CO2, CO, H2O, and CH4 captured during the flights, at the same pace of the flight simulation in Google Earth. Photos taken during those flights are also properly displayed along the flight paths. In the future, this application will be extended to incorporate more complicated GHG measurements (e.g. vertical profiles) from the ACT-America project. This application leverages virtual globe technology to provide users an integrated framework to interactively explore information about GHG measurements and to link scientific measurements to the rich virtual planet environment provided by Google Earth. Positive feedbacks have been received from users. It provides a good example of extending basic data visualization into a knowledge discovery experience and maximizing the usability of Earth science observations.
NASA Astrophysics Data System (ADS)
Reith, F.; Keller, D. P.; Martin, T.; Oschlies, A.
2015-12-01
Marchetti [1977] proposed that CO2 could be directly injected into the deep ocean to mitigate its rapid build-up in the atmosphere. Although previous studies have investigated biogeochemical and climatic effects of injecting CO2 into the ocean, they have not looked at global carbon cycle feedbacks and backfluxes that are important for accounting. Using an Earth System Model of intermediate complexity we simulated the injection of CO2 into the deep ocean during a high CO2 emissions scenario. At seven sites 0.1 GtC yr-1 was injected at three different depths (3 separate experiments) between the years 2020 and 2120. After the 100-year injection period, our simulations continued until the year 3020 to assess the long-term dynamics. In addition, we investigated the effects of marine sediment feedbacks during the experiments by running the model with and without a sediment sub-model. Our results, in regards to efficiency (the residence time of injected CO2) and seawater chemistry changes, are similar to previous studies. However, from a carbon budget perspective the targeted cumulative atmospheric CO2 reduction of 70 GtC was never reached. This was caused by the atmosphere-to-terrestrial and/or atmosphere-to-ocean carbon fluxes (relative to the control run), which were effected by the reduction in atmospheric carbon. With respect to global oceanic carbon, the respective carbon cycle-climate feedbacks led to an even smaller efficiency than indicated by tracing the injected CO2. The ocean also unexpectedly took up carbon after the injection at 1500 m was stopped because of a deep convection event in the Southern Ocean. These findings highlighted that the accounting of CO2 injection would be challenging.
Simulation of atmospheric temperature effects on cosmic ray muon flux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tognini, Stefano Castro; Gomes, Ricardo Avelino
2015-05-15
The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting inmore » a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.« less
Sun, Guodong; Qin, Laian; Hou, Zaihong; Jing, Xu; He, Feng; Tan, Fengfu; Zhang, Silong
2018-03-19
In this paper, a new prototypical Scheimpflug lidar capable of detecting the aerosol extinction coefficient and vertical atmospheric transmittance at 1 km above the ground is described. The lidar system operates at 532 nm and can be used to detect aerosol extinction coefficients throughout an entire day. Then, the vertical atmospheric transmittance can be determined from the extinction coefficients with the equation of numerical integration in this area. CCD flat fielding of the image data is used to mitigate the effects of pixel sensitivity variation. An efficient method of two-dimensional wavelet transform according to a local threshold value has been proposed to reduce the Gaussian white noise in the lidar signal. Furthermore, a new iteration method of backscattering ratio based on genetic algorithm is presented to calculate the aerosol extinction coefficient and vertical atmospheric transmittance. Some simulations are performed to reduce the different levels of noise in the simulated signal in order to test the precision of the de-noising method and inversion algorithm. The simulation result shows that the root-mean-square errors of extinction coefficients are all less than 0.02 km -1 , and that the relative errors of the atmospheric transmittance between the model and inversion data are below 0.56% for all cases. The feasibility of the instrument and the inversion algorithm have also been verified by an optical experiment. The average relative errors of aerosol extinction coefficients between the Scheimpflug lidar and the conventional backscattering elastic lidar are 3.54% and 2.79% in the full overlap heights of two time points, respectively. This work opens up new possibilities of using a small-scale Scheimpflug lidar system for the remote sensing of atmospheric aerosols.
Molecular beam mass spectrometer development
NASA Technical Reports Server (NTRS)
Brock, F. J.; Hueser, J. E.
1976-01-01
An analytical model, based on the kinetics theory of a drifting Maxwellian gas is used to determine the nonequilibrium molecular density distribution within a hemispherical shell open aft with its axis parallel to its velocity. The concept of a molecular shield in terrestrial orbit above 200 km is also analyzed using the kinetic theory of a drifting Maxwellian gas. Data are presented for the components of the gas density within the shield due to the free stream atmosphere, outgassing from the shield and enclosed experiments, and atmospheric gas scattered off a shield orbiter system. A description is given of a FORTRAN program for computating the three dimensional transition flow regime past the space shuttle orbiter that employs the Monte Carlo simulation method to model real flow by some thousands of simulated molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, Donald D.; Gowardhan, Akshay; Cameron-Smith, Philip
2015-08-08
Here, a computational Bayesian inverse technique is used to quantify the effects of meteorological inflow uncertainty on tracer transport and source estimation in a complex urban environment. We estimate a probability distribution of meteorological inflow by comparing wind observations to Monte Carlo simulations from the Aeolus model. Aeolus is a computational fluid dynamics model that simulates atmospheric and tracer flow around buildings and structures at meter-scale resolution. Uncertainty in the inflow is propagated through forward and backward Lagrangian dispersion calculations to determine the impact on tracer transport and the ability to estimate the release location of an unknown source. Ourmore » uncertainty methods are compared against measurements from an intensive observation period during the Joint Urban 2003 tracer release experiment conducted in Oklahoma City.« less
NASA Astrophysics Data System (ADS)
Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.
1988-03-01
A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.
Extended use of two crossed Babinet compensators for wavefront sensing in adaptive optics
NASA Astrophysics Data System (ADS)
Paul, Lancelot; Kumar Saxena, Ajay
2010-12-01
An extended use of two crossed Babinet compensators as a wavefront sensor for adaptive optics applications is proposed. This method is based on the lateral shearing interferometry technique in two directions. A single record of the fringes in a pupil plane provides the information about the wavefront. The theoretical simulations based on this approach for various atmospheric conditions and other errors of optical surfaces are provided for better understanding of this method. Derivation of the results from a laboratory experiment using simulated atmospheric conditions demonstrates the steps involved in data analysis and wavefront evaluation. It is shown that this method has a higher degree of freedom in terms of subapertures and on the choice of detectors, and can be suitably adopted for real-time wavefront sensing for adaptive optics.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Eagleson, Peter S.; Broecker, Wallace S.
1988-01-01
A capability is developed for monitoring tracer water movement in the three-dimensional Goddard Institute for Space Science Atmospheric General Circulation Model (GCM). A typical experiment with the tracer water model follows water evaporating from selected grid squares and determines where this water first returns to the Earth's surface as precipitation or condensate, thereby providing information on the lateral scales of hydrological transport in the GCM. Through a comparison of model results with observations in nature, inferences can be drawn concerning real world water transport. Tests of the tracer water model include a comparison of simulated and observed vertically-integrated vapor flux fields and simulations of atomic tritium transport from the stratosphere to the oceans. The inter-annual variability of the tracer water model results is also examined.
Weather extremes in very large, high-resolution ensembles: the weatherathome experiment
NASA Astrophysics Data System (ADS)
Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.
2011-12-01
Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.
Electro-optical propagation measurements during the MINOTAUROS experiment in the Cretan Sea
NASA Astrophysics Data System (ADS)
Eisele, Christian; Sucher, Erik; Wendelstein, Norbert; Stein, Karin
2017-09-01
We report on propagation measurements performed during the MINOTAUROS (Maritime INvestigations On Targets and Atmosphere Under Reduction of Optical Signatures) experiment on Crete, Greece, in late summer of 2016. The field trial has been organized by NATO STO Task Group SET-211 on Naval Platform Protection in the EO/IR Domain with strong support of the Hellenic Navy. Besides meteorological measurements, the experiment included measurements of turbulence using a boundary layer scintillometer on a slant path (d = 8 km) across the entry of Souda Bay (Crete). These are compared to values obtained by a 3D sonic anemometer, which was deployed at one end of the propagation path. Refraction effects have been measured using a 17.5 km path from Drapanos to Gerani. Two meteorological buoys along the path were used to gather information about the atmospheric conditions. An overview and a first analysis of the results are presented. The refraction measurements are compared to simulations using MORTICIA (Model of Range and Transmission in Coastal Inland Atmospheres), a new software tool currently under development in a collaboration of Fraunhofer IOSB and TNO.
S.A.M., the Italian Martian Simulation Chamber
NASA Astrophysics Data System (ADS)
Galletta, G.; Ferri, F.; Fanti, G.; D'Alessandro, M.; Bertoloni, G.; Pavarin, D.; Bettanini, C.; Cozza, P.; Pretto, P.; Bianchini, G.; Debei, S.
2006-12-01
The Martian Environment Simulator (SAM “Simulatore di Ambiente Marziano”) is a interdisciplinary project of Astrobiology done at University of Padua. The research is aimed to the study of the survival of the microorganisms exposed to the “extreme” planetary environment. The facility has been designed in order to simulate Mars’ environmental conditions in terms of atmospheric pressure, temperature cycles and UV radiation dose. The bacterial cells, contained into dedicated capsules, will be exposed to thermal cycles simulating diurnal and seasonal Martian cycles. The metabolism of the different biological samples will be analysed at different phases of the experiment, to study their survival and eventual activity of protein synthesis (mortality, mutations and capability of DNA reparing). We describe the experimental facility and provide the perspectives of the biological experiments we will perform in order to provide hints on the possibility of life on Mars either autochthonous or imported from Earth.
NASA Astrophysics Data System (ADS)
Drumond, Anita Rodrigues De Moraes; Ambrizzi, Tércio
2005-06-01
Precipitation deficits were observed over southeastern, northeastern and Central Brazil during the 2001 Austral Summer. They contributed to the worsening of the energy crisis that was occurring in the country. A low-level anomalous anticyclonic circulation observed over eastern Brazil enhanced the deviation of moisture transport that usually occurs from the Amazon Basin to southeastern Brazil and inhibited the occurrence of South Atlantic Convergence Zone events in that period. However, an anomalous low-level northerly moisture flux was observed over the La Plata Basin, and positive precipitation anomalies occurred over Bolivia, Paraguay, northeastern Argentina and southern Brazil. Using the ensemble technique, a numerical study was carried out to investigate the role of different sea surface temperature (SST) forcings observed over this anomalous South American atmospheric circulation. Reynolds SST monthly means were used as boundary conditions to study the influence of South Atlantic, South Indian, South Pacific and Equatorial Pacific oceans. The simulations were run from September 2000 to April 2001 using the Community Climate Model version 3.6 General Circulation Model. Ten integrations using different initial conditions were done to each experiment. Numerical experiments suggested that the combined influence of South Pacific and Equatorial Pacific oceans could be responsible for the drought observed over Central Brazil. These experiments simulated the low-level anticyclonic anomaly observed over eastern Brazil. However, both experiments have poorly reproduced the intensity of the anomalous low-level northerly moisture flux observed over the La Plata Basin. Therefore, the intensity of the simulated precipitation anomalies over the subtropical regions was much weaker than observed.
Optical phase aberration generation using a Liquid Crystal Spatial Light Modulator
NASA Astrophysics Data System (ADS)
Wilcox, Christopher C.
In this dissertation, a Liquid Crystal Spatial Light Modulator is used to simulate optical aberrations in an optical system. Any optical aberration can be simulated through the use of software developed for this project. A new method of simulating atmospheric turbulence is also presented. The Earth's atmosphere is a large, non-linear, non-homogeneous medium that is constantly flowing in a random fashion that affects light as it propagates through it. The Kolmogorov model for atmospheric turbulence is a description of the nature of the wavefront perturbations introduced by the atmosphere and it is one of the most accepted models. It is supported by a variety of experimental measurements and research and is quite widely used in simulations for atmospheric imaging. This model provides a statistical description of how random fluctuations in humidity and temperature affect the refractive index of the atmosphere for imaging through atmospheric turbulence. These refractive index fluctuations in turn affect the propagation of light through the atmosphere. An adaptive optical system can be developed to correct these wavefront perturbations for an optical system. However, prior to deployment, an adaptive optical system requires calibration and full characterization in the laboratory. Creating realistic atmospheric simulations is often expensive and computationally intensive using common techniques. To combat some of these issues often the temporal properties in the simulation are neglected. This dissertation outlines a new method developed for generating atmospheric turbulence and a testbed that simulates its aberrations far more inexpensively and with greater fidelity using a Liquid Crystal Spatial Light Modulator. This system allows the simulation of atmospheric seeing conditions ranging from very poor to very good and different algorithms may be easily employed on the device for comparison. These simulations can be dynamically generated and modified very quickly and easily. Using a Liquid Crystal Spatial Light Modulator to induce aberrations in an imaging system is not limited to simulating atmospheric turbulence. Any turbulence model can be used either statically or dynamically for multiple applications.
EOS Laser Atmosphere Wind Sounder (LAWS) investigation
NASA Technical Reports Server (NTRS)
1996-01-01
In this final report, the set of tasks that evolved from the Laser Atmosphere Wind Sounder (LAWS) Science Team are reviewed, the major accomplishments are summarized, and a complete set of resulting references provided. The tasks included preparation of a plan for the LAWS Algorithm Development and Evolution Laboratory (LADEL); participation in the preparation of a joint CNES/NASA proposal to build a space-based DWL; involvement in the Global Backscatter Experiments (GLOBE); evaluation of several DWL concepts including 'Quick-LAWS', SPNDL and several direct detection technologies; and an extensive series of system trade studies and Observing System Simulation Experiments (OSSE's). In this report, some of the key accomplishments are briefly summarized with reference to interim reports, special reports, conference/workshop presentations, and publications.
NASA Technical Reports Server (NTRS)
Ehrenfreund, P.; Boon, J. J.; Commandeur, J.; Sagan, C.; Thompson, W. R.; Khare, B.
1995-01-01
Comparative pyrolysis mass spectrometric data of Titan aerosol analogs, called 'tholins', are presented. The Titan tholins were produced in the laboratory at Cornell by irradiation of simulated Titan atmospheres with high energy electrons in plasma discharge. Mass-spectrometry measurements were performed at FOM of the solid phase of various tholins by Curie-point pyrolysis Gas-Chromatography/Mass-Spectrometry (GCMS) and by temperature resolved in-source Pyrolysis Mass-Spectrometry to reveal the composition and evolution temperature of the dissociation products. The results presented here are used to further define the ACP (Aerosol Collector Pyrolyser)-GCMS experiment and provide a basis for modelling of aerosol composition on Titan and for the iterpretation of Titan atmosphere data from the Huygens probe in the future.
Atmospheric Constituents in GEOS-5: Components for an Earth System Model
NASA Technical Reports Server (NTRS)
Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah
2011-01-01
The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.
Dicarboxylic acids from electric discharge
NASA Technical Reports Server (NTRS)
Zeitman, B.; Chang, S.; Lawless, J. G.
1974-01-01
An investigation was conducted concerning the possible synthesis of a suite of dicarboxylic acids similar to that found in the Murchison meteorite. The investigation included the conduction of a chemical evolution experiment which simulated electric discharge through the primitive atmosphere of the earth. The suite of dicarboxylic acids obtained in the electric discharge experiment is similar to that of the Murchison meteorite, except for the fact that 2-chlorosuccinic acid is present in the spark discharge.
Utilization of VAS satellite data in the initialization of an oceanic cyclogenesis simulation
NASA Technical Reports Server (NTRS)
Douglas, Sharon G.; Warner, Thomas T.
1987-01-01
A series of experiments was performed to test various methods of incorporating Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS)-sounding data into the initial conditions of the Penn State University/National Center for Atmospheric mesoscale model. The VAS data for this ocean-cyclogenesis case consist of 110 irregularly distributed temperature and humidity soundings located over the North Pacific Ocean and apply at approximately 1200 GMT November 10, 1981. Various methods of utilizing VAS data in the initial condition of a mesoscale model were evaluated.
Utilization of VAS satellite data in the initialization of an oceanic-cyclogenesis simulation
NASA Technical Reports Server (NTRS)
Douglas, Sharon G.; Warner, Thomas T.
1986-01-01
A series of experiments was performed to test various method of incorporating Visible Infrared Spin Scan Radiometer Atmospheric Sounder (VAS)-sounding data into the initial conditions of the Penn State University/National Center for Atmospheric mesoscale model. The VAS data for this ocean-cyclogenesis case consist of 110 irregularly distributed temperature and humidity soundings located over the North Pacific Ocean and apply at approximately 1200 GMT 10 November 1981. Various methods of utilizing VAS data in the initial condition of a mesoscale model were evaluated.
Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus
NASA Astrophysics Data System (ADS)
Boezio, M.; Carlson, P.; Francke, T.; Weber, N.; Suffert, M.; Hof, M.; Menn, W.; Simon, M.; Stephens, S. A.; Bellotti, R.; Cafagna, F.; Circella, M.; de Marzo, C.; Finetti, N.; Papini, P.; Piccardi, S.; Spillantini, P.; Ricci, M.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Barbiellini, G.; Schiavon, P.; Vacchi, A.; Zampa, N.; Grimani, C.; Mitchell, J. W.; Ormes, J. F.; Streitmatter, R. E.; Bravar, U.; Golden, R. L.; Stochaj, S. J.
2000-08-01
A new measurement of the momentum spectra of both positive and negative muons as a function of atmospheric depth was made by the balloon-borne experiment CAPRICE94. The data were collected during ground runs in Lynn Lake on 19 and 20 July 1994 and during the balloon flight on 8 and 9 August 1994. We present results that cover the momentum intervals 0.3-40 GeV/c for μ - and 0.3-2 GeV/c for μ +, for atmospheric depths from 3.3 to 1000 g/cm2, respectively. Good agreement is found with previous measurements for high momenta, while at momenta below 1 GeV/c we find latitude dependent geomagnetic effects. These measurements are important cross-checks for the simulations carried out to calculate the atmospheric neutrino fluxes and to understand the observed atmospheric neutrino anomaly.
NASA Astrophysics Data System (ADS)
Seo, Eunkyo; Lee, Myong-In; Jeong, Jee-Hoon; Koster, Randal D.; Schubert, Siegfried D.; Kim, Hye-Mi; Kim, Daehyun; Kang, Hyun-Suk; Kim, Hyun-Kyung; MacLachlan, Craig; Scaife, Adam A.
2018-05-01
This study uses a global land-atmosphere coupled model, the land-atmosphere component of the Global Seasonal Forecast System version 5, to quantify the degree to which soil moisture initialization could potentially enhance boreal summer surface air temperature forecast skill. Two sets of hindcast experiments are performed by prescribing the observed sea surface temperature as the boundary condition for a 15-year period (1996-2010). In one set of the hindcast experiments (noINIT), the initial soil moisture conditions are randomly taken from a long-term simulation. In the other set (INIT), the initial soil moisture conditions are taken from an observation-driven offline Land Surface Model (LSM) simulation. The soil moisture conditions from the offline LSM simulation are calibrated using the forecast model statistics to minimize the inconsistency between the LSM and the land-atmosphere coupled model in their mean and variability. Results show a higher boreal summer surface air temperature prediction skill in INIT than in noINIT, demonstrating the potential benefit from an accurate soil moisture initialization. The forecast skill enhancement appears especially in the areas in which the evaporative fraction—the ratio of surface latent heat flux to net surface incoming radiation—is sensitive to soil moisture amount. These areas lie in the transitional regime between humid and arid climates. Examination of the extreme 2003 European and 2010 Russian heat wave events reveal that the regionally anomalous soil moisture conditions during the events played an important role in maintaining the stationary circulation anomalies, especially those near the surface.
Climate simulations and projections with a super-parameterized climate model
Stan, Cristiana; Xu, Li
2014-07-01
The mean climate and its variability are analyzed in a suite of numerical experiments with a fully coupled general circulation model in which subgrid-scale moist convection is explicitly represented through embedded 2D cloud-system resolving models. Control simulations forced by the present day, fixed atmospheric carbon dioxide concentration are conducted using two horizontal resolutions and validated against observations and reanalyses. The mean state simulated by the higher resolution configuration has smaller biases. Climate variability also shows some sensitivity to resolution but not as uniform as in the case of mean state. The interannual and seasonal variability are better represented in themore » simulation at lower resolution whereas the subseasonal variability is more accurate in the higher resolution simulation. The equilibrium climate sensitivity of the model is estimated from a simulation forced by an abrupt quadrupling of the atmospheric carbon dioxide concentration. The equilibrium climate sensitivity temperature of the model is 2.77 °C, and this value is slightly smaller than the mean value (3.37 °C) of contemporary models using conventional representation of cloud processes. As a result, the climate change simulation forced by the representative concentration pathway 8.5 scenario projects an increase in the frequency of severe droughts over most of the North America.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, B.; Schneider, E.K.
1995-10-01
Two surface wind stress datasets for 1979-91, one based on observations and the other from an investigation of the COLA atmospheric general circulation model (AGCM) with prescribed SST, are used to drive the GFDL ocean general circulation model. These two runs are referred to as the control and COLA experiments, respectively. Simulated SST and upper-ocean heat contents (HC) in the tropical Pacific Ocean are compared with observations and between experiments. Both simulation reproduced the observed mean SST and HC fields as well as their annual cycles realistically. Major errors common to both runs are colder than observed SST in themore » eastern equatorial ocean and HC in the western Pacific south of the equator, with errors generally larger in the COLA experiment. New errors arising from the AGCM wind forcing include higher SST near the South American coast throughout the year and weaker HC gradients along the equator in boreal spring. The former is associated with suppressed coastal upwelling by weak along shore AGCM winds, and the latter is caused by weaker equatorial easterlies in boreal spring. The low-frequency ENSO fluctuations are also realistic for both runs. Correlations between the observed and simulated SST anomalies from the COLA simulation are as high as those from the control run in the central equatorial Pacific. A major problem in the COLA simulation is the appearance of unrealistic tropical cold anomalies during the boreal spring of mature El Nino years. These anomalies propagate along the equator from the western Pacific to the eastern coast in about three months, and temporarily eliminate the warm SST and HC anomalies in the eastern Pacific. This erroneous oceanic response in the COLA simulation is caused by a reversal of the westerly wind anomalies on the equator, associated with an unrealistic southward shift of the ITCZ in boreal spring during El Nino events. 66 refs., 16 figs.« less
NASA Astrophysics Data System (ADS)
Keisling, B. A.; Deconto, R. M.
2017-12-01
Today the Greenland Ice Sheet loses mass via both oceanic and atmospheric processes. However, the relative importance of these mass balance components is debated, especially their potential impact on ongoing and future mass imbalance. Discerning the impact of oceanic versus atmospheric forcing during past periods of mass loss provides potential insight into the future behavior of the ice sheet. Here we present an ensemble of Greenland Ice Sheet simulations of the last deglaciation, designed to assess separately the roles of the ocean and the atmosphere in driving mass loss over the last twenty thousand years. We use twenty-eight different ocean forcing scenarios along with a cutting-edge reconstruction of time-evolving atmospheric conditions based on climate model output and δ15N-based temperature reconstructions to generate a range of ice-sheet responses during the deglaciation. We then compare the simulated timing of ice-retreat in individual catchments with estimates based on both 10Be (exposure) and 14C (minimum-limiting) dates. These experiments allow us to identify the ocean forcing scenario that best match the data on a local-to-regional (i.e., 100-1000 km) scales, providing an assessment of the relative importance of ocean and atmospheric forcing components around the periphery of Greenland. We use these simulations to quantify the importance of the three major mass balance terms (calving, oceanic melting, and surface melting) and assess the uncertainty of the relative influence of these factors during the most recent periods of major ice loss. Our results show that mass balance components around different sectors of the ice sheet respond differently to forcing, with oceanic components driving the majority of retreat in south and east Greenland and atmospheric forcing dominating in west and north Greenland In addition, we target three areas at high spatial resolution ( 1 km) around Greenland currently undergoing substantial change (Jakobshavn, Petermann, and Nioghalvfjerdsfjord/Zakariae) to directly compare simulated deglacial retreat rates with those implied by submarine and subaerial moraine systems.
NASA Astrophysics Data System (ADS)
Okajima, S.; Nakamura, H.; Nishii, K.; Miyasaka, T.; Kuwano-Yoshida, A.; Taguchi, B.
2016-02-01
A decadal-scale warm SST anomaly observed in the North Pacific subarctic frontal zone (SAFZ) tends to accompany a basin-scale anticyclonic anomaly in the troposphere that peaks in January. A set of sensitivity experiments conducted with an AGCM simulates an anticyclonic ensemble response over the North Pacific in January. As observed, the simulated anticyclonic response is in equivalent barotropic structure and maintained mainly through energy conversion from the ensemble mean circulation realized under the climatological SST, suggesting that the anomaly may have a characteristic of a dynamical mode. Conversion of both available potential energy (APE) and kinetic energy (KE) from the mean flow is important for the observed anomaly, while only the former is important for the model response. This is because the model response is located to the north of the jet core region whereas the observed anomaly is straddling the jet exit region, which appears to be in correspondence to the northwestward displacement of the center of the dominant atmospheric internal variability in our model relative to the observed center. Transient eddy feedback forcing also acts to maintain the observed anomaly rather efficiently, while its efficiency is much lower for the simulated response, which seems to be consistent with the poleward displacement of the anticyclonic response from the jet and stormtrack axes. A multi-decadal integration of our coupled GCM also suggests that atmospheric internal variability may be important for determining atmospheric response to the decadal SST variability of the SAFZ.
Generalized math model for simulation of high-altitude balloon systems
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.
1985-01-01
Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.
Influence of El Nino Southern Oscillation on the Mesospheric Temperature
NASA Technical Reports Server (NTRS)
Li, Tao; Calvo, Natalia; Yue, Jia; Dou, Xiankang; Russell, J. M, III; Mlynczak, M. G.; She, Chiao-Yao; Xue, Xianghui
2013-01-01
Using the middle atmosphere temperature data set observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite experiment between 2002 and 2012, and temperatures simulated by the Whole Atmospheric Community Climate Model version 3.5 (WACCM3.5) between 1953 and 2005, we studied the influence of El Niño-Southern Oscillation (ENSO) on middle atmosphere temperature during the Northern Hemisphere (NH) wintertime. For the first time, a significant winter temperature response to ENSO in the middle mesosphere has been observed, with an anomalous warming of approximately 1.0 K/MEI (Multivariate ENSO Index) in the tropics and an anomalous cooling of approximately 2.0 K/MEI in the NH middle latitudes. The observed temperature responses to ENSO in the mesosphere are opposite to those in the stratosphere, in agreement with previous modeling studies. Temperature responses to ENSO observed by SABER show similar patterns to those simulated by the WACCM3.5 model. Analysis of the WACCM3.5 residual mean meridional circulation response to ENSO reveals a significant downwelling in the tropical mesosphere and upwelling in the NH middle and high latitudes during warm ENSO events, which is mostly driven by anomalous eastward gravity wave forcing in the NH mesosphere.
Multifractal spectra in homogeneous shear flow
NASA Technical Reports Server (NTRS)
Deane, A. E.; Keefe, L. R.
1988-01-01
Employing numerical simulations of 3-D homogeneous shear flow, the associated multifractal spectra of the energy dissipation, scalar dissipation and vorticity fields were calculated. The results for (128) cubed simulations of this flow, and those obtained in recent experiments that analyzed 1- and 2-D intersections of atmospheric and laboratory flows, are in some agreement. A two-scale Cantor set model of the energy cascade process which describes the experimental results from 1-D intersections quite well, describes the 3-D results only marginally.
Investigation of models for large-scale meteorological prediction experiments
NASA Technical Reports Server (NTRS)
Spar, J.
1981-01-01
An attempt is made to compute the contributions of various surface boundary conditions to the monthly mean states generated by the 7 layer, 8 x 10 GISS climate model (Hansen et al., 1980), and also to examine the influence of initial conditions on the model climate simulations. Obvious climatic controls as the shape and rotation of the Earth, the solar radiation, and the dry composition of the atmosphere are fixed, and only the surface boundary conditions are altered in the various climate simulations.
The atmosphere simulation chamber SAPHIR: a tool for the investigation of photochemistry.
NASA Astrophysics Data System (ADS)
Brauers, T.; Bohn, B.; Johnen, F.-J.; Rohrer, R.; Rodriguez Bares, S.; Tillmann, R.; Wahner, A.
2003-04-01
On the campus of the Forschungszentrum Jülich we constructed SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) which was accomplished in fall 2001. The chamber consists of a 280-m^3 double-wall Teflon bag of cylindrical shape that is held by a steel frame. Typically 75% of the outside actinic flux (290~nm~--~420~nm) is available inside the chamber. A louvre system allows switching between full sun light and dark within 40 s giving the opportunity to study relaxation processes of the photo chemical system. The SAPHIR chamber is equipped with a comprehensive set of sensitive instruments including the measurements of OH, HO_2, CO, hydrocarbons, aldehydes, nitrogen-oxides and solar radiation. Moreover, the modular concept of SAPHIR allows fast and flexible integration of new instruments and techniques. In this paper we will show the unique and new features of the SAPHIR chamber, namely the clean air supply and high purity water vapor supply providing a wide range of trace gas concentrations being accessible through the experiments. We will also present examples from the first year of SAPHIR experiment showing the scope of application from high quality instrument inter-comparison and kinetic studies to the simulation of complex mixtures of trace gases at ambient concentrations.
NASA Technical Reports Server (NTRS)
Lang, Steve; Tao, W.-K.; Simpson, J.; Ferrier, B.; Einaudi, Franco (Technical Monitor)
2001-01-01
Six different convective-stratiform separation techniques, including a new technique that utilizes the ratio of vertical and terminal velocities, are compared and evaluated using two-dimensional numerical simulations of a tropical [Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE)] and midlatitude continental [Preliminary Regional Experiment for STORM-Central (PRESTORM)] squall line. The simulations are made using two different numerical advection schemes: 4th order and positive definite advection. Comparisons are made in terms of rainfall, cloud coverage, mass fluxes, apparent heating and moistening, mean hydrometeor profiles, CFADs (Contoured Frequency with Altitude Diagrams), microphysics, and latent heating retrieval. Overall, it was found that the different separation techniques produced results that qualitatively agreed. However, the quantitative differences were significant. Observational comparisons were unable to conclusively evaluate the performance of the techniques. Latent heating retrieval was shown to be sensitive to the use of separation technique mainly due to the stratiform region for methods that found very little stratiform rain. The midlatitude PRESTORM simulation was found to be nearly invariant with respect to advection type for most quantities while for TOGA COARE fourth order advection produced numerous shallow convective cores and positive definite advection fewer cells that were both broader and deeper penetrating above the freezing level.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Cui, Shengcheng; Yang, Jun; Gao, Haiyang; Liu, Chao; Zhang, Zhibo
2017-03-01
We present a novel hybrid scattering order-dependent variance reduction method to accelerate the convergence rate in both forward and backward Monte Carlo radiative transfer simulations involving highly forward-peaked scattering phase function. This method is built upon a newly developed theoretical framework that not only unifies both forward and backward radiative transfer in scattering-order-dependent integral equation, but also generalizes the variance reduction formalism in a wide range of simulation scenarios. In previous studies, variance reduction is achieved either by using the scattering phase function forward truncation technique or the target directional importance sampling technique. Our method combines both of them. A novel feature of our method is that all the tuning parameters used for phase function truncation and importance sampling techniques at each order of scattering are automatically optimized by the scattering order-dependent numerical evaluation experiments. To make such experiments feasible, we present a new scattering order sampling algorithm by remodeling integral radiative transfer kernel for the phase function truncation method. The presented method has been implemented in our Multiple-Scaling-based Cloudy Atmospheric Radiative Transfer (MSCART) model for validation and evaluation. The main advantage of the method is that it greatly improves the trade-off between numerical efficiency and accuracy order by order.
Spectral cumulus parameterization based on cloud-resolving model
NASA Astrophysics Data System (ADS)
Baba, Yuya
2018-02-01
We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.
The THS Experiment: Simulating Titans Atmospheric Chemistry at Low Temperature (200K)
NASA Technical Reports Server (NTRS)
Sciamma-O'Brien, Ella; Upton, Kathleen; Beauchamp, Jack L.; Salama, Farid; Contreras, Cesar Sanchez; Bejaoui, Salma; Foing, Bernard; Pascale, Ehrenfreund
2015-01-01
In Titan's atmosphere, composed mainly of N2 (95-98%) and CH4 (2-5%), a complex chemistry occurs at low temperature, and leads to the production of heavy organic molecules and subsequently solid aerosols. Here, we used the Titan Haze Simulation (THS) experiment, an experimental setup developed at the NASA Ames COSmIC simulation facility to study Titan's atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature ( approximately 150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (approximately 200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas- and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics. A recent mass spectrometry[1] study of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan's atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini's CAPS-IBS instrument. The results of a complementary study of the solid phase are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited on various substrates for ex situ analysis. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates. A mass spectrometry analysis of the solid phase has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile functional groups, showing evidence of nitrogen chemistry. These complementary studies show the high potential of THS to better understand Titan's chemistry and the origin of aerosol formation.
Uncertain soil moisture feedbacks in model projections of Sahel precipitation
NASA Astrophysics Data System (ADS)
Berg, Alexis; Lintner, Benjamin R.; Findell, Kirsten; Giannini, Alessandra
2017-06-01
Given the uncertainties in climate model projections of Sahel precipitation, at the northern edge of the West African Monsoon, understanding the factors governing projected precipitation changes in this semiarid region is crucial. This study investigates how long-term soil moisture changes projected under climate change may feedback on projected changes of Sahel rainfall, using simulations with and without soil moisture change from five climate models participating in the Global Land Atmosphere Coupling Experiment-Coupled Model Intercomparison Project phase 5 experiment. In four out of five models analyzed, soil moisture feedbacks significantly influence the projected West African precipitation response to warming; however, the sign of these feedbacks differs across the models. These results demonstrate that reducing uncertainties across model projections of the West African Monsoon requires, among other factors, improved mechanistic understanding and constraint of simulated land-atmosphere feedbacks, even at the large spatial scales considered here.
Uncertainties in modelling the climate impact of irrigation
NASA Astrophysics Data System (ADS)
de Vrese, Philipp; Hagemann, Stefan
2017-11-01
Irrigation-based agriculture constitutes an essential factor for food security as well as fresh water resources and has a distinct impact on regional and global climate. Many issues related to irrigation's climate impact are addressed in studies that apply a wide range of models. These involve substantial uncertainties related to differences in the model's structure and its parametrizations on the one hand and the need for simplifying assumptions for the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In order to estimate possible uncertainties with regard to the model's more general structure, we compared the climate impact of irrigation between three simulations that use different schemes for the land-surface-atmosphere coupling. Here, it can be shown that the choice of coupling scheme does not only affect the magnitude of possible impacts but even their direction. For example, when using a scheme that does not explicitly resolve spatial subgrid scale heterogeneity at the surface, irrigation reduces the atmospheric water content, even in heavily irrigated regions. Contrarily, in simulations that use a coupling scheme that resolves heterogeneity at the surface or even within the lowest layers of the atmosphere, irrigation increases the average atmospheric specific humidity. A second experiment targeted possible uncertainties related to the representation of irrigation characteristics. Here, in four simulations the irrigation effectiveness (controlled by the target soil moisture and the non-vegetated fraction of the grid box that receives irrigation) and the timing of delivery were varied. The second experiment shows that uncertainties related to the modelled irrigation characteristics, especially the irrigation effectiveness, are also substantial. In general the impact of irrigation on the state of the land surface is more than three times larger when assuming a low irrigation effectiveness than when a high effectiveness is assumed. For certain variables, such as the vertically integrated water vapour, the impact is almost an order of magnitude larger. The timing of irrigation also has non-negligible effects on the simulated climate impacts and it can strongly alter their seasonality.
A Simulation of the Interaction of Acid Rain with Soil Minerals
ERIC Educational Resources Information Center
Schilling, Amber L.; Hess, Kenneth R.; Leber, Phyllis A.; Yoder, Claude H.
2004-01-01
The atmospheric issue of acid rains is subjected to a five-part laboratory experiment by concentrating on the chemistry of the infiltration process of acid rainwater through soils. This procedure of quantitative scrutiny helps students realize the efficacy of soil minerals in the consumption of surplus acidity in rainwater.
Martian Dust Devils: Laboratory Simulations of Particle Threshold
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce
2003-01-01
An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.
New particle formation leads to cloud dimming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Ryan C.; Crippa, Paola; Matsui, Hitoshi
New particle formation (NPF), nucleation of condensable vapors to the solid or liquid phase, is a significant source of atmospheric aerosol particle number concentrations. With sufficient growth, these nucleated particles may be a significant source of cloud condensation nuclei (CCN), thus altering cloud albedo, structure, and lifetimes, and insolation reaching the Earth's surface. Herein we present one of the first numerical experiments to quantify the impact of NPF on cloud radiative properties that is conducted at a convection permitting resolution and that explicitly simulates cloud droplet number concentrations. Consistent with observations, these simulations suggest that in spring over the Midwesternmore » U.S.A., NPF occurs frequently and on regional scales. However, the simulations suggest that NPF is not associated with enhancement of regional cloud albedos as would be expected from an increase of CCN. These simulations indicate that NPF reduces ambient sulfuric acid concentrations sufficiently to inhibit growth of preexisting particles to CCN sizes. This reduction in CCN-sized particles reduces cloud albedo, resulting in a domain average positive top of atmosphere cloud radiative forcing of 10 W m-2 and up to ~ 50 W m-2 in individual grid cells relative to a simulation in which NPF is excluded.« less
Response of terrestrial microorganisms to a simulated Martian environment.
Foster, T L; Winans, L; Casey, R C; Kirschner, L E
1978-01-01
Soil samples from Cape Canaveral were subjected to a simulated Martian environment and assayed periodically over 45 days to determine the effect of various environmental parameters on bacterial populations. The simulated environment was based on the most recent available data, prior to the Viking spacecraft, describing Martian conditions and consisted of a pressure of 7 millibars, an atmosphere of 99.9% CO2 and 0.1% O2, a freeze-thaw cycle of -65 degrees C for 16 h and 24 degrees C for 8 h, and variable moisture and nutrients. Reduced pressure had a significant effect, reducing growth under these conditions. Slight variations in gaseous composition of the simulated atmosphere had negligible effect on growth. The freeze-thaw cycle did not inhibit growth but did result in a slower rate of decline after growth had occurred. Dry samples exhibited no change during the 45-day experiment, indicating that the simulated Martian environment was not toxic to bacterial populations. Psychotrophic organisms responded more favorably to this environment than mesophiles, although both types exhibited increases of approximately 3 logs in 7 to 14 days when moisture and nutrients were available. PMID:646358
Impacts of land use/cover classification accuracy on regional climate simulations
NASA Astrophysics Data System (ADS)
Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.
2007-03-01
Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.
Inferring the unobserved chemical state of the atmosphere: idealized data assimilation experiments
NASA Astrophysics Data System (ADS)
Knote, C. J.; Barré, J.; Eckl, M.; Hornbrook, R. S.; Wiedinmyer, C.; Emmons, L. K.; Orlando, J. J.; Tyndall, G. S.; Arellano, A. F.
2015-12-01
Chemical data assimilation in numerical models of the atmosphere is a venture into uncharted territory, into a world populated by a vast zoo of chemical compounds with strongly non-linear interactions. Commonly assimilated observations exist for only a selected few of those key gas phase compounds (CO, O3, NO2), and assimilating those in models assuming linearity begs the question of: To what extent we can infer the remainder to create a new state of the atmosphere that is chemically sound and optimal? In our work we present the first systematic investigation of sensitivities that exist between chemical compounds under varying ambient conditions in order to inform scientists on the potential pitfalls when assimilating single/few chemical compounds into complex 3D chemistry transport models. In order to do this, we developed a box-modeling tool (BOXMOX) based on the Kinetic PreProcessor (KPP, http://people.cs.vt.edu/~asandu/Software/Kpp/) in which we can conduct simulations with a suite of 'mechanisms', sets of differential equations describing atmospheric photochemistry. The box modeling approach allows us to sample a large variety of atmospheric conditions (urban, rural, biogenically dominated, biomass burning plumes) to capture the range of chemical conditions that typically exist in the atmosphere. Included in our suite are 'lumped' mechanisms typically used in regional and global chemistry transport models (MOZART, RACM, RADM2, SAPRC99, CB05, CBMZ) as well as the Master Chemical Mechanism (MCM, U. Leeds). We will use an Observing System Simulation Experiment approach with the MCM prediction as 'nature' or 'true' state, assimilating idealized synthetic observations (from MCM) into the different ‚lumped' mechanisms under various environments. Two approaches to estimate the sensitivity of the chemical system will be compared: 1) adjoint: using Jacobians computed by KPP and 2) ensemble: by perturbing emissions, temperature, photolysis rates, entrainment, etc., in order to create gain matrices to infer the unobserved part of the photochemical system.
Laboratory experiments to investigate sublimation rates of water ice in nighttime lunar regolith
NASA Astrophysics Data System (ADS)
Piquette, Marcus; Horányi, Mihály; Stern, S. Alan
2017-09-01
The existence of water ice on the lunar surface has been a long-standing topic with implications for both lunar science and in-situ resource utilization (ISRU). Cold traps on the lunar surface may have conditions necessary to retain water ice, but no laboratory experiments have been conducted to verify modeling results. We present an experiment testing the ability to thermally control bulk samples of lunar regolith simulant mixed with water ice under vacuum in an effort to constrain sublimation rates. The simulant used was JSC-1A lunar regolith simulant developed by NASA's Johnson Space Center. Samples with varying ratios of water ice and JSC-1A regolith simulant, totally about 1 kg, were placed under vacuum and cooled to 100 K to simulate conditions in lunar cold traps. The resulting sublimation of water ice over an approximately five-day period was measured by comparing the mass of the samples before and after the experimental run. Our results indicate that water ice in lunar cold traps is stable on timescales comparable to the lunar night, and should continue to be studied as possible resources for future utilization. This experiment also gauges the efficacy of the synthetic lunar atmosphere mission (SLAM) as a low-cost water resupply mission to lunar outposts.
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1988-01-01
In the first half of this grant year, laboratory measurements were conducted on the millimeter-wave properties of atmospheric gases under simulated conditions for the outer planet. Significant improvements in the current system have made it possible to accurately characterize the opacity from gaseous NH3 at longer millimeter wavelengths (7 to 10 mm) under simulated Jovian conditions. In the second half of the grant year, it is hoped to extend such measurements to even shorter millimeter-wavelengths. Further analysis and application of the laboratory results to microwave and millimeter-wave absorption data for the outer planets, such as results from Voyager Radio Occultation experiments and earth-based radio astronomical observations will be continued. The analysis of available multispectral microwave opacity data from Venus, including data from the most recent radio astronomical ovservations in the 1.3 to 3.6 cm wavelength range and newly obtained Pioneer-Venus Radio Occulatation measurements at 13 cm, using the laboratory measurements as an interpretative tool will be pursued.
NASA Astrophysics Data System (ADS)
Qin, H.; Pritchard, M. S.; Kooperman, G. J.; Parishani, H.
2017-12-01
Conventional General Circulation Models (GCMs) in the Global Land-Atmosphere Coupling Experiment (GLACE) tend to produce overly strong Land-Atmosphere coupling (L-A coupling) strength. We investigate the effects of cloud SuperParameterization (SP) on L-A coupling on timescales longer than the diurnal where it has been previously shown to have a strong effect. Using the Community Atmosphere Model v3.5 (CAM3.5) and its SuperParameterized counterpart SPCAM3.5, we conducted experiments following the GLACE and Atmospheric Model Intercomparison Project (AMIP) protocols. On synoptic-to-subseasonal timescales, SP significantly mutes hydrologic L-A coupling on a global scale, through the atmospheric segment. But on longer seasonal timescales, SP does not exhibit detectable effects on hydrologic L-A coupling. Two regional effects of SP on thermal L-A coupling are also discovered and explored. Over the Arabian Peninsula, SP strikingly reduces thermal L-A coupling due to a control by mean regional rainfall reduction. Over the Southwestern US and Northern Mexico, however, SP remarkably enhances the thermal L-A coupling independent of rainfall or soil moisture. We argue that the cause may be a previously unrecognized effect of SP to amplify the simulated Bowen ratio. Not only does this help reconcile a puzzling local enhancement of thermal L-A coupling over the Southwestern US, but it is also demonstrated to be a robust, global effect of SP over land that is independent of model version and experiment design, and that has important consequences for climate change prediction.
Snow hydrology in a general circulation model
NASA Technical Reports Server (NTRS)
Marshall, Susan; Roads, John O.; Glatzmaier, Gary
1994-01-01
A snow hydrology has been implemented in an atmospheric general circulation model (GCM). The snow hydrology consists of parameterizations of snowfall and snow cover fraction, a prognostic calculation of snow temperature, and a model of the snow mass and hydrologic budgets. Previously, only snow albedo had been included by a specified snow line. A 3-year GCM simulation with this now more complete surface hydrology is compared to a previous GCM control run with the specified snow line, as well as with observations. In particular, the authors discuss comparisons of the atmospheric and surface hydrologic budgets and the surface energy budget for U.S. and Canadian areas. The new snow hydrology changes the annual cycle of the surface moisture and energy budgets in the model. There is a noticeable shift in the runoff maximum from winter in the control run to spring in the snow hydrology run. A substantial amount of GCM winter precipitation is now stored in the seasonal snowpack. Snow cover also acts as an important insulating layer between the atmosphere and the ground. Wintertime soil temperatures are much higher in the snow hydrology experiment than in the control experiment. Seasonal snow cover is important for dampening large fluctuations in GCM continental skin temperature during the Northern Hemisphere winter. Snow depths and snow extent show good agreement with observations over North America. The geographic distribution of maximum depths is not as well simulated by the model due, in part, to the coarse resolution of the model. The patterns of runoff are qualitatively and quantitatively similar to observed patterns of streamflow averaged over the continental United States. The seasonal cycles of precipitation and evaporation are also reasonably well simulated by the model, although their magnitudes are larger than is observed. This is due, in part, to a cold bias in this model, which results in a dry model atmosphere and enhances the hydrologic cycle everywhere.
NASA Astrophysics Data System (ADS)
Beyrich, F.; Bange, J.; Hartogensis, O.; Raasch, S.
2009-09-01
The turbulent exchange of heat and water vapour are essential land surface - atmosphere interaction processes in the local, regional and global energy and water cycles. Scintillometry can be considered as the only technique presently available for the quasi-operational experimental determination of area-averaged turbulent fluxes needed to validate the fluxes simulated by regional atmospheric models or derived from satellite images at a horizontal scale of a few kilometres. While scintillometry has found increasing application over the last years, some fundamental issues related to its use still need further investigation. In particular, no studies are known so far to reproduce the path-averaged structure parameters measured by scintillometers by independent measurements or modelling techniques. The LITFASS-2009 field experiment has been performed in the area around the Meteorological Observatory Lindenberg / Richard-Aßmann-Observatory in Germany during summer 2009. It was designed to investigate the spatial (horizontal and vertical) and temporal variability of structure parameters (underlying the scintillometer principle) over moderately heterogeneous terrain. The experiment essentially relied on a coupling of eddy-covariance measurements, scintillometry and airborne measurements with an unmanned autonomous aircraft able to strictly fly along the scintillometer path. Data interpretation will be supported by numerical modelling using a large-eddy simulation (LES) model. The paper will describe the design of the experiment. First preliminary results from the measurements will be presented.
NASA Astrophysics Data System (ADS)
von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich
1993-06-01
A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.
Sensitivity study of a dynamic thermodynamic sea ice model
NASA Astrophysics Data System (ADS)
Holland, David M.; Mysak, Lawrence A.; Manak, Davinder K.; Oberhuber, Josef M.
1993-02-01
A numerical simulation of the seasonal sea ice cover in the Arctic Ocean and the Greenland, Iceland, and Norwegian seas is presented. The sea ice model is extracted from Oberhuber's (1990) coupled sea ice-mixed layer-isopycnal general circulation model and is written in spherical coordinates. The advantage of such a model over previous sea ice models is that it can be easily coupled to either global atmospheric or ocean general circulation models written in spherical coordinates. In this model, the thermodynamics are a modification of that of Parkinson and Washington (1979), while the dynamics use the full Hibler (1979) viscous-plastic rheology. Monthly thermodynamic and dynamic forcing fields for the atmosphere and ocean are specified. The simulations of the seasonal cycle of ice thickness, compactness, and velocity, for a control set of parameters, compare favorably with the known seasonal characteristics of these fields. A sensitivity study of the control simulation of the seasonal sea ice cover is presented. The sensitivity runs are carried out under three different themes, namely, numerical conditions, parameter values, and physical processes. This last theme refers to experiments in which physical processes are either newly added or completely removed from the model. Approximately 80 sensitivity runs have been performed in which a change from the control run environment has been implemented. Comparisons have been made between the control run and a particular sensitivity run based on time series of the seasonal cycle of the domain-averaged ice thickness, compactness, areal coverage, and kinetic energy. In addition, spatially varying fields of ice thickness, compactness, velocity, and surface temperature for each season are presented for selected experiments. A brief description and discussion of the more interesting experiments are presented. The simulation of the seasonal cycle of Arctic sea ice cover is shown to be robust.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collaboration: ALICE Collaboration
2016-01-01
ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containingmore » more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.« less
The Impact of Gulf Stream-Induced Diabatic Forcing on Coastal Mid-Atlantic Surface Cyclogenesis
NASA Astrophysics Data System (ADS)
Cione, Joseph Jerome
In this dissertation, numerical experiments were conducted using a mesoscale atmospheric model developed at North Carolina State University. Three sets of numerical experiments were conducted and were designed to: quantify the impact Gulf Stream frontal distance, initial surface air temperature and cold air outbreak timing each have on the subsequent development of the marine atmospheric boundary layer during periods of offshore cold advection; investigate critical processes associated with Gulf Stream -induced mesocyclogenesis and; elucidate the role SST gradients and surface fluxes of heat and moisture have on the intensification and track of propagating mesocyclonic systems within the highly baroclinic Gulf Stream region. A major finding from the offshore cold advection simulations is that the initial air-sea contrast is the dominant forcing mechanism linked to the offshore circulation development and marine boundary layer modification. Results from the mesocyclogenesis experiments indicate that surface cyclogenesis was simulated to occur along a Gulf Stream meander in a region where the gradients in sea surface temperature (SST) were maximized. Results from sensitivity experiments illustrate that changes in the Gulf Stream SST gradient pattern can act to alter the timing and degree of cyclonic development simulated, while the inclusion of surface fluxes and moist convective processes during the development phase act to strongly enhance the intensity and/or occurrence of simulated mesocyclogenesis. Both observational and numerical results from studies investigating the impact strong Gulf Stream SST gradients have on the development of pre-existing, propagating cyclonic systems show that the baroclinic nature of the low level environment near the circulation center (as well as the degree of simulated/observed surface cyclonic intensification) appear to be highly dependent upon the mesoscale storm track within the Gulf Stream frontal zone. Furthermore, the numerical storm track experiments conducted in this research illustrate that surfaces fluxes can act to significantly alter the storm track of the surface mesocyclone (in addition to impacting the overall intensification of the simulated cyclonic system). This work also presents the technique development and operational utilization of the recently devised Atlantic Surface Cyclone Intensification Index (ASCII). The index continues to be implemented by the National Weather Service at the Raleigh-Durham and surrounding coastal forecast offices, and to date, has been successfully utilized for 11 coastal winter storm events over the February 1994-January 1996 period.
Computer simulations of space-borne meteorological systems on the CYBER 205
NASA Technical Reports Server (NTRS)
Halem, M.
1984-01-01
Because of the extreme expense involved in developing and flight testing meteorological instruments, an extensive series of numerical modeling experiments to simulate the performance of meteorological observing systems were performed on CYBER 205. The studies compare the relative importance of different global measurements of individual and composite systems of the meteorological variables needed to determine the state of the atmosphere. The assessments are made in terms of the systems ability to improve 12 hour global forecasts. Each experiment involves the daily assimilation of simulated data that is obtained from a data set called nature. This data is obtained from two sources: first, a long two-month general circulation integration with the GLAS 4th Order Forecast Model and second, global analysis prepared by the National Meteorological Center, NOAA, from the current observing systems twice daily.
NASA Technical Reports Server (NTRS)
Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M.; Partyka, Gary
2017-01-01
The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community.
Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M.; Partyka, Gary
2018-01-01
The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community. PMID:29674806
Reale, Oreste; Achuthavarier, Deepthi; Fuentes, Marangelly; Putman, William M; Partyka, Gary
2017-01-01
The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community.
Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use
NASA Astrophysics Data System (ADS)
Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul
2016-01-01
The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.
Impact of aerosols present in Titan's atmosphere on The Cassini Radar experiment
NASA Astrophysics Data System (ADS)
Rodriguez, S.; Paillou, P.; Dobrijevic, M.; Ruffie, G.; Coll, P.; Bernard, J. M.; Encrenaz, P.
2002-09-01
One of the goals of the Cassini-Huygens mission, which will reach Saturn in 2004, is the study of the satellite Titan (its atmosphere and surface) by means of various remote sensing instruments on the orbiter and with the entry of the Huygens probe into Titan's atmosphere. In particular, the Cassini Radar experiment will use the high gain antenna at 13.78 GHz to "see" through Titan's atmosphere and map about 30 Two active modes (SAR and altimeter) and a passive mode (radiometer) will be used within the Radar experiment. The interpretation of future radar acquisitions will be conditioned by the electric properties of the atmospheric components the radar pulse will encounter, as well as the Titan's surface reflectivity. For this purpose, we made some dielectric constant measurements on synthetic analogs of Titan's aerosols, i.e. tholins. We found ǎrepsilon'=2-2.5 and a loss tangent between 5.10-2 and 10-3. These results were combined to scenarii of aerosol and rain formation in Titan's atmosphere into a simple simulation of the atmospheric transmission (Rayleigh and Mie scattering) in order to estimate the way aerosols and rain particles will affect the performance of the radar instrument, by attenuating the radar pulse before it reaches the surface. Results we obtained are surprisingly pessimistic for numbers of published atmospheric models, with computed attenuations that can be higher than 12 dB. Indeed, the occurrence of hydrocarbon rain in the low atmosphere could have a prejudicial effect on the radar pulses, since they could be partially attenuated, completely reflected, or distorted before reaching Titan's surface. We conclude on possible consequences that such atmospheric effects could have on the future analysis of Cassini Radar data. We also propose alternative ways to use combined altimeter and SAR data in order to decorrelate atmospheric and surface effects and then map the surface with less ambiguity, but also study the particles distribution in Titan's atmosphere. This work was supported by the French Programme National de Planétologie of the Institut National des Sciences de l'Univers, CNRS.
Conducting Miller-Urey Experiments
NASA Technical Reports Server (NTRS)
Parker, Eric Thomas; Cleaves, Henderson James; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason; Zhou, Manshui; Bada, Jeffrey L.; Fernandez, Facundo M.
2014-01-01
In 1953, Stanley Miller reported the production of biomolecules from simple gaseous starting materials, using apparatus constructed to simulate the primordial Earth's atmosphere-ocean system. Miller introduced 200 ml of water, 100 mmHg of H2, 200mmHg of CH4, and 200mmHg of NH3 into the apparatus, then subjected this mixture, under reflux, to an electric discharge for a week, while the water was simultaneously heated. The purpose of this manuscript is to provide the reader with a general experimental protocol that can be used to conduct a Miller-Urey type spark discharge experiment, using a simplified 3 L reaction flask. Since the experiment involves exposing inflammable gases to a high voltage discharge, it is worth highlighting important steps that reduce the risk of explosion. The general procedures described in this work can be extrapolated to design and conduct a wide variety of electric discharge experiments simulating primitive planetary environments.
Geostationary Coastal and Air Pollution Events (GEO-CAPE) Sensitivity Analysis Experiment
NASA Technical Reports Server (NTRS)
Lee, Meemong; Bowman, Kevin
2014-01-01
Geostationary Coastal and Air pollution Events (GEO-CAPE) is a NASA decadal survey mission to be designed to provide surface reflectance at high spectral, spatial, and temporal resolutions from a geostationary orbit necessary for studying regional-scale air quality issues and their impact on global atmospheric composition processes. GEO-CAPE's Atmospheric Science Questions explore the influence of both gases and particles on air quality, atmospheric composition, and climate. The objective of the GEO-CAPE Observing System Simulation Experiment (OSSE) is to analyze the sensitivity of ozone to the global and regional NOx emissions and improve the science impact of GEO-CAPE with respect to the global air quality. The GEO-CAPE OSSE team at Jet propulsion Laboratory has developed a comprehensive OSSE framework that can perform adjoint-sensitivity analysis for a wide range of observation scenarios and measurement qualities. This report discusses the OSSE framework and presents the sensitivity analysis results obtained from the GEO-CAPE OSSE framework for seven observation scenarios and three instrument systems.
Accurate beacon positioning method for satellite-to-ground optical communication.
Wang, Qiang; Tong, Ling; Yu, Siyuan; Tan, Liying; Ma, Jing
2017-12-11
In satellite laser communication systems, accurate positioning of the beacon is essential for establishing a steady laser communication link. For satellite-to-ground optical communication, the main influencing factors on the acquisition of the beacon are background noise and atmospheric turbulence. In this paper, we consider the influence of background noise and atmospheric turbulence on the beacon in satellite-to-ground optical communication, and propose a new locating algorithm for the beacon, which takes the correlation coefficient obtained by curve fitting for image data as weights. By performing a long distance laser communication experiment (11.16 km), we verified the feasibility of this method. Both simulation and experiment showed that the new algorithm can accurately obtain the position of the centroid of beacon. Furthermore, for the distortion of the light spot through atmospheric turbulence, the locating accuracy of the new algorithm was 50% higher than that of the conventional gray centroid algorithm. This new approach will be beneficial for the design of satellite-to ground optical communication systems.
Neuscamman, Stephanie J.; Yu, Kristen L.
2016-05-01
The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less
Experimental vs. modeled water use in mature Norway spruce (Picea abies) exposed to elevated CO2
Leuzinger, Sebastian; Bader, Martin K.-F.
2012-01-01
Rising levels of atmospheric CO2 have often been reported to reduce plant water use. Such behavior is also predicted by standard equations relating photosynthesis, stomatal conductance, and atmospheric CO2 concentration, which form the core of dynamic global vegetation models (DGVMs). Here, we provide first results from a free air CO2 enrichment (FACE) experiment with naturally growing, mature (35 m) Picea abies (L.) (Norway spruce) and compare them to simulations by the DGVM LPJ-GUESS. We monitored sap flow, stem water deficit, stomatal conductance, leaf water potential, and soil moisture in five 35–40 m tall CO2-treated (550 ppm) trees over two seasons. Using LPJ-GUESS, we simulated this experiment using climate data from a nearby weather station. While the model predicted a stable reduction of transpiration of between 9% and 18% (at concentrations of 550–700 ppm atmospheric CO2), the combined evidence from various methods characterizing water use in our experimental trees suggest no changes in response to future CO2 concentrations. The discrepancy between the modeled and the experimental results may be a scaling issue: while dynamic vegetation models correctly predict leaf-level responses, they may not sufficiently account for the processes involved at the canopy and ecosystem scale, which could offset the first-order stomatal response. PMID:23087696
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustafson, William I.; Vogelmann, Andrew M.; Cheng, Xiaoping
The Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility began a pilot project in May 2015 to design a routine, high-resolution modeling capability to complement ARM’s extensive suite of measurements. This modeling capability has been named the Large-Eddy Simulation (LES) ARM Symbiotic Simulation and Observation (LASSO) project. The initial focus of LASSO is on shallow convection at the ARM Southern Great Plains (SGP) Climate Research Facility. The availability of LES simulations with concurrent observations will serve many purposes. LES helps bridge the scale gap between DOE ARM observations and models, and the use of routine LES addsmore » value to observations. It provides a self-consistent representation of the atmosphere and a dynamical context for the observations. Further, it elucidates unobservable processes and properties. LASSO will generate a simulation library for researchers that enables statistical approaches beyond a single-case mentality. It will also provide tools necessary for modelers to reproduce the LES and conduct their own sensitivity experiments. Many different uses are envisioned for the combined LASSO LES and observational library. For an observationalist, LASSO can help inform instrument remote sensing retrievals, conduct Observation System Simulation Experiments (OSSEs), and test implications of radar scan strategies or flight paths. For a theoretician, LASSO will help calculate estimates of fluxes and co-variability of values, and test relationships without having to run the model yourself. For a modeler, LASSO will help one know ahead of time which days have good forcing, have co-registered observations at high-resolution scales, and have simulation inputs and corresponding outputs to test parameterizations. Further details on the overall LASSO project are available at https://www.arm.gov/capabilities/modeling/lasso.« less
Impact of Subsurface Temperature Variability on Meteorological Variability: An AGCM Study
NASA Astrophysics Data System (ADS)
Mahanama, S. P.; Koster, R. D.; Liu, P.
2006-05-01
Anomalous atmospheric conditions can lead to surface temperature anomalies, which in turn can lead to temperature anomalies deep in the soil. The deep soil temperature (and the associated ground heat content) has significant memory -- the dissipation of a temperature anomaly may take weeks to months -- and thus deep soil temperature may contribute to the low frequency variability of energy and water variables elsewhere in the system. The memory may even provide some skill to subseasonal and seasonal forecasts. This study uses two long-term AGCM experiments to isolate the contribution of deep soil temperature variability to variability elsewhere in the climate system. The first experiment consists of a standard ensemble of AMIP-type simulations, simulations in which the deep soil temperature variable is allowed to interact with the rest of the system. In the second experiment, the coupling of the deep soil temperature to the rest of the climate system is disabled -- at each grid cell, the local climatological seasonal cycle of deep soil temperature (as determined from the first experiment) is prescribed. By comparing the variability of various atmospheric quantities as generated in the two experiments, we isolate the contribution of interactive deep soil temperature to that variability. The results show that interactive deep soil temperature contributes significantly to surface temperature variability. Interactive deep soil temperature, however, reduces the variability of the hydrological cycle (evaporation and precipitation), largely because it allows for a negative feedback between evaporation and temperature.
Urban Modification of Convection and Rainfall in Complex Terrain
NASA Astrophysics Data System (ADS)
Freitag, B. M.; Nair, U. S.; Niyogi, D.
2018-03-01
Despite a globally growing proportion of cities located in regions of complex terrain, interactions between urbanization and complex terrain and their meteorological impacts are not well understood. We utilize numerical model simulations and satellite data products to investigate such impacts over San Miguel de Tucumán, Argentina. Numerical modeling experiments show urbanization results in 20-30% less precipitation downwind of the city and an eastward shift in precipitation upwind. Our experiments show that changes in surface energy, boundary layer dynamics, and thermodynamics induced by urbanization interact synergistically with the persistent forcing of atmospheric flow by complex terrain. With urbanization increasing in mountainous regions, land-atmosphere feedbacks can exaggerate meteorological forcings leading to weather impacts that require important considerations for sustainable development of urban regions within complex terrain.
[Analysis of the effect of detector's operating temperature on SNR in space-based remote sensor].
Li, Zhan-feng; Wang, Shu-rong; Huang, Yu
2012-03-01
Limb viewing is a new viewing geometry for space-based atmospheric remote sensing, but the spectral radiance of atmosphere scattering reduces rapidly with limb height. So the signal-noise-ratio (SNR) is a key performance parameter of limb remote sensor. A SNR model varying with detector's temperature is proposed, based on analysis of spectral radiative transfer and noise' source in representative instruments. The SNR at limb height 70 km under space conditions was validated by simulation experiment on limb remote sensing spectrometer prototype. Theoretic analysis and experiment's results indicate congruously that when detector's temperature reduces to some extent, a maximum SNR will be reached. After considering the power consumption, thermal conductivity and other issues, optimal operating temperature of detector can be decided.
Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming
NASA Astrophysics Data System (ADS)
Pedatella, N. M.; Fang, T.-W.; Jin, H.; Sassi, F.; Schmidt, H.; Chau, J. L.; Siddiqui, T. A.; Goncharenko, L.
2016-07-01
A comparison of different model simulations of the ionosphere variability during the 2009 sudden stratosphere warming (SSW) is presented. The focus is on the equatorial and low-latitude ionosphere simulated by the Ground-to-topside model of the Atmosphere and Ionosphere for Aeronomy (GAIA), Whole Atmosphere Model plus Global Ionosphere Plasmasphere (WAM+GIP), and Whole Atmosphere Community Climate Model eXtended version plus Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model (WACCMX+TIMEGCM). The simulations are compared with observations of the equatorial vertical plasma drift in the American and Indian longitude sectors, zonal mean F region peak density (NmF2) from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites, and ground-based Global Positioning System (GPS) total electron content (TEC) at 75°W. The model simulations all reproduce the observed morning enhancement and afternoon decrease in the vertical plasma drift, as well as the progression of the anomalies toward later local times over the course of several days. However, notable discrepancies among the simulations are seen in terms of the magnitude of the drift perturbations, and rate of the local time shift. Comparison of the electron densities further reveals that although many of the broad features of the ionosphere variability are captured by the simulations, there are significant differences among the different model simulations, as well as between the simulations and observations. Additional simulations are performed where the neutral atmospheres from four different whole atmosphere models (GAIA, HAMMONIA (Hamburg Model of the Neutral and Ionized Atmosphere), WAM, and WACCMX) provide the lower atmospheric forcing in the TIME-GCM. These simulations demonstrate that different neutral atmospheres, in particular, differences in the solar migrating semidiurnal tide, are partly responsible for the differences in the simulated ionosphere variability in GAIA, WAM+GIP, and WACCMX+TIMEGCM.
Rarefaction effects on Galileo probe aerodynamics
NASA Technical Reports Server (NTRS)
Moss, James N.; LeBeau, Gerald J.; Blanchard, Robert C.; Price, Joseph M.
1996-01-01
Solutions of aerodynamic characteristics are presented for the Galileo Probe entering Jupiter's hydrogen-helium atmosphere at a nominal relative velocity of 47.4 km/s. Focus is on predicting the aerodynamic drag coefficient during the transitional flow regime using the direct simulation Monte Carlo (DSMC) method. Accuracy of the probe's drag coefficient directly impacts the inferred atmospheric properties that are being extracted from the deceleration measurements made by onboard accelerometers as part of the Atmospheric Structure Experiment. The range of rarefaction considered in the present study extends from the free molecular limit to continuum conditions. Comparisons made with previous calculations and experimental measurements show the present results for drag to merge well with Navier-Stokes and experimental results for the least rarefied conditions considered.
A comparison of techniques for inversion of radio-ray phase data in presence of ray bending
NASA Technical Reports Server (NTRS)
Wallio, H. A.; Grossi, M. D.
1972-01-01
Derivations are presented of the straight-line Abel transform and the seismological Herglotz-Wiechert transform (which takes ray bending into account) that are used in the reconstruction of refractivity profiles from radio-wave phase data. Profile inversion utilizing these approaches, performed in computer-simulated experiments, are compared for cases of positive, zero, and negative ray bending. For thin atmospheres and ionospheres, such as the Martian atmosphere and ionosphere, radio wave signals are shown to be inverted accurately with both methods. For dense media, such as the solar corona or the lower Venus atmosphere, the refractive recovered by the seismological Herglotz-Wiechert transform provide a significant improvement compared with the straight-line Abel transform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Miroslav; Kljenak, Ivo; Mavko, Borut
2006-07-01
The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the simulation was to reproduce the non-homogeneous temperature and species concentration distributions in the ThAI experimental facility. A three-dimensional model of the ThAI vessel for the CFX4.4 code was developed. The flowmore » in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also introduced. The calculated time-dependent variables together with temperature and concentration distributions at the end of experiment phases are compared to experimental results. (authors)« less
The GEOS-5 Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna
NASA Technical Reports Server (NTRS)
Molod, Andrea; Takacs, Lawrence; Suarez, Max; Bacmeister, Julio; Song, In-Sun; Eichmann, Andrew
2012-01-01
This report is a documentation of the Fortuna version of the GEOS-5 Atmospheric General Circulation Model (AGCM). The GEOS-5 AGCM is currently in use in the NASA Goddard Modeling and Assimilation Office (GMAO) for simulations at a wide range of resolutions, in atmosphere only, coupled ocean-atmosphere, and data assimilation modes. The focus here is on the development subsequent to the version that was used as part of NASA s Modern-Era Retrospective Analysis for Research and Applications (MERRA). We present here the results of a series of 30-year atmosphere-only simulations at different resolutions, with focus on the behavior of the 1-degree resolution simulation. The details of the changes in parameterizations subsequent to the MERRA model version are outlined, and results of a series of 30-year, atmosphere-only climate simulations at 2-degree resolution are shown to demonstrate changes in simulated climate associated with specific changes in parameterizations. The GEOS-5 AGCM presented here is the model used for the GMAO s atmosphere-only and coupled CMIP-5 simulations.
NASA Astrophysics Data System (ADS)
Swindle, T. D.
2014-12-01
Our knowledge of the noble gas abundances and isotopic compositions in the Martian crust and atmosphere come from two sources, measurements of meteorites from Mars and in situ measurements by spacecraft. Measurements by the Viking landers had large uncertainties, but were precise enough to tie the meteorites to Mars. Hence most of the questions we have are currently defined by meteorite measurements. Curiosity's SAM has confirmed that the Ar isotopic composition of the atmosphere is highly fractionated, presumably representing atmospheric loss that can now be modeled with more confidence. What turns out to be a more difficult trait to explain is the fact that the ratio of Kr/Xe in nakhlites, chassignites and ALH84001 is distinct from the atmospheric ratio, as defined by measurements from shergottites. This discrepancy has been suggested to be a result of atmosphere/groundwater/rock interaction, polar clathrate formation, or perhaps local temperature conditions. More detailed atmospheric measurements, along with targeted simulation experiments, will be needed to make full use of this anomaly.
Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, Joy S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.
2002-01-01
An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.
Estimated global nitrogen deposition using NO2 column density
Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao
2013-01-01
Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.
Simulation of Tropical Biomass Burning
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Guo, Zitian
1996-01-01
The research objectives that were achieved during the course of our studies include the following: (1) Over the last few years, a model has been developed in the Atmospheric Chemistry and Dynamics Branch at Ames Research Center in collaboration with the Physics Department at San Jose State University. It is referred to as the Global/Regional Atmospheric Chemistry Event Simulator (GRACES). Currently, the GRACES model system combines an atmospheric chemistry and transport model, and a regional mesoscale meteorological model. Therefore this system is suitable for simulating the conditions observed by the tropical observation missions, such as the Pacific Exploratory Mission in the 'Tropics (PEM-Tropics), Study of Ozone and Nitrogen oxides Experiment (SONEX), and other periods. Specifically, the research carried out included the evaluation of the behavior of several components of the MM5 (I.e., Meteorological Model 5, version 2) and the GRACES combined modeling system. We initiated research on (a) the ability of the MM5 model to assimilate downward vertical velocities at least as high as the analyses, (b) the ability of the Graces model to incorporate the vertical velocities from MM5, and (c) other factors related to transport patterns required to transport CO in the observed manner. We carried out improved calculations of the transport of tracers for both NASA airborne missions, SONEX and PEM-Tropics. We also made improved source strength estimates fopr isoprene dust, and similar emissions from the Earths surface. This required the use of newly available databases on the Earth's surface and vegetation. We completed atmospheric chemistry simulations of radicals and nitrogen oxide species. We have greatly improved the handling of cumulonimnbus convection by modifing an existing scheme.
Interactive Nature of Climate Change and Aerosol Forcing
NASA Technical Reports Server (NTRS)
Nazarenko, L.; Rind, D.; Tsigaridis, K.; Del Genio, A. D.; Kelley, M.; Tausnev, N.
2017-01-01
The effect of changing cloud cover on climate, based on cloud-aerosol interactions, is one of the major unknowns for climate forcing and climate sensitivity. It has two components: (1) the impact of aerosols on clouds and climate due to in-situ interactions (i.e., rapid response); and (2) the effect of aerosols on the cloud feedback that arises as climate changes - climate feedback response. We examine both effects utilizing the NASA GISS ModelE2 to assess the indirect effect, with both mass-based and microphysical aerosol schemes, in transient twentieth-century simulations. We separate the rapid response and climate feedback effects by making simulations with a coupled version of the model as well as one with no sea surface temperature or sea ice response (atmosphere-only simulations). We show that the indirect effect of aerosols on temperature is altered by the climate feedbacks following the ocean response, and this change differs depending upon which aerosol model is employed. Overall the effective radiative forcing (ERF) for the direct effect of aerosol-radiation interaction (ERFari) ranges between -0.2 and -0.6 W/sq m for atmosphere-only experiments while the total effective radiative forcing, including the indirect effect (ERFari+aci) varies between about -0.4 and -1.1 W/sq m for atmosphere-only simulations; both ranges are in agreement with those given in IPCC (2013). Including the full feedback of the climate system lowers these ranges to -0.2 to -0.5 W/sq m for ERFari, and -0.3 to -0.74 W/sq m for ERFari+aci. With both aerosol schemes, the climate change feedbacks have reduced the global average indirect radiative effect of atmospheric aerosols relative to what the emission changes would have produced, at least partially due to its effect on tropical upper tropospheric clouds.
Sun, Yu; Liu, Yanan; Li, Rui; Xue, Gang; Ognier, Stéphanie
2016-07-01
This study investigated the degradation of a model organic compound, reactive blue (RB-19), in aqueous solution using a needle-plate non-thermal plasma (NTP) reactor, which was operated using three gas atmospheres (Ar, air, O2) at room temperature and atmospheric pressure. The relative discharge and degradation parameters, including the peak to peak applied voltage, power, ozone generation, pH, decolorization rates, energy density and the total organic carbon (TOC) reduction were analyzed to determine the various dye removal efficiencies. The decolorization rate for Ar, air and O2 were 59.9%, 49.6% and 89.8% respectively at the energy density of 100 kJ/L. The best TOC reduction was displayed by Ar with about 8.8% decrease, and 0% with O2 and air atmospheres. This phenomenon could be explained by the formation of OH• and O3 in the Ar and O2 atmospheres, which are responsible for increased mineralization and efficient decolorization. A one-dimension model was developed using software COMSOL to simulate the RB-19-ozone reaction and verify the experiments by comparing the simulated and experimental results. It was determined that ozone plays the most important role in the dye removal process, and the ozone contribution rate ranged from 0.67 to 0.82. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gaudio, P.; Malizia, A.; Gelfusa, M.; Martinelli, E.; Di Natale, C.; Poggi, L. A.; Bellecci, C.
2017-01-01
Nowadays Toxic Industrial Components (TICs) and Toxic Industrial Materials (TIMs) are one of the most dangerous and diffuse vehicle of contamination in urban and industrial areas. The academic world together with the industrial and military one are working on innovative solutions to monitor the diffusion in atmosphere of such pollutants. In this phase the most common commercial sensors are based on “point detection” technology but it is clear that such instruments cannot satisfy the needs of the smart cities. The new challenge is developing stand-off systems to continuously monitor the atmosphere. Quantum Electronics and Plasma Physics (QEP) research group has a long experience in laser system development and has built two demonstrators based on DIAL (Differential Absorption of Light) technology could be able to identify chemical agents in atmosphere. In this work the authors will present one of those DIAL system, the miniaturized one, together with the preliminary results of an experimental campaign conducted on TICs and TIMs simulants in cell with aim of use the absorption database for the further atmospheric an analysis using the same DIAL system. The experimental results are analysed with standard multivariate data analysis technique as Principal Component Analysis (PCA) to develop a classification model aimed at identifying organic chemical compound in atmosphere. The preliminary results of absorption coefficients of some chemical compound are shown together pre PCA analysis.
NASA Astrophysics Data System (ADS)
Nelson, Douglas Harold
Laser speckle can influence lidar measurements from a diffuse hard target. Atmospheric optical turbulence will also affect the lidar return signal. This investigation develops a numerical simulation that models the propagation of a lidar beam and accounts for both reflective speckle and atmospheric turbulence effects. The simulation, previously utilized to simulate the effects of atmospheric optical turbulence alone, is based on implementing a Huygens-Fresnel approximation to laser propagation. A series of phase screens, with the appropriate atmospheric statistical characteristics, is used to simulate the effect of atmospheric optical turbulence. A single random phase screen is used to simulate scattering of the entire beam from a rough surface. These investigations compare the output of the numerical model with separate CO2 lidar measurements of atmospheric turbulence and reflective speckle. This work also compares the output of the model with separate analytical predictions for atmospheric turbulence and reflective speckle. Good agreement is found between the model and the experimental data. Good agreement is also found with analytical predictions. Additionally, results of simulation of the combined effects on a finite aperture lidar system show agreement with experimental observations of increasing RMS noise with increasing turbulence level and the behavior of the experimental integrated intensity probability distribution. Simulation studies are included that demonstrate the usefulness of the model, examine its limitations and provide greater insight into the process of combined atmospheric optical turbulence and reflective speckle. One highlight of these studies is examination of the limitations of the simulation that shows, in general, precision increases with increasing grid size. The study of the backscatter intensity enhancement predicted by analytical theory show it to behave as a multi-path effect, like scintillation, with the highest contributions from atmospheric optical turbulence weighted at the middle of the propagation path. Aperture geometry also affects the signal-to-noise ratio with thin annular apertures exhibiting lower RMS noise than circular apertures of the same active area. The simulation is capable of studying a variety of lidar schemes including varying atmospheric optical turbulence along the propagation path as well as diverse transmitter and receiver geometries.
A prospective personal exposure study, involving indoor and outdoor releases, was conducted in upper Midtown Manhattan in New York City as part of the Urban Dispersion Program (UDP) focusing on atmospheric dispersion of chemicals in complex urban settings. The UDP experiments inv...
Data-Intensive Scientific Management, Analysis and Visualization
NASA Astrophysics Data System (ADS)
Goranova, Mariana; Shishedjiev, Bogdan; Juliana Georgieva, Juliana
2012-11-01
The proposed integrated system provides a suite of services for data-intensive sciences that enables scientists to describe, manage, analyze and visualize data from experiments and numerical simulations in distributed and heterogeneous environment. This paper describes the advisor and the converter services and presents an example from the monitoring of the slant column content of atmospheric minor gases.
Numerical simulations of Asian dust storms using a coupled climate-aerosol microphysical model
NASA Astrophysics Data System (ADS)
Su, Lin; Toon, Owen B.
2009-07-01
We have developed a three-dimensional coupled microphysical/climate model based on the National Center for Atmospheric Research Community Atmospheres Model and the University of Colorado/NASA Community Aerosol and Radiation Model for Atmospheres. We have used the model to investigate the sources, removal processes, transport, and optical properties of Asian dust aerosol and its impact on downwind regions. The model simulations are conducted primarily during the time frame of the Aerosol Characterization Experiment-Asia field experiment (March-May 2001) since considerable in situ data are available at that time. Our dust source function follows Ginoux et al. (2001). We modified the dust source function by using the friction velocity instead of the 10-m wind based on wind erosion theory, by adding a size-dependent threshold friction velocity following Marticorena and Bergametti (1995) and by adding a soil moisture correction. A Weibull distribution is implemented to estimate the subgrid-scale wind speed variability. We use eight size bins for mineral dust ranging from 0.1 to 10 μm radius. Generally, the model reproduced the aerosol optical depth retrieved by the ground-based Aerosol Robotic Network (AERONET) Sun photometers at six study sites ranging in location from near the Asian dust sources to the Eastern Pacific region. By constraining the dust complex refractive index from AERONET retrievals near the dust source, we also find the single-scattering albedo to be consistent with AERONET retrievals. However, large regional variations are observed due to local pollution. The timing of dust events is comparable to the National Institute for Environmental Studies (NIES) lidar data in Beijing and Nagasaki. However, the simulated dust aerosols are at higher altitudes than those observed by the NIES lidar.
Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets
NASA Astrophysics Data System (ADS)
Tamburini, Christian; Goutx, Madeleine; Guigue, Catherine; Garel, Marc; Lefèvre, Dominique; Charrière, Bruno; Sempéré, Richard; Pepa, Stéphane; Peterson, Michael L.; Wakeham, Stuart; Lee, Cindy
2009-08-01
We used a new experimental device called PASS (PArticle Sinking Simulator) during MedFlux to simulate changes in in situ hydrostatic pressure that particles experience sinking from mesopelagic to bathypelagic depths. Particles, largely fecal pellets, were collected at 200 m using a settling velocity NetTrap (SV NetTrap) in Ligurian Sea in April 2006 and incubated in high-pressure bottles (HPBs) of the PASS system under both atmospheric and continuously increasing pressure conditions, simulating the pressure change experienced at a sinking rate of 200 m d -1. Chemical changes over time were evaluated by measuring particulate organic carbon (POC), carbohydrates, transparent exopolymer particles (TEP), amino acids, lipids, and chloropigments, as well as dissolved organic carbon (DOC) and dissolved carbohydrates. Microbial changes were evaluated microscopically, using diamidinophenylindole (DAPI) stain for total cell counts and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) for phylogenetic distinctions. Concentrations (normalized to POC) of particulate chloropigments, carbohydrates and TEP decreased under both sets of incubation conditions, although less under the increasing pressure regime than under atmospheric conditions. By contrast, dissolved carbohydrates (normalized to DOC) were higher after incubation and significantly higher under atmospheric conditions, suggesting they were produced at the expense of the particulate fraction. POC-normalized particulate wax/steryl esters increased only under pressure, suggesting biochemical responses of prokaryotes to the increasing pressure regime. The prokaryotic community initially consisted of 43% Bacteria, 12% Crenarchaea and 11% Euryarchaea. After incubation, Bacteria dominated (˜90%) the prokaryote community in all cases, with γ- Proteobacteria comprising the greatest fraction, followed by the Cytophaga-Flavobacter cluster and α -Proteobacteria group. Using the PASS system, we obtained chemical and microbial evidence that degradation by prokaryotes associated with fecal pellets sinking through mesopelagic waters is limited by the increasing pressure they experience.
NASA Astrophysics Data System (ADS)
Rios-Entenza, A.; Miguez-Macho, G.
2012-04-01
Inland Iberia, the highest peak of rainfall occurs in May, being critical for agriculture in large water-limited areas. We investigate here the role of the soil moisture - precipitation feedback in the intensification of the water cycle in spring and in the aforementioned maximum of precipitation in the interior of the Iberian Peninsula. We conducted paired, high-resolution simulations with the WRF-ARW model, using a nested grid that covers the Iberian Peninsula at 5km resolution. Eleven months of May (from May 2000 to May 2010) and eleven months of January (from January 2000 to January 2010) were selected. For each month, we performed two simulations: a control one, where all land-atmosphere fluxes are normally set up, and the corresponding experiment, where evapotranspired water over land in the nested domain is not incorporated into the atmosphere, although the corresponding latent heat flux is considered in the surface energy budget. As expected, precipitation is higher in the control runs with respect to the experiments and, furthermore, this fraction of extra rainfall substantially exceeds the value of the analytical recycling ratio. This suggests that amplification processes, and not only direct recycling, may play an important role in the maximum of precipitation observed in the Iberian spring. We estimated the amplification effect to be as large as the recycling with calculations using analytical methods of separation of both contributions. We also develop here a procedure to quantify the amplification impact using the no-ET experiment and results confirm those obtained analytically. These results suggest that in the Iberian spring, under favourable synoptic conditions and given a small supply of external moisture that triggers large-scale convection, land-atmosphere interactions can intensify and sustain convective processes in time. Thus there is a large impact of local land-surface fluxes on precipitation and that alterations of anthropogenic nature can potentially influence the precipitation regime significantly.
NASA Astrophysics Data System (ADS)
Caniaux, Guy; Planton, Serge
1998-10-01
A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.
The impacts of recent permafrost thaw on land-atmosphere greenhouse gas exchange
Hayes, Daniel J.; Kicklighter, David W.; McGuire, A. David; Chen, Min; Zhuang, Qianlai; Yuan, Fengming; Melillo, Jerry M.; Wullschleger, Stan D.
2014-01-01
Permafrost thaw and the subsequent mobilization of carbon (C) stored in previously frozen soil organic matter (SOM) have the potential to be a strong positive feedback to climate. As the northern permafrost region experiences as much as a doubling of the rate of warming as the rest of the Earth, the vast amount of C in permafrost soils is vulnerable to thaw, decomposition and release as atmospheric greenhouse gases. Diagnostic and predictive estimates of high-latitude terrestrial C fluxes vary widely among different models depending on how dynamics in permafrost, and the seasonally thawed 'active layer' above it, are represented. Here, we employ a process-based model simulation experiment to assess the net effect of active layer dynamics on this 'permafrost carbon feedback' in recent decades, from 1970 to 2006, over the circumpolar domain of continuous and discontinuous permafrost. Over this time period, the model estimates a mean increase of 6.8 cm in active layer thickness across the domain, which exposes a total of 11.6 Pg C of thawed SOM to decomposition. According to our simulation experiment, mobilization of this previously frozen C results in an estimated cumulative net source of 3.7 Pg C to the atmosphere since 1970 directly tied to active layer dynamics. Enhanced decomposition from the newly exposed SOM accounts for the release of both CO2 (4.0 Pg C) and CH4 (0.03 Pg C), but is partially compensated by CO2 uptake (0.3 Pg C) associated with enhanced net primary production of vegetation. This estimated net C transfer to the atmosphere from permafrost thaw represents a significant factor in the overall ecosystem carbon budget of the Pan-Arctic, and a non-trivial additional contribution on top of the combined fossil fuel emissions from the eight Arctic nations over this time period.
NASA Astrophysics Data System (ADS)
Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.
2015-10-01
Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimations of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one-third of the initial particle-phase organic mass (41 %) was lost during the experiments, and over half of this particle-organic mass loss was from direct particle wall loss (65 % of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (35 % of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 18 % uncertainty to the final particle-organic mass remaining in the chamber (relative to base-assumption simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle-organic mass loss by 33 % compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.
NASA Astrophysics Data System (ADS)
Bian, Q.; May, A. A.; Kreidenweis, S. M.; Pierce, J. R.
2015-06-01
Smog chambers are extensively used to study processes that drive gas and particle evolution in the atmosphere. A limitation of these experiments is that particles and gas-phase species may be lost to chamber walls on shorter timescales than the timescales of the atmospheric processes being studied in the chamber experiments. These particle and vapor wall losses have been investigated in recent studies of secondary organic aerosol (SOA) formation, but they have not been systematically investigated in experiments of primary emissions from combustion. The semi-volatile nature of combustion emissions (e.g. from wood smoke) may complicate the behavior of particle and vapor wall deposition in the chamber over the course of the experiments due to the competition between gas/particle and gas/wall partitioning. Losses of vapors to the walls may impact particle evaporation in these experiments, and potential precursors for SOA formation from combustion may be lost to the walls, causing underestimates of aerosol yields. Here, we conduct simulations to determine how particle and gas-phase wall losses contributed to the observed evolution of the aerosol during experiments in the third Fire Lab At Missoula Experiment (FLAME III). We use the TwO-Moment Aerosol Sectional (TOMAS) microphysics algorithm coupled with the organic volatility basis set (VBS) and wall-loss formulations to examine the predicted extent of particle and vapor wall losses. We limit the scope of our study to the dark periods in the chamber before photo-oxidation to simplify the aerosol system for this initial study. Our model simulations suggest that over one third of the initial particle-phase organic mass (36%) was lost during the experiments, and roughly half of this particle organic mass loss was from direct particle wall loss (56% of the loss) with the remainder from evaporation of the particles driven by vapor losses to the walls (44% of the loss). We perform a series of sensitivity tests to understand uncertainties in our simulations. Uncertainty in the initial wood-smoke volatility distribution contributes 23% uncertainty to the final particle organic mass remaining in the chamber (relative to base-assumptions simulation). We show that the total mass loss may depend on the effective saturation concentration of vapor with respect to the walls as these values currently vary widely in the literature. The details of smoke dilution during the filling of smog chambers may influence the mass loss to the walls, and a dilution of ~ 25:1 during the experiments increased particle organic mass loss by 64% compared to a simulation where we assume the particles and vapors are initially in equilibrium in the chamber. Finally, we discuss how our findings may influence interpretations of emission factors and SOA production in wood-smoke smog-chamber experiments.
Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions
NASA Technical Reports Server (NTRS)
Smith, David J.; Schuerger, Andrew C.; Davidson, Mark M.; Pacala, Stephen W.; Bakermans, Corien; Onstott, Tullis
2008-01-01
Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25 degrees C for 24 hr within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 hr of exposure to Mars-normal conditions of 4.55 W/m(2) UVC irradiation (200-280 nm), -12.5 degrees C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H(2)O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at tau = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 hr exposure period.
Survivability of Psychrobacter cryohalolentis K5 Under Simulated Martian Surface Conditions
NASA Astrophysics Data System (ADS)
Smith, David J.; Schuerger, Andrew C.; Davidson, Mark M.; Pacala, Stephen W.; Bakermans, Corien; Onstott, Tullis C.
2009-03-01
Spacecraft launched to Mars can retain viable terrestrial microorganisms on board that may survive the interplanetary transit. Such biota might compromise the search for life beyond Earth if capable of propagating on Mars. The current study explored the survivability of Psychrobacter cryohalolentis K5, a psychrotolerant microorganism obtained from a Siberian permafrost cryopeg, under simulated martian surface conditions of high ultraviolet irradiation, high desiccation, low temperature, and low atmospheric pressure. First, a desiccation experiment compared the survival of P. cryohalolentis cells embedded, or not embedded, within a medium/salt matrix (MSM) maintained at 25°C for 24 h within a laminar flow hood. Results indicate that the presence of the MSM enhanced survival of the bacterial cells by 1 to 3 orders of magnitude. Second, tests were conducted in a Mars Simulation Chamber to determine the UV tolerance of the microorganism. No viable vegetative cells of P. cryohalolentis were detected after 8 h of exposure to Mars-normal conditions of 4.55 W/m2 UVC irradiation (200-280 nm), -12.5°C, 7.1 mbar, and a Mars gas mix composed of CO2 (95.3%), N2 (2.7%), Ar (1.6%), O2 (0.2%), and H2O (0.03%). Third, an experiment was conducted within the Mars chamber in which total atmospheric opacities were simulated at τ = 0.1 (dust-free CO2 atmosphere at 7.1 mbar), 0.5 (normal clear sky with 0.4 = dust opacity and 0.1 = CO2-only opacity), and 3.5 (global dust storm) to determine the survivability of P. cryohalolentis to partially shielded UVC radiation. The survivability of the bacterium increased with the level of UVC attenuation, though population levels still declined several orders of magnitude compared to UVC-absent controls over an 8 h exposure period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamilton, K.; Wilson, R.J.; Hemler, R.S.
1999-11-15
The large-scale circulation in the Geophysical Fluid Dynamics Laboratory SKYHI troposphere-stratosphere-mesosphere finite-difference general circulation model is examined as a function of vertical and horizontal resolution. The experiments examined include one with horizontal grid spacing of {approximately}35 km and another with {approximately}100 km horizontal grid spacing but very high vertical resolution (160 levels between the ground and about 85 km). The simulation of the middle-atmospheric zonal-mean winds and temperatures in the extratropics is found to be very sensitive to horizontal resolution. For example, in the early Southern Hemisphere winter the South Pole near 1 mb in the model is colder thanmore » observed, but the bias is reduced with improved horizontal resolution (from {approximately}70 C in a version with {approximately}300 km grid spacing to less than 10 C in the {approximately}35 km version). The extratropical simulation is found to be only slightly affected by enhancements of the vertical resolution. By contrast, the tropical middle-atmospheric simulation is extremely dependent on the vertical resolution employed. With level spacing in the lower stratosphere {approximately}1.5 km, the lower stratospheric zonal-mean zonal winds in the equatorial region are nearly constant in time. When the vertical resolution is doubled, the simulated stratospheric zonal winds exhibit a strong equatorially centered oscillation with downward propagation of the wind reversals and with formation of strong vertical shear layers. This appears to be a spontaneous internally generated oscillation and closely resembles the observed QBO in many respects, although the simulated oscillation has a period less than half that of the real QBO.« less
Paoli, Roberto; Thouron, Odile; Cariolle, Daniel; ...
2017-12-08
Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersson, N. Anders; Sjogreen, Bjorn
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
Petersson, N. Anders; Sjogreen, Bjorn
2017-04-18
Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paoli, Roberto; Thouron, Odile; Cariolle, Daniel
Here, this article presents the results from numerical experiments of the early phase of contrail-cirrus formation using a limited set of fully three-dimensional, high-resolution large-eddy-simulations. The focus is laid on the interplay between atmospheric turbulence and the radiative transfer (and to a limited extent the ambient ice relative humidity), and how this interaction affects the contrail evolution and the characteristics of the resulting contrail-cirrus one hour after emission. Turbulence is sustained via a large-scale stochastic forcing that creates a non-uniform shear in addition to pure turbulent fluctuations. This effect manifests in the formation of vertically sheared structures of ice crystals.more » When radiative transfer is activated, ice tends to redistribute more uniformly along the vertical direction forming spotty vertical structures. For the conditions analyzed in this study, atmospheric turbulence, inclusive of non-uniform turbulent shear and turbulent fluctuations, affects primarily the contrail width whereas the microphysical properties such ice water path and ice mass are controlled by radiative transfer and relative humidity.« less
Laboratory Studies Of Titan Haze: Simultaneous In Situ Detection Of Gas And Particle Species
NASA Astrophysics Data System (ADS)
Horst, Sarah; Li, R.; Yoon, H.; Hicks, R.; de Gouw, J.; Tolbert, M.
2012-10-01
Analyses of data obtained by multiple instruments carried by Cassini and Huygens have increased our knowledge of the composition of Titan’s atmosphere. While a wealth of new information about the aerosols in Titan’s atmosphere was obtained, their composition is still not well constrained. Laboratory experiments will therefore play a key role in furthering our understanding of the chemical processes resulting in the formation of haze in Titan’s atmosphere and its possible composition. We have obtained simultaneous in situ measurements of the gas- and particle-phase compositions produced by our Titan atmosphere simulation experiments (see e.g. [1]). The gas phase composition was measured using a Proton-Transfer Ion-Trap Mass Spectrometer (PIT-MS) and the aerosol composition was measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). This complementary set of measurements will allow us to address the partitioning of gas- and aerosol-phase species. Knowledge of the gas phase composition in which the particles in our experiments form allows both for better comparison to the chemistry that is occurring in Titan’s atmosphere and for enabling more accurate determination of the possible pathways involved in the transition from gas phase to aerosol. We will compare the results from experiments that used two different initial gas mixtures (98% N2/2% CH4 and 98%N2/2%CH4/50 ppm CO) and two different energy sources to initiate the chemical reactions that result in particle formation (spark discharge using a Tesla coil or FUV irradiation from a deuterium lamp (115-400 nm)). [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326. SMH is supported by NSF Astronomy and Astrophysics Postdoctoral Fellowship AST-1102827.
Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR
NASA Astrophysics Data System (ADS)
Fuchs, Hendrik; Novelli, Anna; Rolletter, Michael; Hofzumahaus, Andreas; Pfannerstill, Eva Y.; Kessel, Stephan; Edtbauer, Achim; Williams, Jonathan; Michoud, Vincent; Dusanter, Sebastien; Locoge, Nadine; Zannoni, Nora; Gros, Valerie; Truong, Francois; Sarda-Esteve, Roland; Cryer, Danny R.; Brumby, Charlotte A.; Whalley, Lisa K.; Stone, Daniel; Seakins, Paul W.; Heard, Dwayne E.; Schoemaecker, Coralie; Blocquet, Marion; Coudert, Sebastien; Batut, Sebastien; Fittschen, Christa; Thames, Alexander B.; Brune, William H.; Ernest, Cheryl; Harder, Hartwig; Muller, Jennifer B. A.; Elste, Thomas; Kubistin, Dagmar; Andres, Stefanie; Bohn, Birger; Hohaus, Thorsten; Holland, Frank; Li, Xin; Rohrer, Franz; Kiendler-Scharr, Astrid; Tillmann, Ralf; Wegener, Robert; Yu, Zhujun; Zou, Qi; Wahner, Andreas
2017-10-01
Hydroxyl (OH) radical reactivity (kOH) has been measured for 18 years with different measurement techniques. In order to compare the performances of instruments deployed in the field, two campaigns were conducted performing experiments in the atmospheric simulation chamber SAPHIR at Forschungszentrum Jülich in October 2015 and April 2016. Chemical conditions were chosen either to be representative of the atmosphere or to test potential limitations of instruments. All types of instruments that are currently used for atmospheric measurements were used in one of the two campaigns. The results of these campaigns demonstrate that OH reactivity can be accurately measured for a wide range of atmospherically relevant chemical conditions (e.g. water vapour, nitrogen oxides, various organic compounds) by all instruments. The precision of the measurements (limit of detection < 1 s-1 at a time resolution of 30 s to a few minutes) is higher for instruments directly detecting hydroxyl radicals, whereas the indirect comparative reactivity method (CRM) has a higher limit of detection of 2 s-1 at a time resolution of 10 to 15 min. The performances of the instruments were systematically tested by stepwise increasing, for example, the concentrations of carbon monoxide (CO), water vapour or nitric oxide (NO). In further experiments, mixtures of organic reactants were injected into the chamber to simulate urban and forested environments. Overall, the results show that the instruments are capable of measuring OH reactivity in the presence of CO, alkanes, alkenes and aromatic compounds. The transmission efficiency in Teflon inlet lines could have introduced systematic errors in measurements for low-volatile organic compounds in some instruments. CRM instruments exhibited a larger scatter in the data compared to the other instruments. The largest differences to reference measurements or to calculated reactivity were observed by CRM instruments in the presence of terpenes and oxygenated organic compounds (mixing ratio of OH reactants were up to 10 ppbv). In some of these experiments, only a small fraction of the reactivity is detected. The accuracy of CRM measurements is most likely limited by the corrections that need to be applied to account for known effects of, for example, deviations from pseudo first-order conditions, nitrogen oxides or water vapour on the measurement. Methods used to derive these corrections vary among the different CRM instruments. Measurements taken with a flow-tube instrument combined with the direct detection of OH by chemical ionisation mass spectrometry (CIMS) show limitations in cases of high reactivity and high NO concentrations but were accurate for low reactivity (< 15 s-1) and low NO (< 5 ppbv) conditions.
Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic Sea
Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin
2012-01-01
The coastal areas of the North-Western Mediterranean Sea are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant air-sea interactions, strong winds and large sea-state can have catastrophic consequences in the coastal areas. To investigate these air-sea interactions and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean Sea that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant sea surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as air-sea and air-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.
SENSOR: a tool for the simulation of hyperspectral remote sensing systems
NASA Astrophysics Data System (ADS)
Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel
The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.
NASA's supercomputing experience
NASA Technical Reports Server (NTRS)
Bailey, F. Ron
1990-01-01
A brief overview of NASA's recent experience in supercomputing is presented from two perspectives: early systems development and advanced supercomputing applications. NASA's role in supercomputing systems development is illustrated by discussion of activities carried out by the Numerical Aerodynamical Simulation Program. Current capabilities in advanced technology applications are illustrated with examples in turbulence physics, aerodynamics, aerothermodynamics, chemistry, and structural mechanics. Capabilities in science applications are illustrated by examples in astrophysics and atmospheric modeling. Future directions and NASA's new High Performance Computing Program are briefly discussed.
1982-10-13
35. . Wiese, W.L., Smith, M.W., and Miles , B.M. (1969) Atomic Transition Probabilities, Vol. II, NSRDS-NBS 22. 8. Green, B.D., private communication...sidearms simultane- ously changes the flow velocity (that is, the residence time) and the ratio of charge to number density E/N in the discharge plasma , as...Levels, Vol. I, NSRDS-NBS 35. 7. Wiese, W. L., Smith, M. W., and Miles , B. M. (1969’, Atomic Transition Probabilities, Vol. II, NSRDS-NBS 22. 8. Green, B
NASA Technical Reports Server (NTRS)
Changsheng, LI; Frolking, Steve; Frolking, Tod A.
1992-01-01
Simulations of N2O and CO2 emissions from soils were conducted with a rain-event driven, process-oriented model (DNDC) of nitrogen and carbon cycling processes in soils. The magnitude and trends of simulated N2O (or N2O + N2) and CO2 emissions were consistent with the results obtained in field experiments. The successful simulation of these emissions from the range of soil types examined demonstrates that the DNDC will be a useful tool for the study of linkages among climate, soil-atmosphere interactions, land use, and trace gas fluxes.
Cloud iron speciation: Experimental simulations
NASA Astrophysics Data System (ADS)
Sofikitis, A. M.; Colin, J. L.; Desboeufs, K. V.; Losno, R.
2003-04-01
The aim of our contribution is to identify major processes controlling iron speciation in the atmospheric aqueous phase. Fe is known to participate in a variety of redox reactions in cloud chemistry, as well as controlling free radical production in the troposphere. Iron cycling is slower than cycles with other catalytic transition metals (Cu, Mn). The residence time of each iron species is around ten minutes, this allows analytical separation and determination of each iron redox species and therefore its ratio. As the only source of trace metals in aqueous atmospheric phase is due to the solubilization of aerosols, we present here dissolution rate measurements obtained by laboratory experiments with an open flow reactor. This reactor enables us to reproduce the dissolution of a particle in aqueous atmospheric water. The dissolution rate and the speciation of iron are dependent on the mineralogy of the solid phase. Our experiments included Goethite, hematite and vermiculite, which are typical mineral constituents of dust particles. Comparisons were made with natural loess which is a blend of various crystalline and amorphous phases. We will present results of crustal origin particles dissolution experiments where kinetic parameters are determined, including iron speciation. Major functions of variation are pH and photochemistry in the aqueous weathering solution.
Galloway, Melissa M; Powelson, Michelle H; Sedehi, Nahzaneen; Wood, Stephanie E; Millage, Katherine D; Kononenko, Julia A; Rynaski, Alec D; De Haan, David O
2014-12-16
Reactions of carbonyl compounds in cloudwater produce organic aerosol mass through in-cloud oxidation and during postcloud evaporation. In this work, postcloud evaporation was simulated in laboratory experiments on evaporating droplets that contain mixtures of common atmospheric aldehydes with ammonium sulfate (AS), methylamine, or glycine. Aerosol diameters were measured during monodisperse droplet drying experiments and during polydisperse droplet equilibration experiments at 75% relative humidity, and condensed-phase mass was measured in bulk thermogravimetric experiments. The evaporation of water from a droplet was found to trigger aldehyde reactions that increased residual particle volumes by a similar extent in room-temperature experiments, regardless of whether AS, methylamine, or glycine was present. The production of organic aerosol volume was highest from droplets containing glyoxal, followed by similar production from methylglyoxal or hydroxyacetone. Significant organic aerosol production was observed for glycolaldehyde, acetaldehyde, and formaldehyde only at elevated temperatures in thermogravimetric experiments. In many experiments, the amount of aerosol produced was greater than the sum of all solutes plus nonvolatile solvent impurities, indicating the additional presence of trapped water, likely caused by increasing aerosol-phase viscosity due to oligomer formation.
Revisiting ocean carbon sequestration by direct injection: a global carbon budget perspective
NASA Astrophysics Data System (ADS)
Reith, Fabian; Keller, David P.; Oschlies, Andreas
2016-11-01
In this study we look beyond the previously studied effects of oceanic CO2 injections on atmospheric and oceanic reservoirs and also account for carbon cycle and climate feedbacks between the atmosphere and the terrestrial biosphere. Considering these additional feedbacks is important since backfluxes from the terrestrial biosphere to the atmosphere in response to reducing atmospheric CO2 can further offset the targeted reduction. To quantify these dynamics we use an Earth system model of intermediate complexity to simulate direct injection of CO2 into the deep ocean as a means of emissions mitigation during a high CO2 emission scenario. In three sets of experiments with different injection depths, we simulate a 100-year injection period of a total of 70 Gt
NASA Astrophysics Data System (ADS)
Pohl, Benjamin; Douville, Hervé
2011-10-01
The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S-32°N 30°W-50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.
NASA Astrophysics Data System (ADS)
Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian
2014-05-01
In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave modes. Thus certain "benchmarks" have been created that can later be used as test cases for atmospheric numerical model validation. Both in the experiments and in the numerics multiple equilibrium states have been observed in the form of hysteretic behavior depending on the initial conditions. The precise quantification of these state and wave mode transitions may shed light to some aspects of the basic underlying dynamics of the baroclinic annulus configuration, still to be understood.
NASA Astrophysics Data System (ADS)
Kodama, C.; Noda, A. T.; Satoh, M.
2012-06-01
This study presents an assessment of three-dimensional structures of hydrometeors simulated by the NICAM, global nonhydrostatic atmospheric model without cumulus parameterization, using multiple satellite data sets. A satellite simulator package (COSP: the CFMIP Observation Simulator Package) is employed to consistently compare model output with ISCCP, CALIPSO, and CloudSat satellite observations. Special focus is placed on high thin clouds, which are not observable in the conventional ISCCP data set, but can be detected by the CALIPSO observations. For the control run, the NICAM simulation qualitatively captures the geographical distributions of the high, middle, and low clouds, even though the horizontal mesh spacing is as coarse as 14 km. The simulated low cloud is very close to that of the CALIPSO low cloud. Both the CloudSat observations and NICAM simulation show a boomerang-type pattern in the radar reflectivity-height histogram, suggesting that NICAM realistically simulates the deep cloud development process. A striking difference was found in the comparisons of high thin cirrus, showing overestimated cloud and higher cloud top in the model simulation. Several model sensitivity experiments are conducted with different cloud microphysical parameters to reduce the model-observation discrepancies in high thin cirrus. In addition, relationships among clouds, Hadley circulation, outgoing longwave radiation and precipitation are discussed through the sensitivity experiments.
Shock wave interaction with L-shaped structures
NASA Astrophysics Data System (ADS)
Miller, Richard C.
1993-12-01
This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.
Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.
Miffre, Alain; Anselmo, Christophe; Geffroy, Sylvain; Fréjafon, Emeric; Rairoux, Patrick
2015-02-09
Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.
NASA Technical Reports Server (NTRS)
Frehlich, Rod; Kavaya, Michael J.
2000-01-01
The explanation for the difference between simulation and the zero-order theory for heterodyne lidar returns in a turbulent atmosphere proposed by Belmonte and Rye is incorrect. The theoretical expansion is not developed under a square- law-structure function approximation (random wedge atmosphere). Agreement between the simulations and the zero-order term of the theoretical expansion is produced for the limit of statistically independent paths (bi-static operation with large transmitter-receiver separation) when the simulations correctly include the large-scale gradients of the turbulent atmosphere.
Investigating Dry Deposition of Ozone to Vegetation
NASA Astrophysics Data System (ADS)
Silva, Sam J.; Heald, Colette L.
2018-01-01
Atmospheric ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. The majority of atmospheric chemistry models calculate dry deposition using a resistance-in-series parameterization by Wesely (1989), which is dependent on many environmental variables and lookup table values. The uncertainties contained within this parameterization have not been fully explored, ultimately challenging our ability to understand global scale biosphere-atmosphere interactions. In this work, we evaluate the GEOS-Chem model simulation of ozone dry deposition using a globally distributed suite of observations. We find that simulated daytime deposition velocities generally reproduce the magnitude of observations to within a factor of 1.4. When correctly accounting for differences in land class between the observations and model, these biases improve, most substantially over the grasses and shrubs land class. These biases do not impact the global ozone burden substantially; however, they do lead to local absolute changes of up to 4 ppbv and relative changes of 15% in summer surface concentrations. We use MERRA meteorology from 1979 to 2008 to assess that the interannual variability in simulated annual mean ozone dry deposition due to model input meteorology is small (generally less than 5% over vegetated surfaces). Sensitivity experiments indicate that the simulation is most sensitive to the stomatal and ground surface resistances, as well as leaf area index. To improve ozone dry deposition models, more measurements are necessary over rainforests and various crop types, alongside constraints on individual depositional pathways and other in-canopy ozone loss processes.
Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago
Hostetler, S.W.; Bartlein, P.J.; Clark, P.U.; Small, E.E.; Solomon, A.M.
2000-01-01
Eleven thousand years ago, large lakes existed in central and eastern North America along the margin of the Laurentide Ice Sheet. The large-scale North American climate at this time has been simulated with atmospheric general circulation models, but these relatively coarse global models do not resolve potentially important features of the mesoscale circulation that arise from interactions among the atmosphere, ice sheet, and proglacial lakes. Here we present simulations of the climate of central and eastern North America 11,000 years ago with a high-resolution, regional climate model nested within a general circulation model. The simulated climate is in general agreement with that inferred from palaeoecological evidence. Our experiments indicate that through mesoscale atmospheric feedbacks, the annual delivery of moisture to the Laurentide Ice Sheet was diminished at times of a large, cold Lake Agassiz relative to periods of lower lake stands. The resulting changes in the mass balance of the ice sheet may have contributed to fluctuations of the ice margin, thus affecting the routing of fresh water to the North Atlantic Ocean. A retreating ice margin during periods of high lake level may have opened an outlet for discharge of Lake Agassiz into the North Atlantic. A subsequent advance of the ice margin due to greater moisture delivery associated with a low lake level could have dammed the outlet, thereby reducing discharge to the North Atlantic. These variations may have been decisive in causing the Younger Dryas cold even.
Production and condensation of organic gases in the atmosphere of Titan
NASA Technical Reports Server (NTRS)
Sagan, C.; Thompson, W. R.
1982-01-01
The rates and altitudes for the dissociation of atmospheric constituents on Titan are calculated for solar ultraviolet radiation, the solar wind, Saturn magnetospheric particles, the Saturn co-rotating plasma, and cosmic rays. Laboratory experiments show that a variety of simple gas phase organic molecules and more complex organic solids called tholins are produced by such irradiations of simulated Titanian atmospheres. Except for ultraviolet wavelengths longward of the methane photodissociation continuum, most dissociation events occur between about 3100 and 3600 km altitude, corresponding well to the region of EUV opacity detected by Voyager. For a wide variety of simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at about 2825 km. It is proposed that such condensates, beginning with CH4 at about 2615 km, comprise the principal mass of the Titan clouds. There is a distinct tendency for the atmosphere of Titan to act as a fractional distillation device, molecules of greater complexity condensing out at higher altitudes.
Electrostatic Model Applied to ISS Charged Water Droplet Experiment
NASA Technical Reports Server (NTRS)
Stevenson, Daan; Schaub, Hanspeter; Pettit, Donald R.
2015-01-01
The electrostatic force can be used to create novel relative motion between charged bodies if it can be isolated from the stronger gravitational and dissipative forces. Recently, Coulomb orbital motion was demonstrated on the International Space Station by releasing charged water droplets in the vicinity of a charged knitting needle. In this investigation, the Multi-Sphere Method, an electrostatic model developed to study active spacecraft position control by Coulomb charging, is used to simulate the complex orbital motion of the droplets. When atmospheric drag is introduced, the simulated motion closely mimics that seen in the video footage of the experiment. The electrostatic force's inverse dependency on separation distance near the center of the needle lends itself to analytic predictions of the radial motion.
NASA Astrophysics Data System (ADS)
Garrigues, S.; Olioso, A.; Calvet, J.-C.; Lafont, S.; Martin, E.; Chanzy, A.; Marloie, O.; Bertrand, N.; Desfonds, V.; Renard, D.
2012-04-01
Vegetation productivity and water balance of Mediterranean regions will be particularly affected by climate and land-use changes. In order to analyze and predict these changes through land surface models, a critical step is to quantify the uncertainties associated with these models (processes, parameters) and their implementation over a long period of time. Besides, uncertainties attached to the data used to force these models (atmospheric forcing, vegetation and soil characteristics, crop management practices...) which are generally available at coarse spatial resolution (>1-10 km) and for a limited number of plant functional types, need to be evaluated. This paper aims at assessing the uncertainties in water (evapotranspiration) and energy fluxes estimated from a Soil Vegetation Atmosphere Transfer (SVAT) model over a Mediterranean agricultural site. While similar past studies focused on particular crop types and limited period of time, the originality of this paper consists in implementing the SVAT model and assessing its uncertainties over a long period of time (10 years), encompassing several cycles of distinct crops (wheat, sorghum, sunflower, peas). The impacts on the SVAT simulations of the following sources of uncertainties are characterized: - Uncertainties in atmospheric forcing are assessed comparing simulations forced with local meteorological measurements and simulations forced with re-analysis atmospheric dataset (SAFRAN database). - Uncertainties in key surface characteristics (soil, vegetation, crop management practises) are tested comparing simulations feeded with standard values from global database (e.g. ECOCLIMAP) and simulations based on in situ or site-calibrated values. - Uncertainties dues to the implementation of the SVAT model over a long period of time are analyzed with regards to crop rotation. The SVAT model being analyzed in this paper is ISBA in its a-gs version which simulates the photosynthesis and its coupling with the stomata conductance, as well as the time course of the plant biomass and the Leaf Area Index (LAI). The experiment was conducted at the INRA-Avignon (France) crop site (ICOS associated site), for which 10 years of energy and water eddy fluxes, soil moisture profiles, vegetation measurements, agricultural practises are available for distinct crop types. The uncertainties in evapotranspiration and energy flux estimates are quantified from both 10-year trend analysis and selected daily cycles spanning a range of atmospheric conditions and phenological stages. While the net radiation flux is correctly simulated, the cumulated latent heat flux is under-estimated. Daily plots indicate i) an overestimation of evapotranspiration over bare soil probably due to an overestimation of the soil water reservoir available for evaporation and ii) an under-estimation of transpiration for developed canopy. Uncertainties attached to the re-analysis atmospheric data show little influence on the cumulated values of evapotranspiration. Better performances are reached using in situ soil depths and site-calibrated photosynthesis parameters compared to the simulations based on the ECOCLIMAP standard values. Finally, this paper highlights the impact of the temporal succession of vegetation cover and bare soil on the simulation of soil moisture and evapotranspiration over a long period of time. Thus, solutions to account for crop rotation in the implementation of SVAT models are discussed.
Long-term Ecosystem Experiments, Data Assimilation, and Meta-Analysis
NASA Astrophysics Data System (ADS)
Hungate, B. A.; Van Groenigen, K. J.; Osenberg, C. W.; van Gestel, N.
2015-12-01
Land ecosystems affect climate and the atmosphere, and climate and atmospheric change affects ecosystems. Syntheses of ecosystem experiments investigating their responses to environmental change holds promise for understanding how to model these interactions, and thereby gain insight into Earth's future biosphere, atmosphere, and climate. Long-term experiments examining ecosystem responses are thought to be especially important in this effort, for their potential to reveal cumulative and progressive effects, subtle effects initially undetectable experimentally, but manifest more clearly over time, often with stronger implications for modeled responses than the more dramatic, short-term experimental responses. Here, we present new analyses of long-term experiments manipulating temperature, CO2 concentration, and precipitation, testing the general hypothesis that there are common temporal patterns of responses that reveal general biogeochemical characterizing ecosystem responses to these environmental changes. For example, we show that increased carbon input with elevated CO2 stimulates emissions of nitrous oxide and methane, important greenhouse gases, and that effects show no signs of diminishing over the duration of experiments that have documented responses. At the same time, we show that the temporal resolution for this response is limited, pointing to a potential limitation in the ability of experiments to address clearly long-term hypotheses. We also show that warming tends to have limited cumulative effects on total soil carbon stocks in long-term experiments, and explore the mechanisms underlying this response. Finally, we discuss the implications of these findings for models used to simulate long-term ecosystem responses to these environmental forcings, as well as the implications of these findings for the next generation of terrestrial ecosystem experiments.
How potentially predictable are midlatitude ocean currents?
Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi
2016-01-01
Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954
NASA Astrophysics Data System (ADS)
Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy
2016-09-01
Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.
Whole Atmosphere Simulation of Anthropogenic Climate Change
NASA Astrophysics Data System (ADS)
Solomon, Stanley C.; Liu, Han-Li; Marsh, Daniel R.; McInerney, Joseph M.; Qian, Liying; Vitt, Francis M.
2018-02-01
We simulated anthropogenic global change through the entire atmosphere, including the thermosphere and ionosphere, using the Whole Atmosphere Community Climate Model-eXtended. The basic result was that even as the lower atmosphere gradually warms, the upper atmosphere rapidly cools. The simulations employed constant low solar activity conditions, to remove the effects of variable solar and geomagnetic activity. Global mean annual mean temperature increased at a rate of +0.2 K/decade at the surface and +0.4 K/decade in the upper troposphere but decreased by about -1 K/decade in the stratosphere-mesosphere and -2.8 K/decade in the thermosphere. Near the mesopause, temperature decreases were small compared to the interannual variation, so trends in that region are uncertain. Results were similar to previous modeling confined to specific atmospheric levels and compared favorably with available measurements. These simulations demonstrate the ability of a single comprehensive numerical model to characterize global change throughout the atmosphere.
Measurements and Experimental Database Review for Laminar Flame Speed Premixed Ch4/Air Flames
NASA Astrophysics Data System (ADS)
Zubrilin, I. A.; Matveev, S. S.; Matveev, S. G.; Idrisov, D. V.
2018-01-01
Laminar flame speed (SL ) of CH4 was determined at atmospheric pressure and initial gas temperatures in range from 298 to 358 K. The heat flux method was employed to measure the flame speed in non-stretched flames. The kinetic mechanism GRI 3.0 [1] were used to simulate SL . The measurements were compared with available literature results. The data determined with the heat flux method agree with some previous burner measurements and disagree with the data from some vessel closed method and counterflow method. The GRI 3.0 mechanism was able to reproduce the present experiments. Laminar flame speed was determined at pressures range from of 1 to 20 atmospheres through mechanism GRI 3.0. Based on experimental data and calculations was obtained SL dependence on pressure and temperature. The resulting of dependence recommended use during the numerical simulation of methane combustion.
McCabe, G.J.; Dettinger, M.D.
1995-01-01
General circulation model (GCM) simulations of atmospheric circulation are more reliable than GCM simulations of temperature and precipitation. In this study, temporal correlations between 700 hPa height anomalies simulated winter precipitation at eight locations in the conterminous United States are compared with corresponding correlations in observations. The objectives are to 1) characterize the relations between atmospheric circulation and winter precipitation simulated by the GFDL, GCM for selected locations in the conterminous USA, ii) determine whether these relations are similar to those found in observations of the actual climate system, and iii) determine if GFDL-simulated precipitation is forced by the same circulation patterns as in the real atmosphere. -from Authors
Savelyev, Alexey; MacKerell, Alexander D.
2015-01-01
In the present study we report on interactions of and competition between monovalent ions for two DNA sequences in MD simulations. Efforts included the development and validation of parameters for interactions among the first-group monovalent cations, Li+, Na+, K+ and Rb+, and DNA in the Drude polarizable and additive CHARMM36 force fields (FF). The optimization process targeted gas-phase QM interaction energies of various model compounds with ions and osmotic pressures of bulk electrolyte solutions of chemically relevant ions. The optimized ionic parameters are validated against counterion condensation theory and buffer exchange-atomic emission spectroscopy measurements providing quantitative data on the competitive association of different monovalent ions with DNA. Comparison between experimental and MD simulation results demonstrates that, compared to the additive CHARMM36 model, the Drude FF provides an improved description of the general features of the ionic atmosphere around DNA and leads to closer agreement with experiment on the ionic competition within the ion atmosphere. Results indicate the importance of extended simulation systems on the order of 25 Å beyond the DNA surface to obtain proper convergence of ion distributions. PMID:25751286
Wehner, Michael F.; Bala, G.; Duffy, Phillip; ...
2010-01-01
We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less
NASA Astrophysics Data System (ADS)
Pierrehumbert, R. T.; Frierson, D. M.
2006-05-01
To obtain a better understanding of the basic mechanisms by which the atmosphere transmits extratropical influences into the tropics, we have analyzed a series of general circulation model experiments carried out with idealized continental boundary conditions. These experiments were carried out with the FOAM1.5 model, which is in essence a portable Beowulf-oriented reimplementation of CCM3. In accord with our focus on the atmosphere in this work, the atmospheric model is coupled to a mixed-layer ocean with lateral ocean heat flux set to zero. The continental geometry consists of a pair of zonally symmetric continents, one centered on each pole. The Southern Hemisphere continent extends to 65S, and is kept glaciated in all experiments. The Northern Hemisphere continent extends to 42N, and is glaciated in the NHCOLD experiment but bare land in the NHWARM experiment. Sea ice feedback was suppressed in these simulations, but given the geometry of the Northern Hemisphere continent, the NHCOLD case can be taken as representing the combined forcing due to land glaciation and equatorward advance of sea ice. These experiments allow us to examine, in a very clean way, the response of the tropics to a very large extratropical cooling imposed at the surface, in a model which is energetically closed. Comparison of the two simulations has yielded the following results. The principal means by which the midlatitude glaciation affects the tropics is via a marked increase in poleward NH wintertime sensible heat flux, which is uncompensated by reduction in latent heat flux. The coupling of the storm tracks to the tropics is weak, however, and causes only a moderate cooling in the Northern subtropics and hardly any south of the Equator. The dynamics behind this barrier effect are discussed. The increased sensible heat flux,however, causes a considerable strengthening of the Hadley circulation; this strengthening allows the ITCZ precipitation to remain approximately unchanged between the NHWARM and NHCOLD cases, despite the substantial reduction in atmospheric water vapor in the cold case. The extremely strong midlatitude cooling produces a modest southward shift in the January ITCZ, and none at all in the July ITCZ, indicating that basic Hadley dynamics can make the ITCZ very resistant to moving; we find that the ITCZ position closely follows the tropical temperature maximum. The ITCZ shifts are discussed in terms of theoretical concepts applying to the Hadley circulation. Using an energy balance model (EBM) based on diffusion of moist static energy, Frierson and Held have shown that there is a compensation between changes in latent and sensible heat transport as climate warms, provided the meridional distribution of absorbed solar radiation remains fixed. We have extended this analysis to the case in which the solar forcing gradient is allowed to change, as is the case in our simulations owing to the change in surface albedo between the two simulations. In this case, the EBM does not require strict compensation, and in fact correctly reproduces the fact that tropical heat export increases in the NHCOLD case. However, the EBM over-estimates the penetration of the cooling past the Equator, owing to inadequacies in the diffusive treatment of the Hadley circulation. The EBM also misprepresents the magnitude of midlatitude heat flux changes, owing to the bottom-trapped nature of extratropical cooling seen in the GCM experiments, which is not reflected in the assumptions about the vertical profile of temperature built into the EBM. The implications of incorporating this effect will be discussed.
Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; ...
2015-04-27
Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO 2. Free-Air CO 2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO 2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO 2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO 2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluatemore » whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO 2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO 2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO 2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO 2.« less
Huygens Atmospheric Structure Instrument (HASI) test by a stratospheric balloon experiment
NASA Astrophysics Data System (ADS)
Fulchignoni, M.; Gaborit, V.; Aboudam, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Lion Stoppato, P.
2002-09-01
We developped a series of balloon experiments parachuting a 1:1 scale mock up of the Huygens probe from an altitude larger than 30 km in order to simulate at planetary scale the final part of the descent of the probe in the Titan atmosphere. The Earth atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, with the exception of temperature. A first balloon experiment has been carried out in June 2001 and the results have been reported at the last DPS (V. Gaborit et al., BAAS 33, 38.03) The mock up of the probe descending in the Titan atmosphere for the Huygens Cassini Mission has been successfully launched with stratospheric balloon from Italian Space Agency Base "Luigi Broglio" in Sicily and recovered on May 30th 2002. The probe has been lifted at 32 km altitude and then released to perform a 45 minutes descent decelerated by parachute, to simulate Huygens mission at Titan. Preliminary aerodynamics study of the probe has focused on the achievement of a descent velocity profile and a spin rate profile, satisfying the Huygens mission to Titan requirements. The descent velocity and spin rate have been calculated by solving a system of ODE describing the translational and rotational motion of the probe trough the earth atmosphere during parachute aided descent Results of these calculations have driven the choice of an appropriate angle of attack of the blades in the bottom of the probe and ballast weight during flight. The probe is hosting spares of HASI sensors, housekeeping sensors and other dedicated sensors, Beagle II UV Sensors and Huygens SSP Tilt Sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. Main goals are i) to verify sensor performance and perform a realistic functional test in dynamical and environmental conditions similar to those during the descent in Titan atmosphere; ii) to investigate impact at ground to check the impact detection sequence of HASI accelerometer and HASI in the surface phase; iii) to test the codes developped to perfor the descent trajectory reconstruction of the Huygens probe in the Titan atmosphere. An integrated data acquisition and instrument control system has been developed, based on PC architecture and soft-real-time application. Sensors channels have been sampled at the nominal HASI data rates, with a max rate of 1 kHz. Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy.
Simulation of the Intercontinental Transport, Aging, and Removal of a Boreal Fire Smoke Plume
NASA Astrophysics Data System (ADS)
Ghan, S. J.; Chapman, E. G.; Easter, R. C.; Reid, J. S.; Justice, C.
2003-12-01
Back trajectories suggest that an elevated absorbing aerosol plume observed over Oklahoma in May 2003 can be traced to intense forest fires in Siberia two weeks earlier. The Fire Locating and Modeling of Burning Emissions (FLAMBE) product is used to estimate smoke emissions from those fires. The Model for Integrated Research on Atmospheric Model Exchanges (MIRAGE) is used to simulate the transport, aging, radiative properties, and removal of the aerosol. The simulated aerosol optical depth is compared with satellite retrievals, and the vertical structure of the plume is compared with in situ measurements. Sensitivity experiments are performed to determine the sensitivity of the simulated plume to uncertainty in the emissions vertical profile, mass flux, size distribution, and composition.
NASA Astrophysics Data System (ADS)
Ojha, Narendra; Pozzer, Andrea; Jöckel, Patrick; Fischer, Horst; Zahn, Andreas; Tomsche, Laura; Lelieveld, Jos
2017-04-01
The Asian monsoon convection redistributes trace species, affecting the tropospheric chemistry and radiation budget over Asia and downwind as far as the Mediterranean. It remains challenging to model these impacts due to uncertainties, e.g. associated with the convection parameterization and input emissions. Here, we perform a series of numerical experiments using the global ECHAM5/MESSy atmospheric chemistry model (EMAC) to investigate the tropospheric distribution of O3 and related tracers measured during the Oxidation Mechanism Observations (OMO) conducted during July-August 2015. The reference simulation can reproduce the spatio-temporal variations to some extent (e.g. r2 = 0.7 for O3, 0.6 for CO). However, this simulation underestimates mean CO in the lower troposphere by about 30 ppbv and overestimates mean O3 up to 35 ppbv, especially in the middle-upper troposphere. Interestingly, sensitivity simulations with 50% higher biofuel emissions of CO over South Asia had insignificant effect on CO underestimation, pointing to sources upwind of South Asia. Use of an alternative convection parameterization is found to significantly improve simulated O3. The study reveals the abilities as well as the limitations of the model to reproduce observations and study atmospheric chemistry and climate implications of the monsoon.
NASA Astrophysics Data System (ADS)
Wu, Longtao; Wong, Sun; Wang, Tao; Huffman, George J.
2018-01-01
Simulation of moist convective processes is critical for accurately representing the interaction among tropical wave activities, atmospheric water vapor transport, and clouds associated with the Indian monsoon Intraseasonal Oscillation (ISO). In this study, we apply the Weather Research and Forecasting (WRF) model to simulate Indian monsoon ISO with three different treatments of moist convective processes: (1) the Betts-Miller-Janjić (BMJ) adjustment cumulus scheme without explicit simulation of moist convective processes; (2) the New Simplified Arakawa-Schubert (NSAS) mass-flux scheme with simplified moist convective processes; and (3) explicit simulation of moist convective processes at convection permitting scale (Nest). Results show that the BMJ experiment is unable to properly reproduce the equatorial Rossby wave activities and the corresponding phase relationship between moisture advection and dynamical convergence during the ISO. These features associated with the ISO are approximately captured in the NSAS experiment. The simulation with resolved moist convective processes significantly improves the representation of the ISO evolution, and has good agreements with the observations. This study features the first attempt to investigate the Indian monsoon at convection permitting scale.
NASA Technical Reports Server (NTRS)
Starr, David
2000-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth's Radiant Energy System (CERES), Multi-Angle Imaging Spectroradiometer (MISR), Moderate Resolution Imaging Spectroradiometer (MODIS) and Measurements of Pollution in the Troposphere (MOPITT). In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS) AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2 though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community.
NASA Technical Reports Server (NTRS)
Starr, David
1999-01-01
The EOS Terra mission will be launched in July 1999. This mission has great relevance to the atmospheric radiation community and global change issues. Terra instruments include ASTER, CERES, MISR, MODIS and MOPITT. In addition to the fundamental radiance data sets, numerous global science data products will be generated, including various Earth radiation budget, cloud and aerosol parameters, as well as land surface, terrestrial ecology, ocean color, and atmospheric chemistry parameters. Significant investments have been made in on-board calibration to ensure the quality of the radiance observations. A key component of the Terra mission is the validation of the science data products. This is essential for a mission focused on global change issues and the underlying processes. The Terra algorithms have been subject to extensive pre-launch testing with field data whenever possible. Intensive efforts will be made to validate the Terra data products after launch. These include validation of instrument calibration (vicarious calibration) experiments, instrument and cross-platform comparisons, routine collection of high quality correlative data from ground-based networks, such as AERONET, and intensive sites, such as the SGP ARM site, as well as a variety field experiments, cruises, etc. Airborne simulator instruments have been developed for the field experiment and underflight activities including the MODIS Airborne Simulator (MAS), AirMISR, MASTER (MODIS-ASTER), and MOPITT-A. All are integrated on the NASA ER-2, though low altitude platforms are more typically used for MASTER. MATR is an additional sensor used for MOPITT algorithm development and validation. The intensive validation activities planned for the first year of the Terra mission will be described with emphasis on derived geophysical parameters of most relevance to the atmospheric radiation community. Detailed information about the EOS Terra validation Program can be found on the EOS Validation program homepage i/e.: http://ospso.gsfc.nasa.gov/validation/valpage.html).
Ocean eddies and climate predictability
NASA Astrophysics Data System (ADS)
Kirtman, Ben P.; Perlin, Natalie; Siqueira, Leo
2017-12-01
A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.
Ocean eddies and climate predictability.
Kirtman, Ben P; Perlin, Natalie; Siqueira, Leo
2017-12-01
A suite of coupled climate model simulations and experiments are used to examine how resolved mesoscale ocean features affect aspects of climate variability, air-sea interactions, and predictability. In combination with control simulations, experiments with the interactive ensemble coupling strategy are used to further amplify the role of the oceanic mesoscale field and the associated air-sea feedbacks and predictability. The basic intent of the interactive ensemble coupling strategy is to reduce the atmospheric noise at the air-sea interface, allowing an assessment of how noise affects the variability, and in this case, it is also used to diagnose predictability from the perspective of signal-to-noise ratios. The climate variability is assessed from the perspective of sea surface temperature (SST) variance ratios, and it is shown that, unsurprisingly, mesoscale variability significantly increases SST variance. Perhaps surprising is the fact that the presence of mesoscale ocean features even further enhances the SST variance in the interactive ensemble simulation beyond what would be expected from simple linear arguments. Changes in the air-sea coupling between simulations are assessed using pointwise convective rainfall-SST and convective rainfall-SST tendency correlations and again emphasize how the oceanic mesoscale alters the local association between convective rainfall and SST. Understanding the possible relationships between the SST-forced signal and the weather noise is critically important in climate predictability. We use the interactive ensemble simulations to diagnose this relationship, and we find that the presence of mesoscale ocean features significantly enhances this link particularly in ocean eddy rich regions. Finally, we use signal-to-noise ratios to show that the ocean mesoscale activity increases model estimated predictability in terms of convective precipitation and atmospheric upper tropospheric circulation.
Probing free-space quantum channels with laboratory-based experiments
NASA Astrophysics Data System (ADS)
Bohmann, M.; Kruse, R.; Sperling, J.; Silberhorn, C.; Vogel, W.
2017-06-01
Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a postselection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.
1990-08-10
An artist's concept of the Magellan spacecraft making a radar map of Venus. Magellan mapped 98 percent of Venus' surface at a resolution of 100 to 150 meters (about the length of a football or soccer field), using synthetic aperture radar, a technique that simulates the use of a much larger radar antenna. It found that 85 percent of the surface is covered with volcanic flows and showed evidence of tectonic movement, turbulent surface winds, lava channels and pancake-shaped domes. Magellan also produced high-resolution gravity data for 95 percent of the planet and tested a new maneuvering technique called aerobraking, using atmospheric drag to adjust its orbit. The spacecraft was commanded to plunge into Venus' atmosphere in 1994 as part of a final experiment to gather atmospheric data. http://photojournal.jpl.nasa.gov/catalog/PIA18175
NASA Astrophysics Data System (ADS)
Paschalis, Pavlos; Tezari, Anastasia; Gerontidou, Maria; Mavromichalaki, Helen
2016-04-01
Galactic cosmic rays and solar energetic particles can penetrate the Earth's atmosphere and interact with its molecules, which can cause atmospheric showers of secondary particles that are detected by ground based neutron monitor detectors. The cascades are of great importance for the study of the radiation exposure of aircraft crews. A new Geant4 software application is presented based on DYASTIMA (Dynamic Atmospheric Shower Tracking Interactive Model Application), which calculates the effective dose that aviators may receive in different flight scenarios characterized by different altitudes and different flight routes, during quiet and disturbed solar and cosmic ray activity. The concept is based on Monte Carlo simulations by using phantoms for the aircraft and the aviator and experimenting with different shielding materials.
NASA Astrophysics Data System (ADS)
Mathur, R.
2009-12-01
Emerging regional scale atmospheric simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions. Sophisticated air quality modeling systems are needed to develop effective abatement strategies that focus on simultaneously controlling multiple criteria pollutants as well as use in providing short term air quality forecasts. In recent years the applications of such models is continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physical and chemical atmospheric processes occurring at these disparate spatial and temporal scales requires the use of observation data beyond traditional in-situ networks so that the model simulations can be reasonably constrained. Preliminary applications of assimilation of remote sensing and aloft observations within a comprehensive regional scale atmospheric chemistry-transport modeling system will be presented: (1) A methodology is developed to assimilate MODIS aerosol optical depths in the model to represent the impacts long-range transport associated with the summer 2004 Alaskan fires on surface-level regional fine particulate matter (PM2.5) concentrations across the Eastern U.S. The episodic impact of this pollution transport event on PM2.5 concentrations over the eastern U.S. during mid-July 2004, is quantified through the complementary use of the model with remotely-sensed, aloft, and surface measurements; (2) Simple nudging experiments with limited aloft measurements are performed to identify uncertainties in model representations of physical processes and assess the potential use of such measurements in improving the predictive capability of atmospheric chemistry-transport models. The results from these early applications will be discussed in context of uncertainties in the model and in the remote sensing data and needs for defining a future optimum observing strategy.
NASA Technical Reports Server (NTRS)
Combi, Michael R.
2004-01-01
In order to understand the global structure, dynamics, and physical and chemical processes occurring in the upper atmospheres, exospheres, and ionospheres of the Earth, the other planets, comets and planetary satellites and their interactions with their outer particles and fields environs, it is often necessary to address the fundamentally non-equilibrium aspects of the physical environment. These are regions where complex chemistry, energetics, and electromagnetic field influences are important. Traditional approaches are based largely on hydrodynamic or magnetohydrodynamic (MHD) formulations and are very important and highly useful. However, these methods often have limitations in rarefied physical regimes where the molecular collision rates and ion gyrofrequencies are small and where interactions with ionospheres and upper neutral atmospheres are important. At the University of Michigan we have an established base of experience and expertise in numerical simulations based on particle codes which address these physical regimes. The Principal Investigator, Dr. Michael Combi, has over 20 years of experience in the development of particle-kinetic and hybrid kinetichydrodynamics models and their direct use in data analysis. He has also worked in ground-based and space-based remote observational work and on spacecraft instrument teams. His research has involved studies of cometary atmospheres and ionospheres and their interaction with the solar wind, the neutral gas clouds escaping from Jupiter s moon Io, the interaction of the atmospheres/ionospheres of Io and Europa with Jupiter s corotating magnetosphere, as well as Earth s ionosphere. This report describes our progress during the year. The contained in section 2 of this report will serve as the basis of a paper describing the method and its application to the cometary coma that will be continued under a research and analysis grant that supports various applications of theoretical comet models to understanding the inner comae of comets (grant NAGS- 13239 from the Planetary Atmospheres program).
The Global Carbon Cycle: It's a Small World
NASA Astrophysics Data System (ADS)
Ineson, Philip; Milcu, Alexander; Subke, Jens-Arne; Wildman, Dennis; Anderson, Robert; Manning, Peter; Heinemeyer, Andreas
2010-05-01
Predicting future atmospheric concentrations of carbon dioxide (CO2), together with the impacts of these changes on global climate, are some of the most urgent and important challenges facing mankind. Modelling is the only way in which such predictions can be made, leading to the current generation of increasingly complex computer simulations, with associated concerns about embedded assumptions and conflicting model outputs. Alongside analysis of past climates, the GCMs currently represent our only hope of establishing the importance of potential runaway positive feedbacks linking climate change and atmospheric greenhouse gases yet the incorporation of necessary biospheric responses into GCMs markedly increases the uncertainty of predictions. Analysis of the importance of the major components of the global carbon (C) cycle reveals that an understanding of the conditions under which the terrestrial biosphere could switch from an overall carbon (C) sink to a source is critical to our ability to make future climate predictions. Here we present an alternative approach to assessing the short term biotic (plant and soil) sensitivities to elevated temperature and atmospheric CO2 through the use of a purely physical analogue. Centred on the concept of materially-closed systems containing scaled-down ratios of the global C stocks for the atmosphere, vegetation and soil we show that, in these model systems, the terrestrial biosphere is able to buffer a rise of 3oC even when coupled to very strong CO2-temperature positive feedbacks. The system respiratory response appears to be extremely well linked to temperature and is critical in deciding atmospheric concentrations of CO2. Simulated anthropogenic emissions of CO2 into the model systems showed an initial corresponding increase in atmospheric CO2 but, somewhat surprisingly, CO2 concentrations levelled off at ca. 480 p.p.m.v., despite continuing additions of CO2. Experiments were performed in which reversion of atmospheric temperatures, or cessation of CO2 additions, showed rapid and proportionate decreases in atmospheric CO2 concentrations. The results indicate that short term terrestrial feedbacks are not sufficient to induce a CO2-temperature runaway scenario and suggest that predictions of atmospheric CO2 by current GCMs may under-estimate the CO2 fertilisation effect on plants and, hence, over-estimate future atmospheric CO2 increases. Perhaps, more importantly, the experiments show that the impacts of imposed elevated CO2 and temperature increase can be reversed. Whilst clearly representing a simplified version of terrestrial CO2 dynamics, it is proposed that closed system research represents a new form of test-bed for validation of processes represented within digital global CO2 models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D; Parsons, D; Geerts, B
The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fractionmore » of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.« less
Experimental and Numerical Research of a Novel Combustion Chamber for Small Gas Turbine Engines
NASA Astrophysics Data System (ADS)
Tuma, J.; Kubata, J.; Betak, V.; Hybl, R.
2013-04-01
New combustion chamber concept (based on burner JETIS-JET Induced Swirl) for small gas turbine engine (up to 200kW) is presented in this article. The combustion chamber concept is based on the flame stabilization by the generated swirl swirl generated by two opposite tangentially arranged jet tubes in the intermediate zone, this arrangement replaces air swirler, which is very complicated and expensive part in the scope of small gas turbines with annular combustion chamber. The mixing primary jets are oriented partially opposite to the main exhaust gasses flow, this enhances hot product recirculation and fuel-air mixing necessary for low NOx production and flame stability. To evaluate the designed concept a JETIS burner demonstrator (methane fuel) was manufactured and atmospheric experimental measurements of CO, NOx for various fuel nozzles and jet tubes the configuration were done. Results of these experiments and comparison with CFD simulation are presented here. Practical application of the new chamber concept in small gas turbine liquid fuel combustor was evaluated (verified) on 3 nozzles planar combustor sector test rig at atmospheric conditions results of the experiment and numerical simulation are also presented.
NASA Technical Reports Server (NTRS)
Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben
2011-01-01
The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.
Simulation of APEX data: the SENSOR approach
NASA Astrophysics Data System (ADS)
Boerner, Anko; Schaepman, Michael E.; Schlaepfer, Daniel; Wiest, Lorenz; Reulke, Ralf
1999-10-01
The consistent simulation of airborne and spaceborne hyperspectral data is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observing conditions, the choice and test of algorithms for data processing, error estimations and the evaluation of the capabilities of the whole sensor system. The integration of three approaches is suggested for the data simulation of APEX (Airborne Prism Experiment): (1) a spectrally consistent approach (e.g. using AVIRIS data), (2) a geometrically consistent approach (e.g. using CASI data), and (3) an end-to- end simulation of the sensor system. In this paper, the last approach is discussed in detail. Such a technique should be used if there is no simple deterministic relation between input and output parameters. The simulation environment SENSOR (Software Environment for the Simulation of Optical Remote Sensing Systems) presented here includes a full model of the sensor system, the observed object and the atmosphere. The simulator consists of three parts. The first part describes the geometrical relations between object, sun, and sensor using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor-radiance using a pre-calculated multidimensional lookup-table for the atmospheric boundary conditions and bi- directional reflectances. Part three consists of an optical and an electronic sensor model for the generation of digital images. Application-specific algorithms for data processing must be considered additionally. The benefit of using an end- to-end simulation approach is demonstrated, an example of a simulated APEX data cube is given, and preliminary steps of evaluation of SENSOR are carried out.
Computational simulation of laboratory-scale volcanic jets
NASA Astrophysics Data System (ADS)
Solovitz, S.; Van Eaton, A. R.; Mastin, L. G.; Herzog, M.
2017-12-01
Volcanic eruptions produce ash clouds that may travel great distances, significantly impacting aviation and communities downwind. Atmospheric hazard forecasting relies partly on numerical models of the flow physics, which incorporate data from eruption observations and analogue laboratory tests. As numerical tools continue to increase in complexity, they must be validated to fine-tune their effectiveness. Since eruptions are relatively infrequent and challenging to observe in great detail, analogue experiments can provide important insights into expected behavior over a wide range of input conditions. Unfortunately, laboratory-scale jets cannot easily attain the high Reynolds numbers ( 109) of natural volcanic eruption columns. Comparisons between the computational models and analogue experiments can help bridge this gap. In this study, we investigate a 3-D volcanic plume model, the Active Tracer High-resolution Atmospheric Model (ATHAM), which has been used to simulate a variety of eruptions. However, it has not been previously validated using laboratory-scale data. We conducted numerical simulations of three flows that we have studied in the laboratory: a vertical jet in a quiescent environment, a vertical jet in horizontal cross flow, and a particle-laden jet. We considered Reynolds numbers from 10,000 to 50,000, jet-to-cross flow velocity ratios of 2 to 10, and particle mass loadings of up to 25% of the exit mass flow rate. Vertical jet simulations produce Gaussian velocity profiles in the near exit region by 3 diameters downstream, matching the mean experimental profiles. Simulations of air entrainment are of the correct order of magnitude, but they show decreasing entrainment with vertical distance from the vent. Cross flow simulations reproduce experimental trajectories for the jet centerline initially, although confinement appears to impact the response later. Particle-laden simulations display minimal variation in concentration profiles between cases with different mass loadings and size distributions, indicating that differences in particle behavior may not be evident at this laboratory scale.
Dust devil characteristics and associated dust entrainment based on large-eddy simulations
NASA Astrophysics Data System (ADS)
Klose, Martina; Kwidzinski, Nick; Shao, Yaping
2015-04-01
The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.
NASA Astrophysics Data System (ADS)
Davini, Paolo; von Hardenberg, Jost; Corti, Susanna; Subramanian, Aneesh; Weisheimer, Antje; Christensen, Hannah; Juricke, Stephan; Palmer, Tim
2016-04-01
The PRACE Climate SPHINX project investigates the sensitivity of climate simulations to model resolution and stochastic parameterization. The EC-Earth Earth-System Model is used to explore the impact of stochastic physics in 30-years climate integrations as a function of model resolution (from 80km up to 16km for the atmosphere). The experiments include more than 70 simulations in both a historical scenario (1979-2008) and a climate change projection (2039-2068), using RCP8.5 CMIP5 forcing. A total amount of 20 million core hours will be used at end of the project (March 2016) and about 150 TBytes of post-processed data will be available to the climate community. Preliminary results show a clear improvement in the representation of climate variability over the Euro-Atlantic following resolution increase. More specifically, the well-known atmospheric blocking negative bias over Europe is definitely resolved. High resolution runs also show improved fidelity in representation of tropical variability - such as the MJO and its propagation - over the low resolution simulations. It is shown that including stochastic parameterization in the low resolution runs help to improve some of the aspects of the MJO propagation further. These findings show the importance of representing the impact of small scale processes on the large scale climate variability either explicitly (with high resolution simulations) or stochastically (in low resolution simulations).
Soil Moisture and the Persistence of North American Drought.
NASA Astrophysics Data System (ADS)
Oglesby, Robert J.; Erickson, David J., III
1989-11-01
We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.
Creating Weather System Ensembles Through Synergistic Process Modeling and Machine Learning
NASA Astrophysics Data System (ADS)
Chen, B.; Posselt, D. J.; Nguyen, H.; Wu, L.; Su, H.; Braverman, A. J.
2017-12-01
Earth's weather and climate are sensitive to a variety of control factors (e.g., initial state, forcing functions, etc). Characterizing the response of the atmosphere to a change in initial conditions or model forcing is critical for weather forecasting (ensemble prediction) and climate change assessment. Input - response relationships can be quantified by generating an ensemble of multiple (100s to 1000s) realistic realizations of weather and climate states. Atmospheric numerical models generate simulated data through discretized numerical approximation of the partial differential equations (PDEs) governing the underlying physics. However, the computational expense of running high resolution atmospheric state models makes generation of more than a few simulations infeasible. Here, we discuss an experiment wherein we approximate the numerical PDE solver within the Weather Research and Forecasting (WRF) Model using neural networks trained on a subset of model run outputs. Once trained, these neural nets can produce large number of realization of weather states from a small number of deterministic simulations with speeds that are orders of magnitude faster than the underlying PDE solver. Our neural network architecture is inspired by the governing partial differential equations. These equations are location-invariant, and consist of first and second derivations. As such, we use a 3x3 lon-lat grid of atmospheric profiles as the predictor in the neural net to provide the network the information necessary to compute the first and second moments. Results indicate that the neural network algorithm can approximate the PDE outputs with high degree of accuracy (less than 1% error), and that this error increases as a function of the prediction time lag.
Chemistry of Titan's Aerosols : Correlation of The C/n &C/h Ratios To Pressure and Temperature
NASA Astrophysics Data System (ADS)
Bernard, J.-M.; Coll, P.; Raulin, F.
The gas present in Titan's atmosphere are forming organics aerosols under action of the solar radiations and of electrons from Saturn's magnetosphere. Many experimental simulations are been realised by irradiating N2/CH4 gas mixtures with different en- ergy sources in order to reproduce the chemistry of gas and particulate phases (Thomp- son et al, 1991; Mc Donald et al, 1994; de Vanssay et al, 1995; McKay, 1996; Coll et al, 1997, 1998a,b; and Refs. included). Until very recently, only one organics re- mains detected in Titan but not in laboratory simulation : C4N2. A full program of experimental research has been developed at LISA, which was able to provide a com- plete identification of a wide range of compounds, proposed to be present in Titan's atmosphere, including C4N2. The composition of aerosol on Titan is not known, due to its complexity. Especially its building molecules are difficult to identify. Only functional groups of analogues have been determined using spectroscopy and pyrolysis. However this chemical composi- tion is a key parameter for Cassini-Huygens experiments and atmospheric modeling : even the optical properties of aerosols are related to C/N and C/H ratios. We will present the results of the variation of C/N and C/H ratios according to the temperature and the pressure in Titan's atmosphere simulations. This data will allow to constraint photochemical models, in order for them to be more realistic. Then the comprehension of the mechanism of aerosols formation on Titan as function of altitude will be easier.
Quantifying Carbon Flux Estimation Errors
NASA Astrophysics Data System (ADS)
Wesloh, D.
2017-12-01
Atmospheric Bayesian inversions have been used to estimate surface carbon dioxide (CO2) fluxes from global to sub-continental scales using atmospheric mixing ratio measurements. These inversions use an atmospheric transport model, coupled to a set of fluxes, in order to simulate mixing ratios that can then be compared to the observations. The comparison is then used to update the fluxes to better match the observations in a manner consistent with the uncertainties prescribed for each. However, inversion studies disagree with each other at continental scales, prompting further investigations to examine the causes of these differences. Inter-comparison studies have shown that the errors resulting from atmospheric transport inaccuracies are comparable to those from the errors in the prior fluxes. However, not as much effort has gone into studying the origins of the errors induced by errors in the transport as by errors in the prior distribution. This study uses a mesoscale transport model to evaluate the effects of representation errors in the observations and of incorrect descriptions of the transport. To obtain realizations of these errors, we performed an Observing System Simulation Experiments (OSSEs), with the transport model used for the inversion operating at two resolutions, one typical of a global inversion and the other of a mesoscale, and with various prior flux distributions to. Transport error covariances are inferred from an ensemble of perturbed mesoscale simulations while flux error covariances are computed using prescribed distributions and magnitudes. We examine how these errors can be diagnosed in the inversion process using aircraft, ground-based, and satellite observations of meteorological variables and CO2.
2015-09-01
Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Discontinuous Element-Based Galerkin Methods on Dynamically Adaptive Grids with Application to Atmospheric Simulations. Michal A. Koperaa,∗, Francis X...mass conservation, as it is an important feature for many atmospheric applications . We believe this is a good metric because, for smooth solutions
NASA Astrophysics Data System (ADS)
Wong, M.; Skamarock, W. C.
2015-12-01
Global numerical weather forecast tests were performed using the global nonhydrostatic atmospheric model, Model for Prediction Across Scales (MPAS), for the NOAA Storm Prediction Center 2015 Spring Forecast Experiment (May 2015) and the Plains Elevated Convection at Night (PECAN) field campaign (June to mid-July 2015). These two sets of forecasts were performed on 50-to-3 km and 15-to-3 km smoothly-varying horizontal meshes, respectively. Both variable-resolution meshes have nominal convection-permitting 3-km grid spacing over the entire continental US. Here we evaluate the limited-area (vs. global) spectra from these NWP simulations. We will show the simulated spectral characteristics of total kinetic energy, vertical velocity variance, and precipitation during these spring and summer periods when diurnal continental convection is most active over central US. Spectral characteristics of a high-resolution global 3-km simulation (essentially no nesting) from the 20 May 2013 Moore, OK tornado case are also shown. These characteristics include spectral scaling, shape, and anisotropy, as well as the effective resolution of continental convection representation in MPAS.
Telescope Array UHECR composition measurement via stereoscopic fluorescence observation
NASA Astrophysics Data System (ADS)
Stroman, Thomas; Bergman, Douglas; Telescope Array Collaboration
2016-03-01
When entering Earth's atmosphere at ultra-high energies, cosmic rays (UHECRs) produce extensive air showers whose longitudinal development is influenced by the incident primary particle's mass. Each longitudinal shower profile reaches its maximum particle count at an atmospheric slant depth Xmax, and the distributions of observed Xmax values can be compared to those predicted by detailed simulations of the air-shower physics and the detector; accurately simulated compositions that most closely resemble that found in nature will produce the best agreement between predicted and observed Xmax distributions. This is the basis of composition measurement at the Telescope Array experiment, the largest and most sensitive UHECR detector in the northern hemisphere. At the perimeter of a large surface-detector array are three fluorescence telescope stations, whose overlapping apertures enable high-precision reconstruction of Xmax from stereoscopic observation of air-shower longitudinal profiles. We present the distribution of Xmax observed during eight years of operation, and from comparisons with several simulated combinations of composition and high-energy hadronic physics, we show that a low primary mass is favored at E >10 18 . 2 eV.
A Lagrangian stochastic model for aerial spray transport above an oak forest
Wang, Yansen; Miller, David R.; Anderson, Dean E.; McManus, Michael L.
1995-01-01
An aerial spray droplets' transport model has been developed by applying recent advances in Lagrangian stochastic simulation of heavy particles. A two-dimensional Lagrangian stochastic model was adopted to simulate the spray droplet dispersion in atmospheric turbulence by adjusting the Lagrangian integral time scale along the drop trajectory. The other major physical processes affecting the transport of spray droplets above a forest canopy, the aircraft wingtip vortices and the droplet evaporation, were also included in each time step of the droplets' transport.The model was evaluated using data from an aerial spray field experiment. In generally neutral stability conditions, the accuracy of the model predictions varied from run-to-run as expected. The average root-mean-square error was 24.61 IU cm−2, and the average relative error was 15%. The model prediction was adequate in two-dimensional steady wind conditions, but was less accurate in variable wind condition. The results indicated that the model can simulate successfully the ensemble; average transport of aerial spray droplets under neutral, steady atmospheric wind conditions.
Simulation of two-dimensional turbulent flows in a rotating annulus
NASA Astrophysics Data System (ADS)
Storey, Brian D.
2004-05-01
Rotating water tank experiments have been used to study fundamental processes of atmospheric and geophysical turbulence in a controlled laboratory setting. When these tanks are undergoing strong rotation the forced turbulent flow becomes highly two dimensional along the axis of rotation. An efficient numerical method has been developed for simulating the forced quasi-geostrophic equations in an annular geometry to model current laboratory experiments. The algorithm employs a spectral method with Fourier series and Chebyshev polynomials as basis functions. The algorithm has been implemented on a parallel architecture to allow modelling of a wide range of spatial scales over long integration times. This paper describes the derivation of the model equations, numerical method, testing and performance of the algorithm. Results provide reasonable agreement with the experimental data, indicating that such computations can be used as a predictive tool to design future experiments.
NASA/ESA CV-990 spacelab simulation
NASA Technical Reports Server (NTRS)
1975-01-01
Due to interest in the application of simplified techniques used to conduct airborne science missions at NASA's Ames Research Center, a joint NASA/ESA endeavor was established to conduct an extensive Spacelab simulation using the NASA CV-990 airborne laboratory. The scientific payload was selected to perform studies in upper atmospheric physics and infrared astronomy with principal investigators from France, the Netherlands, England, and several groups from the United States. Communication links between the 'Spacelab' and a ground based mission operations center were limited consistent with Spacelab plans. The mission was successful and provided extensive data relevant to Spacelab objectives on overall management of a complex international payload; experiment preparation, testing, and integration; training for proxy operation in space; data handling; multiexperimenter use of common experimenter facilities (telescopes); multiexperiment operation by experiment operators; selection criteria for Spacelab experiment operators; and schedule requirements to prepare for such a Spacelab mission.
An Atmospheric Guidance Algorithm Testbed for the Mars Surveyor Program 2001 Orbiter and Lander
NASA Technical Reports Server (NTRS)
Striepe, Scott A.; Queen, Eric M.; Powell, Richard W.; Braun, Robert D.; Cheatwood, F. McNeil; Aguirre, John T.; Sachi, Laura A.; Lyons, Daniel T.
1998-01-01
An Atmospheric Flight Team was formed by the Mars Surveyor Program '01 mission office to develop aerocapture and precision landing testbed simulations and candidate guidance algorithms. Three- and six-degree-of-freedom Mars atmospheric flight simulations have been developed for testing, evaluation, and analysis of candidate guidance algorithms for the Mars Surveyor Program 2001 Orbiter and Lander. These simulations are built around the Program to Optimize Simulated Trajectories. Subroutines were supplied by Atmospheric Flight Team members for modeling the Mars atmosphere, spacecraft control system, aeroshell aerodynamic characteristics, and other Mars 2001 mission specific models. This paper describes these models and their perturbations applied during Monte Carlo analyses to develop, test, and characterize candidate guidance algorithms.
NASA Astrophysics Data System (ADS)
Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping
2017-10-01
We alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ˜8-50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.
Electrostatic Charging of Polymers by Particle Impact at Low Pressures
NASA Technical Reports Server (NTRS)
Calle, Carlos I.; Mantovani, J. G.; Buhler, C. R.; Hogue, M. D.; Nowicki, A. W.; Groop, E. E.; Thompson, Karen (Technical Monitor)
2001-01-01
Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA's planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on five polymer surfaces as they are impacted simultaneously by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles with contact. Experiments were also performed in dry air at atmospheric pressures using a pressurized particle delivery system. The five polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series.
ATMOSPHERIC MOTION, TREES), (*AEROSOLS, DIFFUSION ), TROPICAL REGIONS, SIMULATION, ATMOSPHERIC TEMPERATURE, TURBULENT BOUNDARY LAYER, ROUGHNESS, FORESTRY, ATMOSPHERE MODELS, WIND TUNNELS, COLORADO, MILITARY FACILITIES
Study of short atmospheric pressure dc glow microdischarge in air
NASA Astrophysics Data System (ADS)
Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey
2011-10-01
The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. This work was supported by the FZP and SPbGU
Microgravity nucleation and particle coagulation experiments support
NASA Technical Reports Server (NTRS)
Lilleleht, L. U.; Lass, T. J.
1987-01-01
A hollow sphere model is developed to predict the range of supersaturation ratio values for refractory metal vapors in a proposed experimental nucleation apparatus. Since the experiments are to be carried out in a microgravity environment, the model neglects the effects of convection and assumes that the only transfer of vapors through an inert gas atmosphere is by conduction and molecular diffusion. A consistent set of physical properties data is assembled for the various candidate metals and inert ambient gases expected to be used in the nucleation experiments. Transient partial pressure profiles are computed for the diffusing refractory species for two possible temperature distributions. The supersaturation ratio values from both candidate temperature profiles are compared with previously obtained experimetnal data on a silver-hydrogen system. The model is used to simulate the diffusion of magnesium vapor through argon and other inert gas atmospheres over ranges of initial and boundary conditions. These results identify different combinations of design and operating parameters which are liekly to produce supersaturation ratio values high enough to induce homogeneous nucleation in the apparatus being designed for the microgravity nucleation experiments.
2002-12-18
KENNEDY SPACE CENTER, FLA. -- Workers prepare a Pegasus XL Expendable Launch Vehicle for detachment from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle nestled beneath, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).
2002-12-18
KENNEDY SPACE CENTER, FLA. -- Workers prepare to remove a Pegasus XL Expendable Launch Vehicle from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle attached, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).
1992-07-15
A steel hemisphere was at the core of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. It was capped by a sapphire dome. Silicone oil between the two played the part of a steller atmosphere. An electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. GFFC flew on Spacelab-3 in 1985 and U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)
1985-05-04
A 16mm film frame shows convective regions inside silicone oil playing the part of a stellar atmosphere in the Geophysical Fluid Flow Cell (GFFC). An electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. Numbers of the frame indicate temperatures and other conditions. This image is from the Spacelab-3 flight in 1985. GFFC was reflown on U.S. Microgravity Laboratory-2 in 1995. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center. (Credit: NASA/Marshall Space Flight Center)
Climate and smoke - An appraisal of nuclear winter
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Pollack, J. B.; Ackerman, T. P.; Sagan, C.
1990-01-01
A reevaluation is presented of the 'nuclear winter' scenario of Turco et al. (1983). New pertinent data have emerged from laboratory studies, field experiments, and numerical models on the smoke-plume, mesoscale, and global scales. A full-scale nuclear exchange's probable soot injections lead, in three-dimensional climate simulations, to midsummer land temperature decreases averaging 10-20 C in northern midlatitudes, with local cooling of as much as 35 C. Anomalous circulation patterns due to solar heating of the soot could stabilize the upper atmosphere against overturning, thereby prolonging the soot's residence time in the atmosphere. Monsoon disruptions and severe ozone layer depletion are also foreseen.
2002-12-18
KENNEDY SPACE CENTER, FLA. -- A Pegasus XL Expendable Launch Vehicle is moments away from being removed from the underside of an Orbital Sciences L-1011 aircraft. The aircraft, with the launch vehicle attached, arrived at the Cape Canaveral Air Force Station Skid Strip on Dec. 17. The Pegasus XL will undergo three flight simulations prior to its scheduled launch in late January 2003. It will carry NASA's Solar Radiation and Climate Experiment (SORCE) spacecraft into orbit. Built by Orbital Sciences Space Systems Group, SORCE will study and measure solar irradiance as a source of energy in the Earth's atmosphere with instruments built by the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP).