Science.gov

Sample records for atmospheric boundary layer

  1. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  2. The atmospheric boundary layer

    SciTech Connect

    Garratt, J.R.

    1992-01-01

    This book is aimed at researchers in the atmospheric and associated sciences who require a moderately advanced text on the Atmospheric Boundary Layer (ABL) in which the many links between turbulence, air-surface transfer, boundary-layer structure and dynamics, and numerical modeling are discussed and elaborated upon. Chapter 1 serves as an introduction, with Chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and Chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and the sea. The structure of the clear-sky, thermally stratified ABL is treated in Chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant since the extensive stratocumulus regions over the sub-tropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, Chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes for the general circulation models of the atmosphere that are being used for climate simulation.

  3. The Martian Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Petrosyan, A.; Galperin, B.; Larsen, S. E.; Lewis, S. R.; Määttänen, A.; Read, P. L.; Renno, N.; Rogberg, L. P. H. T.; Savijärvi, H.; Siili, T.; Spiga, A.; Toigo, A.; Vázquez, L.

    2011-09-01

    The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime. This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free atmosphere. To date, this region of the atmosphere has been studied directly, by instrumented lander spacecraft, and from orbital remote sensing, though not to the extent that is necessary to fully constrain its character and behavior. Current data strongly suggest that as for the Earth's PBL, classical Monin-Obukhov similarity theory applies reasonably well to the Martian PBL under most conditions, though with some intriguing differences relating to the lower atmospheric density at the Martian surface and the likely greater role of direct radiative heating of the atmosphere within the PBL itself. Most of the modeling techniques used for the PBL on Earth are also being applied to the Martian PBL, including novel uses of very high resolution large eddy simulation methods. We conclude with those aspects of the PBL that require new measurements in order to constrain models and discuss the extent to which anticipated missions to Mars in the near future will fulfill these requirements.

  4. The Lowest Atmosphere: Atmospheric Boundary Layer Including Atmospheric Surface Layer.

    DTIC Science & Technology

    1996-04-01

    troposphere" as a result of frictional forces. A good definition of the atmospheric boundary layer (ABL) (provided to me by the late Dr. Rudy...wind extends light flag. Raises dust and loose paper; small branches are moved. Small trees in leaf begin to sway; crested wavelets form on inland...Calm. Sea like a mirror. Light air Ripples like scales, no foam crest. Light breeze Small wavelets ; crests have glassy appearance, do not break

  5. Turbulence in the Stable Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra; Kit, Eliezer; Conry, Patrick; Hocut, Christopher; Liberzon, Dan

    2016-11-01

    During the field campaigns of the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program, fine-scale measurements of turbulence in the atmospheric boundary layer (ABL) were made using a novel sonic and hot-film anemometer dyad (a combo probe). A swath of scales, from large down to Kolmogorov scales, was covered. The hot-film was located on a gimbal within the sonic probe volume, and was automated to rotate in the horizontal plane to align with the mean flow measured by sonic. This procedure not only helped satisfy the requirement of hot-film alignment with the mean flow, but also allowed in-situ calibration of hot-films. This paper analyzes a period of nocturnal flow that was similar to an idealized stratified parallel shear flow. Some new phenomena were identified, which included the occurrence of strong bursts in the velocity records indicative of turbulence generation at finer scales that are not captured by conventional sonic anemometers. The spectra showed bottleneck effect, but its manifestation did not fit into the framework of previous bottleneck-effect theories and was unequivocally related to bursts of turbulence. The measurements were also used to evaluate the energetics of stratified shear flows typical of the environment. ONR # N00014-11-1-0709; NSF # AGS-1528451; ISF 408/15.

  6. Spectral scales in the atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Weber, A. H.; Irwin, J. S.; Mathis, J. J., Jr.; Kahler, J. P.; Petersen, W. B.

    1982-01-01

    Wind data taken from 10 levels between 18 and 305 m were examined to determine the properties of atmospheric turbulence within and above the atmospheric surface layer into the PBL. The samples were averaged over 40 min intervals, with all periods of rain, fog, and other disturbances being eliminated from the 16 days of monitoring. Turbulence spectra were calculated using a fast Fourier transformation. The tower was located in rolling terrain covered with pine forests, waist-high scrub, and cultivated fields. Results are presented for the wavelength and Eulerian length scales, considering the neutral, stable, and unstable PBL. Correlation coefficients were found between velocity fluctuations and wavelengths for the stability classes. Good agreements were found for measured and computed spectra in all but unstable conditions.

  7. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  8. Atmospheric boundary layer processes during a total solar eclipse

    SciTech Connect

    SethuRaman, S.; Prabhu, A.; Narahari Rao, K.; Narasimha, R.

    1980-01-01

    The total solar eclipse that occurred over the southern part of India on February 16, 1980, gave a unique opportunity to study the earth's atmospheric boundary layer. The meteorological experiments during the 1980 solar eclipse were conducted at Raichur, India (16/sup 0/12'N, 77/sup 0/21'E) located in the state of Karnataka, approximately 400-m above sea level. The main objective was to determine the changes in the earth's atmosphere during and immediately after the eclipse. The goal was to study the changes in the momentum and heat fluxes in the boundary layer due to the eclipse. Measurements were made for 2 days prior to and 1 day after the day of the eclipse to determine background characteristics of the boundary layer which might be site-dependent.

  9. Atmospheric boundary layer evening transitions over West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  10. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  11. Turbulence and mixing in the stable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Yagüe, C.; Morales, G.; Terradellas, E.; Cuxart, J.

    2003-04-01

    Transport and mixing in the Stable Atmospheric Boundary Layer is not well understood yet. However this is an important feature in atmospheric pollution as well as in other environmental studies. A Stable Atmospheric Boundary Layer Experiment in Spain (SABLES98) took place from the 10th to the 28th of September 1998. Two masts (100 m and 10 m) were instrumented with five sonic anemometers, 14 thermocouples, 8 cup anemometers, vanes,radiometers, etc. In addition, a sodar, a tethered balloon and a triangular array of cup anemometers were operating during the campaign. The experiment showed three different regimes, being specially interesting the one between 14th and 21st of September where stable and very stable conditions were present. In this work we present the behaviour of turbulent and stability parameters at several heights. The different evolutions of the Nocturnal Boundary Layer and the main parameters that controle its behaviour are discussed.The influence of internal gravity waves and their interaction with turbulence is also studied using wavelets.

  12. Behaviour of Atmospheric Boundary Layer Height at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Pietroni, I.; Argentini, S.

    2009-09-01

    The Antarctic Atmospheric Boundary Layer presents characteristics which are substantially different from the mid-latitudes ABLs. On the Antarctic plateau two different extreme situations are observed. During the summer a mixing height develops during the warmer hours of the day although the sensible heat flux is reduced compared to that at mid-latitudes. During the winter a long lived stable boundary layer is continuously present, the residual layer is never observed, consequently the inversion layer is connected at the free atmosphere. To understand the stable ABL process the STABLEDC (Study of the STAble Boundary Layer Environmental at Dome C) experimental field was held at Concordia, the French Italian plateau station at Dome C, during 2005. In the same period the RMO (Routine Measurements Observations) started. The data included turbulence data at the surface, temperature profiles by a microwave profiler (MTP-5P), a mini-sodar and radio-soundings. In this work we will show the results of a comparison of the ABL height at Concordia (3233 m a.s.l) during the summer and the winter using direct measurements and parameterization. The winter ABL height was estimated directly using experimental data (radio-soundings and radiometer temperature and wind velocity profiles) and different methods proposed in literature. The stable ABL height was also estimated using the formulation proposed by Zilitinkevich et al. (2007) for the long-lived stable boundary layer. The correlation of ABL height with the temperature and wind speed is also shown. The summer mixing height was instead estimated by mini-sodar data and compared with the height given by the model suggested by Batchvarova and Gryning (1991) which use as input the turbulence data.

  13. Study of the morning transition of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Sastre, M.; Yagüe, C.; Maqueda, G.; Viana, S.

    2009-04-01

    In this work it will be analyzed the main physical processes related to the transition of the Atmospheric Boundary Layer (ABL) that takes place from the last hours of the night until the first hours of the morning. In order to achieve that, it will be used data from field campaigns which took place in the Research Centre for the Lower Atmosphere (CIBA), especially those gathered in the campaign carried out in June, 2008 where information was obtained from a 10m height mast provided with temperature, wind speed and direction, and moisture sensors at several levels. Also a sonic anemometer (20 Hz sampling rate) at 10m was available. The database is complemented by a triangle of microbarometers installed next to the surface, and another two microbarometers placed in a 100m meteorological tower at 50 and 100m respectively. A GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was also available to evaluate the degree of mixing taking place near the surface. The thermodynamic characteristics of the first hundreds of meters remain registered from information obtained with a tethered balloon and with a RASS-SODAR. The main turbulent and stability parameters, as well as coherent structures present in the Nocturnal Boundary Layer are studied in connection to their influence in the developing of the next Convective Boundary Layer.

  14. Atmospheric surface and boundary layers of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1987-01-01

    Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.

  15. Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.

    The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved

  16. Parameterization of meandering phenomenon in a stable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Carvalho, Jonas da Costa; Degrazia, Gervásio Annes; de Vilhena, Marco Túlio; Magalhães, Sergio Garcia; Goulart, Antonio G.; Anfossi, Domenico; Acevedo, Otávio Costa; Moraes, Osvaldo L. L.

    2006-08-01

    Accounting for the current knowledge of the stable atmospheric boundary layer (ABL) turbulence structure and characteristics, a new formulation for the meandering parameters to be used in a Lagrangian stochastic particle turbulent diffusion model has been derived. That is, expressions for the parameters controlling the meandering oscillation frequency in low wind speed stable conditions are proposed. The classical expression for the meandering autocorrelation function, the turbulent statistical diffusion theory and ABL similarity theory are employed to estimate these parameters. In addition, this new parameterization was introduced into a particular Lagrangian stochastic particle model, which is called Iterative Langevin solution for low wind, validated with the data of Idaho National Laboratory experiments, and compared with others diffusion models. The results of this new approach are shown to agree with the measurements of Idaho experiments and also with those of the other atmospheric diffusion models. The major advance shown in this study is the formulation of the meandering parameters expressed in terms of the characteristic scales (velocity and length scales) describing the physical structure of a turbulent stable boundary layer. These similarity formulas can be used to simulate meandering enhanced diffusion of passive scalars in a low wind speed stable ABL.

  17. Lidar analysis techniques for use in the atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Eichinger, William E.; Cooper, Daniel I.; Hof, Doug; Holtkamp, David; Quick, Robert, Jr.; Tiee, Joe; Karl, Robert

    1992-01-01

    There is a growing body of observational and theoretical evidence which suggests that local climate characteristics are associated with variations in the earth's surface. The link between surface variability and local-scale processes must be made if we are to improve our understanding of the feedback mechanisms involved in surface-atmosphere dynamics. However, to understand these interactions, the surface-atmosphere interface must be studied as a large-scale spatial system. Lidars are ideal tools to study the spatial properties of the atmosphere. The described techniques were developed for use with the Los Alamos Water Raman-Lidar, but are applicable to many other types of lidar. The methodology of the analysis of lidar data is summarized in order to determine meteorological parameters in the atmospheric boundary layer. The techniques are not exhaustive but are intended to show the depth and breadth of the information which can be obtained from lidars. Two methods for the computation of water-vapor fluxes were developed. The first uses the fact that the water vapor concentration in the vertical direction follows a logarithmic profile when corrected for atmospheric stability. The second method involves using inertial dissipation techniques in which lidar-derived spatial and temporal power spectra are used to determine the flux.

  18. Incorporation of the planetary boundary layer in atmospheric models

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh; Wyngaard, John; Pielke, Roger; Krueger, Steve

    1993-01-01

    The topics discussed include the following: perspectives on planetary boundary layer (PBL) measurements; current problems of PBL parameterization in mesoscale models; and convective cloud-PBL interactions.

  19. High resolution properties of the marine atmospheric boundary layer

    SciTech Connect

    Cooper, D.; Cottingame, W.; Eichinger, W.; Forman, P.; Lebeda, C.; Poling, D.; Thorton, R.

    1994-02-01

    Los Alamos National Laboratory (LANL) participated in the Central Equatorial Pacific Experiment (CEPEX) by fielding a water-vapor Raman lidar on board the Research Vessel Vickers. The lidar measured water vapor concentration from the surface to lower tropospheric altitudes in order to support the CEPEX goal of evaluating a hypothesis regarding feedback mechanisms for global circulation models. This report describes some of the features observed within the marine Atmospheric Boundary Layer (ABL) and the lower troposphere. Data was collected continuously 24 hours per day over the equatorial Pacific from March 8th to March 2 1st of 1993 while in route between Guadalcanal and Christmas Island (the transect was at approximately 2{degree} south latitude). The lidar collected vertical transects of water vapor concentration up to 10 km during night operations and 4 km in the day. The vertical lidar profiles of water vapor were produced by summing the data over a period up to 600 seconds. The water-vapor Raman lidar measured the properties of the marine ABL as well as the lower and mid-troposphere. From the lidar water vapor profiles, ``images`` of water vapor concentration versus altitude and date or sea surface temperature will be produced along with other products such as latent heat fluxes. The Raman water vapor lidar data will be used to better understand the role of transport and exchange at the ocean-atmosphere interface and throughout the marine atmosphere.

  20. Velocity Spectra In The Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Smedman, A.

    In some respects the turbulence structure in the marine atmospheric boundary layer (MABL) reacts in the same way as the boundary layer over land, that is to say Monin-Obukhov similarity theory can be applied. There are, however, frequently situations when the similarity between the two breaks down. Analysis of measurements, taken at the flat, small island Oestergarnsholm in the middle of the Baltic Sea, clearly shows the influence of the sea state on MABL. The measurements comprise turbulence and mean variables taken at several heights on a 30 m tower, as well as wave parameters from a Wave Rider Buoy deployed 3 km outside the island. Model results of the wave field around the island together with foot-print analysis indicate that the wave field is almost un disturbed for low to moderate wind speeds but has to be corrected for limited water depth for the highest wind speeds. Our earlier analysis shows a strict similarity with over-land conditions for both mean and turbulence variables (mean wind gradient, fluxes, spectra etc.) for growing waves (young waves) travelling slower than the wind. But as soon as some waves become mature and get a speed faster than the wind speed, similarity breaks down. Thus the turbulence structure in the MABL needs to be described in terms of additional parameters such as wave age and maybe boundary layer height. Spectra of the velocity components in the MABL have been analyzed taking sea state into account. During neutral stability and young sea spectra follow the new similarity theory proposed by Hunt and Carlotti (2000) and Högström, Hunt and Smedman (2001). But with increasing wavelength of the surface waves spectra gradually change both shape and energy level, beginning at the low frequency end and continuing towards higher frequencies. For cp/U ~ 1 (where cp is the peak phase speed) the `breaking point' can be seen in the inertial subrange, which actually gives two frequency intervals with a ­2/3 slope but with different

  1. Transport Processes in the Coastal Atmospheric Boundary Layer

    DTIC Science & Technology

    2016-06-07

    coastlines or boundary layer processes at the coast. The transported constituents may be properties of the marine boundary layer, e.g. humidity, air ... pollution or aerosols, the latter both of natural and man-made origin. In particular I am interested in the cross-coast mixing potential. By this I mean...speed maximas. Also some properties of the coastal marine air , e.g. the presence of aerosol and low clouds, are detrimental to remote sensing based on

  2. Direct Numerical Simulations of Very Stable Atmospheric Boundary Layers

    DTIC Science & Technology

    2012-01-10

    Ekman boundary layers. Very high resolution, three-dimensional, time-dependent simulations are carried out on computational grids of the order of...turbulent Ekman layers", Annual Meeting of the Division of Fluid Dynamics of the American Physical Society, Long Beach. O Flores and JJ Riley. August...September, 2011. "DNS of a strati ed Ekman layer with a capping inversion", 13th European Turbulence Conference, Warsaw, Poland. Number of

  3. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-04-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system. So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models. Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV called Small Unmanned Meteorological Observer (SUMO) has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO will be used under Arctic conditions in March/April 2009. This time the special purpose will be to send two SUMOs simultaneously on mission; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This will be the first step of future multiple UAV operations in so called "swarms" or "flocks". With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs.

  4. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  5. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  6. Impact Wind Farms on the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Volker, P.; Capps, S. B.; Huang, H. J.; Sun, F.; Badger, J.; Hahmann, A.

    2012-12-01

    We introduce a new, validated wind farm parametrization (Explicit Wake Parametrization, EWP) which is based on the assumption that the downstream propagation of a single turbine wake can be described by a turbulent diffusion process. Thus, the downstream velocity deficit distribution can be described explicitly. Additionally, it allows us to take into account turbine interactions, making it possible to determine the unresolved turbine hub height velocities. Both the EWP wind farm parametrization and the wind farm scheme available in the Weather Research & Forecasting Model (WRF) have been validated against in situ measurements from Horns Rev I (A large offshore wind farm consisting of 80 2MW turbines situated near the west coast of Denmark). The main quantities of interest are the thrust applied to the flow, a consequence of the energy extracted by the wind turbines which determines mainly the wind farm wake extension (around 50 km for Horns Rev I) and the vertical velocity deficit distribution. Results show that the thrust in the WRF-WF scheme is overestimated inside the wind farm. We noticed that the velocity deficit propagates from the first turbine-containing-grid-cell up to the boundary layer top, which is in contrast to the theoretical expected expansion (confirmed by turbulence resolving models and wind tunnel results). The vertical expansion of the velocity deficit is a consequence of the additional turbulence source term in the WRF-WF scheme. The EWP scheme estimates the total amount of thrust correctly and is also able to follow the reduced thrust downstream since it considers the turbine interaction. From the good agreement with the far wake measurement, we can conclude that the formulation of the sub grid scale vertical extension of the velocity deficit must be correct. We will present results from WRF simulations in which we analyze the atmospheric response within the wake of wind farms resulting from the energy extraction of wind turbines. We place

  7. Spatiotemporal structure of wind farm-atmospheric boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Cervarich, Matthew; Baidya Roy, Somnath; Zhou, Liming

    2013-04-01

    Wind power is currently one of the fastest growing energy sources in the world. Most of the growth is in the utility sector consisting of large wind farms with numerous industrial-scale wind turbines. Wind turbines act as a sink of mean kinetic energy and a source of turbulent kinetic energy in the atmospheric boundary layer (ABL). In doing so, they modify the ABL profiles and land-atmosphere exchanges of energy, momentum, mass and moisture. This project explores theses interactions using remote sensing data and numerical model simulations. The domain is central Texas where 4 of the world's largest wind farms are located. A companion study of seasonally-averaged Land Surface Temperature data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on TERRA and AQUA satellites shows a warming signal at night and a mixed cooling/warming signal during the daytime within the wind farms. In the present study, wind farm-ABL interactions are simulated with the Weather Research and Forecasting (WRF) model. The simulations show that the model is capable of replicating the observed signal in land surface temperature. Moreover, similar warming/cooling effect, up to 1C, was observed in seasonal mean 2m air temperature as well. Further analysis show that enhanced turbulent mixing in the rotor wakes is responsible for the impacts on 2m and surface air temperatures. The mixing is due to 2 reasons: (i) turbulent momentum transport to compensate the momentum deficit in the wakes of the turbines and (ii) turbulence generated due to motion of turbine rotors. Turbulent mixing also alters vertical profiles of moisture. Changes in land-atmosphere temperature and moisture gradient and increase in turbulent mixing leads to more than 10% change in seasonal mean surface sensible and latent heat flux. Given the current installed capacity and the projected installation across the world, wind farms are likely becoming a major driver of anthropogenic land use change on Earth. Hence

  8. FLUID MODELING OF ATMOSPHERIC DISPERSION IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    Study of convective boundary layer (CBL) processes has depended largely upon laboratory analogs for many years. The pioneering work of Willis and Deardorff (1974) and some 35 subsequent papers by the same authors showed that much useful research could be accomplished with a re...

  9. Study of EM Signals Propagation Through Marine Atmospheric Boundary Layer

    DTIC Science & Technology

    2002-09-30

    transmision properties. REFERENCES Barrick, D.E., and Weber, B.L., ’On the nonlinear theory for gravity waves on the ocean’s surface. Part II...and Friehe C., 2000. Boundary-Layer Meteorology, 97, 293-307. Ishimaru, A. 1978, Wave propagation and scattering in random media . Academic Press...Irvine. Rytov, S. M., Y. A. Kravtsov, and V. I. Tatarskii: 1987, Principles of statistical radiophysics 4: Wave propagation through random media

  10. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-09-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system (e.g. Andreas and Cash, 1999). So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models (e.g. Tjernström et al., 2005). Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV, called Small Unmanned Meteorological Observer (SUMO), has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO has been used under Arctic conditions at Longyear airport, Spitsbergen in March/April 2009. Besides vertical profiles up to 1500 m and horizontal surveys at flight levels of 100 and 200 m, SUMO could measure vertical profiles for the first time simultaneously in a horizontal distance of 1 km; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This has been the first step of future multiple UAV operations in so called "swarms” or "flocks”. With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs. In addition, the Advanced Research Weather Forecasting model (AR-WRF version 3.1) has been run in high resolution (grid size: 1 km). First results of a sensitivity study where ABL schemes have been tested and compared with

  11. Determination of the Atmospheric Boundary Layer Height from Radiosonde and Lidar Backscatter

    NASA Astrophysics Data System (ADS)

    Hennemuth, Barbara; Lammert, Andrea

    2006-07-01

    The height of the atmospheric boundary layer is derived with the help of two different measuring systems and methods. From radiosoundings the boundary layer height is determined by the parcel method and by temperature and humidity gradients. From lidar backscatter measurements a combination of the averaging variance method and the high-resolution gradient method is used to determine boundary layer heights. In this paper lidar-derived boundary layer heights on a 10 min basis are presented. Datasets from four experiments two over land and two over the sea are used to compare boundary layer heights from both methods. Only the daytime boundary layer is investigated because the height of the nighttime stable boundary layer is below the range of the lidar. In many situations the boundary layer heights from both systems coincide within ±200 m. This corresponds to the standard deviation of lidar-derived 10-min values within a 1-h interval and is due to the time and space variability of the boundary layer height. Deviations appear for certain situations and depend on which radiosonde method is applied. The parcel method fails over land surfaces in the afternoon when the boundary layer stabilizes and over the ocean when the boundary layer is slightly stable. An automatic radiosonde gradient method sometimes fails when multiple layers are present, e.g. a residual layer above the growing convective boundary layer. The lidar method has the advantage of continuous tracing and thus avoids confusion with elevated layers. On the other hand, it mostly fails in situations with boundary layer clouds

  12. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  13. The climatic features of the atmospheric boundary layer above the south of western Siberia

    NASA Astrophysics Data System (ADS)

    Komarov, V. S.; Lomakina, N. Ya.

    2006-11-01

    Troposphere and, in particular, the atmospheric boundary layer play a considerable role in propagation and transformation of optical radiation. Therefore, data on vertical statistical structure of meteorological fields in the boundary layer are necessary for solution of various applied problems of atmospheric optics. In the work, climatic features of the atmospheric boundary layer above the south of Western Siberia are considered. The research was conducted for winter and summer using the date of four-years (2002.2005 years) observations of 4 aerologic stations (Ekaterinburg, Omsk, Novosibirsk and Krasnoyarsk). The vertical structures of average values and mean square deviations of temperature, humidity and wind for 10 high-altitude levels (up to 1600 M), as well as the corresponding correlation matrixes and results of their expansion on empirical orthogonal functions were used for detailed studying of climatic features of atmospheric boundary layer. The obtained results are presented.`

  14. Dynamics of the atmospheric boundary layer during the 1980 total solar eclipse

    SciTech Connect

    SethuRaman, S

    1981-01-01

    An atmospheric boundary layer experiment was conducted at Raichur, India to study the variations in the surface shear stress, heat flux and the meteorological processes that take place during a total solar eclipse. Interesting results were observed regarding the evolution of the planetary boundary layer. Changes in atmospheric stability from unstable to stable to unstable were observed during different phases of the eclipse. Downward propagation of negative heat flux associated with decreasing scales of convective eddies was also observed during the eclipse.

  15. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  16. Atmospheric boundary layer investigations in the Laptev Sea area

    NASA Astrophysics Data System (ADS)

    Schwarz, Pascal; Heinemann, Günther; Drüe, Clemens; Makshtas, Alexander

    2016-04-01

    In the winter season 2014/2015 a field campaign at the Tiksi observatory (71°38'N, 128°52'E) was carried out by the University of Trier with support of the Arctic and Antarctic Research Institute (AARI) and the GEOMAR Kiel in framework of the interdisciplinary Transdrift project. One goal of the campaign is to help to improve the understanding of processes within the Arctic stable boundary layer (SBL). Within the SBL, there are several important phenomena and processes like low-level jets, surface and lifted inversions, the development of the mixing height or the determination of the energy balance, which can be best investigated with a mix of high-resolution ground-based remote sensing systems and flux tower measurements. We mainly used a SODAR/RASS, a scintillometer, a ceilometer as well as the local flux tower to investigate the SBL for the Arctic winter. Baroclinity is found to be the main driven mechanism for low-level jets with jet core heights above 200 m due to the strong temperature gradient between the Laptev Sea and the Siberian continent. Strong temperature changes at short time scale (few hours) were often closely related to a change of wind direction and therefore advection. LLJs with heights below 200 m are likely influenced by local topography. In addition, regional climate model simulations using the COSMO-CLM (COnsortium for Small-scale MOdelling - Climate Limited area Mode) driven by ERA-Interim reanalysis data have been performed. The COSMO-CLM simulations show a good agreement with ERA-Interim reanalysis data and in-situ measurements (tower, soundings).

  17. Observations of Wind Profile of Marine Atmosphere Boundary Layer by Shipborne Coherent Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Yin, Jiaping; Liu, Bingyi; Liu, Jintao; Zhang, Hongwei; Song, Xiaoquan; Zhang, Kailin

    2016-06-01

    Pulsed Coherent Doppler Lidar (CDL) system is so good as to prove the feasibility of the marine atmosphere boundary layer detection. A ship-mounted Coherent Doppler lidar was used to measure the wind profile and vertical velocity in the boundary layer over the Yellow sea in 2014. Furthermore, for the purpose of reducing the impact of vibration during movement and correcting the LOS velocity, the paper introduces the attitude correction algorithm and comparison results.

  18. High resolution properties of the equatorial Pacific marine atmospheric boundary layer from lidar and radiosonde observations

    SciTech Connect

    Cooper, D.I.; Eichinger, W.E.; Hynes, M.V.; Keller, C.F.; Lebeda, C.F.; Poling, D.A.

    1994-10-01

    Water vapor and relative aerosol concentration were measured with two shipboard lidars from the ocean surface to tropospheric and lower stratospheric altitudes in support of the Central Equatorial Pacific Experiment (CEPEX) program. The goal of CEPEX is to evaluate the ``thermostat`` hypothesis regarding feedback mechanisms between the tropical ocean and the atmosphere. This paper describes some of the features observed with the first two kilometers of the equatorial troposphere, known as the marine Atmospheric Boundary Layer (ABL), as well as the coupling between the ocean and the atmosphere. This paper will present the initial analysis of the structure of the atmospheric boundary layer. Finally, we will look at the implications of this structure for ocean-atmosphere coupling by comparing the height of the mixing layer with sea surface temperatures and other factors.

  19. Experimental Investigation of Soil and Atmospheric Conditions on the Momentum, Mass, and Thermal Boundary Layers Above the Land Atmosphere Interface

    NASA Astrophysics Data System (ADS)

    Trautz, A.; Smits, K. M.; Illangasekare, T. H.; Schulte, P.

    2014-12-01

    The purpose of this study is to investigate the impacts of soil conditions (i.e. soil type, saturation) and atmospheric forcings (i.e. velocity, temperature, relative humidity) on the momentum, mass, and temperature boundary layers. The atmospheric conditions tested represent those typically found in semi-arid and arid climates and the soil conditions simulate the three stages of evaporation. The data generated will help identify the importance of different soil conditions and atmospheric forcings with respect to land-atmospheric interactions which will have direct implications on future numerical studies investigating the effects of turbulent air flow on evaporation. The experimental datasets generated for this study were performed using a unique climate controlled closed-circuit wind tunnel/porous media facility located at the Center for Experimental Study of Subsurface Environmental Processes (CESEP) at the Colorado School of Mines. The test apparatus consisting of a 7.3 m long porous media tank and wind tunnel, were outfitted with a sensor network to carefully measure wind velocity, air and soil temperature, relative humidity, soil moisture, and soil air pressure. Boundary layer measurements were made between the heights of 2 and 500 mm above the soil tank under constant conditions (i.e. wind velocity, temperature, relative humidity). The soil conditions (e.g. soil type, soil moisture) were varied between datasets to analyze their impact on the boundary layers. Experimental results show that the momentum boundary layer is very sensitive to the applied atmospheric conditions and soil conditions to a much less extent. Increases in velocity above porous media leads to momentum boundary layer thinning and closely reflect classical flat plate theory. The mass and thermal boundary layers are directly dependent on both atmospheric and soil conditions. Air pressure within the soil is independent of atmospheric temperature and relative humidity - wind velocity and soil

  20. Improvements in simulation of atmospheric boundary layer parameters through data assimilation in ARPS mesoscale atmospheric model

    NASA Astrophysics Data System (ADS)

    Subrahamanyam, D. Bala; Ramachandran, Radhika; Kunhikrishnan, P. K.

    2006-12-01

    In a broad sense, 'Data Assimilation' refers to a technique, whereby the realistic observational datasets are injected to a model simulation for bringing accurate forecasts. There are several schemes available for insertion of observational datasets in the model. In this piece of research, we present one of the simplest, yet powerful data assimilation techniques - known as nudging through optimal interpolation in the ARPS (Advanced Regional Prediction System) model. Through this technique, we firstly identify the assimilation window in space and time over which the observational datasets need to be inserted and the model products require to be adjusted. Appropriate model variables are then adjusted for the realistic observational datasets with a proper weightage being given to the observations. Incorporation of such a subroutine in the model that takes care of the assimilation in the model provides a powerful tool for improving the forecast parameters. Such a technique can be very useful in cases, where observational datasets are available at regular intervals. In this article, we demonstrate the effectiveness of this technique for simulation of profiles of Atmospheric Boundary Layer parameters for a tiny island of Kaashidhoo in the Republic of Maldives, where regular GPS Loran Atmospheric Soundings were carried out during the Intensive Field Phase of Indian Ocean Experiment (INDOEX, IFP-99).

  1. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  2. A numerical model of the atmospheric boundary layer over a marginal ice zone

    NASA Astrophysics Data System (ADS)

    Kantha, Lakshmi H.; Mellor, George L.

    1989-04-01

    A two-dimensional, multilevel model for simulating changes in the atmospheric boundary layer across a marginal ice zone is described and applied to off-ice, on-ice, and along-ice edge wind conditions. The model incorporates a second-moment closure for parameterizing the intensification and suppression of turbulent mixing in the boundary layer due to stratification effects. For off-ice winds, as the atmospheric boundary layer passes from cold smooth ice onto warm open water, the onset of intense convection raises the inversion. Over the transition zone of rough rafted ice with open leads, the shear stress on the ice cover increases significantly before dropping down to the downstream values over water. Such nonmonotonic surface stress could be the cause of divergence of sea ice near the ice edge in a marginal ice zone. These results are in agreement with the one-layer model simulations of off-ice winds by Overland et al. (1983). For on-ice wind conditions, as the warm flow in the boundary layer encounters the cold ice conditions, the resulting stable stratification could rapidly suppress the turbulence in the boundary layer, leading to the development of a shallow inversion and an associated jet. When the wind is predominantly along the ice edge, the temperature contrast between the open water and the ice could produce a thermal front at the ice edge in the boundary layer with strong associated turbulence. More observations are needed to verify these model predictions. Nevertheless, these model results suggest that it is important to account for the changes in the characteristics of the atmospheric boundary layer across the marginal ice zone in our attempts to understand the behavior of the ice cover in these regions.

  3. Measurement Science of the Intermittent Atmospheric Boundary Layer

    DTIC Science & Technology

    2014-01-01

    meridionally by 40 m), eight ultrasonic anemometers, two low-response thermometers, two low-response hygrometers, three quartz-crystal barometers , and...has been operating with eight sonics and three quartz-crystal barometers almost without interruption since June 2013 1 • The quartz-crystal... barometers have been arranged in the form of a triangle of 40 m spacing, and the barometer array has effectively detected atmospheric infrasound (including

  4. Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers

    DTIC Science & Technology

    2015-10-01

    length scale, LOb. This latter scale is related to the ratio of convective energy to mechanical energy and is mainly valid for daytime-atmosphere...a steady state of the flow, then production at this scale must match the rate of transfer of energy from this scale to smaller eddy scales in a...to the transfer of kinetic energies to smaller length- scales, the kinetic energies per unit mass per unit time for eddies of all length-scales (an

  5. An Estimation of Turbulent Kinetic Energy and Energy Dissipation Rate Based on Atmospheric Boundary Layer Similarity Theory

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Arya, S. Pal; Shaohua, Shen; Lin, Yuh-Lang; Proctor, Fred H. (Technical Monitor)

    2000-01-01

    Algorithms are developed to extract atmospheric boundary layer profiles for turbulence kinetic energy (TKE) and energy dissipation rate (EDR), with data from a meteorological tower as input. The profiles are based on similarity theory and scalings for the atmospheric boundary layer. The calculated profiles of EDR and TKE are required to match the observed values at 5 and 40 m. The algorithms are coded for operational use and yield plausible profiles over the diurnal variation of the atmospheric boundary layer.

  6. Modeling pollutant transport in the atmosphere boundary layer

    SciTech Connect

    O`Steen, B.L.

    1990-12-31

    The two basic methods for modeling the atmospheric transport of pollutants (diagnostic and prognostic) are examined along with the current models utilized at SRS for emergency response (WINDS). The ability of a limited-area (mesoscale) model, nested within a synoptic scale model, to represent a wide range of flow behavior, makes it the method of choice for predicting pollutant transport. Such a mesoscale model can provide an invaluable research tool and, with a periodic processing strategy for wind field calculation and/or sufficient computer capability, can be utilized in an emergency response capacity. Various models are compared.

  7. Modeling pollutant transport in the atmosphere boundary layer

    SciTech Connect

    O'Steen, B.L.

    1990-01-01

    The two basic methods for modeling the atmospheric transport of pollutants (diagnostic and prognostic) are examined along with the current models utilized at SRS for emergency response (WINDS). The ability of a limited-area (mesoscale) model, nested within a synoptic scale model, to represent a wide range of flow behavior, makes it the method of choice for predicting pollutant transport. Such a mesoscale model can provide an invaluable research tool and, with a periodic processing strategy for wind field calculation and/or sufficient computer capability, can be utilized in an emergency response capacity. Various models are compared.

  8. Simulation of the Atmospheric Boundary Layer for Wind Energy Applications

    NASA Astrophysics Data System (ADS)

    Marjanovic, Nikola

    Energy production from wind is an increasingly important component of overall global power generation, and will likely continue to gain an even greater share of electricity production as world governments attempt to mitigate climate change and wind energy production costs decrease. Wind energy generation depends on wind speed, which is greatly influenced by local and synoptic environmental forcings. Synoptic forcing, such as a cold frontal passage, exists on a large spatial scale while local forcing manifests itself on a much smaller scale and could result from topographic effects or land-surface heat fluxes. Synoptic forcing, if strong enough, may suppress the effects of generally weaker local forcing. At the even smaller scale of a wind farm, upstream turbines generate wakes that decrease the wind speed and increase the atmospheric turbulence at the downwind turbines, thereby reducing power production and increasing fatigue loading that may damage turbine components, respectively. Simulation of atmospheric processes that span a considerable range of spatial and temporal scales is essential to improve wind energy forecasting, wind turbine siting, turbine maintenance scheduling, and wind turbine design. Mesoscale atmospheric models predict atmospheric conditions using observed data, for a wide range of meteorological applications across scales from thousands of kilometers to hundreds of meters. Mesoscale models include parameterizations for the major atmospheric physical processes that modulate wind speed and turbulence dynamics, such as cloud evolution and surface-atmosphere interactions. The Weather Research and Forecasting (WRF) model is used in this dissertation to investigate the effects of model parameters on wind energy forecasting. WRF is used for case study simulations at two West Coast North American wind farms, one with simple and one with complex terrain, during both synoptically and locally-driven weather events. The model's performance with different

  9. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  10. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  11. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  12. Wind Energy-Related Atmospheric Boundary Layer Large-Eddy Simulation Using OpenFOAM: Preprint

    SciTech Connect

    Churchfield, M.J.; Vijayakumar, G.; Brasseur, J.G.; Moriarty, P.J.

    2010-08-01

    This paper develops and evaluates the performance of a large-eddy simulation (LES) solver in computing the atmospheric boundary layer (ABL) over flat terrain under a variety of stability conditions, ranging from shear driven (neutral stratification) to moderately convective (unstable stratification).

  13. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  14. Inverted floor wind-tunnel simulation of stably stratified atmospheric boundary layer flow

    NASA Astrophysics Data System (ADS)

    Grainger, Clive; Meroney, Robert N.

    Most of the critical transport processes in the atmosphere are dominated by density stratification; hence, physical modeling facilities which neglect the important contributions of buoyancy are limited to the examination of high winds or those brief moments after sunrise or before sunset when the atmosphere is nominally neutrally stratified. Large new facilities constructed specifically to simulate the atmosphere offer new opportunities to study the physics of mixing processes dominated by stratification. A novel arrangement to simulate stably stratified atmospheric boundary layer flows in large wind tunnels using distributed electrical heaters and an inverted ground plane to simulate nighttime inversions is described, together with initial measurements.

  15. Physical modeling of the atmospheric boundary layer for wind energy and wind engineering studies

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Turner, John; Wosnik, Martin

    2015-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W6.0m, H2.7m, L=72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL): the stable, unstable, and neutral ABL. The neutral ABL is characterized by a zero potential temperature gradient, which is readily achieved in the FPF by operating when air and floor temperatures are close to equal. The stable and unstable ABLs have positive and negative vertical temperature gradients, respectively, which are more difficult to simulate without direct control of air or test section floor temperature. The test section floor is a 10 inch thick concrete cement slab and has significant thermal mass. When combined with the diurnal temperature variation of the ambient air, it is possible to achieve vertical temperature gradients in the test section, and produce weakly stable or weakly unstable boundary layer. Achievable Richardson numbers and Obukhov lengths are estimated. The different boundary layer profiles were measured, and compared to theoretical atmospheric models. Supported by UNH Hamel Center for Undergraduate Research SURF.

  16. Formulation of a Prototype Coupled Atmospheric and Oceanic Boundary Layer Model.

    DTIC Science & Technology

    1982-12-01

    layers. The approach will be to compare observed evolutions in the oceanic and atmospheric boundary layers with predictions from bulk modelo wherein...evaporatiJon. The slight predicted increase in salinity from 33.5 to 33.5038 pp -:, shown inFig- ure 16, is due to evaporation. An unstable ccnditi-on...P.&.,..1977: "Santa A gsociated Offshore Foe: Forecast.ng wth a Sequentiai’o itN . Thesis, Na Pcstgraduate School, Monterey, CA., 112 pp . Brower

  17. Identification of atmospheric boundary layer thickness using doppler radar datas and WRF - ARW model in Merauke

    NASA Astrophysics Data System (ADS)

    Putri, R. J. A.; Setyawan, T.

    2017-01-01

    In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)

  18. Measurements and Modelling of the Wind Speed Profile in the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Peña, Alfredo; Gryning, Sven-Erik; Hasager, Charlotte B.

    2008-12-01

    We present measurements from 2006 of the marine wind speed profile at a site located 18 km from the west coast of Denmark in the North Sea. Measurements from mast-mounted cup anemometers up to a height of 45 m are extended to 161 m using LiDAR observations. Atmospheric turbulent flux measurements performed in 2004 with a sonic anemometer are compared to a bulk Richardson number formulation of the atmospheric stability. This is used to classify the LiDAR/cup wind speed profiles into atmospheric stability classes. The observations are compared to a simplified model for the wind speed profile that accounts for the effect of the boundary-layer height. For unstable and neutral atmospheric conditions the boundary-layer height could be neglected, whereas for stable conditions it is comparable to the measuring heights and therefore essential to include. It is interesting to note that, although it is derived from a different physical approach, the simplified wind speed profile conforms to the traditional expressions of the surface layer when the effect of the boundary-layer height is neglected.

  19. LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment

    SciTech Connect

    Klein, P.; Bonin, T. A.; Newman, J. F.; Turner, D. D.; Chilson, P. B.; Wainwright, C. E.; Blumberg, W. G.; Mishra, S.; Carney, M.; Jacobsen, E. P.; Wharton, S.; Newsom, R. K.

    2015-10-01

    This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multi-phase, low-cost, multi-agency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary-layer processes. The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in-situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including i) instruments deployed, ii) sampling strategies, iii) parameters observed, and iv) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE, namely the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

  20. Decadal change in the troposphere and atmospheric boundary layer over the South Pole

    SciTech Connect

    Neff, W.D.

    1994-12-31

    During the austral winter of 1993, the Environmental Technology Laboratory carried out a detailed field study of the atmospheric boundary layer at Amundsen-Scott South Pole Station to determine the effect of transitory synoptic disturbances on the surface-energy budget. This study used newly developed 915-megahertz radar wind-profiling technology for the first time in the Antarctic in combination with conventional boundary layer instrumentation that included a short tower, sonic anemometer, microbarograph array, and doppler sodar. Recent discussions, however, of interdecadal variability in the circumpolar circulation around Antarctica and of decadal changes in summer cloudiness at the South Pole, motivated our study of the long-term variability in boundary layer characteristics, cloudiness, and tropospheric flow behavior to provide a climatological context for our single year`s observations. 7 refs., 3 figs.

  1. Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru

    SciTech Connect

    Matthews, Stuart; Hacker, Jorg M.; Cole, Jason N.; Hare, Jeffrey; Long, Charles N.; Reynolds, R. M.

    2007-03-01

    Nauru, a small island in the tropical pacific, generates plumes of clouds that may grow to several hundred km length. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud streets. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. During the day the island surface layer was warmer than the marine surface layer and wind speed was lower than over the ocean. Surface heating forced the growth of a thermal internal boundary layer, above which a street of cumulus clouds formed. The production of clouds resulted in reduced downwelling shortwave irradiance at the island surface. A plume of warm-dry air was observed over the island which extended 15 – 20 km downwind.

  2. Model simulations of the Arctic atmospheric boundary-layer from the SHEBA year.

    PubMed

    Tjernström, Michael; Zagar, Mark; Svensson, Gunilla

    2004-06-01

    We present Arctic atmospheric boundary-layer modeling with a regional model COAMPS, for the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. Model results are compared to soundings, near-surface measurements and forecasts from the ECMWF model. The near-surface temperature is often too high in winter, except in shorter periods when the boundary layer was cloud-capped and well-mixed due to cloud-top cooling. Temperatures are slightly too high also during the summer melt season. Effects are too high boundary-layer moisture and formation of too dense stratocumulus, generating a too deep well-mixed boundary layer with a cold bias at the simulated boundary-layer top. Errors in temperature and therefore moisture are responsible for large errors in heat flux, in particular in solar radiation, by forming these clouds. We conclude that the main problems lie in the surface energy balance and the treatment of the heat conduction through the ice and snow and in how low-level clouds are treated.

  3. Study of the Mechanism of Nucleation in the Polluted Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chen, Modi

    Atmospheric aerosols can affect human health and earth's radiation balance. The formation of these aerosols has been shown to cast high uncertainty in current global climate modeling. Most observed nucleation events in the boundary layers are correlated with high sulfuric acid concentration. Nucleation rates are usually proportional to sulfuric acid concentration up to the third power. After atmospheric aerosol particles are formed, they often grow at a speed faster than can be explained by sulfuric acid condensation, suggesting that other chemical species also participate in this process. The detailed mechanisms of how these particles are formed and their subsequent growth are still unclear. This work is focused on furthering our understanding of atmospheric nucleation. My contribution is mainly on the following three topics: (1) characterizing condensation particle counters (CPCs) for accurate particle measurements down to 1 nm, the size close to the smallest stable sulfuric acid clusters; (2) developing a method of estimating time and size resolved particle growth rates and atmospheric nucleation rates based on data from both atmospheric and laboratory studies; (3) deriving of a simple semi-empirical acid-base reaction model for atmospheric nucleation in the polluted atmospheric boundary layer.

  4. Sea ice edge position impact on the atmospheric boundary layer temperature structure

    NASA Astrophysics Data System (ADS)

    Khavina, Elena; Repina, Irina

    2016-04-01

    Processes happening in the Arctic region nowadays strongly influence global climate system; the polar amplification effect can be considered one of the main indicators of ongoing changes. Dramatic increase in amount of ice-free areas in the Arctic Ocean, which took place in 2000s, is one of the most significant examples of climate system dynamic in polar region. High amplitude of changes in Arctic climate, both observed and predicted, and existing inaccuracies of climate and weather forecasting models, enforce the development of a more accurate one. It is essential to understand the physics of the interaction between atmosphere and ocean in the Northern Polar area (particularly in boundary layer of the atmosphere) to improve the models. Ice conditions have a great influence on the atmospheric boundary layer in the Arctic. Sea ice inhibits the heat exchange between atmosphere and ocean water during the polar winter, while the heat exchange above the ice-free areas increases rapidly. Due to those significant temperature fluctuations, turbulence of heat fluxes grows greatly. The most intensive interaction takes place at marginal ice zones, especially in case of the cold outbreak - intrusion of cooled air mass from the ice to free water area. Still, thermal structure and dynamic of the atmosphere boundary layer are not researched and described thoroughly enough. Single radio sounding observations from the planes being done, bur they do not provide high-resolution data which is necessary for study. This research is based on continuous atmosphere boundary layer temperature and sea ice observation collected in the Arctic Ocean during the two NABOS expeditions in August and September in 2013 and 2015, as well as on ice conditions satellite data (NASA TEAM 2 and VASIA 2 data processing). Atmosphere temperature data has been obtained with Meteorological Temperature Profiler MTP-5 (ATTEX, Russia). It is a passive radiometer, which provides continuous data of atmospheric

  5. Observed Changes in Atmospheric Boundary Layer Properties at Memphis International Airport During August 1995

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    As part of the NASA Terminal Area Productivity Program, Langley Research Center embarked on a series of field measurements of wake vortex characteristics and associated atmospheric boundary layer properties. One measurement period was at the Memphis International Airport in August 1995. Atmospheric temperature, humidity, winds, turbulence, radiation, and soil properties were measured from a variety of sensor systems and platforms including sodars, profilers, aircraft and towers. This research focused on: (1) changes that occurred in tower data during sunrise and sunset transitions, (2) vertical variation of temperature and cross-head winds at selected times utilizing combinations of sensors, and (3) changes measured by an OV-10 aircraft during approaches and level flights. Significant but not unusual changes are documented and discussed in terms of expected boundary layer behavior. Questions on measurement and prediction of these changes from existing and near-term capabilities are discussed in the context of a future Aircraft Vortex Spacing System.

  6. Large-eddy simulation studies of sea spray in the hurricane atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kelly, Mark

    The growth and maintenance of hurricanes is highly dependent upon the exchange of heat and momentum between the ocean and atmosphere. Because sea spray can significantly affect this ocean-air exchange, accurate hurricane models need to account for spray effects. We incorporate sea spray into large-eddy simulations (LES) to explore its role in the atmospheric boundary layer (ABL) of hurricanes, allowing us to assess the validity of and offer improvements to the simple spray parameterizations currently used in hurricane models. We investigate thermodynamic feedback between spray and surface heat fluxes, and examine the effects of spray upon the dynamics of the hurricane boundary layer. Results of preliminary LES, which use a bulk representation of the dominant range of spray sizes and a simplified diagnostic phase change scheme, indicate an appreciable amount of spray-air heat transfer---consistent with theory---and demonstrate a form of spray-induced thermodynamic feedback. The LES model of the hurricane atmospheric boundary layer (HABL) is adapted to account for variations in spray generation due to wave-breaking, momentum transfer between air and spray in both the vertical (liquid loading and stratification) and horizontal (drag), and dissipative heating in an emulsion-like two-phase environment. These modifications are accompanied by extension of the phase change and spray generation schemes to account for different droplet sizes, and implementation of a moving three-dimensional boundary. Collective inclusion of all these pieces of modeled physics in the LES provides results which offer a better view of the limitations of current spray-flux models, and motivates a simpler and improved alternative model. The refined results of the 'full' LES-HABL model are consistent with early simulations, and underscore the significance of boundary-layer scale thermodynamic balance, spray-induced fluxes, and wind-dependent thermodynamic feedback.

  7. Modelling the atmospheric boundary layer for remotely sensed estimates of daily evaporation

    NASA Technical Reports Server (NTRS)

    Gurney, R. J.; Blyth, K.; Camillo, P. J.

    1984-01-01

    An energy and moisture balance model of the soil surface was used to estimate daily evaporation from wheat and barley fields in West Germany. The model was calibrated using remotely sensed surface temperature estimates. Complete atmospheric boundary layer models are difficult to use because of the number of parameters involved and a simplified model was used here. The resultant evaporation estimates were compared to eddy correlation evaporation estimates and good agreement was found.

  8. Study of the evening transition to the nocturnal atmospheric boundary layer: statistical analysis and case studies

    NASA Astrophysics Data System (ADS)

    Sastre, Mariano; Viana, Samuel; Maqueda, Gregorio; Yagüe, Carlos

    2010-05-01

    Turbulence is probably the most important feature dealing with the diffusion of contaminants in the planetary boundary layer. The main characteristics of turbulence are governed, apart from synoptic conditions, by the daily cycle of the Earth surface heating and cooling, so that, simplifying, two configurations are often found: convective and stable. The transition from a diurnal convective boundary layer to a typically stable nocturnal one is not still well understood (Edwards, 2009). Different micrometeorological conditions at sunset or a few hours previously may be critical for the establishment of a strong surface-based stability or a weak one, even for similar synoptic conditions. This work focuses on the characterization of the evening transition which takes place at the atmospheric boundary layer, considering the temporal interval 17.00-23.00 GMT. The methodology includes looking for some relations between meteorological variables, turbulent parameters and particulate matter (PM10, PM2.5 and PM1) concentrations measured by a GRIMM particle monitor (MODEL 365). Observational data (Summer 2009) is provided from permanent instrumentation at the Research Centre for the Lower Atmosphere (CIBA) in Valladolid (Spain), which is on a quite flat terrain (Cuxart et al., 2000). A 10m height mast equipped with temperature, wind speed and direction, and moisture sensors at several levels are available. Also two sonic anemometers (20 Hz sampling rate) at 1.5 and 10m were deployed in the mast. The database is complemented by a triangle of microbarometers installed next to the surface, and another three microbarometers placed in a 100m meteorological tower at 20, 50 and 100m respectively, which are ideal to study coherent structures present in the boundary layer. Statistical parameters of meteorological variables have been calculated and studied in order to find out connections with the most relevant physical processes. Moreover different cases studies will be analyzed

  9. On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lu, Hao; Porté-Agel, Fernando

    2015-10-01

    With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.

  10. Strange drift of passive tracers from horizontal blowing out sources in the atmospheric boundary layer

    SciTech Connect

    Koeltzsch, K.

    1995-12-31

    In the past many scientists running a wind tunnel observed the following strange phenomenon. Plumes blowing out from horizontal sources (with the same momentum as the adjacent flow) and located inside the planar boundary layer, drift stronger towards the ground than described physically by the conventional dispersion equation. This effect occurs clearly in regard to greater surface roughness. If the dispersion by Gauss is used in connection with a term of reflection, the descending of a plume only occurs after the reflection of tracers on the surface, contrary to the observations. On the other hand a dispersion model is used to describe this phenomenon, which depends on height diffusivity coefficients and a power law for the mean velocity profile (Berljand, 1982; Smith, 1957). The aim of the investigation is to provide a contribution to the causes for this phenomenon. The influence of the roughness length is explored more closely for the above named model. The paper studies the properties of basic flow inside the atmospheric boundary layer generated by a wind tunnel with an open test section. The neutral atmosphere over a suburb terrain is modeled. The following presents measurements by hot-wire with a four-wire-probe of the higher, statistical moments related to all three velocities and measurements of concentration by a Flame-Ionization-Detector in an atmospheric boundary layer of the model. In this connection it is of special interest to investigate the skewness of vertical velocity. This quantity is important for the Lagrangian dispersion model.

  11. A multiscale eddy simulation methodology for the atmospheric Ekman boundary layer

    NASA Astrophysics Data System (ADS)

    Alam, Jahrul; Rokibul Islam, Mo

    2015-01-01

    In a large eddy simulation (LES), resolving the wide spectrum of large turbulent eddies from O(m) to O(km) in the atmospheric boundary layer (ABL) requires O(109) computational degrees of freedom; however, these eddies are intermittent in space and time. In this research, we take advantage of the spatial intermittency in a neutrally stratified atmospheric Ekman boundary layer, and study the development of a novel LES methodology. Using the second generation wavelet transform, the proposed model filters the large eddies into distinct groups of significant and insignificant eddies. We show that the significant eddies are sufficient to resolve the physics of the flow. The effects of insignificant eddies are modelled with the proposed multiscale parameterization scheme. The results of the proposed model have been found to be in good agreement with that of an equivalent reference model, experimental data, and asymptotic boundary layer theory. We have found that the number of significant eddies in a neutrally stratified ABL is much lower than the number of resolved eddies in a reference model. The overall algorithm is asymptotically optimal - the CPU time is approximately proportional to the number of resolved eddies. The proposed methodology suggests a potentially novel research direction that may be employed to address a number of computational challenges that must be faced in the field of atmospheric modeling.

  12. The vertical turbulence structure of the coastal marine atmospheric boundary layer

    SciTech Connect

    Tjernstroem, M.; Smedman, A.S. )

    1993-03-15

    The vertical turbulence structure in the marine atmosphere along a shoreline has been investigated using data from tower and aircraft measurements performed along the Baltic coast in the southeast of Sweden. Two properties make the Baltic Sea particularly interesting. It is surrounded by land in all directions within moderate advection distances, and it features a significant annual lag in sea surface temperature as compared with inland surface temperature. The present data were collected mostly during spring or early summer, when the water is cool, i.e., with a stably or neutrally stratified marine boundary layer usually capped by an inversion. Substantial daytime heating over the land area results in a considerable horizontal thermal contrast. Measurements were made on a small island, on a tower with a good sea fetch, and with an airborne instrument package. The profile data from the aircraft is from 25 slant soundings performed in connection to low level boundary layer flights. The results from the profiles are extracted through filtering techniques on individual time (space) series (individual profiles), applying different normalization and finally averaging over all or over groups of profiles. The land-based data are from a low tower situated on the shoreline of a small island with a wide sector of unobstructed sea fetch. Several factors are found that add to the apparent complexity of the coastal marine environment: the state of the sea appears to have a major impact on the turbulence structure of the surface layer, jet-shaped wind speed profiles were very common at the top of the boundary layer (in about 50% of the cases) and distinct layers with increased turbulence were frequently found well above the boundary layer (in about 80% of the cases). The present paper will concentrate on a description of the experiment, the analysis methods, and a general description of the boundary layer turbulence structure over the Baltic Sea. 40 refs., 16 figs., 2 tabs.

  13. Study of the diurnal variability of atmospheric chemistry with respect to boundary layer dynamics during DOMINO

    NASA Astrophysics Data System (ADS)

    van Stratum, B. J. H.; Vilà-Guerau de Arellano, J.; Ouwersloot, H. G.; van den Dries, K.; van Laar, T. W.; Martinez, M.; Lelieveld, J.; Diesch, J.-M.; Drewnick, F.; Fischer, H.; Hosaynali Beygi, Z.; Harder, H.; Regelin, E.; Sinha, V.; Adame, J. A.; Sörgel, M.; Sander, R.; Bozem, H.; Song, W.; Williams, J.; Yassaa, N.

    2012-03-01

    We study the interactions between atmospheric boundary layer (ABL) dynamics and atmospheric chemistry using a mixed-layer model (MXLCH) coupled to chemical reaction schemes. Guided by both atmospheric and chemical measurements obtained during the DOMINO campaign (2008), numerical experiments are performed to study the role of ABL dynamics and the accuracy of chemical schemes with different complexity: MOZART-4 and a reduced mechanism of this chemical system. Both schemes produce satisfactory results, indicating that the reduced scheme is capable of reproducing the O3-NOx-VOC-HOx diurnal cycle during conditions characterised by a low NOx regime and small O3 tendencies (less than 1 ppb per hour). By focussing on the budget equations of chemical species in the mixed-layer model, we show that for species like O3, NO and NO2, the influence of entrainment and boundary layer growth is of the same order as chemical production/loss. This indicates that an accurate representation of ABL processes is crucial in understanding the daily cycle of chemical species. By comparing the time scales of chemical reactive species with the mixing time scale of turbulence, we propose a classification based on the Damköhler number to further determine the importance of dynamics on chemistry during field campaigns. Our findings advocate an integrated approach, simultaneously solving the ABL dynamics and chemical reactions, in order to obtain a better understanding of chemical pathways and processes and the interpretation of the results obtained during measurement campaigns.

  14. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  15. Marine atmospheric boundary layer over some Southern Ocean fronts during the IPY BGH 2008 cruise

    NASA Astrophysics Data System (ADS)

    Messager, C.; Speich, S.; Key, E.

    2012-11-01

    A set of meteorological instruments was added to an oceanographic cruise crossing the Southern Ocean from Cape Town to 57°33' S during the summer of 2008. The Cape Cauldron, the Subtropical, Subantarctic, Polar and southern Antarctic Circumpolar current fronts were successively crossed. The recorded data permitted to derive the exchange of momentum, heat and water vapour at the ocean-atmosphere interface. A set of 38 radiosonde releases complemented the dataset. The marine atmospheric boundary layer characteristics and air-sea interaction when the ship crossed the fronts and eddies are discussed. The specific role of the atmospheric synoptic systems advection on the air-sea interaction over these regions is highlighted. Additionally, the Subantarctic front mesoscale variability induced an anticyclonic eddy considered as part of the Subantarctic front. The specific influence of this Agulhas ring on the aloft atmosphere is also presented.

  16. Quadrant Analysis of the Heat and Momentum Fluxes at the Transition Layer between the Marine Atmospheric Boundary Layer and the developed Internal Boundary Layer close to the coastline

    NASA Astrophysics Data System (ADS)

    Panagiotis Raptis, Ioannis; Helmis, Constantinos

    2013-04-01

    The purpose of this work is to study the main characteristics and the micro-structure of the Transition Layer between the Marine Atmospheric Boundary Layer (MABL) and the developed Internal Boundary Layer (IBL), which is created downwind close to the coastline. The dynamics and the structure of this Transition Layer, which could be defined as the region where the growing IBL perturbations enter the MABL and mix the air, are of major interest affecting a variety of MABL' parameters. For this study data collected from CBLAST field campaign, conducted during summer 2003 at Nantucket Island USA, were used. More specifically data from sonic anemometer measurements at 20 Hz sampling frequency, at 10m height and 80m distance from the coastline were studied. According to our measurements during the night the recorded characteristics of the surface layer at 10m height had the behavior of the MABL, while during the day in most cases the developed IBL was recorded. Thus a diurnal cycle was noticed with the mechanically generated IBL during the night, being lower than the height of our instruments (10m) while a thermally generated IBL during the day was easily observed with characteristic perturbations. In many cases an intermediate state was observed, indicating the existence of the Transition Layer. In order to identify the layers and their characteristics, a conditional analysis was developed using multiple criteria, based mainly on values of the heat and momentum fluxes estimated by the eddy covariance method. We used the quadrant analysis method to study the coherent structures and compare the results under different atmospheric conditions. This method decomposes shear stress into four quadrants, separating the events that contribute to the downward and upward momentum fluxes. Events in quadrants 2 (ejections) and 4 (sweeps) compose the coherent turbulent structures while events in quadrants 1 and 3 compose the incoherent structures. The parameters γ and exuberance

  17. Large-eddy simulation of particle-laden atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ilie, Marcel; Smith, Stefan Llewellyn

    2008-11-01

    Pollen dispersion in the atmospheric boundary layer (ABL) is numerically investigated using a hybrid large-eddy simulation (LES) Lagrangian approach. Interest in prediction of pollen dispersion stems from two reasons, the allergens in the pollen grains and increasing genetic manipulation of plants leading to the problem of cross pollination. An efficient Eulerian-Lagrangian particle dispersion algorithm for the prediction of pollen dispersion in the atmospheric boundary layer is outlined. The volume fraction of the dispersed phase is assumed to be small enough such that particle-particle collisions are negligible and properties of the carrier flow are not modified. Only the effect of turbulence on particle motion has to be taken into account (one-way coupling). Hence the continuous phase can be treated separate from the particulate phase. The continuous phase is determined by LES in the Eulerian frame of reference whereas the dispersed phase is simulated in a Lagrangian frame of reference. Numerical investigations are conducted for the convective, neutral and stable boundary layer as well different topographies. The results of the present study indicate that particles with small diameter size follow the flow streamlines, behaving as tracers, while particles with large diameter size tend to follow trajectories which are independent of the flow streamlines. Particles of ellipsoidal shape travel faster than the ones of spherical shape.

  18. Instability of wind turbine wakes immersed in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Valerio Iungo, Giacomo; Camarri, Simone; Porté-Agel, Fernando; Gallaire, François

    2015-06-01

    In this work a technique capable to investigate the near-wake stability properties of a wind turbine immersed in the atmospheric boundary layer is presented. Specifically, a 2D local spatial stability analysis is developed in order to take into account typical flow features of real operating wind turbines, such as the presence of the atmospheric boundary layer and the turbulence heterogeneity of the oncoming wind. This stability analysis can be generally applied on either experimental measurements or numerical data. In this paper it was carried out on wind tunnel experiments, for which a downscaled wind turbine is immersed in a turbulent boundary layer. Through spatial stability analysis, the dominant mode in the near wake, i.e. the most amplified one, is characterized and its frequency matches the hub-vortex instability frequency measured in the wind tunnel. As in the case of [10], where an axisymmetric wake condition was investigated, the hub-vortex instability results in a single-helical mode.

  19. Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Ka Ling; Porté-Agel, Fernando

    2016-04-01

    Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.

  20. Study of Transitions in the Atmospheric Boundary Layer Using Explicit Algebraic Turbulence Models

    NASA Astrophysics Data System (ADS)

    Lazeroms, W. M. J.; Svensson, G.; Bazile, E.; Brethouwer, G.; Wallin, S.; Johansson, A. V.

    2016-10-01

    We test a recently developed engineering turbulence model, a so-called explicit algebraic Reynolds-stress (EARS) model, in the context of the atmospheric boundary layer. First of all, we consider a stable boundary layer used as the well-known first test case from the Global Energy and Water Cycle Experiment Atmospheric Boundary Layer Study (GABLS1). The model is shown to agree well with data from large-eddy simulations (LES), and this agreement is significantly better than for a standard operational scheme with a prognostic equation for turbulent kinetic energy. Furthermore, we apply the model to a case with a (idealized) diurnal cycle and make a qualitative comparison with a simpler first-order model. Some interesting features of the model are highlighted, pertaining to its stronger foundation on physical principles. In particular, the use of more prognostic equations in the model is shown to give a more realistic dynamical behaviour. This qualitative study is the first step towards a more detailed comparison, for which additional LES data are needed.

  1. LOTOS: A Proposed Lower Tropospheric Observing System from the Land Surface through the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Cohn, S. A.; Lee, W. C.; Carbone, R. E.; Oncley, S.; Brown, W. O. J.; Spuler, S.; Horst, T. W.

    2015-12-01

    Advances in sensor capabilities, but also in electronics, optics, RF communication, and off-the-grid power are enabling new measurement paradigms. NCAR's Earth Observing Laboratory (EOL) is considering new sensors, new deployment modes, and integrated observing strategies to address challenges in understanding within the atmospheric boundary layer and the underlying coupling to the land surface. Our vision is of a network of deployable observing sites, each with a suite of complementary instruments that measure surface-atmosphere exchange, and the state and evolution of the boundary layer. EOL has made good progress on distributed surface energy balance and flux stations, and on boundary layer remote sensing of wind and water vapor, all suitable for deployments of combined instruments and as network of such sites. We will present the status of the CentNet surface network development, the 449-MHz modular wind profiler, and a water vapor and temperature profiling differential absorption lidar (DIAL) under development. We will further present a concept for a test bed to better understand the value of these and other possible instruments in forming an instrument suite flexible for multiple research purposes.

  2. [Analysis on concentration variety characteristics of atmospheric ozone under the boundary layer in Beijing].

    PubMed

    Zong, Xue-Mei; Wang, Geng-Chen; Chen, Hong-Bin; Wang, Pu-Cai; Xuan, Yue-Jian

    2007-11-01

    Based on the atmospheric ozone sounding data, the average monthly and seasonal variety principles of atmospheric ozone concentration during six years are analyzed under the boundary layer in Beijing. The results show that the monthly variation of atmospheric ozone are obvious that the minimum values appear in January from less than 10 x 10(-9) on ground to less than 50 x 10(-9) on upper layer (2 km), but the maximum values appear in June from 85 x 10(-9) on ground to more than 90 x 10(-9) on upper layer. The seasonal variation is also clear that the least atmospheric ozone concentration is in winter and the most is in summer, but variety from ground to upper layer is largest in winter and least in summer. According to the type of outline, the outline of ozone concentration is composite of three types which are winter type, summer type and spring-autumn type. The monthly ozone concentration in different heights is quite different. After analyzing the relationship between ozone concentration and meteorological factors, such as temperature and humidity, we find ozone concentration on ground is linear with temperature and the correlation coefficient is more than 85 percent.

  3. Intercomparison of Martian Lower Atmosphere Simulated Using Different Planetary Boundary Layer Parameterization Schemes

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Fairlie, T. Duncan; Dwyer Cianciolo, Alicia; Smith, Michael D.

    2015-01-01

    We use the mesoscale modeling capability of Mars Weather Research and Forecasting (MarsWRF) model to study the sensitivity of the simulated Martian lower atmosphere to differences in the parameterization of the planetary boundary layer (PBL). Characterization of the Martian atmosphere and realistic representation of processes such as mixing of tracers like dust depend on how well the model reproduces the evolution of the PBL structure. MarsWRF is based on the NCAR WRF model and it retains some of the PBL schemes available in the earth version. Published studies have examined the performance of different PBL schemes in NCAR WRF with the help of observations. Currently such assessments are not feasible for Martian atmospheric models due to lack of observations. It is of interest though to study the sensitivity of the model to PBL parameterization. Typically, for standard Martian atmospheric simulations, we have used the Medium Range Forecast (MRF) PBL scheme, which considers a correction term to the vertical gradients to incorporate nonlocal effects. For this study, we have also used two other parameterizations, a non-local closure scheme called Yonsei University (YSU) PBL scheme and a turbulent kinetic energy closure scheme called Mellor- Yamada-Janjic (MYJ) PBL scheme. We will present intercomparisons of the near surface temperature profiles, boundary layer heights, and wind obtained from the different simulations. We plan to use available temperature observations from Mini TES instrument onboard the rovers Spirit and Opportunity in evaluating the model results.

  4. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth

    PubMed Central

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  5. Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report

    NASA Astrophysics Data System (ADS)

    Cuxart, J.; Yague, C.; Morales, G.; Terradellas, E.; Orbe, J.; Calvo, J.; Fernandez, A.; Soler, M.R.; Infante, C.; Buenestado, P.; Espinalt, A.; Joergensen, H.E.; Rees, J.M.; Vila, J.; Redondo, J.M.; Cantalapiedra, I.R.; Conangla, L.

    This paper describes the Stable AtmosphericBoundary Layer Experiment in Spain (SABLES 98),which took place over the northern Spanish plateaucomprising relatively flat grassland,in September 1998. The main objectives of the campaign were to study the properties of themid-latitude stable boundary layer (SBL).Instrumentation deployed on two meteorologicalmasts (of heights 10 m and 100 m)included five sonic anemometers, 15 thermocouples,five cup anemometers and three propeller anemometers,humidity sensors and radiometers.A Sensitron mini-sodar and a tetheredballoon were also operated continuously. Atriangular array of cup anemometers wasinstalled to allow the detection ofwave events. Two nocturnal periods analysedon 14-15 and 20-21 September are used toillustrate the wide-ranging characteristics of the SBL.

  6. Ammonia Surface-Atmosphere Exchange in the Arctic Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Murphy, J. G.; Wentworth, G.; Tremblay, J. E.; Gagnon, J.; Côté, J. S.; Courchesne, I.

    2014-12-01

    The net flux of ammonia between the ocean and the atmosphere is poorly known on global and regional scales. Data from high-latitude research cruises suggest that deposition from the atmosphere to the surface dominates, but the magnitude and drivers of this flux are not well understood. In the polar marine boundary layer, the surface may be composed of not only open ocean, but also first-year or multi-year sea ice which may be covered with meltponds. To characterize the air-sea exchange of ammonia in the polar marine boundary layer, data were collected aboard the Canadian Coast Guard Ship Amundsen between July 10 and Aug 14, 2014 in the Eastern Canadian Arctic. The Ambient Ion Monitor Ion Chromatograph was used to make hourly measurements of the mixing ratio of gas phase ammonia, and the water-soluble constituents of fine particle matter (PM2.5). Fluorometry was used to measure dissolved ammonium concentrations in the ocean between 0 and 20 m, and in low-salinity melt ponds encountered in regions of extensive sea ice. Observations indicate that the atmosphere contains higher levels of ammonia than are calculated to be in equilibrium with surface reservoirs, implying net deposition of ammonia from the atmosphere. While ammonium levels tended to be higher in melt ponds, the lower water temperatures still mean that these are unlikely to be sources of NH3 to the atmosphere. The disequilibrium between atmospheric and surface reservoirs of ammonia imply relatively large sources to the atmosphere (possibly nearby bird colonies) or high consumption rates in surface waters.

  7. Turbulent transport in the atmospheric boundary layer with application to wind farm dynamics

    NASA Astrophysics Data System (ADS)

    Waggy, Scott B.

    With the recent push for renewable energy sources, wind energy has emerged as a candidate to replace some of the power produced by traditional fossil fuels. Recent studies, however, have indicated that wind farms may have a direct effect on local meteorology by transporting water vapor away from the Earth's surface. Such turbulent transport could result in an increased drying of soil, and, in turn, negatively affect the productivity of land in the wind farm's immediate vicinity. This numerical study will analyze four scenarios with the goal of understanding turbulence transport in the wake of a turbine: the neutrally-stratified boundary layer with system rotation, the unstably-stratified atmospheric boundary layer, and wind turbine simulations of these previous two cases. For this work, the Ekman layer is used as an approximation of the atmospheric boundary layer and the governing equations are solved using a fully-parallelized direct numerical simulation (DNS). The in-depth studies of the neutrally and unstably-stratified boundary layers without introducing wind farm effects will act to provide a concrete background for the final study concerning turbulent transport due to turbine wakes. Although neutral stratification rarely occurs in the atmospheric boundary layer, it is useful to study the turbulent Ekman layer under such conditions as it provides a limiting case when unstable or stable stratification are weak. In this work, a thorough analysis was completed including turbulent statistics, velocity and pressure autocorrelations, and a calculation of the full turbulent energy budget. The unstably-stratified atmospheric boundary layer was studied under two levels of heating: moderate and vigorous. Under moderate stratification, both buoyancy and shearing contribute significantly to the turbulent dynamics. As the level of stratification increases, the role of shearing is shown to diminish and is confined to the near-wall region only. A recent, multi

  8. Influence of a high aerosol concentration on the thermal structure of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Khaikin, M. N.; Kuznetsova, I. N.; Kadygrov, E. N.

    2006-12-01

    The influence of increased concentrations of submicron aerosol produced by forest fires on thermal characteristics of the atmospheric boundary layer (ABL) in Moscow and its remote vicinity (the town of Zvenigorod) are analyzed on the basis of regular remote measurements of the ABL temperature profile with the use of MTP-5 profilers. In the air basin of a large city, additional aerosol and accompanying pollutants in early morning hours (at small heights of the Sun) most frequently did not cause substantial changes in the ABL thermal structure. In the locality remote from the megalopolis (Zvenigorod), the atmospheric pollution by aerosol led to noticeable changes in the ABL thermal characteristics. Especially strong changes were observed in the daytime, during the maximum supply of solar radiation. In morning hours, the heating rate of the lower 100-m layer of the polluted air exceeded the heating rate of a relatively pure air by more than one degree. In higher layers, the differences between the rates of temperature changes in a relatively clean atmosphere and in an atmosphere polluted by aerosol (in the suburb) were insignificant.

  9. Coherent Structures in the Turbulent Atmospheric Boundary Layer: modulation by static stability and role in transport

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Li, D.; Shah, S.

    2012-12-01

    Understanding the turbulent transport of momentum, scalars, and particles in the atmospheric boundary layer is important in many disciplines such as meteorology, hydrology, and desert morphodynamics. At present, similarity theories that rely on a significant degree of empiricism remain the main approach to understand and model these fluxes. One of the hurdles to developing more fundamental and robust theories is our lack of understanding of the topology and dynamics of turbulent coherent structures, which perform these fluxes, and how they are modulated by atmospheric stability. Using field data sets and numerical simulations of atmospheric surface layer flows under a range of stabilities, we revisit these links between coherent structures, atmospheric stability, and turbulent transport. The results confirm that the topology of the coherent structures is very sensitive to stability. The findings point to a gradual transformation of the structures from hairpin vortices under neutral stability, to thermals under unstable conditions, and to more horizontal structures under stable conditions. Under unstable conditions, this change then induces a decorrelation of the momentum and scalar fluxes in the surface layer: the eddies transporting heat and momentum become distinct leading to an increase in the transport efficiency of heat and a decrease in the transport efficiency of momentum. Under stable conditions, the reduction in the transport of momentum to the surface leads to reductions in the friction velocity and the turbulent kinetic energy (TKE) production. The effect of reduced production can be more important than the effect of direct TKE destruction in the stable ABL.

  10. The groundwater-land-surface-atmosphere connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simulations

    SciTech Connect

    Maxwell, R M; Chow, F K; Kollet, S J

    2007-02-02

    This study combines a variably-saturated groundwater flow model and a mesoscale atmospheric model to examine the effects of soil moisture heterogeneity on atmospheric boundary layer processes. This parallel, integrated model can represent spatial variations in land-surface forcing driven by three-dimensional (3D) atmospheric and subsurface components. The development of atmospheric flow is studied in a series of idealized test cases with different initial soil moisture distributions generated by an offline spin-up procedure or interpolated from a coarse-resolution dataset. These test cases are performed with both the fully-coupled model (which includes 3D groundwater flow and surface water routing) and the uncoupled atmospheric model. The effects of the different soil moisture initializations and lateral subsurface and surface water flow are seen in the differences in atmospheric evolution over a 36-hour period. The fully-coupled model maintains a realistic topographically-driven soil moisture distribution, while the uncoupled atmospheric model does not. Furthermore, the coupled model shows spatial and temporal correlations between surface and lower atmospheric variables and water table depth. These correlations are particularly strong during times when the land surface temperatures trigger shifts in wind behavior, such as during early morning surface heating.

  11. Preliminary analysis of the Nocturnal Atmospheric Boundary Layer during the experimental campaign CIBA 2008

    NASA Astrophysics Data System (ADS)

    Yagüe, C.; Maqueda, G.; Ramos, D.; Sastre, M.; Viana, S.; Serrano, E.; Morales, G.; Ayarzagüena, B.; Viñas, C.; Sánchez, E.

    2009-04-01

    An Atmospheric Boundary Layer campaign was developed in Spain along June 2008 at the CIBA (Research Centre for the Lower Atmosphere) site which is placed on a fairly homogeneous terrain in the centre of an extensive plateau (41°49' N, 4°56' W). Different instrumentation at several levels was available on a new 10m meteorological mast, including temperature and humidity sensors, wind vanes and cup anemometers, as well as one sonic anemometer. Besides, two quartz-based microbarometers were installed at 50 and 100m on the main permanent 100m tower placed at CIBA. Three additional microbarometers were deployed on the surface on a triangular array of approximately 200 m side, and a tethered balloon was used in order to record vertical profiles of temperature, wind and humidity up to 1000m. Finally, a GRIMM particle monitor (MODEL 365), which can be used to continuously measure each six seconds simultaneously the PM10, PM2.5 and PM1 values, was deployed at 1.5m. This work will show some preliminary results from the campaign CIBA 2008, analysing the main physical processes present in the atmospheric Nocturnal Boundary Layer (NBL), the different stability periods observed and the corresponding turbulent parameters, as well as the coherent structures detected. The pressure perturbations measured from the surface and tower levels make possible to study the main wave parameters from wavelet transform, and compared the structures detected by the microbarometers with those detected in the wind and particles records.

  12. Approximate Analytical Solution to Diurnal Atmospheric Boundary-Layer Growth Under Well-Watered Conditions

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Yin, Jun; Albertson, John D.; Porporato, Amilcare

    2015-07-01

    Simplified numerical models of the atmospheric boundary layer (ABL) are useful both for understanding the underlying dynamics and potentially providing parsimonious modelling approaches for inclusion in larger models. Herein the governing equations of a simplified slab model of the uniformly mixed, purely convective, diurnal ABL are shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed in integral form. By employing a linearized saturation vapour relation, the height of the mixed layer is shown to obey a non-linear ordinary differential equation with quadratic dependence on ABL height. A perturbation solution provides general analytical approximations, of which the leading term is shown to represent the contribution under equilibrium evaporation. These solutions allow the diurnal evolution of the height, potential temperature, and specific humidity (i.e., also vapour pressure deficit) of the mixed layer to be expressed analytically for arbitrary radiative forcing functions.

  13. Sensitivity of climate simulations to land-surface and atmospheric boundary-layer treatments - a review

    SciTech Connect

    Garratt, J.R. )

    1993-03-01

    Aspects of the land-surface and boundary-layer treatments in 20 or so atmospheric general circulation models (GCMs) are summarized. only a few of these have had significant sensitivity studies published. The sensitivity studies focus upon the parameterization of land- surface processes and specification of land-surface properties including albedo, roughness length, soil moisture status, and vegetation density. The impacts of surface albedo and soil moisture upon the climate simulated in GCMs with bare-soil land surfaces are well known. Continental evaporation and precipitation tend to decrease with increased albedo and decreased soil moisture availability. Few conclusive studies have been carried out on the impact of a gross roughness-length change. A canopy scheme in a GCM ensures the combined impacts of roughness, albedo, and soil-moisture availability upon the simulated climate. The most revealing studies to date involve the regional impact of Amazonian deforestation. Four studies show that replacing tropical forest with a degraded pasture results in decreased evaporation and precipitation, and increased near-surface air temperatures. Sensitivity studies suggest the need for a realistic surface representation in general circulation models of the atmosphere. It is not yet clear how detailed this representation needs to be, but the parameterization of boundary-layer and convective clouds probably represents a greater challenge to improved climate simulations. This is illustrated in the case of surface net radiation for Amazonia, which is not well simulated and tends to be overestimated, leading to evaporation rates that are too large. Underestimates in cloudiness, cloud albedo, and clear-sky shortwave absorption, rather than in surface albedo, appear to be the main culprits. Three major tasks for the researcher of development and validation of atmospheric boundary-layer and surface schemes are detailed.

  14. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer.

    PubMed

    Andreotti, Bruno; Fourrière, Antoine; Ould-Kaddour, Fouzia; Murray, Brad; Claudin, Philippe

    2009-02-26

    Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.

  15. Giant aeolian dune size determined by the average depth of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Claudin, P.; Fourrière, A.; Andreotti, B.; Murray, A. B.

    2009-12-01

    Depending on the wind regime, sand dunes exhibit linear, crescent-shaped or star-like forms resulting from the interaction between dune morphology and sand transport. Small-scale dunes form by destabilization of the sand bed with a wavelength (a few tens of metres) determined by the sand transport saturation length. The mechanisms controlling the formation of giant dunes, and in particular accounting for their typical time and length scales, have remained unknown. Using a combination of field measurements and aerodynamic calculations, we show here that the growth of aeolian giant dunes, ascribed to the nonlinear interaction between small-scale superimposed dunes, is limited by the confinement of the flow within the atmospheric boundary layer. Aeolian giant dunes and river dunes form by similar processes, with the thermal inversion layer that caps the convective boundary layer in the atmosphere acting analogously to the water surface in rivers. In both cases, the bed topography excites surface waves on the interface that in turn modify the near-bed flow velocity. This mechanism is a stabilizing process that prevents the scale of the pattern from coarsening beyond the resonant condition. Our results can explain the mean spacing of aeolian giant dunes ranging from 300 m in coastal terrestrial deserts to 3.5 km. We propose that our findings could serve as a starting point for the modelling of long-term evolution of desert landscapes under specific wind regimes.

  16. Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains

    NASA Astrophysics Data System (ADS)

    Han, Yi; Stoellinger, Michael; Naughton, Jonathan

    2016-09-01

    In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.

  17. Conditionally Averaged Large-Scale Motions in the Neutral Atmospheric Boundary Layer: Insights for Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Jacob, Chinthaka; Anderson, William

    2017-01-01

    Aeolian erosion of flat, arid landscapes is induced (and sustained) by the aerodynamic surface stress imposed by flow in the atmospheric surface layer. Conceptual models typically indicate that sediment mass flux, Q (via saltation or drift), scales with imposed aerodynamic stress raised to some exponent, n, where n > 1. This scaling demonstrates the importance of turbulent fluctuations in driving aeolian processes. In order to illustrate the importance of surface-stress intermittency in aeolian processes, and to elucidate the role of turbulence, conditional averaging predicated on aerodynamic surface stress has been used within large-eddy simulation of atmospheric boundary-layer flow over an arid, flat landscape. The conditional-sampling thresholds are defined based on probability distribution functions of surface stress. The simulations have been performed for a computational domain with ≈ 25 H streamwise extent, where H is the prescribed depth of the neutrally-stratified boundary layer. Thus, the full hierarchy of spatial scales are captured, from surface-layer turbulence to large- and very-large-scale outer-layer coherent motions. Spectrograms are used to support this argument, and also to illustrate how turbulent energy is distributed across wavelengths with elevation. Conditional averaging provides an ensemble-mean visualization of flow structures responsible for erosion `events'. Results indicate that surface-stress peaks are associated with the passage of inclined, high-momentum regions flanked by adjacent low-momentum regions. Fluid in the interfacial shear layers between these adjacent quasi-uniform momentum regions exhibits high streamwise and vertical vorticity.

  18. The effect of the Asian Monsoon to the atmospheric boundary layer over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Maoshan; Su, Zhongbo; Chen, Xuelong; Zheng, Donghai; Sun, Fanglin; Ma, Yaoming; Hu, Zeyong

    2016-04-01

    Modulation of the diurnal variations in the convective activities associated with day-by-day changes of surface flux and soil moisture was observed in the beginning of the monsoon season on the central Tibetan plateau (Sugimoto et al., 2008) which indicates the importance of land-atmosphere interactions in determining convective activities over the Tibetan plateau. Detailed interaction processes need to be studied by experiments designed to evaluate a set of hypotheses on mechanisms and linkages of these interactions. A possible function of vegetation to increase precipitation in cases of Tibetan High type was suggested by Yamada and Uyeda (2006). Use of satellite derived plateau scale soil moisture (Wen et al., 2003) enables the verification of these hypotheses (e.g. Trier et al. 2004). To evaluate these feedbacks, the mesoscale WRF model will be used because several numerical experiments are being conducted to improve the soil physical parameterization in the Noah land surface scheme in WRF so that the extreme conditions on the Tibetan plateau could be adequately represented (Van der Velde et al., 2009) such that the impacts on the structure of the atmospheric boundary layer can be assessed and improved. The Tibetan Observational Research Platform (TORP) operated by the Institute of Tibetan Plateau (Ma et al., 2008) will be fully utilized to study the characteristics of the plateau climate and different aspects of the WRF model will be evaluated using this extensive observation platform (e.g. Su et al., 2012). Recently, advanced studies on energy budget have been done by combining field and satellite measurements over the Tibetan Plateau (e.g. Ma et al., 2005). Such studies, however, were based on a single satellite observation and for a few days over an annual cycle, which are insufficient to reveal the relation between the land surface energy budget and the Asian monsoon over the Tibetan plateau. Time series analysis of satellite observations will provide the

  19. A parametrization of the convective atmospheric boundary layer and its application into a global climate model

    NASA Astrophysics Data System (ADS)

    Holtslag, A. A. M.; Boville, B. A.; Moeng, C.-H.

    Vertical diffusion of heat and passive scalars (like moisture) in the convective atmospheric boundary layer are focused upon. Flux equations are analyzed with data obtained from large eddy simulations. The findings can be used in a modified flux gradient approach, which takes into account the nonlocal convective vertical exchange using the so called counter gradient transport and a nonlocal diffusivity coefficient. Previous findings are simplified and applied to a community climate model. The impact of the nonlocal approach is illustrated in comparison with the usual local diffusion approach.

  20. Atmospheric Boundary Layer Height Evolution with Lidar in Buenos Aires from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    The analysis of the atmospheric boundary layer top height evolution is obtained from 2008 to 2011 in Buenos Aires using the multiwavelength lidar located at CEILAP (CITEDEF-CONICET) (34°33' S; 58°30' W; 17 m asl). Algorithms recognition based on covariance wavelet transform are applied to obtain seasonal statistics. This method is being evaluated for use in the Lidar Network in Argentina and it is being deployed in Patagonia region currently. The technique operates in real time in both low and high aerosol loads and with almost no human supervision.

  1. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    NASA Astrophysics Data System (ADS)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  2. Radiation and atmospheric circulation controls on carbonyl sulfide concentrations in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Berkelhammer, M.; Steen-Larsen, H. C.; Cosgrove, A.; Peters, A. J.; Johnson, R.; Hayden, M.; Montzka, S. A.

    2016-11-01

    A potential closure of the global carbonyl sulfide (COS or OCS) budget has recently been attained through a combination of remote sensing, modeling, and extended surface measurements. However, significant uncertainties in the spatial and temporal dynamics of the marine flux still persist. In order to isolate the terrestrial photosynthetic component of the global atmospheric OCS budget, tighter constraints on the marine flux are needed. We present 6 months of nearly continuous in situ OCS concentrations from the North Atlantic during the fall and winter of 2014-2015 using a combination of research vessel and fixed tower measurements. The data are characterized by synoptic-scale ˜100 pmol mol-1 variations in marine boundary layer air during transitions from subtropical to midlatitude source regions. The synoptic OCS variability is shown here to be a linear function of the radiation history along an air parcel's trajectory with no apparent sensitivity to the chlorophyll concentration of the surface waters that the air mass interacted with. This latter observation contradicts expectations and suggests a simple radiation limitation for the combined direct and indirect marine OCS emissions. Because the concentration of OCS in the marine boundary layer is so strongly influenced by an air parcel's history, marine and atmospheric concentrations would rarely be near equilibrium and thus even if marine production rates are held constant at a given location, the ocean-atmosphere flux would be sensitive to changes in atmospheric circulation alone. We hypothesize that changes in atmospheric circulation including latitudinal shifts in the storm tracks could affect the marine flux through this effect.

  3. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    SciTech Connect

    Lundquist, K A

    2010-05-12

    use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.

  4. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Astrophysics Data System (ADS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    A coupled model is used to study the equilibrium state of the ocean-atmosphere boundary layer in the tropics. The atmospheric model is a one-dimensional thermodynamic model for a partially mixed, partly cloudy convective boundary layer (CBL), including the effects of cloud-top subsidence, surface momentum and heat (latent and sensible) fluxes, and realistic radiative transfer for both shortwaves and longwaves (Betts and Ridgway, 1988; 1989). The oceanic model is a thermodynamic model for a well-mixed layer, with a closure constraint based on a one-dimensional turbulent kinetic energy (TKE) equation following Kraus and Turner (1967). Results of several sets of experiments are reported in this paper. In the first two sets of experiments, with sea surface temperature (SST) specified, we solve the equilibrium state of the coupled system as a function of SST for a given surface wind (case 1) and as a function of surface wind for a given SST (case 2). In both cases the depth of the CBL and the ocean mixed layer (OML) increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The deepening of the equilibrium CBL is primarily linked to the increase of CBL moisture with increasing SST and surface wind. The increase of OML depth and decrease of upwelling are due to a decrease of net downward heat flux with increasing SST and the generation of TKE by increasing wind. In another two sets of experiments, we solve for the coupled ocean-atmosphere model iteratively as a function of surface wind for a fixed upwelling (case 3) and a fixed OML depth (case 4). SST falls with increasing wind in both cases, but the fall is steeper in case 4, because the OML depth is fixed, whereas in case 3 the depth is allowed to deepen and the cooling is spread over a larger mass of water. The decrease of evaporation with increasing wind in case 4 leads to a very dry and shallow CBL. Results of further experiments with surface wind and SST

  5. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.

    1998-01-01

    Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.

  6. Scale effects in wind tunnel modeling of an urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kozmar, Hrvoje

    2010-03-01

    Precise urban atmospheric boundary layer (ABL) wind tunnel simulations are essential for a wide variety of atmospheric studies in built-up environments including wind loading of structures and air pollutant dispersion. One of key issues in addressing these problems is a proper choice of simulation length scale. In this study, an urban ABL was reproduced in a boundary layer wind tunnel at different scales to study possible scale effects. Two full-depth simulations and one part-depth simulation were carried out using castellated barrier wall, vortex generators, and a fetch of roughness elements. Redesigned “Counihan” vortex generators were employed in the part-depth ABL simulation. A hot-wire anemometry system was used to measure mean velocity and velocity fluctuations. Experimental results are presented as mean velocity, turbulence intensity, Reynolds stress, integral length scale of turbulence, and power spectral density of velocity fluctuations. Results suggest that variations in length-scale factor do not influence the generated ABL models when using similarity criteria applied in this study. Part-depth ABL simulation compares well with two full-depth ABL simulations indicating the truncated vortex generators developed for this study can be successfully employed in urban ABL part-depth simulations.

  7. Retrieving 4-dimensional atmospheric boundary layer structure from surface observations and profiles over a single station

    SciTech Connect

    Pu, Zhaoxia

    2015-10-06

    Most routine measurements from climate study facilities, such as the Department of Energy’s ARM SGP site, come from individual sites over a long period of time. While single-station data are very useful for many studies, it is challenging to obtain 3-dimensional spatial structures of atmospheric boundary layers that include prominent signatures of deep convection from these data. The principal objective of this project is to create realistic estimates of high-resolution (~ 1km × 1km horizontal grids) atmospheric boundary layer structure and the characteristics of precipitating convection. These characteristics include updraft and downdraft cumulus mass fluxes and cold pool properties over a region the size of a GCM grid column from analyses that assimilate surface mesonet observations of wind, temperature, and water vapor mixing ratio and available profiling data from single or multiple surface stations. The ultimate goal of the project is to enhance our understanding of the properties of mesoscale convective systems and also to improve their representation in analysis and numerical simulations. During the proposed period (09/15/2011–09/14/2014) and the no-cost extension period (09/15/2014–09/14/2015), significant accomplishments have been achieved relating to the stated goals. Efforts have been extended to various research and applications. Results have been published in professional journals and presented in related science team meetings and conferences. These are summarized in the report.

  8. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  9. Flow around new wind fence with multi-scale fractal structure in an atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    McClure, Sarah; Lee, Sang-Joon; Zhang, Wei

    2015-11-01

    Understanding and controlling atmospheric boundary-layer flows with engineered structures, such as porous wind fences or windbreaks, has been of great interest to the fluid mechanics and wind engineering community. Previous studies found that the regular mono-scale grid fence of 50% porosity and a bottom gap of 10% of the fence height are considered to be optimal over a flat surface. Significant differences in turbulent flow structure have recently been noted behind multi-scale fractal wind fences, even with the same porosity. In this study, wind-tunnel tests on the turbulent flow and the turbulence kinetic energy transport of 1D and 2D multi-scale fractal fences under atmospheric boundary-layer were conducted. Velocity fields around the fractal fences were systematically measured using Particle Image Velocimetry to uncover effects of key parameters on turbulent flows around the fences at a Reynolds number of approximately 3.6x104 based on the free-stream speed and fence height. The turbulent flow structures induced by specific 1D/2D multi-scale fractal wind fences were compared to those of a conventional grid fence. The present results would contribute to the design of new-generation wind fences to reduce snow/sand deposition on critical infrastructure such as roads and bridges.

  10. Numerical simulation of small-scale mixing processes in the upper ocean and atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2016-02-01

    The processes of turbulent mixing and momentum and heat exchange occur in the upper ocean at depths up to several dozens of meters and in the atmospheric boundary layer within interval of millimeters to dozens of meters and can not be resolved by known large- scale climate models. Thus small-scale processes need to be parameterized with respect to large scale fields. This parameterization involves the so-called bulk coefficients which relate turbulent fluxes with large-scale fields gradients. The bulk coefficients are dependent on the properties of the small-scale mixing processes which are affected by the upper-ocean stratification and characteristics of surface and internal waves. These dependencies are not well understood at present and need to be clarified. We employ Direct Numerical Simulation (DNS) as a research tool which resolves all relevant flow scales and does not require closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes simulations (LES and RANS). Thus DNS provides a solid ground for correct parameterization of small-scale mixing processes and also can be used for improving LES and RANS closure models. In particular, we discuss the problems of the interaction between small-scale turbulence and internal gravity waves propagating in the pycnocline in the upper ocean as well as the impact of surface waves on the properties of atmospheric boundary layer over wavy water surface.

  11. Numerical Modeling of the Propagation Environment in the Atmospheric Boundary Layer over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Atkinson, B. W.; Li, J.-G.; Plant, R. S.

    2001-03-01

    Strong vertical gradients at the top of the atmospheric boundary layer affect the propagation of electromagnetic waves and can produce radar ducts. A three-dimensional, time-dependent, nonhydrostatic numerical model was used to simulate the propagation environment in the atmosphere over the Persian Gulf when aircraft observations of ducting had been made. A division of the observations into high- and low-wind cases was used as a framework for the simulations. Three sets of simulations were conducted with initial conditions of varying degrees of idealization and were compared with the observations taken in the Ship Antisubmarine Warfare Readiness/Effectiveness Measuring (SHAREM-115) program. The best results occurred with the initialization based on a sounding taken over the coast modified by the inclusion of data on low-level atmospheric conditions over the Gulf waters. The development of moist, cool, stable marine internal boundary layers (MIBL) in air flowing from land over the waters of the Gulf was simulated. The MIBLs were capped by temperature inversions and associated lapses of humidity and refractivity. The low-wind MIBL was shallower and the gradients at its top were sharper than in the high-wind case, in agreement with the observations. Because it is also forced by land-sea contrasts, a sea-breeze circulation frequently occurs in association with the MIBL. The size, location, and internal structure of the sea-breeze circulation were realistically simulated. The gradients of temperature and humidity that bound the MIBL cause perturbations in the refractivity distribution that, in turn, lead to trapping layers and ducts. The existence, location, and surface character of the ducts were well captured. Horizontal variations in duct characteristics due to the sea-breeze circulation were also evident. The simulations successfully distinguished between high- and low-wind occasions, a notable feature of the SHAREM-115 observations. The modeled magnitudes of duct

  12. 3-D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar

    NASA Astrophysics Data System (ADS)

    Späth, Florian; Behrendt, Andreas; Muppa, Shravan Kumar; Metzendorf, Simon; Riede, Andrea; Wulfmeyer, Volker

    2016-04-01

    High-resolution three-dimensional (3-D) water vapor data of the atmospheric boundary layer (ABL) are required to improve our understanding of land-atmosphere exchange processes. For this purpose, the scanning differential absorption lidar (DIAL) of the University of Hohenheim (UHOH) was developed as well as new analysis tools and visualization methods. The instrument determines 3-D fields of the atmospheric water vapor number density with a temporal resolution of a few seconds and a spatial resolution of up to a few tens of meters. We present three case studies from two field campaigns. In spring 2013, the UHOH DIAL was operated within the scope of the HD(CP)2 Observational Prototype Experiment (HOPE) in western Germany. HD(CP)2 stands for High Definition of Clouds and Precipitation for advancing Climate Prediction and is a German research initiative. Range-height indicator (RHI) scans of the UHOH DIAL show the water vapor heterogeneity within a range of a few kilometers up to an altitude of 2 km and its impact on the formation of clouds at the top of the ABL. The uncertainty of the measured data was assessed for the first time by extending a technique to scanning data, which was formerly applied to vertical time series. Typically, the accuracy of the DIAL measurements is between 0.5 and 0.8 g m-3 (or < 6 %) within the ABL even during daytime. This allows for performing a RHI scan from the surface to an elevation angle of 90° within 10 min. In summer 2014, the UHOH DIAL participated in the Surface Atmosphere Boundary Layer Exchange (SABLE) campaign in southwestern Germany. Conical volume scans were made which reveal multiple water vapor layers in three dimensions. Differences in their heights in different directions can be attributed to different surface elevation. With low-elevation scans in the surface layer, the humidity profiles and gradients can be related to different land cover such as maize, grassland, and forest as well as different surface layer

  13. Deviations from Equilibrium in Daytime Atmospheric Boundary Layer Turbulence arising from Nonstationary Mesoscale Forcing

    NASA Astrophysics Data System (ADS)

    Jayaraman, Balaji; Brasseur, James; Haupt, Sue; Lee, Jared

    2016-11-01

    LES of the "canonical" daytime atmospheric boundary layer (ABL) over flat topography is developed as an equilibrium ABL with steady surface heat flux, Q0 and steady unidirectional "geostrophic" wind vector Vg above a capping inversion. A strong inversion layer in daytime ABL acts as a "lid" that sharply separates 3D "microscale" ABL turbulence at the O(10) m scale from the quasi-2D "mesoscale" turbulent weather eddies (O(100) km scale). While "canonical" ABL is equilibrium, quasi-stationary and characterized statistically by the ratio of boundary layer depth (zi) to Obukhov length scale (- L) , the real mesoscale influences (Ug and Q0) that force a true daytime ABL are nonstationary at both diurnal and sub-diurnal time scales. We study the consequences of this non-stationarity on ABL dynamics by forcing ABL LES with realistic WRF simulations over flat Kansas terrain. Considering horizontal homogeneity, we relate the mesoscale and geostrophic winds, Ug and Vg, and systematically study the ABL turbulence response to non-steady variations in Q0 and Ug. We observe significant deviations from equilibrium, that manifest in many ways, such as the formation of "roll" eddies purely from changes in mesoscale wind direction that are normally associated with increased surface heat flux. Support from DOE. Compute resources from Penn State ICS.

  14. The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Katul, Gabriel; Poggi, Davide; Cava, Daniela; Finnigan, John

    2006-09-01

    Using an incomplete third-order cumulant expansion method (ICEM) and standard second-order closure principles, we show that the imbalance in the stress contribution of sweeps and ejections to momentum transfer (Δ S o ) can be predicted from measured profiles of the Reynolds stress and the longitudinal velocity standard deviation for different boundary-layer regions. The ICEM approximation is independently verified using flume data, atmospheric surface layer measurements above grass and ice-sheet surfaces, and within the canopy sublayer of maturing Loblolly pine and alpine hardwood forests. The model skill for discriminating whether sweeps or ejections dominate momentum transfer (e.g. the sign of Δ S o ) agrees well with wind-tunnel measurements in the outer and surface layers, and flume measurements within the canopy sublayer for both sparse and dense vegetation. The broader impact of this work is that the “genesis” of the imbalance in Δ S o is primarily governed by how boundary conditions impact first and second moments.

  15. Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment

    NASA Astrophysics Data System (ADS)

    Giordani, Hervé; Planton, Serge; Benech, Bruno; Kwon, Byung-Hyuk

    1998-10-01

    The sensitivity of the marine atmospheric boundary layer (MABL) subjected to sea surface temperatures (SST) during the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in 1993 has been studied. Atmospheric analyses produced by the Action de Recherche, Petite Echelle, Grande Echelle (ARPEGE) operational model at the French meteorological weather service assimilated data sets collected between October 7 and November 17, 1993, merged with the Global Telecommunication System (GTS) data. Analyses were validated against independent data from aircraft instruments collected along a section crossing the Azores oceanic front, not assimilated into the model. The responses of the mean MABL in the aircraft cross section to changes in SST gradients of about 1°C/100 km were the presence of an atmospheric front with horizontal gradients of 1°C/100 km and an increase of the wind intensity from the cold to the warm side during an anticyclonic synoptic situation. The study of the spatiotemporal characteristics of the MABL shows that during 3 days of an anticyclonic synoptic situation the SST is remarkably stationary because it is principally controlled by the Azores ocean current, which has a timescale of about 10 days. However, the temperature and the wind in the MABL are influenced by the prevailing atmospheric conditions. The ocean does not appear to react to the surface atmospheric forcing on the timescale of 3 days, whereas the atmospheric structures are modified by local and synoptic-scale advection. The MABL response appears to be much quicker than that of the SSTs. The correlation between the wind and the thermal structure in the MABL is dominated by the ageostrophic and not by the geostrophic component. In particular, the enhancement of the wind on either side of the SST front is mainly due to the ageostrophic component. Although the surface heat fluxes are not the only cause of ageostrophy, the

  16. Sensitivity of Radar Wave Propagation Power to the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lentini, N.; Hackett, E. E.

    2014-12-01

    Radar is a remote sensor used for scientific, meteorological, and military applications. Radar waves are affected by the medium through which they propagate, impacting the accuracy of radar measurements. Thus, environmental effects should be understood and quantified. The marine atmospheric boundary layer (MABL) is highly dynamic and turbulent, and affects radar wave propagation. The ocean surface roughness impacts scattering behavior. These effects cause variability in constructive and destructive interference patterns due to reflection from the ocean surface, known as multipath. The atmospheric effects cause radar waves to attenuate and refract; this study focuses on the refractive effects. A high-fidelity, physics-based, parabolic wave equation simulation is used to model the radar propagation and accounts for effects of the rough ocean surface (wind seas and swell) as well as variable refractivity with height and range. We use a robust, variance based, sensitivity analysis method called the Extended Fourier Amplitude Sensitivity Test to quantify which environmental parameters have the most significant effect on the modeled radar wave propagation. In this sensitivity study, the environment is parameterized by 16 variables, 8 ocean surface and 8 atmospheric. Sensitivity analysis is performed for 3 radar frequencies (3, 9, and 15 GHz) and 2 polarizations (horizontal and vertical). Results indicate that radar wave propagation is more sensitive to atmospheric parameters than ocean surface parameters. The mixed layer has the most far-reaching effect over the entire model domain (a range of 60 km and altitudes up to 1 km), characterized by its height and refractivity gradient. The remaining important factors have a predominantly local effect in the region where they occur in the MABL atmospheric structure. At low altitudes, radar wave propagation power is most sensitive to the gradient and curvature of the vertical refractivity profile. This research provides insight

  17. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  18. Applications of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Platis, Andreas; Tupman, David-James; Bange, Jens

    2015-04-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40~m and a total weight of 5-8~kg, depending on the battery- and payload. The standard meteorological payload consists of two temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. The sensors were optimized for the resolution of small-scale turbulence down to length scales in the sub-meter range. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Only take-off and landing are carried out by a human RC pilot. Since 2012, the system is operational and has since then been deployed in more than ten measurement campaigns, with more than 100 measurement flights. The fields of research that were tackled in these campaigns include sensor validation, fundamental boundary-layer research and wind-energy research. In 2014, for the first time, two MASC have been operated at the same time within a distance of a few kilometres, in order to investigate the wind field over an escarpment in the Swabian Alb. Furthermore, MASC was first deployed off-shore in October 2014, starting from the German island Heligoland in the North Sea, for the purpose of characterization of the marine boundary layer for offshore wind parks. Detailed descriptions of the experimental setup and first preliminary results will be presented.

  19. Application of the Remotely Piloted Aircraft (RPA) 'MASC' in Atmospheric Boundary Layer Research

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Bange, Jens

    2014-05-01

    The remotely piloted aircraft (RPA) MASC (Multipurpose Airborne Sensor Carrier) was developed at the University of Tübingen in cooperation with the University of Stuttgart, University of Applied Sciences Ostwestfalen-Lippe and 'ROKE-Modelle'. Its purpose is the investigation of thermodynamic processes in the atmospheric boundary layer (ABL), including observations of temperature, humidity and wind profiles, as well as the measurement of turbulent heat, moisture and momentum fluxes. The aircraft is electrically powered, has a maximum wingspan of 3.40 m and a total weight of 5-8 kg, depending on battery- and payload. The standard meteorological payload consists of temperature sensors, a humidity sensor, a flow probe, an inertial measurement unit and a GNSS. In normal operation, the aircraft is automatically controlled by the ROCS (Research Onboard Computer System) autopilot to be able to fly predefined paths at constant altitude and airspeed. Since 2010 the system has been tested and improved intensively. In September 2012 first comparative tests could successfully be performed at the Lindenberg observatory of Germany's National Meteorological Service (DWD). In 2013, several campaigns were done with the system, including fundamental boundary layer research, wind energy meteorology and assistive measurements to aerosol investigations. The results of a series of morning transition experiments in summer 2013 will be presented to demonstrate the capabilities of the measurement system. On several convective days between May and September, vertical soundings were done to record the evolution of the ABL in the early morning, from about one hour after sunrise, until noon. In between the soundings, flight legs of up to 1 km length were performed to measure turbulent statistics and fluxes at a constant altitude. With the help of surface flux measurements of a sonic anemometer, methods of similarity theory could be applied to the RPA flux measurements to compare them to

  20. Dynamics above a dense equatorial rain forest from the surface boundary layer to the free atmosphere

    NASA Astrophysics Data System (ADS)

    Lyra, R.; Druilhet, A.; Benech, B.; Biona, C. Bouka

    1992-08-01

    During the Dynamique et Chimie de l'Atmosphère en Forêt Equatoriale (DECAFE) campaign, dynamical and thermodynamical measurements were made at Impfondo (1°37'N, 18°04'W), over the dense rain forest of northern Congo during the dry season (February 1988). During the measurement period the experimental site was located south of the intertropical convergence zone ground track which manages the dynamics of the large scale. Above the experimental site, the atmospheric low layers are supplied by monsoon air coming from the Guinean gulf; the upper layers (>1500 m) are supplied by warm and dry air (trade winds) coming from the northern desert region and the savanna. Our experimental approach consists of analyzing the heat and moisture content in the low troposphere from vertical soundings made by a tethered balloon (0-400 m) and an aircraft (0-4000 m). The analysis of the evolution of the observed planetary boundary layer (PBL) is made with a mixed layer one-dimensional model which is forced to represent correctly the observed PBL height growth. The simulated and observed budgets of the heat and moisture in the PBL are balanced by adding dry air to the simulated PBL in the afternoon. This drying out can be maintained only by high levels of entrainment flux at the PBL top. An entrainment velocity of 3 cm s-1 enables the balancing of the moisture budget. This entrainment velocity seems compatible with physicochemical transfers as those of methane and ozone.

  1. Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Martucci, G.; Querol, X.; Alastuey, A.; Wilsenack, F.; Frey, S.; O'Dowd, C. D.; Dall'Osto, M.

    2013-01-01

    Continuous measurements of Surface Mixed Layer (SML), Decoupled Residual/Convective Layer (DRCL) and aerosol backscatter coefficient were performed within the Barcelona (NE Spain) boundary layer from September to October 2010 (30 days) in the framework of the SAPUSS (Solving Aerosol Problems Using Synergistic Strategies) field campaign. Two near-infrared ceilometers (Jenoptik CHM15K) vertically and horizontally-probing (only vertical profiles are discussed) were deployed during SAPUSS and compared with potential temperature profiles measured by daily radiosounding (midnight and midday) to interpret the boundary layer structure in the urban area of Barcelona. Ceilometer-based DRCL (1761±363 m a.g.l.) averaged over the campaign duration were twice as high as the mean SML (904±273 m a.g.l.) with a marked SML diurnal cycle. The overall agreement between the ceilometer-retrieved and radiosounding-based SML heights (R2=0.8) revealed overestimation of the SML by the ceilometer (Δh=145±145 m). After separating the data in accordance with different atmospheric scenarios, the lowest SML (736±183 m) and DRCL (1573±428 m) were recorded during warm North African (NAF) advected air mass. By contrast, higher SML and DRCL were observed during stagnant regional (REG) (911±234 m and 1769±314 m, respectively) and cold Atlantic (ATL) (965±222 m and 1878±290 m, respectively) air masses. The SML during the NAF scenario frequently showed a flat upper boundary throughout the day because of strong winds from the Mediterranean Sea that limit the midday SML convective growth observed during ATL and REG scenarios. The mean backscatter coefficients were calculated at two selected heights as representative of middle and top SML portions, i.e. β500=0.59±0.45 M m-1 sr-1 and β800=0.87±0.68 M m-1 sr-1 at 500 m and 800 m a.g.l., respectively. The highest backscatter coefficients were observed during NAF (β500=0.77±0.57 M m-1 sr-1) when compared with ATL (β500= 0.51±0.44 M m-1 sr-1

  2. Improved Atmospheric Boundary Layer Observations of Tropical Cyclones with the Imaging Wind and Rain Airborne Profiler

    NASA Technical Reports Server (NTRS)

    Fernandez, D. Esteban; Chang, P.; Carswel, J.; Contreras, R.; Chu, T.; Asuzu, P.; Black, P.; Marks, F.

    2006-01-01

    The Imaging Wind and Rain Arborne Profilers (IWRAP) is a dual-frequency, conically-scanning Doppler radar that measures high-resolution, dual-polarized, multi-beam C- and Ku-band reflectivity and Doppler velocity profiles of the atmospheric boundary layer (ABL) within the inner core of hurricanes.From the datasets acquired during the 2002 through 20O5 hurricane seasons as part of the ONR Coupled Boundary Layer Air-Sea Transfer (CBLAST) program and the NOAA/NESDIS Ocean Winds and Rain experiments, very high resolution radar observations of hurricanes have been acquired and made available to the CBLAST community. Of particular interest am the ABL wind fields and 3-D structures found within the inner core of hurricanes. As a result of these analysis, a limitation in the ability to retrieve the ABL wind field at very low altitudes was identified. This paper shows how this limitation has been removed and presents initial results demonstrating its new capabilities to derive the ABL wind field within the inner are of hurricanes to much lower altitudes than the ones the original system was capable of.

  3. Unsteady Flow in Different Atmospheric Boundary Layer Regimes and Its Impact on Wind-Turbine Performance

    NASA Astrophysics Data System (ADS)

    Gohari, Iman; Korobenko, Artem; Yan, Jinhui; Bazilevs, Yuri; Sarkar, Sutanu

    2016-11-01

    Wind is a renewable energy resource that offers several advantages including low pollutant emission and inexpensive construction. Wind turbines operate in conditions dictated by the Atmospheric Boundary Layer (ABL) and that motivates the study of coupling ABL simulations with wind turbine dynamics. The ABL simulations can be used for realistic modeling of the environment which, with the use of fluid-structure interaction, can give realistic predictions of extracted power, rotor loading, and blade structural response. The ABL simulations provide inflow boundary conditions to the wind-turbine simulator which uses arbitrary Lagrangian-Eulerian variational multiscale formulation. In the present work, ABL simulations are performed to examine two different scenarios: (i) A neutral ABL with zero heat-flux and inversion layer at 350m, in which the wind turbine experiences maximum mean shear; (2) A shallow ABL with the surface cooling-rate of -1 K/hr, in which the wind turbine experiences maximum mean velocity at the low-level-jet nose height. We will discuss differences in the unsteady flow between the two different ABL conditions and their impact on the performance of the wind turbine cluster in the coupled ABL-wind turbine simulations.

  4. Atmospheric Boundary Layer Sensors for Application in a Wake Vortex Advisory System

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rutishauser, David (Technical Monitor)

    2003-01-01

    Remote sensing of the atmospheric boundary layer has advanced in recent years with the development of commercial off-the-shelf (COTS) radar, sodar, and lidar wind profiling technology. Radio acoustic sounding systems for vertical temperature profiles of high temporal scales (when compared to routine balloon soundings- (radiosondes) have also become increasingly available as COTS capabilities. Aircraft observations during landing and departures are another source of available boundary layer data. This report provides an updated assessment of available sensors, their performance specifications and rough order of magnitude costs for a potential future aircraft Wake Vortex Avoidance System (WakeVAS). Future capabilities are also discussed. Vertical profiles of wind, temperature, and turbulence are anticipated to be needed at airports in any dynamic wake avoidance system. Temporal and spatial resolution are dependent on the selection of approach and departure corridors to be protected. Recommendations are made for potential configurations of near-term sensor technologies and for testing some of the sensor systems in order to validate performance in field environments with adequate groundtruth.

  5. Observations and Modelling of the Atmospheric Boundary Layer Over Sea-Ice in a Svalbard Fjord

    NASA Astrophysics Data System (ADS)

    Mäkiranta, Eeva; Vihma, Timo; Sjöblom, Anna; Tastula, Esa-Matti

    2011-07-01

    Sonic anemometer and profile mast measurements made in Wahlenbergfjorden, Svalbard Arctic archipelago, in May 2006 and April 2007 were employed to study the atmospheric boundary layer over sea-ice. The turbulent surface fluxes of momentum and sensible heat were calculated using eddy correlation and gradient methods. The results showed that the literature-based universal functions underestimated turbulent mixing in strongly stable conditions. The validity of the Monin-Obukhov similarity theory was questionable for cross-fjord flow directions and in the presence of mesoscale variability or topographic effects. The aerodynamic roughness length showed a dependence on the wind direction. The mean roughness length for along-fjord wind directions was (2.4 ± 2.6) × 10-4 m, whereas that for cross-fjord directions was (5.4 ± 2.8) × 10-3 m. The thermal stratification and turbulent fluxes were affected by the synoptic situation with large differences between the 2 years. Channelling effects and drainage flows occurred especially during a weak large-scale flow. The study periods were simulated applying the Weather Research and Forecasting (WRF) model with 1-km horizontal resolution in the finest domain. The results for the 2-m air temperature and friction velocity were good, but the model failed to reproduce the spatial variability in wind direction between measurement sites 3 km apart. The model suggested that wind shear above the stable boundary layer provided a non-local source for the turbulence observed.

  6. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    NASA Astrophysics Data System (ADS)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  7. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.

    2013-12-01

    We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near

  8. The influence of Nunataks on atmospheric boundary layer convection during summer in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Stenmark, Aurora; Hole, Lars Robert; Voss, Paul; Reuder, Joachim; Jonassen, Marius O.

    2014-06-01

    The effects of nunataks on temperature profiles and wind patterns are studied using simulations from the Weather Research and Forecasting model. Simulations are compared to hourly observations from an automatic weather station located at the Troll Research Station in Dronning Maud Land. Areas of bare ground have been implemented in the model, and the simulations correspond well with meteorological measurements acquired during the 4 day simulation period. The nunataks are radiatively heated during daytime, and free convection occurs in the overlying atmospheric boundary layer. The inflow below the updraft forces strong horizontal convergence at the surface, whereas weaker divergence appears aloft. In a control run with a completely ice-covered surface, the convection is absent. In situ observations carried out by a remotely controlled balloon and a small model airplane compare well with model temperature profiles, but these are only available over the ice field upwind to the nunatak.

  9. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  10. Spectral link for the mean velocity profile in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Dongrong; Gioia, Gustavo; Chakraborty, Pinaki

    2016-11-01

    Turbulent flow in the atmospheric boundary layer is sheared and stratified. For this flow, we consider the mean velocity profile (MVP), the vertical profile of the time-averaged horizontal wind velocity. We employ the theoretical framework of the spectral link, originally proposed for MVP in sheared flows (Gioia et al., 2010) and later extended to stratified flows (Katul et al., 2011). Accounting for the whole structure of the turbulent energy spectrum-the energetic range, the inertial range, and the dissipative range-we examine the scaling of the MVP in the "wall coordinates" and in the Monin-Obukhov similarity coordinates, for both stable and unstable stratification. Our results are in excellent accord with field measurements and numerical simulations. Okinawa Institute of Science and Technology.

  11. Single-column Model Intercomparison for a Stably Stratified Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Cuxart, J.; Holtslag, A. A. M.; Steeneveld, G-J; Beare, R. J.; Bazile, E.; Beljaars, A.; Cheng, A.; Conangla, L.; Ek, M.; Freedman, F.; Hamdi, R.

    2004-01-01

    The parameterization of the stably stratified atmospheric boundary layer is a difficult issue, which has a large impact on the medium-range weather forecasts and on climate integrations. A non-strongly stratified arctic case is simulated by nineteen single-column turbulence schemes. The statistics from the Large-eddy simulation (LES) intercomparison made for the same case by eight different models are used as a guiding reference. The single-column parameterizations include research schemes and operational schemes from major forecast and climate research centres. First order schemes, a large number of turbulence kinetic energy closures, and other proposals have submitted results. There is a large spread in the results; in general, the operational schemes mix more efficiently than the research ones, and the TKE and other higher order closures give results closer to the LES statistics. The sensitivities of the schemes to the parameters of their turbulence closures are partially explored.

  12. On Lamb wave propagation from small surface explosions in the atmospheric boundary layer

    SciTech Connect

    ReVelle, D.O.; Kulichkov, S.N.

    1998-12-31

    The problem of Lamb waves propagation from small explosions in the atmospheric boundary layer are discussed. The results of lamb waves registrations from surface explosions with yields varied from 3 tons up to a few hundred tons (TNT equivalent) are presented. The source-receiver distances varied from 20 km up to 310 km. Most of the explosions were conducted during the evening and early morning hours when strong near-surface temperature and wind inversions existed. The corresponding profiles of effective sound velocity are presented. Some of the explosions had been realized with 15 minute intervals between them when morning inversion being destroyed. Corresponding transformation of Lamb waves was observed. The Korteveg-de Vrize equation to explain experimental data on Lamb waves propagation along earth surface is used.

  13. POD Analysis of a Wind Turbine Wake in a Turbulent Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bastine, D.; Witha, B.; Wächter, M.; Peinke, J.

    2014-06-01

    The wake of a single wind turbine is modeled using an actuator disk model and large eddy simulations. As inflow condition a numerically generated turbulent atmospheric boundary layer is used. The proper orthogonal decomposition (POD) is applied to a plane perpendicular to the main flow in the far wake of the turbine. Reconstructions of the field are investigated depending on the numbers of POD modes used. Even though a great number of modes is needed to recover a great part of the turbulent kinetic energy, our results indicate that relevant aspects of a wake flow can be recovered using only a few modes. Particularly, the dynamics of the average velocity over a potential disk in the wake can partially be captured using only three modes.

  14. Linking NO2 surface concentration and integrated content in the urban developed atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Dieudonné, E.; Ravetta, F.; Pelon, J.; Goutail, F.; Pommereau, J.-P.

    2013-03-01

    A statistical linear relationship between NO2 surface concentration and its integrated content in the atmospheric boundary layer (ABL) is established in urban conditions, using ABL depth as an ancillary parameter. This relationship relies on a unique data set including 20 months of observations from a ground-based UV-visible light spectrometer and from an aerosol lidar, both located in Paris inner city center. Measurements show that in all seasons, large vertical gradients of NO2 concentration exist in Paris developed ABL, explaining why the average concentration retrieved is only about 25% of NO2 surface concentration. This result shows that the commonly used hypothesis of constant mixing ratio in the ABL is not valid over urban areas, where large NOx emissions occur. Moreover, the relationship obtained is robust, and the studied area lacks of any particular orographic features, so that our results should be more widely applicable to pollution survey from space-borne observations.

  15. Large eddy simulations and reduced models of the Unsteady Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Momen, M.; Bou-Zeid, E.

    2013-12-01

    Most studies of the dynamics of Atmospheric Boundary Layers (ABLs) have focused on steady geostrophic conditions, such as the classic Ekman boundary layer problem. However, real-world ABLs are driven by a time-dependent geostrophic forcing that changes at sub-diurnal scales. Hence, to advance our understanding of the dynamics of atmospheric flows, and to improve their modeling, the unsteady cases have to be analyzed and understood. This is particularly relevant to new applications related to wind energy (e.g. short-term forecast of wind power changes) and pollutant dispersion (forecasting of rapid changes in wind velocity and direction after an accidental spill), as well as to classic weather prediction and hydrometeorological applications. The present study aims to investigate the ABL behavior under variable forcing and to derive a simple model to predict the ABL response under these forcing fluctuations. Simplifications of the governing Navier-Stokes equations, with the Coriolis force, are tested using LES and then applied to derive a physical model of the unsteady ABL. LES is then exploited again to validate the analogy and the output of the simpler model. Results from the analytical model, as well as LES outputs, open the way for inertial oscillations to play an important role in the dynamics. Several simulations with different variable forcing patterns are then conducted to investigate some of the characteristics of the unsteady ABL such as resonant frequency, ABL response time, equilibrium states, etc. The variability of wind velocity profiles and hodographs, turbulent kinetic energy, and vertical profiles of the total stress and potential temperature are also examined. Wind Hodograph of the Unsteady ABL at Different Heights - This figure shows fluctuations in the mean u and v components of the velocity as time passes due to variable geostrophic forcing

  16. Continuous atmospheric boundary layer observations in the coastal urban area of Barcelona during SAPUSS

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Martucci, G.; Querol, X.; Alastuey, A.; Wilsenack, F.; Frey, S.; O'Dowd, C. D.; Dall'Osto, M.

    2013-05-01

    Continuous measurements of surface mixed layer (SML), decoupled residual/convective layer (DRCL) and aerosol backscatter coefficient were performed within the Barcelona (Spain) boundary layer from September to October 2010 (30 days) in the framework of the SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies) field campaign. Two near-infrared ceilometers (Jenoptik CHM15K), vertically and horizontally probing (only vertical profiles are herein discussed), were deployed. Ceilometer-based DRCLs (1761 ± 363 m a.g.l.) averaged over the campaign duration were twice as high as the mean SML (904 ± 273 m a.g.l.). Both DRCL and SML showed a marked SML diurnal cycle. Ceilometer data were compared with potential temperature profiles measured by daily radiosounding (twice a day, midnight and midday) to interpret the boundary layer structure in the coastal urban area of Barcelona. The overall agreement (R2 = 0.80) between the ceilometer-retrieved and radiosounding-based SML heights (h) revealed overestimation of the SML by the ceilometer (Δh=145 ± 145 m). After separating the data in accordance with different atmospheric scenarios, the lowest SML (736 ± 183 m) and DRCL (1573 ± 428 m) were recorded during warm North African (NAF) advected air mass. By contrast, higher SML and DRCL were observed during stagnant Regional (REG) (911 ± 234 m and 1769 ± 314 m, respectively) and cold Atlantic (ATL) (965 ± 222 m and 1878 ± 290 m, respectively) air masses. In addition to being the lowest, the SML during the NAF scenario frequently showed a flat upper boundary throughout the day possibly because of the strong winds from the Mediterranean Sea limiting the midday SML convective growth. The mean backscatter coefficients were calculated at two selected heights representative of middle and top SML portions, i.e. β500 = 0.59 ± 0.45 Mm-1 sr-1 and β800 = 0.87 ± 0.68 Mm-1 sr-1 at 500 m and 800 m a.g.l., respectively. The highest backscatter coefficients were observed

  17. Large eddy simulation of a large wind-turbine array in a conventionally neutral atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-06-01

    Under conventionally neutral conditions, the boundary layer is frequently capped by an inversion layer, which counteracts vertical entrainment of kinetic energy. Very large wind farms are known to depend on vertical entrainment to transport energy from above the farm towards the turbines. In this study, large eddy simulations of an infinite wind-turbine array in a conventionally neutral atmospheric boundary layer are performed. By carefully selecting the initial potential-temperature profile, the influence of the height and the strength of a capping inversion on the power output of a wind farm is investigated. Results indicate that both the height and the strength have a significant effect on the boundary layer flow, and that the height of the neutral boundary layer is effectively controlled by the capping inversion. In addition, it is shown that the vertical entrainment rate decreases for increasing inversion strength or height. In our infinite wind-farm simulations, varying the inversion characteristics leads to differences in power extraction on the order of 13% ± 0.2% (for increasing the strength from 2.5 to 10 K), and 31% ± 0.4% (for increasing the height from 500 to 1500 m). A detailed analysis of the mean kinetic-energy equation is included, showing that the variation in power extraction originates from the work done by the driving pressure gradient related to the boundary layer height and the geostrophic angle, while entrainment of kinetic energy from the free atmosphere does not play a significant role. Also, the effect of inversion strength on power extraction is energetically not related to different amounts of energy entrained, but explained by a difference in boundary layer growth, leading to higher boundary layers for lower inversion strengths. We further present a simple analytical model that allows to obtain wind-farm power output and driving power for the fully developed regime as function of Rossby number and boundary layer height.

  18. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.

    PubMed

    Alam, Mohammed S; Rickard, Andrew R; Camredon, Marie; Wyche, Kevin P; Carr, Timo; Hornsby, Karen E; Monks, Paul S; Bloss, William J

    2013-11-27

    The gas-phase reaction of ozone with unsaturated volatile organic compounds (VOCs), alkenes, is an important source of the critical atmospheric oxidant OH, especially at night when other photolytic radical initiation routes cannot occur. Alkene ozonolysis is also known to directly form HO2 radicals, which may be readily converted to OH through reaction with NO, but whose formation is poorly understood. We report a study of the radical (OH, HO2, and RO2) production from a series of small alkenes (propene, 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene, 2,3-dimethyl-2-butene (tetramethyl ethene, TME), and isoprene). Experiments were performed in the European Photoreactor (EUPHORE) atmospheric simulation chamber, with OH and HO2 levels directly measured by laser-induced fluorescence (LIF) and HO2 + ΣRO2 levels measured by peroxy-radical chemical amplification (PERCA). OH yields were found to be in good agreement with the majority of previous studies performed under comparable conditions (atmospheric pressure, long time scales) using tracer and scavenger approaches. HO2 yields ranged from 4% (trans-2-butene) to 34% (2-methylpropene), lower than previous experimental determinations. Increasing humidity further reduced the HO2 yields obtained, by typically 50% for an RH increase from 0.5 to 30%, suggesting that HOx production from alkene ozonolysis may be lower than current models suggest under (humid) ambient atmospheric boundary layer conditions. The mechanistic origin of the OH and HO2 production observed is discussed in the context of previous experimental and theoretical studies.

  19. Multiyear measurements of the oceanic and atmospheric boundary layers at the Brazil-Malvinas confluence region

    NASA Astrophysics Data System (ADS)

    Pezzi, Luciano Ponzi; de Souza, Ronald Buss; Acevedo, OtáVio; Wainer, Ilana; Mata, Mauricio M.; Garcia, Carlos A. E.; de Camargo, Ricardo

    2009-10-01

    This study analyzes and discusses data taken from oceanic and atmospheric measurements performed simultaneously at the Brazil-Malvinas Confluence (BMC) region in the southwestern Atlantic Ocean. This area is one of the most dynamical frontal regions of the world ocean. Data were collected during four research cruises in the region once a year in consecutive years between 2004 and 2007. Very few studies have addressed the importance of studying the air-sea coupling at the BMC region. Lateral temperature gradients at the study region were as high as 0.3°C km-1 at the surface and subsurface. In the oceanic boundary layer, the vertical temperature gradient reached 0.08°C m-1 at 500 m depth. Our results show that the marine atmospheric boundary layer (MABL) at the BMC region is modulated by the strong sea surface temperature (SST) gradients present at the sea surface. The mean MABL structure is thicker over the warmside of the BMC where Brazil Current (BC) waters predominate. The opposite occurs over the coldside of the confluence where waters from the Malvinas (Falkland) Current (MC) are found. The warmside of the confluence presented systematically higher MABL top height compared to the coldside. This type of modulation at the synoptic scale is consistent to what happens in other frontal regions of the world ocean, where the MABL adjusts itself to modifications along the SST gradients. Over warm waters at the BMC region, the MABL static instability and turbulence were increased while winds at the lower portion of the MABL were strong. Over the coldside of the BC/MC front an opposite behavior is found: the MABL is thinner and more stable. Our results suggest that the sea-level pressure (SLP) was also modulated locally, together with static stability vertical mixing mechanism, by the surface condition during all cruises. SST gradients at the BMC region modulate the synoptic atmospheric pressure gradient. Postfrontal and prefrontal conditions produce opposite thermal

  20. Vertical distribution of CO2 in the atmospheric boundary layer: Characteristics and impact of meteorological variables

    NASA Astrophysics Data System (ADS)

    Li, Yanli; Deng, Junjun; Mu, Chao; Xing, Zhenyu; Du, Ke

    2014-07-01

    Knowledge of vertical CO2 distribution is important for development of CO2 transport models and calibration/validation of satellite-borne measurements. In this study, vertical profiles of CO2 concentration within 0-1000 m were measured using a tethered balloon at a suburban site in Xiamen, which is undergoing fast urbanization. The characteristics of CO2 vertical distribution were investigated under both stable and convective boundary-layer conditions. The correlation of ground level CO2 concentrations and those at high altitudes decreased with altitude and show significant correlation in the first 300 m with R = 0.78 at 100 m, R = 0.52 at 200 m, R = 0.40 at 300 m (P < 0.01). The correlation keeps almost constant for 300-800 m, and there is no obvious correlation at 800 m, indicating that the impact of ground level CO2 was restricted within the 300 m above the ground. When comparing the vertical profiles obtained at different times during a 24 h period, it was found that CO2 concentration exhibited more obvious diurnal pattern at surface level than at high altitude because of the variation of sources and sinks of CO2 at ground level. Most profiles demonstrated declining trends of CO2 concentration with increasing altitude. The vertical profiles of CO2 were fitted to obtain an empirical equation for estimating CO2 vertical concentration in the lower atmosphere (0-1000 m): y = -75.04 + 1.17 × 109e-x/28.01, R2 = 0.59 (P < 0.05). However, for some cases opposite patterns were observed that the CO2 concentration profiles showed a turning point at a certain altitude or little variation with altitude under certain meteorological conditions. The atmospheric boundary layer depth and atmospheric stability are two major factors controlling the vertical structure of CO2 profile. The results would improve our understanding of the spatial and temporal variation of CO2 in urban environment, which would facilitate using 3-D transport model to study the impacts of CO2 on urban

  1. Review of wave-turbulence interactions in the stable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Sun, Jielun; Nappo, Carmen J.; Mahrt, Larry; Belušić, Danijel; Grisogono, Branko; Stauffer, David R.; Pulido, Manuel; Staquet, Chantal; Jiang, Qingfang; Pouquet, Annick; Yagüe, Carlos; Galperin, Boris; Smith, Ronald B.; Finnigan, John J.; Mayor, Shane D.; Svensson, Gunilla; Grachev, Andrey A.; Neff, William D.

    2015-09-01

    Flow in a stably stratified environment is characterized by anisotropic and intermittent turbulence and wavelike motions of varying amplitudes and periods. Understanding turbulence intermittency and wave-turbulence interactions in a stably stratified flow remains a challenging issue in geosciences including planetary atmospheres and oceans. The stable atmospheric boundary layer (SABL) commonly occurs when the ground surface is cooled by longwave radiation emission such as at night over land surfaces, or even daytime over snow and ice surfaces, and when warm air is advected over cold surfaces. Intermittent turbulence intensification in the SABL impacts human activities and weather variability, yet it cannot be generated in state-of-the-art numerical forecast models. This failure is mainly due to a lack of understanding of the physical mechanisms for seemingly random turbulence generation in a stably stratified flow, in which wave-turbulence interaction is a potential mechanism for turbulence intermittency. A workshop on wave-turbulence interactions in the SABL addressed the current understanding and challenges of wave-turbulence interactions and the role of wavelike motions in contributing to anisotropic and intermittent turbulence from the perspectives of theory, observations, and numerical parameterization. There have been a number of reviews on waves, and a few on turbulence in stably stratified flows, but not much on wave-turbulence interactions. This review focuses on the nocturnal SABL; however, the discussions here on intermittent turbulence and wave-turbulence interactions in stably stratified flows underscore important issues in stably stratified geophysical dynamics in general.

  2. Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data

    NASA Astrophysics Data System (ADS)

    Lyulyukin, V. S.; Kallistratova, M. A.; Kouznetsov, R. D.; Kuznetsov, D. D.; Chunchuzov, I. P.; Chirokova, G. Yu.

    2015-03-01

    The year-round continuous remote sounding of the atmospheric boundary layer (ABL) by means of the Doppler acoustic radar (sodar) LATAN-3 has been performed at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, since 2008. A visual analysis of sodar echograms for four years revealed a large number of wavelike patterns in the intensity field of a scattered sound signal. Similar patterns were occasionally identified before in sodar, radar, and lidar sounding data. These patterns in the form of quasi-periodic inclined stripes, or cat's eyes, arise under stable stratification and significant vertical wind shears and result from the loss of the dynamic stability of the flow. In the foreign literature, these patterns, which we call internal gravity-shear waves, are often associated with Kelvin-Helmholtz waves. In the present paper, sodar echograms are classified according to the presence or absence of wavelike patterns, and a statistical analysis of the frequency of their occurrence by the year and season was performed. A relationship between the occurrence of the patterns and wind shear and between the wave length and amplitude was investigated. The criteria for the identification of gravity-shear waves, meteorological conditions of their excitation, and issues related to their observations were discussed.

  3. Stability and Turbulence in the Atmospheric Boundary Layer: A Comparison of Remote Sensing and Tower Observations

    SciTech Connect

    Friedrich, K.; Lundquist, J. K.; Aitken, M.; Kalina, E. A.; Marshall, R. F.

    2012-01-01

    When monitoring winds and atmospheric stability for wind energy applications, remote sensing instruments present some advantages to in-situ instrumentation such as larger vertical extent, in some cases easy installation and maintenance, measurements of vertical humidity profiles throughout the boundary layer, and no restrictions on prevailing wind directions. In this study, we compare remote sensing devices, Windcube lidar and microwave radiometer, to meteorological in-situ tower measurements to demonstrate the accuracy of these measurements and to assess the utility of the remote sensing instruments in overcoming tower limitations. We compare temperature and wind observations, as well as calculations of Brunt-Vaisala frequency and Richardson numbers for the instrument deployment period in May-June 2011 at the U.S. Department of Energy National Renewable Energy Laboratory's National Wind Technology Center near Boulder, Colorado. The study reveals that a lidar and radiometer measure wind and temperature with the same accuracy as tower instruments, while also providing advantages for monitoring stability and turbulence. We demonstrate that the atmospheric stability is determined more accurately when the liquid-water mixing ratio derived from the vertical humidity profile is considered under moist-adiabatic conditions.

  4. Modeling the Evolution of the Atmospheric Boundary Layer Coupled to the Land Surface for Three Contrasting Nights in CASES-99.

    NASA Astrophysics Data System (ADS)

    Steeneveld, G. J.; van de Wiel, B. J. H.; Holtslag, A. A. M.

    2006-03-01

    The modeling and prediction of the stable boundary layer over land is a persistent, problematic feature in weather, climate, and air quality topics. Here, the performance of a state-of-the-art single-column boundary layer model is evaluated with observations from the 1999 Cooperative Atmosphere Surface Exchange Study (CASES-99) field experiment. Very high model resolution in the atmosphere and the soil is utilized to represent three different stable boundary layer archetypes, namely, a fully turbulent night, an intermittently turbulent night, and a radiative night with hardly any turbulence (all at clear skies). Each archetype represents a different class of atmospheric stability. In the current model, the atmosphere is fully coupled to a vegetation layer and the underlying soil. In addition, stability functions (local scaling) are utilized based on in situ observations.Overall it is found that the vertical structure, the surface fluxes (apart from the intermittent character) and the surface temperature in the stable boundary layer can be satisfactorily modeled for a broad stability range (at a local scale) with the current understanding of the physics of the stable boundary layer. This can also be achieved by the use of a rather detailed coupling between the atmosphere and the underlying soil and vegetation, together with high resolution in both the atmosphere and the soil. This is especially true for the very stable nights, when longwave radiative cooling is dominant. Both model outcome and observations show that in the latter case the soil heat flux is a dominant term of the surface energy budget.


  5. Dust aerosol radiative effect and influence on urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, M.; Li, L.

    2007-11-01

    An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.

  6. STRUCTURE OF TURBULENCE IN THE URBAN ATMOSPHERIC BOUNDARY LAYER DETECTED IN THE DOPPLER LIDAR OBSERVATION

    NASA Astrophysics Data System (ADS)

    Oda, Ryoko; Iwai, Hironori; Ishii, Shoken; Sekizawa, Shinya; Mizutani, Kohei; Murayama, Yasuhiro

    Doppler lidar observation was conducted to investigate the statistical and structural characteristics of the atmospheric boundary layer (ABL) over urban area, Koganei, Tokyo, on 21 February 2010. Vertical distribution of the vertical velocity was measured at the height between 150 m to about 2,000 m from the ground with a constant interval of 76 m. The potential temperature (PT) profiles were also measured by radiosonde. Vertical velocity spectra in the ABL show two dominant time scales; one is about 15 minute, and the other is less than 5 minutes. The higher frequency motion extends up to the top of ABL determined by PT profiles, which would be attributed to the individual thermal plumes. The lower frequency motion penetrates into the capping inversion. This would be the contribution of the organized thermal cells which propagates into the capping inversion as gravity wave during daytime. Surface layer depth was estimated about 300 m. It is due to the enhanced mechanical production of turbulence in urban roughness.

  7. Atmospheric Feedback of Urban Boundary Layer with Implications for Climate Adaptation.

    PubMed

    Liang, Marissa S; Keener, Timothy C

    2015-09-01

    Atmospheric structure changes in response to the urban form, land use, and the type of land cover (LULC). This interaction controls thermal and air pollutant transport and distribution. The interrelationships among LULC, ambient temperature, and air quality were analyzed and found to be significant in a case study in Cincinnati, Ohio, U.S.A. Within the urban canopy layer (UCL), traffic-origin PM2.5 and black carbon followed Gaussian dispersion in the near road area in the daytime, while higher concentrations, over 1 order of magnitude, were correlated to the lapse rate under nocturnal inversions. In the overlying urban boundary layer (UBL), ambient temperature and PM2.5 variations were correlated among urban-wide locations indicating effective thermal and mass communications. Beyond the spatial correlation, LULC-related local urban heat island effects are noteworthy. The high-density urbanized zone along a narrow highway-following corridor is marked by higher nighttime temperature by ∼1.6 °C with a long-term increase by 2.0 °C/decade, and by a higher PM2.5 concentration, than in the low-density residential LULC. These results indicate that the urban LULC may have contributed to the nocturnal thermal inversion affecting urban air circulation and air quality in UCL and UBL. Such relationships point to the potentials of climate adaptation through urban planning.

  8. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; General, S.; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-03-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean-Atmosphere-Sea Ice-Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase radical chemistry, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr, with a concomitant, decreased net O3 loss rate. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  9. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; S., General; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-09-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean - Atmosphere - Sea Ice - Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase halogen radical-based depletion of ozone, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  10. Atmospheric boundary layer characteristics and land-atmosphere energy transfer in the Third Pole area

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhu, Z.; Amatya, P. M.; Chen, X.; Hu, Z.; Zhang, L.; Li, M.; Ma, W.

    2015-05-01

    The Tibetan Plateau and nearby surrounding area (the Third Pole area) dramatically impacts the world's environment and especially controls climatic and environmental changes in China, Asia and even in the Northern Hemisphere. Supported by the Chinese Academy of Sciences (CAS) and some international organizations, the Third Pole Environment (TPE) Programme is now under way. First, the background of the establishment of the TPE, the establishment and monitoring plans on long-term for the TPE and six comprehensive observation and study stations are introduced. Then the preliminary observational analysis results on atmosphere-land interaction are presented. The study on the regional distribution of land surface heat fluxes is of paramount importance over the heterogeneous landscape of the Third Pole area. A parameterization methodology based on satellite and in situ data is described and tested for deriving the regional surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) over the heterogeneous landscape. As a case study, the methodology was applied to the whole Tibetan Plateau area. Eight images of MODIS data and four images of AVHRR data were used for the comparison among winter, spring, summer and autumn, and the annual variation analyses. The derived results were also validated by using the ``ground truth'' measured in the stations of the TPE. The results show that the derived surface heat fluxes in the four different seasons over the Tibetan Plateau area are in good agreement with the ground measurements. The results from AVHRR were also in agreement with MODIS. It is therefore concluded that the proposed methodology is successful for the retrieval of surface heat fluxes using the MODIS data, AVHRR data and in situ data over the Tibetan Plateau area.

  11. The Influence of High Aerosol Concentration on Atmospheric Boundary Layer Temperature Stratification

    SciTech Connect

    Khaykin, M.N.; Kadygrove, E.N.; Golitsyn, G.S.

    2005-03-18

    Investigations of the changing in the atmospheric boundary layer (ABL) radiation balance as cased by natural and anthropogenic reasons is an important topic of the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program. The influence of aerosol on temperature stratification of ABL while its concentration was extremely high within a long period of time was studied experimentally. The case was observed in Moscow region (Russia) with the transport of combustion products from peat-bog and forest fires in July-September, 2002. At this time the visibility was some times at about 100-300 m. Aerosol concentration measured by Moscow University Observatory and A.M. Obukhov Institute of Atmospheric Physics field station in Zvenigorod (55.7 N; 36.6 E) for several days was in 50-100 times more than background one (Gorchakov at al 2003). The high aerosol concentration can change the radiation balance at ABL, and so to change thermal stratification in ABL above the mega lopolis. For the analysis the data were used of synchronous measurements by MTP-5 (Microwave Temperature Profiler operating at wavelength 5 mm) in two locations, namely: downtown Moscow and country-side which is 50 km apart to the West (Zvenigorod station). (Kadygrov and Pick 1998; Westwater at al 1999; Kadygrov at al 2002). Zvenigorod station is located in strongly continental climate zone which is in between of the climates of ARM sites (NSANorth Slope of Alaska and SGP-Southern Great Plains). The town of Zvenigorod has little industry, small traffic volume and topography conductive to a good air ventilation of the town. For these reasons Zvenigorod can be considered as an undisturbed rural site. For the analysis some days were chosen with close meteorological parameters (average temperature, humidity, wind, pressure and cloud form) but strongly differing in aerosol concentration level.

  12. Atmospheric boundary layer dynamics in the Grenoble valley during strongly stable episodes

    NASA Astrophysics Data System (ADS)

    Staquet, C.; Largeron, Y.; Chollet, J.

    2013-12-01

    This paper addresses the dynamics of the atmospheric boundary layer in the Grenoble valley under strongly stable and polluted conditions. Numerical modeling is used for this purpose, along with available ground temperature measurements. Though the Grenoble valley is the most populated area in the Alps and is subjected to serious pollution episodes in winter, no such study had been conducted previously. We first analyzed ground temperature data within the valley at altitudes ranging between 220 m (valley bottom) and 1730 m during 5 months of winter 2006-2007. These data were provided by Meteo-France et by Air Rhône-Alpes, the air quality agency of Région Rhône-Alpes. Our purpose was to detect strongly stable episodes, these being defined by the episode-averaged vertical gradient of the absolute temperature being larger than the winter average during at least three days. Five episodes were selected from this criterion. We also analyzed air quality data recorded by Air Rhône-Alpes during the same winter to detect strongly polluted events for PM10 and found that the five episodes were also strongly polluted ones. To perform a more detailed analysis of these five episodes, we used the numerical code Meso-NH developed by Météo-France and the Laboratory of Aérology in Toulouse and simulated the dynamics of the atmospheric boundary layer during each episode. Four nested domains were used, the horizontal resolution of the innermost (and smallest) domain, containing the Grenoble valley, being 333 m; from comparison with the ground temperature data, we found that the vertical resolution above ground level had to be as low as 4 meters. As expected, the boundary layer dynamics in the numerical simulation for each episode was found to be decoupled from the (anticyclonic, weak) synoptic flow, consistent with the value of the Froude number associated with the inversion layer. These dynamics are controlled by thermal (mostly katabatic) winds flowing from the higher altitude

  13. Lidar observations of atmospheric internal waves in the boundary layer of the atmosphere on the coast of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Banakh, Viktor A.; Smalikho, Igor N.

    2016-10-01

    Atmospheric internal waves (AIWs) in the boundary layer of atmosphere have been studied experimentally with the use of Halo Photonics pulsed coherent Doppler wind lidar Stream Line. The measurements were carried out over 14-28 August 2015 on the western coast of Lake Baikal (51°50'47.17'' N, 104°53'31.21'' E), Russia. The lidar was placed at a distance of 340 m from Lake Baikal at a height of 180 m above the lake level.

    A total of six AIW occurrences have been revealed. This always happened in the presence of one or two (in five out of six cases) narrow jet streams at heights of approximately 200 and 700 m above ground level at the lidar location. The period of oscillations of the wave addend of the wind velocity components in four AIW events was 9 min, and in the other two it was approximately 18 and 6.5 min. The amplitude of oscillations of the horizontal wind velocity component was about 1 m s-1, while the amplitude of oscillations of the vertical velocity was 3 times smaller. In most cases, internal waves were observed for 45 min (5 wave oscillations with a period of 9 min). Only once the AIW lifetime was about 4 h.

  14. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  15. A Climatology of Atmospheric Rivers Potentially Impacting the Boundary Layer over Greenland: 1871-2012

    NASA Astrophysics Data System (ADS)

    Neff, William; Compo, Gilbert P.

    2016-04-01

    Recently, (Neff et al. 2014) examined the 2012 Greenland melt episode and compared it to the last episode in 1889 using the Twentieth Century Reanalysis (Compo et al. 2011), finding similar factors at work. A key factor in 2012 was the presence of an Atmospheric River (AR) that transported warm air from a mid-continent heat wave over the Atlantic Ocean and thence to the west coast of Greenland and then over the Greenland ice sheet (GIS) with a confirming water vapor isotopic signature (Bonne et al. 2015). ARs are thin filaments of high-moisture air occurring at frontal boundaries and represent an efficient poleward transport mechanism for warm moist air (Newell et al. 1992) to the Arctic (Bonne et al. 2015; Neff et al. 2014) and the Antarctic (Gorodetskaya et al. 2014). Some common characteristics of the events in 1889 and 2012, in addition to the expression of poleward transport as an AR, included continental heat anomalies in the trajectory source regions as well as a trough-ridge pattern that focused transport along the west coast of Greenland. The latter consisted of a trough of low-pressure situated to the west, generally over Baffin Island, and a high-pressure ridge to the southeast of Greenland. This type trough-ridge pattern was also implicated in a major rain event in 2011 along the western margin of the Greenland ice sheet in late summer that accelerated the flow of ice into the ocean (Doyle et al. 2015). Although the events of 2012 and 1889 were extreme, the question remains of how frequent are the near-misses of ARs that are likely to have affected lower elevations and/or included increases in moisture over the GIS that would have modified the boundary layer over the high elevations of the GIS. In this presentation we will show an example of the boundary layer modification lifecycle during the 2012 event and then the climatology of events that reveal an increase in such AR events along the west coast of Greenland over the last three decades.

  16. Atmospheric boundary-layer structure from simultaneous SODAR, RASS, and ceilometer measurements

    NASA Astrophysics Data System (ADS)

    Emeis, Stefan; Münkel, Christoph; Vogt, Siegfried; Müller, Wolfgang J.; Schäfer, Klaus

    A comparison of the determination of boundary-layer structures by a SODAR, by a RASS, and by a ceilometer is presented. One important structure is the mixing-layer height (MLH). The comparison is focused on 3 days with an evolution of a convective boundary layer over a larger city in Germany. The three instruments give information that partly agree and partly complement each other. By this, a picture of the diurnal evolution of the vertical structure of this urban boundary layer is presented. The ceilometer gives information on the aerosol content of the air and the RASS provides a direct measurement of the vertical temperature distribution in the boundary layer. The RASS and the ceilometer add information on the moisture structure of the boundary layer that is not detected by the SODAR. On the other hand this comparison validates known techniques by which the MLH is derived from SODAR data. Especially the temperature information from the RASS agrees well with lifted inversions derived from the analysis of the SODAR data. The ceilometer, being the smallest instrument, has a potential to be used in future MLH studies.

  17. Three-Dimensional Mapping of Atmospheric Boundary Layer Structure and Winds with a High Performance Lidar

    DTIC Science & Technology

    1991-04-01

    layer (usually less than half the boundary layer height) for each of the shots in a PPI scan using 12 Si 12--F1 S ( 1 ) 2- 1 1 = 11 where Sil is the natural...between 1 and 1024), and ( 11 to 12) is the range segment located well within the boundary layer. Within this range interval, the aerosol contribution...the CBL, mean CBL wind, surface wind, and the wind at a height of 1 . 1 Zi. The orientation of the aerosol structures is also shown. Figure 11 . The

  18. Lidar Investigations of Atmospheric Boundary Layer Clouds over Coastal Environment and its Diurnal Evolution

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj; Rajeev, Kunjukrishnapillai; Nair, Anish Kumar M.

    Over the high pressure region, diurnal evolution of atmospheric boundary layer (ABL) leads to the development of fair weather clouds, which in turn play an important role in modulating the thermodynamic structure of ABL, radiation balance at surface, and further development of ABL. As they usually cap the ABL, aerosol-cloud interaction in these clouds are expected to be quite large. Notwithstanding their importance, characteristics of the ABL clouds, their diurnal evolution and the resulting feedback are least explored. Major objectives of this study are to: (i) quantify the diurnal evolution of fair-weather ABL clouds and their characteristics (in terms of their altitude of occurrence, physical thickness and optical depth) based on multi-year (2008-2011) Micropulse Lidar observations at the coastal station, Thumba (8.5(°) N, 77(°) E), and (ii) explore the potential impact of these clouds in modulating the downwelling shortwave radiative flux at surface and further development of ABL. Altitude of occurrence of ABL clouds is found to undergo significant diurnal variation during the development of convective ABL (CABL). Typically, the ABL cloud base increases from <500 m at ˜09 LT to >1500 m at ˜12 LT. Base altitude of the ABL clouds is rather steady during the afternoon, associated with the stabilization of CABL development. Clouds in the nocturnal ABL (NABL) generally occur at the altitude of the preceding afternoon CABL height. Simultaneous occurrence of clouds in the thermal internal boundary layer (TIBL) and developed CABL/residual layer (RL) are also observed, through they are less frequent. The TIBL clouds are distinctly separated from those formed at the top of CABL/RL. Base heights of clouds are distinctly lower in TIBL and evolving CABL compared to those in developed CABL and RL, though their mean physical thickness are comparable (typically ˜250m). Optically thin clouds dominate the TIBL, compared to the other three regimes. Reduction in the

  19. Adjustment of the summertime marine atmospheric boundary layer to the western Iberia coastal morphology

    NASA Astrophysics Data System (ADS)

    Monteiro, Isabel T.; Santos, Aires J.; Belo-Pereira, Margarida; Oliveira, Paulo B.

    2016-04-01

    During summer (June, July, and August), northerly winds driven by the Azores anticyclone are prevalent over western Iberia. The Quick Scatterometer Satellite 2000 to 2009 summertime estimates reveal a broad high wind speed (≥7 ms-1) area extending about 300 km from shore and along the entire Iberian west coast. Nested in this large high-speed region, preferred maximum regions anchored in the Iberian major capes, Finisterre, Roca, and S. Vicente, are found. Composite analyses of wind maxima were performed to diagnose the typical summertime synoptic-scale pressure distribution associated with these smaller size high-speed regions. The flow low-level structure was further studied with a mesoscale numerical prediction model for three northerly events characterized by typical summertime synoptic conditions. A low-level coastal jet, setting the background conditions to the marine atmospheric boundary layer (MABL) response to topography, was found in the three cases. The causes for wind maximum downwind capes were investigated, focusing on the hypothesis that western Iberia MABL responds to hydraulic forcing. For the three events supercritical and transcritical flow conditions were identified and expansion fan signatures were found downwind each cape. Aircraft measurements, performed during one of the events, gave additional evidence of the expansion fan leeward Cape Roca. The importance of other forcing mechanisms was also assessed by considering the hypothesis of downslope wind acceleration and found to be in direct conflict with soundings and surface observations.

  20. Atmospheric mercury over the marine boundary layer observed during the third China Arctic Research Expedition.

    PubMed

    Kang, Hui; Xie, Zhouqing

    2011-01-01

    TGM measurements on board ships have proved to provide valuable complementary information to measurements by a ground based monitoring network. During the third China Arctic Research Expedition (from July 11 to September 24, 2008), TGM concentrations over the marine boundary layer along the cruise path were in-situ measured using an automatic mercury vapor analyzer. Here we firstly reported the results in Japan Sea, North Western Pacific Ocean and Bering Sea, where there are rare reports. The value ranged between 0.30 and 6.02 ng/m3 with an average of (1.52 +/- 0.68) ng/m3, being slightly lower than the background value of Northern Hemisphere (1.7 ng/m3). Notably TGM showed considerably spatial and temporal variation. Geographically, the average value of TGM in Bering Sea was higher than those observed in Japan Sea and North Western Pacific Ocean. In the north of Japan Sea TGM levels were found to be lower than 0.5 ng/m3 during forward cruise and displayed obviously diurnal cycle, indicating potential oxidation of gaseous mercury in the atmosphere. The pronounced episode was recorded as well. Enhanced levels of TGM were observed in the coastal regions of southern Japan Sea during backward cruise due primarily to air masses transported from the adjacent mainland reflecting the contribution from anthropogenic sources. When ship returned back and passed through Kamchatka Peninsula TGM increased by the potential contamination from volcano emissions.

  1. Simulations of Vertical Axis Wind Turbine Farms in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein; Bou-Zeid, Elie; Lohry, Mark; Martinelli, Luigi

    2014-11-01

    Wind power is an abundant and clean source of energy that is increasingly being tapped to reduce the environmental footprint of anthropogenic activities. The vertical axis wind turbine (VAWT) technology is now being revisited due to some important advantages over horizontal axis wind turbines (HAWTS) that are particularly important for farms deployed offshore or in complex terrain. In this talk, we will present the implementation and testing of an actuator line model (ALM) for VAWTs in a large eddy simulation (LES) code for the atmospheric boundary layer, with the aim of optimizing large VAWT wind farm configurations. The force coefficients needed for the ALM are here obtained from blade resolving RANS simulations of individual turbines for each configuration. Comparison to various experimental results show that the model can very successfully reproduce observed wake characteristic. The influence of VAWT design parameters such as solidity, height to radius ratio, and tip speed ratio (TSR) on these wake characteristics, particularly the velocity deficit profile, is then investigated.

  2. The formation of snow streamers in the turbulent atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Huang, Ning; Wang, Zheng-Shi

    2016-12-01

    The drifting snow in the turbulent atmosphere boundary layer is an important type of aeolian multi-phase flow. Current theoretical and numerical studies of drifting snow mostly consider the flow field as steady wind velocity. Whereas, little is known about the effects of turbulent wind structures on saltating snow particles. In this paper, a 3-D drifting snow model based on Large Eddy Simulation is established, in which the trajectory of every snow grain is calculated and the coupling effect between wind field and snow particles is considered. The results indicate that the saltating snow particles are re-organized by the suction effect of high-speed rotating vortexes, which results in the local convergence of particle concentration, known as snow streamers. The turbulent wind leads to the spatial non-uniform of snow particles lifted by aerodynamic entrainment, but this does not affect the formation of snow streamers. Whereas the stochastic grain-bed interactions make a great contribution to the final shapes of snow streamers. Generally, snow streamers display a characteristic length about 0.5 m and a characteristic width of approximately 0.16 m, and their characteristic sizes are not sensitive to the wind speed. Compared to the typical sand streamer, snow streamer is slightly narrower and the occurrence of other complex streamer patterns is later than that of sand streamers due to the better follow performance of snow grains with air flow.

  3. Description of coherent structures in the atmospheric boundary layer by model reduction of the surface pressure

    NASA Astrophysics Data System (ADS)

    Lyons, Gregory William

    The flow of coherent turbulent structures into a wind turbine is associated with vibrational blade excitation. Successful forecasting of such turbulent events for control system input would increase the lifetime of turbine components. The coherence of these features suggests description by model reduction. To this end, an array of pressure transducers was deployed on the ground at Reese Technology Center in Lubbock, Texas, and the pressure fluctuations were recorded over nearly two diurnal cycles. A program for computation of the dynamic mode decomposition was developed with special consideration for the case of a non-stationary, nonlinear system. A simulated surface-pressure perturbation was first decomposed, to inform the interpretation of experimental data. Several sets of surface-pressure data were decomposed for various meteorological conditions. The resulting dynamic modes and eigenvalues describe the spatial and temporal coherence of local features in the atmospheric boundary layer. In each case, modes were identified that can be associated with wave-like pressure fluctuations that propagate either at convective or acoustic speeds.

  4. Micro-pulse upconversion Doppler lidar for wind and visibility detection in the atmospheric boundary layer.

    PubMed

    Xia, Haiyun; Shangguan, Mingjia; Wang, Chong; Shentu, Guoliang; Qiu, Jiawei; Zhang, Qiang; Dou, Xiankang; Pan, Jianwei

    2016-11-15

    For the first time, to the best of our knowledge, a compact, eye-safe, and versatile direct detection Doppler lidar is developed using an upconversion single-photon detection method at 1.5 μm. An all-fiber and polarization maintaining architecture is realized to guarantee the high optical coupling efficiency and the robust stability. Using integrated-optic components, the conservation of etendue of the optical receiver is achieved by manufacturing a fiber-coupled periodically poled lithium niobate waveguide and an all-fiber Fabry-Perot interferometer (FPI). The double-edge technique is implemented by using a convert single-channel FPI and a single upconversion detector, incorporating a time-division multiplexing method. The backscatter photons at 1548.1 nm are converted into 863 nm via mixing with a pump laser at 1950 nm. The relative error of the system is less than 0.1% over nine weeks. In experiments, atmospheric wind and visibility over 48 h are detected in the boundary layer. The lidar shows good agreement with the ultrasonic wind sensor, with a standard deviation of 1.04 m/s in speed and 12.3° in direction.

  5. The atmospheric boundary layer at Dome C on the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Barral, H.; Genthon, C.; Six, D.; Gallée, H.; Brun, C.

    2012-04-01

    Dome C on the Antarctic plateau (75°06' S, 123°20' E, 3233 m a.s.l.) was selected as one of the 119 CF-sites for the CMIP5/IPCC intercomparison project. For these sites, the participating climate modeling groups have been asked to produce a special set of high frequency diagnostics. Dome C has been selected because of the extreme weather and climate of the Antarctic plateau, but also because of the year-long continuous observations, performed with support from the permanent French-Italian Concordia station. The lower atmospheric boundary layer at Dome C is monitored since January 2008 (Genthon et al., J. Geophys. Res., 2010). Anemometers, thermometers and hygrometers were deployed at 6 levels above the surface up to ~42 m. Harsh local conditions (extreme cold temperatures, frost deposition) have affected the operation of the instruments. Several failed during winter 2008 but improvements have allowed almost continuous records with only limited interruptions since 2009. Cases of thermal convective mixing (adiabatic temperature profile, in summer) as well as cases of very strong inversions (more than 2°C per meter locally, in winter) were recorded. In 2010, the temperature at the lowest level dropped below -80°C, whereas in 2009 the minimal temperature is 10 degrees higher. Winter 2009, milder but twice as much windswept than the next winter, is remarkable for the occurrences of extreme "warm events" : for two days, the temperature approached the -30°C in the depths of winter. Independently, the Antarctic Meteorological Research Center automatic weather station at Dome C indicates that these two winters are the warmest and coldest on record over the past decade. Therefore, it may be supposed that the 2009-2010 time series together contain enough variability to be used for the evaluation of climate models. The data have been compared with the ECMWF meteorological analyzes, and with AMIP simulations of CMIP5 models. The coarse vertical resolution of general

  6. Interactions between soil moisture and Atmospheric Boundary Layer at the Brazilian savana-type vegetation Cerrado

    NASA Astrophysics Data System (ADS)

    Pinheiro, L. R.; Siqueira, M. B.

    2013-05-01

    Before the large people influx and development of the central part of Brazil in the sixties, due to new capital Brasília, Cerrado, a typical Brazilian savanna-type vegetation, used to occupy about 2 million km2, going all the way from the Amazon tropical forest, in the north of the country, to the edges of what used to be of the Atlantic forest in the southeast. Today, somewhat 50% of this area has given place to agriculture, pasture and managed forests. It is forecasted that, at the current rate of this vegetation displacement, Cerrado will be gone by 2030. Understanding how Cerrado interacts with the atmosphere and how this interaction will be modified with this land-use change is a crucial step towards improving predictions of future climate-change scenarios. Cerrado is a vegetation adapted to a climate characterized by two very distinct seasons, a wet season (Nov-Mar) and dry season (May-Ago), with April and October being transitions between seasons. Typically, based on measurements in a weather station located in Brasilia, 75% of precipitation happens in the wet-season months and only 5% during dry-season. Under these circumstances, it is clear that the vegetation will have to cope with long periods of water stress. In this work we studied using numerical simulations, the interactions between soil-moisture, responsible for the water stress, with the Atmospheric Boundary Layer (ABL). The numerical model comprises of a Soil-Vegetation-Atmosphere model where the biophysical processes are represented with a big-leaf approach. Soil water is estimated with a simple logistic model and with water-stress effects on stomatal conductance are parameterized from local measurements of simultaneous latent-heat fluxes and soil moisture. ABL evolution is calculate with a slab model that considers independently surface and entrainment fluxes of sensible- and latent- heat. Temperature tropospheric lapse-rate is taken from soundings at local airport. Simulations of 30-day dry

  7. Radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer and its feedback on the haze formation

    NASA Astrophysics Data System (ADS)

    Wei, Chao; Su, Hang; Cheng, Yafang

    2016-04-01

    Planetary boundary layer (PBL) plays a key role in air pollution dispersion and influences day-to-day air quality. Some studies suggest that high aerosol loadings during severe haze events may modify PBL dynamics by radiative effects and hence enhance the development of haze. This study mainly investigates the radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer by conducting simulations with Weather Research and Forecasting single-column model (WRF-SCM). We find that high aerosol loading in PBL depressed boundary layer height (PBLH). But the magnitude of the changes of PBLH after adding aerosol loadings in our simulations are small and can't explain extreme high aerosol concentrations observed. We also investigate the impacts of the initial temperature and moisture profiles on the evolution of PBL. Our studies show that the impact of the vertical profile of moisture is comparable with aerosol effects.

  8. Large-eddy Simulation of the Nighttime Stable Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Zhou, Bowen

    A stable atmospheric boundary layer (ABL) develops over land at night due to radiative surface cooling. The state of turbulence in the stable boundary layer (SBL) is determined by the competing forcings of shear production and buoyancy destruction. When both forcings are comparable in strength, the SBL falls into an intermittently turbulent state, where intense turbulent bursts emerge sporadically from an overall quiescent background. This usually occurs on clear nights with weak winds when the SBL is strongly stable. Although turbulent bursts are generally short-lived (half an hour or less), their impact on the SBL is significant since they are responsible for most of the turbulent mixing. The nighttime SBL can be modeled with large-eddy simulation (LES). LES is a turbulence-resolving numerical approach which separates the large-scale energy-containing eddies from the smaller ones based on application of a spatial filter. While the large eddies are explicitly resolved, the small ones are represented by a subfilter-scale (SFS) stress model. Simulation of the SBL is more challenging than the daytime convective boundary layer (CBL) because nighttime turbulent motions are limited by buoyancy stratification, thus requiring fine grid resolution at the cost of immense computational resources. The intermittently turbulent SBL adds additional levels of complexity, requiring the model to not only sustain resolved turbulence during quiescent periods, but also to transition into a turbulent state under appropriate conditions. As a result, LES of the strongly stable SBL potentially requires even finer grid resolution, and has seldom been attempted. This dissertation takes a different approach. By improving the SFS representation of turbulence with a more sophisticated model, intermittently turbulent SBL is simulated, to our knowledge, for the first time in the LES literature. The turbulence closure is the dynamic reconstruction model (DRM), applied under an explicit filtering

  9. SAR-Related Stress Variability in the Marine Atmospheric Boundary Layer (MABL)

    DTIC Science & Technology

    1992-01-01

    boundary-layer-spanning eddies. Dave Ledvina is testing an alternative approach using principal component analysis to distinguish the modes of surface stress...research associate (Dave Ledvina ) has developed software that uses principal component analysis to relate surface stress variability to variability in other

  10. Upper limit of applicability of the local similarity theory in the stable atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Grachev, A. A.; Andreas, E. L.; Fairall, C. W.; Guest, P. S.; Persson, P. O. G.

    2012-04-01

    The applicability of the classical Monin-Obukhov similarity theory (1954) has been limited by constant flux assumption, which is valid in a narrow range z/L < 0.1 in the stable boundary layer (SBL). Nieuwstadt (1984) extended the range of applicability of the original theory using the local scaling (height-dependent) in place of the surface scaling, but the limits of applicability of the local similarity theory in the SBL have been blurred. Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to clarify this issue. Based on spectral analysis of wind velocity and temperature fluctuations, it is shown that when both gradient Richardson number, Ri, and flux Richardson number, Rf, exceed a "critical value" about 0.2-0.25, inertial subrange associated with a Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in the supercritical regime but this is non-Kolmogorov turbulence and it decays rapidly with further increasing stability. The similarity theory is based on the turbulent fluxes in the high frequency part of the spectra associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band collapse along with the Kolmogorov energy cascade. Therefore, applicability of the local Monin-Obukhov similarity theory in the SBL is limited by inequalities Ri < Ri_cr and Rf < Rf_cr (however, Rf_cr = 0.2-0.25 is a primary threshold). Application of this prerequisite shows that both the flux-profile and flux-variances relationships follow to the classical Monin-Obukhov local z-less predictions after the irrelevant cases have been filtered out.

  11. Urban Heat Island and Its Influence on Atmospheric Boundary Layer Temperature Field

    NASA Astrophysics Data System (ADS)

    Kadygrov, N.; Kruchenitsky, G.; Lykov, A.

    2006-12-01

    The effect of megacity on atmospheric boundary layer (ABL) temperature is a well known phenomenon called "Urban Heat Island" revealed in increasing temperature over megacity relative to its suburb. Until recently the only way to investigate and gather the data about its vertical distribution was to observe temperature on the meteorological, TV towers and by radiosonde. The available information appears to be irregular in time and space. The situation has changed in recent years since the advent of temperature profiler based on microwave radiometer, which can produce the vertical distribution of ABL temperature up to 600 meters ASL with 5 minute sampling period. The station in the center of Moscow megacity and 2 observation sites near Moscow (20 km and 50 km away from city center) were equipped by MTP-5 radiometer in order to get quantitative estimations of the Heat Island Effect on ABL temperature field. Three sites were selected in order to look at transition from megacity to suburb. The main aim was not to get the climatological averages but to get the differences between Heat Island and its background (suburb). The period of observation was from beginning of 2000 till the middle of 2004. The ABL temperature model was developed separately for each station in the multiplicative manner as the product of seasonal and diurnal variations of ABL temperature in order to obtain the differences between Urban Heat Island and suburb ABL temperatures. As the result of data analysis, the amplitudes and phases of seasonal and diurnal harmonics, average annual noon temperature value, average temperature gradients and daily altitude-time crossection of ABL temperature were obtained. The analysis performed in this work has given us a better insight into the mechanism of Urban Heat Island influence on ABL temperature field with quantitative estimations of such influence.

  12. Atmospheric planetary boundary layer feedback in climate system and triggering of climate change at high latitudes

    NASA Astrophysics Data System (ADS)

    Esau, I.; Zilitinkevich, S.

    2009-04-01

    Recent publications have revealed that modern, state-of-the-art climate-change models (CCMs) are not sensitive enough to reproduce some fine features of the observed changes in the surface air temperature (SAT) especially at high latitudes. We propose that this problem results from inaccurate representation of the very shallow long-lived stable (LS) and conventionally neutral (CN) atmospheric planetary boundary layers (PBLs) typical of high latitudes, especially of Polar regions. LS and CN PBLs, not yet included in the context of climate modelling, are almost an order of magnitude shallower than mid-latitudinal nocturnal stable (NS) and truly neutral (TN) PBLs, which are the only concern of the traditional theory of stable PBLs. In is only natural that factually observed shallow PBLs respond to thermal impacts (e.g. to the changes in the surface heat balance) much stronger than much deeper PBLs reproduced by the current PBL schemes. In this paper we investigate analytically the PBL feedback in climate system for all known kinds of PBL: stable (distinguishing between NS and LS), neutral (distinguishing between TN and CN) and also convective). Besides very high sensitivity of LS PBLs, quite consistent with the observed variability in SAT, our analyses reveal that in some specific conditions global warming could cause "strange cases" of local cooling. We also obtained analytically that the daily minimum temperatures are more sensitive to the global warming than the daily maximum temperatures, which, at least partially, explains such observed phenomena as asymmetry in the diurnal temperature trends and almost global reduction of the diurnal temperature range.

  13. Evolution of the cross-equatorial atmospheric boundary layer in the east Pacific: Observations and models

    NASA Astrophysics Data System (ADS)

    de Szoeke, Simon P.

    The NCAR C-130 research aircraft flew eight missions observing the atmospheric boundary layer (ABL) along 95°W, 1°S--12°N. The positive air-sea temperature difference over the equatorial cold tongue results in a shallow stable layer with reduced surface winds. Stratocumulus clouds at the ABL top tend to clear over the cold water, especially at times of enhanced humidity above the ABL. In the 0°--4°N ABL heat budget, cold advection and radiative cooling were balanced by surface and entrainment heating, where each of the four terms was about 30 W m-2. The humidity budget was a near balance between dry advection and surface evaporation (each about 150 W m-2). The entrainment rate estimated from the downstream-deepening of the inversion was 12 +/- 3 mm s -1. Principal component analysis of the sea-level pressure along 95°W, 1°S--12°N from daily TAO buoy observations and the eight flights shows that the principal mode of variability in the perturbation pressure explains 77% of the pressure variability. The pressure anomalies are the same at 1.6 km as at the surface. The timeseries of the first mode of the TAO observations shows that most of the variance is in the 2--7 day window. Low pressure at 12°N is associated with southerly and westerly surface wind anomalies, and enhanced convection in the ITCZ. A "quasi-Lagrangian" large-eddy simulation (LES) is used to model the ABL along 95°W from 8°S to 4°N. Large-scale tendencies are prescribed as a function of latitude. Surface stability accounts for the minimum in surface wind over the equatorial cold tongue and the maximum over the warm water to the north, in accordance with Wallace, Mitchell, and Deser (1989). Additional simulations show the robustness of the model ABL to changes in pressure gradients, zonal advection, free-tropospheric humidity, and initial conditions. Once formed at the southern edge of the cold tongue, modeled stratus clouds demonstrate a remarkable ability to maintain themselves over the

  14. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a micro-UAS for atmospheric boundary layer research

    NASA Astrophysics Data System (ADS)

    Reuder, Joachim; Jonassen, Marius; Ólafsson, Haraldur

    2012-10-01

    During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a flexible tool for atmospheric boundary layer (ABL) research to be operated as sounding system for the lowest 4 km of the atmosphere. Recently two main technical improvements have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation. The implementation of a 5-hole probe for determining the 3D flow vector with 100 Hz resolution and a faster temperature sensor has enhanced the measurement capabilities. Results from two recent field campaigns are presented. During the first one, in Denmark, the potential of the system to study the effects of wind turbines on ABL turbulence was shown. During the second one, the BLLAST field campaign at the foothills of the Pyrenees, SUMO data proved to be highly valuable for studying the processes of the afternoon transition of the convective boundary layer.

  15. Differences in the concentrations of atmospheric trace gases in and above the tropical boundary layer

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.

    1981-01-01

    Weekly air samples were collected at Cape Kumakahi (0 km) and at nearby Mauna Loa Observatory (3.4 km) which is above the boundary layer. EC/GC and GC/FID techniques were used to measure CH3I, CHCl3, CO and CH4 which are largely natural in origin, and C2Cl4, CCl4, CH3CCl3, (F-11), CCl2F2, (F-12), CHClF, (F-22) and C2F3Cl3 (F-113), which are due to anthropogenic (CCl3F) etc. activities. It was found that all these gases are significantly (alpha is equal to or less than 0.05) more abundant in the boundary layer than above it.

  16. The effect of thermal stratification and evaporation on geostrophic drag coefficient in the atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Yeh, G.-T.

    1973-01-01

    It is shown that the fields of velocity, eddy viscosity, potential temperature, and specific humidity in a planetary boundary layer are decoupled by the introduction of a free parameter, Q, which combines the effects of thermal and humidity stratification. Solutions of the whole system are shown to be obtainable by the method of trial and error on Q. Results show good agreement when both the thermal and humidity stratification are accounted for.

  17. Western Pacific Warm Pool Region Sensitivity to Convective Triggering byBoundary Layer Thermals in the NOGAPS Atmospheric GCM.

    NASA Astrophysics Data System (ADS)

    Ridout, James A.; Reynolds, Carolyn A.

    1998-07-01

    The sensitivity of the atmospheric general circulation model of the Navy Operational Global Atmospheric Prediction System to a parameterization of convective triggering by atmospheric boundary layer thermals is investigated. The study focuses on the western Pacific warm pool region and examines the results of seasonal integrations of the model for the winter of 1987/88. A parameterization for thermal triggering of deep convection is presented that is based on a classification of the unstable boundary layer. Surface-based deep convection is allowed only for boundary layer regimes associated with the presence of thermals. The regime classification is expressed in terms of a Richardson number that reflects the relative significance of buoyancy and shear in the boundary layer. By constraining deep convection to conditions consistent with the occurrence of thermals (high buoyancy to shear ratios), there is a significant decrease in precipitation over the southern portion of the northeast trade wind zone in the tropical Pacific and along the ITCZ. This decrease in precipitation allows for an increased flux of moisture into the region south of the equator corresponding to the warmest portion of the Pacific warm pool. Improvements in the simulated distribution of precipitation, precipitable water, and low-level winds in the tropical Pacific are demonstrated. Over the western Pacific, the transition from free convective conditions associated with thermals to forced convective conditions is found to be primarily due to variations in mixed layer wind speed. Low-level winds thus play the major role in regulating the ability of thermals to initiate deep convection. The lack of coupling with the ocean in these simulations may possibly produce a distorted picture in this regard.

  18. Characterization of wake turbulence in a wind turbine array submerged in atmospheric boundary layer flow

    NASA Astrophysics Data System (ADS)

    Jha, Pankaj Kumar

    Wind energy is becoming one of the most significant sources of renewable energy. With its growing use, and social and political awareness, efforts are being made to harness it in the most efficient manner. However, a number of challenges preclude efficient and optimum operation of wind farms. Wind resource forecasting over a long operation window of a wind farm, development of wind farms over a complex terrain on-shore, and air/wave interaction off-shore all pose difficulties in materializing the goal of the efficient harnessing of wind energy. These difficulties are further amplified when wind turbine wakes interact directly with turbines located downstream and in adjacent rows in a turbulent atmospheric boundary layer (ABL). In the present study, an ABL solver is used to simulate different atmospheric stability states over a diurnal cycle. The effect of the turbines is modeled by using actuator methods, in particular the state-of-the-art actuator line method (ALM) and an improved ALM are used for the simulation of the turbine arrays. The two ALM approaches are used either with uniform inflow or are coupled with the ABL solver. In the latter case, a precursor simulation is first obtained and data saved at the inflow planes for the duration the turbines are anticipated to be simulated. The coupled ABL-ALM solver is then used to simulate the turbine arrays operating in atmospheric turbulence. A detailed accuracy assessment of the state-of-the-art ALM is performed by applying it to different rotors. A discrepancy regarding over-prediction of tip loads and an artificial tip correction is identified. A new proposed ALM* is developed and validated for the NREL Phase VI rotor. This is also applied to the NREL 5-MW turbine, and guidelines to obtain consistent results with ALM* are developed. Both the ALM approaches are then applied to study a turbine-turbine interaction problem consisting of two NREL 5-MW turbines. The simulations are performed for two ABL stability

  19. Isolating effects of terrain and soil moisture heterogeneity on the atmospheric boundary layer: Idealized simulations to diagnose land-atmosphere feedbacks

    NASA Astrophysics Data System (ADS)

    Rihani, Jehan F.; Chow, Fotini K.; Maxwell, Reed M.

    2015-06-01

    The effects of terrain, soil moisture heterogeneity, subsurface properties, and water table dynamics on the development and behavior of the atmospheric boundary layer are studied through a set of idealized numerical experiments. The mesoscale atmospheric model Advanced Regional Prediction System (ARPS) is used to isolate the effects of subsurface heterogeneity, terrain, and soil moisture initialization. The simulations are initialized with detailed soil moisture distributions obtained from offline spin-ups using a coupled surface-subsurface model (ParFlow-CLM). In these idealized simulations, we observe that terrain effects dominate the planetary boundary layer (PBL) development during early morning hours, while the soil moisture signature overcomes that of terrain during the afternoon. Water table and subsurface properties produce a similar effect as that of soil moisture as their signatures (reflected in soil moisture profiles, energy fluxes, and evaporation at the land surface) can also overcome that of terrain during afternoon hours. This is mostly clear for land surface energy fluxes and evaporation at the land surface. We also observe the coupling between water table depth and planetary boundary layer depth in our cases is strongest within wet-to-dry transition zones. This extends the findings of previous studies which demonstrate the subsurface connection to surface energy fluxes is strongest in such transition zones. We investigate how this connection extends into the atmosphere and can affect the structure and development of the convective boundary layer.

  20. Dual polarization micropulse lidar observations of the diurnal evolution of atmospheric boundary layer over a tropical coastal station

    NASA Astrophysics Data System (ADS)

    Rajeev, K.; Mishra, Manoj K.; Sunilkumar, S. V.; Sijikumar, S.

    2016-05-01

    High-resolution dual polarized micropulse lidar (MPL) observations have been used to investigate the diurnal evolution of atmospheric boundary layer (ABL) during winter (2008-2011) over Thiruvananthapuram (8.5°N, 77°E), a tropical coastal station located at southwest Peninsular India, adjoining the Arabian Sea. The lidar observations are compared with the boundary layer characteristics derived from concurrent balloon-borne radiosonde observations. This study shows that the mixed layer height over this coastal station generally increases from <300 m in the morning to 1500 m by the afternoon. Growth rate of the mixed layer height is rapid ( 350 m/hr) during 09-11 IST and slows down with time to <150 m/hr during 11-14 IST and <90 m/hr during 14-16 IST. Thermal internal boundary layer during the afternoon, caused by sea breeze circulation, extends up to 500 m altitude and is characterized by highly spherical aerosols, while a distinctly non-spherical aerosol layer appear above this altitude, in the return flow arising from the landmass.

  1. Advances and Limitations of Atmospheric Boundary Layer Observations with GPS Occultation over Southeast Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.

    2012-01-01

    The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis

  2. The structure of the atmospheric boundary layer in the central equatorial Pacific during January and February of FGGE

    NASA Technical Reports Server (NTRS)

    Firestone, James K.; Albrecht, Bruce A.

    1986-01-01

    The structure of the atmospheric boundary layer for a region between Hawaii and the equator is studied using dropwindsonde data (about 900 soundings) collected in January and February 1979 as part of the First GARP Global Experiment. These data were used to establish the longitudinal and latitudinal variations in the thermodynamic and wind structure of the boundary layer and describe differences in the structure for convectively active and inactive conditions. Low-level inversions (at a pressure of approximately 850 mb) were found to be an important feature of the structure of the boundary layer for undisturbed conditions. Although the frequency of low-level inversions decreased equatorward from Hawaii, the average height of the inversions observed in these regions did not vary significantly in the north-south direction. For convectively undisturbed conditions, low-level inversions are on the average of sufficient strength to suppress deep convection. However, it is shown they could easily be modified by upward vertical motion to give a boundary layer structure similar to that observed in areas where deep convection was observed.

  3. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.

    PubMed

    Wilcox, Eric M; Thomas, Rick M; Praveen, Puppala S; Pistone, Kristina; Bender, Frida A-M; Ramanathan, Veerabhadran

    2016-10-18

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

  4. Lidar Applications in Atmospheric Dynamics: Measurements of Wind, Moisture and Boundary Layer Evolution

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph

    2005-01-01

    A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.

  5. Non-steady dynamics of atmospheric turbulence interaction with wind turbine loadings through blade-boundary-layer-resolved CFD

    NASA Astrophysics Data System (ADS)

    Vijayakumar, Ganesh

    Modern commercial megawatt-scale wind turbines occupy the lower 15-20% of the atmospheric boundary layer (ABL), the atmospheric surface layer (ASL). The current trend of increasing wind turbine diameter and hub height increases the interaction of the wind turbines with the upper ASL which contains spatio-temporal velocity variations over a wide range of length and time scales. Our interest is the interaction of the wind turbine with the energetic integral-scale eddies, since these cause the largest temporal variations in blade loadings. The rotation of a wind turbine blade through the ABL causes fluctuations in the local velocity magnitude and angle of attack at different sections along the blade. The blade boundary layer responds to these fluctuations and in turn causes temporal transients in local sectional loads and integrated blade and shaft bending moments. While the integral scales of the atmospheric boundary layer are ˜ O(10--100m) in the horizontal with advection time scales of order tens of seconds, the viscous surface layer of the blade boundary layer is ˜ O(10 -- 100 mum) with time scales of order milliseconds. Thus, the response of wind turbine blade loadings to atmospheric turbulence is the result of the interaction between two turbulence dynamical systems at extremely disparate ranges of length and time scales. A deeper understanding of this interaction can impact future approaches to improve the reliability of wind turbines in wind farms, and can underlie future improvements. My thesis centers on the development of a computational framework to simulate the interaction between the atmospheric and wind turbine blade turbulence dynamical systems using a two step one-way coupled approach. Pseudo-spectral large eddy simulation (LES) is used to generate a true (equilibrium) atmospheric boundary layer over a flat land with specified surface roughness and heating consistent with the stability state of the daytime lower troposphere. Using the data from the

  6. Detecting surface roughness effects on the atmospheric boundary layer via AIRSAR data: A field experiment in Death Valley, California

    NASA Technical Reports Server (NTRS)

    Blumberg, Dan G.; Greeley, Ronald

    1992-01-01

    The part of the troposphere influenced by the surface of the earth is termed the atmospheric boundary layer. Flow within this layer is influenced by the roughness of the surface; rougher surfaces induce more turbulence than smoother surfaces and, hence, higher atmospheric transfer rates across the surface. Roughness elements also shield erodible particles, thus decreasing the transport of windblown particles. Therefore, the aerodynamic roughness length (z(sub 0)) is an important parameter in aeolian and atmospheric boundary layer processes as it describes the aerodynamic properties of the underlying surface. z(sub 0) is assumed to be independent of wind velocity or height, and dependent only on the surface topography. It is determined using in situ measurements of the wind speed distribution as a function of height. For dry, unvegetated soils the intensity of the radar backscatter (sigma(sup 0)) is affected primarily by surface roughness at a scale comparable with the radar wavelength. Thus, both wind and radar respond to surface roughness variations on a scale of a few meters or less. Greeley showed the existence of a correlation between z(sub 0) and sigma(sup 0). This correlation was based on measurements over lava flows, alluvial fans, and playas in the southwest deserts of the United States. It is shown that the two parameters behave similarly also when there are small changes over a relatively homogeneous surface.

  7. Simulation of the atmospheric boundary layer in the wind tunnel for modeling of wind loads on low-rise structures

    NASA Technical Reports Server (NTRS)

    Tieleman, H. W.; Reinhold, T. A.; Marshall, R. D.

    1976-01-01

    The lower part of the atmospheric boundary layer (strong wind conditions) was simulated in low speed wind tunnel for the modeling of wind loads on low-rise structures. The turbulence characteristics of the turbulent boundary layer in the wind tunnel are compared with full scale measurements and with measurements made at NASA Wallops Flight Center. Wind pressures measured on roofs of a 1:70 scale model of a small single family dwelling were compared with results obtained from full scale measurements. The results indicate a favorable comparison between full scale and model pressure data as far as mean, r.m.s. and peak pressures are concerned. In addition, results also indicate that proper modeling of the turbulence is essential for proper simulation of the wind pressures.

  8. Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign

    SciTech Connect

    Lundquist, Julie K.; Wilczak, James M.; Ashton, Ryan; Bianco, Laura; Brewer, W. Alan; Choukulkar, Aditya; Clifton, Andrew; Debnath, Mithu; Delgado, Ruben; Friedrich, Katja; Gunter, Scott; Hamidi, Armita; Iungo, Giacomo Valerio; Kaushik, Aleya; Kosovic, Branko; Langan, Patrick; Lass, Adam; Lavin, Evan; Lee, Joseph C. Y.; McCaffrey, Katherine L.; Newsom, Rob K.; Noone, David C.; et al.

    2016-06-17

    To assess current capabilities for measuring flow within the atmospheric boundary layer, including within wind farms, the U.S. Dept. of Energy sponsored the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) campaign at the Boulder Atmospheric Observatory (BAO) in spring 2015. Herein, we summarize the XPIA field experiment, highlight novel measurement approaches, and quantify uncertainties associated with these measurement methods. Line-of-sight velocities measured by scanning lidars and radars exhibit close agreement with tower measurements, despite differences in measurement volumes. Virtual towers of wind measurements, from multiple lidars or radars, also agree well with tower and profiling lidar measurements. Estimates of winds over volumes from scanning lidars and radars are in close agreement, enabling assessment of spatial variability. Strengths of the radar systems used here include high scan rates, large domain coverage, and availability during most precipitation events, but they struggle at times to provide data during periods with limited atmospheric scatterers. In contrast, for the deployment geometry tested here, the lidars have slower scan rates and less range, but provide more data during non-precipitating atmospheric conditions. Microwave radiometers provide temperature profiles with approximately the same uncertainty as Radio-Acoustic Sounding Systems (RASS). Using a motion platform, we assess motion-compensation algorithms for lidars to be mounted on offshore platforms. Finally, we highlight cases for validation of mesoscale or large-eddy simulations, providing information on accessing the archived dataset. We conclude that modern remote sensing systems provide a generational improvement in observational capabilities, enabling resolution of fine-scale processes critical to understanding inhomogeneous boundary-layer flows.

  9. The Small Unmanned Meteorological Observer SUMO: Recent developments and applications of a Micro-UAS for atmospheric boundary layer research

    NASA Astrophysics Data System (ADS)

    Reuder, J.; Jonassen, M. O.; Ólafsson, H.

    2012-04-01

    During the last 5 years, the Small Unmanned Meteorological Observer SUMO has been developed as a new and flexible tool for atmospheric boundary layer (ABL) research to be operated as controllable and recoverable atmospheric sounding system for the lowest 4 km above the Earth's surface. In the year 2011 two main technical improvements of the system have been accomplished. The integration of an inertial measurement unit (IMU) into the Paparazzi autopilot system has expanded the environmental conditions for SUMO operation to now even allowing incloud flights. In the field of sensor technology the implementation of a 5-hole probe for the determination of the 3 dimensional flow vector impinging the aircraft with a 100 Hz resolution and of a faster Pt1000 based temperature sensor have distinctly enhanced the meteorological measurement capabilities. The extended SUMO version has recently been operated during two field campaigns. The first one in a wind farm close to Vindeby on Lolland, Denmark, was dedicated to the investigation of the effects of wind turbines on boundary layer turbulence. In spite of a few pitfalls related to configuration and synchronisation of the corresponding data logging systems, this campaign provided promising results indicating the capability and future potential of small UAS for turbulence characterization in and around wind farms. The second one, the international BLLAST (Boundary Layer Late Afternoon and Sunset Transition) field campaign at the foothills of the Pyrenees in Lannemezan, France was focussing on processes related to the afternoon transition of the convective boundary layer. On a calm sunny day during this experiment, the SUMO soundings revealed an unexpected 2°C cooling in the ABL during morning hours. By a comparison with model simulations this cooling can be associated with thermally-driven upslope winds and the subsequent advection of relatively cool air from the lowlands north of the Pyrenees.

  10. Exploring the Effects of Atmospheric Forcings on Evaporation: Experimental Integration of the Atmospheric Boundary Layer and Shallow Subsurface.

    PubMed

    Smits, Kathleen; Eagen, Victoria; Trautz, Andrew

    2015-06-08

    Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages.

  11. Meteorological responses in the atmospheric boundary layer over southern England to the deep partial eclipse of 20 March 2015.

    PubMed

    Burt, Stephen

    2016-09-28

    A wide range of surface and near-surface meteorological observations were made at the University of Reading's Atmospheric Observatory in central southern England (latitude 51.441° N, longitude 0.938° W, altitude 66 m above mean sea level) during the deep partial eclipse on the morning of 20 March 2015. Observations of temperature, humidity, radiation, wind speed and direction, and atmospheric pressure were made by computerized logging equipment at 1 Hz, supplemented by an automated cloud base recorder sampling at 1 min intervals and a high-resolution (approx. 10 m vertical interval) atmospheric sounding by radiosonde launched from the same location during the eclipse. Sources and details of each instrumental measurement are described briefly, followed by a summary of observed and derived measurements by meteorological parameter. Atmospheric boundary layer responses to the solar eclipse were muted owing to the heavily overcast conditions which prevailed at the observing location, but instrumental records of the event documented a large (approx. 80%) reduction in global solar radiation, a fall in air temperature of around 0.6°C, a decrease in cloud base height, and a slight increase in atmospheric stability during the eclipse. Changes in surface atmospheric moisture content and barometric pressure were largely insignificant during the event.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

  12. Large-eddy simulation of stable atmospheric boundary layers to develop better turbulence closures for climate and weather models

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, Elie; Huang, Jing; Golaz, Jean-Christophe

    2011-11-01

    A disconnect remains between our improved physical understanding of boundary layers stabilized by buoyancy and how we parameterize them in coarse atmospheric models. Most operational climate models require excessive turbulence mixing in such conditions to prevent decoupling of the atmospheric component from the land component, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. Using Large-eddy simulation, we revisit some of the basic challenges in parameterizing stable atmospheric boundary layers: eddy-viscosity closure is found to be more reliable due to an improved alignment of vertical Reynolds stresses and mean strains under stable conditions, but the dependence of the magnitude of the eddy viscosity on stability is not well represented by several models tested here. Thus, we propose a new closure that reproduces the different stability regimes better. Subsequently, tests of this model in the GFDL's single-column model (SCM) are found to yield good agreement with LES results in idealized steady-stability cases, as well as in cases with gradual and sharp changes of stability with time.

  13. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  14. The Deep Atmospheric Boundary Layer and Its Significance to the Stratosphere and Troposphere Exchange over the Tibetan Plateau

    PubMed Central

    Chen, Xuelong; Añel, Juan A.; Su, Zhongbo; de la Torre, Laura; Kelder, Hennie; van Peet, Jacob; Ma, Yaoming

    2013-01-01

    In this study the depth of the atmospheric boundary layer (ABL) over the Tibetan Plateau was measured during a regional radiosonde observation campaign in 2008 and found to be deeper than indicated by previously measurements. Results indicate that during fair weather conditions on winter days, the top of the mixed layers can be up to 5 km above the ground (9.4 km above sea level). Measurements also show that the depth of the ABL is quite distinct for three different periods (winter, monsoon-onset, and monsoon seasons). Turbulence at the top of a deep mixing layer can rise up to the upper troposphere. As a consequence, as confirmed by trajectory analysis, interaction occurs between deep ABLs and the low tropopause during winter over the Tibetan Plateau. PMID:23451108

  15. The deep atmospheric boundary layer and its significance to the stratosphere and troposphere exchange over the Tibetan Plateau.

    PubMed

    Chen, Xuelong; Añel, Juan A; Su, Zhongbo; de la Torre, Laura; Kelder, Hennie; van Peet, Jacob; Ma, Yaoming

    2013-01-01

    In this study the depth of the atmospheric boundary layer (ABL) over the Tibetan Plateau was measured during a regional radiosonde observation campaign in 2008 and found to be deeper than indicated by previously measurements. Results indicate that during fair weather conditions on winter days, the top of the mixed layers can be up to 5 km above the ground (9.4 km above sea level). Measurements also show that the depth of the ABL is quite distinct for three different periods (winter, monsoon-onset, and monsoon seasons). Turbulence at the top of a deep mixing layer can rise up to the upper troposphere. As a consequence, as confirmed by trajectory analysis, interaction occurs between deep ABLs and the low tropopause during winter over the Tibetan Plateau.

  16. Turbulence and Coherent Structure in the Atmospheric Boundary Layer near the Eyewall of Hurricane Hugo (1989)

    NASA Astrophysics Data System (ADS)

    Zhang, J. A.; Marks, F. D.; Montgomery, M. T.; Black, P. G.

    2008-12-01

    In this talk we present an analysis of observational data collected from NOAA'S WP-3D research aircraft during the eyewall penetration of category five Hurricane Hugo (1989). The 1 Hz flight level data near 450m above the sea surface comprising wind velocity, temperature, pressure and relative humidity are used to estimate the turbulence intensity and fluxes. In the turbulent flux calculation, the universal shape spectra and co-spectra derived using the 40 Hz data collected during the Coupled Boundary Layer Air-sea Transfer (CBLAST) Hurricane experiment are applied to correct the high frequency part of the data collected in Hurricane Hugo. Since the stationarity assumption required for standard eddy correlations is not always satisfied, different methods are summarized for computing the turbulence parameters. In addition, a wavelet analysis is conducted to investigate the time and special scales of roll vortices or coherent structures that are believed important elements of the eye/eyewall mixing processes that support intense storms.

  17. Large-eddy Simulation of Stratocumulus-topped Atmospheric Boundary Layers with Dynamic Subgrid-scale Models

    NASA Technical Reports Server (NTRS)

    Senocak, Inane

    2003-01-01

    The objective of the present study is to evaluate the dynamic procedure in LES of stratocumulus topped atmospheric boundary layer and assess the relative importance of subgrid-scale modeling, cloud microphysics and radiation modeling on the predictions. The simulations will also be used to gain insight into the processes leading to cloud top entrainment instability and cloud breakup. In this report we document the governing equations, numerical schemes and physical models that are employed in the Goddard Cumulus Ensemble model (GCEM3D). We also present the subgrid-scale dynamic procedures that have been implemented in the GCEM3D code for the purpose of the present study.

  18. A bulk similarity approach in the atmospheric boundary layer using radiometric skin temperature to determine regional surface fluxes

    NASA Technical Reports Server (NTRS)

    Brutsaert, Wilfried; Sugita, Michiaki

    1991-01-01

    Profiles of wind velocity and temperature in the outer region of the atmospheric boundary layer (ABL) were used together with surface temperature measurements, to determine regional shear stress and sensible heat flux by means of transfer parameterizations on the basis of bulk similarity. The profiles were measured by means of radiosondes and the surface temperatures by infrared radiation thermometry over hilly prairie terrain in northeastern Kansas during the First ISLSCP Field Experiment (FIFE). In the analysis, the needed similarity functions were determined and tested.

  19. CFD modelling of small particle dispersion: The influence of the turbulence kinetic energy in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Gorlé, C.; van Beeck, J.; Rambaud, P.; Van Tendeloo, G.

    When considering the modelling of small particle dispersion in the lower part of the Atmospheric Boundary Layer (ABL) using Reynolds Averaged Navier Stokes simulations, the particle paths depend on the velocity profile and on the turbulence kinetic energy, from which the fluctuating velocity components are derived to predict turbulent dispersion. It is therefore important to correctly reproduce the ABL, both for the velocity profile and the turbulence kinetic energy profile. For RANS simulations with the standard k- ɛ model, Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.) proposed a set of boundary conditions which result in horizontally homogeneous profiles. The drawback of this method is that it assumes a constant profile of turbulence kinetic energy, which is not always consistent with field or wind tunnel measurements. Therefore, a method was developed which allows the modelling of a horizontally homogeneous turbulence kinetic energy profile that is varying with height. By comparing simulations performed with the proposed method to simulations performed with the boundary conditions described by Richards and Hoxey (1993. Appropriate boundary conditions for computational wind engineering models using the k-ɛ turbulence model. Journal of Wind Engineering and Industrial Aerodynamics 46-47, 145-153.), the influence of the turbulence kinetic energy on the dispersion of small particles over flat terrain is quantified.

  20. On determination of formaldehyde content in atmospheric boundary layer for overcast using DOAS technique

    NASA Astrophysics Data System (ADS)

    Postylyakov, Oleg; Borovski, Alexander; Ivanov, Victor

    2015-11-01

    Formaldehyde (HCHO) is involved in a lot of chemical reactions in the atmosphere. Taking into account that HCHO basically undergo by photolysis and reaction with hydroxyl radical within a few hours, short-lived VOCs and direct HCHO emissions can cause local HCHO enhancement over certain areas, and, hence, exceeding background level of HCHO can be examined as a local pollution of the atmosphere by VOCs or existence of a local HCHO source. Several retrieval algorithms applicable for DOAS measurements in cloudless were previously developed. A new algorithm applicable for overcast and cloudless sky and its error analysis is briefly introduced by this paper. Analysis of our HCHO VCD retrieval for overcast shows that when one know the cloud base height, but doesn't know cloud optical depth, the typical errors of HCHO total content retrieval are less than 10% for snow season, less than 5% for snow-free seasons, and reaches 40-45% for season with non-stable snow cover. In case one knows both the cloud base height and the cloud optical depth, the typical errors are about 5% for snow season, less than 2.5% for snow-free seasons, and are within about 10-30% for season with non-stable snow cover. Given above error estimations are valid if the HCHO layer is below the cloud base. The errors dramatically increase when HCHO layer penetrates into clouds in both cases. The first preliminary results of HCHO VCD retrieval for overcast are shown. The average difference of the HCHO VCDs for wind from Moscow megapolis and wind from few urbanized areas is about 0.8×1016 mol×cm-2 and approximately corresponds to estimates of influence of Moscow megapolis observed in clear-sky conditions.

  1. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  2. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain.

    PubMed

    Wood, Curtis R; Chapman, Jason W; Reynolds, Donald R; Barlow, Janet F; Smith, Alan D; Woiwod, Ian P

    2006-03-01

    Insects migrating at high altitude over southern Britain have been continuously monitored by automatically operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights that are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Meteorological Office's (UKMO) Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps, provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c) on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.

  3. A Model of Atmospheric Vapor Isotopes at Their Source: the Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Posmentier, E. S.; Fan, N.; Sonder, L. J.; Feng, X.

    2015-12-01

    The stable isotopes of water vapor and precipitation are widely used for studying modern and past climates, but the framework for interpreting isotope variations remains incomplete. The most significant gap is a full description of vapor isotopes and transport in the marine boundary layer (MBL) connecting the sea surface and the free troposphere. Increasingly available vapor isotope measurements in the MBL highlight the need to fill this gap. We introduce the first moderate complexity, vertically resolved MBL model that incorporates several important processes, including 1) entrainment of subsided mid tropospheric air with original mixing ratio rE, 2) height-dependent vapor diffusivity that is purely molecular at the surface and increases linearly with turbulence to a maximum Kmax in the mid MBL, and 3) vertical velocity wa.. Furthermore, the model does not require specification of either humidity or isotope ratios above the laminar layer, or kinetic fractionation within it. It computes all of these values as well as evaporation rate, isotopic profiles and fluxes, while the isotope flux ratios are the only output from earlier evaporation models. Analytical solutions are found for the profiles of δD, δ18O, and d-excess in the MBL. Simulations coincide remarkably well with the region of the δD vs. δ18O plane populated by global marine observations. Numerical experiments create a family of straight lines in the δD vs. δ18O plane corresponding to different combinations of conditions. These "vapor lines" are mixing lines between isotopically enriched vapor above the laminar layer and depleted vapor in subsiding air. Their slope and/or extent are most strongly influenced by rE and Kmax, to a lesser extent by sea surface temperature (SST) and the fraction of subsided air in the MBL (α), and only slightly by other parameters. We show that these effects of rE, Kmax and SST on the δD vs. δ18O relationship result from their combined influence on (1) the thickness of

  4. Atmospheric boundary layer adjustment to the synoptic cycle at the Brazil-Malvinas Confluence, South Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Acevedo, OtáVio C.; Pezzi, Luciano P.; Souza, Ronald B.; Anabor, Vagner; Degrazia, GerváSio A.

    2010-11-01

    This study analyzes and discusses atmospheric boundary layer vertical profiles of potential temperature, specific humidity, and wind speed at each of the sides of the Brazil-Malvinas Confluence in the southwestern Atlantic Ocean. Such confluence is characterized by the meeting of water masses with very different characteristics: the southern waters of the Malvinas current can be several degrees colder and appreciably less salty than the northern Brazil current waters. At the same time, a synoptic cycle can be identified at the region, marked by the successive passages of frontal systems and extratropical cyclones. The different phases of the synoptic cycle lead to different thermal advections at the confluence, causing respective different patterns of atmospheric boundary layer adjustment to the surface heterogeneity induced by the confluence. In the present study, this adjustment along the synoptic cycle is analyzed using data from five experiments performed across the confluence from 2003 to 2008. In each of the campaigns a number of soundings were launched from a ship at both sides of the confluence. A climatological analysis with respect to the closest frontal passage is presented, and it suggests that the observations collected at each of the years analyzed are referent to a different day of the synoptic cycle. The average profiles at each side of the confluence are in agreement with previous modeling studies of warm and cold thermal advection patterns over an oceanic front. Furthermore, our study shows that peculiar transitional characteristics are also observed between the conditions of well-established warm and cold advection. At many phases of the synoptic cycle a strongly stratified boundary layer occurs at one or both sides of the confluence. Some of the observed characteristics, such as a large moisture accumulation near the surface, suggest that existing sensible and latent heat fluxes parameterizations fail under very strong stratifications, and the

  5. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    SciTech Connect

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  6. Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.

    2004-01-01

    Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.

  7. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  8. On the predominance of unstable atmospheric conditions in the marine boundary layer offshore of the U.S. northeastern coast

    NASA Astrophysics Data System (ADS)

    Archer, Cristina L.; Colle, Brian A.; Veron, Dana L.; Veron, Fabrice; Sienkiewicz, Matthew J.

    2016-08-01

    The marine boundary layer of the northeastern U.S. is studied with focus on wind speed, atmospheric stability, and turbulent kinetic energy (TKE), the three most relevant properties in the context of offshore wind power development. Two long-term observational data sets are analyzed. The first one consists of multilevel meteorological variables measured up to 60 m during 2003-2011 at the offshore Cape Wind tower, located near the center of the Nantucket Sound. The second data set comes from the 2013-2014 IMPOWR campaign (Improving the Modeling and Prediction of Offshore Wind Resources), in which wind and wave data were collected with new instruments on the Cape Wind platform, in addition to meteorological data measured during 19 flight missions offshore of New York, Connecticut, Rhode Island, and Massachusetts. It is found that, in this region: (1) the offshore wind resource is remarkable, with monthly average wind speeds at 60 m exceeding 7 m s-1 all year round, highest winds in winter (10.1 m s-1) and lowest in summer (7.1 m s-1), and a distinct diurnal modulation, especially in summer; (2) the marine boundary layer is predominantly unstable (61% unstable vs. 21% neutral vs. 18% stable), meaning that mixing is strong, heat fluxes are positive, and the wind speed profile is often nonlogarithmic (~40% of the time); and (3) the shape of the wind speed profile (log versus nonlog) is an effective qualitative proxy for atmospheric stability, whereas TKE alone is not.

  9. Two years of atmospheric boundary layer observations on a 45-m tower at Dome C on the Antarctic plateau

    NASA Astrophysics Data System (ADS)

    Genthon, Christophe; Six, Delphine; GalléE, Hubert; Grigioni, Paolo; Pellegrini, Andrea

    2013-04-01

    The lower atmospheric boundary layer at Dome C on the Antarctic plateau has been continuously monitored along a 45-m tower since 2009. Two years of observations (2009 and 2010) are presented. A strong diurnal cycle is observed near the surface in summer but almost disappears at the top of the tower, indicating that the summer nocturnal inversion is very shallow. Very steep inversions reaching almost 1 °C m-1 on average along the tower are observed in winter. They are stronger and more frequent during the colder 2010 winter, reaching a maximum in a layer ~10-15 m above the surface. Winter temperature is characterized by strong synoptic variability. An extreme warm event occurred in July 2009. The temperature reached -30 °C, typical of midsummer weather. Meteorological analyses which agree with the observations near the surface confirm that heat is propagated downward from higher elevations. A high total water column indicates moist air masses aloft originating from the lower latitudes. The coldest temperatures and strongest inversions are associated with characteristic synoptic patterns and a particularly dry atmosphere. Measurement of moisture in the clean and cold Antarctic plateau atmosphere is a challenging task. Supersaturations are very likely but are not revealed by the observations. This is possibly an instrumental artifact that would affect other moisture measurements made in similar conditions. In spite of this, such observations offer a stringent test of the robustness of the polar boundary layer in meteorological and climate models, addressing a major concern raised in the IPCC 2007 report.

  10. Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India

    NASA Astrophysics Data System (ADS)

    Chandra, Sagarika; Dwivedi, Arun K.; Kumar, Manoj

    2014-08-01

    In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature ( 𝜃 v ) profile for the determination of mixed layer heights (MLH) and the mean value of turbulent flow depth (TFD) obtained from the vertical profile of Bulk Richardson Number ( R i B ) have been used in this study. One-year data have been used for the study. There is large seasonal variability in MLH with a peak in the summer and winter whereas the TFD remained steady throughout the year. Results from the present study indicate that the magnitudes of TFD are often larger than the MLH.

  11. Characterization of the atmospheric boundary layer from radiosonde observations along eastern end of monsoon trough of India

    NASA Astrophysics Data System (ADS)

    Chandra, Sagarika; Dwivedi, Arun K.; Kumar, Manoj

    2014-08-01

    In this paper, a comparison of two methods for the calculation of the height of atmospheric boundary layer (ABL), using balloon-borne GPS radiosonde data is presented. ABL has been characterized using vertical profiles of meteorological parameter. The gradient of virtual potential temperature (𝜃 v ) profile for the determination of mixed layer heights (MLH) and the mean value of turbulent flow depth (TFD) obtained from the vertical profile of Bulk Richardson Number (R i B ) have been used in this study. One-year data have been used for the study. There is large seasonal variability in MLH with a peak in the summer and winter whereas the TFD remained steady throughout the year. Results from the present study indicate that the magnitudes of TFD are often larger than the MLH.

  12. Multiscale aeroelastic simulations of large wind farms in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Vitsas, Athanasios; Meyers, Johan

    2016-09-01

    In large wind farms, the turbulence induced by each turbine results in high overall turbulence levels that can be detrimental for downstream wind turbine components. In the current study, we scrutinize structural loads and dynamics, and their correlation to turbulent flow structures by conducting aeroelastic simulations in wind farms. To this end, a pseudospectral large-eddy simulation solver is coupled with a multibody dynamics module in a multiscale framework. The multirate approach leads us naturally to the development of an aeroelastic actuator sector model that represents the wind turbine forces on the flow. This makes it computationally feasible to simulate long time horizons of the two-way coupled aeroelastic system. Hence, it allows us to look at the interaction of the turbine structure with the turbulent boundary layer and the wakes of multiple turbine arrays, and to get estimates of damage equivalent loads and structural loading statistics, as longer time series are available. Results are shown for two typical wind farm layouts, i.e. aligned and staggered, for above-rated flow regimes.

  13. Hydrogen Peroxide and Methylhydroperoxide Budgets in the Marine Boundary Layer During the Pacific Atmospheric Sulfur Experiment

    NASA Astrophysics Data System (ADS)

    O'Sullivan, D. W.; Heikes, B. G.; Higbie, A.; Merrill, J. T.; Bandy, A. R.; Mauldin, L.; Cantrell, C.; Anderson, R. S.; Campos, T.; Lenschow, D.; Bloomquist, B.; Faloona, I. C.; Conley, S. A.; Wang, Y.; Pollack, I. B.; Heizer, C. G.; Weinheimer, A. J.

    2008-12-01

    Airborne gas phase measurements of hydrogen peroxide, methylhydroperoxide, ozone, carbon monoxide, dimethylsulfide, sulfur dioxide, hydroxyl, and perhydroxyl, together with meteorological parameters are used to assess the photochemical budget of hydrogen peroxide and methylhydroperoxide in the marine boundary layer (MBL). The observations come from 14 research flights using the NCAR C-130 flown mostly southeast of Kiritimati in relatively cloud- and precipitation-free MBL air. This region was expected to have extremely low nitrogen oxide mixing ratios and minimal horizontal gradients in composition. Eddy-correlation methods are used to estimate entrainment rates at the top of the MBL. Surface deposition rates are calculated from wind and molecular properties. Gas phase photolysis rates are calculated and reaction rate constants are estimated from the literature. The measurements and budgets are discussed in terms of their ability to constrain net ozone production, nitrogen oxide levels, reactive hydrocarbons, and halogen radical chemistry. On occasion the aircraft flew within its advected exhaust plume and a decrease in methylhydroperoxide, but not in hydrogen peroxide, was noted.

  14. Atmospheric boundary layer effects induced by the 20 March 2015 solar eclipse

    NASA Astrophysics Data System (ADS)

    Gray, Suzanne L.; Harrison, R. Giles

    2016-04-01

    The British Isles benefits from dense meteorological observation networks, enabling insights into the still-unresolved effects of solar eclipse events on the near-surface wind field. The near-surface effects of the solar eclipse of 20 March 2015 are derived through comparison of output from the Met Office's operational weather forecast model (which is ignorant of the eclipse) with data from two meteorological networks: the Met Office's land surface station (MIDAS) network and a roadside measurement network operated by Vaisala. Synoptic-evolution relative calculations reveal the cooling and increase in relative humidity almost universally attributed to eclipse events. In addition, a slackening of wind speeds by up to about 2 knots in already weak winds and backing in wind direction of about 20 degrees under clear skies across middle England are attributed to the eclipse event. The slackening of wind speed is consistent with the previously reported boundary layer stabilisation during eclipse events. Wind direction changes have previously been attributed to a large-scale `eclipse-induced cold-cored cyclone', mountain slope flows, and changes in the strength of sea breezes. A new explanation is proposed here by analogy with nocturnal wind changes at sunset and shown to predict direction changes consistent with those observed.

  15. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  16. Modeling the atmospheric convective boundary layer within a zero-order jump approach: An extended theoretical framework

    SciTech Connect

    Fedorovich, E.

    1995-09-01

    The paper presents an extended theoretical background for applied modeling of the atmospheric convective boundary layer within the so-called zero-order jump approach, which implies vertical homogeneity of meteorological fields in the bulk of convective boundary layer (CBL) and zero-order discontinuities of variables at the interfaces of the layer. The zero-order jump model equations for the most typical cases of CBL are derived. The models of nonsteady, horizontally homogeneous CBL with and without shear, extensively studied in the past with the aid of zero-order jump models, are shown to be particular cases of the general zero-order jump theoretical framework. The integral budgets of momentum and heat are considered for different types of dry CBL. The profiles of vertical turbulent fluxes are presented and analyzed. The general version of the equation of CBL depth growth rate (entrainment rate equation) is obtained by the integration of the turbulence kinetic energy balance equation, invoking basic assumptions of the zero-order parameterizations of the CBL vertical structure. The problems of parameterizing the turbulence vertical structure and closure of the entrainment rate equation for specific cases of CBL are discussed. A parameterization scheme for the horizontal turbulent exchange in zero-order jump models of CBL is proposed. The developed theory is generalized for the case of CBL over irregular terrain. 28 refs., 2 figs.

  17. Investigating the diurnal and spatial variability of flows in the atmospheric boundary layer: A large eddy simulation study

    NASA Astrophysics Data System (ADS)

    Kumar, Vijayant

    Large-eddy simulation (LES) studies of the atmospheric boundary layer (ABL) have historically modeled the daytime (convective), nighttime (stable) and dawn/dusk windy (neutral) regimes separately under the assumption of a quasi-steady ABL. The real-world ABL however, continuously transitions between the different stability regimes and development of an LES capable of simulating the entire diurnal evolution of the ABL is needed. We have developed an LES tool (The JHU-LES code) with the new-generation Lagrangian dynamic models capable of dynamic adjustment of the subgrid-scale stresses thereby, making it apt for LES over entire diurnal cycles of the ABL. Preliminary LES studies demonstrate that the JHU-LES code reproduces well-known features of the quasi-steady convective and stable boundary layers, such as the well-known spectral scalings for production and inertial subranges. LES of the entire 24-hour diurnal evolution of the atmospheric boundary layer is then performed and compared successfully to field observations (HATS dataset). Important features of the diurnal ABL such as entrainment-based growth of the CBL, development of the stable boundary layer and evolution of the nocturnal low-level jet are well reproduced. The advantages of using a local Obukhov length-scale to normalize the results are highlighted. To investigate the role of surface boundary conditions and geostrophic wind forcing, LES investigations of multi-day evolution of the ABL flow are then performed with several combinations of surface boundary conditions (imposed temperature and heat flux) and geostrophic forcing (constant, time-varying, time and height varying). The variable geostrophic forcing significantly improves the agreement of LES results with surface flux observations but shows poor agreement with daytime surface fluxes and, daytime and nighttime mean profiles. The LES setup using an imposed surface temperature almost always yields better results than cases where the heat flux is

  18. The Tturbulent Structure of the Atmospheric Boundary Layer over Small Northern Lakes

    NASA Astrophysics Data System (ADS)

    Repina, I.; Stepanenko, V.; Artamonov, A.; Barskov, K.; Polukhov, A.

    2015-12-01

    Wetland and freshwater ecosystems of the Northern Europe are an important natural source of atmospheric methane. Adequate calculation of gas emission from the northern territories requires calculation of balances of heat, moisture, and gases at the surface of water bodies on the sub-grid scale in the climate models. We carried out measurements in North Karelia on the lake Verkhneye (White Sea Biological Station of Moscow State University). The purpose of the study is evaluation of turbulent transport in the system "lake water- near-surface air - surrounding forest" in the winter season. We used an array of acoustic anemometers mounted at different distances from the lake shore. Measurements were taken at two heights in the center of the lake. It was revealed that the intensity of the turbulent transfer essentially depends on the height and location of sensors, and the wind direction. Stratification in the near-to-surface air probably does not play significant role. Besides, there is no constant-flux layer. The later makes Monin and Obukhov similarity theory (which is used in most of the parameterizations for calculating turbulent flows) inapplicable in this case. The work was sponsored by RFBR 14-05-91752, 14-05-91764, 15-35-20958.

  19. Observations of atmospheric trace gases by MAX-DOAS in the coastal boundary layer over Jiaozhou Bay

    NASA Astrophysics Data System (ADS)

    Li, Xianxin; Wang, Zhangjun; Meng, Xiangqian; Zhou, Haijin; Du, Libin; Qu, Junle; Chen, Chao; An, Quan; Wu, Chengxuan; Wang, Xiufen

    2014-11-01

    Atmospheric trace gases exist in the atmosphere of the earth rarely. But the atmospheric trace gases play an important role in the global atmospheric environment and ecological balance by participating in the global atmospheric cycle. And many environmental problems are caused by the atmospheric trace gases such as photochemical smog, acid rain, greenhouse effect, ozone depletion, etc. So observations of atmospheric trace gases become very important. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) developed recently is a kind of promising passive remote sensing technology which can utilize scattered sunlight received from multiple viewing directions to derive vertical column density of lower tropospheric trace gases like ozone, sulfur dioxide and nitrogen dioxide. It has advantages of simple structure, stable running, passive remote sensing and real-time online monitoring automatically. A MAX-DOAS has been developed at Shandong Academy of Sciences Institute of Oceanographic Instrumentation (SDIOI) for remote measurements of lower tropospheric trace gases (NO2, SO2, and O3). In this paper, we mainly introduce the stucture of the instrument, calibration and results. Detailed performance analysis and calibration of the instrument were made at Qingdao. We present the results of NO2, SO2 and O3 vertical column density measured in the coastal boundary layer over Jiaozhou Bay. The diurnal variation and the daily average value comparison of vertical column density during a long-trem observation are presented. The vertical column density of NO2 and SO2 measured during Qingdao oil pipeline explosion on November 22, 2013 by MAX-DOAS is also presented. The vertical column density of NO2 reached to a high value after the explosion. Finally, the following job and the outlook for future possible improvements are given. Experimental calibration and results show that the developed MAX-DOAS system is reliable and credible.

  20. Massive-scale aircraft observations of giant sea-salt aerosol particle size distributions in atmospheric marine boundary layers

    NASA Astrophysics Data System (ADS)

    Jensen, J. B.

    2015-12-01

    iant sea-salt aerosol particles (dry radius, rd > 0.5 μm) occur nearly everywhere in the marine boundary layer and frequently above. This study presents observations of atmospheric sea-salt size distributions in the range 0.7 < rd < 14 μm based on external impaction of sea-spray aerosol particles onto microscope polycarbonate microscope slides. The slides have very large sample volumes, typically about 250 L over a 10-second sampling period. This provides unprecedented sampling of giant sea-salt particles for flights in marine boundary layer air. The slides were subsequently analyzed in a humidified chamber using dual optical digital microscopy. At a relative humidity of 90% the sea-salt aerosol particles form spherical cap drops. Based on measurement the volume of the spherical cap drop and assuming NaCl composition, the Kohler equation is used to derive the dry salt mass of tens of thousands of individual aerosol particles on each slide. Size distributions are given with a 0.2 μm resolution. The slides were exposed from the NSF/NCAR C-130 research aircraft during the 2008 VOCALS project off the coast of northern Chile and the 2011 ICE-T in the Caribbean. In each deployment, size distributions using hundreds of slides are used to relate fitted log-normal size distributions parameters to wind speed, altitude and other atmospheric conditions. The size distributions provide a unique observational set for initializing cloud models with coarse-mode aerosol particle observations for marine atmospheres.

  1. Description of the atmospheric circulation in the boundary layer over a tropical island: Case study of Guadeloupe Archipelago

    NASA Astrophysics Data System (ADS)

    Plocoste, Thomas; Dorville, Jean-François; Jacoby-Koaly, Sandra; Roussas, André

    2016-04-01

    Over past two decades the use of atmospheric sounding methods as Sodars, Lidar equipped drones increased sharply. Compare to weather balloon, these modern methods allow measure of profile at constant heights during long period. There are few studies using this type of equipment in tropical climates and lesser on small island. Wind regime on island of diameter less than 50 km are mostly considered as oceanic. Many author consider that thermal effect are negligible in land. But recent observations and simulations show importance of the thermal circulation at small- and meso- scales particularly in atmospheric pollution process. Up to 2009 no wind profile data were available continuously to study atmospheric circulation in Guadeloupe Archipelago (GA) which is one of the islands of the Lesser Antilles Arc. In first approximation wind was evaluated based on measures done at the most upwind island of the GA for many application as wind power and atmospheric pollution. From 2009 to 2012 a measurement campaign of the Atmospheric Boundary Layer (ABL) have been performed by the University of Antilles (UA) in GA. To assess effects of dynamic of ABL on air quality in sub urban area, particularly during the sunset and sunrise, UA monitored two sites with a weather station and a doppler sodar (REMTECH PAO). Both sites are close to the sea with one in a coastal area and the other in an open landfill surrounded by densely populated building and a mangrove swamp. Thermal and chemical measurements with a portable mass spectrometer were made in the vicinity of the landfill and showed the existence of urban heat islands. This study presents the first Doppler Sodar long measurements campaign in GA. Statistical analysis of the three year of doppler sodar data (i.e. wind components and its fluctuations) allow to identified and characterized the complex circulations on the two sites in the ABL between 25 and 500m above the sea level. Orographic and thermal effects due to urban area were

  2. Representation of the Saharan atmospheric boundary layer in the Weather and Research Forecast (WRF) model: A sensitivity analysis.

    NASA Astrophysics Data System (ADS)

    Todd, Martin; Cavazos, Carolina; Wang, Yi

    2013-04-01

    The Saharan atmospheric boundary layer (SABL) during summer is one of the deepest on Earth, and is crucial in controlling the vertical redistribution and long-range transport of dust in the Sahara. The SABL is typically made up of an actively growing convective layer driven by high sensible heating at the surface, with a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ˜5-6km. These two layers are usually separated by a weak (≤1K) temperature inversion. Model representation of the SPBL structure and evolution is important for accurate weather/climate and aerosol prediction. In this work, we evaluate model performance of the Weather Research and Forecasting (WRF) to represent key multi-scale processes in the SABL during summer 2011, including depiction of the diurnal cycle. For this purpose, a sensitivity analysis is performed to examine the performance of seven PBL schemes (YSU, MYJ, QNSE, MYNN, ACM, Boulac and MRF) and two land-surface model (Noah and RUC) schemes. In addition, the sensitivity to the choice of lateral boundary conditions (ERA-Interim and NCEP) and land use classification maps (USGS and MODIS-based) is tested. Model outputs were confronted upper-air and surface observations from the Fennec super-site at Bordj Moktar and automatic weather station (AWS) in Southern Algeria Vertical profiles of wind speed, potential temperature and water vapour mixing ratio were examined to diagnose differences in PBL heights and model efficacy to reproduce the diurnal cycle of the SABL. We find that the structure of the model SABL is most sensitive the choice of land surface model and lateral boundary conditions and relatively insensitive to the PBL scheme. Overall the model represents well the diurnal cycle in the structure of the SABL. Consistent model biases include (i) a moist (1-2 gkg-1) and slightly cool (~1K) bias in the daytime convective boundary layer (ii

  3. A Numerical Study of Sea Breeze and Spatiotemporal Variation in the Coastal Atmospheric Boundary Layer at Hainan Island, China

    NASA Astrophysics Data System (ADS)

    Huang, Qian-Qian; Cai, Xu-Hui; Song, Yu; Kang, Ling

    2016-12-01

    Numerical simulations of sea breezes and the coastal atmospheric boundary layer (ABL) at Hainan Island, China during summer and winter are discussed. The different behaviour of sea breezes and the ABL on the leeward and windward sides of the island are examined, and it is found that offshore flows are more likely to create a strong sea-breeze signature, whereas the process of sea-breeze development under onshore flows is difficult to capture. At the location where the sea-breeze signal is remarkable, the height of the coastal ABL displays an abnormal decrease, corresponding to a transitional point from a continental ABL to a thermal internal boundary layer (TIBL) formed under sea-breeze conditions. This is corroborated by the sudden increase in the water vapour mixing ratio and/or wind speed, indicating the arrival of the sea breeze. Regarding the spatial distribution, the TIBL height decreases abruptly just ahead of the sea-breeze front, and above the cold air mass. When the sea-breeze front occurs with a raised head, a cold air mass is separated from the sea-breeze flow and penetrates inland. This separation is attributed to the interaction between the sea breeze and valley breeze, while the dry airflow entraining to the sea-breeze flow may also partially contribute to this air mass separation.

  4. Boundary Layer Dust Occurrence, 1: Atmospheric Dust Over the White Sands Missile Range, New Mexico Area

    DTIC Science & Technology

    1975-04-01

    samples of atmospheric dust in the 0.3- to 1.1-- um wavelength interval. This work, which is based on the Kubelka - Munk theory of diffuse re...samples of atmospheric dust in the 0.3- to 1.1-pm wavelength interval. This work, which is based on the Kubelka - Munk theory of diffuse re- flectance

  5. Ice at the Interface: Atmosphere-Ice-Ocean Boundary Layer Processes and Their Role in Polar Change---Workshop Report

    SciTech Connect

    Hunke, Elizabeth C.

    2012-07-23

    The atmosphere-ocean boundary layer in which sea ice resides includes many complex processes that require a more realistic treatment in GCMs, particularly as models move toward full earth system descriptions. The primary purpose of the workshop was to define and discuss such coupled processes from observational and modeling points of view, including insight from both the Arctic and Antarctic systems. The workshop met each of its overarching goals, including fostering collaboration among experimentalists, theorists and modelers, proposing modeling strategies, and ascertaining data availability and needs. Several scientific themes emerged from the workshop, such as the importance of episodic or extreme events, precipitation, stratification above and below the ice, and the marginal ice zone, whose seasonal Arctic migrations now traverse more territory than in the past.

  6. A Review and Evaluation of Integrated Atmospheric Boundary-Layer Models for Maritime Applications.

    DTIC Science & Technology

    1981-11-01

    cells . The large bouyant and turbulent mixing processes in the cloud tend to destroy the adiabatic (equilibrium) liquid water profile. Rather than...entraining upper layer air into the mixed layer, the convective cells draw air out of the mixed layer into the cell (and, therefore, the upper air) causing...01731 17. Dr. Hans Panovsky Department of Meteorology Penn State University State College, Pennslyvania 18. CDR K. Van Sickle Code Air-370 Naval Air

  7. Observed response of the marine atmospheric boundary layer to the Southern Ocean fronts during the IPY BGH 2008 cruise

    NASA Astrophysics Data System (ADS)

    Messager, C.; Speich, S.; Key, E.

    2012-03-01

    A set of meteorological instruments was added to an oceanographic cruise crossing the Southern Ocean from Cape Town to 57°33' S on board the R/V Marion Dufresne during the summer 2008. The Cape Cauldron, the subtropical, subantarctic, polar and southern Antarctic circumpolar current fronts were successively crossed. The recorded data permitted to derive the exchange of momentum, heat and water vapour at the ocean-atmosphere interface. A set of 38 radiosonde releases complemented the dataset. The marine atmospheric boundary layer characteristics and air-sea interaction when ship crossed the fronts and eddies are discussed. The specific role of the atmospheric synoptic systems advection on the air-sea interaction is highlighted over these regions. The dynamic associated with these systems drive the vertical mixing of the MABL by wind shear effect and/or the vertical thermal mixing. The MABL is stabilized (destabilized) and mixing is inhibited (enhanced) over the warm front sides if meridional wind component is northerly (southerly).

  8. Chasing quicksilver: modeling the atmospheric lifetime of Hg(0)(g) in the marine boundary layer at various latitudes.

    PubMed

    Hedgecock, Ian M; Pirrone, Nicola

    2004-01-01

    The lifetime of elemental mercury in the marine boundary layer(MBL) has been studied using AMCOTS (Atmospheric Mercury Chemistry Over The Sea), a box model of MBL photochemistry including aerosols and detailed mercury chemistry. Recently measured Hg(0)(g) oxidation reactions have been included, and the studies were performed as a function of latitude, time of year, boundary layer liquid water content (LWC) and cloud optical depth. The results show that Hg has the shortest lifetime when air temperatures are low and sunlight and deliquescent aerosol particles are plentiful. Thus the modeled lifetime for clear-sky conditions is actually shorter at mid-latitudes and high latitudes than near the equator, and for a given latitude and time of year, cooler temperatures enhance the rate of Hg oxidation. Under typical summer conditions (for a given latitude) of temperature and cloudiness, the lifetime (tau) of Hg(0)(g) in the MBL is calculated to be around 10 days at all latitudes between the equator and 60 degrees N. This is much shorter than the generally accepted atmospheric residence time for Hg(0)(g) of a year or more. Given the relatively stable background concentrations of Hg(0)(g) which have been measured, continual replenishment of Hg(0)(g) must take place, suggesting a "multihop" mechanism for the distribution of Hg, rather than solely aeolian transport with little or no chemical transformation between source and receptor. Inclusion of an empirical Hg(0)(g) emission factor related to insolation was used to stabilize the Hg(0)(g) concentration in the model, and the emission rates necessarily agree well with estimated emission fluxes for the open ocean.

  9. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2007-10-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  10. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  11. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2014-11-01

    The temperature measurements of the Rotational Raman Lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2 Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, respectively, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a significant advance during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field-of-view in the near range. We present an example of a low-level temperature measurement which resolves the temperature gradient at the top of the stable nighttime boundary layer a hundred meters above the ground.

  12. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 Observational Prototype Experiment

    NASA Astrophysics Data System (ADS)

    Hammann, E.; Behrendt, A.; Le Mounier, F.; Wulfmeyer, V.

    2015-03-01

    The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.

  13. Forcing of global ocean models using an atmospheric boundary layer model: assessing consequences for the simulation of the AMOC

    NASA Astrophysics Data System (ADS)

    Abel, Rafael; Boening, Claus

    2015-04-01

    Current practice in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in conjunction with a prescribed, and unresponsive, atmospheric state as given, e.g., by reanalysis products. This forcing formulation corresponds to assuming an atmosphere with infinite heat capacity, and effectively damps SST anomalies even on basin scales. It thus curtails an important negative feedback between meridional ocean heat transport and SST in the North Atlantic, rendering simulations of the AMOC in such models excessively sensitive to details in the freshwater fluxes. As a consequence, such simulations are known for spurious drift behaviors which can only partially controlled by introducing some (and sometimes strong) unphysical restoring of sea surface salinity. There have been several suggestions during the last 20 years for at least partially alleviating the problem by including some simplified model of the atmospheric boundary layer (AML) which allows a feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the surface fluxes. We here present simulations with a simple, only thermally active AML formulation (based on the 'CheapAML' proposed by Deremble et al., 2013) implemented in a global model configuration based on NEMO (ORCA05). In a suite of experiments building on the CORE-bulk forcing methodology, we examine some general features of the AML-solutions (in which only the winds are prescribed) in comparison to solutions with a prescribed atmosperic state. The focus is on the North Atlantic, where we find that the adaptation of the atmospheric temperature the simulated ocean state can lead to strong local modifications in the surface heat fluxes in frontal regions (e.g., the 'Northwest Corner'). We particularly assess the potential of the AML-forcing concept for obtaining AMOC-simulations with reduced spurious drift, without

  14. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  15. Atmospheric boundary layer testing: hot-wire anemometry measurements of turbulent boundary layer flow past a two-dimensional obstacle. 1982-1983 equipment loan report. Supplement 2

    SciTech Connect

    White, B.R.; Strataridakis, C.J.

    1984-11-01

    Measurements of a zero-pressure-gradient turbulent boundary layer flow past a two-dimensional obstacle were made in the present study. Measurements were made for both smooth and rough surfaces using single and X hot-wire probes. The Reynolds number based on obstacle height and freestream velocity was about 15,302. Profiles of mean velocity, turbulent intensity and probability density functions in two dimensions were determined. Also, Reynolds stress profiles, energy spectra and second moments of energy spectra were obtained. From the results evidence emerged that upstream, over, and downstream of the obstacle there zones of recirculating flow. The flow-field was dominated by the obstacle presence, such that no distinction between smooth-and rough-surface measurements could be made.

  16. Development of a Microcomputer Coupled Atmospheric and Oceanic Boundary Layer Prediction Model.

    DTIC Science & Technology

    1983-12-01

    temperature permits the model to be applied in situations where evaporation and precipitation contribute significantly to the surface bouyacy flux...34, submitted, CA, 39 pp., Journal of Applied Meteorology, 1983, 28 pp. 2. Fleagle, R. G. and Businger, J. A., An Introduction to Atmospheric Physics...Application to a Cold Air Outbreak Episode", Journal of Atmospheric Science, 1981, 38, 2230-2242. 12. Tabata, S., A Study of the Main PhyIsical Factors

  17. TETHERED BALLOON MEASUREMENTS OF BIOGENIC VOCS IN THE ATMOSPHERIC BOUNDARY LAYER

    EPA Science Inventory

    Measurements of biogenic volatile organic compounds (BVOCs) have been made on a tethered balloon platform in eleven field deployments between 1985 and 1996. A series of balloon sampling packages have been developed for these campaigns and they have been used to describe boundary ...

  18. Modeling Sea-Surface Variability Caused by Kilometer-Scale Marine Atmospheric Boundary Layer Circulations

    DTIC Science & Technology

    1994-05-01

    implemented by Mr. Dave V. Ledvina based on work done by Dr. Chris W. Fairall, was crucial to Julie’s development of the boundary conditions. Dr. Young also...The parameter values z. and L are determined from a subroutine supplied by Dr. George S. Young. This subroutine was implemented by Mr. Dave V. Ledvina

  19. The Characterization of Atmospheric Boundary Layer Depth and Turbulence in a Mixed Rural and Urban Convective Environment

    NASA Astrophysics Data System (ADS)

    Hicks, Micheal M.

    A comprehensive analysis of surface-atmosphere flux exchanges over a mixed rural and urban convective environment is conducted at Howard University Beltsville, MD Research Campus. This heterogeneous site consists of rural, suburban and industrial surface covers to its south, east and west, within a 2 km radius of a flux sensor. The eddy covariance method is utilized to estimate surface-atmosphere flux exchanges of momentum, heat and moisture. The attributes of these surface flux exchanges are contrasted to those of classical homogeneous sites and assessed for accuracy, to evaluate the following: (I) their similarity to conventional convective boundary layer (CBL) processes and (II) their representativeness of the surrounding environment's turbulent properties. Both evaluations are performed as a function of upwind surface conditions. In particular, the flux estimates' obedience to spectrum power laws and similarity theory relationships is used for performing the first evaluation, and their ability to close the surface energy balance and accurately model CBL heights is used for the latter. An algorithm that estimates atmospheric boundary layer heights from observed lidar extinction backscatter was developed, tested and applied in this study. The derived lidar based CBL heights compared well with those derived from balloon borne soundings, with an overall Pearson correlation coefficient and standard deviation of 0.85 and 223 m, respectively. This algorithm assisted in the evaluation of the response of CBL processes to surface heterogeneity, by deriving high temporal CBL heights and using them as independent references of the surrounding area averaged sensible heat fluxes. This study found that the heterogeneous site under evaluation was rougher than classical homogeneous sites, with slower dissipation rates of turbulent kinetic energy. Flux measurements downwind of the industrial complexes exhibited enhanced efficiency in surface-atmosphere momentum, heat, and

  20. Simulation of CO2 dispersion in the atmospheric boundary layer using a mesoscale model

    NASA Astrophysics Data System (ADS)

    Granvold, P. W.; Chow, F. K.; Oldenburg, C. M.

    2007-12-01

    The consequences of unexpected releases of CO2 from underground carbon sequestration sites must be understood before large-scale carbon capture and storage projects are implemented. Carbon dioxide gas can migrate through faults, fractures, or abandoned wells that penetrate the subsurface storage site and provide a pathway to the ground surface. Though such leakage is typically slow and in small amounts, CO2 can accumulate at the ground surface because it is denser than the surrounding atmosphere. Such accumulation presents health risks for humans and animals in the vicinity, and can cause damage to crops, trees, and other vegetation. Because atmospheric dispersion of CO2 is driven by gravity and ambient wind conditions, the danger from CO2 is greatest in regions with topographic depressions where the dense gas can pool, or under stably- stratified background atmospheric conditions which further inhibit mixing and dilution of the gas. We are developing a simulation tool for predictions of CO2 releases from underground storage sites in a mesoscale atmospheric model. The model solves the compressible fluid flow equations, and has been modified to account for transport of dense gases. Example simulations from sources of different release strengths over various topography and background atmospheric conditions illustrate the behavior of the model and its utility for risk assessment and certification of carbon sequestration sites.

  1. Diurnal variability of the atmospheric boundary layer height over a tropical station in the Indian monsoon region

    NASA Astrophysics Data System (ADS)

    Mehta, Sanjay Kumar; Venkat Ratnam, Madineni; Sunilkumar, Sukumarapillai V.; Narayana Rao, Daggumati; Krishna Murthy, Boddapaty V.

    2017-01-01

    The diurnal variation of atmospheric boundary layer (ABL) height is studied using high-resolution radiosonde observations available at 3 h intervals for 3 days continuously from 34 intensive campaigns conducted during the period December 2010-March 2014 over a tropical station Gadanki (13.5° N, 79.2° E; 375 m), in the Indian monsoon region. The heights of the ABL during the different stages of its diurnal evolution, namely, the convective boundary layer (CBL), the stable boundary layer (SBL), and the residual layer (RL) are obtained to study the diurnal variabilities. A clear diurnal variation is observed in 9 campaigns out of the 34 campaigns. In 7 campaigns the SBL did not form in the entire day and in the remaining 18 campaigns the SBL formed intermittently. The SBL forms for 33-55 % of the time during nighttime and 9 and 25 % during the evening and morning hours, respectively. The mean SBL height is within 0.3 km above the surface which increases slightly just after midnight (02:00 IST) and remains almost constant until the morning. The mean CBL height is within 3.0 km above the surface, which generally increases from morning to evening. The mean RL height is within 2 km above the surface which generally decreases slowly as the night progresses. The diurnal variation of the ABL height over the Indian region is stronger during the pre-monsoon and weaker during winter season. The CBL is higher during the summer monsoon and lower during the winter season while the RL is higher during the winter season and lower during the summer season. During all the seasons, the ABL height peaks during the afternoon (˜ 14:00 IST) and remains elevated until evening (˜ 17:00 IST). The ABL suddenly collapses at 20:00 IST and increases slightly in the night. Interestingly, it is found that the low level clouds have an effect on the ABL height variability, but the deep convective clouds do not. The lifting condensation level (LCL) is generally found to occur below the ABL for the

  2. Case Studies of the Structure of the Atmospheric Boundary Layer Entrainment Zone.

    DTIC Science & Technology

    1985-01-01

    geographical placement of the sensors. One of the unique features of BLX83 was the concurrent measurement of the atmosphere by a wide variety of in...Stephens (1980) used a conditional sampling criteria for thermals that any segement of thermal or non-thermal conditions had to persist for at least 25 m

  3. Atmospheric stability of surface boundary layer in coastal region of the Wol-Ryong site

    NASA Astrophysics Data System (ADS)

    Lim, Hee-Chang

    2012-08-01

    In order to provide statistically reliable information of a wind energy site, accurate analysis on the atmospheric stability and climate characteristics in a certain area is a prerequisite. Two 2-D ultrasonic anemometers and one cup anemometer, located perpendicular to the prevailing wind direction, were used to measure the atmospheric wind environment at a height of 4.5 m in coastal region of the Wol-Ryong, Jeju, South Korea. The study is aiming to understand the atmospheric stability about a coastal region, and the effect of roughness length. We calculate the Monin-Obukhov length for division of atmospheric stability about unstable regime, neutral regime and stable regime. The distribution of diurnal Monin-Obukhov length is highly sporadic in the coastal region due to the effect of radiant heat from the surface or other environmental effects. In order to calculate the roughness length in coastal region, three different methods are applied in terms of the surface roughness, flow fluctuation and gust wind, which are called logarithmic profile, standard deviation and gust factor methods. In the study, the atmospheric stability was insignificant when applying these three methods. In the results, three different roughness length scales sufficiently showed the effect of obstacle and surface conditions around the measurement position. On the basis of an overall analysis of the short-term data measured in the Wol-Ryong area, Jeju Island, it is concluded that for the development of future wind energy resources, the Wol-Ryong site could be a good candidate for a future wind energy site.

  4. UAS and DTS: Using Drones and Fiber Optics to Measure High Resolution Temperature of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Predosa, R. A.; Darricau, B.; Higgins, C. W.

    2015-12-01

    The atmospheric boundary layer (ABL) is the lowest part of the atmosphere that directly interacts with the planet's surface. The development of the ABL plays a vital role, as it affects the transport of atmospheric constituents such as air pollutants, water vapor, and greenhouse gases. Measurements of the processes in the ABL have been difficult due to the limitations in the spatial and temporal resolutions of the equipment as well as the height of the traditional flux tower. Recent advances in the unmanned aerial vehicle (UAV) and distributed temperature sensing (DTS) technologies have provided us with new tools to study the complex processes in ABL. We conducted a series of pioneering experiments in Eastern Oregon using a platform that combines UAV and DTS to collect data during morning and evening transitions in the ABL. The major components of this platform consists of a quad-copter, a DTS computer unit, and a set of customized fiber optic cables. A total of 75 flights were completed to investigate: (1) the capability of a duplexed fiber optic cable to reduce noise in the high spatial and temporal temperature measurements taken during the morning transition; (2) the possibility of using fiber optic cable as "wet bulb" thermometer to calculate relative humidity in the ABL at high spatial and temporal resolution. The preliminary results showed that using a fiber optic cable in a duplexed configuration with the UAV-DTS platform can effectively reduce noise level during the morning transition data collection. The customized "wet bulb" fiber optic cable is capable of providing information for the calculation of relative humidity in the ABL at unprecedented spatial and temporal resolutions. From this study, the UAV-DTS platform demonstrated great potential in collecting temperature data in the ABL and with the development of atmospheric sensor technologies, it will have more applications in the future.

  5. Observations of the Atmospheric Boundary Layer Across the Land-Sea Transition Zone Using an Elastic Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Bergant, Klemen; Filipčič, Andrej; Forte, Biagio; Stanič, Samo; Veberič, Darko; Zavrtanik, Marko

    2010-05-01

    In the case of uneven terrain, atmospheric effects in the land-sea transition zone are numerous and diverse due to frequent changes in the wind direction and different effects of the heat flux on the sea and land surface. Such a case is the coastal region of the northernmost part of the Adriatic sea. Behind the coastal line the terrain rapidly rises to a Karst plateau (about 300 m a.s.l.), falls into the Vipava valley (60 m a.s.l.) and rises again to a mountainous region with maximum altitudes at about 1500 m a.s.l. To obtain complete meteorological status of the atmosphere in this region, a series of remote sensing experiments of the atmospheric boundary layer (ABL) across the land-sea transition zone were performed on 1 July 2009 using an elastic scattering lidar. The lidar system, which has vertical scanning and long-range detection functionality, was located at Otlica observatory in Slovenia, within 30 km of the coastal line and at an elevation of 945 m a.s.l. The atmosphere was scanned for elevation angles between 0° and 20° and the lidar data was processed into Cartesian 2-dimensional range-height-indicator plots with a spatial resolution of 50 m in both coordinates. Each pixel of the plot represents the weighted logarithm range-squared-corrected signal at that position and contains all the atmospheric information. Assuming horizontal atmospheric homogeneity, the optical depth, the extinction coefficients and the height of the ABL were calculated. The increase of the lidar detection range and the steepening of the optical depth profiles with time were observed, showing that on average the extinction coefficients in the ABL were decreasing during the experiment. The height of the ABL changed from 1.8 km to 0.55 km in about 3 hours. Rapid drop of the ABL height indicates highly variable atmospheric conditions in the land-sea transition zone and the adjacent mountainous region.

  6. Investigation of atmospheric boundary layer temperature, turbulence, and wind parameters on the basis of passive microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Kadygrov, Evgeny N.; Shur, Genrih N.; Viazankin, Anton S.

    2003-06-01

    The MTP-5, a microwave temperature profiler, has been widely used since 1991 for investigation of the atmospheric boundary layer (ABL). The MTP-5 is an angular scanning single-channel instrument with a central frequency of about 60 GHz, designed to provide continuous, unattended observations. It can measure the thermal emission of the atmosphere with high sensitivity (0.03 K at 1 s integration time) from different zenith angles. On the basis of this measurement, it is possible to retrieve temperature profiles at the altitude range up to 600 m, to calculate wind speed and wind direction at the lowest 250 m, and to get information about some parameters of atmospheric turbulence. This report presents some applications of the MTP-5 instrument data collected in 1998-2001 within a number of international field projects: the dynamics of ABL temperature inversion in a mountain valley (Mesoscale Alpine Program (MAP)), as well as along an island coast (north part of Sakhalin Island, Russia-Japan Project); continuous measurements of the ABL temperature profile provided from a special scientific train that crossed the territory of Russia (the Transcontinental Observations of the Chemistry of the Atmosphere Project (TROICA)); and simultaneous measurements of the ABL temperature profile provided over the central and northern part of Moscow in a continuous mode (the Global Urban Research Meteorology and Environment Project (GURME)). In 1999, two MTP-5 instruments were installed on a platform that was rotating in the azimuth direction at the 310 m Obninsk Meteorological Research Tower (Meteo Tower) to validate the method and microwave equipment for measurement of wind speed and wind direction and investigation of atmospheric turbulence. Spectral analyses of the integrated signal provided an opportunity to estimate the inertial subrange low-frequency limit and its height dependence for thermal turbulence at the lowest 200 m layer. Wavelet analysis of the signal made it possible to

  7. Evolution of Atmosphere and Ocean Boundary Layers from Aircraft Observations and Coupled COAMPS/NCOM

    DTIC Science & Technology

    2012-09-01

    visible from the observations and the presence of a secondary outflow jet to the east that influences the symmetry of the atmospheric forcing...variations of the outflow jet not visible from the observations and the presence of a secondary outflow jet to the east that influences the symmetry...DBDB2 Digital Bathymetric Data Base ESMF Earth System Modeling Framework GFS Global Forecast System GoT Gulf of Tehuantepec GOTEX Gulf of

  8. Field deployment of thin film passive air samplers for persistent organic pollutants: a study in the urban atmospheric boundary layer.

    PubMed

    Farrar, N J; Harner, T; Shoeib, M; Sweetman, A; Jones, K C

    2005-01-01

    This paper reports on the first field deployment of rapidly equilibrating thin-film passive air samplers under ambient conditions. The POlymer-coated Glass (POG) samplers have a coating of ethylene vinyl acetate (EVA) less than 1 microm thick applied to a glass surface. This can be dissolved off after exposure and prepared for the quantification of persistent organic pollutants (POPs) that have partitioned into the film during field exposure. In this study, POGs were deployed at various heights on the CN Tower in Toronto, Canada, to investigate the vertical distribution of selected compounds (PCBs, PAHs, organochlorine pesticides) in the atmospheric boundary layer of an urban area. The feasibility of the method to detect POPs from a few cubic meters of air was demonstrated, indicating the potential for rapid, low-volume sampling of air for ambient levels of POPs. PAH levels declined sharply with height, confirming ground-level emissions in urban areas as sources of these compounds; PCBs did the same, although less strongly. Different sampling events detected different vertical distributions of OC pesticides which could be related to local or distantsources, and variations in POPs on the samplers in these different events/heights demonstrate the dynamic nature of sources and atmospheric mixing of POPs.

  9. Zeppelin NT - Measurement Platform for the Exploration of Atmospheric Chemistry and Dynamics in the Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hofzumahaus, Andreas; Holland, Frank; Oebel, Andreas; Rohrer, Franz; Mentel, Thomas; Kiendler-Scharr, Astrid; Wahner, Andreas; Brauchle, Artur; Steinlein, Klaus; Gritzbach, Robert

    2014-05-01

    The planetary boundary layer (PBL) is the chemically most active and complex part of the atmosphere where freshly emitted reactive trace gases, tropospheric radicals, atmospheric oxidation products and aerosols exhibit a large variability and spatial gradients. In order to investigate the chemical degradation of trace gases and the formation of secondary pollutants in the PBL, a commercial Zeppelin NT was modified to be used as an airborne measurement platform for chemical and physical observations with high spatial resolution. The Zeppelin NT was developed by Zeppelin Luftschifftechnik (ZLT) and is operated by Deutsche Zeppelin Reederei (DZR) in Friedrichshafen, Germany. The modification was performed in cooperation between Forschungszentrum Jülich and ZLT. The airship has a length of 75 m, can lift about 1 ton of scientific payload and can be manoeuvered with high precision by propeller engines. The modified Zeppelin can carry measurement instruments mounted on a platform on top of the Zeppelin, or inside the gondola beneath the airship. Three different instrument packages were developed to investigate a. gas-phase oxidation processes involving free radicals (OH, HO2) b. formation of secondary organic aerosols (SOA) c. new particle formation (nucleation) The presentation will describe the modified airship and provide an overview of its technical performance. Examples of its application during the recent PEGASOS flight campaigns in Europe will be given.

  10. An Atmospheric Boundary Layer Stability Estimator for Urban Areas. SBIR Phase 1 Feasibility Study

    DTIC Science & Technology

    1992-12-01

    Scire S. R. Hanna Sigma Research Corporation 196 Baker Avenue Concord, MA 01742 Under Contract DAAD07-91-C-0135 Contract Monitor Frank V. Hansen ARL-CR...Sands Missile Range, NM 88003-5501 11. SUPPLEMENTARY NOTES Frank V. Hansen ( Contract Monitor) 12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION...In the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715-721. Gifford, F.A., Jr., 1976: Turbulent Diffusion--Typing schemes: A Review. Mucl

  11. The marine atmospheric boundary layer under strong wind conditions: Organized turbulence structure and flux estimates by airborne measurements

    NASA Astrophysics Data System (ADS)

    Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine

    2017-02-01

    During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.

  12. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.; Cassano, J. J.; Maslanik, J. A.; Herrmann, P. D.; Kernebone, P. A.; Crocker, R. I.; Logan, N. J.

    2012-11-01

    In September 2009, a series of long-range unmanned aircraft system (UAS) flights collected basic atmospheric data over the Terra Nova Bay polynya in Antarctica. Air temperature, wind, pressure, relative humidity, radiation, skin temperature, GPS, and operational aircraft data were collected and quality controlled for scientific use. The data has been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC) for free access (doi:10.1594/USAP/0739464).

  13. Unmanned aircraft system measurements of the atmospheric boundary layer over Terra Nova Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Knuth, S. L.; Cassano, J. J.; Maslanik, J. A.; Herrmann, P. D.; Kernebone, P. A.; Crocker, R. I.; Logan, N. J.

    2013-02-01

    In September 2009, a series of long-range unmanned aircraft system (UAS) flights collected basic atmospheric data over the Terra Nova Bay polynya in Antarctica. Air temperature, wind, pressure, relative humidity, radiation, skin temperature, GPS, and operational aircraft data were collected and quality controlled for scientific use. The data have been submitted to the United States Antarctic Program Data Coordination Center (USAP-DCC) for free access (doi:10.1594/USAP/0739464).

  14. Effect of Atmospheric Conditions on Coverage of Fogger Applications in a Desert Surface Boundary Layer

    DTIC Science & Technology

    2012-01-01

    305 -21.1 20.8 18.6 [a] SRm, U, Udir, H, θv, θg, and RH are 2 min averages of modified stability ratio (eq. 2), wind speed, wind direction, surface...R. T. H. 1968. Lidar observations of atmospheric motion in forest valleys. Bull. American Meteorol. Soc . 49(9): 918- 922. Farooq, M., W. C...theoretical distribution of airborne pollution from factory chimneys. Qtly. J. Royal Meteorol. Soc . 73(317-318): 426-436. USACHPPM. 2005. Diagnosis and

  15. MPAS Atmospheric Boundary Layer Simulation under Selected Stability Conditions: Evaluation Using the SWIFT Datasen

    SciTech Connect

    Kotamarthi, V. Rao; Feng, Yan

    2016-10-12

    Modeling the transition from mesoscale to microscale is necessary in order to model different processes that affect a wind farm and to develop forecasting tools that operate at the farm scale. The mesoscale-to-microscale coupling (MMC) project is an A2e (Atmosphere-toelectrons) coordinated activity for developing modeling capabilities at the wind farm scale. By moving the focus of the research from a single wind turbine to the collection of turbines that comprise a wind farm, A2e extends the range of spatial and timescales that need representation in a model from tens of meters to hundreds of kilometers and timescales from a few seconds to days (Bokharaie et al. 2016). In the atmosphere, these scales are represented by mesoscale-tomicroscale models. The modeling available at these scales has differed in its representation of various physical processes. The MMC group is responsible for evaluating existing models at these scales and recommending a set of options for coupling the mesoscale and microscale with the best-performing models. The group was organized in 2015 and will explore options for coupling strategies with real-world test problems in fiscal year (FY) 2017. The model of choice for this exercise is WRF (Weather Research Forecasting) for mesoscale and WRF-LES (Large Eddy Simulation) for microscale simulations. The MPAS (Model Prediction Across Scales) variable mesh model that can be continuously refined; it has dynamic core and physics options adopted from WRF, which offer an alternative platform for modeling the mesoscale.

  16. Observational and modeling studies of urban atmospheric boundary-layer height and its evolution mechanisms

    NASA Astrophysics Data System (ADS)

    He, Q. S.; Mao, J. T.; Chen, J. Y.; Hu, Y. Y.

    With a new retrieval method, the mixed layer height (MLH) over the urban area of Beijing is studied using data observed by an eye-safe, compact micro pulse lidar (MPL). The retrieval results show that the retrieved MLH agrees well with that from radiosonde data. The MLH and its growth rate are estimated from the MPL measurements. Entrainment zone thickness (EZT) is extracted from MPL datasets. Entrainment ratio calculated from MLH and EZT is about 0.24. Regional surface sensible heat fluxes are retrieved with a common thermodynamic model. The contribution of mechanical production on MLH evolution is also studied. These results determined from lidar remote sense are useful for modeling air pollution diffusion and transportation.

  17. Simulation and modeling of the turbulent katabatic flow along a hyperbolic tangent slope for stably stratified atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Brun, Ch.; Chollet, J. P.

    2009-04-01

    The behaviour of the Atmospheric Boundary layer (ABL) along alpine valleys is strongly dependent on the day-night thermodynamic cycle and might impact meteorology and air pollution prediction. At night, the ABL is stably stratified and the radiative cooling of the surface yields the development of a katabatic flow (Doran and Horst 1983, Monti et al. 2002). This flow consists of a downslope wall-jet which has the structure of both wall turbulence in the inner-layer zone and shear layer turbulence in the outer-layer zone and enhances a relative mixing eventhough stable stratification is considered (Baines 2005). A full 3D description of such flow by mean of Large Eddy Simulation of turbulence (LES) has not yet been achieved, except recently on relatively simple slopes (Skyllingstad 2003, Smith and Skyllingstad 2005) or including geostrophic wind forcing (Cuxart et al. 2006, Cuxart and Jimenez 2006). This is the purpose of the present study to accurately describe the ABL on a hyperbolic tangent slope with stable stratification. The numerical code used, Meso-NH, has been developed in CNRM/Meteo-France and Laboratoire d'Aérologie Toulouse, and consists of an anelastic non-hydrostatic model solving the pseudo-incompressible Navier-Stokes equations with a Boussinesq approximation. About 5 million grid points are necessary to afford a relatively precise description of the flow in the vicinity of the surface, with a special refinement in the vertical direction to capture the wall-jet developing along the slope. The setting of initial and boundary conditions is crucial for the simulation of stable ABL. Initial conditions consist of air at rest following a stable temperature profile with a constant Brunt-Väisälä frequency N=0.013. At the surface two sets of boundary conditions have been considered, first a rough surface condition, second an ideal case with slip conditions. A constant surface cooling q_w=-30 W/m2 is applied on the stably stratified fluid initially at rest

  18. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean

    PubMed Central

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-01-01

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m3 to 4.58 ng/m3), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m3. The highest frequency range was 1.0–1.5 ng/m3, lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss. PMID:25125264

  19. High variability of atmospheric mercury in the summertime boundary layer through the central Arctic Ocean.

    PubMed

    Yu, Juan; Xie, Zhouqing; Kang, Hui; Li, Zheng; Sun, Chen; Bian, Lingen; Zhang, Pengfei

    2014-08-15

    The biogeochemical cycles of mercury in the Arctic springtime have been intensively investigated due to mercury being rapidly removed from the atmosphere. However, the behavior of mercury in the Arctic summertime is still poorly understood. Here we report the characteristics of total gaseous mercury (TGM) concentrations through the central Arctic Ocean from July to September, 2012. The TGM concentrations varied considerably (from 0.15 ng/m(3) to 4.58 ng/m(3)), and displayed a normal distribution with an average of 1.23 ± 0.61 ng/m(3). The highest frequency range was 1.0-1.5 ng/m(3), lower than previously reported background values in the Northern Hemisphere. Inhomogeneous distributions were observed over the Arctic Ocean due to the effect of sea ice melt and/or runoff. A lower level of TGM was found in July than in September, potentially because ocean emission was outweighed by chemical loss.

  20. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  1. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  2. The impacts of summer monsoons on the ozone budget of the atmospheric boundary layer of the Asia-Pacific region.

    PubMed

    Hou, Xuewei; Zhu, Bin; Fei, Dongdong; Wang, Dongdong

    2015-01-01

    The seasonal and inter-annual variations of ozone (O3) in the atmospheric boundary layer of the Asia-Pacific Ocean were investigated using model simulations (2001-2007) from the Model of Ozone and Related chemical Tracers, version 4 (MOZART-4). The simulated O3 and diagnostic precipitation are in good agreement with the observations. Model results suggest that the Asia-Pacific monsoon significantly influences the seasonal and inter-annual variations of ozone. The differences of anthropogenic emissions and zonal winds in meridional directions cause a pollutants' transition zone at approximately 20°-30°N. The onset of summer monsoons with a northward migration of the rain belt leads the transition zone to drift north, eventually causing a summer minimum of ozone to the north of 30°N. In years with an early onset of summer monsoons, strong inflows of clean oceanic air lead to low ozone at polluted oceanic sites near the continent, while strong outflows from the continent exist, resulting in high levels of O3 over remote portions of the Asia-Pacific Ocean. The reverse is true in years when the summer monsoon onset is late.

  3. Improving Wind Predictions in the Marine Atmospheric Boundary Layer Through Parameter Estimation in a Single Column Model

    SciTech Connect

    Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; Kosovic, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-08-03

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z0 in DART. Using DART to estimate z0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z0 ensembles by 4%–22%. Finally, however, parameter estimation of z0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.

  4. Improving Wind Predictions in the Marine Atmospheric Boundary Layer Through Parameter Estimation in a Single Column Model

    DOE PAGES

    Lee, Jared A.; Hacker, Joshua P.; Monache, Luca Delle; ...

    2016-08-03

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this paper we usemore » the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts. Combining two datasets that provide lateral forcing for the SCM and two methods for determining z0, the time-varying sea-surface roughness length, we conduct four WRF-SCM/DART experiments over the October-December 2006 period. The two methods for determining z0 are the default Fairall-adjusted Charnock formulation in WRF, and using parameter estimation techniques to estimate z0 in DART. Using DART to estimate z0 is found to reduce 1-h forecast errors of wind speed over the Charnock-Fairall z0 ensembles by 4%–22%. Finally, however, parameter estimation of z0 does not simultaneously reduce turbulent flux forecast errors, indicating limitations of this approach and the need for new marine ABL parameterizations.« less

  5. Detection of atmospheric boundary layer height in the plum rain season over Hangzhou area with three-dimensional scanning polarized lidar

    NASA Astrophysics Data System (ADS)

    Tang, Peijun; Liu, Dong; Xu, Peituo; Zhou, Yudi; Bai, Jian; Liu, Chong; Wang, Kaiwei; Yang, Yongying; Shen, Yibing; Luo, Jing; Cheng, Zhongtao; Zhang, Yupeng; Liu, Yanyang

    2016-10-01

    The atmospheric boundary layer can be directly influenced by the ground and it is closely related to human activities, so the detection and investigation of the atmospheric boundary layer is very important. Due to the abundant rainfall in the plum rain season in southern China, the atmospheric boundary layer height (ABLH) is very different from any other time of the year. Lidar is an active remote-sensing instrument, and the advantage of high spatial and temporal resolution makes it very suitable for the detection of the atmosphere. In this paper, a three-dimensional (3D) polarized lidar is introduced and the structure will be given in detail. Compared to traditional one-direction ground-based lidar, the pointing of the 3D scanning lidar is very flexible and can be adjusted to any direction within the up hemisphere (360 degrees by 90 degrees) in a very short time. The ABLH in the plum rain season (from June to July 2016) over Hangzhou area (30°16' N, 120°07' E) was observed and different derivation methods, such as the wavelet covariance method, the gradient method, and the profile fitting method were carried out and compared in detail. The results show that the wavelet covariance method exhibits better stability than the gradient method and better accuracy than the profile fitting method. This work brings a more flexible and accuracy way for the ABLH detection and will be of great importance to the atmospheric study during the plum rain season.

  6. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  7. Boundary layer transition studies

    NASA Astrophysics Data System (ADS)

    Watmuff, Jonathan H.

    1995-02-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  8. Comments on Symmetric and Asymmetric Structures of Hurricane Boundary Layer in Coupled Atmosphere-Wave-Ocean Models and Observations

    DTIC Science & Technology

    2014-07-01

    main conclusions was that ‘‘the azimuthally averaged inflow layer tends to misrepresent the overall inflow structure in tropical cyclones , espe- cially...essential for the development and maintenance of a tropical cyclone (Ooyama 1969; Emanuel 1986, 1995; Smith et al. 2009; Smith and Montgomery 2010...Bryan and Rotunno 2009; Bryan 2012). However, the boundary layer is the least-observed part of a storm —in particular, its turbulence structure. With the

  9. Variability of Atmospheric Boundary Layer height over the tropical oceans - A study using atmospheric refractivity profiles from multi campaign in-situ and satellite radio occultation data.

    NASA Astrophysics Data System (ADS)

    Santosh, M.

    2016-07-01

    Atmospheric Boundary Layer (ABL) over the tropical oceans controls and regulates the influx of water vapour into the free atmosphere due to evaporation. The availability of in situ data for determining the ABL characteristics over tropical oceans are limited to different ship based campaigns and hence restricted in spatial and temporal coverage. For ABL studies the Radio Occultation (RO) based satellite data over tropical oceans have good temporal and spatial coverage but limited in temporal and spatial resolution. Atmospheric refractivity profiles are extensively used in many studies to determine the ABL height from both platforms. The present study attempts to use the advantages in both in-situ and satellite (RO) based data to quantify the variability in the ABL height over the tropical oceans. All studies done so far to identify the ABL height from RO derived refractivity profiles rely extensively on the detection of the minimum refractivity gradient (MRG) below ~6 km along with additional threshold criteria. This leads to an over estimation of ABL heights especially in presence of strong subsidence inversion caused by local/ mesoscale/ synoptic scale processes where the MRG lies significantly above the ABL. The present study attempts to quantify this over estimation using atmospheric refractivity profiles derived from thermo-dynamical parameters from radiosonde ascents over the tropical ocean, suggests an improved method of ABL detection and quantifies the variability so deduced. Over 1000 radiosonde ascents from four ship cruises conducted during DYNAMO 2011 field campaign over the tropical Indian Ocean are used for the purpose. ABL heights determined from radiosonde data using traditional methods (using virtual potential temperature and specific humidity) are compared with those identified from simulated atmospheric refractivity profiles from same data (using prevalent methods for RO) to quantify the over estimation. A new method of ABL detection from

  10. Recent Advances in Modeling of the Atmospheric Boundary Layer and Land Surface in the Coupled WRF-CMAQ Model

    EPA Science Inventory

    Advances in the land surface model (LSM) and planetary boundary layer (PBL) components of the WRF-CMAQ coupled meteorology and air quality modeling system are described. The aim of these modifications was primarily to improve the modeling of ground level concentrations of trace c...

  11. Turbulent boundary layer heat

    NASA Astrophysics Data System (ADS)

    Finson, M. L.; Clarke, A. S.; Wu, P. K. S.

    1981-01-01

    A Reynolds stress model for turbulent boundary layers is used to study surface roughness effects on skin friction and heat transfer. The issues of primary interest are the influence of roughness character (element shape and spacing) and the nature of roughness effects at high Mach numbers. Computations based on the model compare satisfactorily with measurements from experiments involving variations in roughness character, in low speed and modestly supersonic conditions. The more limited data base at hypersonic Mach numbers is also examined with reasonable success, although no quantitative explanation is offered for the reduction of heat transfer with increasing roughness observed by Holden at Me -9.4. The present calculations indicate that the mean velocity is approximately uniform over much of the height range below the tops of the elements, y less than or equal to k. With this constant (roughness velocity,) it is simple to estimate the form drag on the elements. This roughness velocity has been investigated by systematically exercising the present model over ranges of potential parameters. The roughness velocity is found to be primarily a function of the projected element frontal area per unit surface area, thus providing a new and simple method for predicting roughness character effects. The model further suggests that increased boundary layer temperatures should be generated by roughness at high edge Mach numbers, which would tend to reduce skin friction and heat transfer, perhaps below smooth wall levels.

  12. Wind-wave coupling in the atmospheric boundary layer over a reservoir: field measurements and verification of the model

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Papko, Vladislav; Baidakov, Georgy; Vdovin, Maxim; Kandaurov, Alexander; Sergeev, Daniil

    2013-04-01

    This paper presents the results of field experiments conducted at the Gorky Reservoir to test a quasi-linear model of the atmospheric boundary layer [1]. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill instruments, located on the 4 - levels from 0.1 x 5 m long; ii) profile of the surface waves with 3-channel string wave-gauge with a base of 5 cm, iii) the temperature of the water and air with a resistive sensor. From the measured profiles of wind speed, we calculated basic parameters of the atmospheric boundary layer: the friction velocity u*, the wind speed at the standard height of 10 m U10 and the drag coefficient CD. Data on CD(U10), obtained at the Gorky Reservoir, were compared with similar data obtained on Lake George in Australia during the Australian Shallow Water Experiment (AUSWEX) conducted in 1997 - 1999 [2,3]. A good agreement was obtained between measured data at two different on the parameters of inland waters: deep Gorky reservoir and shallow Lake George.To elucidate the reasons for this coincidence of the drag coefficients under strongly different conditions an analysis of surface waves was conducted.Measurements have shown that in both water bodies the surface wave spectra have almost the same asymptotics (spatial spectrum - k-3, the frequency spectrum -5), corresponding to the Phillips saturation spectrum.These spectra are typically observed for the steep surface waves, for which the basic dissipation mechanism is wave breaking. The similarity of the short-wave parts of the spectra can be regarded as a probable cause of coincidence of dependency of drag coefficient of the water surface on wind speed. Quantitative verification of this hypothesis was carried out in the framework of quasi-linear model of the wind

  13. Performance of WRF in simulating terrain induced flows and atmospheric boundary layer characteristics over the tropical station Gadanki

    NASA Astrophysics Data System (ADS)

    Hari Prasad, K. B. R. R.; Srinivas, C. V.; Rao, T. Narayana; Naidu, C. V.; Baskaran, R.

    2017-03-01

    In this study the evolution of the topographic flows and boundary layer features over a tropical hilly station Gadanki in southern India were simulated using Advanced Research WRF (ARW) mesoscale model for fair weather days during southwest monsoon (20-22 July 2011) and winter (18-20 Jan. 2011). Turbulence measurements from an Ultra High Frequency (UHF) Wind Profiler, Ultra Sonic Anemometer, GPS Sonde and meteorological tower were used for comparison. Simulations revealed development of small-scale slope winds in the lower boundary layer (below 800 m) at Gadanki which are more prevalent during nighttime. Stronger slope winds during winter and weaker flows in the monsoon season are simulated indicating the sensitivity of slope winds to the background synoptic flows and radiative heating/cooling. Higher upward surface fluxes (sensible, latent heat) and development of very deep convective boundary layer ( 2500 m) is simulated during summer monsoon relative to the winter season in good agreement with observations. Four PBL parameterizations (YSU, MYJ, MYNN and ACM) were evaluated to simulate the above characteristics. Large differences were noticed in the simulated boundary layer features using different PBL schemes in both the seasons. It is found that the TKE-closures (MYJ, MYNN) produced extremities in daytime PBL depth, surface fluxes, temperature, humidity and winds. The differences in the simulations are attributed to the eddy diffusivities, buoyancy and entrainment fluxes which were simulated differently in the respective schemes. The K-based YSU followed by MYNN best produced the slope winds as well as daytime boundary layer characteristics realistically in both the summer and winter synoptic conditions at Gadanki hilly site though with slight overestimation of nocturnal PBL height.

  14. The Impact of Upstream Flow on the Atmospheric Boundary Layer in a Valley on a Mountainous Island

    NASA Astrophysics Data System (ADS)

    Adler, Bianca; Kalthoff, Norbert

    2016-03-01

    Comprehensive measurements on the mountainous island of Corsica were used to investigate how the mountain atmospheric boundary layer (mountain ABL) in a valley downstream of the main mountain ridge was influenced by the upstream flow. The data used were mainly collected with the mobile observation platform KITcube during the first special observation period of the Hydrological cycle in the Mediterranean Experiment (HyMeX) in 2012 and were based on various in situ, remote sensing and aircraft measurements. Two days in autumn 2012 were analyzed in detail. On these days the mountain ABL evolution was a result of convection and thermally-driven circulations as well as terrain-induced dynamically-driven flows. During periods when dynamically-driven flows were dominant, warm and dry air from aloft with a large-scale westerly wind component was transported downwards into the valley. On one day, these flows controlled the mountain ABL characteristics in a large section of the valley for several hours, while on the other day their impact was observed in a smaller section of the valley for about 1 h only. To explain the observations we considered a theoretical concept based on uniform upstream stratification and wind speed, and calculated the non-dimensional mountain height and the horizontal aspect ratio of the barrier to relate the existing conditions to diagnosed regimes of stratified flow past a ridge. On both days, wave breaking, flow splitting and lee vortices were likely to occur. Besides the upstream conditions, a reduction of stability in the valley seemed to be important for the downward transport to reach the ground. The spatio-temporal structure of such a mountain ABL over complex terrain, which was affected by various interacting flows, differed a lot from that of the classical ABL over homogeneous, flat terrain and it is stressed that the traditional ABL definitions need to be revised when applying them to complex terrain.

  15. Direct and large-eddy simulations of the stable atmospheric boundary layer: the effect of unsteadiness and surface variability

    NASA Astrophysics Data System (ADS)

    Shah, S.; Bou-Zeid, E.

    2013-12-01

    Understanding and parameterizing turbulent fluxes in statically-stable atmospheric boundary layers (SABLs), where buoyant forces destroy turbulent kinetic energy, remains a challenging yet very important problem in geophysical fluid dynamics. The complexities of these flows are further exacerbated by the increased sensitivity to unsteadiness and surface variability. To address the role of these exacerbating factors, direct numerical simulations and large eddy simulations are performed. Under the highest stabilities, global intermittency (the almost compete decay of turbulence and then its regeneration) is observed. The intermittent bursts are important to study under these conditions since they become the main agent of vertical transport in the SABL. Under more moderate stabilities, continuous turbulence is maintained, but it is significantly damped compared to neutral flows. This reduction of the TKE under stable conditions is very well known; however, in this study, we show that it is mainly triggered by reduced mechanical production associated with reduced transport of Reynolds stresses from aloft toward the surface, rather than by direct destruction of TKE by buoyancy. Variability of surface temperature is shown to result in excepted flow patterns: TKE is potentially higher under the more stable patches due to advection, and the subsidence and lofting of air over the different patches can counteract the effect of spatial TKE variability on the vertical fluxes. Re_f = 600. (a) Surface Richardson number (R_{i0;t}) versus non-dimensional time (tf) for different stabilities. (b) Non-dimensional volume integrated turbulent kinetic energy per unit area (E). (c) Friction velocity (u_*) and its variation with time and stability. (d) Variation of the angle (Beta) between the geostrophic wind direction and the surface shear stress direction with time and stability. Colormap of the TKE from a heterogeneous surface temperature LES, showing the effect of advection.

  16. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.

    2011-01-01

    The inherent coupled nature of earth s energy and water cycles places significant importance on the proper representation and diagnosis of land atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation

  17. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  18. An evaluation and parameterization of stably stratified turbulence: Insights on the atmospheric boundary layer and implications for wind energy

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan M.

    This research focuses on the dynamics of turbulent mixing under stably stratified flow conditions. Velocity fluctuations and instabilities are suppressed by buoyancy forces limiting mixing as stability increases and turbulence decreases until the flow relaminarizes. Theories that ubiquitously assume turbulence collapse above a critical value of the gradient Richardson number (e.g. Ri > Ric) are common in meteorological and oceanographic communities. However, most theories were developed from results of small-scale laboratory and numerical experiments with energetic levels several orders of magnitude less than geophysical flows. Geophysical flows exhibit strong turbulence that enhances the transport of momentum and scalars. The mixing length for the turbulent momentum field, L M, serves as a key parameter in assessing large-scale, energy-containing motions. For a stably stratified turbulent shear flow, the shear production of turbulent kinetic energy, P, is here considered to be of greater relevance than the dissipation rate of turbulent kinetic energy, epsilon. Thus, the turbulent Reynolds number can be recast as Re ≡ k2/(nuP) where k is the turbulent kinetic energy, allowing for a new perspective on flow energetics. Using an ensemble data set of high quality direct numerical simulation (DNS) results, large-eddy simulation (LES) results, laboratory experiments, and observational field data of the stable atmospheric boundary layer (SABL), the dichotomy of data becomes apparent. High mixing rates persist to strong stability (e.g. Ri ≈ 10) in the SABL whereas numerical and laboratory results confirm turbulence collapse for Ri ˜ O(1). While this behavior has been alluded to in literature, this direct comparison of data elucidates the disparity in universal theories of stably stratified turbulence. From this theoretical perspective, a Reynolds-averaged framework is employed to develop and evaluate parameterizations of turbulent mixing based on the competing forces

  19. Atmospheric Boundary Layer and Clouds wind speed profile measurements with the new compact long range wind Lidar WindCube(TM) WLS70

    NASA Astrophysics Data System (ADS)

    Boquet, M.; Cariou, J. P.; Sauvage, L.; Lolli, S.; Parmentier, R.; Loaec, S.

    2009-04-01

    To fully understand atmospheric dynamics, climate studies, energy transfer, and weather prediction the wind field is one of the most important atmospheric state variables. Small scales variability and low atmospheric layers are not described with sufficient resolution up to now. To answer these needs, the WLS70 long-range wind Lidar is a new generation of wind Lidars developed by LEOSPHERE, derived from the commercial WindCube™ Lidar widely used by the wind power industry and well-known for its great accuracy and data availability. The WLS70 retrieves the horizontal and vertical wind speed profiles as well as the wind direction at various heights simultaneously inside the boundary layer and cloud layers. The amplitude and spectral content of the backscattering signal are also available. From raw data, the embedded signal processing software performs the computation of the aerosol Doppler shift and backscattering coefficient. Higher values of normalized relative backscattering (NRB) are proportional to higher aerosol concentration. At 1540 nm, molecular scattering being negligible, it is then possible to directly retrieve the Boundary Layer height evolution observing the height at which the WindCube NRB drops drastically. In this work are presented the results of the measurements obtained during the LUAMI campaign that took place in Lindenberg, at the DWD (Deutscher WetterDienst) meteorological observatory, from November 2008 to January 2009. The WLS70 Lidar instrument was placed close together with an EZ Lidar™ ALS450, a rugged and compact eye safe aerosol Lidar that provides a real time measurement of backscattering and extinction coefficients, aerosol optical depth (AOD), automatic detection of the planetary boundary layer (PBL) height and clouds base and top from 100m up to more than 20km. First results put in evidence wind shear and veer phenomena as well as strong convective effects during the raise of the mixing layer or before rain periods. Wind speed

  20. SAR-related stress variability in the marine atmospheric boundary layer. Final report, 1 June 1990-30 September 1992. [SAR (Synthetic Aperture Radars)

    SciTech Connect

    Shier, H.N.; Young, G.S.

    1992-09-30

    Satellite- or aircraft-bourne synthetic aperture radars (SAR) have the potential to serve as a powerful and essential part of the global meteorological/oceanographic observation system. While the potential of SAR systems is enormous, quantitative interpretation of SAR signals has clearly been frustrated by our incomplete understanding of the relationships between the radar backscatter cross section and a complicated heterogeneous and constantly changing state of the sea surface. In the first phase of our High-Res ARI work summarized here, we began developing two new marine atmosphere boundary layer models of the surface stress caused by submesoscale boundary layer coherent structures and we finished obtaining plainview patterns of surface stress variability caused by MABL updrafts and downdrafts. We began turning our attention to such mesoscale atmospheric circulations as the solenoidal circulation over the sea surface temperature front, the coastal sea breeze circulation, and the flow between the Bermuda High and the diurnally varying pressure through on the coastal plain. In this report, we briefly review our progress on the work that will be continued and extended during the second phase of the project from October 1, 1992 to September 30, 1995. In Appendix A and Appendix B we give two manuscripts of journal articles summarizing our results. The first one by Sikora and Young (1993) discusses the plainview patterns of surface stress variability. The second one by Wells et al. (1993) discusses a new method for estimating the correlation dimension of boundary layer turbulent time series.

  1. A new first-order turbulence mixing model for the stable atmospheric boundary-layer: development and testing in large-eddy and single column models

    NASA Astrophysics Data System (ADS)

    Huang, J.; Bou-Zeid, E.; Golaz, J.

    2011-12-01

    Parameterization of the stably-stratified atmospheric boundary-layer is of crucial importance to different aspects of numerical weather prediction at regional scales and climate modeling at global scales, such as land-surface temperature forecasts, fog and frost prediction, and polar climate. It is well-known that most operational climate models require excessive turbulence mixing of the stable boundary-layer to prevent decoupling of the atmospheric component from the land component under strong stability, but the performance of such a model is unlikely to be satisfactory under weakly and moderately stable conditions. In this study we develop and test a general turbulence mixing model of the stable boundary-layer which works under different stabilities and for steady as well as unsteady conditions. A-priori large-eddy simulation (LES) tests are presented to motivate and verify the new parameterization. Subsequently, an assessment of this model using the GFDL single-column model (SCM) is performed. Idealized test cases including continuously varying stability, as well as stability discontinuity, are used to test the new SCM against LES results. A good match of mean and flux profiles is found when the new parameterization is used, while other traditional first-order turbulence models using the concept of stability function perform poorly. SCM spatial resolution is also found to have little impact on the performance of the new turbulence closure, but temporal resolution is important and a numerical stability criterion based on the model time step is presented.

  2. A semi-analytical solution for the mean wind profile in the Atmospheric Boundary Layer: the convective case

    NASA Astrophysics Data System (ADS)

    Buligon, L.; Degrazia, G. A.; Acevedo, O. C.; Szinvelski, C. R. P.; Goulart, A. G. O.

    2010-03-01

    A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT), which combines series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.

  3. A semi-analytical solution for the mean wind profile in the Atmospheric Boundary Layer: the convective case

    NASA Astrophysics Data System (ADS)

    Buligon, L.; Degrazia, G. A.; Acevedo, O. C.; Szinvelski, C. R. P.; Goulart, A. G. O.

    2009-09-01

    A novel methodology to derive the average wind profile from the Navier-Stokes equations is presented. The development employs the Generalized Integral Transform Technique (GITT), which joints series expansions with Integral Transforms. The new approach provides a solution described in terms of the quantities that control the wind vector with height. Parameters, such as divergence and vorticity, whose magnitudes represent sinoptic patterns are contained in the semi-analytical solution. The results of this new method applied to the convective boundary layer are shown to agree with wind data measured in Wangara experiment.

  4. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  5. The Variability of Refractivity in the Atmospheric Boundary Layer of a Tropical Island Volcano Measured by Ground-Based Interferometric Radar

    NASA Astrophysics Data System (ADS)

    Wadge, G.; Costa, A.; Pascal, K.; Werner, C.; Webb, T.

    2016-11-01

    For 24 h we measured continuously the variability of atmospheric refractivity over a volcano on the tropical island of Montserrat using a ground-based radar interferometer. We observed variations in phase that we interpret as due to changing water vapour on the propagation path between the radar and the volcano and we present them here in the context of the behaviour of the atmospheric boundary layer over the island. The water vapour behaviour was forced by diurnal processes, the passage of a synoptic-scale system and the presence of a plume of volcanic gas. The interferometer collected images of amplitude and phase every minute. From pairs of phase images, interferograms were calculated and analyzed every minute and averaged hourly, together with contemporaneous measurements of zenith delays estimated from a network of 14 GPS receivers. The standard deviation of phase at two sites on the volcano surface spanned a range of about 1-5 radians, the lowest values occurring at night on the lower slopes and the highest values during the day on the upper slopes. This was also reflected in spatial patterns of variability. Two-dimensional profiles of radar-measured delays were modelled using an atmosphere with water vapour content decreasing upwards and water vapour variability increasing upwards. Estimates of the effect of changing water vapour flux from the volcanic plume indicate that it should contribute only a few percent to this atmospheric variability. A diurnal cycle within the lower boundary layer producing a turbulence-dominated mixed layer during the day and stable layers at night is consistent with the observed refractivity.

  6. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    PubMed

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events.

  7. A concurrent precursor inflow method for LES of atmospheric boundary layer flows with variable inflow direction for coupling with meso-scale models

    NASA Astrophysics Data System (ADS)

    Munters, Wim; Meneveau, Charles; Meyers, Johan

    2014-11-01

    In order to incorporate multiple scales of meteorological phenomena in atmospheric simulations, subsequent nesting of meso-scale models is often used. However, the spatial and temporal resolution in such models is too coarse to resolve the three-dimensional turbulent eddies that are characteristic for atmospheric boundary layer flows. This motivates the development of tools to couple meso-scale models to Large-Eddy Simulations (LES), in which turbulent fluctuations are explicitly resolved. A major challenge in this area is the spin-up region near the inlet of the LES in which the flow has to evolve from a RANS-like inflow, originating from the meso-scale model, to a fully turbulent velocity field. We propose a generalized concurrent precursor inflow method capable of imposing boundary conditions for time-varying inflow directions. The method is based on a periodic fully-developed precursor boundary-layer simulation that is dynamically rotated with the wind direction that drives the main LES. In this way realistic turbulent inflow conditions are applied while still retaining flexibility to dynamically adapt to meso-scale variations in wind directions. Applications to wind simulations with varying inflow directions, and comparisons to conventional coupling methods are shown. Work supported by ERC (ActiveWindFarms, Grant No: 306471). CM is supported by NSF (Grant No. 1243482).

  8. Data assimilation of AVHRR and MODIS data for land base initialization and boundary conditions in the UTC-M atmospheric boundary layer sea-breeze model of Space Coast Florida

    NASA Astrophysics Data System (ADS)

    Bostater, Charles R., Jr.; King, Jerome A.; Huddleston, Lisa H.; Bassetti, Luce

    2004-02-01

    The purpose of this paper is to present results of simulations of the Florida Tech UTC-M sea-breeze model with the addition of a simplified atmospheric downwelling radiation subroutine combined and a thermal inertia subroutine into the atmospheric planetary boundary layer model, in order to calculate time dependant heat flux boundary conditions at the air-land boundary that are derived from satellite data from AVHRR and MODIS sensors. The improved UTC-M planetary boundary layer model with this thermal sub-model subroutine is used to demonstrate the use of thermal inertia to help estimate heat fluxes at the land-air interface which in turn influences convergence and vertical fluxes near the bottom boundary, and which may affect mesoscale meteorological wind and seabreeze over complex land-water margins. Additionally, message passage interface (MPI) parallelizing Fortran techniques were used to improve the computational time when the model grid was decreased down to 2 or 1 km cell when simulations where performed on the FIT supercomputer based on an IBM Beowulf Linux cluster. We present some results of the UTC-M simulations and associated results due to the influence of the parameterization of the net surface radiation and thermal inertia using the spectral or wavelength (channel) specific data from MODIS and AVHRR satellite sensors.

  9. Effect of a cold, dry air incursion on atmospheric boundary layer processes over a high-altitude lake in the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Zhaoguo; Lyu, Shihua; Wen, Lijuan; Zhao, Lin; Ao, Yinhuan; Wang, Shaoying

    2017-03-01

    High-altitude lakes are frequently exposed to extreme meteorological conditions, but the surface and atmospheric boundary layer (ABL) processes have received little attention under specific weather conditions. This study used the multi-source field data, re-analysis and remote sensing data to investigate the varying patterns and driving forces of the convective boundary layer (CBL) height over Ngoring Lake in the Tibetan Plateau (TP) before and after the cold air incursion. Daily cumulative surface heat flux and buoyancy flux over the land were markedly larger than those over the lake on a clear summer day, but an opposite pattern was observed accompanied by the cold air incursion. CBLs determined by the potential temperature thinned (depth < 100 m) over the lake in the daytime and thickened (400-600 m) at night on a clear day. Along with the arrival of the cold air, CBL rapidly thickened to 2280 m over the lake, exceeded than the maximum value at adjacent Madoi station. Cold air dramatically cooled the middle-upper atmosphere but the temperature of the lower atmosphere cooled down slowly, partly due to a sharp increase of sensible heat flux over the lake, both of which linked up to weaken the potential temperature gradient. Moreover, increasing wind speed and vertical wind shear further facilitated the buoyancy flux to exert higher heat convection efficiency. All of these factors acted together to cause the rapid growth of CBL over the lake. This investigation provided a more in-depth knowledge of boundary layer dynamics in the lake-rich region of the TP.

  10. Minnesota 1973 atmospheric boundary layer experiment: Micrometeorological and tracer data archive. Set 1 (revision 2) documentation report

    NASA Astrophysics Data System (ADS)

    Woodruff, R. K.; Droppo, J. G.; Glantz, C. S.

    1987-03-01

    An archive for micrometeorological and tracer dispersion data was developed by Battelle, Pacific Northwest Labs. for the U.S. Environmental Protection Agency. The archive was designed to make the results of extensive field tests readily accessible to EPA for model testing, development, and verification efforts. Documentation was provided for one of the archived data sets, The Minnesota 1973 Boundary Layer Experiment. The aim of the effort was to archive invaluable data sets in a timely fashion before the necessary supporting information about the data becomes lost forever. The entries are as follows: data set fact summary, a narrative description of experimental and data, special information, references, a description of archive data files, contacts (names, addresses, and phone numbers) and standard experiment summary table. Revision 2 includes previously unpublished rawinsonde profile data.

  11. Modeling the summertime Arctic cloudy boundary layer

    SciTech Connect

    Curry, J.A.; Pinto, J.O.; McInnes, K.L.

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  12. Study of the effect of wind speed on evaporation from soil through integrated modeling of atmospheric boundary layer and shallow subsurface

    NASA Astrophysics Data System (ADS)

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan; Illangasekare, Tissa

    2013-04-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change, the movement of green house gases such as possible leaking of sequestered CO2 and the accurate detection of buried objects such as landmines. Soil moisture distribution in the shallow subsurface becomes a critical factor in all these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary

  13. Study of the Effect of Wind Speed on Evaporation from Soil Through Integrated Modeling of Atmospheric Boundary Layer and Shallow Subsurface

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Davarzani, H.; Illangasekare, T. H.

    2012-12-01

    The study of the interaction between the land and atmosphere is paramount to our understanding of many emerging problems to include climate change and the movement of green house gases such as possible leaking of sequestered CO2. Soil moisture distribution in the shallow subsurface becomes a critical factor in these problems. The heat and mass flux in the form of soil evaporation across the land surface couples the atmospheric boundary layer to the shallow subsurface. The coupling between land and the atmosphere leads to highly dynamic interactions between the porous media properties, transport processes and boundary conditions, resulting in dynamic evaporative behavior. However, the coupling at the land-atmospheric interface is rarely considered in most current models and their validation for practical applications. This is due to the complexity of the problem in field scenarios and the scarcity of field or laboratory data capable of testing and refining coupled energy and mass transfer theories. In most efforts to compute evaporation from soil, only indirect coupling is provided to characterize the interaction between non-isothermal multiphase flows under realistic atmospheric conditions even though heat and mass flux are controlled by the coupled dynamics of the land and the atmospheric boundary layer. In earlier drying modeling concepts, imposing evaporation flux (kinetic of relative humidity) and temperature as surface boundary condition is often needed. With the goal of improving our understanding of the land/atmospheric coupling, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model consists of the coupled equations of mass conservation for the liquid phase (water) and gas phase (water vapor and air) in porous medium with gas phase (water vapor and air) in free flow domain under non-isothermal, non-equilibrium conditions. The boundary conditions at the porous medium-free flow medium interface include

  14. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  15. The plasma sheet boundary layer

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Frank, L. A.; Peterson, W. K.; Lennartsson, W.

    1984-01-01

    A spatially distinct, temporally variable, transition region between the magnetotail lobes and the central plasma sheet designated the plasma sheet boundary layer has been identified from a survey of particle spectra and three-dimensional distributions as sampled by the ISEE 1 LEPEDEA. The instrumentation and data presentation are described, and the signatures of the magnetotail plasma regimes are presented and discussed for the central plasma sheet and lobe and the plasma sheet boundary layer. Comparisons of plasma parameters and distribution fucntions are made and the evolution of ion velocity distributions within the plasma sheet boundary layer is discussed. The spatial distribution of the plasma sheet boundary layer is considered and ion composition measurements are presented.

  16. Removing Boundary Layer by Suction

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  17. Instrumental intercomparison investigating vertical profiles of optical turbulence and wind speed in the lower atmospheric boundary layer during frontal passages in northwestern Germany

    NASA Astrophysics Data System (ADS)

    Sprung, Detlev; Stein, Karin; Sucher, Erik; Englander, Abraham; Fastig, Salomon; Porat, Omar

    2016-10-01

    The German-Israeli intercomparison experiment on the investigation of vertical profiles of horizontal wind speed and optical turbulence in the lower atmospheric boundary layer from 4th to 7th May 2015 was characterized by frontal activity in the atmosphere. The newly developed remote LIDAR-device of the Soreq institute for the investigation of the vertical wind and turbulence field was compared to the routinely performed measurements at the VerTurM (Vertical Turbulence Measurements) field site in Meppen, Germany. The long-term experiment VerTurM is focused on measurements of the optical turbulence and comprises scintillometer measurements close to the ground (1.15 m height), sonic anemometer measurements on a tall tower at 4 m, 8 m, 32 m, and 64 m and a SODAR-RASS-system. The temporal development of the vertical profiles of horizontal wind speed and optical turbulence Cn 2 during the frontal passage is investigated. Additional radiosonde measurements were performed to characterize the boundary layer height during the day.

  18. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2016-08-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  19. Perturbations to the Spatial and Temporal Characteristics of the Diurnally-Varying Atmospheric Boundary Layer Due to an Extensive Wind Farm

    NASA Astrophysics Data System (ADS)

    Sharma, V.; Parlange, M. B.; Calaf, M.

    2017-02-01

    The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.

  20. Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.

  1. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012-2015.

    PubMed

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-17

    The water vapour isotopic composition ((1)H2(16)O, H2(18)O and (1)H(2)H(16)O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10-20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements.

  2. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012-2015

    NASA Astrophysics Data System (ADS)

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B.; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J.; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-01

    The water vapour isotopic composition (1H216O, H218O and 1H2H16O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10-20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements.

  3. Stable isotopes in the atmospheric marine boundary layer water vapour over the Atlantic Ocean, 2012–2015

    PubMed Central

    Benetti, Marion; Steen-Larsen, Hans Christian; Reverdin, Gilles; Sveinbjörnsdóttir, Árný Erla; Aloisi, Giovanni; Berkelhammer, Max B.; Bourlès, Bernard; Bourras, Denis; de Coetlogon, Gaëlle; Cosgrove, Ann; Faber, Anne-Katrine; Grelet, Jacques; Hansen, Steffen Bo; Johnson, Rod; Legoff, Hervé; Martin, Nicolas; Peters, Andrew J.; Popp, Trevor James; Reynaud, Thierry; Winther, Malte

    2017-01-01

    The water vapour isotopic composition (1H216O, H218O and 1H2H16O) of the Atlantic marine boundary layer has been measured from 5 research vessels between 2012 and 2015. Using laser spectroscopy analysers, measurements have been carried out continuously on samples collected 10–20 meter above sea level. All the datasets have been carefully calibrated against the international VSMOW-SLAP scale following the same protocol to build a homogeneous dataset covering the Atlantic Ocean between 4°S to 63°N. In addition, standard meteorological variables have been measured continuously, including sea surface temperatures using calibrated Thermo-Salinograph for most cruises. All calibrated observations are provided with 15-minute resolution. We also provide 6-hourly data to allow easier comparisons with simulations from the isotope-enabled Global Circulation Models. In addition, backwards trajectories from the HYSPLIT model are supplied every 6-hours for the position of our measurements. PMID:28094798

  4. Large-Eddy Simulation of Atmospheric Boundary-Layer Flow Through a Wind Farm Sited on Topography

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-11-01

    Large-eddy simulation (LES) has recently been well validated and applied in the context of wind turbines over flat terrain; however, to date its accuracy has not been tested systematically in the case of turbine-wake flows over topography. Here, we investigate the wake flow in a wind farm situated on hilly terrain using LES for a case where wind-tunnel experimental data are available. To this end, first boundary-layer flow is simulated over a two-dimensional hill in order to characterize the spatial distribution of the mean velocity and the turbulence statistics. A flow simulation is then performed through a wind farm consisting of five horizontal-axis wind turbines sited over the same hill in an aligned layout. The resulting flow characteristics are compared with the former case, i.e., without wind turbines. To assess the validity of the simulations, the results are compared with the wind-tunnel measurements. It is found that LES can reproduce the flow field effectively, and, specifically, the speed-up over the hilltop and the velocity deficit and turbulence intensity enhancement induced by the turbines are well captured by the simulations. Besides, the vertical profiles of the mean velocity and turbulence intensity at different streamwise positions match well those for the experiment. In addition, another numerical experiment is carried out to show how higher (and more realistic) thrust coefficients of the turbines lead to stronger wakes and, at the same time, higher turbulence intensities.

  5. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  6. Large-eddy simulation of the diurnal cycle of the atmospheric boundary layer and influence of the radiative forcing during the Wangara experiment.

    NASA Astrophysics Data System (ADS)

    Dall'Ozzo, Cédric; Carissimo, Bertrand; Milliez, Maya; Musson-Genon, Luc; Dupont, Eric

    2013-04-01

    The ability to simulate the whole diurnal cycle of the atmospheric boundary layer in order to study the complex turbulent structures remains a difficult topic. Consequently large-eddy simulations (LES) are performed with the open source CFD code Code_Saturne [Archambeau et al., 2004]. First the code is validated on an atmospheric convective case [Schmidt and Schumann, 1989] where different subgrid-scale (SGS) models are compared: two non-dynamical SGS models [Smagorinsky, 1963] [Nicoud and Ducros, 1999] and two dynamical SGS models [Germano et al., 1991 ; Lilly, 1992] [Wong and Lilly, 1994]. Then LES are performed to simulate the whole diurnal cycle of the Wangara experiment (Day 33-34). The results are compared to measurements , RANS "k-ɛ" model and other LES performed by [Basu et al., 2008] using a locally averaged scale-dependent dynamic (LASDD) SGS model. Thereafter the influence of the radiative forcing on the atmosphere is studied testing several SGS models. The results are especially discussed on nocturnal low level jet and potential temperature gradient in the stable boundary layer. References: [Archambeau et al., 2004] Archambeau F., Mehitoua N., Sakiz M. (2004). Code_Saturne: a finite volume code for the computation of turbulent incompressible flows. International Journal on Finite Volumes 1(1). [Basu et al., 2008] Basu S., Vinuesa J. F., and Swift A. (2008). Dynamic LES modeling of a diurnal cycle. Journal of Applied Meteorology and Climatology, 47 :1156-1174. [Germano et al., 1991] Germano M., Piomelli U., Moin P., and Cabot W. H. (1991). A dynamic subgrid-scale eddy-viscosity model. Physics of Fluids, A3 :1760-1765. [Lilly, 1992] Lilly D. K. (1992). A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids, A 4 :633-635. [Schmidt and Schumann, 1989] Schmidt H. and Schumann U. (1989). Coherent structure of the convective boundary layer derived from lage-eddy simulation. Journal of Fluid Mechanics, 200 :511-562. [Smagorinsky

  7. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  8. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  9. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  10. Stability of Boundary Layer Flow.

    DTIC Science & Technology

    1980-03-01

    and Teske (1975). We can conclude (as in the case of ducting) that theoretical models of boundary layer structure and associated radar structure...FI33 (Secret). Hitney, (1978) "Surface Duct Effects," Naval Ocean Systems Center, San Diego, Calif., Report No. TD144. Lewellen, W. S., and M. E. Teske

  11. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    PubMed

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality.

  12. Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda J.; Dütsch, Marina; Hole, Lars R.; Voss, Paul B.

    2016-09-01

    Observations from CMET (Controlled Meteorological) balloons are analysed to provide insights into tropospheric meteorological conditions (temperature, humidity, wind) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We demonstrate that CMET balloons are a valuable approach for profiling the free atmosphere and boundary layer in remote regions such as the Arctic, where few other in situ observations are available for model validation.

  13. Atmospheric conditions and transport patterns associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Cammas, Jean-Pierre; Thouret, Valerie; Volz-Thomas, Andreas; Boulanger, Damien; Repapis, Christos

    2016-04-01

    layer, there are extended regions of strong subsidence in the eastern Mediterranean but also in eastern and northern Europe and over these regions the atmosphere is dryer than average. The results of this study will be used within the framework of the MACC project. References Kalabokas, P. D., Cammas, J.-P., Thouret, V., Volz-Thomas, A., Boulanger, D. and Repapis C.C. 2013. Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the eastern Mediterranean. Atmos. Chem. Phys. 13, 10339-10352. DOI: http://dx.doi.org/10.5194/acp-13-10339-2013 Kalabokas P. D., Thouret V., Cammas J.-P., Volz-thomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853.

  14. Vertical variations in the turbulent structure of the surface boundary layer over vineyards under unstable atmospheric conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to their highly-structured canopy, turbulent characteristics within and above vineyards, may not conform to those typically exhibited by other agricultural and natural ecosystems. Using data collected as a part of the Grape Remote sensing and Atmospheric Profiling and Evapotranspiration Experime...

  15. Atmosphere-Ice-Ocean Interactions During Early Autumn Freeze-up: Boundary-Layer and Surface Observations from the ACSE Field Program

    NASA Astrophysics Data System (ADS)

    Persson, Ola; Brooks, Barbara; Tjernström, Michael; Sedlar, Joseph; Brooks, Ian; Shupe, Matthew; Björck, Göran; Prytherch, John; Salisbury, Dominic; Achtert, Peggy; Sotiropoulou, Georgia; Johnston, Paul; Wolfe, Daniel

    2015-04-01

    Surface energy fluxes are key to the annual summer melt and autumn freeze-up of Arctic sea ice, but are strongly modulated by atmospheric, ocean, and sea-ice processes. This paper will examine direct observations of energy fluxes during the onset of autumn freeze-up from the Arctic Clouds in Summer Experiment (ACSE), and place them in context of those from other observational campaigns. The ACSE field program obtained measurements of surface energy fluxes, boundary-layer structure, cloud macro- and microphysical structure, and upper-ocean thermal and salinity structure from pack-ice and open-water regions in the eastern Arctic from early July to early October 2014. Late August and September measurements showed periods of energy flux deficits, leading to freeze-up of sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean appear key to producing a temporal difference between the freeze-up of the sea ice and adjacent open water. While synoptic conditions, atmospheric advection, and the annual solar cycle have primary influence determining when energy fluxes are conducive for melt or freeze, mesoscale atmospheric phenomena unique to the ice edge region appear to also play a role. For instance, low-level jets were often observed near the ice edge during the latter part of ACSE, and may have enhanced the turbulent energy loss. In conjunction with observations of summer melt, these observations of the onset of freeze-up suggest scenarios of key atmospheric processes, including thermal advection on various scales, that are important for the annual evolution of melt and freeze-up.

  16. Simulating dynamics of δ13C of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing

    NASA Astrophysics Data System (ADS)

    Chen, Baozhang; Chen, Jing M.; Tans, Pieter P.; Huang, Lin

    2006-11-01

    Stable isotopes of CO2 contain unique information on the biological and physical processes that exchange CO2 between terrestrial ecosystems and the atmosphere. Ecosystem exchange of carbon isotopes with the atmosphere is correlated diurnally and seasonally with the planetary boundary layer (PBL) dynamics. The strength of this kind of covariation affects the vertical gradient of δ13C and thus the global δ13C distribution pattern. We need to understand the various processes involved in transport/diffusion of carbon isotope ratio in the PBL and between the PBL and the biosphere and the troposphere. In this study, we employ a one-dimensional vertical diffusion/transport atmospheric model (VDS), coupled to an ecosystem isotope model (BEPS-EASS) to simulate dynamics of 13CO2 in the PBL over a boreal forest region in the vicinity of the Fraserdale (FRD) tower (49°52'29.9''N, 81°34'12.3''W) in northern Ontario, Canada. The data from intensive campaigns during the growing season in 1999 at this site are used for model validation in the surface layer. The model performance, overall, is satisfactory in simulating the measured data over the whole course of the growing season. We examine the interaction of the biosphere and the atmosphere through the PBL with respect to δ13C on diurnal and seasonal scales. The simulated annual mean vertical gradient of δ13C in the PBL in the vicinity of the FRD tower was about 0.25‰ in 1999. The δ13C vertical gradient exhibited strong diurnal (29%) and seasonal (71%) variations that do not exactly mimic those of CO2. Most of the vertical gradient (96.5% +/-) resulted from covariation between ecosystem exchange of carbon isotopes and the PBL dynamics, while the rest (3.5%+/-) was contributed by isotopic disequilibrium between respiration and photosynthesis. This disequilibrium effect on δ13C of CO2 dynamics in PBL, moreover, was confined to the near surface layers (less than 350 m).

  17. Three-Dimensional Boundary Layers.

    DTIC Science & Technology

    1985-02-01

    sketched in figure 1 . The model design is des- • cribed in more detail in reference 2. At measuring station 1 the turbulent boundary layer is very...layer methods are increasingly important as their use for design purposes increases. Specific recommendations for future work include the following. 1 ...MEMBERS M. 1 ’Ing. G&n C.Cap~lier Prof. Dr. Jr. J.L. van Ingen Directeur de l’A~rodynamique Department of Aerospace B.P. 72 Engineering% ONERA Delf

  18. Large Amplitude Spatial and Temporal Gradients in Atmospheric Boundary Layer CO2 Mole Fractions Detected With a Tower-Based Network in the U.S. Upper Midwest

    SciTech Connect

    Miles, Natasha; Richardson, S. J.; Davis, Kenneth J.; Lauvaux, Thomas; Andrews, A.; West, Tristram O.; Bandaru, Varaprasad; Crosson, Eric R.

    2012-02-21

    This study presents observations of atmospheric CO{sub 2} mole fraction from a nine-tower, regional network deployed during the North American Carbon Program's Mid-Continent Intensive during 2007-2009. Within this network in a largely agricultural area, mean atmospheric CO{sub 2} gradients were strongly correlated with both ground-based inventory data and estimates from satellite remote sensing. The average seasonal drawdown for corn-dominated sites (35 ppm) is significantly larger than has been observed at other continental boundary layer sites. Observed growing-season median CO{sub 2} gradients are strongly dependent on local flux. The gradients between cross-vegetation site-pairs, for example, average 2.0 ppm/100 km, four times larger than the similar-vegetation site-pair average. Daily-timescale gradients are as large as 5.5 ppm/100 km, but dominated by advection rather than local flux. Flooding in 2008 led to a region-wide 23 week delay in growing-season minima. The observations show that regional-scale CO{sub 2} mole fraction networks yield large, coherent signals governed largely by regional sources and sinks of CO{sub 2}.

  19. The distribution of atmospheric black carbon in the marine boundary layer over the North Atlantic and the Russian Arctic Seas in July - October 2015

    NASA Astrophysics Data System (ADS)

    Shevchenko, Vladimir P.; Kopeikin, Vladimir M.; Evangeliou, Nikolaos; Novigatsky, Alexander N.; Pankratova, Natalia V.; Starodymova, Dina P.; Stohl, Andreas; Thompson, Rona

    2016-04-01

    Black carbon (BC) particles are highly efficient at absorbing visible light, which has a large potential impact on Arctic climate. However, measurement data on the distribution of BC in the atmosphere over the North Atlantic and the Russian Arctic Seas are scarce. We present measurement data on the distribution of atmospheric BC in the marine boundary layer of the North Atlantic and Baltic, North, Norwegian, Barents, White, Kara and Laptev Seas from research cruises during July 23 to October 6, 2015. During the 62nd and 63rd cruises of the RV "Akademik Mstislav Keldysh" air was filtered through Hahnemuhle fineart quarz-microfibre filters. The mass of BC on the filter was determined by measurement of the attenuation of a beam of light transmitted through the filter. Source areas were estimated by backwards trajectories of air masses calculated using NOAA's HYSPLIT model (http://www.arl.noaa.gov/ready.html) and FLEXPART model (http://www.flexpart.eu). During some parts of the cruises, air masses arrived from background areas of high latitudes, and the measured BC concentrations were low. During other parts of the cruise, air masses arrived from industrially developed areas with strong BC sources, and this led to substantially enhanced measured BC concentrations. Model-supported analyses are currently performed to use the measurement data for constraining the emission strength in these areas.

  20. Consequences of the Large-Scale Subsidence Rate on the Stably Stratified Atmospheric Boundary Layer Over the Arctic Ocean, as seen in Large-Eddy Simulations

    SciTech Connect

    Mirocha, J D; Kosovic, B

    2006-01-19

    The analysis of surface heat fluxes and sounding profiles from SHEBA indicated possible significant effects of subsidence on the structure of stably-stratified ABLs (Mirocha et al. 2005). In this study the influence of the large-scale subsidence rate on the stably stratified atmospheric boundary layer (ABL) over the Arctic Ocean during clear sky, winter conditions is investigated using a large-eddy simulation model. Simulations are conducted while varying the subsidence rate between 0, 0.001 and 0.002 ms{sup -1}, and the resulting quasi-equilibrium ABL structure and evolution are examined. Simulations conducted without subsidence yield ABLs that are deeper, more strongly mixed, and cool much more rapidly than were observed. The addition of a small subsidence rate significantly improves agreement between the simulations and observations regarding the ABL height, potential temperature profiles and bulk heating rates. Subsidence likewise alters the shapes of the surface-layer flux, stress and shear profiles, resulting in increased vertical transport of heat while decreasing vertical momentum transport. A brief discussion of the relevance of these results to parameterization of the stable ABL under subsiding conditions in large-scale numerical weather and climate prediction models is presented.

  1. Measuring Vertical Profiles of Wind, Temperature and Humidity within the Atmospheric Boundary Layer using the Research UAVs 'M2AV Carolo'

    NASA Astrophysics Data System (ADS)

    Bange, J.; Martin, S.

    2009-09-01

    The measurement of vertical profiles is important to characterise the vertical structure of the atmospheric boundary layer (ABL). For instance, the dependence of the potential temperature on altitude defines the thermal stratification. The mechanical shear (i.e. the variation of wind speed and direction) produces turbulence and turbulent fluxes. The top of the ABL is required for scaling approaches (e.g. Deardorff scaling in the convective boundary layer, local scaling in the stable boundary layer). The Meteorological Mini Aerial Vehicles (M²AV) are self-constructed, automatically operating research aircraft of 6 kg in weight (including 1.5 kg scientific payload) and 2 m wingspan. These systems are capable of performing turbulence measurements (wind vector, temperature and humidity) and are used as a new instrument for measuring vertical profiles of the lower troposphere. Compared to a radiosonde, the spatial resolution of the M²AV is significantly higher. Especially the wind measurement is significantly more accurate compared to radiosonde data when using an aircraft that is equipped with a proper flow sensor (mainly a five-hole probe). It is important to maintain flow angles (sideslip and angle of attack) within the calibration range (typically 10 to 20 degree). This limits the vertical speed (the rate of climb and descent) of the research aircraft. In general there are two approaches to measure vertical profiles with research aircraft. Instantaneous profiles (slant flight pattern) are suitable if only little time is available, if the ABL is very in-stationary (or the aircraft is slow), if the dependence of the profile on time is requested (repeated slant flight patterns over one location) or if the dependence of the profile on the location is requested (saw-tooth pattern). For mean profiles (horizontal straight and level flights 'legs' at several altitudes within the ABL) it is necessary to use fast sensors. If the response time is too large, the vertical

  2. Observation of Chlorine and other RHS Species in the Marine Boundary Layer at Cape Verde Atmospheric Observatory

    NASA Astrophysics Data System (ADS)

    Pöhler, Denis; Tschritter, Jens; Lampel, Johannes; Frieß, Udo; Platt, Ulrich

    2014-05-01

    Reactive halogen species (RHS) have a significant influence on the marine atmosphere as they react with ozone, change the oxidation capacity and may form particles. However, their release processes, the emissions and concentrations of different RHS species are mostly uncertain. Only a few measurements exist and results are sometimes very different. Most studies focused on iodine and bromine species. Chlorine was mostly not investigated as it is typically more difficult to measure and it was expected that it has a smaller impact on the marine atmosphere and thus less significant. Recent model studies show that this assumption is probably not correct and more information of chlorine is needed to understand the processes in the marine atmosphere. We present results from measurements at the Cape Verde atmospheric research station (CVAO) during the HALOCAVE campaign in 2010 (June to October) using the LP-DOAS technique. Simultaneous measurements of a series of trace gases ranging from RHS like BrO, IO, ClO, OClO and other species like NO2, O3, CHOCHO, HCHO, SO2, HONO, NO3 have been performed along different measurement paths. In contrast to previous observations we could not observe IO above the detection limit of 0.5ppt. Also simultaneous CE-DOAS measurements could not observe IO above the detection limit of 1.0ppt. Profile retrievals of IO MAX-DOAS measurements show a concentration between 0.2 to 0.5ppt and thus in agreement with our LP-DOAS observations but not with previous findings. For BrO we found with the LP-DOAS concentrations up to 5ppt, a characteristic daily cycle with high variability from day to day indicating various metrological parameters to be significant for the bromine emission. ClO could not be observed above the relative high detection limit of approx. 25ppt. However, we found significant OClO concentrations in the night of up to 8ppt, which is most likely formed from ClO. This indicates significant chlorine concentrations in the marine atmosphere

  3. Two years observations on the diurnal evolution of coastal atmospheric boundary layer features over Thiruvananthapuram (8.5∘ N, 76.9∘ E), India

    NASA Astrophysics Data System (ADS)

    Anurose, T. J.; Subrahamanyam, D. Bala; Sunilkumar, S. V.

    2016-10-01

    The atmospheric boundary layer (ABL) over a given coastal station is influenced by the presence of mesoscale sea breeze circulation, together with the local and synoptic weather, which directly or indirectly modulate the vertical thickness of ABL (z ABL). Despite its importance in the characterization of lower tropospheric processes and atmospheric modeling studies, a reliable climatology on the temporal evolution of z ABL is not available over the tropics. Here, we investigate the challenges involved in determination of the ABL heights, and discuss an objective method to define the vertical structure of coastal ABL. The study presents a two year morphology on the diurnal evolution of the vertical thickness of sea breeze flow (z SBF) and z ABL in association with the altitudes of lifting condensation level (z LCL) over Thiruvananthapuram (8.5∘ N, 76.9∘ E), a representative coastal station on the western coastline of the Indian sub-continent. We make use of about 516 balloon-borne GPS sonde measurements in the present study, which were carried out as part of the tropical tropopause dynamics field experiment under the climate and weather of the sun-earth system (CAWSES)-India program. Results obtained from the present study reveal major differences in the temporal evolution of the ABL features in relation to the strength of sea breeze circulation and monsoonal wind flow during the winter and summer monsoon respectively. The diurnal evolution in z ABL is very prominent in the winter monsoon as against the summer monsoon, which is attributed to the impact of large-scale monsoonal flow over the surface layer meteorology. For a majority of the database, the z LCL altitudes are found to be higher than that of the z ABL, indicating a possible decoupling of the ABL with the low-level clouds.

  4. Boundary layer receptivity and control

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    Receptivity processes initiate natural instabilities in a boundary layer. The instabilities grow and eventually break down to turbulence. Consequently, receptivity questions are a critical element of the analysis of the transition process. Success in modeling the physics of receptivity processes thus has a direct bearing on technological issues of drag reduction. The means by which transitional flows can be controlled is also a major concern: questions of control are tied inevitably to those of receptivity. Adjoint systems provide a highly effective mathematical method for approaching many of the questions associated with both receptivity and control. The long term objective is to develop adjoint methods to handle increasingly complex receptivity questions, and to find systematic procedures for deducing effective control strategies. The most elementary receptivity problem is that in which a parallel boundary layer is forced by time-harmonic sources of various types. The characteristics of the response to such forcing form the building blocks for more complex receptivity mechanisms. The first objective of this year's research effort was to investigate how a parallel Blasius boundary layer responds to general direct forcing. Acoustic disturbances in the freestream can be scattered by flow non-uniformities to produce Tollmien-Schlichting waves. For example, scattering by surface roughness is known to provide an efficient receptivity path. The present effort is directed towards finding a solution by a simple adjoint analysis, because adjoint methods can be extended to more complex problems. In practice, flows are non-parallel and often three-dimensional. Compressibility may also be significant in some cases. Recent developments in the use of Parabolized Stability Equations (PSE) offer a promising possibility. By formulating and solving a set of adjoint parabolized equations, a method for mapping the efficiency with which external forcing excites the three

  5. Development of a balloon-borne stabilized platform for measuring radiative flux profiles in the atmospheric boundary layer

    SciTech Connect

    Whiteman, C.D.; Alzheimer, J.M.; Anderson, G.A.; Shaw, W.J.

    1993-03-01

    A stabilized platform has been developed to carry broadband short-wave and long-wave radiometric sensors on the tether line of a small tethered balloon that ascends through atmospheric depths of up to 1.5 km to obtain vertical profiles of radiative flux and flux divergence for evaluating atmospheric radiative transfer models. The Sky Platform was designed to keep the radiometers level despite unpredictable movements of the balloon and tether line occasioned by turbulence and wind shear. The automatic control loop drives motors, gears, and pulleys located on two of the vertices of the triangular frame to climb the harness lines to keep the platform level. Radiometric sensors, an electronic compass, and an on-board data acquisition system make up the remainder of the Sky Platform. Because knowledge of the dynamic response of the tether line-platform system is essential to properly close the automatic control loop on the Sky Platform, a Motion Sensing Platform (MSP) was developed to fly in place of the Sky Platform on the tether line to characterize the Sky Platform's operating environment. This unstabilized platform uses an array of nine solid-state linear accelerometers to measure the lateral and angular accelerations, velocities, and displacements that the Sky Platform will experience. This paper presents field performance tests of the Sky and Motion Sensing Platforms, as conducted at Richland, Washington, on February 17, 1993. The tests were performed primarily to characterize the stabilization system on the Sky Platform. Test flights were performed on this cold winter day from 1400 to 1800 Pacific Standard Time (PST). During this period, temperature profiles were near the dry adiabatic lapse rate. Flights were made through a jet wind speed profile having peak wind speeds of 7 m/s at a height of 100 m AGL. Wind directions were from the northwest. All flights were performed as continuous ascents, rather than ascending in discrete steps with halts at set altitudes.

  6. Development of a balloon-borne stabilized platform for measuring radiative flux profiles in the atmospheric boundary layer

    SciTech Connect

    Whiteman, C.D.; Alzheimer, J.M.; Anderson, G.A.; Shaw, W.J.

    1993-03-01

    A stabilized platform has been developed to carry broadband short-wave and long-wave radiometric sensors on the tether line of a small tethered balloon that ascends through atmospheric depths of up to 1.5 km to obtain vertical profiles of radiative flux and flux divergence for evaluating atmospheric radiative transfer models. The Sky Platform was designed to keep the radiometers level despite unpredictable movements of the balloon and tether line occasioned by turbulence and wind shear. The automatic control loop drives motors, gears, and pulleys located on two of the vertices of the triangular frame to climb the harness lines to keep the platform level. Radiometric sensors, an electronic compass, and an on-board data acquisition system make up the remainder of the Sky Platform. Because knowledge of the dynamic response of the tether line-platform system is essential to properly close the automatic control loop on the Sky Platform, a Motion Sensing Platform (MSP) was developed to fly in place of the Sky Platform on the tether line to characterize the Sky Platform`s operating environment. This unstabilized platform uses an array of nine solid-state linear accelerometers to measure the lateral and angular accelerations, velocities, and displacements that the Sky Platform will experience. This paper presents field performance tests of the Sky and Motion Sensing Platforms, as conducted at Richland, Washington, on February 17, 1993. The tests were performed primarily to characterize the stabilization system on the Sky Platform. Test flights were performed on this cold winter day from 1400 to 1800 Pacific Standard Time (PST). During this period, temperature profiles were near the dry adiabatic lapse rate. Flights were made through a jet wind speed profile having peak wind speeds of 7 m/s at a height of 100 m AGL. Wind directions were from the northwest. All flights were performed as continuous ascents, rather than ascending in discrete steps with halts at set altitudes.

  7. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

    NASA Astrophysics Data System (ADS)

    Piazza, Marie; Terray, Laurent; Boé, Julien; Maisonnave, Eric; Sanchez-Gomez, Emilia

    2016-03-01

    A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air-sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

  8. A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign

    NASA Astrophysics Data System (ADS)

    Xia, Geng; Zhou, Liming; Freedman, Jeffrey M.; Roy, Somnath Baidya; Harris, Ronald A.; Cervarich, Matthew Charles

    2016-04-01

    Recent studies using satellite observations show that operational wind farms in west-central Texas increase local nighttime land surface temperature (LST) by 0.31-0.70 °C, but no noticeable impact is detected during daytime, and that the diurnal and seasonal variations in the magnitude of this warming are likely determined by those in the magnitude of wind speed. This paper further explores these findings by using the data from a year-long field campaign and nearby radiosonde observations to investigate how thermodynamic profiles and surface-atmosphere exchange processes work in tandem with the presence of wind farms to affect the local climate. Combined with satellite data analyses, we find that wind farm impacts on LST are predominantly determined by the relative ratio of turbulence kinetic energy (TKE) induced by the wind turbines compared to the background TKE. This ratio explains not only the day-night contrast of the wind farm impact and the warming magnitude of nighttime LST over the wind farms, but also most of the seasonal variations in the nighttime LST changes. These results indicate that the diurnal and seasonal variations in the turbine-induced turbulence relative to the background TKE play an essential role in determining those in the magnitude of LST changes over the wind farms. In addition, atmospheric stability determines the sign and strength of the net downward heat transport as well as the magnitude of the background TKE. The study highlights the need for better understanding of atmospheric boundary layer and wind farm interactions, and for better parameterizations of sub-grid scale turbulent mixing in numerical weather prediction and climate models.

  9. Dynamic of the atmospheric boundary layer from the isotopic composition of surface water vapor at the Maïdo Observatory (La Réunion, Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Guilpart, Etienne; Vimeux, Francoise; Metzger, Jean-Marc; Evan, Stephanie; Brioude, Jerome; Cattani, Olivier

    2016-04-01

    Projections of tropical and subtropical precipitation strongly differ from one climate model to another, both in sign and in amplitude. This is the case for example in some parts of the West Indian Ocean. The causes of those uncertainties are numerous and a better understanding of humid processes in the tropical atmosphere is needed. We propose to address this burning question by using water stables isotopes. We have been measuring the isotopic composition of surface water vapor at the atmospheric Observatory of Maïdo located at La Reunion Island (21°S, 55°E, 2200m a.s.l) since November 2014. Our results exhibit a strong diurnal cycle all over the year (except during cyclonic activity), with almost constant isotopic values during the day (around -13.5±0.6‰ for oxygen 18 from November 2014 to November 2015) and variable and very depleted isotopic values during the night (down to -35‰ for oxygen 18 over the same period) associated with low humidity levels. We will show in this presentation that the diurnal isotopic variations are associated to a strong air masses mixing. During the day, the isotopic composition of the vapor is typical of marine boundary layer (BL) moisture transported from the close Ocean and lifted up to the Maïdo station. During the night, the depleted values and the low humidity could trace free troposphere moisture, which is consistent with previous studies suggesting that the Maïdo Observatory is above the BL during the night. We will explore the influence of the daily BL development on our observations, using a set of atmospheric vertical profiles done on site in May 2015 during the BIOMAIDO campaign. At last, we will discuss the most isotopic depleted values recorded in our observations during the night as a possible consequence of regional strong subsidences.

  10. Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of Stability Conditions in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Salzano, Roberto; Pasini, Antonello; Casasanta, Giampietro; Cacciani, Marco; Perrino, Cinzia

    2016-09-01

    Determining the mixing height using a tracer can improve the information obtained using traditional techniques. Here we provide an improved box model based on radon progeny measurements, which considers the vertical entrainment of residual layers and the variability in the soil radon exhalation rate. The potential issues in using progeny instead of radon have been solved from both a theoretical and experimental perspective; furthermore, the instrumental efficiency and the counting scheme have been included in the model. The applicability range of the box model has been defined by comparing radon-derived estimates with sodar and lidar data. Three intervals have been analyzed ("near-stable", "transition" and "turbulent"), and different processes have been characterized. We describe a preliminary application case performed in Rome, Italy, while case studies will be required to determine the range limits that can be applied in any circumstances.

  11. LES of Scalar transport in a turbulent katabatic flow along a curved slope in the context of stably stratified atmospheric boundary layer.

    NASA Astrophysics Data System (ADS)

    Brun, Christophe; Chollet, Jean Pierre

    2010-05-01

    The behaviour of the Atmospheric Boundary layer (ABL) along alpine valleys is strongly dependent on the day-night thermodynamic cycle and might impact meteorology and air pollution prediction. At night, the ABL is stably stratified and the radiative cooling of the surface yields the development of a katabatic flow. This flow consists of a downslope wall-jet which has the structure of both wall turbulence in the inner-layer zone and shear layer turbulence in the outer-layer zone and enhances a relative mixing eventhough stable stratification is considered. A full 3D description of such flow by mean of Large Eddy Simulation of turbulence (LES) has not yet been achieved, except recently on relatively simple slopes (Skyllingstad 2003, Fedorovith and Shapiro 2009) or including geostrophic wind forcing (Cuxart et al. 2006, Cuxart and Jimenez 2006). This is the purpose of the present study to accurately describe the ABL on a curved slope with stable stratification, including passive scalar transport. The numerical code used, Meso-NH, has been developed in CNRM/Meteo-France and Laboratoire d'Aérologie Toulouse, and consists of an anelastic non-hydrostatic model solving the pseudo-incompressible Navier-Stokes equations. About 5 million grid points are necessary to afford a relatively precise description of the flow in the vicinity of the ground surface, with a special refinement down to 1 m in the vertical direction to capture the wall-jet developing along the slope. The setting of initial and boundary conditions is crucial for the simulation of stable ABL. Initial conditions consist of air at rest following a stable temperature profile with a constant Brunt-Väisälä frequency 0.01boundary condition with a roughness length of r=35 cm is applied as no-slip condition. A constant surface cooling -30 W/m2 < qw < -10 W/m2 is applied on the stably stratified fluid initially at rest, which generates a katabatic downslope flow along the bottom surface

  12. Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF

    NASA Astrophysics Data System (ADS)

    Ma, Yuanyuan; Yang, Yi; Hu, Xiao-Ming; Gan, Ruhui

    2015-10-01

    Although sudden nocturnal warming events near the earth's surface in Australia and the United States have been examined in previous studies, similar events observed occasionally over the Loess Plateau of Northwest China have not yet been investigated. The factors that lead to these warming events in such areas with their unique topography and climate remain not clear. To understand the formation mechanisms and associated thermal and dynamical features, a nocturnal warming event recorded in Gansu Province (northwest of the Loess Plateau) in June 2007 was investigated by using observations and model simulations with the Weather Research and Forecasting (WRF) model. Observations showed that this near-surface warming event lasted for 4 h and the temperature increased by 2.5°C. During this event, a decrease in humidity occurred simultaneously with the increase of temperature. The model simulation showed that the nocturnal warming was caused mainly by the transport of warmer and drier air aloft downward to the surface through enhanced vertical mixing. Wind shear played an important role in inducing the elevated vertical mixing, and it was enhanced by the continuous development of the atmospheric baroclinicity, which converted more potential energy to kinetic energy.

  13. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers

    SciTech Connect

    Muñoz-Esparza, D.; Kosović, B.; Beeck, J. van; Mirocha, J.

    2015-03-15

    Despite the variety of existing methods, efficient generation of turbulent inflow conditions for large-eddy simulation (LES) models remains a challenging and active research area. Herein, we extend our previous research on the cell perturbation method, which uses a novel stochastic approach based upon finite amplitude perturbations of the potential temperature field applied within a region near the inflow boundaries of the LES domain [Muñoz-Esparza et al., “Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models,” Boundary-Layer Meteorol., 153, 409–440 (2014)]. The objective was twofold: (i) to identify the governing parameters of the method and their optimum values and (ii) to generalize the results over a broad range of atmospheric large-scale forcing conditions, U{sub g} = 5 − 25 m s{sup −1}, where U{sub g} is the geostrophic wind. We identified the perturbation Eckert number, Ec=U{sub g}{sup 2}/ρc{sub p}θ{sup ~}{sub pm}, to be the parameter governing the flow transition to turbulence in neutrally stratified boundary layers. Here, θ{sup ~}{sub pm} is the maximum perturbation amplitude applied, c{sub p} is the specific heat capacity at constant pressure, and ρ is the density. The optimal Eckert number was found for nonlinear perturbations allowed by Ec ≈ 0.16, which instigate formation of hairpin-like vortices that most rapidly transition to a developed turbulent state. Larger Ec numbers (linear small-amplitude perturbations) result in streaky structures requiring larger fetches to reach the quasi-equilibrium solution, while smaller Ec numbers lead to buoyancy dominated perturbations exhibiting difficulties for hairpin-like vortices to emerge. Cell perturbations with wavelengths within the inertial range of three-dimensional turbulence achieved identical quasi-equilibrium values of resolved turbulent kinetic energy, q, and Reynolds-shear stress, . In contrast, large-scale perturbations

  14. Operational Performance of Sensor Systems Used to Determine Atmospheric Boundary Layer Properties as Part of the NASA Aircraft Vortex Spacing System Project

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.; Nolf, Scott; McKissick, Burnell T. (Technical Monitor)

    2001-01-01

    There has been a renewed interest in the application of remote sensor technology to operational aviation and airport-related activities such as Aircraft Vortex Spacing System (AVOSS). Radio Acoustic Sounding Systems (RASS), Doppler-acoustic sodars, Ultrahigh Frequencies (UHF) profilers and lidars have many advantages in measuring wind and temperature profiles in the lower atmospheric boundary layer since they can operate more or less continuously and unattended; however, there are limitations in their operational use at airports. For example, profilers deteriorate (limited altitude coverage or missing) in moderate or greater rain and can be affected by airplane targets in their field of view. Sodars can handle precipitation better but are affected by the high noise environments of airports and strong winds. Morning temperature inversions typically limit performance of RASS, sodars and profilers. Fog affects sonic anemometers. Lidars can have difficulties in clouds, fog or heavy precipitation. Despite their limitations these sensors have proven useful to provide wind and temperature profiles for AVOSS. Capabilities and limitations of these and other sensors used in the AVOSS program are discussed, parameter settings for the sensor systems are documented, and recommendations are made for the most cost-effective group of sensors for the future. The potential use of specially tuned dynamic forecast models and measurements from landing and departing aircraft are addressed.

  15. Observations of Marine Atmospheric Boundary Layer Processes and High-Frequency Internal Waves from Ship-Launched UAVs and Ship-based Instrumentation

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Melville, W. K.

    2014-12-01

    We present measurements obtained during the October 2012 EquatorMix experiment (0N, 140W), in which we deployed ship-launched and recovered Boeing-Insitu ScanEagle unmanned aerial vehicles (UAVs) to measure momentum and energy fluxes, ocean surface processes, and the marine atmospheric boundary layer (MABL). The UAV dataset is complemented by measurements from a suite of ship-based instrumentation, including a foremast MABL eddy covariance system, scanning and point lidar altimeters, a laser Doppler wind profiler, and a digitized X-band radar system (WaMoS). The combination of the unmanned aircraft and the ship instrumentation provides a novel and valuable dataset of many air-sea interaction phenomena, extending from 100s of meters below the surface to 1500 m above. Ocean surface displacements observed with the UAV lidar altimeter (coupled with a GPS/IMU) give evidence of high-frequency equatorial internal waves, with measurements consistent and coherent with those from ship-based X-band radar, the Hydrographic Doppler Sonar System (HDSS), and a theoretical model. UAV-based flux measurements at low altitudes (down to 30 meters) are consistent with ship-based eddy covariance measurements, but reveal differences between along- and crosswind sampling flight legs associated with longitudinal roll structures that are not captured by the ship measurements from tracks mainly in the upwind-downwind directions.

  16. Atmospheric Boundary Layer Wind Data During the Period January 1, 1998 Through January 31, 1999 at the Dallas-Fort Worth Airport. Volume 1; Quality Assessment

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.

    2000-01-01

    The quality of the Aircraft Vortex Spacing System (AVOSS) is critically dependent on representative wind profiles in the atmospheric boundary layer. These winds observed from a number of sensor systems around the Dallas-Fort Worth airport were combined into single vertical wind profiles by an algorithm developed and implemented by MIT Lincoln Laboratory. This process, called the AVOSS Winds Analysis System (AWAS), is used by AVOSS for wake corridor predictions. During times when AWAS solutions were available, the quality of the resultant wind profiles and variance was judged from a series of plots combining all sensor observations and AWAS profiles during the period 1200 to 0400 UTC daily. First, input data was evaluated for continuity and consistency from criteria established. Next, the degree of agreement among all wind sensor systems was noted and cases of disagreement identified. Finally, the resultant AWAS solution was compared to the quality-assessed input data. When profiles differed by a specified amount from valid sensor consensus winds, times and altitudes were flagged. Volume one documents the process and quality of input sensor data. Volume two documents the data processing/sorting process and provides the resultant flagged files.

  17. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  18. Development and testing of instrumentation for ship-based UAV measurements of ocean surface processes and the marine atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Reineman, B. D.; Lenain, L.; Statom, N.; Melville, W. K.

    2012-12-01

    We have developed instrumentation packages for unmanned aerial vehicles (UAVs) to measure ocean surface processes along with momentum fluxes and latent, sensible, and radiative heat fluxes in the marine atmospheric boundary layer (MABL). The packages have been flown over land on BAE Manta C1s and over water on Boeing-Insitu ScanEagles. The low altitude required for accurate surface flux measurements (< 30 m) is below the typical safety limit of manned research aircraft; however, with advances in laser altimeters, small-aircraft flight control, and real-time kinematic differential GPS, low-altitude flight is now within the capability of small UAV platforms. Fast-response turbulence, hygrometer, and temperature probes permit turbulent flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Onboard laser altimetry and high-resolution visible and infrared video permit observations of surface waves and fine-scale (O(10) cm) ocean surface temperature structure. Flight tests of payloads aboard ScanEagle UAVs were conducted in April 2012 at the Naval Surface Warfare Center Dahlgren Division (Dahlgren, VA), where measurements of water vapor, heat, and momentum fluxes were made from low-altitude (31-m) UAV flights over water (Potomac River). ScanEagles are capable of ship-based launch and recovery, which can extend the reach of research vessels and enable scientific measurements out to ranges of O(10-100) km and altitudes up to 5 km. UAV-based atmospheric and surface observations can complement observations of surface and subsurface phenomena made from a research vessel and avoid the well-known problems of vessel interference in MABL measurements. We present a description of the instrumentation, summarize results from flight tests, and discuss potential applications of these UAVs for ship-based MABL studies.

  19. The marine atmospheric boundary layer during the HyMeX-ASICS-MED campaign: characterization of coherent structures and impact on turbulent flux estimates

    NASA Astrophysics Data System (ADS)

    Brilouet, Pierre-Etienne; Canut, Guylaine; Durand, Pierre

    2015-04-01

    During winter, the North Western Mediterranean Sea is characterised by intense air-sea exchanges linked to regional strong winds (Mistral or Tramontana) which bring cold and dry continental air over a warmer sea. The HyMeX-ASICS-MED field campaign, devoted to intense sea-atmosphere exchange and deep oceanic convection analysis took place in the Gulf of Lion during winter 2013. The French ATR42 aircraft was operated to document the mean and turbulent structure of the atmospheric boundary layer (ABL) during strong wind conditions. The aircraft was equipped to measure turbulence fluctuations, thus allowing the computation of turbulence parameters. The flight strategy consisted of stacked horizontal legs oriented along and across the wind direction, in order to obtain information about the isotropy of the turbulent field and about coherent structures. Strong wind events were documented with 11 flights during which latent heat flux up to 600 W.m-2 were observed. The structure of the turbulent field is analysed through the integral length scale and the wavelength of the spectrum peak of the vertical velocity which represent the size of the large and the most energetic eddies, respectively. It reveals a stretching of turbulent eddies along the mean wind. This kind of organized structures plays a major role by modulating the transfers inside the ABL. In particular, this non-isotropic behaviour alters the flux estimates from along-wind samples. This last point is critical because surface and entrainment fluxes, deduced from extrapolation of the flux profiles, are essential parameters to characterise the coupling between air-sea exchanges and the ABL structure.

  20. Exploring a geophysical process-based attribution technique for the determination of the atmospheric boundary layer depth using aerosol lidar and near-surface meteorological measurements

    NASA Astrophysics Data System (ADS)

    Pal, Sandip; Haeffelin, Martial; Batchvarova, Ekaterina

    2013-08-01

    A new objective method for the determination of the atmospheric boundary layer (ABL) depth using routine vertically pointing aerosol lidar measurements is presented. A geophysical process-based analysis is introduced to improve the attribution of the lidar-derived aerosol gradients, which is so far the most challenging part in any gradient-based technique. Using micrometeorological measurements of Obukhov length scale, both early morning and evening transition periods are determined which help separate the turbulence regimes during well-mixed convective ABL and nocturnal/stable ABL. The lidar-derived aerosol backscatter signal intensity is used to determine the hourly-averaged vertical profiles of variance of the fluctuations of particle backscatter signal providing the location of maximum turbulent mixing within the ABL; thus, obtained mean ABL depth guides the attribution by searching for the appropriate minimum of the gradients. An empirical classification of the ABL stratification patterns into three different types is proposed by determining the changes in the near-surface stability scenarios. First results using the lidar observations obtained between March and July in 2011 at SIRTA atmospheric observatory near Palaiseau (Paris suburb) in France demonstrate that the new attribution technique makes the lidar estimations of ABL depth more physically reliable under a wide spectrum of meteorological conditions. While comparing lidar and nearby radiosonde measurements of ABL depths, an excellent concordance was found with a correlation coefficient of 0.968 and 0.927 for daytime and nighttime measurements, respectively. A brief climatology of the characteristics of the ABL depth, its diurnal cycle, a detailed discussion of the morning and evening transitions are presented.

  1. Boundary Layer Heights from CALIOP

    NASA Astrophysics Data System (ADS)

    Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.

    2012-12-01

    This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.

  2. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  3. Seasonal variations in δ13C and δ18O of atmospheric CO2 measured in the urban boundary layer over Vancouver, Canada in relation to fuel emissions.

    NASA Astrophysics Data System (ADS)

    Lee, J.; Christen, A.; Ketler, R.; Nesic, Z.; Schwendenmann, L.; Semmens, C.

    2014-12-01

    Recent advances in techniques to measure carbon dioxide (CO2) in urban plumes show potential for validating and monitoring emission inventories at regional to urban scale. A major challenge remains the attribution of elevated CO2 in urban plumes to different fuel and biogenic sources. Stable isotopes are a promising source of additional information. Here, we report a full year of measurements of CO2 mixing ratios, δ13C and δ18O in CO2 in the urban boundary layer over Vancouver, Canada. The goal of the work is to link seasonally changing isotopic composition to dominant fuel sources and put the urban enhancement into the context of regional background concentrations. Atmospheric composition in the urban atmosphere was measured continuously using a tunable diode laser absorption system (TGA 200, Campbell Scientific, Logan, UT, USA). In addition, end member signatures were determined by means of bag samples from representative fuel emission sources (gasoline, diesel, natural gas). While δ13C depends on the fuel type and origin (for Vancouver in 2013/14: δ13C gasoline 27.2‰; diesel -28.8‰; natural gas -41.6‰), δ18O is fractionated in catalytic converters (d18O gasoline vehicles -12.5‰; diesel -18.6‰; natural gas -22.7‰) and exhibits higher variability between samples. Additional signatures were determined for human, soil and plant respiration. During the study year, monthly mean mixing ratios in the urban atmosphere ranged between 410.5 (Jul) and 425.7 ppm (Dec), which was on average 18 ppm elevated above the regional background. As expected, mean monthly δ13C was lower in winter than summer with seasonally changing intercepts between -33.6‰ (JJF) and -27.7‰ (MJJ). Making the simple assumption that natural gas and gasoline are the only major fuel sources, natural gas would contribute ~45% to emissions in winter and ~3% in early summer, which is lower than the downscaled Local Emissions Inventory (57% in winter and 20% in summer). Mean δ18O showed

  4. Vortex boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1986-01-01

    Parametric studies to identify a vortex generator were completed. Data acquisition in the first chosen configuration, in which a longitudinal vortex pair generated by an isolated delta wing starts to merge with a turbulent boundary layer on a flat plate fairly close to the leading edge is nearly completed. Work on a delta-wing/flat-plate combination, consisting of a flow visualization and hot wire measurements taken with a computer controlled traverse gear and data logging system were completed. Data taking and analysis have continued, and sample results for another cross stream plane are presented. Available data include all mean velocity components, second order mean products of turbulent fluctuations, and third order mean products. Implementation of a faster data logging system was accomplished.

  5. Boundary layer theory and subduction

    SciTech Connect

    Fowler, A.C.

    1993-12-01

    Numerical models of thermally activated convective flow in Earth`s mantle do not resemble active plate tectonics because of their inability to model successfully the process of subduction, other than by the inclusion of artificial weak zones. Here we show, using a boundary layer argument, how the `rigid lid` style of convection favored by thermoviscous fluids leads to lithospheric stresses which may realistically exceed the yield stress and thus cause subduction ot occur through the visoc-plastic failure of lithospheric rock. An explicit criterion for the failure of the lid is given, which is sensitive to the internal viscosity eta(sub a) below the lid. For numbers appropriate to Earth`s mantle, this criterion is approximately eta(sub a) greater than 10(exp 21) Pa s.

  6. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  7. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface.

    PubMed

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account.

  8. Impact of storm-induced cooling of sea surface temperature on large turbulent eddies and vertical turbulent transport in the atmospheric boundary layer of Hurricane Isaac

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Wang, Yuting; Chen, Shuyi S.; Curcic, Milan; Gao, Cen

    2016-01-01

    Roll vortices in the atmospheric boundary layer (ABL) are important to oil operation and oil spill transport. This study investigates the impact of storm-induced sea surface temperature (SST) cooling on the roll vortices generated by the convective and dynamic instability in the ABL of Hurricane Isaac (2012) and the roll induced transport using hindcasting large eddy simulations (LESs) configured from the multiply nested Weather Research & Forecasting model. Two experiments are performed: one forced by the Unified Wave INterface - Coupled Model and the other with the SST replaced by the NCEP FNL analysis that does not include the storm-induced SST cooling. The simulations show that the roll vortices are the prevalent eddy circulations in the ABL of Isaac. The storm-induced SST cooling causes the ABL stability falls in a range that satisfies the empirical criterion of roll generation by dynamic instability, whereas the ABL stability without considering the storm-induced SST cooling meets the criterion of roll generation by convective instability. The ABL roll is skewed and the increase of convective instability enhances the skewness. Large convective instability leads to large vertical transport of heat and moisture; whereas the dominant dynamic instability results in large turbulent kinetic energy but relatively weak heat and moisture transport. This study suggests that failure to consider roll vortices or incorrect initiation of dynamic and convective instability of rolls in simulations may substantially affect the transport of momentum, energy, and pollutants in the ABL and the dispersion/advection of oil spill fume at the ocean surface.

  9. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface

    PubMed Central

    Davarzani, Hossein; Smits, Kathleen; Tolene, Ryan M; Illangasekare, Tissa

    2014-01-01

    In an effort to develop methods based on integrating the subsurface to the atmospheric boundary layer to estimate evaporation, we developed a model based on the coupling of Navier-Stokes free flow and Darcy flow in porous medium. The model was tested using experimental data to study the effect of wind speed on evaporation. The model consists of the coupled equations of mass conservation for two-phase flow in porous medium with single-phase flow in the free-flow domain under nonisothermal, nonequilibrium phase change conditions. In this model, the evaporation rate and soil surface temperature and relative humidity at the interface come directly from the integrated model output. To experimentally validate numerical results, we developed a unique test system consisting of a wind tunnel interfaced with a soil tank instrumented with a network of sensors to measure soil-water variables. Results demonstrated that, by using this coupling approach, it is possible to predict the different stages of the drying process with good accuracy. Increasing the wind speed increases the first stage evaporation rate and decreases the transition time between two evaporative stages (soil water flow to vapor diffusion controlled) at low velocity values; then, at high wind speeds the evaporation rate becomes less dependent on the wind speed. On the contrary, the impact of wind speed on second stage evaporation (diffusion-dominant stage) is not significant. We found that the thermal and solute dispersion in free-flow systems has a significant influence on drying processes from porous media and should be taken into account. PMID:25309005

  10. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Hu, Xiao-Ming; Liu, Shuhua; Qian, Tingting; Xue, Ming; Zheng, Yijia; Wang, Shu

    2015-12-01

    The Beijing-Tianjin-Hebei (BTH) region experiences frequent heavy haze pollution in fall and winter. Pollution was often exacerbated by unfavorable atmospheric boundary layer (BL) conditions. The topography in this region impacts the BL processes in complex ways. Such impacts and implications on air quality are not yet clearly understood. The BL processes in all four seasons in BTH are thus investigated in this study using idealized simulations with the WRF-Chem model. Results suggest that seasonal variation of thermal conditions and synoptic patterns significantly modulates BL processes. In fall, with a relatively weak northwesterly synoptic forcing, thermal contrast between the mountains and the plain leads to a prominent mountain-plain breeze circulation (MPC). In the afternoon, the downward branch of the MPC, in addition to northwesterly warm advection, suppresses BL development over the western side of BTH. In the eastern coastal area, a sea-breeze circulation develops late in the morning and intensifies during the afternoon. In summer, southeasterly BL winds allow the see-breeze front to penetrate farther inland (˜150 km from the coast), and the MPC is less prominent. In spring and winter, with strong northwesterly synoptic winds, the sea-breeze circulation is confined in the coastal area, and the MPC is suppressed. The BL height is low in winter due to strong near-surface stability, while BL heights are large in spring due to strong mechanical forcing. The relatively low BL height in fall and winter may have exacerbated the air pollution, thus contributing to the frequent severe haze events in the BTH region.

  11. Implementation of non-local boundary layer schemes in the Regional Atmospheric Modeling System and its impact on simulated mesoscale circulations

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Ronda, R. J.; Caselles, V.; Estrela, M. J.

    2016-11-01

    This paper proposes the implementation of different non-local Planetary Boundary Layer schemes within the Regional Atmospheric Modeling System (RAMS) model. The two selected PBL parameterizations are the Medium-Range Forecast (MRF) PBL and its updated version, known as the Yonsei University (YSU) PBL. YSU is a first-order scheme that uses non-local eddy diffusivity coefficients to compute turbulent fluxes. It is based on the MRF, and improves it with an explicit treatment of the entrainment. With the aim of evaluating the RAMS results for these PBL parameterizations, a series of numerical simulations have been performed and contrasted with the results obtained using the Mellor and Yamada (MY) scheme, also widely used, and the standard PBL scheme in the RAMS model. The numerical study carried out here is focused on mesoscale circulation events during the summer, as these meteorological situations dominate this season of the year in the Western Mediterranean coast. In addition, the sensitivity of these PBL parameterizations to the initial soil moisture content is also evaluated. The results show a warmer and moister PBL for the YSU scheme compared to both MRF and MY. The model presents as well a tendency to overestimate the observed temperature and to underestimate the observed humidity, considering all PBL schemes and a low initial soil moisture content. In addition, the bias between the model and the observations is significantly reduced moistening the initial soil moisture of the corresponding run. Thus, varying this parameter has a positive effect and improves the simulated results in relation to the observations. However, there is still a significant overestimation of the wind speed over flatter terrain, independently of the PBL scheme and the initial soil moisture used, even though a different degree of accuracy is reproduced by RAMS taking into account the different sensitivity tests.

  12. Vertical profiles of aerosol black carbon in the atmospheric boundary layer over a tropical coastal station: Perturbations during an annular solar eclipse

    NASA Astrophysics Data System (ADS)

    Babu, S. Suresh; Sreekanth, V.; Moorthy, K. Krishna; Mohan, Mannil; Kirankumar, N. V. P.; Subrahamanyam, D. Bala; Gogoi, Mukunda M.; Kompalli, Sobhan Kumar; Beegum, Naseema; Chaubey, Jai Prakash; Kumar, V. H. Arun; Manchanda, Ravi K.

    2011-03-01

    Altitude profiles of aerosol black carbon (BC) in the atmospheric boundary layer (ABL) over a tropical coastal station, Trivandrum have been examined on two days using an aethalometer attached to a tethered balloon. One of these days (15th January, 2010) coincided with a (annular) solar eclipse, the longest of this century at this location, commenced at 11:05 local time and ended by 15:05, lasting for 7 min and 15 s (from 13:10:42), with its maximum contact occurring at ~ 13:14 IST with ~ 92% annularity, thereby providing an opportunity to understand the eclipse induced perturbations. Concurrent measurements of the ABL parameters such as air temperature, relative humidity and pressure were also made on these days to describe the response of the ABL to the eclipse. BC profiles, in general, depicted similar features up to an altitude of ~ 200 m on the eclipse day and control day, above which it differed conspicuously with profiles on eclipse day showing increasingly lower concentration as we moved to higher altitudes. Examination of the meteorological profiles showed that the altitude of maximum convection rapidly fell down during the eclipse period compared to that on control day indicating a rather shallow convection on eclipse day. Comparison of diurnal variations of BC at the surface level showed that the rate of decrease in BC during daytime on the eclipse day was smaller than that on the control day due to the reduced convection, shallow ABL and consequent reduction in the ventilation coefficient. Moreover the time of the nocturnal increase has advanced by ~ 1:30 h on the eclipse day, occurred at around 19:30 IST in contrast to all the other days of January 2010, where this increase usually occur well after 20:30 IST, with a mean value of 21:00 IST. This is attributed to the weak sea-breeze penetration during the eclipse day, which led to an early onset of the land breeze.

  13. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  14. Microgravity Effects on Plant Boundary Layers

    NASA Astrophysics Data System (ADS)

    Stutte, Gary; Monje, Oscar

    2005-08-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  15. Parameterization of continental boundary layer clouds

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Zhao, Wei

    2008-05-01

    Large eddy simulations (LESs) of continental boundary layer clouds (BLCs) observed at the southern Great Plains (SGP) are used to study issues associated with the parameterization of sub-grid BLCs in large scale models. It is found that liquid water potential temperature θl and total specific humidity qt, which are often used as parameterization predictors in statistical cloud schemes, do not share the same probability distribution in the cloud layer with θl skewed to the left (negatively skewed) and qt skewed to the right (positively skewed). The skewness and kurtosis change substantially in time and space when the development of continental BLCs undergoes a distinct diurnal variation. The wide range of skewness and kurtosis of θl and qt can hardly be described by a single probability distribution function. To extend the application of the statistical cloud parameterization approach, this paper proposes an innovative cloud parameterization scheme that uses the boundary layer height and the lifting condensation level as the primary parameterization predictors. The LES results indicate that the probability distribution of these two quantities is relatively stable compared with that of θl and qt during the diurnal variation and nearly follows a Gaussian function. Verifications using LES output and the observations collected at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARCF) SGP site indicate that the proposed scheme works well to represent continental BLCs.

  16. Multiple Flux Footprints, Flux Divergences and Boundary Layer Mixing Ratios: Studies of Ecosystem-Atmosphere CO2 Exchange Using the WLEF Tall Tower.

    NASA Astrophysics Data System (ADS)

    Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.

    2001-05-01

    Willow Creek site. The WLEF tower also allows us to study the potential for monitoring continental CO2 mixing ratios from tower sites. Despite concerns about the proximity to ecosystem sources and sinks, it is clear that boundary layer CO2 mixing ratios can be monitored using typical surface layer towers. Seasonal and annual land-ocean mixing ratio gradients are readily detectable, providing the motivation for a flux-tower based mixing ratio observation network that could greatly improve the accuracy of inversion-based estimates of NEE of CO2, and enable inversions to be applied on smaller temporal and spatial scales. Results from the WLEF tower illustrate the degree to which local flux measurements represent interannual, seasonal and synoptic CO2 mixing ratio trends. This coherence between fluxes and mixing ratios serves to "regionalize" the eddy-covariance based local NEE observations.

  17. Unified Parameterization of the Marine Boundary Layer

    DTIC Science & Technology

    2010-09-30

    information if it does not display a currently valid OMB control number. 1. REPORT DATE 2010 2 . REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010...boundary layer closure for the convective boundary layer 2 . An EDMF approach to the vertical transport of TKE in convective boundary layers 3. EDMF in...4 implementation and extension to shallow cumulus parameterization is in progress. 2   An integrated TKE-based eddy-diffusivity/mass-flux

  18. Development of perturbations in the boundary layer

    NASA Technical Reports Server (NTRS)

    Dovgal, A. V.; Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.; Maksimov, V. P.

    1986-01-01

    The transition of laminar flows into turbulent flows in a boundary layer is discussed. The individual aspects of the transition process, observed under controllable model conditions are examined. The aspect of this problem, namely the development or excitation of the natural oscillations in the boundary layer, the so-called Tollmin-Schlichting waves is covered. Three types of excitation of these waves are considered: (1) distributed generation throughout the boundary layer; (2) generation in the vicinity of the forward edge of a model, having either a sharp edge or an edge with a large radius or curvature, and (3) generation in a developed boundary layer by means of a focused effect.

  19. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  20. Structure of relaminarizing turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Patwardhan, Saurabh

    2014-11-01

    Relaminarization of a turbulent boundary layer in a strongly accelerated flow has received a great attention in recent times. It has been found that such relaminarization is a general and regularly occurring phenomenon in the leading-edge region of a swept wing of an airplane (van Dam et al., 1993). In this work, we investigate the effect of initial Reynolds number on the process of relaminarization in turbulent boundary layers. The experimental and numerical investigation of relaminarizing turbulent boundary layers undergoing same history reveals that the boundary layer with higher initial Reynolds number relaminarizes at a lower pressure gradient value compared to the one with lower Reynolds number. This effect can be explained on the inviscid theory proposed earlier in the literature. Further, various parameter criteria proposed to predict relaminarization, are assessed and the structure of relaminarizing boundary layers is investigated. A mechanism for stabilization of near-wall low speed streaks is proposed.

  1. LDV measurements of turbulent baroclinic boundary layers

    SciTech Connect

    Neuwald, P.; Reichenbach, H.; Kuhl, A.L.

    1993-07-01

    Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.

  2. Martian thermal boundary layers: Subhourly variations induced by radiative-conductive heat transfer within the dust-laden atmosphere-ground system

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.; Dannevik, W. P.; Frisella, S. P.

    1973-01-01

    Radiative-conductive heat transfer has been investigated for the ground-atmosphere system of the planet Mars. The basic goal was the quantitative determination of time dependent vertical distributions of temperature and static stability for Southern-Hemispheric summer season and middle and polar latitudes, for both dust-free and dust-laden atmospheric conditions. The numerical algorithm which models at high spatial and temporal resolution the thermal energy transports in the dual ground-atmosphere system, is based on solution of the applicable heating rate equation, including radiative and molecular-conductive heat transport terms. The two subsystems are coupled by an internal thermal boundary condition applied at the ground-atmosphere interface level. Initial data and input parameters are based on Mariner 4, 6, 7, and 9 measurements and the JPL Mars Scientific Model. Numerical experiments were run for dust-free and dust-laden conditions in the midlatitudes, as well as ice-free and ice-covered polar regions. Representative results and their interpretation are presented. Finally, the theoretical framework of the generalized problem with nonconservative Mie scattering and explicit thermal-convective heat transfer is formulated, and applicable solution algorithms are outlined.

  3. Calculation methods for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1976-01-01

    Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.

  4. Boundary-layer control for drag reduction

    NASA Technical Reports Server (NTRS)

    Harvey, William D.

    1988-01-01

    Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.

  5. Acoustic sounding in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Kelly, E. H.

    1974-01-01

    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.

  6. Turbulent Boundary Layer in High Rayleigh Number Convection in Air

    NASA Astrophysics Data System (ADS)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-01

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra =1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re ≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  7. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  8. Solute boundary layer on a rotating crystal

    NASA Astrophysics Data System (ADS)

    Povinelli, Michelle L.; Korpela, Seppo A.; Chait, Arnon

    1994-11-01

    A perturbation analysis has been carried out for the solutal boundary layer next to a rotating crystal. Our aim is to extend the classical results of Burton, Prim and Slicher [1] in order to obtain higher order terms in asymptotic expansions for the concentration field and boundary-layer thickness. Expressions for the effective segregation coefficient are directly obtained from the concentration solution in the two limits that correspond to weak and strong rotation.

  9. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  10. The Ocean Boundary Layer beneath Hurricane Frances

    NASA Astrophysics Data System (ADS)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  11. Alpha models and boundary-layer turbulence

    NASA Astrophysics Data System (ADS)

    Cheskidov, Alexey

    We study boundary-layer turbulence using the Navier-Stokes-alpha model obtaining an extension of the Prandtl equations for the averaged flow in a turbulent boundary layer. In the case of a zero pressure gradient flow along a flat plate, we derive a nonlinear fifth-order ordinary differential equation, an extension of the Blasius equation. We study it analytically and prove the existence of a two-parameter family of solutions satisfying physical boundary conditions. From this equation we obtain a theoretical prediction of the skin-friction coefficient in a wide range of Reynolds numbers based on momentum thickness, and deduce the maximal value of the skin-friction coefficient in the turbulent boundary layer. The two-parameter family of solutions to the equation matches experimental data in the transitional boundary layers with different free stream turbulence intensity. A one-parameter sub-family of solutions, obtained using our skin-friction coefficient law, matches experimental data in the turbulent boundary layer for moderately large Reynolds numbers.

  12. Investigation of the spatio-temporal variability of atmospheric boundary layer depths over mountainous terrain observed with a suite of ground-based and airborne instruments during the MATERHORN field experiment

    NASA Astrophysics Data System (ADS)

    Pal, S.; De Wekker, S.; Emmitt, G. D.

    2013-12-01

    We present first results of the spatio-temporal variability of atmospheric boundary layer depths obtained with a suite of ground-based and airborne instruments deployed during the first field phase of The Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program (http://www3.nd.edu/~dynamics/materhorn/index.php) at Dugway Proving Ground (DPG, Utah, USA) in Fall 2012. We mainly use high-resolution data collected on selected intensive observation periods obtained by Doppler lidars, ceilometer, and in-situ measurements from an unmanned aerial vehicle for the measurements of atmospheric boundary layer (ABL) depths. In particular, a Navy Twin Otter aircraft flew 6 missions of about 5 hours each during the daytime, collecting remotely sensed (Doppler lidar, TODWL) wind data in addition to in-situ turbulence measurements which allowed a detailed investigation of the spatial heterogeneity of the convective boundary layer turbulence features over a steep isolated mountain of a horizontal and vertical scale of about 10 km and 1 km, respectively. Additionally, we use data collected by (1) radiosonde systems at two sites of Granite Mountain area in DPG (Playa and Sagebrush), (2) sonic anemometers (CSAT-3D) for high resolution turbulence flux measurements near ground, (3) Pyranometer for incoming solar radiation, and (4) standard meteorological measurements (PTU) obtained near the surface. In this contribution, we discuss and address (1) composites obtained with lidar, ceilometer, micro-meteorological measurements, and radiosonde observations to determine the quasi-continuous regime of ABL depths, growth rates, maximum convective boundary layer (CBL) depths, etc., (2) the temporal variability in the ABL depths during entire diurnal cycle and the spatial heterogeneity in the daytime ABL depths triggered by the underlying orography in the experimental area to investigate the most possible mechanisms (e.g. combined effect of diurnal cycle and orographic trigger

  13. Streamline curvature effects on turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    A theoretical tool has been developed for predicting, in a nonempirical manner, effects of streamline curvature and coordinate-system rotation on turbulent boundary layers. The second-order closure scheme developed by Wilcox and Traci has been generalized for curved streamline flow and for flow in a rotating coordinate system. A physically based straightforward argument shows that curvature/rotation primarily affects the turbulent mixing energy; the argument yields suitable curvature/rotation terms which are added to the mixing-energy equation. Singular-perturbation solutions valid in the wall layer of a curved-wall boundary layer and a fully developed rotating channel flow demonstrate that, with the curvature/rotation terms, the model predicts the curved-wall and the rotating coordinate system laws of the wall. Results of numerical computations of curved-wall boundary layers and of rotating channel flow show that curvature/rotation effects can be computed accurately with second-order closure.

  14. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  15. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  16. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  17. Turbulent Spots Inside the Turbulent Boundary Layer

    NASA Astrophysics Data System (ADS)

    Skarda, Jinhie; Wu, Xiaohua; Moin, Parviz; Lozano-Duran, Adrian; Wallace, James; Hickey, Jean-Pierre

    2016-11-01

    We present evidence that the buffer region of the canonical turbulent boundary layer is populated by locally generated turbulent spots, which cause strong indentations on the near-wall low-momentum streaks. This evidence is obtained from a spatially-developing direct numerical simulation carrying the inlet Blasius boundary layer through a bypass transition to the turbulent boundary layer state over a moderate Reynolds number range. The turbulent spots are structurally analogous to their transitional counter-parts but without any direct causality connection. High-pass filtered time-history records are used to calculate the period of turbulent spot detection and this period is compared to the boundary layer bursting period reported in hot-wire experiments. The sensitivity of the results to parameters such as the high pass filter frequency and the amplitude discriminator level is examined. The characteristics of these turbulent spots are also quantified using a spatial connectivity based conditional sampling technique. This evidence seems to be at odds with the notion that the buffer region is dominated by quasi-streamwise vortices, and contributes to the potential unification of the studies on near-wall turbulent boundary layer dynamics.

  18. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  19. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  20. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  1. Effect of bulk viscosity on a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    1992-03-01

    The bulk viscosity mu(b) is generally set equal to zero (Stokes' hypothesis). For certain gases, such as CO2, mu(b)/mu exceeds 1000, where mu is the shear viscosity. In this circumstance, the bulk viscosity may substantially alter a hypersonic boundary layer. A general, nonsimilar, laminar, boundary-layer formulation is provided in which the bulk viscosity terms are included as a correction. To obtain explicit results, flow over a flat plate is considered. In addition to the heat transfer, the transverse pressure gradient inside the boundary layer is not zero, whereas the skin friction is unaltered by the bulk viscosity. This analysis is relevant to aerogravity-assisted maneuvers in planetary atmospheres that largely consist of CO2.

  2. Effect of bulk viscosity on a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Emanuel, George

    1992-03-01

    The bulk viscosity μb is generally set equal to zero (Stokes' hypothesis). For certain gases, such as CO2, μb/μ exceeds 103, where μ is the shear viscosity. In this circumstance, the bulk viscosity may substantially alter a hypersonic boundary layer. A general, nonsimilar, laminar, boundary-layer formulation is provided in which the bulk viscosity terms are included as a correction. To obtain explicit results, flow over a flat plate is considered. In addition to the heat transfer, the transverse pressure gradient inside the boundary layer is not zero, whereas the skin friction is unaltered by the bulk viscosity. This analysis is relevant to aerogravity-assisted maneuvers in planetary atmospheres that largely consist of CO2.

  3. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    NASA Astrophysics Data System (ADS)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  4. Boundary Layer CO2 budgets at long timescales

    NASA Astrophysics Data System (ADS)

    Williams, I. N.; Riley, W. J.; Berry, J. A.; Torn, M. S.; Biraud, S.

    2009-12-01

    This study demonstrates a strong timescale dependence of boundary layer entrainment and storage in six years of high frequency observations from the U.S. Southern Great Plains Atmospheric Radiation Measurement Climate Research Facility. A scalar conservation equation was applied to aircraft and tower CO2 measurements, soundings, eddy covariance fluxes, cloud radar, and mesoscale model analyses, over a range of timescales from diurnal to annual. Entrainment fluxes and storage become order of magnitude smaller than large-scale vertical and horizontal advection at seasonal and longer timescales and order of magnitude larger than advection at diurnal and shorter timescales. The results are compactly summarized in terms of a dimensionless number involving a residence time calculated from large-scale (vertical) wind velocity and boundary layer depth. This number provides a useful metric for determining the validity of equilibrium boundary layer theory versus traditional boundary layer budgets. The implication of this study for annual mean surface flux inversions is that large scale transport and convective cloud mass fluxes are more likely sources of transport model error than high frequency fluctuations (i.e. diurnal) in boundary layer concentrations and depth. The implication for field studies of boundary layer scalar budgets is that the results of any one study are relevant only in the context of the timescale over which the measurements were sampled or averaged. This timescale dependence is also seen over a wider range of meteorological conditions and surface vegetation types at measurements sites across the Northern Hemisphere. We conclude that the relevant physics associated with boundary layer scalar budgets are a function of the time scale of interest.

  5. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  6. Longitudinal vortices in concave surface boundary layer

    NASA Astrophysics Data System (ADS)

    Crane, R. I.,; Winoto, S. H.

    1980-01-01

    Local measurements of mean and fluctuating velocity by laser anemometer were made inside the developing concave surface boundary layer in a free surface water channel at Reynolds numbers up to 16000. Concave surface radius was 3.5 times channel width and the ratio of spanwise mean boundary layer thickness to surface radius ranged between 0.03 and 0.11. Systems of longtitudinal vortices developed without artificial triggering. Vortex wavelength varied across the span by as much as a factor of 2, but mean wavelength was typically 1.3 times the boundary layer thickness and did not vary significantly in the flow direction. Continuous vortex growth at Reynolds number = 9800 contrasted with apparent breakup of the vortices at Reynolds number = 16000.

  7. Boundary-Layer Code For Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.; Walton, J. T.

    1994-01-01

    HUD is integral computer code based on Spaulding-Chi method for predicting development of boundary layers in laminar, transitional, and turbulent regions of flows on two-dimensional or axisymmetric bodies. Approximates nonequilibrium velocity profiles as well as local surface friction in presence of pressure gradient. Predicts transfer of heat in turbulent boundary layer in presence of high axial presure gradient. Provides for pressure gradients both normal and lateral to surfaces. Also used to estimate requirements for cooling scramjet engines. Because of this capability, HUD program incorporated into several scramjet-cycle-performance-analysis codes, including SCRAM (ARC-12338) and SRGULL (LEW-15093). Written in FORTRAN 77.

  8. Glancing shock wave-turbulent boundary layer interaction with boundary layer suction

    NASA Technical Reports Server (NTRS)

    Barnhart, P. J.; Greber, I.; Hingst, W. R.

    1988-01-01

    Tests conducted to ascertain the stagnation pressure and flow angularity profiles of a turbulent boundary layer subjected to boundary layer suction (BLS) as it crosses a glancing sidewall shock wave have determined that the boundary layer does not separate upon crossing the shock wave. Without BLS, the upstream influence of the shock wave-induced wall static pressure rise was extensive, of the order of four bloundary layer thicknesses; for the same case, with suction, the extent of upstream influence was 50 percent lower. In addition, flow angularities at the wall were found to be smaller with suction than without it.

  9. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  10. Boundary-layer theory for blast waves

    NASA Technical Reports Server (NTRS)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  11. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

    DTIC Science & Technology

    2014-09-30

    the Boundary Layer , and Upper Ocean Coupling Eric D. Skyllingstad College of Oceanic and Atmospheric Sciences, Oregon State University 104 COAS...NWP) models to more accurately simulate the interaction of tropical deep convection and atmospheric and oceanic boundary layers . OBJECTIVES...Investigate tropical convection and upper ocean circulations on scales from 100 m to 200 km. Elucidate specifically how the ocean mixed layer responds

  12. Vortex unwinding in a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Beeler, George B.

    1987-01-01

    The vortex unwinding method is used as a tool in performing vortex cancellation in a turbulent boundary layer. Sufficient reduction in the isotach variation was achieved to verify the usefulness of this technique, for the cases of both wall turbulence control and horseshoe vortex alleviation. More detailed measurements of vortex strength and position improve the optimization process and increase the amount of vortex unwinding.

  13. Astrophysical Boundary Layers: A New Picture

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  14. The structure of APG turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.; Soria, Julio

    2013-11-01

    A boundary layer under influence of a strong APG is studied using DNS. Transition to turbulence is triggered using a trip wire which is modelled using the immersed boundary method. The Reynolds number close to the exit of the numerical domain is Reθ = 2175 and the shape-factor H = 2 . 5 . Two dimensional two-point spatial correlation functions are obtained in this region and close to the transition region. Cvu with a reference point close to the transition region shows a flow periodicity until Reθ ~ 1600 . This periodicity is related to the shear layer instability of the separation bubble created as a result of the APG. The Cvv and Cww correlations obtained far from the transition region at Reθ = 2175 and at y / δ = 0 . 4 coincide with results obtained for a ZPG boundary layer. Implying that the structure of the v , w fluctuations is the same as in ZPG. However, Cuu indicates that the structure of the u fluctuation in an APG boundary layer is almost twice as short as the ZPG structures. The APG structures are also less correlated with the flow at the wall. The near wall structure of strong APG flows is different from ZPG flows in that streaks are much shorter or absent. Funded in part by ITU, NSERC of Canada, ARC Discovery Grant, and Multiflow program of the ERC.

  15. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  16. Boundary Layer Transition on X-43A

    NASA Technical Reports Server (NTRS)

    Berry, Scott; Daryabeigi, Kamran; Wurster, Kathryn; Bittner, Robert

    2008-01-01

    The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis.

  17. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  18. Flow unsteadiness effects on boundary layers

    NASA Technical Reports Server (NTRS)

    Murthy, Sreedhara V.

    1989-01-01

    The development of boundary layers at high subsonic speeds in the presence of either mass flux fluctuations or acoustic disturbances (the two most important parameters in the unsteadiness environment affecting the aerodynamics of a flight vehicle) was investigated. A high quality database for generating detailed information concerning free-stream flow unsteadiness effects on boundary layer growth and transition in high subsonic and transonic speeds is described. The database will be generated with a two-pronged approach: (1) from a detailed review of existing literature on research and wind tunnel calibration database, and (2) from detailed tests in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). Special instrumentation, including hot wire anemometry, the buried wire gage technique, and laser velocimetry were used to obtain skin friction and turbulent shear stress data along the entire boundary layer for various free stream noise levels, turbulence content, and pressure gradients. This database will be useful for improving the correction methodology of applying wind tunnel test data to flight predictions and will be helpful for making improvements in turbulence modeling laws.

  19. Flow visualization of turbulent boundary layer structure

    NASA Astrophysics Data System (ADS)

    Head, M. R.; Bandyopadhyay, P.

    1980-01-01

    The results from flow visualization experiments performed using an argon-ion laser to illuminate longitudinal and transverse sections of the smoke filled boundary layer in zero pressure gradient are discussed. Most of the experiments were confined to the range 600 Re sub theta 10,000. Results indicate that the boundary layer consists almost exclusively of vortex loops or hairpins, some of which may extend through the complete boundary layer thickness and all of which are inclined at a more or less constant characteristic angle of approximately 45 deg to the wall. Since the cross-stream dimensions of the hairpins appear to scale roughly with the wall variables U sub tau and nu, while their length is limited only by the boundary layer thickness, there are very large scale effects on the turbulence structure. At high Reynolds numbers (Re sub theta = 10,000) there is little evidence of large-scale coherent motions, other than a slow overturning of random agglomerations of the hairpins just mentioned.

  20. 2007 Program of Study: Boundary Layers

    DTIC Science & Technology

    2008-06-01

    of boundary layer flows Jan Zika , University of New South Wales ..................................................................143 Double...Angel Ruiz-Angulo Caltech Henrik van Lengerich Cornell University Andrew Wells University of Cambridge Jan Zika University of New South Wales Staff...Gallet, Frederic Laliberte, Henrik van Lengerich, Jan Zika , Iva Kavcic. Second row (L/R): Ed Spiegel (standing), Charles Doering, Willem Malkus, Vitalii

  1. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  2. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  3. Numerical methods for hypersonic boundary layer stability

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1990-01-01

    Four different schemes for solving compressible boundary layer stability equations are developed and compared, considering both the temporal and spatial stability for a global eigenvalue spectrum and a local eigenvalue search. The discretizations considered encompass: (1) a second-order-staggered finite-difference scheme; (2) a fourth-order accurate, two-point compact scheme; (3) a single-domain Chebychev spectral collocation scheme; and (4) a multidomain spectral collocation scheme. As Mach number increases, the performance of the single-domain collocation scheme deteriorates due to the outward movement of the critical layer; a multidomain spectral method is accordingly designed to furnish superior resolution of the critical layer.

  4. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  5. Thermal instability of forced convection boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, K.; Chen, M. M.

    1981-11-01

    The thermal instability of forced convection boundary layers with non-zero streamwise pressure gradient is examined. An analysis is carried out for the family of Falkner-Skan flows, and only the streamwise buoyancy generated instability for fluid layers with shear at low Reynolds number are considered. When the wedge angle is equal to one, the perturbation equations based on the boundary layer equations are identical to the exact perturbation equations for the stagnation flow. Calculated critical Rayleigh numbers and wave numbers are found to be independent of wedge angle in the limiting case of infinite Prandtl number, and results are compared with previous experimental results by Gilpin et al. (1978), showing good agreement.

  6. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  7. The Effect of Nonlinear Critical Layers on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    1995-01-01

    Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear and spatially growing instability waves evolve downstream in nominally two-dimensional and spanwise periodic laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer' with the flow outside this layer consisting of a locally parallel mean flow plus an appropriate superposition of linear instability waves. The amplitudes of these waves are determined by either a single integro-differential equation or by a pair of integro-differential equations with quadratic to quartic-type nonlinearities.

  8. Vertical transport of water in the Martian boundary layer

    NASA Technical Reports Server (NTRS)

    Zent, Aaron P.; Haberle, R. M.; Houben, Howard C.

    1993-01-01

    We are continuing our examination of the transport of H2O through the martian boundary layer, and we have written a one-dimensional numerical model of the exchange of H2O between the atmosphere and subsurface of Mars through the planetary boundary layer (PBL). Our goal is to explore the mechanisms of H2O exchange, and to elucidate the role played by the regolith in the local H2O budget. The atmospheric model includes effects of Coriolis, pressure gradient, and frictional forces for momentum, as well as radiation, sensible heat flux, and advection for heat. The model differs from Flasar and Goody by use of appropriate Viking-based physical constants and inclusion of the radiative effects of atmospheric dust. We specify the pressure gradient force or compute it from a simple slope model. The subsurface model accounts for conduction of heat and diffusion of H2O through a porous adsorbing medium in response to diurnal forcing. The model is initialized with depth-independent H2O concentrations (2 kg M(exp -3)) in the regolith, and a dry atmosphere. The model terminates when the atmospheric H2O column abundance stabilizes at 0.1 percent per sol.

  9. HIFiRE-5 Boundary Layer Transition and HIFiRE-1 Shock Boundary Layer Interaction

    DTIC Science & Technology

    2015-10-01

    For this work, new capabilities in ground test and in flight data analysis were developed. Also, as a necessary precursor to wind tunnel tests on...necessary precursor to wind tunnel tests on boundary layer transition on the leeside of a cone at angle of attack, extensive computations were undertaken...analysis of the HIFiRE-1 shock boundary layer interaction experiment was completed. Tests at the Purdue University Mach 6 quiet wind tunnel demonstrated a

  10. Influence of Mach Number and Incoming Boundary Layer on Shock Boundary Layer Interaction

    NASA Astrophysics Data System (ADS)

    Stab, Ilona; Threadgill, James; Little, Jesse

    2016-11-01

    Wall pressure fluctuations, schlieren imaging, oil flow visualization and PIV measurements have been performed on the shock boundary layer interaction (SBLI) formed by a 10° compression ramp. The incoming Mach number and boundary layer characteristics are varied to examine their influence on the SBLI. Focus is placed on understanding the effect of these parameters on the structure and unsteadiness of the resultant interaction. Lower Mach numbers M = 2 . 3 (δ0 = 1 . 7 mm , θ = 0 . 29 mm , Reθ = 3115 , H = 1 . 4) and M = 3 (δ0 = 1 . 3 mm , θ = 0 . 25 mm , Reθ = 1800 , H = 1 . 8) show a turbulent or transitional approach boundary layer with no apparent separation at the ramp. Mach 4 has a large separated region which is seemingly a result of a now laminar or transitional approach boundary layer. Pulsations in the separated region correspond to the expected low frequency SBLI dynamics showing a broad peak around a Strouhal number of St = fLint /U∞ = 0 . 27 which is lower than the characteristic frequency of the turbulent boundary layer. Additional results examining the influence of boundary layer modifications (e.g. sweep) and wind tunnel side-walls are also included. Supported by Raytheon Missile Systems.

  11. Boundary Layer Theory. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.

  12. Boundary layer transition detection by luminescence imaging

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Gallery, J.; Gouterman, M.; Callis, J.

    1993-01-01

    In recent experiments we have demonstrated the feasibility of a new approach to boundary layer transition detection. This new approach employs the temperature dependence of certain photoluminescent materials in the form of a surface coating or 'paint' to detect the change in heat transfer characteristics that accompany boundary layer transition. The feasibility experiments were conducted for low subsonic to transonic Mach numbers on two-dimensional airfoil and flat plate configurations. Paint derived transition locations were determined and compared to those obtained from Preston pressure probe measurements. Artificial heating of the models was used to obtain transition temperature signatures suitable for the instrumentation available to us. Initial estimates show, however, that passive kinetic heating at high Mach numbers is a promising alternative.

  13. Analytic prediction for planar turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Chen, Xi; She, Zhen-Su

    2016-11-01

    Analytic predictions of mean velocity profile (MVP) and streamwise ( x) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions include the relations for momentum Reynolds number ( Re θ) with friction Re τ and streamwise Re x : Re θ ≈ 3.27 Re τ, and Re x / Re θ = 4.94 [(ln Re θ + 1.88)2 + 1]; the streamwise development of the friction velocity u τ: U e / u τ ≈ 2.22ln Re x + 2.86 - 3.83ln(ln Re x ), and of the boundary layer thickness δ e : x/δ e ≈ 7.27ln Re x -5.18-12.52ln(ln Re x ), which are fully validated by recent reliable data.

  14. Analytic prediction for planar turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    She, Zhen-Su; Chen, Xi

    2016-11-01

    Analytic predictions of mean velocity profile (MVP) and streamwise (x) development of related integral quantities are presented for flows in channel and turbulent boundary layer (TBL), based on a symmetry analysis of eddy length and total stress. Specific predictions include the relations for momentum Reynolds number (Reθ) with friction Reτ and streamwise Rex : Reθ 3 . 27 Reτ and Rex / Reθ = 4 . 94 [(lnReθ + 1 . 88) 2 + 1 ] ; the streamwise development of the friction velocityuτ: Ue /uτ 2 . 22 lnRex + 2 . 86 - 3 . 83 ln (lnRex) , and of the boundary layer thickness δe: x /δe 7 . 27 lnRex - 5 . 18 - 12 . 52 ln (lnRex) , which are fully validated by recent reliable data.

  15. Turbulent shear stresses in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Laderman, A. J.; Demetriades, A.

    1979-01-01

    Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.

  16. Turbulent boundary layer over flexible plates

    NASA Astrophysics Data System (ADS)

    Rostami, Parand; Ioppolo, Tindaro

    2016-11-01

    This research describes the structure of a turbulent boundary layer flow with a zero pressure gradient over elastic plates. The elastic plates made of a thin aluminum sheets with thickness between 50 and 500 microns were placed on the floor of a subsonic wind tunnel and exposed to a turbulent boundary layer flow with a free stream velocity between 20m/s and 100m/s. The ceiling of the test section of the wind tunnel is adjustable so that a nearly zero pressure gradient is obtained in the test section. Hot-wire anemometry was used to measure the velocity components. Mean, fluctuating velocities and Reynolds stresses will be presented and compared with the values of a rigid plate.

  17. Boundary Layer Control for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.

    2004-01-01

    Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.

  18. Boundary Layer Transition Results From STS-114

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.

    2006-01-01

    The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.

  19. Spatial and temporal variabilities in vertical structure of the Marine Atmospheric Boundary Layer over Bay of Bengal during Winter Phase of Integrated Campaign for Aerosols, gases and Radiation Budget

    NASA Astrophysics Data System (ADS)

    Subrahamanyam, D. Bala; Anurose, T. J.; Kumar, N. V. P. Kiran; Mohan, Mannil; Kunhikrishnan, P. K.; John, Sherine Rachel; Prijith, S. S.; Dutt, C. B. S.

    2012-04-01

    Spatial and temporal variabilities in the vertical structure of Marine Atmospheric Boundary Layer (MABL) over the Bay of Bengal (BoB) are investigated through a ship-borne field experiment measurements pertaining to three different classes, namely: night, morning and afternoon conditions. High-resolution vertical profiles of meteorological parameters obtained through balloon-borne GPS Sondes during the Winter phase of Integrated Campaign for Aerosols, gases and Radiation Budget (W-ICARB) formed the primary database for the present investigation. The study advocates usage of wind shear profiles in association with virtual potential temperature (θv) and specific humidity (q) profiles for determination of the mixed layer heights (MLH). The mean values of turbulent flow thickness (TFT) obtained from the vertical profiles of Bulk Richardson Number (RiB) and MLH magnitudes for the entire cruise did not show any appreciable variations for three classes. During the entire cruise period, the MLH varied in a range from 450 m to 1500 m with a mean of about 900 m, whereas the TFT variations were confined between 125 m and 1475 m with a mean of about 581 m. The statistical means of TFT and MLH were similar for nighttime profiles, whereas they showed significant differences in the morning and afternoon conditions. Spatio-temporal variability in the MLH showed good correlation with the surface-layer sensible heat flux which is one of the driving mechanisms in mixing processes.

  20. Entropy production in relativistic jet boundary layers

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna; Begelman, Mitchell C.

    2015-01-01

    Hot relativistic jets, passing through a background medium with a pressure gradient p ∝ r-η where 2 < η ≤ 8/3, develop a shocked boundary layer containing a significant fraction of the jet power. In previous work, we developed a self-similar description of the boundary layer assuming isentropic flow, but we found that such models respect global energy conservation only for the special case η = 8/3. Here, we demonstrate that models with η < 8/3 can be made self-consistent if we relax the assumption of constant specific entropy. Instead, the entropy must increase with increasing r along the boundary layer, presumably due to multiple shocks driven into the flow as it gradually collimates. The increase in specific entropy slows the acceleration rate of the flow and provides a source of internal energy that could be channelled into radiation. We suggest that this process may be important for determining the radiative characteristics of tidal disruption events and gamma-ray bursts from collapsars.

  1. Representation of Clear and Cloudy Boundary Layers in Climate Models. Chapter 14

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Shao, Q.; Branson, M.

    1997-01-01

    The atmospheric general circulation models which are being used as components of climate models rely on their boundary layer parameterizations to produce realistic simulations of the surface turbulent fluxes of sensible heat. moisture. and momentum: of the boundary-layer depth over which these fluxes converge: of boundary layer cloudiness: and of the interactions of the boundary layer with the deep convective clouds that grow upwards from it. Two current atmospheric general circulation models are used as examples to show how these requirements are being addressed: these are version 3 of the Community Climate Model. which has been developed at the U.S. National Center for Atmospheric Research. and the Colorado State University atmospheric general circulation model. The formulations and results of both models are discussed. Finally, areas for future research are suggested.

  2. The role of nonlinear critical layers in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Goldstein, M.E.

    1995-01-01

    Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.

  3. A Self-Affine Multi-Fractal Wave/Turbulence Discrimination Method Using Data from Single Point Fast Response Sensors in a Nocturnal Atmospheric Boundary Layer

    DTIC Science & Technology

    1992-04-10

    and passive tracer concentrations, and their cross correlations have generally been used to estimate the magnitude of dispersive atmospheric transport...of gravity waves and turbulence. . 10 III. METHODS .......... ........................ 12 A. Data .......... ........................ 12 B. Analysis ...unstable, i.e., strange. For waves or even limit cycle motion about fixed attractors, self-similarity does not occur. Pertinent to time series analysis , this

  4. Optimal control of wind turbines in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ali Emre; Meyers, Johan

    2016-11-01

    In recent years, optimal control theory was combined with large-eddy simulations to study the optimal control of wind farms and their interaction with the atmospheric boundary layer. The individual turbine's induction factors were dynamically controlled in time with the aim of increasing overall power extraction. In these studies, wind turbines were represented using an actuator disk method. In the current work, we focus on optimal control on a much finer mesh (and a smaller computational domain), representing turbines with an actuator line method. Similar to Refs., optimization is performed using a gradient-based method, and gradients are obtained employing an adjoint formulation. Different cases are investigated, that include a single and a double turbine case both with uniform inflow, and with turbulent-boundary-layer inflow. The authors acknowledge support from the European Research Council (FP7-Ideas, Grant No. 306471).

  5. Turbulence spectra of the FIRE stratocumulus-topped boundary layers

    NASA Technical Reports Server (NTRS)

    Young, G. S.; Nucciarone, J. J.; Albrecht, Bruce A.

    1990-01-01

    There are at least four physical phenomena which contribute to the FIRE boundary layer turbulence spectra: boundary layer spanning eddies resulting from buoyant and mechanical production of turbulent kinetic energy (the microscale subrange); inertial subrange turbulence which cascades this energy to smaller scales; quasi-two dimensional mesoscale variations; and gravity waves. The relative contributions of these four phenomena to the spectra depend on the altitude of observation and variable involved (vertical velocity, temperature and moisture spectra are discussed). The physical origins of these variations in relative contribution are discussed. As expected from the theory (Kaimal et al., 1976), mixed layer scaling of the spectra (i.e., nondimensionalizing wavelength by Z(sub i) and spectral density by Z(sub i) and the dissipation rates) is successful for the microscale subrange and inertial subrange but not for the mesoscale subrange. The most striking feature of the normalized vertical velocity spectra is the lack of any significant mesoscale contribution. The spectral peak results from buoyant and mechanical production on scales similar to the boundary layer depth. The decrease in spectral density at larger scales results from the suppression of vertical velocity perturbations with large horizontal scales by the shallowness of the atmosphere. The spectral density also decreases towards smaller scales following the well known inertial subrange slope. There is a significant variation in the shape of the normalized spectra with height.

  6. Aerosol fluxes in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petelski, Tomasz; Zieliński, Tymon; Makuch, Przemysław; Kowalczyk, Jakub; Ponczkowska, Agnieszka; Drozdowska, Violetta; Piskozub, Jacek

    2010-05-01

    We present aerosol emission fluxes and concentrations calculated from in-situ measurement in the Nordic Sea from R/V Oceania. We compare vertical fluxes calculated with the eddy correlation and gradient methods. We use the results to test the hypothesis that marine aerosol emitted from the sea surface helps to clear the boundary layer from other aerosol particles. As the emitted droplets do not dry out in the highly humid surface layer air and because of their sizes most of them are deposited quickly at the sea surface. Therefore marine aerosol has many features of rain meaning that the deposition in the marine boundary layer in high wind events is controlled not only by the "dry" processes but also by the "wet" scavenging. We have estimated the effectiveness of the process using our own measurements of vertical aerosol fluxes in the Nordic Seas. This process could explain observed phenomenon of lower Arctic aerosol optical thickness (AOT) when the air masses moved over open sea than over sea-ice. We show a negative correlation between the sea-ice coverage in the seas adjacent to Svalbard and monthly AOT values in Ny Alesund.

  7. Acoustic radar investigations of boundary layer phenomena

    NASA Technical Reports Server (NTRS)

    Marks, J. R.

    1974-01-01

    A comparison is made between acoustic radar echoes and conventional meteorological data obtained from the WKY tower, for the purpose of better understanding the relationships between acoustic radar echoes and boundary layer processes. Two thunderstorm outflow cases are presented and compared to both acoustic radar data and Charba's gust front model. The acoustic radar echoes reveal the boundary between warm and cold air and other areas of mixing and strong thermal gradient quite well. The thunderstorm outflow of 27 June 1972 is found to compare with in most respects to Charba's gust front model. The major difference is the complete separation of the head from the main body of cold air, probably caused by erosion of the area behind the head by mixing with the ambient air. Two cases of nocturnal inversions caused by advection of warmer air aloft are presented. It is found that areas of turbulent mixing or strong thermal gradient can be identified quite easily in the acoustic radar record.

  8. Variations in stable hydrogen and oxygen isotopes in atmospheric water vapor in the marine boundary layer across a wide latitude range.

    PubMed

    Liu, Jingfeng; Xiao, Cunde; Ding, Minghu; Ren, Jiawen

    2014-11-01

    The newly-developed cavity ring-down laser absorption spectroscopy analyzer with special calibration protocols has enabled the direct measurement of atmospheric vapor isotopes at high spatial and temporal resolution. This paper presents real-time hydrogen and oxygen stable isotope data for atmospheric water vapor above the sea surface, over a wide range of latitudes spanning from 38°N to 69°S. Our results showed relatively higher values of δ(18)O and δ(2)H in the subtropical regions than those in the tropical and high latitude regions, and also a notable decreasing trend in the Antarctic coastal region. By combining the hydrogen and oxygen isotope data with meteoric water line and backward trajectory model analysis, we explored the kinetic fractionation caused by subsiding air masses and related saturated vapor pressure in the subtropics, and the evaporation-driven kinetic fractionation in the Antarctic region. Simultaneous observations of meteorological and marine variables were used to interpret the isotopic composition characteristics and influential factors, indicating that d-excess is negatively correlated with humidity across a wide range of latitudes and weather conditions worldwide. Coincident with previous studies, d-excess is also positively correlated with sea surface temperature and air temperature (Tair), with greater sensitivity to Tair. Thus, atmospheric vapor isotopes measured with high accuracy and good spatial-temporal resolution could act as informative tracers for exploring the water cycle at different regional scales. Such monitoring efforts should be undertaken over a longer time period and in different regions of the world.

  9. The Amazon Boundary Layer Experiment - Wet season 1987

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Beck, S. M.; Bendura, R. J.; Drewry, J. W.; Hoell, J. M., Jr.; Matson, P. A.; Mcneal, R. J.; Navarro, R. L.; Rabine, V.; Snell, R. L.

    1990-01-01

    This paper describes the overall experimental design for the Amazon Boundary Layer Experiment (ABLE 2B), which used data from aircraft, ground-based, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over the Amazon Basin during wet season conditions in April-May 1987. The ABLE 2B focused on determining the spatial and temporal scales of variability in trace gases and aerosols in the lower and midtroposphere over the Amazonian rain forest during wet season conditions, and assessing the role of local-to-regional atmospheric scales of motion on determining the distribution of atmospheric chemical species and their photochemical environment. A summary of the results from the combined ABLE 2A and ABLE 2B are presented.

  10. Radiative transfer in a polluted urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  11. Flow Quality and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H; Tobak, M.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The widely held view is that transition to turbulence in the Blasius boundary layer occurs via amplification and eventual nonlinear breakdown of initially small amplitude instabilities i.e. Tollmien-Schlichting (TS) waves. However this scenario is only observed for low amplitude free-stream turbulence levels, i.e. u/U < 0.1%. Bypass of linear TS instability mechanism occurs for higher EST levels, yet considerable differences exist between the few experiments carefully designed to assess the effect of EST on transition. The consensus is that EST leads to longitudinal streaks that form near the leading edge in the boundary layer . These streaks appeal to be regions of concentrated streamwise vorticity and they are often referred to as Klebanoff modes. The importance of mean flow free-stream nonuniformity (FSN) is not as widely appreciated as EST for characterizing wind tunnel flow quality. Here it is shown that, although the v like generated by a d=50micron wire located upstream of the contraction (Re(sub d)=6.6, x/d=45,000) is immeasurably small by the time it interacts with the leading edge in the test section, it is responsible for generation of a pair of weak streamwise vortices in the boundary layer downstream. The characteristics of these wake-induced vortices and their effect on TS waves are demonstrated. Small remnant FSN variations are also shown to exist downstream of a turbulence grid. The question arises Are the adverse effects introduced by the turbulence grid caused by FST or by small remnant FSN variations?

  12. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  13. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  14. Contraction ratio effect on boundary layer separation induced by shockwave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Im, Seongkyun; di Cristina, Giovanni; Do, Hyungrok

    2016-11-01

    Boundary layer separations induced by shockwave boundary layer interaction at various contraction ratios were investigated at a Mach 4.5 flow. Stagnation pressure and temperature condition of 10 bars and 295 K were used, and a high-speed schlieren system visualized the flow features. A shockwave generator with 12 degree wedge generated an impinging shockwave onto a laminar boundary layer on a flat plate. The contraction ratio of the flow was varied by changing the distance between the shockwave generator and the flat plate. The location of the shockwave impingement was fixed while the contraction ratios were changed. Flow visualization showed that the flow separation and its size were influenced by the contraction ratio although overall flow features were similar. At higher contraction ratio, stronger impinging shockwave and more severe flow separation were observed.

  15. Heterogeneous Vapor Condensation in Boundary Layers

    SciTech Connect

    Bonilla, L. L.; Carpio, A.; Neu, J. C.

    2008-09-01

    We consider heterogeneous condensation of vapors mixed with a carrier gas in stagnation point boundary layer flow near a cold wall in the presence of solid particles much larger than the mean free path of vapor particles. The supersaturated vapor condenses on the particles by diffusion, particles and droplets are thermophoretically attracted to the wall. We sketch three asymptotic theories of the condensation process, calculate the flow-induced shift in the dew point interface, vapor density profile and deposition rates at the wall, and compare them to direct numerical simulation.

  16. Sound radiation due to boundary layer transition

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1993-01-01

    This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.

  17. The Interaction between Surface-Atmosphere Exchange and Convective Precipitation in the Amazon: Results of the GoAmazon Boundary Layer Experiment

    NASA Astrophysics Data System (ADS)

    Stoy, P. C.; Fuentes, J. D.; Gerken, T.; Trowbridge, A.; Katul, G. G.; Nascimento dos Santos, R. M.; Manzi, A. O.; Mercer, J.; Machado, L.; Tota, J.; von Randow, C.; Fisch, G.; Ramos, F.; Chamecki, M.

    2015-12-01

    We describe results from a field campaign in central Amazonia whose purpose is to quantify the relationship between the surface-atmosphere exchange of biogenic volatile organic compounds (BVOCs) and convective precipitation as mediated by turbulent transport and the production of secondary organic aerosols and cloud condensation nuclei. The chemical speciation of monoterpenes and sesquiterpines emitted by the rainforest were determined using gas chromatography-mass spectroscopy and proton transfer-reaction mass spectroscopy enabled quantification of the concentrations of monoterpenes, sesquiterpenes, and other BVOCs. The temporal and spatial evolution of BVOCs and ozone concentrations within and immediately above the forested canopy were quantified and used to estimate the consumption, production, and transport of BVOCs, ozone, and hydroxyl radical during wet and dry seasons. Fluxes were estimated using above and within canopy flow field measurements from ten sonic anemometers and fitted using a second-order closure approach in conjunction with concentration profiles. Results demonstrate bi-directional fluxes of isoprene and monoterpenes in response to local sources and sinks attributed to deposition and chemical transformation in the air space below the upper canopy and transport to the overlying atmosphere. High hydroxyl radical yields (> 106 radicals cm-3 s-1) were estimated from reactions of ozone with ten monoterpene and six sequiterpene species observed to be emitted by the rainforest. Reactions of ozone and hydroxyl radicals dominated the conversion of BVOCs to secondary organic aerosols and cloud condensation nuclei, whose concentrations were measured using a fast mobility particle sizer and a cloud condensation nuclei counter. Results demonstrate that the rainforest emits sufficient chemical species to generate aerosols that can activate into cloud condensation nuclei and influence regional cloud formation.

  18. Solutions of the integral equation of diffusion and the random walk model for continuous plumes and instantaneous puffs in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Smith, F. B.; Thomson, D.

    1984-09-01

    The integral equation method is related to the random walk modelling that has proved so effective and popular in recent years. The I.E. method, by using simple probability techniques, avoids the inefficient determination of thousands of trajectories in order to build up concentration profiles. In fact it is so simple and efficient it can be run on a conventional programmable calculator. The method is applied to passive material being released from an elevated source within a neutrally stable surface layer over a uniform surface, and also to an instantaneous release when the effect of wind shear is examined. The latter scenario is also studied using random walk techniques and a comparison of the solutions obtained. Agreement is very good, although downwind spread is shown to be quite sensitive to gridlength size in the I.E. method.

  19. Sound Radiation from a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Laufer, J.

    1961-01-01

    If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.

  20. X-33 Hypersonic Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II

    1999-01-01

    Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.

  1. Optimal Growth in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan

    2016-01-01

    The linear form of the parabolized linear stability equations is used in a variational approach to extend the previous body of results for the optimal, nonmodal disturbance growth in boundary-layer flows. This paper investigates the optimal growth characteristics in the hypersonic Mach number regime without any high-enthalpy effects. The influence of wall cooling is studied, with particular emphasis on the role of the initial disturbance location and the value of the spanwise wave number that leads to the maximum energy growth up to a specified location. Unlike previous predictions that used a basic state obtained from a self-similar solution to the boundary-layer equations, mean flow solutions based on the full Navier-Stokes equations are used in select cases to help account for the viscous- inviscid interaction near the leading edge of the plate and for the weak shock wave emanating from that region. Using the full Navier-Stokes mean flow is shown to result in further reduction with Mach number in the magnitude of optimal growth relative to the predictions based on the self-similar approximation to the base flow.

  2. Helical mode breakdown in transitional boundary layers

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Durbin, Paul

    2016-11-01

    Results of direct numerical simulation of transition to turbulence in adverse pressure gradient boundary layers beneath free-stream turbulence will be presented. Instability waves are excited spontaneously and may be identified when intensity of free-stream turbulence (Tu) is sufficiently low. At very low Tu 0 . 1 % , secondary instability of the TS waves and at high Tu > 2 % , conventional bypass mechanisms trigger turbulent spot formation. At low Tu 1 % transition proceeds through formation of helical modes. Helical structures as in n = 1 instability modes of axisymmetric wakes and jets are clearly identifiable in visualizations of isosurfaces of stream-wise perturbation velocity. Helical modes also trigger transition at same level of Tu in zero pressure gradient boundary layers as well, provided that the inlet disturbances include a low amplitude time-periodic unstable TS wave. This indicates that these secondary instability modes might arise due to interaction of Klebanoff streaks and instability waves. Characteristically, the helical modes are inner instability modes. This work was supported by NSF Grant CBET-1228195. Computer time was provided by the Extreme Science and Engineering Discovery Environment (XSEDE).

  3. Soot profiles in boundary-layer flames

    SciTech Connect

    Beier, R.A.; Pagni, P.J.

    1981-12-01

    Carbon particulate volume fractions and approximate particle size distributions are measured in a free laminar combusting boundary layer for liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, toluene) and polymethylmethacrylate (PMMA). A multiwavelength laser transmission technique determines a most probable radius and the total particle concentration, which are two parameters in an assumed form for the size distribution. In the combusting boundary layer, a sooting region exists between the pyrolyzing fuel surface and the flame zone. The liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v approx. 10/sup -5/ for toluene, an aromatic. The PMMA volume fractions, f/sub v/ approx. 5 X 10/sup -7/, are approximately the same as the values previously reported for pool fires. The soot volume fractions increase with height; convection of carbon particles downstream widens the soot region with height. For all fuels tested, the most probable radius is between 20 nm and 50 nm, and it changes only slightly with height and distance from the fuel surface.

  4. Boundary Layer Transition Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.

    2011-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.

  5. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  6. Using UAV's to Measure the Urban Boundary Layer

    NASA Astrophysics Data System (ADS)

    Jacob, R. L.; Sankaran, R.; Beckman, P. H.

    2015-12-01

    The urban boundary layer is one of the most poorly studied regions of the atmospheric boundary layer. Since a majority of the world's population now lives in urban areas, it is becoming a more important region to measure and model. The combination of relatively low-cost unmanned aerial vehicles and low-cost sensors can together provide a new instrument for measuring urban and other boundary layers. We have mounted a new sensor and compute platform called Waggle on an off-the-shelf XR8 octo-copter from 3DRobotics. Waggle consists of multiple sensors for measuring pressure, temperature and humidity as well as trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. A single board computer running Linux included in Waggle on the UAV allows in-situ processing and data storage. Communication of the data is through WiFi or 3G and the Waggle software can save the data in case communication is lost during flight. The flight pattern is a deliberately simple vertical ascent and descent over a fixed location to provide vertical profiles and so flights can be confined to urban parks, industrial areas or the footprint of a single rooftop. We will present results from test flights in urban and rural areas in and around Chicago.

  7. Review of Orbiter Flight Boundary Layer Transition Data

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.

    2006-01-01

    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.

  8. Atmospheric HCH concentrations over the Marine Boundary Layer from Shanghai, China to the Arctic Ocean: role of human activity and climate change.

    PubMed

    Wu, Xiaoguo; Lam, James C W; Xia, Chonghuan; Kang, Hui; Sun, Liguang; Xie, Zhouqing; Lam, Paul K S

    2010-11-15

    From July to September 2008, air samples were collected aboard the research expedition icebreaker XueLong (Snow Dragon) as part of the 2008 Chinese Arctic Research Expedition Program. Hexachlorocyclohexane (HCH) concentrations were analyzed in all of the samples. The average concentrations (± standard deviation) over the entire period were 33 ± 16, 5.4 ± 3.0, and 13 ± 7.5 pg m⁻³ for α-, β- and γ-HCH, respectively. Compared to previous studies in the same areas, total HCH (ΣHCH, the sum of α-, β-, and γ-HCH) levels declined by more than 10 × compared to those observed in the 1990s, but were approximately 4 × higher than those measured by the 2003 China Arctic Research Expedition, suggesting the increase of atmospheric ΣHCH recently. Because of the continuing use of lindane, ratios of α/γ-HCH showed an obvious decrease in North Pacific and Arctic region compared with those for 2003 Chinese Arctic Research Expedition. In Arctic, the level of α-HCH was found to be linked to sea ice distribution. Geographically, the average concentration of α-HCH in air samples from the Chukchi and Beaufort Seas, neither of which contain sea ice, was 23 ± 4.4 pg m⁻³, while samples from the area covered by seasonal ice (∼75°N to ∼83°N), the so-called "floating sea ice region", contained the highest average levels of α-HCH at 48 ± 12 pg m⁻³, likely due to emission from sea ice and strong air-sea exchange. The lowest concentrations of α-HCH were observed in the pack ice region in the high Arctic covered by multiyear sea ice (∼83°N to ∼86°N). This phenomenon implies that the re-emission of HCH trapped in ice sheets and Arctic Ocean may accelerate during the summer as ice coverage in the Arctic Ocean decreases in response to global climate change.

  9. Inclined lidar observations of boundary layer aerosol particles above the Kongsfjord, Svalbard

    NASA Astrophysics Data System (ADS)

    Lampert, Astrid; Ström, Johan; Ritter, Christoph; Neuber, Roland; Yoon, Young; Chae, Nam; Shiobara, Masataka

    2012-10-01

    An inclined lidar with vertical resolution of 0.4 m was used for detailed boundary layer studies and to link observations at Zeppelin Mountain (474 m) and Ny-Ålesund, Svalbard. We report on the observation of aerosol layers directly above the Kongsfjord. On 29 April 2007, a layer of enhanced backscatter was observed in the lowest 25 m above the open water surface. The low depolarization ratio indicated spherical particles. In the afternoon, this layer disappeared. The ultrafine particle concentration at Zeppelin and Corbel station (close to the Kongsfjord) was low. On 1 May 2007, a drying process in the boundary layer was observed. In the morning, the atmosphere up to Zeppelin Mountain showed enhanced values of the backscatter coefficient. Around noon, the top of the highly reflecting boundary layer decreased from 350 to 250 m. The top of the boundary layer observed by lidar was confirmed by radiosonde data.

  10. Impact of Boundary Layer Processes on Carbon Budgets

    NASA Astrophysics Data System (ADS)

    McGrath-Spangler, E. L.; Denning, A.

    2011-12-01

    Previous work has shown the importance of turbulent mixing within the planetary boundary layer (PBL) and entrainment at the top of this layer for the carbon budget. In addition to the impact of carbon flux dilution by a deeper mixing layer, the modification to the vegetative environment at the land surface by PBL processes greatly impacts the vegetative response. Plants adapt to warmer, drier conditions by adjusting fluxes of carbon and water vapor in order to minimize transpiration while also maximizing carbon assimilation. However, a lot of work remains to be done in order to better simulate PBL processes and depth. Relatively few observations exist of PBL depth and even fewer exist of the processes at the PBL top. PBL depth can be estimated using the backscatter from the LIDAR onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. Using an automated method, millions of estimates can be derived to which model results can be compared. Using these estimates as well as carbon dioxide (CO2) observations from a network of towers throughout the continental United States and southern Canada, simulations from a coupled ecosystem-atmosphere model are evaluated using various strengths of an entrainment parameterization. This analysis sheds some light on the spatial heterogeneity of boundary layer processes and the influence on surface carbon fluxes and the carbon budget.

  11. Observations of Surface Energy Fluxes and Boundary-Layer Structure Over Heron Reef, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    MacKellar, Mellissa C.; McGowan, Hamish A.; Phinn, Stuart R.; Soderholm, Joshua S.

    2013-02-01

    Over warm, shallow coral reefs the surface radiation and energy fluxes differ from those of the open ocean and result in modification to the marine atmospheric boundary layer via the development of convective internal boundary layers. The complex interrelationships between the surface energy balance and boundary-layer characteristics influence local weather (wind, temperature, humidity) and hydrodynamics (water temperature and currents), as well as larger scale processes, including cloud field properties and precipitation. The nature of these inter-relationships has not been accurately described for coral reef environments. This study presents the first measurements of the surface energy balance, radiation budget and boundary layer thermodynamics made over a coral reef using an eddy-covariance system and radiosonde aerological profiling of the lower atmosphere. Results show that changes in surface properties and the associated energetics across the ocean-reef boundary resulted in modification to the marine atmospheric boundary layer during the Austral winter and summer. Internal convective boundary layers developed within the marine atmospheric boundary layer over the reef and were found to be deeper in the summer, yet more unstable during the winter when cold and drier flow from the mainland enhances heat and moisture fluxes to the atmosphere. A mixed layer was identified in the marine atmospheric boundary layer varying from 375 to 1,200 m above the surface, and was deeper during the summer, particularly under stable anticyclonic conditions. Significant cloud cover and at times rain resulted in the development of a stable stratified atmosphere over the reef. Our findings show that, for Heron Reef, a lagoonal platform reef, there was a horizontal discontinuity in surface energy fluxes across the ocean-reef boundary, which modified the marine atmospheric boundary layer.

  12. Chemistry of a polluted cloudy boundary layer

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Gottlieb, Elaine W.; Prather, Michael J.

    1989-01-01

    A one-dimensional photochemical model for cloud-topped boundary layers has been developed to include descriptions of gas- and aqueous-phase chemistry and the radiation field in and below the cloud. The model is applied to the accumulation of pollutants during a wintertime episode with low stratus over Bakersfield, CA. The mechanisms of sulfate production and the balance between the concentrations of acids and bases are examined. It is shown that most of the sulfate production may be explained by the Fe(III)-catalyzed autoxidation of S(IV). Another source of sulfate is the oxidation of SO2 by OH in both the gas and the aqueous phase. It is shown that the sulfate production in the model is controlled by the availability of NH3. It is suggested that this explains the balance observed between total concentration of acids and bases.

  13. Persistent Structures in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Chabalko, Chris

    2005-01-01

    Persistent structures in the turbulent boundary layer are located and analyzed. The data are taken from flight experiments on large commercial aircraft. An interval correlation technique is introduced which is able to locate the structures. The Morlet continuous wavelet is shown to not only locates persistent structures but has the added benefit that the pressure data are decomposed in time and frequency. To better understand how power is apportioned among these structures, a discrete Coiflet wavelet is used to decompose the pressure data into orthogonal frequency bands. Results indicate that some structures persist a great deal longer in the TBL than would be expected. These structure contain significant power and may be a primary source of vibration energy in the airframe.

  14. Modelling of the Evolving Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew

    2014-06-01

    A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.

  15. Helical modes in boundary layer transition

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Durbin, Paul A.

    2016-11-01

    Observations are presented to show that in an adverse pressure gradient boundary layer, beneath free-stream turbulence, the interaction between Klebanoff streaks and naturally arising instability waves leads to helical disturbances which break down to form turbulent spots. This occurs under low to moderate levels, 1%-2%, of free-stream turbulence. At high levels of free-stream turbulence, conventional bypass mechanisms are seen. The helical structures are clearly identifiable in visualizations of isosurfaces of streamwise perturbation velocity. A direct numerical simulation also was performed in zero pressure gradient, with a time-periodic Tollmien-Schlichting wave eigenfunction at the inlet. Again, under a moderate level of free-stream turbulence, helices were observed, and found to trigger transition. Their wave speed is on the order of 1/2 U∞ , so helical breakdown can be viewed as a type of inner mode, secondary instability.

  16. Linear Controllers for Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Lim, Junwoo; Kim, John; Kang, Sung-Moon; Speyer, Jason

    2000-11-01

    Several recent studies have shown that controllers based on a linear system theory work surprisingly well in turbulent flows, suggesting that a linear mechanism may play an important role even in turbulent flows. It has been also shown that non-normality of the linearized Navier-Stokes equations is an essential characteristic in the regeneration of near-wall turbulence structures in turbulent boundary layers. A few controllers designed to reduce the role of different linear mechanisms, including that to minimize the non-normality of the linearized Navier-Stokes equations, have been developed and applied to a low Reynolds nubmer turbulent channel flow. A reduced-order model containing the most controllable and observables modes is derived for each system. Other existing control schemes, such as Choi et al's opposition control, have been examined from the point of a linear system control. Further discussion on controller design, such as choice of cost function and other control parameters, will be presented.

  17. A numerical-physical planetary boundary layer model

    NASA Astrophysics Data System (ADS)

    Padro, Jacob

    1983-07-01

    A numerical-physical model for the planetary boundary layer has been formulated for the purpose of predicting the winds, temperatures and humidities in the lowest 1600 m of the atmosphere. An application of the model to the synoptic situation of 30 August, 1972, demonstrates its ability to produce useful forecasts for a period of 24 h. Results are illustrated in terms of horizontal maps and time-height sections of winds and temperatures. The model is divided in the vertical direction into three layers that are governed, respectively, by different physical formulations. At the lowest level, which is the surface of the earth, forecasts of temperature and humidity are computed from empirical relations. In the first layer, the surface layer, application is made of the similarity theories of Monin-Obukhov, Monin-Kazanski and Businger’s form of the universal functions. The second layer, the Ekman layer, is 1550 m deep and is governed by diagnostic momentum and time-dependent thermodynamic and humidity equations. External input to the model are large-scale pressure gradients and middle-level cloudiness. Cressman’s objective analysis procedure is applied to conventional surface and upper air data over a horizontal region of about 2500 km by 2500 km, centered about Lake Ontario. With a grid distance of 127 km and a time interval of 30 min, the computer time required on Control Data Cyber 76 for a 24 h forecast for the case study is less than two minutes.

  18. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  19. Some measurements in synthetic turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Savas, O.

    1980-01-01

    Synthetic turbulent boundary layers are examined which were constructed on a flat plate by generating systematic moving patterns of turbulent spots in a laminar flow. The experiments were carried out in a wind tunnel at a Reynolds number based on plate length of 1,700,000. Spots were generated periodically in space and time near the leading edge to form a regular hexagonal pattern. The disturbance mechanism was a camshaft which displaced small pins momentarily into the laminar flow at frequencies up to 80 Hz. The main instrumentation was a rake of 24 hot wires placed across the flow in a line parallel to the surface. The main measured variable was local intermittency; i.e., the probability of observing turbulent flow at a particular point in space and time. The results are reported in x-t diagrams showing the evolution of various synthetic flows along the plate. The dimensionless celerity or phase velocity of the large eddies is found to be 0.88, independent of eddy scale. All patterns with sufficiently small scales eventually showed loss of coherence as they moved downstream. A novel phenomenon called eddy transposition was observed in several flows which contained appreciable laminar regions. The large eddies shifted in formation to new positions, intermediate to their original ones, while preserving their hexagonal pattern. The present results, together with some empirical properties of a turbulent spot, are used to estimate the best choice of scales for constructi