Science.gov

Sample records for atmospheric chemistry project

  1. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  2. Atmospheric chemistry

    SciTech Connect

    Sloane, C.S. ); Tesche, T.W. )

    1991-01-01

    This book covers the predictive strength of atmospheric models. The book covers all of the major important atmospheric areas, including large scale models for ozone depletion and global warming, regional scale models for urban smog (ozone and visibility impairment) and acid rain, as well as accompanying models of cloud processes and biofeedbacks.

  3. Compilation and analyses of emissions inventories for the NOAA atmospheric chemistry project. Progress report, August 1997

    SciTech Connect

    Benkovitz, C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen for circa 1985 and 1990 and non-methane volatile organic compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity of the International Global Atmospheric Chemistry program. Global emissions of NOx for 1985 are estimated to be 21 Tg N/yr, with approximately 84% originating in the Northern Hemisphere. The global emissions for 1990 are 31 Tg N/yr for NOx and 173 Gg NMVOC/yr. Ongoing research activities for this project continue to address emissions of both NOx and NMVOCs. Future tasks include: evaluation of more detailed regional emissions estimates and update of the default 1990 inventories with the appropriate estimates; derivation of quantitative uncertainty estimates for the emission values; and development of emissions estimates for 1995.

  4. Observational constraints on ozone radiative forcing from the Atmospheric Chemistry Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Bowman, K.; Shindell, D.; Worden, H.; Lamarque, J. F.; Young, P. J.; Stevenson, D.; Qu, Z.; de la Torre, M.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.; Doherty, R.; Dalsøren, S.; Faluvegi, G.; Folberth, G.; Horowitz, L. W.; Josse, B.; Lee, Y. H.; MacKenzie, I.; Myhre, G.; Nagashima, T.; Naik, V.; Plummer, D.; Rumbold, S.; Skeie, R.; Strode, S.; Sudo, K.; Szopa, S.; Voulgarakis, A.; Zeng, G.; Kulawik, S.; Worden, J.

    2012-09-01

    We use simultaneous observations of ozone and outgoing longwave radiation (OLR) from the Tropospheric Emission Spectrometer (TES) to evaluate ozone distributions and radiative forcing simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5-20 ppb) in the Southern Hemisphere (SH) and modest high bias (5-10 ppb) in the Northern Hemisphere (NH) relative to TES for 2005-2010. These biases lead to substantial differences in ozone instantaneous radiative forcing between TES and the ACCMIP simulations. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean has a low bias in the SH tropics of up to 100 m W m-2 locally and a global low bias of 35 ± 44 m W m-2 relative to TES. Combining ACCMIP preindustrial ozone and the TES present-day ozone, we calculate an observationally constrained estimate of tropospheric ozone radiative forcing (RF) of 399 ± 70 m W m-2, which is about 7% higher than using the ACCMIP models alone but with the same standard deviation (Stevenson et al., 2012). In addition, we explore an alternate approach to constraining radiative forcing estimates by choosing a subset of models that best match TES ozone, which leads to an ozone RF of 369 ± 42 m W m-2. This estimate is closer to the ACCMIP ensemble mean RF but about a 40% reduction in standard deviation. These results point towards a profitable direction of combining observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.

  5. Chemistry of atmospheres.

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.

    Atmospheric chemistry has been the focus of much research activity in recent years. Like its predecessor, this new edition lays down the principles of atmospheric chemistry and provides the necessary background for more detailed study. New developments are covered, including the startling discovery of the "Antarctic ozone hole", and the increasingly rapid changes in the composition of the Earth's atmosphere, apparently a result of man's activities. Information gathered by the Voyager 2 and other space missions, which have provided a new understanding of the atmospheres of planets other than our own, is also discussed.

  6. Biomass burning studies and the International Global Atmospheric Chemistry (IGAC) project

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1991-01-01

    IGAC is an ambitious, decade-long and global research initiative concerned with major research challenges in the field of atmospheric chemistry; its chemists and ecosystem biologists are addressing the problems associated with global biomass burning (BMB). Among IGAC's goals is the achievement of a fundamental understanding of the natural and anthropogenic processes determining changes in atmospheric composition and chemistry, in order to allow century-long predictions. IGAC's studies have been organized into 'foci', encompassing the marine, tropical, polar, boreal, and midlatitude areas, as well as their global composite interactions. Attention is to be given to the effects of BMB on biogeochemical cycles.

  7. (Chemistry of the global atmosphere)

    SciTech Connect

    Marland, G.

    1990-09-27

    The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

  8. Heterogeneous atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Schryer, D. R.

    1982-01-01

    The present conference on heterogeneous atmospheric chemistry considers such topics concerning clusters, particles and microparticles as common problems in nucleation and growth, chemical kinetics, and catalysis, chemical reactions with aerosols, electron beam studies of natural and anthropogenic microparticles, and structural studies employing molecular beam techniques, as well as such gas-solid interaction topics as photoassisted reactions, catalyzed photolysis, and heterogeneous catalysis. Also discussed are sulfur dioxide absorption, oxidation, and oxidation inhibition in falling drops, sulfur dioxide/water equilibria, the evidence for heterogeneous catalysis in the atmosphere, the importance of heterogeneous processes to tropospheric chemistry, soot-catalyzed atmospheric reactions, and the concentrations and mechanisms of formation of sulfate in the atmospheric boundary layer.

  9. COMPILATION AND ANALYSES OF EMISSIONS INVENTORIES FOR THE NOAA ATMOSPHERIC CHEMISTRY PROJECT. PROGRESS REPORT, AUGUST 1997.

    SciTech Connect

    BENKOVITZ,C.M.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories. The resulting global emissions for 1990 are 31 Tg N yr{sup -1} for NO{sub x} and 173 Gg NMVOC yr{sup -1}. Emissions of NO{sub x} are highest in the populated and industrialized areas of eastern North America and across Europe, and in biomass burning areas of South America, Africa, and Asia. Emissions of NMVOCs are highest in biomass burning areas of South America, Africa, and Asia. The 1990 NO{sub x} emissions were gridded to 1{sup o} resolution using surrogate data, and were given seasonal, two-vertical-level resolution and speciated into NO and NO{sub 2} based on proportions derived from the 1985 GEIA Version 1B inventory. Global NMVOC

  10. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; Young, P. J.; Cionni, I.; Dalsoren, S.; Eyring, V.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.; Doherty, R.; Faluvegi, G.; Folberth, G.; Ghan, S. J.; Horowitz, L. W.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  11. Atmospheric Pseudohalogen Chemistry

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a useful long-lived "smoking gun" marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (CN) and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen.

  12. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  13. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-03-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m-2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the

  14. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; vanNoije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  15. The chemistry of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1976-01-01

    Present knowledge concerning the chemistry of planetary atmospheres is reviewed along with the theories which attempt to explain observational data. The known gross atmospheric compositions of the terrestrial and giant planets are listed, differences between the atmospheres of earth and Venus are discussed, and the atmospheres of the giant planets are described. The origin and evolution of the atmospheres of earth, Venus, Mars, Jupiter, Saturn, and Uranus are outlined, and chemical processes in the atmospheres are examined, particularly cloud formation. The question of organic synthesis and evolution in the reducing atmospheres of the giant planets is considered. It is noted that laboratory work on the individual chemical processes and reactions involved in the evolution of organic compounds in planetary atmospheres, comets, and interstellar space points to the inevitability of organic-compound synthesis in all these situations and to the pervasiveness of organic chemistry throughout the universe.

  16. Organic chemistry in Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  17. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    NASA Astrophysics Data System (ADS)

    Geddes, Jeffrey A.; Heald, Colette L.; Silva, Sam J.; Martin, Randall V.

    2016-02-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land-atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to the projected change in emissions is affected by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that 8 h average O3 exceeds 70 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. The influence of changes in dry deposition demonstrated here underscores the need to evaluate treatments of this physical process in models. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5-10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 and 2 µg m-3. Changes to reactive nitrogen oxide abundance and partitioning are also locally

  18. Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States

    NASA Astrophysics Data System (ADS)

    Geddes, J. A.; Heald, C. L.; Silva, S. J.; Martin, R. V.

    2015-10-01

    Land use and land cover changes impact climate and air quality by altering the exchange of trace gases between the Earth's surface and atmosphere. Large-scale tree mortality that is projected to occur across the United States as a result of insect and disease may therefore have unexplored consequences for tropospheric chemistry. We develop a land use module for the GEOS-Chem global chemical transport model to facilitate simulations involving changes to the land surface, and to improve consistency across land-atmosphere exchange processes. The model is used to test the impact of projected national-scale tree mortality risk through 2027 estimated by the 2012 USDA Forest Service National Insect and Disease Risk Assessment. Changes in biogenic emissions alone decrease monthly mean O3 by up to 0.4 ppb, but reductions in deposition velocity compensate or exceed the effects of emissions yielding a net increase in O3 of more than 1 ppb in some areas. The O3 response to emissions is controlled by the ratio of baseline NOx : VOC concentrations, suggesting that in addition to the degree of land cover change, tree mortality impacts depend on whether a region is NOx-limited or NOx-saturated. Consequently, air quality (as diagnosed by the number of days that average 8 h O3 exceeds 65 ppb) improves in polluted environments where changes in emissions are more important than changes to dry deposition, but worsens in clean environments where changes to dry deposition are the more important term. Biogenic secondary organic aerosol loadings are significantly affected across the US, decreasing by 5-10 % across many regions, and by more than 25 % locally. Tree mortality could therefore impact background aerosol loadings by between 0.5 to 2 μg m-3. Changes to reactive nitrogen oxide abundance and partitioning are also locally important. These simulations suggest that changes in biosphere-atmosphere exchange must be considered when predicting future air quality and climate. We point to

  19. Compilation and analyses of emissions inventories for NOAA`s atmospheric chemistry project. Progress report, August 1997

    SciTech Connect

    Benkovitz, C.M.; Mubaraki, M.A.

    1997-09-01

    Global inventories of anthropogenic emissions of oxides of nitrogen (NO{sub x}) for circa 1985 and 1990 and Non-Methane Volatile Organic Compounds (NMVOCs) for circa 1990 have been compiled by this project. Work on the inventories has been carried out under the umbrella of the Global Emissions Inventory Activity (GEIA) of the International Global Atmospheric Chemistry (IGAC) Program. The 1985 NO{sub x} inventory was compiled using default data sets of global emissions that were refined via the use of more detailed regional data sets; this inventory is being distributed to the scientific community at large as the GEIA Version 1A inventory. Global emissions of NO{sub x} for 1985 are estimated to be 21 Tg N y{sup -1}, with approximately 84% originating in the Northern Hemisphere. The 1990 inventories of NO{sub x} and NMVOCs were compiled using unified methodologies and data sets in collaboration with the Netherlands National Institute of Public Health and Environmental Protection (Rijksinstituut Voor Volksgezondheid en Milieuhygiene, RIVM) and the Division of Technology for Society of the Netherlands Organization for Applied Scientific Research, (IMW-TNO); these emissions will be used as the default estimates to be updated with more accurate regional data. The NMVOC inventory was gridded and speciated into 23 chemical categories.

  20. Heterogeneous Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Schryer, David R.

    In the past few years it has become increasingly clear that heterogeneous, or multiphase, processes play an important role in the atmosphere. Unfortunately the literature on the subject, although now fairly extensive, is still rather dispersed. Furthermore, much of the expertise regarding heterogeneous processes lies in fields not directly related to atmospheric science. Therefore, it seemed desirable to bring together for an exchange of ideas, information, and methodologies the various atmospheric scientists who are actively studying heterogeneous processes as well as other researchers studying similar processes in the context of other fields.

  1. Chemistry Of Atmospheric Brown Carbon

    SciTech Connect

    Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-05-27

    Organic carbon (OC) accounts for a large fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry and climate forcing. Molecular composition of the OC and its evolution during common processes of atmospheric aging have been a subject of extensive research over the last decade (see reviews of Ervens et al.,1 Hallquist et al.,2 Herckes et al.,3 Carlton et al.,4 Kroll and Seinfeld,5 Rudich et al.,6 and Kanakidou et al.7). Even though many fundamental advances have been reported in these studies, our understanding of the climate-related properties of atmospheric OC is still incomplete and the specific ways in which OC impacts atmospheric environment and climate forcing are just beginning to be understood. This review covers one topic of particular interest in this area –environmental chemistry of light-absorbing aerosol OC and its impact on radiative forcing.

  2. Computational solution of atmospheric chemistry problems

    NASA Technical Reports Server (NTRS)

    Jafri, J.; Ake, R. L.

    1986-01-01

    Extensive studies were performed on problems of interest in atmospheric chemistry. In addition to several minor projects, four major projects were performed and described (theoretical studies of ground and low-lying excited states of ClO2; ground and excited state potential energy surfaces of the methyl peroxy radical; electronic states ot the FO radical; and theoretical studies S02 (H2O) (sub n)).

  3. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of Historical and Projected Future Changes

    SciTech Connect

    Lamarque, Jean-Francois; Dentener, Frank; McConnell, J.R.; Ro, C-U; Shaw, Mark; Vet, Robert; Bergmann, D.; Cameron-Smith, Philip; Dalsoren, S.; Doherty, R.; Faluvegi, G.; Ghan, Steven J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, David; Shindell, Drew; Skeie, R. B.; Stevenson, D. S.; Strode, S.; Zeng, G.; Curran, M.; Dahl-Jensen, D.; Das, S.; Fritzsche, D.; Nolan, M.

    2013-08-20

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States, but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching >1300 mgN/m2/yr averaged over regional to continental scale regions in RCP 2.6 and 8.5, ~30-50% larger than the values in any region currently (2000). Despite known issues, the new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  4. Multi-model Mean Nitrogen and Sulfur Deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation Historical and Projected Changes

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Dentener, F.; McConnell, J.; Ro, C.-U.; Shaw, M.; Vet, R.; Bergmann, D.; Cameron-Smith, P.; Doherty, R.; Faluvegi, G.; Ghan, S. J.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Plummer, D.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Zeng, G.

    2013-01-01

    We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.

  5. Atmospheric chemistry over southern Africa

    NASA Astrophysics Data System (ADS)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2012-03-01

    Changing Chemistry in a Changing Climate: Human and Natural Impacts Over Southern Africa (C4-SAR); Midrand, South Africa, 31 May to 3 June 2011 During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semipermanent atmospheric gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite- derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission on Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from Eskom, the South African power utility; and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa.

  6. Atmospheric Chemistry Over Southern Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  7. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  8. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  9. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    This is the third semi-annual report for NAS5-97039, covering January through June 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strengths and weaknesses of the next generation assessment models.

  10. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  11. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  12. A critical evaluation of present-day and future surface ozone as simulated by global chemistry-climate models in the Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Schnell, J.; Prather, M. J.

    2014-12-01

    In evaluating a future scenario for air quality, one can identify four major causal factors: (1) global emissions that alter atmospheric composition and thence baseline levels of surface ozone (O3); (2) global changes in climate that also alter these baselines (e.g., temperature, water vapor); (3) climate-driven changes in the meteorological regimes of polluted regions that lead to air quality extreme (AQX) episodes; and (4) changes in the efficacy of local emissions to produce pollution within a governance region. While these factors are all part of a coupled system, a model that combines all would be difficult to verify. Thus an assessment approach would be to evaluate each factor separately using observations and an ensemble of models. In this study, we focus on factor (3), evaluating the ability of the models in the Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP) to reproduce the observed present-day climatology (e.g. diurnal/seasonal cycles, AQX episode size) of surface O3 in North America (NA) and Europe (EU). We then characterize future changes within these domains as well as south Asia (SA) for two experiments of RCP8.5 climate, one with O3 precursor emissions representative of the 2100s (RCP8.5) and one representative of the 2000s (Cl2100Em2000). We find that most models simulate the observed climatology well, albeit biased high over the range of each domain's probability distribution (Fig. 1). For RCP8.5, the ensemble mean shows an increase of ~10% in the mean annual maximum daily 8-h average (MDA8) over all domains, with the largest changes in winter months. For Cl2100Em2000, NA shows a small increase (+1%) in annual mean MDA8 while EU and SA show small decreases (-2% and -3%, respectively). Also for RCP8.5, most models show decreases in the mean size (S) and mean duration (D) of AQX episodes in EU (S = -28%, D = -17%) and increases in SA (+54%, +15%). The ensemble mean shows decreases in D (-7%) and increases in S (+21%) in NA

  13. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  14. Atmospheric chemistry in volcanic plumes.

    PubMed

    von Glasow, Roland

    2010-04-13

    Recent field observations have shown that the atmospheric plumes of quiescently degassing volcanoes are chemically very active, pointing to the role of chemical cycles involving halogen species and heterogeneous reactions on aerosol particles that have previously been unexplored for this type of volcanic plumes. Key features of these measurements can be reproduced by numerical models such as the one employed in this study. The model shows sustained high levels of reactive bromine in the plume, leading to extensive ozone destruction, that, depending on plume dispersal, can be maintained for several days. The very high concentrations of sulfur dioxide in the volcanic plume reduces the lifetime of the OH radical drastically, so that it is virtually absent in the volcanic plume. This would imply an increased lifetime of methane in volcanic plumes, unless reactive chlorine chemistry in the plume is strong enough to offset the lack of OH chemistry. A further effect of bromine chemistry in addition to ozone destruction shown by the model studies presented here, is the oxidation of mercury. This relates to mercury that has been coemitted with bromine from the volcano but also to background atmospheric mercury. The rapid oxidation of mercury implies a drastically reduced atmospheric lifetime of mercury so that the contribution of volcanic mercury to the atmospheric background might be less than previously thought. However, the implications, especially health and environmental effects due to deposition, might be substantial and warrant further studies, especially field measurements to test this hypothesis.

  15. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.

    1997-01-01

    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.

  16. The Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Project: Overview and results from ten years of ACE operations

    NASA Astrophysics Data System (ADS)

    Walker, Kaley; Strong, Kimberly

    2014-05-01

    As of February 2014, the Canadian-led Atmospheric Chemistry Experiment (ACE) satellite mission has been making measurements of the Earth's atmosphere for ten years. As ACE operations have extended beyond the initial two-year mission, there is a continuing need to validate the trace gas data products from the ACE-Fourier Transform Spectrometer (ACE-FTS) and the Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (ACE-MAESTRO) instruments. Ground-based measurements provide critical data for the validation of satellite retrievals of trace gases and for the assessment of long-term stability of these measurements. In particular, validation comparisons are needed for ACE during Arctic springtime to understand better the measurements of species involved in stratospheric ozone chemistry. To this end, eleven Canadian Arctic Atmospheric Chemistry Experiment (ACE) Validation Campaigns have been conducted during the spring period (February - April in 2004 - 2014) at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut (80°N, 86°W). This period coincides with the most chemically active time of year in the Arctic, as well as a significant number of satellite overpasses. A suite of as many as 12 ground-based instruments, as well as frequent balloon-borne ozonesonde and radiosonde launches, have been used in each campaign. These instruments include: a ground-based version of the ACE-FTS (PARIS - Portable Atmospheric Research Interferometric Spectrometer), a terrestrial version of the ACE-MAESTRO, a SunPhotoSpectrometer, two zenith-viewing UV-visible grating spectrometers, a Bomem DA8 Fourier transform spectrometer, a Bruker 125HR Fourier transform spectrometer, a Systeme d'Analyse par Observations Zenithales (SAOZ) instrument, and several Brewer spectrophotometers. In the past several years, these results have been used to validate the measurements by the ACE-FTS and ACE-MAESTRO instruments on SCISAT as well

  17. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  18. The Atmospheric Chemistry Experiment (ACE)

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.

    2017-01-01

    The Atmospheric Chemistry Experiment (ACE), also called SCISAT, is a Canadian-led small satellite mission for remote sensing of the Earth's atmosphere. ACE was launched into a low Earth circular orbit by NASA on August 12, 2003 and it continues to function nominally. The ACE instruments are a high spectral resolution (0.02 cm-1) Fourier Transform Spectrometer (FTS) operating from 2.2 to 13.3 μm (750-4400 cm-1), a spectrophotometer known as Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation (MAESTRO) with wavelength coverage of 285-1020 nm and two filtered detector arrays to image the Sun at 0.525 and 1.02 μm. ACE operates in solar occultation mode to provide altitude profiles of temperature, pressure, atmospheric extinction and the volume mixing ratios (VMRs) for several dozen molecules and related isotopologues. This paper presents a mission overview and a summary of selected scientific results.

  19. Pre-industrial to End 21st Century Projections of Tropospheric Ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Young, P. J.; Archibald, A. T.; Bowman, K. W.; Lamarque, J.-F.; Naik, V.; Stevenson, D. S.; Tilmes, S.; Voulgarakis, A.; Wild, O.; Bergmann, D.; Cameron-Smith, P.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R. M.; Eyring, V.; Faluvegi, G.; Horowitz, L. W.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; Plummer, D. A.; Righi, M.; Strode, S. A.

    2013-01-01

    Present day tropospheric ozone and its changes between 1850 and 2100 are considered, analysing 15 global models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean compares well against present day observations. The seasonal cycle correlates well, except for some locations in the tropical upper troposphere. Most (75 %) of the models are encompassed with a range of global mean tropospheric ozone column estimates from satellite data, but there is a suggestion of a high bias in the Northern Hemisphere and a low bias in the Southern Hemisphere, which could indicate deficiencies with the ozone precursor emissions. Compared to the present day ensemble mean tropospheric ozone burden of 337+/-23 Tg, the ensemble mean burden for 1850 time slice is approx. 30% lower. Future changes were modelled using emissions and climate projections from four Representative Concentration Pathways (RCPs). Compared to 2000, the relative changes in the ensemble mean tropospheric ozone burden in 2030 (2100) for the different RCPs are: -4% (-16 %) for RCP2.6, 2% (-7%) for RCP4.5, 1% (-9%) for RCP6.0, and 7% (18 %) for RCP8.5. Model agreement on the magnitude of the change is greatest for larger changes. Reductions in most precursor emissions are common across the RCPs and drive ozone decreases in all but RCP8.5, where doubled methane and a 40-150% greater stratospheric influx (estimated from a subset of models) increase ozone. While models with a high ozone burden for the present day also have high ozone burdens for the other time slices, no model consistently predicts large or small ozone changes; i.e. the magnitudes of the burdens and burden changes do not appear to be related simply, and the models are sensitive to emissions and climate changes in different ways. Spatial patterns of ozone changes are well correlated across most models, but are notably different for models without time evolving stratospheric ozone concentrations

  20. Nighttime atmospheric chemistry of iodine

    NASA Astrophysics Data System (ADS)

    Saiz-Lopez, Alfonso; Plane, John M. C.; Cuevas, Carlos A.; Mahajan, Anoop S.; Lamarque, Jean-François; Kinnison, Douglas E.

    2016-12-01

    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I2 during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I2 could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO3+ HOI → IO + HNO3 is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260-300 K and at a pressure of 1000 hPa to be k(T) = 2.7 × 10-12 (300 K/T)2.66 cm3 molecule-1 s-1. This reaction is included in two atmospheric models, along with the known reaction between I2 and NO3, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I2, which results in the enhancement of more than 25 % of nighttime ocean emissions of HOI + I2 and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO3 radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation.

  1. The chemistry of Venus' atmosphere

    NASA Technical Reports Server (NTRS)

    Sze, N. D.; Smith, W. H.

    1978-01-01

    A model for the Venus atmosphere involving photochemistry of oxygen, hydrogen, chlorine and sulfur species is presented. Sulfur reaction schemes and hydrogen and chlorine reaction schemes were included. The impact of sulfur on the oxygen budget and the subsequent production of H2SO4 molecules for the Venus cloud deck were explored. A major new reaction scheme for production of H2SO4 molecules involving sulfur and oxygen chemistry was established shown to dominate over the odd hydrogen scheme proposed earlier. The efficiency of the scheme in formation of H2SO4 is only about 50%, with the remaining sulfur residing in SO2 molecules. The calculated downward flux of H2SO4 may be sufficient to maintain a steady state sulfuric acid cloud if the resident time of H2SO4 droplets in the cloud is as long as a few years. If however, the resident time is half a year or shorter, additional chemistry capable of more efficient conversion of SO2 to SO3 is required.

  2. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  3. Updated operational protocols for the U.S. Geological Survey Precipitation Chemistry Quality Assurance Project in support of the National Atmospheric Deposition Program

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2017-02-06

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance Project (PCQA) for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Since 1978, various programs have been implemented by the PCQA to estimate data variability and bias contributed by changing protocols, equipment, and sample submission schemes within NADP networks. These programs independently measure the field and laboratory components which contribute to the overall variability of NADP wet-deposition chemistry and precipitation depth measurements. The PCQA evaluates the quality of analyte-specific chemical analyses from the two, currently (2016) contracted NADP laboratories, Central Analytical Laboratory and Mercury Analytical Laboratory, by comparing laboratory performance among participating national and international laboratories. Sample contamination and stability are evaluated for NTN and MDN by using externally field-processed blank samples provided by the Branch of Quality Systems. A colocated sampler program evaluates the overall variability of NTN measurements and bias between dissimilar precipitation gages and sample collectors.This report documents historical PCQA operations and general procedures for each of the external quality-assurance programs from 2007 to 2016.

  4. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak

    1999-01-01

    This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  5. Ether and the atmospheric chemistry data assimilation

    NASA Astrophysics Data System (ADS)

    Ricaud, P.; Phulpin, T.; Girod, F.; Boonne, C.

    The French atmospheric chemistry data base Ether has been developed and funded by the French Space Agency (CNES) and the Institut National des Sciences de l'Univers (INSU/CNRS) for about 6 years. The role of Ether is to assist French atmospheric researchers, European scientists, as long as they are involved in co-operation agreements with French scientists, to locate, access and interpret atmospheric data. This centre gathers data from satellite, balloon campaigns linked to satellite validation, aircraft and model results for stratospheric and tropospheric purposes and from different levels of production (raw data, physical data, interpolated or assimilated data). All Ether data are available on-line through a World Web interface (http://ether.ipsl.jussieu.fr). Software and added-value services are provided to assist in the manipulation of the data or to generate higher levels standard data products. Extensive information is also provided on the data collection procedures, formats, contact names and references to scientific papers. In addition to data support activities, a major goal of Ether is to promote the creation of different expertise networks on varying atmospheric chemistry topics. The first working group has been created on data assimilation. It consists in gathering expertises in different themes (satellites, assimilation techniques, modelling, real-time processing) in order to optimally develop a tool able to answer different scientific questions relative to the evolution of the Earth atmosphere in terms of chemistry and dynamics. Based on the PALM tool able to interconnect different codes, it will be able to process different satellite data using two atmospheric models and assimilation schemes within the French Ether data base. Ether will focus on the handling and on the development of added-value services of data for which the French community is directly or indirectly involved. For these projects Ether will provide all the data needed, and will

  6. Mars Atmospheric Chemistry and Astrobiology Workshop Summary

    NASA Astrophysics Data System (ADS)

    Allen, M.; Wennberg, P.

    2002-09-01

    The Mars Atmospheric Chemistry and Astrobiology (MACA) Workshop was held on the California Institute of Technology campus December 17-18, 2001. The prime objective of the workshop was to consider whether extant life beneath the surface, if it exists, would be in contact with the atmosphere and introduce a detectable signature in the atmosphere. To answer this question, the workshop also explored how well we understood the abiotic chemistry of the current atmosphere and other drivers of atmospheric composition (volcanoes, surface-atmosphere interactions, escape). The conclusions from this workshop will be presented.

  7. Collaborative Physical Chemistry Projects Involving Computational Chemistry

    NASA Astrophysics Data System (ADS)

    Whisnant, David M.; Howe, Jerry J.; Lever, Lisa S.

    2000-02-01

    The physical chemistry classes from three colleges have collaborated on two computational chemistry projects using Quantum CAChe 3.0 and Gaussian 94W running on Pentium II PCs. Online communication by email and the World Wide Web was an important part of the collaboration. In the first project, students used molecular modeling to predict benzene derivatives that might be possible hair dyes. They used PM3 and ZINDO calculations to predict the electronic spectra of the molecules and tested the predicted spectra by comparing some with experimental measurements. They also did literature searches for real hair dyes and possible health effects. In the final phase of the project they proposed a synthetic pathway for one compound. In the second project the students were asked to predict which isomer of a small carbon cluster (C3, C4, or C5) was responsible for a series of IR lines observed in the spectrum of a carbon star. After preliminary PM3 calculations, they used ab initio calculations at the HF/6-31G(d) and MP2/6-31G(d) level to model the molecules and predict their vibrational frequencies and rotational constants. A comparison of the predictions with the experimental spectra suggested that the linear isomer of the C5 molecule was responsible for the lines.

  8. Heterogeneous chemistry in the atmosphere of Mars.

    PubMed

    Lefèvre, Franck; Bertaux, Jean-Loup; Clancy, R Todd; Encrenaz, Thérèse; Fast, Kelly; Forget, François; Lebonnois, Sébastien; Montmessin, Franck; Perrier, Séverine

    2008-08-21

    Hydrogen radicals are produced in the martian atmosphere by the photolysis of water vapour and subsequently initiate catalytic cycles that recycle carbon dioxide from its photolysis product carbon monoxide. These processes provide a qualitative explanation for the stability of the atmosphere of Mars, which contains 95 per cent carbon dioxide. Balancing carbon dioxide production and loss based on our current understanding of the gas-phase chemistry in the martian atmosphere has, however, proven to be difficult. Interactions between gaseous chemical species and ice cloud particles have been shown to be key factors in the loss of polar ozone observed in the Earth's stratosphere, and may significantly perturb the chemistry of the Earth's upper troposphere. Water-ice clouds are also commonly observed in the atmosphere of Mars and it has been suggested previously that heterogeneous chemistry could have an important impact on the composition of the martian atmosphere. Here we use a state-of-the-art general circulation model together with new observations of the martian ozone layer to show that model simulations that include chemical reactions occurring on ice clouds lead to much improved quantitative agreement with observed martian ozone levels in comparison with model simulations based on gas-phase chemistry alone. Ozone is readily destroyed by hydrogen radicals and is therefore a sensitive tracer of the chemistry that regulates the atmosphere of Mars. Our results suggest that heterogeneous chemistry on ice clouds plays an important role in controlling the stability and composition of the martian atmosphere.

  9. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Inter-comparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.

    2012-10-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). We calculate a~value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 0.40 W m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (47%), nitrogen oxides (29%), carbon monoxide (15%) and non-methane volatile organic compounds (9%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 0.042 W m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (W m-2; relative to 1850 - add 0.04 W m-2 to make relative to 1750) for the Representative Concentration Pathways in 2030 (2100) of: RCP2.6: 0.31 (0.16); RCP4.5: 0.38 (0.26); RCP6.0: 0.33 (0.24); and RCP8.5: 0.42 (0.56). Models show some coherent responses of ozone to climate change: decreases in the tropical lower troposphere, associated with increases in water vapour; and increases in the sub-tropical to mid-latitude upper troposphere, associated with increases in lightning and stratosphere-to-troposphere transport.

  10. Modeling the atmospheric chemistry of TICs

    NASA Astrophysics Data System (ADS)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  11. Energy, atmospheric chemistry, and global climate

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.

    1991-01-01

    Global atmospheric changes due to ozone destruction and the greenhouse effect are discussed. The work of the Intergovernmental Panel on Climate Change is reviewed, including its judgements regarding global warming and its recommendations for improving predictive capability. The chemistry of ozone destruction and the global atmospheric budget of nitrous oxide are reviewed, and the global sources of nitrous oxide are described.

  12. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)

    1999-01-01

    This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  13. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  14. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  15. Parallel computing in atmospheric chemistry models

    SciTech Connect

    Rotman, D.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  16. Perspective: Water cluster mediated atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Vaida, Veronica

    2011-07-01

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  17. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  18. Chemistry of Planetary Atmospheres: Insights and Prospects

    NASA Astrophysics Data System (ADS)

    Yung, Yuk

    2015-11-01

    Using observations from the Mariners, Pioneers, Vikings, Voyagers, Pioneer Venus, Galileo, Venus Express, Curiosity, Cassini, New Horizons, and numerous observatories both in orbit of Earth and on the ground, I will give a survey of the major chemical processes that control the composition of planetary atmospheres. For the first time since the beginning of the space age, we understand the chemistry of planetary atmospheres ranging from the primitive atmospheres of the giant planets to the highly evolved atmospheres of terrestrial planets and small bodies. Our understanding can be distilled into three important ideas: (1) The stability of planetary atmospheres against escape of their constituents to space, (2) the role of equilibrium chemistry in determining the partitioning of chemical species, and (3) the role of disequilibrium chemistry, which produces drastic departures from equilibrium chemistry. To these three ideas we must also add a fourth: the role of biochemistry at Earth's surface, which makes its atmospheric chemistry unique in the cosmochemical environment. Only in the Earth's atmosphere do strong reducing and oxidizing species coexist to such a degree. For example, nitrogen species in the Earth's atmosphere span eight oxidation states from ammonia to nitric acid. Much of the Earth's atmospheric chemistry consists of reactions initiated by the degradation of biologically produced molecules. Life uses solar energy to drive chemical reactions that would otherwise not occur; it represents a kind of photochemistry that is special to Earth, at least within the Solar System. It remains to be seen how many worlds like Earth there are beyond the Solar System, especially as we are now exploring the exoplanets using Kepler, TESS, HST, Spitzer, soon to be launched missions such as JWST and WFIRST, and ground-based telescopes. The atmospheres of the Solar System provide a benchmark for studying exoplanets, which in turn serve to test and extend our current

  19. PNNL's 'PEGASUS' Advances Atmospheric Chemistry

    SciTech Connect

    Berkowitz, Carl M.; Eades, Robert A.

    2001-04-16

    Presented an overview of software design to maximize computational efficiency on a massively parallel computing system. Also gave highlights of scientific results from this code, focusing primarily on how we can distinguish between stratospheric ozone in remote atmospheres and ozone generated from NOx/VOC chemical mechanisms.

  20. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  1. Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: overview of the PUMA Consortium project.

    PubMed

    Harrison, R M; Yin, J; Tilling, R M; Cai, X; Seakins, P W; Hopkins, J R; Lansley, D L; Lewis, A C; Hunter, M C; Heard, D E; Carpenter, L J; Creasey, D J; Lee, J D; Pilling, M J; Carslaw, N; Emmerson, K M; Redington, A; Derwent, R G; Ryall, D; Mills, G; Penkett, S A

    2006-05-01

    The PUMA (Pollution of the Urban Midlands Atmosphere) Consortium project involved intensive measurement campaigns in the Summer of 1999 and Winter of 1999/2000, respectively, in which a wide variety of air pollutants were measured in the UK West Midlands conurbation including detailed speciation of VOCs and major component analysis of aerosol. Measurements of the OH and HO2 free radicals by the FAGE technique demonstrated that winter concentrations of OH were approximately half of those measured during the summer despite a factor of 15 reduction in production through the photolysis of ozone. Detailed box modelling of the fast reaction chemistry revealed the decomposition of Criegee intermediates formed from ozone-alkene reactions to be responsible for the majority of the formation of hydroxyl in both the summer and winter campaigns, in contrast to earlier rural measurements in which ozone photolysis was predominant. The main sinks for hydroxyl are reactions with NO2, alkenes and oxygenates. Concentrations of the more stable hydrocarbons were found to be relatively invariant across the conurbation, but the impacts of photochemistry were evident through analyses of formaldehyde which showed the majority to be photochemical in origin as opposed to emitted from road traffic. Measurements on the upwind and downwind boundaries of the conurbation revealed substantial enhancements in NOx as a result of emissions within the conurbation, especially during westerly winds which carried relatively clean air. Using calcium as a tracer for crustal particles, it proved possible to reconstruct aerosol mass from the major chemical components with a fairly high degree of success. The organic to elemental carbon ratios showed a far greater influence of photochemistry in summer than winter, presumably resulting mainly from the greater availability of biogenic precursors during the summer campaign. Two urban airshed models were developed and applied to the conurbation, one Eulerian, the

  2. Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    SciTech Connect

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

    2013-03-05

    As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

  3. Photodissociation dynamics and atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wayne, R. P.

    1993-07-01

    The paper uses data from the literature to explore photodissociation dynamics of molecules possessing three, four, and five atoms, as represented by O3 and CO2, NH3 and C2H2, and CH4, respectively. The results yield many details, even in regard to the disposal of energy into rotation, which have applications to atmospheric problems. For instance, experiments probing the translational energies of the O and the vibrational and rotational distributions in the CO suggest that a spin-forbidden channel operates as it does in ozone photolysis. The data for both O3 and CO2 suggest a relationship between the structure of the parent molecule and the dynamics of dissociation.

  4. New insights into martian atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Boxe, C. S.; Francisco, J. S.; Shia, R.-L.; Yung, Y. L.; Nair, H.; Liang, M.-C.; Saiz-Lopez, A.

    2014-11-01

    HOx radicals are produced in the martian atmosphere by the photolysis of water vapor and subsequently participate in catalytic cycles that recycle carbon dioxide (CO2) from its photolysis product carbon monoxide (CO), providing a qualitative explanation for the stability of its atmosphere. Balancing CO2 production and loss based on our current understanding of martian gas-phase chemistry has, however, proven to be difficult. The photolysis of O3 produces O(1D), while oxidation of CO produces HOCO radicals, a new member of the HOx family. The O(1D) quantum yield has recently been updated, which quantifies nonzero quantum yields in the Huggins bands. In Earth's atmosphere HOCO is considered to be unimportant since it is quickly removed by abundant oxygen molecules. The smaller amount of O2 in the Mars' atmosphere causes HOCO's lifetime to be longer in Mars' atmosphere than Earth's (3 × 10-5 s to 1.2 days from Mars's surface to 240 km, respectively). Limited kinetic data on reactions involving HOCO prevented consideration of its reactions directly in atmospheric models. Therefore, the impact of HOCO reactions on martian chemistry is currently unknown. Here, we incorporate new literature rate constants for HOCO chemistry and an updated representation of the O(1D) quantum yield in the Caltech/JPL 1-D photochemical model for Mars' atmosphere. Our simulations exemplify perturbations to NOy, HOx, and COx species, ranging from 5% to 50%. The modified O(1D) quantum yield and new HOCO chemistry cause a 10% decrease and a 50% increase in OH and H2O2 total column abundances, respectively. At low altitudes, HOCO production contributes 5% towards CO2 production. Given recent experimentally-obtained branching ratios for the oxidation of CO, HOCO may contribute up to 70% toward the production of NOy, where HOx and NOy species are enhanced up to a factor 3, which has implications for rethinking the fundamental understanding of NOy, HOx, and CO/CO2 cycling on Mars. Two new reaction

  5. Is microbiolgy an alternative route to photochemistry in atmospheric chemistry?

    NASA Astrophysics Data System (ADS)

    Vaitilingom, M.; Parazols, M.; Sancelme, M.; Deguillaume, L.; Mailhot, G.; Delort, A.-M.

    2009-04-01

    Until very recently scientists from atmospheric sciences focussed their studies on physical and chemical phenomena taking place in cloud water phase neglecting the presence of active microorganisms in this medium. For instance, considering atmospheric chemistry, solar light is considered as the predominant catalyser for chemical reactions occurring in the atmosphere. However recent studies show that living and active microorganisms, including bacteria, yeasts and fungi, are present in the atmospheric water phase and could play an active role in chemistry of clouds. Indeed living microorganisms are clearly biocatalysts which could transform organic compounds as an alternative route to photochemistry. The objective of our project is to bring answers to this new scientific question by a multidisciplinary approach involving atmospheric physicists, photochemists and microbiologists. Microorganisms have been isolated and identified in cloud water sampled at the puy de Dôme summit which is an atmospheric observatory and a European referenced site. Laboratory experiments were carried out to evaluate the potential of organic species (carboxylic acids) degradation by the photochemical or microbiological ways. The project was centred on few carboxylic acids among them succinic, acetic, formic and oxalic acids (the most important organic acids in cloud water sampled at Puy de Dôme). Degradation rates were measured during biodegradation alone (Pseudomonas syringae), photochemistry alone (hydrogen peroxide + light) and combing both processed using artificial reconstituted cloud water. Our first results show that the obtained degradation rates are in the range of order.

  6. Chemistry and evolution of Titan's atmosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere are reviewed, in light of the scientific findings from the Voyager mission. It is argued that the present N2 atmosphere may be Titan's initial atmosphere, rather than one photochemically derived from an original NH3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH4 is irreversibly converted to less hydrogen-rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of about 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N2 into hot, escaping N atoms to remove about 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar EUV energy deposition in Titan's atmosphere by an order of magnitude, and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region.

  7. Preindustrial to Present-Day Changes in Tropospheric Hydroxyl Radical and Methane Lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Naik, V.; Voulgarakis, A.; Fiore, A. M.; Horowitz, L. W.; Lamarque, J.-F.; Lin, M.; Prather, M. J.; Young, P. J.; Bergmann, D.; Cameron-Smith, P. J.; Cionni, I.; Collins, W. J.; Dalsoren, S. B.; Doherty, R.; Eyring, V.; Faluvegi, G.; Folberth, G. A.; Josse, B.; Lee, Y. H.; MacKenzie, I. A.; Nagashima, T.; vanNoije, T. P. C.; Plummer, D. A.; Righi, M.; Rumbold, S. T.; Skeie, R.; Shindell, D. T.; Stevenson, D. S.; Strode, S.; Sudo, K.; Szopa, S.; Zeng, G.

    2013-01-01

    We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north–south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34%). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6%) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the

  8. Atmospheric Prebiotic Chemistry and Organic Hazes

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.

    2012-01-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  9. Atmospheric Prebiotic Chemistry and Organic Hazes

    PubMed Central

    Trainer, Melissa G.

    2013-01-01

    Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126

  10. Atmospheric Prebiotic Chemistry and Organic Hazes.

    PubMed

    Trainer, Melissa G

    2013-08-01

    Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.

  11. Submillimeter Planetary Atmospheric Chemistry Exploration Sounder

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.; Allen, Mark A.; Gill, John J.; Choonsup, Lee; Lin, Robert H.; Sin, Seth; Mehdi, Imran; Siegel, Peter H.; Maestrini, Alain

    2013-01-01

    Planetary Atmospheric Chemistry Exploration Sounder (SPACES), a high-sensitivity laboratory breadboard for a spectrometer targeted at orbital planetary atmospheric analysis. The frequency range is 520 to 590 GHz, with a target noise temperature sensitivity of 2,500 K for detecting water, sulfur compounds, carbon compounds, and other atmospheric constituents. SPACES is a prototype for a powerful tool for the exploration of the chemistry and dynamics of any planetary atmosphere. It is fundamentally a single-pixel receiver for spectral signals emitted by the relevant constituents, intended to be fed by a fixed or movable telescope/antenna. Its front-end sensor translates the received signal down to the 100-MHz range where it can be digitized and the data transferred to a spectrum analyzer for processing, spectrum generation, and accumulation. The individual microwave and submillimeter wave components (mixers, LO high-powered amplifiers, and multipliers) of SPACES were developed in cooperation with other programs, although with this type of instrument in mind. Compared to previous planetary and Earth science instruments, its broad bandwidth (approx. =.13%) and rapid tunability (approx. =.10 ms) are new developments only made possible recently by the advancement in submillimeter circuit design and processing at JPL.

  12. Chemistry and spectroscopy of the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Owen, T.

    1976-01-01

    A comprehensive review is given of the chemistry and spectroscopic studies of the Jovian atmosphere. Thermochemical equilibrium models for determining atmospheric composition are considered along with possible disequilibrating processes, and studies of the photochemistry of H2, CH4, NH3, H2S, and PH3 using the modeling methods are summarized. It is shown that photodissociation and advection are the major disequilibrating processes in Jupiter's atmosphere, that lightning and charged-particle bombardment are relatively minor factors in the planet's bulk chemistry, and that the existence of living organisms on the planet is highly improbable. Spectroscopic investigations of Jupiter are discussed, emphasizing recent observations of absorption bands due to CH4, NH3, H2, He, and D. Spectroscopic abundance determinations are examined for H2, HD, CH4, CH3D, NH3, C2H6, C2H2, and PH3. Upper limits are given for the abundances of several unobserved gases in the visible atmosphere, including H2S, HCl, SiH4, benzene, purines, pyrimidines, and their derivatives.

  13. Carbon Monoxide Affecting Planetary Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Horst, Sarah

    2016-10-01

    Atmospheric hazes are present in a range of solar system and extrasolar planetary atmospheres, and organic hazes, such as that in Titan's atmosphere, could be a source of prebiotic molecules.1 However, the chemistry occurring in planetary atmospheres and the resulting chemical structures are still not clear. Numerous experimental simulations2 have been carried out in the laboratory to understand the chemistry in N2/CH4 atmospheres, but very few simulations4 have included CO in their initial gas mixtures, which is an important component in many N2/CH4 atmospheres including Titan, Triton, and Pluto.3 Here we have conducted a series of atmosphere simulation experiments using AC glow discharge (cold plasma) as energy source to irradiate reactions in gas mixtures of CO, CH4, and N2 with a range of CO mixing ratios (from 0, 0.05%, 0.2%, 0.5%, 1%, 2.5%, to 5%) at low temperature (~100 K). Gas phase products are monitored during the reaction by quadrupole mass spectrometer (MS), and solid phase products are analyzed by solution-state nuclear magnetic resonance spectroscopy (NMR). MS results show that with the increase of CO in the initial gases, the production of nitrogenous organic molecules increases while the production of hydrogen molecules decreases in the gas phase. NMR measurements of the solid phase products show that with the increase of CO, hydrogen atoms bonded to nitrogen or oxygen in unsaturated structures increase while those bonded to saturated carbon decrease, which means more unsaturated species and less saturated species formed with the addition of CO. MS and NMR results demonstrate that the inclusion of CO affects the compositions of both gas and solid phase products, indicating that CO has an important impact on the chemistry occurring in our experiments and probably in planetary atmospheres.1. Hörst, S. M., et al. 2012, AsBio, 12, 8092. Cable, M. L., et al. 2012, Chem. Rev., 112, 18823. Lutz, B. L., et al. 1983, Sci, 220, 1374; Greaves, J. S., et al

  14. On the chemistry of Jupiter's upper atmosphere

    USGS Publications Warehouse

    Saslaw, W.C.; Wildey, R.L.

    1967-01-01

    We conduct a first investigation into the ion-molecule chemistry of the upper Jovian atmosphere. Experimental results show that intense ultraviolet radiation reacts with the constituents of the Jovian atmosphere to produce C2H4, C2H6, C3H8, and higher polymers. The general procedure for calculating both equilibrium and nonequilibrium abundances of these products is formulated and applied to the case of the surface passage of a satellite shadow. A specific example is made of ethylene, for which an analytical approximation gives 1010 molecules in an atmospheric column of 1 cm2 cross section after a very rapid rise to equilibrium. Such a concentration of ethylene does not substantially affect the infrared radiation in the shadow. ?? 1967.

  15. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  16. Trace Element Chemistry in Urban Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Farhana, B.; Husain, L.

    2006-12-01

    Unlike in the United States, the concentration of trace elements in urban air is still high enough in South Asian cities to study the impact of trace elements on climate and human health. Hence, continuous sampling of PM2.5 (particulate matter of <2.5 μm aerodynamic diameter)was carried out using low volume sampler in winter (2005-2006) in Lahore, the second largest city of Pakistan, which is highly impacted by urban and agricultural emissions and has remained unexplored in terms of atmospheric chemistry. Aerosols collected on this campaign are likely to carry the signatures of emissions from Afghanistan, North and Central Pakistan, North India in addition to the local pollution sources. During sampling from December 2005 to January 2006, it was possible to collect several samples during brief fog episodes. Samples were analyzed for 25 elements (Be, Na, Mg, Al, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, As, Se, Sr, Mo, Ag, Cd, Sn, Sb, Ba, Tl and Pb) using inductively coupled plasma mass spectrometry. High pollutant concentrations were observed throughout the study, for instance, Cr concentrations up to 1.4 μgm-3, As, 135 ngm-3, Cd, 93 ngm-3, Sn, 988 ngm-3 and Sb, 157 ngm-3. Pb and Zn concentrations respectively up to 12 and 48 μgm-3 were observed. Calculation of enrichment factor and crustal correction illustrate the attribution of Cr, Co, Ni, Zn, As, Se, Mo, Ag Cd, Sn, Sb, Tl and Pb to non-crustal sources. Air parcel back trajectories, interelemental relationships and meteorological observations have been used to explain the sources and the impacts of fog chemistry and mixing heights on atmospheric processing of trace elements in PM2.5. Atmospheric stagnation appeared to be one of factors causing episodic high concentrations. Crustal correction and interelemental relationships apparently suggest the emissions from coal and oil combustion, industrial processes, building construction sites and biomass burning as the prime role players in the atmospheric pollution in

  17. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical

  18. Atmospheric chemistry - Response to human influence

    NASA Technical Reports Server (NTRS)

    Logan, J. A.; Prather, M. J.; Wofsy, S. G.; Mcelroy, M. B.

    1978-01-01

    Global atmospheric chemistry is surveyed, and the agreement of models with observed distribution of gases is considered. The influence of human perturbations due to combustion, agriculture, and chloro-carbon releases is examined with emphasis on ozone. Effects of combustion-related releases of CO on the abundances of other gases as well as possible effects of CO on tropospheric ozone are discussed. Other topics include the contribution of the chlorocarbon industry to stratospheric chloride and the recombination of nitrogen fixed by agriculture and combustion.

  19. Composition and chemistry of Saturn's atmosphere

    NASA Technical Reports Server (NTRS)

    Prinn, R. G.; Larson, H. P.; Caldwell, J. J.; Gautier, D.

    1984-01-01

    A comprehensive discussion and review is presented of the chemistry and composition of Saturn as determined by earth-based, earth-orbital, and Voyager 1 and 2 spectroscopic observations. The observations imply that there are important differences between the actual composition of Saturn's atmosphere and that predicted for a homogeneous solar-composition planet. The H2, He, Ch4, NH3, and PH3 volume mixing ratios differ from the expected solar composition ratios, implying that during its formation Saturn accreted a significant amount of ice and rock. The depletion of He in the visible atmosphere suggests that this element has preferentially differentiated toward the center of the planet. The D to H ratio is similar to that on Jupiter and has important cosmological implications. Volume mixing ratios for C2H6 and C2H2 are consistent with the theoretically expected photochemical sources for these gases.

  20. Chapter 15 Elementary Processes in Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Maciel, Glauciete S.; Cappelletti, David; Grossi, Gaia; Pirani, Fernando; Aquilanti, Vincenzo

    The present article provides an account of recent progress in the use of quantum mechanical tools for understanding structure and processes for systems of relevance in atmospheric chemistry. The focus is on problems triggered by experimental activity in this laboratory on investigations of intermolecular interactions by molecular beam scattering. Regarding the major components of the atmosphere, results are summarized on dimers (N2-N2, O2-O2, N2-O2) where experimental and phenomenogically derived potential energy surfaces have been used to compute quantum mechanically the intermolecular clusters dynamics. Rovibrational levels and wave functions are obtained, for perspective use in atmospheric modelling, specifically of radiative absorption of weakly bound complexes. Further work has involved interactions of paramount importance, those of water, for which state-of-the-art quantum chemical calculations for its complexes with rare gases yield complementary information on the interaction (specifically the anisotropies) with respect to molecular beam scattering experiments that measure essentially the isotropic forces. Similar approaches and results have been pursued and obtained for H2S. Stimulated in part by the interesting problem of large amplitude vibrations, such as the chirality change transitions associated with the torsional motions around OO and SS bonds, a systematic series of quantum chemical studies has been undertaken on systems that play also roles in the photochemistry of the minor components of the atmosphere. They are H2O2, H2S2 and several molecules obtained by substitutions of the hydrogens by alkyl groups or halogens. Quantum chemistry is shown to have reached the stage of resolving many previously controversial features regarding these series of molecules (dipole moment, equilibrium geometries, heights of barriers for torsion), which are crucial for intramolecular dynamics. Quantum dynamics calculations are also performed to compute torsional

  1. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, S.; Horowitz, L. W.; McConnell, J. R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, J.-H.

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  2. Ion Chemistry in Atmospheric and Astrophysical Plasmas

    NASA Technical Reports Server (NTRS)

    Dalgarno, A.; Fox, J. L.

    1994-01-01

    There are many differences and also remarkable similarities between the ion chemistry and physics of planetary ionospheres and the ion chemistry and physics of astronomical environments beyond the solar system. In the early Universe, an expanded cooling gas of hydrogen and helium was embedded in the cosmic background radiation field and ionized by it. As the Universe cooled by adiabatic expansion, recombination occurred and molecular formation was driven by catalytic reactions involving the relict electrons and protons. Similar chemical processes are effective in the ionized zones of gaseous and planetary nebulae and in stellar winds where the ionization is due to radiation from the central stars, in the envelopes of supernovae where the ionization is initiated by the deposition of gamma-rays, in dissociative shocks where the ionization arises from electron impacts in a hot gas and in quasar broad-line region clouds where the quasar is responsible for the ionization. At high altitudes in the atmospheres of the Jovian planets, the main constituents are hydrogen and helium and the ion chemistry and physics is determined by the same processes, the source of the ionization being solar ultraviolet radiation and cosmic rays. After the collapse of the first distinct astronomical entities to emerge from the uniform flow, heavy elements were created by nuclear burning in the cores of the collapsed objects and distributed throughout the Universe by winds and explosions. The chemistry and physics became more complicated. Over 90 distinct molecular species have been identified in interstellar clouds where they are ionized globally by cosmic ray impacts and locally by radiation and shocks associated with star formation and evolution. Complex molecules have also been found in circumstellar shells of evolved stars. At intermediate and low altitudes in the Jovian atmospheres, the ion chemistry is complicated by the increasing abundance of heavy elements such as carbon, and an

  3. Chamber studies of atmospheric iodine chemistry

    NASA Astrophysics Data System (ADS)

    Buxmann, J.; Nájera, J.; Schmitt, S.; Bleicher, S.; Pöhler, D.; Horbanski, M.; Platt, U.; Zetzsch, C.; Bloss, W. J.

    2012-12-01

    Iodine chemistry has been shown to occur through much of the marine boundary layer (MBL). It leads to significant impacts upon atmospheric oxidising capacity, ozone levels and particle number concentration; however, there are major uncertainties in our knowledge of the iodine chemical reaction system, which limit our ability to accurately quantify these impacts using atmospheric models. In this work we report the results of novel atmospheric simulation chamber experiments, to study aspects of the fast gas-phase inorganic iodine oxide chemistry. We consider two specific issues here: First, in the presence of moderate levels of NO2, most current models predict that most active iodine should exist as INO3 (whose lifetime is controlled primarily by photolysis) and that levels of IO and OIO should be minimal. This is in contrast to observations from recent field measurements from semi-polluted coastal MBL locations which find significant levels of IO in the presence of NOx. Explanations include possible reactions of INO3 with I or O3 regenerating IO, or errors in the INO3 photochemical parameters. Second, while ozone loss is almost universally cited as a reason to study atmospheric iodine chemistry, calculations of the actual ozone destruction rate which results from a given iodine source term are rather uncertain - as we do not have quantitative understanding of the fate of the many potential iodine oxide species formed. This limits our ability to predict the steady state IO levels which will exist in equilibrium with a given iodine source term, and the resulting ozone loss rate. Recent field measurements in the MBL struggle to reconcile the observed IO with the measured iodine sources - indicating that additional sources exist, or alternatively that the model representation of the gas-phase iodine sink via higher iodine oxides is incorrect. We report the results from experiments performed in a 3.5 m3 indoor PTFE atmospheric simulation chamber located at Bay

  4. Steam Atmosphere — Magma Ocean Chemistry on the Early Earth

    NASA Astrophysics Data System (ADS)

    Fegley, B.; Lodders, K.

    2016-08-01

    We use experimental data from the literature to calculate chemistry of the steam atmosphere — magma ocean system on the early Earth. Our results show partitioning of rocky elements into the steam atmosphere.

  5. Atmospheric chemistry of methylglyoxal. Final report

    SciTech Connect

    Orlando, J.; Tyndall, G.; Staffelbach, T.; Cantrell, C.; Shetter, R.

    1993-06-01

    The purpose of the study is to determine, through a set of laboratory experiments, the fate of methylglyoxal (CH3COCHO) in the troposphere, Methylglyoxal is an oxidation product of numerous non-methane hydrocarbons (NMHCs), including isoprene and toluene. Hence, the determination of the contribution of these NMHCs to regional ozone production requires a quantitative knowledge of the fate of methylglyoxal. Although it is generally accepted that the two main loss processes for methylglyoxal are photolysis and reaction with OH, large discrepancies or gaps existed in the data base regarding the rate and mechanism of these two processes. The measurements reported here resolve quantitative discrepancies that existed in the literature regarding the UV/visible absorption cross section of methylglyoxal and the rate constant for its reaction with OH, and should provide the necessary kinetic and mechanistic information required to accurately model its atmospheric chemistry.

  6. Atmospheric Chemistry Experiment (ACE) Measurements of Tropospheric and Stratospheric Chemistry and Long-Term Trends

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray

    2007-01-01

    We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm

  7. Atmospheric chemistry of an Antarctic volcanic plume

    NASA Astrophysics Data System (ADS)

    Oppenheimer, Clive; Kyle, Philip; Eisele, Fred; Crawford, Jim; Huey, Greg; Tanner, David; Kim, Saewung; Mauldin, Lee; Blake, Don; Beyersdorf, Andreas; Buhr, Martin; Davis, Doug

    2010-01-01

    We report measurements of the atmospheric plume emitted by Erebus volcano, Antarctica, renowned for its persistent lava lake. The observations were made in December 2005 both at source, with an infrared spectrometer sited on the crater rim, and up to 56 km downwind, using a Twin Otter aircraft; with the two different measurement platforms, plume ages were sampled ranging from <1 min to as long as 9 h. Three species (CO, carbonyl sulfide (OCS), and SO2) were measured from both air and ground. While CO and OCS were conserved in the plume, consistent with their long atmospheric lifetimes, the downwind measurements indicate a SO2/CO ratio about 20% of that observed at the crater rim, suggesting rapid chemical conversion of SO2. The aircraft measurements also identify volcanogenic H2SO4, HNO3 and, recognized for the first time in a volcanic plume, HO2NO2. We did not find NOx in the downwind plume despite previous detection of NO2 above the crater. This suggests that near-source NOx was quickly oxidized to HNO3 and HO2NO2, and probably NO32-(aq), possibly in tandem with the conversion of SO2 to sulfate. These fast processes may have been facilitated by "cloud processing" in the dense plume immediately downwind from the crater. A further striking observation was O3 depletion of up to ˜35% in parts of the downwind plume. This is likely to be due to the presence of reactive halogens (BrO and ClO) formed through heterogeneous processes in the young plume. Our analysis adds to the growing evidence for the tropospheric reactivity of volcanic plumes and shows that Erebus volcano has a significant impact on Antarctic atmospheric chemistry, at least locally in the Southern Ross Sea area.

  8. The Atmospheric Chemistry of Methyl Chavicol (Estragole)

    NASA Astrophysics Data System (ADS)

    Bloss, W. J.; Alam, M. S.; Rickard, A. R.; Hamilton, J. F.; Pereira, K. F.; Camredon, M.; Munoz, A.; Vazquez, M.; Alacreu, P.; Rodenas, M.; Vera, T.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and secondary organic aerosols (SOA), with consequences for health, air quality, crop yields, atmospheric chemistry and radiative transfer. It is estimated that ca. 90 % of VOC emissions to the atmosphere originate from biogenic sources (BVOC); such emissions may increase under future climates. Recent field observations have identified Methyl Chavicol ("MC" hereafter, also known as Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA [Bouvier-Brown et al., 2009], and within an oil palm plantation in Malaysian Borneo, where it was found that MC could represent the highest single floral contribution of reactive carbon to the atmosphere [Misztal et al., 2010]. Palm oil cultivation, and hence emissions of MC, may be expected to increase with societal food and biofuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE (European Photoreactor) facility in Valencia, Spain (200 m3 outdoor smog chamber), investigating the degradation of MC by reaction with OH, O3 and NO3. An extensive range of measurement instrumentation was used to monitor precursor and product formation, including stable species (FTIR, PTR-MS, GC-FID and GC-MS), radical intermediates (LIF), inorganic components (NOx, O3, HONO (LOPAP and aerosol production (SMPS) and composition (PILS and filters; analysed offline by LC-MS and FTICR-MS). Experiments were conducted at a range of NOx:VOC ratios, and in the presence and absence of radical (OH) scavenger compounds. This chamber dataset is used to determine the rate constants for reaction of MC with OH, O3 and NO3, the ozonolysis radical yields, and identify the primary degradation products for each initiation route, alongside the aerosol mass yields. Aerosol composition measurements are analysed to identify markers for MC contributions to

  9. Parametric Analyses of Potential Effects on Stratospheric and Tropospheric Ozone Chemistry by a Fleet of Supersonic Business Jets Projected in a 2020 Atmosphere

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor); Dutta, M.; Patten, K.; Wuebbles, D.

    2004-01-01

    A class of new supersonic aircraft for business purposes is currently under consideration for use starting around 2015 to 2020. These aircraft, which can accommodate about 12 to 13 passengers, will fly at a speed of Mach 1.6 to 2 and are commonly termed as Supersonic Business Jets (SSBJs). A critical issue that needs to be addressed during the conception phase of such aircraft is the potential impact of emissions from such aircraft on the atmosphere especially on stratospheric ozone. Although these SSBJs will be much smaller in size and will have smaller engines than the hypothetical fleets of commercial passenger High Speed Civil Transport (HSCT) aircraft that we have studied previously, they will still emit nitrogen oxides (NOx = NO + NO2), carbon dioxide (CO2), water vapor (H2O) and sulfur, the latter if it is still in the fuel. Thus, it is important to design these SSBJs in a manner so that a projected fleet of these aircraft will not have a significant effect on ozone or on climate. This report analyzes the potential impact of a fleet of SSBJs in a set of parametric analyses that examine the envelope of potential effects on ozone over a range of total fuel burns, emission indices of nitrogen oxides (E.I.(NOx)), and cruise altitudes, using the current version of the UIUC zonally-averaged two-dimensional model of the global atmosphere.

  10. The Atmospheric Chemistry Experiment (ACE): MLT Results

    NASA Astrophysics Data System (ADS)

    Bernath, Peter

    2010-05-01

    ACE (also known as SCISAT) is making a comprehensive set of simultaneous measurements of numerous trace gases, thin clouds, aerosols and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The primary instrument is a high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-1). ACE was launched by NASA on 12 August 2003 for a nominal 2-year mission; after 6 years on orbit the ACE-FTS performance is still excellent. The first results of ACE have been presented in a special issue of Geophysics Research Letters (http://www.agu.org/journals/ss/ACECHEM1/) in 2005 and recently a special issue on ACE validation has been prepared for Atmospheric Chemistry and Physics (http://www.atmos-chem-phys.net/special_issue114.html) by K. Walker and K. Strong; more information can be found at http://www.ace.uwaterloo.ca. The ACE mission goals were initially focussed mainly on polar ozone chemistry, and more recently have shifted more to the troposphere where organic pollutants such as methanol and formaldehyde have been detected. ACE makes limb observations from about 5 km (cloud free scenes) up to nearly 150 km in the lower thermosphere, where CO2 absorption is still weakly detectable. This talk will review ACE-FTS results in the mesosphere and lower thermosphere. Topics covered will include the mesospheric descent of NOx in the polar winter, spectra of polar mesospheric clouds, concentration profiles of CO2 (which do not match model predictions), and combined Odin-Osiris/ACE-FTS observations.

  11. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P. F.; Boone, C.; Walker, K.; McLeod, S.; Nassar, R.

    2003-12-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar radiation at

  12. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P.

    2003-04-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) will give ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO_2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO_2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar

  13. Negative ion chemistry in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Lavvas, P.; Yelle, R. V.; Wellbrock, A.; Lewis, G. R.; Coates, A.; Thissen, R.; Dutuit, O.

    2008-09-01

    In the upper part of atmospheres lies the ionosphere, a region of particular interest for planetary science, because it provides the link between the neutral atmosphere, and the ionizing processes from outer space. On Titan, it is created by the interaction of solar ultraviolet radiation and magnetospheric electrons with the main atmospheric constituents, N2 and CH4. Cassini has revealed that an extremely complex chemistry occurs in Titan's ionosphere. The INMS mass spectrometer detected positively charged hydrocarbons and nitrogen-bearing species with a charge-to-mass ratio (m/z) up to 100 amu [1]. In 2007, the Electron Spectrometer (ELS), one of the sensors making up the Cassini Plasma Spectrometer (CAPS) revealed the existence of numerous negative ions in Titan's upper atmosphere [2]. The data showed evidence for negatively charged ions with m/z up to 10,000 amu and at lower m/z for two distinct peaks below 50 amu, corresponding to a total density of ~200 cm-3, giving an anion to cation ratio of ~0.1. This detection happened almost simultaneously with the surprising discovery of four negative ions in the interstellar medium: C4H-, C6H-, C8H- and C3N- [3; 4; 5; 6; 7]. The possible presence of negative ions in Titan's upper atmosphere had only been briefly discussed before the Cassini-Huygens mission. Three-body electron attachment to radicals or collisional charging of aerosols had been suggested as a source of negatively charged species. Because the first process is negligible at high altitude (neutral densities lower than 1015 cm-3) and because aerosols were not expected above ~500 km, ionospheric models considered the presence of negatively charged species to be highly unlikely. However, the observations clearly show that Titan has the most complex ionosphere of the Solar System with an intense chemistry, leading to an increase of molecular size. By analyzing the optical properties of the detached haze layer observed at 520 km in Titan's mesosphere, Lavvas et

  14. Do airborne microbes matter for atmospheric chemistry and cloud formation?

    PubMed

    Konstantinidis, Konstantinos T

    2014-06-01

    The role of airborne microbial cells in the chemistry of the atmosphere and cloud formation remains essentially speculative. Recent studies have indicated that microbes might be more important than previously anticipated for atmospheric processes. However, more work and direct communication between microbiologists and atmospheric scientists and modellers are necessary to better understand and model bioaerosol-cloud-precipitation-climate interactions.

  15. [Global Atmospheric Chemistry/Transport Modeling and Data-Analysis

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1999-01-01

    This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.

  16. National Chemistry Week 2003: Earth's Atmosphere and Beyond. JCE Resources for Chemistry and the Atmosphere

    NASA Astrophysics Data System (ADS)

    Jacobsen, Erica K.

    2003-10-01

    This annotated bibliography collects the best that past issues of the Journal of Chemical Education have to offer for use with this year's National Chemistry Week theme: Earth's Atmosphere and Beyond. Each article has been characterized as a demonstration, experiment, activity, informational, or software/video item; several fit in more than one classification. The most recent articles are listed first. Also included is an evaluation as to which levels the article may serve. Articles that appeared adaptable to other levels, but are not designed explicitly for those levels, are labeled "poss. h.s." "poss. elem.", and so forth.

  17. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  18. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  19. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    SciTech Connect

    Park, Sung-Jin; Eden, James Gary

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  20. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  1. Sulfur Chemistry in the Early and Present Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Summers, M. E.

    2011-01-01

    Atmospheric sulfur species resulting from volcanic emissions impact the composition and chemistry of the atmosphere, impact the climate, and hence, the habitability of Mars and impact the mineralogy and composition of the surface of Mars. The geochemical/ photochemical cycling of sulfur species between the interior (via volcanism), the atmosphere (atmospheric photochemical and chemical processes) and the deposition of sulfuric acid on the surface of Mars is an important, but as yet poorly understood geochemical/ photochemical cycle on Mars. There is no observational evidence to indicate that Mars is volcanically active at the present time, however, there is strong evidence that volcanism was an important and widespread process on early Mars. The chemistry and photochemistry of sulfur species in the early and present atmosphere of Mars will be assessed using a one-dimensional photochemical model. Since it is generally assumed that the atmosphere of early Mars was significantly denser than the present 6-millibar atmosphere, photochemical calculations were performed for the present atmosphere and for the atmosphere of early Mars with assumed surface pressures of 60 and 350-millibars, where higher surface pressure resulted from enhanced atmospheric concentrations of carbon dioxide (CO2). The following sections include the results of earlier modeling studies, a summary of the one-dimensional photochemical model used in this study, a summary of the photochemistry and chemistry of sulfur species in the atmosphere of Mars and some of the results of the calculations.

  2. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry MechanismsChemistry Mechanisms

    EPA Science Inventory

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RAC...

  3. Chemistry [Sahuarita High School Career Curriculum Project].

    ERIC Educational Resources Information Center

    Lane, Robert

    This course entitled "Chemistry" is one of a series of instructional guides prepared by teachers for the Sahuarita High School (Arizona) Career Curriculum Project. It consists of three packages, the first dealing with solids, liquids and solutions, the second with acids, bases and anions, and the third with cation analysis. These packages are…

  4. Concluding remarks: Faraday Discussion on chemistry in the urban atmosphere.

    PubMed

    Jimenez, Jose L

    2016-07-18

    This article summarises the Concluding remarks from the Faraday Discussion on Chemistry in the Urban Atmosphere. The following themes are addressed: (a) new results that inform our understanding of the evolving sources and composition of the urban atmosphere ("News"); (b) results that identify gaps in our understanding that necessitate further work ("Gaps");

  5. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    NASA Astrophysics Data System (ADS)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for

  6. COMPUTATIONAL CHEMISTRY: AN EMERGING TECHNOLOGY FOR SOLVING PROBLEMS IN ATMOSPHERIC CHEMISTRY

    EPA Science Inventory

    Over the past three decades, atmospheric chemistry has served as an important component in developing strategies for reducing ambient concentrations of air pollutants. Laboratory studies are carried out to investigate the key chemical reactions that determine the fates and lif...

  7. Atmospheric Chemistry in a Changing World

    NASA Astrophysics Data System (ADS)

    Brune, William H.

    The world is changing,and the atmosphere's composition is changing with it. Human activity is responsible for much of this. Global population growth and migration to urban centers, extensive biomass burning, the spread of fertilizer-intensive agribusiness, globalization of business and industry, rising standards of living in the developing world, and increased energy use fuels atmospheric change. If current practices continue, atmospheric increases are likely for the greenhouse gases carbon dioxide, methane, nitrous oxide; and for the chemically active gases nitric oxide, sulfur dioxide,and ammonia. Increases in global tropospheric ozone and aerosols are a distinct possibility.

  8. The Essential Role for Laboratory Studies in Atmospheric Chemistry.

    PubMed

    Burkholder, James B; Abbatt, Jonathan P D; Barnes, Ian; Roberts, James M; Melamed, Megan L; Ammann, Markus; Bertram, Allan K; Cappa, Christopher D; Carlton, Annmarie G; Carpenter, Lucy J; Crowley, John N; Dubowski, Yael; George, Christian; Heard, Dwayne E; Herrmann, Hartmut; Keutsch, Frank N; Kroll, Jesse H; McNeill, V Faye; Ng, Nga Lee; Nizkorodov, Sergey A; Orlando, John J; Percival, Carl J; Picquet-Varrault, Bénédicte; Rudich, Yinon; Seakins, Paul W; Surratt, Jason D; Tanimoto, Hiroshi; Thornton, Joel A; Tong, Zhu; Tyndall, Geoffrey S; Wahner, Andreas; Weschler, Charles J; Wilson, Kevin R; Ziemann, Paul J

    2017-03-07

    Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.

  9. Atmospheric chemistry: The return of ethane

    NASA Astrophysics Data System (ADS)

    Hakola, Hannele; Hellén, Heidi

    2016-07-01

    Ethane emissions can lead to ozone pollution. Measurements at 49 sites show that long-declining atmospheric ethane concentrations started rising in 2010 in the Northern Hemisphere, largely due to greater oil and gas production in the USA.

  10. Hydrogen chemistry - Perspective on experiment and theory. [atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Kaufman, F.

    1975-01-01

    A review is presented of the advantages and limitations of various experimental methods for the investigation of the kinetics of hydrogen chemistry, including classic thermal and photochemical methods and the crossed molecular beam method. Special attention is given to the flash photolysis-resonance fluorescence apparatus developed by Braun et al, in which repetitive vacuum UV flashes result in the photolytic generation of the desired species, and to the discharge-flow technique. The use of various theoretical methods for the selection or elimination of kinetic data is considered in a brief discussion of the rate theory of two-body encounters and recombination-dissociation processes in neutral reactions. Recent kinetic studies of a series of OH reactions and of a major loss process for odd H in the stratosphere are summarized.

  11. Lookup tables to compute high energy cosmic ray induced atmospheric ionization and changes in atmospheric chemistry

    SciTech Connect

    Atri, Dimitra; Melott, Adrian L.; Thomas, Brian C. E-mail: melott@ku.edu

    2010-05-01

    A variety of events such as gamma-ray bursts and supernovae may expose the Earth to an increased flux of high-energy cosmic rays, with potentially important effects on the biosphere. Existing atmospheric chemistry software does not have the capability of incorporating the effects of substantial cosmic ray flux above 10 GeV. An atmospheric code, the NASA-Goddard Space Flight Center two-dimensional (latitude, altitude) time-dependent atmospheric model (NGSFC), is used to study atmospheric chemistry changes. Using CORSIKA, we have created tables that can be used to compute high energy cosmic ray (10 GeV–1 PeV) induced atmospheric ionization and also, with the use of the NGSFC code, can be used to simulate the resulting atmospheric chemistry changes. We discuss the tables, their uses, weaknesses, and strengths.

  12. Response of lightning NOx emissions and ozone production to climate change: Insights from the Atmospheric Chemistry and Climate Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Finney, D. L.; Doherty, R. M.; Wild, O.; Young, P. J.; Butler, A.

    2016-05-01

    Results from an ensemble of models are used to investigate the response of lightning nitrogen oxide emissions to climate change and the consequent impacts on ozone production. Most models generate lightning using a parameterization based on cloud top height. With this approach and a present-day global emission of 5 TgN, we estimate a linear response with respect to changes in global surface temperature of +0.44 ± 0.05 TgN K-1. However, two models using alternative approaches give +0.14 and -0.55 TgN K-1 suggesting that the simulated response is highly dependent on lightning parameterization. Lightning NOx is found to have an ozone production efficiency of 6.5 ± 4.7 times that of surface NOx sources. This wide range of efficiencies across models is partly due to the assumed vertical distribution of the lightning source and partly to the treatment of nonmethane volatile organic compound (NMVOC) chemistry. Careful consideration of the vertical distribution of emissions is needed, given its large influence on ozone production.

  13. Multiple oscillations in Neoarchaean atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Izon, Gareth; Zerkle, Aubrey L.; Zhelezinskaia, Iadviga; Farquhar, James; Newton, Robert J.; Poulton, Simon W.; Eigenbrode, Jennifer L.; Claire, Mark W.

    2015-12-01

    The Great Oxidation Event (GOE) represents a crucial juncture in Earth history, signifying the rise in atmospheric oxygen from parts per million to percent levels at ∼2.45-2.32 billion-years-ago (Ga). Although planetary oxygenation undoubtedly led to the inception of the contemporary Earth system, the trigger(s) and mechanism(s) controlling this chemical reorganisation remain elusive. Quantitative estimates of the atmosphere's composition in the prelude to the GOE are central to understanding this oxygenation event. Previous analyses of 2.65-2.5 Ga sediments from the Griqualand Basin (South Africa) invoke a tantalising picture of an unusual Earth environment, alluding to an atmosphere periodically dominated by a layer of organic particles ("haze") formed from methane photolysis. However, as yet this hypothesis has remained untested. Here we present four new coupled carbon and quadruple sulphur isotope records from distal, time equivalent (2.7-2.5 Ga), sedimentary successions from South Africa and Western Australia. These extended records reveal similar chemostratigraphic trends, supporting a dynamic terminal-Neoarchaean atmosphere, oscillating between a hazy state at elevated methane concentrations, and a haze-free anoxic background state. We suggest these atmospheric aberrations were related to heightened biogenic methane fluxes fuelled by enhanced nutrient delivery from climatically or weathering induced feedbacks. These data question the canonical view of a simple, unidirectional planetary oxygenation and signify that the overture to the GOE was governed by complex feedbacks within the Earth-biosphere system.

  14. Atmospheric Composition and Chemistry Discoveries from Space

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Stolarski, R. S.

    2005-12-01

    Satellite observations have given scientists a global perspective on the photochemical and dynamical processes that control the atmospheric evolution of constituents like ozone. The satellites and their instruments are often designed to address specific questions and sometimes vastly exceed their developer's expectations. The Total Ozone Mapping Spectrometer (TOMS) was designed to simply map the variability of the ozone column due to atmospheric waves. The instruments on the Upper Atmosphere Research Satellite (UARS) were designed to measure upper stratospheric ozone and quantities important to ozone including solar flux, winds and constituents that contribute to ozone destruction. The scientific payoff from UARS and TOMS vastly exceeded these modest goals. Total ozone measurements from TOMS revealed the extent and variability of the Antarctic ozone hole. UARS instruments showed the spatial structures of the conversion of chlorine species from reservoirs to radicals and back to reservoirs during the seasonal development and disappearance of the ozone hole. UARS investigators discovered previously unknown features of the atmospheric circulation. For example, long-lived tracer measurements showed unmixed descent of mesospheric air into the polar lower stratosphere as the winter vortex was formed. Observations of water vapor in the tropical stratosphere showed that air parcels carry the memory of the tropical tropopause temperature for years as they ascend through the stratosphere (the tropical "tape recorder"). The persistence of this signature places constraints on mass flux into the stratosphere and the mixing between tropical and middle latitudes. Satellite data have yielded unexpected bonuses. Improvements in the understanding of the TOMS retrieval algorithm allowed for the removal of drifts in instrument performance to produce a stable climate-quality data set for trend analysis. Apparent noise in the retrievals was eventually understood to be due to aerosols

  15. Parallel processing of atmospheric chemistry calculations: Preliminary considerations

    SciTech Connect

    Elliott, S.; Jones, P.

    1995-01-01

    Global climate calculations are already saturating the class modern vector supercomputers with only a few central processing units. Increased resolution and inclusion of routines to deal with biogeochemical portions of the terrestrial climate system will soon demand massively parallel approaches. The atmospheric photochemistry ensemble is intimately linked to climate through the trace greenhouse gases ozone and methane and modules for representing it are being attached to global three dimensional transport and GCM frameworks. Atmospheric kinetics involve dozens of highly interactive tracers and so will accentuate the need for parallel processing of earth system simulations. In the present text we lay some of the groundwork for addition of atmospheric kinetics packages to GCM and global scale atmospheric models on multiply parallel computers. The discussion is tailored for consumption by the photochemical modelling community. After a review of numerical atmospheric chemistry methods, we examine how kinetics can be implemented on a parallel computer. We concentrate especially on data layout and flexibility and how these can be implemented in various programming models. We conclude that chemistry can be implemented rather easily within existing frameworks of several parallel atmospheric models. However, memory limitations may preclude high resolution studies of global chemistry.

  16. Atmospheric and combustion chemistry of dimethyl ether

    SciTech Connect

    Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J.; Wallington, T.J.

    1997-12-31

    It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

  17. Effects of Deep Convection on Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.

    2007-01-01

    This presentation will trace the important research developments of the last 20+ years in defining the roles of deep convection in tropospheric chemistry. The role of deep convection in vertically redistributing trace gases was first verified through field experiments conducted in 1985. The consequences of deep convection have been noted in many other field programs conducted in subsequent years. Modeling efforts predicted that deep convection occurring over polluted continental regions would cause downstream enhancements in photochemical ozone production in the middle and upper troposphere due to the vertical redistribution of ozone precursors. Particularly large post-convective enhancements of ozone production were estimated for convection occurring over regions of pollution from biomass burning and urban areas. These estimates were verified by measurements taken downstream of biomass burning regions of South America. Models also indicate that convective transport of pristine marine boundary layer air causes decreases in ozone production rates in the upper troposphere and that convective downdrafts bring ozone into the boundary layer where it can be destroyed more rapidly. Additional consequences of deep convection are perturbation of photolysis rates, effective wet scavenging of soluble species, nucleation of new particles in convective outflow, and the potential fix stratosphere-troposphere exchange in thunderstorm anvils. The remainder of the talk will focus on production of NO by lightning, its subsequent transport within convective clouds . and its effects on downwind ozone production. Recent applications of cloud/chemistry model simulations combined with anvil NO and lightning flash observations in estimating NO Introduction per flash will be described. These cloud-resolving case-study simulations of convective transport and lightning NO production in different environments have yielded results which are directly applicable to the design of lightning

  18. Chemistry in the near-surface atmosphere at Ganymede

    NASA Astrophysics Data System (ADS)

    Shematovich, V. I.

    2013-09-01

    Theoretical predictions of the composition and chemical evolution of near-surface atmospheres of the icy satellites in the Jovian and Kronian systems are of great importance for assessing the biological potential of these satellites. Depending on the satellite mass the formation of the rarefied exosphere with the relatively dense near-surface layer is possible as, for example, in the case of the relatively heavy Galilean satellites Europa and Ganymede in the Jovian system [1-3]. Ganymede is of special interest, because observations indicate that Ganymede has a significant O2 near - surface atmosphere, probably subsurface ocean, and is the only satellite with its own magnetosphere. Processes of formation of the rarefied gaseous envelope of Ganymede and chemical exchange between atmosphere and icy surface will be considered. The water vapour is usually the domin ant parent species in such gaseous envelope because of the ejection from the satellite icy surface due to the thermal outgassing, non-thermal photolysis and radiolysis and other active processes at work on the surface. The photochemis try of water vapour in the near - surface atmospheric layer [4] and the radiolysis of icy regolith [5] result in the supplement of the atmosphere by an admixture of H2, O2, OH and O. Returning molecules have species-dependent behaviour on contact with icy surface of the satellite and non-thermal energy distributions for the chemical radicals. The H2 and O2 molecules stick with very low efficiency and are immediately desorbed thermally, but returning H2O, OH, H and O stick to the grains in the icy regolith with unit efficiency. The suprathermal radicals OH, H, and O entering the regolith can drive the surface chemistry. The numerical kinetic model to investigate on the molecular level the chemistry of the atmosphere - surface interface of the rarefied Н2О-dominant gaseous envelope at Ganymede was developed. Such numerical model simulates the gas-phase and diffusive surface

  19. Exoplanetary Atmospheres-Chemistry, Formation Conditions, and Habitability.

    PubMed

    Madhusudhan, Nikku; Agúndez, Marcelino; Moses, Julianne I; Hu, Yongyun

    2016-12-01

    Characterizing the atmospheres of extrasolar planets is the new frontier in exoplanetary science. The last two decades of exoplanet discoveries have revealed that exoplanets are very common and extremely diverse in their orbital and bulk properties. We now enter a new era as we begin to investigate the chemical diversity of exoplanets, their atmospheric and interior processes, and their formation conditions. Recent developments in the field have led to unprecedented advancements in our understanding of atmospheric chemistry of exoplanets and the implications for their formation conditions. We review these developments in the present work. We review in detail the theory of atmospheric chemistry in all classes of exoplanets discovered to date, from highly irradiated gas giants, ice giants, and super-Earths, to directly imaged giant planets at large orbital separations. We then review the observational detections of chemical species in exoplanetary atmospheres of these various types using different methods, including transit spectroscopy, Doppler spectroscopy, and direct imaging. In addition to chemical detections, we discuss the advances in determining chemical abundances in these atmospheres and how such abundances are being used to constrain exoplanetary formation conditions and migration mechanisms. Finally, we review recent theoretical work on the atmospheres of habitable exoplanets, followed by a discussion of future outlook of the field.

  20. Ozone Depletion, UVB and Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1999-01-01

    The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.

  1. Atmospheric chemistry of i-butanol.

    PubMed

    Andersen, V F; Wallington, T J; Nielsen, O J

    2010-12-02

    Smog chamber/FTIR techniques were used to determine rate constants of k(Cl + i-butanol) = (2.06 ± 0.40) × 10(-10), k(Cl + i-butyraldehyde) = (1.37 ± 0.08) × 10(-10), and k(OH + i-butanol) = (1.14 ± 0.17) × 10(-11) cm(3) molecule(-1) s(-1) in 700 Torr of N(2)/O(2) diluent at 296 ± 2K. The UV irradiation of i-butanol/Cl(2)/N(2) mixtures gave i-butyraldehyde in a molar yield of 53 ± 3%. The chlorine atom initiated oxidation of i-butanol in the absence of NO gave i-butyraldehyde in a molar yield of 48 ± 3%. The chlorine atom initiated oxidation of i-butanol in the presence of NO gave (molar yields): i-butyraldehyde (46 ± 3%), acetone (35 ± 3%), and formaldehyde (49 ± 3%). The OH radical initiated oxidation of i-butanol in the presence of NO gave acetone in a yield of 61 ± 4%. The reaction of chlorine atoms with i-butanol proceeds 51 ± 5% via attack on the α-position to give an α-hydroxy alkyl radical that reacts with O(2) to give i-butyraldehyde. The atmospheric fate of (CH(3))(2)C(O)CH(2)OH alkoxy radicals is decomposition to acetone and CH(2)OH radicals. The atmospheric fate of OCH(2)(CH(3))CHCH(2)OH alkoxy radicals is decomposition to formaldehyde and CH(3)CHCH(2)OH radicals. The results are consistent with, and serve to validate, the mechanism that has been assumed in the estimation of the photochemical ozone creation potential of i-butanol.

  2. Multiple steady states in atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Stewart, Richard W.

    1993-01-01

    The equations describing the distributions and concentrations of trace species are nonlinear and may thus possess more than one solution. This paper develops methods for searching for multiple physical solutions to chemical continuity equations and applies these to subsets of equations describing tropospheric chemistry. The calculations are carried out with a box model and use two basic strategies. The first strategy is a 'search' method. This involves fixing model parameters at specified values, choosing a wide range of initial guesses at a solution, and using a Newton-Raphson technique to determine if different initial points converge to different solutions. The second strategy involves a set of techniques known as homotopy methods. These do not require an initial guess, are globally convergent, and are guaranteed, in principle, to find all solutions of the continuity equations. The first method is efficient but essentially 'hit or miss' in the sense that it cannot guarantee that all solutions which may exist will be found. The second method is computationally burdensome but can, in principle, determine all the solutions of a photochemical system. Multiple solutions have been found for models that contain a basic complement of photochemical reactions involving O(x), HO(x), NO(x), and CH4. In the present calculations, transitions occur between stable branches of a multiple solution set as a control parameter is varied. These transitions are manifestations of hysteresis phenomena in the photochemical system and may be triggered by increasing the NO flux or decreasing the CH4 flux from current mean tropospheric levels.

  3. Chemistry of Atmospheres: An Introduction to the Chemistry of the Atmospheres of Earth, the Planets and Their Satellites

    NASA Astrophysics Data System (ADS)

    Beebe, Reta; Barnet, Chris

    The author of this book states that he has attempted to produce a text that will be “intelligible to readers approaching atmospheric chemistry from any scientific discipline.” He proposes to provide the links between atmospheric chemistry and the traditional approaches to physics, chemistry, and biology. Within this context, he has presented a very readable general discussion at a level slightly higher than the popular level.Wayne has chosen not to interrupt the text with direct references but rather to group them at the back of each chapter. Although this sometimes raises a question concerning the basis of a specific statement, the references are in general adequate and extend through 1984. The manner in which the material is presented is not intimidating, and the book would be a good vehicle for introducing students to the subject and providing a starting point for individual research papers.

  4. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    NASA Astrophysics Data System (ADS)

    Liang, H.; Chen, Z. M.; Huang, D.; Wu, Q. Q.; Huang, L. B.

    2015-01-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  5. NASA's Upper Atmosphere Research Program (UARP) and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1997-1999

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.

    2000-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported

  6. The atmospheric chemistry of Po-218

    SciTech Connect

    Hopke, P.K.

    1990-09-30

    The chemical and physical properties of {sup 218}Po immediately following its formation from {sup 222}Rn decay are important in determining its behavior in indoor atmospheres and plays a major part in determining its potential health effects. In 88% of the decays, a singly charged positive ion of {sup 218}Po is obtained at the end of its recoil path. The neutralization rates for Po-218 by the small ion recombination, electron transfer or electron scavenging mechanisms were previously reported. We have measured the small ion recombination rate in high purity gases to determine the negative small ion production rate as a function of the ionization potential of the gas. Our previous studies have also shown that radiolysis of water vapor by the recoiling Po ion produces high local concentrations of hydroxyl ({center dot}OH) radicals. These radicals can lead to oxidation of reactive trace gases and the neutral polonium molecule can become incorporated in ultrafine particles formed by the nucleation of low vapor pressure compounds produced by this radical oxidation process. The hydroxyl radical production rate and the production of particles are currently being studied. 12 refs., 1 fig.

  7. THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS

    SciTech Connect

    Miller-Ricci Kempton, Eliza; Fortney, Jonathan J.; Zahnle, Kevin

    2012-01-20

    Recent observations of the transiting super-Earth GJ 1214b reveal that its atmosphere may be hydrogen-rich or water-rich in nature, with clouds or hazes potentially affecting its transmission spectrum in the optical and very-near-IR. Here, we further examine the possibility that GJ 1214b does indeed possess a hydrogen-dominated atmosphere, which is the hypothesis that is favored by models of the bulk composition of the planet. We study the effects of non-equilibrium chemistry (photochemistry, thermal chemistry, and mixing) on the planet's transmission spectrum. We furthermore examine the possibility that clouds could play a significant role in attenuating GJ 1214b's transmission spectrum at short wavelengths. We find that non-equilibrium chemistry can have a large effect on the overall chemical composition of GJ 1214b's atmosphere, however these changes mostly take place above the height in the atmosphere that is probed by transmission spectroscopy. The effects of non-equilibrium chemistry on GJ 1214b's transmission spectrum are therefore minimal, with the largest effects taking place if the planet's atmosphere has super-solar metallicity and a low rate of vertical mixing. Interestingly, we find that the best fit to the observations of GJ 1214b's atmosphere in transmission occurs if the planet's atmosphere is deficient in CH{sub 4}, and possesses a cloud layer at a pressure of {approx}200 mbar. This is consistent with a picture of efficient methane photolysis, accompanied by formation of organic haze that obscures the lower atmosphere of GJ 1214b at optical wavelengths. However, for methane to be absent from GJ 1214b's transmission spectrum, UV photolysis of this molecule must be efficient at pressures of greater than {approx}1 mbar, whereas we find that methane only photolyzes to pressures less than 0.1 mbar, even under the most optimistic assumptions. An alternative explanation of the observations of GJ 1214b is that the atmosphere is water-rich, although this

  8. Modelling trace gas chemistry in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Duffy, M. K. D.; Lewis, S. R.; Mason, N. J.

    2012-09-01

    Dust-bourne heterogeneous reactions have been modelled using the UK Mars Global Circulation Model (MGCM) coupled with physics and chemistry schemes used in the Laboratoire de Météorologie Dynamique (LMD) MGCM. The seasonal ozone column abundance has been calculated using a number of different dust scenarios. Reactions involving volcanically interesting species such as water vapour, SO2 and HCl have been included and tracer release experiments have been conducted to mimic short and long-term volcanic outgassing. The effect of these new reactions on the bulk chemistry of the Martian atmosphere has been quantified.

  9. The DaVinci Project: Multimedia in Art and Chemistry.

    ERIC Educational Resources Information Center

    Simonson, Michael; Schlosser, Charles

    1998-01-01

    Provides an overview of the DaVinci Project, a collaboration of students, teachers, and researchers in chemistry and art to develop multimedia materials for grades 3-12 visualizing basic concepts in chemistry and visual art. Topics addressed include standards in art and science; the conceptual framework for the project; and project goals,…

  10. The THS experiment: probing Titan's atmospheric chemistry at low temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen; Beauchamp, Jack L; Salama, Farid

    2014-06-01

    In Titan’s atmosphere, a complex chemistry between N2 and CH4 occurs at temperatures lower than 200K and leads to the production of heavy molecules and subsequently solid aerosols that form the haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed at the NASA Ames COSmIC facility to study Titan’s atmospheric chemistry at low temperature in order to help interpret Cassini’s observational data. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is jet-cooled to Titan-like temperature 150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge 200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics.Here we present the complementary results of two studies of the gas and solid phase. A Mass spectrometry analysis of the gas phase has demonstrated that the THS experiment is a unique tool to probe the first and intermediate steps as well as specific chemical pathways of Titan’s atmospheric chemistry at Titan-like temperature. The more complex chemistry, observed in the gas phase when adding trace elements to the initial N2-CH4 mixture, has also been confirmed by an extensive study of the solid phase products: Scanning Electron Microscopy images have shown that aggregates produced in N2-CH4-C2H2-C6H6 mixtures (up to 5 μm in diameter) are much larger than those produced in N2-CH4 mixtures (0.1-0.5 μm), and Nuclear Magnetic Resonance results support a growth evolution of the chemistry when adding acetylene to the N2-CH4 mixture, resulting in the production of more complex hydrogen bonds than with a simple N2-CH4 mixture

  11. New observational constraints on hydrocarbon chemistry in Saturn's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Koskinen, Tommi; Moses, Julianne I.; West, Robert; Guerlet, Sandrine; Jouchoux, Alain

    2016-10-01

    Until now there have been only a few observations of hydrocarbons and photochemical haze in the region where they are produced in Saturn's upper atmosphere. We present new results on hydrocarbon abundances and atmospheric structure based on more than 40 stellar occultations observed by the Cassini/UVIS instrument that we have combined with results from Cassini/CIRS to generate full atmosphere structure models. In addition to detecting CH4, C2H2, C2H4 and C2H6, we detect benzene (C6H6) in UVIS occultations that probe different latitudes and present the first vertical abundance profiles for this species in its production region. Benzene is the simplest ring polyaromatic hydrocarbon (PAH) and a stepping stone to the formation of more complex molecules that are believed to form stratospheric haze. Our calculations show that the observed abundances of benzene can be explained by solar-driven ion chemistry that is enhanced by high-latitude auroral production at least in the northern spring hemisphere. Condensation of benzene and heavier hydrocarbons is possible in the cold polar night of the southern winter where we detect evidence for high altitude haze. We also report on substantial variability in the CH4 profiles that arise from dynamics and affects the minor hydrocarbon abundances. Our results demonstrate the importance of hydrocarbon ion chemistry and coupled models of chemistry and dynamics for future studies of Saturn's upper atmosphere.

  12. Studies of Arctic Middle Atmosphere Chemistry using Infrared Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lindenmaier, Rodica

    The objective of this Ph.D. project is to investigate Arctic middle atmosphere chemistry using solar infrared absorption spectroscopy. These measurements were made at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Nunavut, which is operated by the Canadian Network for the Detection of Atmospheric Change (CANDAC). This research is part of the CANDAC/PEARL Arctic Middle Atmosphere Chemistry theme and aims to improve our understanding of the processes controlling the stratospheric ozone budget using measurements of the concentrations of stratospheric constituents. The instrument, a Bruker IFS 125HR Fourier transform infrared (FTIR) spectrometer, has been specifically designed for high-resolution measurements over a broad spectral range and has been used to measure reactive species, source gases, reservoirs, and dynamical tracers at PEARL since August 2006. The first part of this research focuses on the optimization of ozone retrievals, for which 22 microwindows were studied and compared. The spectral region from 1000 to 1005 cm-1 was found to be the most sensitive in both the stratosphere and troposphere, giving the highest number of independent pieces of information and the smallest total error for retrievals at Eureka. Similar studies were performed in coordination with the Network for the Detection of Atmospheric Composition Change for nine other species, with the goal of improving and harmonizing the retrieval parameters among all Infrared Working Group sites. Previous satellite validation exercises have identified the highly variable polar conditions of the spring period to be a challenge. In this work, comparisons between the 125HR and ACE-FTS (Atmospheric Chemistry Experiment-Fourier transform spectrometer) from 2007 to 2010 have been used to develop strict criteria that allow the ground and satellite-based instruments to be confidently compared. After applying these criteria, the differences between the two instruments were generally

  13. Research for the advancement of green chemistry practice: Studies in atmospheric and educational chemistry

    NASA Astrophysics Data System (ADS)

    Cullipher, Steven Gene

    Green chemistry is a philosophy of chemistry that emphasizes a decreasing dependence on limited non-renewable resources and an increasing focus on preventing pollution byproducts of the chemical industry. In short, it is the discipline of chemistry practiced through the lens of environmental stewardship. In an effort to advance the practice of green chemistry, three studies will be described that have ramifications for the practice. The first study examines the atmospheric oxidation of a hydrofluorinated ether, a third-generation CFC replacement compound with primarily unknown atmospheric degradation products. Determination of these products has the potential to impact decisions on refrigerant usage in the future. The second study examines chemistry students' development of understanding benefits-costs-risks analysis when presented with two real-world scenarios: refrigerant choice and fuel choice. By studying how benefits-costs-risks thinking develops, curricular materials and instructional approaches can be designed to better foster the development of an ability that is both necessary for green chemists and important in daily decision-making for non-chemists. The final study uses eye tracking technology to examine students' abilities to interpret molecular properties from structural information in the context of global warming. Such abilities are fundamental if chemists are to appropriately assess risks and hazards of chemistry practice.

  14. What makes urban atmospheric chemistry different and special?

    NASA Astrophysics Data System (ADS)

    Harrison, Roy M.

    2016-04-01

    There has been a tendency in the atmospheric chemistry community to regard urban atmospheric chemistry as no different to global processes and to differentiate only in terms of the emissions density in models. Such an approach may be suitable for assessing the impact of urban emissions upon regional and global processes but is unsuited to generating a clear understanding of processes within the urban atmosphere itself. The urban atmosphere differentiates itself from the global atmosphere in terms of its density of emissions and relatively short timescales for chemical reaction processes, a consequence of which is that the key processes in the urban atmosphere are often different from those in the regional and remote atmosphere. This lecture will give relevant examples. One of the key aspects of both urban and rural/remote atmospheres is the oxidation of primary pollutants and the formation of secondary species. Such processes may differ markedly between urban and non-urban environments as there are major differences in the behaviour of key oxidants such as ozone, hydroxyl and NO3 radical. In the remote atmosphere the key production process for hydroxyl is through the photolysis of ozone to form excited state oxygen atoms which react with water vapour to form OH. In the urban atmosphere, concentrations of ozone are typically depressed relative to the rural atmosphere and hence this source of OH is less favourable. There are likely to be much higher concentrations of both nitrous acid and formaldehyde in the urban atmosphere whose photolysis is probably the major source of OH. Additionally, there is far more possibility for nocturnal formation of OH in the urban atmosphere from reactions of Criegee intermediates resulting from the oxidation of alkenes. As a consequence, it has been shown that winter to summer ratios of hydroxyl radical concentrations are much higher in the urban atmosphere than is typical of rural atmospheres in northern mid-latitudes. In rural

  15. Chemistry of the surface and lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Treiman, A.

    1992-01-01

    A comprehensive overview of the chemical interactions between the atmosphere and surface of Venus is presented. Earth-based, earth-orbital, and spacecraft data on the composition of the atmosphere and surface of Venus are presented and applied to quantitative evaluations of the chemical interactions between carbon, hydrogen, sulfur, chlorine, fluorine, and nitrogen-containing gases and possible minerals on the Venus surface. The calculation results are used to predict stable minerals and mineral assemblages on the Venus surface to determine which, if any, atmospheric gases are buffered by mineral assemblages on the surface, and to critically review and assess prior work on atmosphere-surface chemistry on Venus. It is concluded that the CO2 pressure on Venus is comparable to the CO2 equilibrium partial pressure developed by the calcite + wollastonite + quartz assemblage at the mean Venus surface temperature of 740 K.

  16. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-09-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of chemistry-climate interactions on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The atmospheric dynamics mainly differ in polar regions, with slightly stronger polar vortices in the austral and boreal winter, respectively. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parameterisation of the absorption of ozone and oxygen in different wavelength intervals, which is considered in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations substantially differ between the two experiments, but their effect on temperature is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present-day observations. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations. In the industrial period from 1850 onward SOCOL-MPIOM overestimates the global mean surface air temperature increase in comparison to observational data sets. Sensitivity simulations show that this overestimation can be attributed to a combination of factors: the solar forcing reconstruction, the simulated ozone changes, and incomplete aerosol effects and land use changes.

  17. The Role of Chemistry in Atmosphere-Forest Exchange (Invited)

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; Wolfe, G. M.; Bouvier-Brown, N. C.; Goldstein, A. H.; Park, J.; McKay, M.; Matross, D. M.; Mao, J.; Brune, W. H.; Lafranchi, B. W.; Browne, E. C.; Min, K.; Wooldridge, P. J.; Cohen, R. C.; Crounse, J.; Faloona, I. C.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Huisman, A. J.; Keutsch, F. N.

    2010-12-01

    Forest-atmosphere exchange of hydrocarbons, ozone, oxidized nitrogen and other reactive species impacts both atmospheric composition and ecosystem productivity, with broad implications for air quality and climate. Recent interpretations of measured ozone and acyl peroxy nitrate fluxes have inferred that intra-canopy chemistry plays an important role in governing both the sign and magnitude of the atmosphere-forest flux of these compounds. I review these observational insights and present results from a recently constructed 1-D vertically-resolved chemical transport model (CAFE) developed for analysis and interpretation of observations made during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX). The model incorporates a fully resolved forest canopy; emissions from which are parameterized, in many cases, to match leaf-level and top-of-canopy fluxes measured at the ponderosa pine plantation. Model chemistry is based on the Master Chemical Mechanism (MCM), with several additions to simulate the oxidation of monoterpenes and sesquiterpenes not in the current MCM. The base model underestimates measured noontime OH concentrations by a factor of six. As a result we invoke enhanced OH-recycling from first generation isoprene and 2-methyl-3-buten-2-ol peroxy radicals to reconcile model and observed HOx components. Noting a few other aspects of model performance, I will focus on the model predictions of chemistry-induced fluxes. The model qualitatively reproduces the inferred sensitivity to intra-canopy chemistry for both ozone and acyl peroxy nitrates. In both cases, however, the model underestimates the observed exchange velocity suggesting non-stomatal losses (depositional or chemical) remain underestimated in the canopy. As an example of the potential importance of intra-canopy chemistry, the meteorological and structural characteristics of the forest are varied within the model. An intriguing result is that acyl peroxy nitrate (e.g., PAN) fluxes

  18. Evaluated kinetic and photochemical data for atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Baulch, D. L.; Cox, R. A.; Hampson, R. F., Jr.; Kerr, J. A.; Troe, J.; Watson, R. T.

    1980-01-01

    This paper contains a critical evaluation of the kinetics and photochemistry of gas phase chemical reactions of neutral species involved in middle atmosphere chemistry (10-55 km altitude). Data sheets have been prepared for 148 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction a preferred value of the rate coefficient at 298 K is given together with a temperature dependency where possible. The selection of the preferred value is discussed, and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species.

  19. Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry.

    PubMed

    Glasius, Marianne; Goldstein, Allen H

    2016-03-15

    Earth's atmosphere contains a multitude of organic compounds, which differ by orders of magnitude regarding fundamental properties such as volatility, reactivity, and propensity to form cloud droplets, affecting their impact on global climate and human health. Despite recent major research efforts and advances, there are still substantial gaps in understanding of atmospheric organic chemistry, hampering efforts to understand, model, and mitigate environmental problems such as aerosol formation in both polluted urban and more pristine regions. The analytical toolbox available for chemists to study atmospheric organic components has expanded considerably during the past decade, opening new windows into speciation, time resolution and detection of reactive and semivolatile compounds at low concentrations. This has provided unprecedented opportunities, but also unveiled new scientific challenges. Specific groundbreaking examples include the role of epoxides in aerosol formation especially from isoprene, the importance of highly oxidized, reactive organics in air-surface processes (whether atmosphere-biosphere exchange or aerosols), as well as the extent of interactions of anthropogenic and biogenic emissions and the resulting impact on atmospheric organic chemistry.

  20. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry.

    PubMed

    Farquhar, James; Peters, Marc; Johnston, David T; Strauss, Harald; Masterson, Andrew; Wiechert, Uwe; Kaufman, Alan J

    2007-10-11

    The evolution of the Earth's atmosphere is marked by a transition from an early atmosphere with very low oxygen content to one with an oxygen content within a few per cent of the present atmospheric level. Placing time constraints on this transition is of interest because it identifies the time when oxidative weathering became efficient, when ocean chemistry was transformed by delivery of oxygen and sulphate, and when a large part of Earth's ecology changed from anaerobic to aerobic. The observation of non-mass-dependent sulphur isotope ratios in sedimentary rocks more than approximately 2.45 billion years (2.45 Gyr) old and the disappearance of this signal in younger sediments is taken as one of the strongest lines of evidence for the transition from an anoxic to an oxic atmosphere around 2.45 Gyr ago. Detailed examination of the sulphur isotope record before 2.45 Gyr ago also reveals early and late periods of large amplitude non-mass-dependent signals bracketing an intervening period when the signal was attenuated. Until recently, this record has been too sparse to allow interpretation, but collection of new data has prompted some workers to argue that the Mesoarchaean interval (3.2-2.8 Gyr ago) lacks a non-mass-dependent signal, and records the effects of earlier and possibly permanent oxygenation of the Earth's atmosphere. Here we focus on the Mesoarchaean interval, and demonstrate preservation of a non-mass-dependent signal that differs from that of preceding and following periods in the Archaean. Our findings point to the persistence of an anoxic early atmosphere, and identify variability within the isotope record that suggests changes in pre-2.45-Gyr-ago atmospheric pathways for non-mass-dependent chemistry and in the ultraviolet transparency of an evolving early atmosphere.

  1. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5

  2. Portsmouth Atmospheric Science School (PASS) Project

    NASA Technical Reports Server (NTRS)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  3. Particle precipitation: How the spectrum fit impacts atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wissing, J. M.; Nieder, H.; Yakovchouk, O. S.; Sinnhuber, M.

    2016-11-01

    Particle precipitation causes atmospheric ionization. Modeled ionization rates are widely used in atmospheric chemistry/climate simulations of the upper atmosphere. As ionization rates are based on particle measurements some assumptions concerning the energy spectrum are required. While detectors measure particles binned into certain energy ranges only, the calculation of a ionization profile needs a fit for the whole energy spectrum. Therefore the following assumptions are needed: (a) fit function (e.g. power-law or Maxwellian), (b) energy range, (c) amount of segments in the spectral fit, (d) fixed or variable positions of intersections between these segments. The aim of this paper is to quantify the impact of different assumptions on ionization rates as well as their consequences for atmospheric chemistry modeling. As the assumptions about the particle spectrum are independent from the ionization model itself the results of this paper are not restricted to a single ionization model, even though the Atmospheric Ionization Module OSnabrück (AIMOS, Wissing and Kallenrode, 2009) is used here. We include protons only as this allows us to trace changes in the chemistry model directly back to the different assumptions without the need to interpret superposed ionization profiles. However, since every particle species requires a particle spectrum fit with the mentioned assumptions the results are generally applicable to all precipitating particles. The reader may argue that the selection of assumptions of the particle fit is of minor interest, but we would like to emphasize on this topic as it is a major, if not the main, source of discrepancies between different ionization models (and reality). Depending on the assumptions single ionization profiles may vary by a factor of 5, long-term calculations may show systematic over- or underestimation in specific altitudes and even for ideal setups the definition of the energy-range involves an intrinsic 25% uncertainty for the

  4. Putting a Human Face on Chemistry: A Project for Liberal Arts Chemistry.

    ERIC Educational Resources Information Center

    Kriz, George; Popejoy, Kate

    A collaborative project in liberal arts chemistry, involving faculty in chemistry and science education, is described. The project includes various components: an introductory test (DAST) to examine students' perceptions of scientists, a group library research exercise, oral and written presentation of the results of the library research, a…

  5. IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry

    SciTech Connect

    Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F. Jr.; Kerr, J.A.; Rossi, M.J.; Troe, J.

    1997-11-01

    This paper updates and extends part of the previous data base of critical evaluations of the kinetics and photochemistry of gas-phase chemical reactions of neutral species involved in atmospheric chemistry [J. Phys. Chem. Ref. Data {bold 9}, 295 (1980); {bold 11}, 327 (1982); {bold 13}, 1259 (1984); {bold 18}, 881 (1989); {bold 21}, 1125 (1992); {bold 26}, 521 (1997)]. The present evaluation is limited to the following families of atmospherically important reactions: O{sub x}, HO{sub x}, NO{sub x}, and SO{sub x}. The work has been carried out by the authors under the auspices of the IUPAC Subcommittee on Gas Phase Kinetic Data Evaluation for Atmospheric Chemistry. Data sheets have been prepared for 151 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each thermal reaction, a preferred value of the rate coefficient at 298 K is given together with a temperature dependence where possible. The selection of the preferred value is discussed and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. For each photochemical reaction the data sheets list the preferred values of the photoabsorption cross-sections and the quantum yields of the photochemical reactions together with comments on how they were selected. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species. {copyright} {ital 1997 American Institute of Physics and American Chemical Society.}

  6. Stability of the Martian atmosphere: Possible role of heterogeneous chemistry

    SciTech Connect

    Atreya, S.K. ); Blamont, J.E. )

    1990-03-01

    A new hypothesis is proposed for recycling Martian CO to CO{sub 2}. The same hypothesis can satisfactorily explain the recently observed depletion in CO in the middle atmosphere of Mars. The mechanism involves oxidation of carbon monoxide through heterogeneous chemistry in the presence of aerosols. It is further suggested that H{sub 2}O ice aerosols in the atmosphere of Mars are particularly effective in this process. The thrust for suggesting this mechanism came from the extensive presence of aerosols in the Martian atmosphere detected by the Auguste-Spectrophotometer Interferometer experiment on the Phobos spacecraft, combined with similar results from earlier missions, the detection of relatively low CO mixing ratios in the low to middle atmosphere by the Infrared Spectrometer experiment on the Phobos spacecraft, and the fact that earlier proposed mechanisms for recycling CO{sub 2} require either unacceptably high values of the eddy diffusion coefficient or a high water vapor abundance in the middle atmosphere of Mars. The mechanism proposed in this paper might have an analog in the Antarctic ozone hole problem, and it points out a need for laboratory measurements of appropriate sticking coefficients and rate constants.

  7. Spectroscopy and chemistry of the atmosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.; Gautier, Daniel; Owen, Tobias; Prinn, Ronald G.

    1991-01-01

    A comprehensive review of the chemistry and spectroscopy of the Uranian atmosphere is presented by means of earth-based, earth-orbital, and Voyager 2 observations covering the UV, visible, infrared, and radio wavelength regions. It is inferred from these observations, in concert with the average density of about 1.3 g/cu cm, that the Uranian atmosphere is enriched in heavy elements relative to solar composition. Pre-Voyager earth-based observations of CH4 bands in the visible region and Voyager radio occultation data imply a CH4/H2 volume mixing ratio of about 2 percent corresponding to an enrichment of approximately 24 times the solar value of 0.000835. In contrast to CH4, microwave observations indicate an apparent depletion of NH3 in the 155-to-200-K region of the atmosphere by 100 to 200 times relative to the solar NH3/H2 mixing ratio of -0.000174. It is suggested that the temporal and latitudinal variations deduced for the NH3/H2 mixing ratio in this region of the Uranian atmosphere are due to atmospheric circulation effects.

  8. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-05-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann-Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600-1850) the simulated surface temperature trends

  9. STREAMWATER ACID-BASED CHEMISTRY AND CRITICAL LOADS OF ATMOSPHERIC SULFUR DEPOSITION IN SHENANDOAH NATIONAL PARK, VIRGINIA

    EPA Science Inventory

    A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...

  10. EDITORIAL: Ice in the environment: connections to atmospheric chemistry Ice in the environment: connections to atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    McNeill, V. Faye; Hastings, Meredith G.

    2008-12-01

    Ice in the environment, whether in the form of ice particles in clouds or sea ice and snow at the Earth's surface, has a profound influence on atmospheric composition and climate. The interaction of trace atmospheric gases with snow and sea ice surfaces largely controls atmospheric composition in polar regions. The heterogeneous chemistry of ice particles in clouds also plays critical roles in polar stratospheric ozone depletion and in tropospheric chemistry. A quantitative physical understanding of the interactions of snow and ice with trace gases is critical for predicting the effects of climate change on atmospheric composition, for the interpretation of ice core chemical records, and for modeling atmospheric chemistry. The motivation behind this focus issue of Environmental Research Letters (ERL), and the special session at the Fall 2007 meeting of the American Geophysical Union that generated it, was to enhance communication and interactions among field and laboratory scientists and modelers working in this area. Members of these three groups are each working toward a mutual goal of understanding and quantifying the connections between the chemistry of snow and ice in the environment and atmospheric composition, and communication and collaboration across these traditional disciplinary boundaries pose a challenge for the community. We are pleased to present new work from several current leaders in the field and laboratory communities in this focus issue. Topics include the interaction of organics and mercury with snow and ice surfaces, halogen activation from halide ice, and the emissions of reactive nitrogen oxides from snow. Novel experimental techniques are presented that make progress towards overcoming the experimental challenges of quantifying the chemistry of realistic snow samples and ice chemistry at temperatures relevant to the polar boundary layer. Several of the papers in this issue also touch on one of the significant gaps in our current

  11. The global change research center atmospheric chemistry model

    SciTech Connect

    Moraes, Jr., Francis Perry

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the Ox, HOx, NOx, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  12. "The Chemicals Project": Connecting General Chemistry to Students' Lives

    NASA Astrophysics Data System (ADS)

    Stout, Roland

    2000-10-01

    "The Chemicals Project" described here strives to bring freshman chemistry alive for students by emphasizing its connection to the real world and to their own lives and experiences. Its major assignments deal with chemical phobias, recognizing the chemicals found in everyday life and chemical hazards (using Material Data Safety Sheets). The project is described in a cooperative learning format, employs portfolio grading, and includes a significant writing component. Ways of linking this project with the course lecture and student evaluations of the project are described. The bottom line: pre- and post-testing shows that it works. The Chemicals Project brings chemistry alive for students.

  13. Pilot Project for Chemistry Teaching in Asia.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Bangkok (Thailand).

    The major portion of this publication is devoted to the presentation of 20 chemistry experiments dealing with corrosion of metals. The experiments are intended for high school level students or for chemistry teachers for demonstration purposes. Diagrams and illustrations accompany the written directions. Also included in this publication are…

  14. Chemistry of Atmospheric Aerosols at Pacifichem 2015 Congress

    SciTech Connect

    Nizkorodov, Sergey

    2016-12-28

    This grant was used to provide participant support for a symposium entitled “Chemistry of Atmospheric Aerosols” at the 2015 International Chemical Congress of Pacific Basin Societies (Pacifichem) that took place in Honolulu, Hawaii, USA, on December 15-20, 2015. The objective was to help attract both distinguished scientists as well as more junior researchers, including graduate students, to this international symposium by reducing the financial barrier for its attendance. It was the second time a symposium devoted to Atmospheric Aerosols was part of the Pacifichem program. This symposium provided a unique opportunity for the scientists from different countries to gather in one place and discuss the cutting edge advances in the cross-disciplinary areas of aerosol research. To achieve the highest possible impact, the PI and the symposium co-organizers actively advertised the symposium by e-mail and by announcements at other conferences. A number of people responded, and the end result was a very busy program with about 100 oral and poster presentation described in the attached PDF file. Presentations by invited speakers occupied approximately 30% of time in each of the sessions. In addition to the invited speakers, each session also had contributed presentations, including those by graduate students and postdoctoral researchers. This symposium gathered established aerosol chemists from a number of countries including United States, Canada, China, Japan, Korea, Australia, Brazil, Hongkong, Switzerland, France, and Germany. There were plenty of time for the attendees to discuss new ideas and potential collaborations both during the oral sessions and at the poster sessions of the symposium. The symposium was very beneficial to graduate student researchers, postdoctoral fellows, and junior researchers whose prior exposure to international aerosol chemistry science had been limited. The symposium provided junior researchers with a much broader perspective of aerosol

  15. The 1-way on-line coupled atmospheric chemistry model system MECO(n) - Part 1: The limited-area atmospheric chemistry model COSMO/MESSy

    NASA Astrophysics Data System (ADS)

    Kerkweg, A.; Jöckel, P.

    2011-06-01

    The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a~new, limited-area atmospheric chemistry model. This model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented. Previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the tracer transport characteristics of the new COSMO/MESSy model system, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  16. Chemistry of atmospheres - An introduction to the chemistry of the atmospheres of earth, the planets, and their satellites (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Wayne, Richard P.

    An introduction to the chemistry of the atmospheres of the earth, the planets, and their satellites is presented, with particular attention given to the application of photochemistry and kinetics to atmospheres, ozone in the earth's stratosphere, the earth's troposphere, ions in the atmosphere, the airglow, and evolution and change in atmospheres and climates. This book presents the principles of atmospheric chemistry and provides the necessary background for more detailed study. New developments are covered, including the discovery of the Antarctic ozone hole. Information gathered by the Voyager 2 and other space missions is also discussed.

  17. AEROCE - 10 Years of Atmospheric Chemistry at Bermuda

    NASA Astrophysics Data System (ADS)

    Savoie, D. L.

    2001-12-01

    The Atmosphere/Ocean Chemistry Experiment (AEROCE) was a comprehensive multi-disciplinary and multi-institutional research program that focused on a number of aspects of the atmospheric chemistry over the North Atlantic Ocean (NAO). These included: ozone and the oxidizing capacity of the atmosphere; aerosol physical and chemical properties (especially for sulfur and nitrogen species and mineral aerosol) and related precipitation chemistry; the role of aerosols in climate; and chemical air/sea exchange. Two major themes of AEROCE research were designed to (1) understand the role of anthropogenic emissions and natural processes in the ozone budget and oxidizing capacity of the troposphere over the North Atlantic Ocean (NAO) and (2) characterize the physical and chemical properties of aerosols that are important to the radiative properties of the atmosphere and to climate; to study the processes that affect these properties; and to assess the relative importance of natural and human sources. AEROCE focused on the atmosphere over the NAO because it is the ocean region that is most likely to be affected by atmospheric transport from the continents. The AEROCE station at Bermuda was an extremely important part of this program. Bermuda is the recipient of relatively clean marine air from the central North Atlantic as well as pollutants and natural continental materials from North America, Europe, and Africa. Seasonally, the highest ozone concentrations occur during the spring and are associated with transport off the North American continent. The highest daily ozone values occur under conditions of large-scale subsidence from the mid-troposphere in association with the passage of cold fronts across Bermuda. During the 1996 spring intensive field experiment, AEROCE researchers found that these high ozone concentrations resulted from a combination of downmixing from the stratosphere and production from precursors associated with North American pollution. The highest

  18. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.; Holmes, Christopher D.; Hsu, Juno

    2012-05-01

    Knowledge of the atmospheric chemistry of reactive greenhouse gases is needed to accurately quantify the relationship between human activities and climate, and to incorporate uncertainty in our projections of greenhouse gas abundances. We present a method for estimating the fraction of greenhouse gases attributable to human activities, both currently and for future scenarios. Key variables used to calculate the atmospheric chemistry and budgets of major non-CO2 greenhouse gases are codified along with their uncertainties, and then used to project budgets and abundances under the new climate-change scenarios. This new approach uses our knowledge of changing abundances and lifetimes to estimate current total anthropogenic emissions, independently and possibly more accurately than inventory-based scenarios. We derive a present-day atmospheric lifetime for methane (CH4) of 9.1 ± 0.9 y and anthropogenic emissions of 352 ± 45 Tg/y (64% of total emissions). For N2O, corresponding values are 131 ± 10 y and 6.5 ± 1.3 TgN/y (41% of total); and for HFC-134a, the lifetime is 14.2 ± 1.5 y.

  19. Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1992-01-01

    The purpose of the project is to perform laboratory measurements of reaction rate coefficients at low temperature. The reactions and temperatures of interest are those that are important in the chemistry of the hydrocarbon rich atmospheres of the outer planets and their satellites. In this stage of the study we are investigating reactions of ethynyl radicals, C2H, with acetylene (C2H2), methane (CH4), and hydrogen (H2). In the previous status report from 24 Jan. 1992, we reported on the development of the experimental apparatus and the first, preliminary data for the C2H + C2H2 reaction.

  20. The Unsolved Mysteries of Atmospheric Chemistry for High School Students and Teachers

    NASA Astrophysics Data System (ADS)

    Simonich, S. L.

    2011-12-01

    The grant "CAREER: New Molecular Markers of Asian Air Emissions - Anthropogenic Semi-Volatile Organic Compounds" (ATM-0239823) was funded by NSF from 2003-2008. The CAREER proposal described the integration of research and outreach education activities in the field of atmospheric chemistry, specifically atmospheric measurements and atmospheric transport. The primary objective of the research was to identify anthropogenic semi-volatile organic compounds (SOCs) that could be used as molecular markers for Asian air emissions and trans-Pacific atmospheric transport. The outreach education activity was integrated with the research by developing curriculum to introduce underrepresented minority high school students, and their teachers, to atmospheric chemistry and atmospheric measurements through Oregon State University's National Institute of Environmental Health Sciences funded Hydroville Curriculum Project (http://www.hydroville.org/iaq_resources). A curriculum was developed to allow students to assume the role of "Air Quality Scientist" and measure air temperature, air flow, relative humidity, CO, CO2, O3, and volatile organic compounds in out-door and in-door air. The students gained an understanding of atmospheric transport and compared measured concentrations to recommended guidelines. In addition, the outreach education activities included the development of the "Unsolved Mysteries of Human Health" website (http://www.unsolvedmysteries.oregonstate.edu/), including a specific module on the research conducted under the CAREER grant (http://www.unsolvedmysteries.oregonstate.edu /Gas-Chromatography-Mass-Spectrometry-Overview). The PI of the CAREER proposal, Dr. Staci Massey Simonich, is now a full professor at Oregon State University. To date, she has published over 50 peer-review journal articles, as well as mentored 9 undergraduate students, 20 graduate students, 3 post-doctoral scholars, and 3 international visiting scientists in her laboratory.

  1. The Bio-atmospheric N Cycle: A Story of Multiple Element Interactions, N, C, S, Atmospheric Chemistry and the Climate System

    NASA Astrophysics Data System (ADS)

    Holland, E. A.

    2003-12-01

    The bio-atmospheric N plays a key role in the climate system through regulation of atmospheric greenhouse concentrations, including nitrous oxide, carbon dioxide, methane, and tropospheric ozone, as well as impacting aerosol abundance. I will examine the evidence for including the full bio-atmospheric nitrogen cycle into earth system models. The most obvious is the impact of the bio-atmospheric nitrogen cycle on nitrous and nitric oxide emissions. Nitrogen deposition significantly impacts terrestrial carbon dioxide uptake, as well as influencing leaf level nitrogen concentrations that in turn impact stomatal conductance. The importance of this interaction has been recognized by the atmospheric chemistry community and a modeling project is underway to quantify and compare global estimates of N deposition, including ammonia(um) and NOy and its impact on the carbon cycle. Ammonia impacts sulfate aerosol abundance as well as reacting with nitrate form aerosols that act as cloud condensation nuclei to he potential to significantly impact the water cycle. The SRES emission projections and an accumulating body of evidence suggest that sulfur dioxide emissions will decline over the next century, while carbon and nitrogen emissions, carbon dioxide, methane, carbon monoxide, and VOCs, and NOx are all projected to continue to increase. The long-term goal is an Earth System model that allows examination of the complex interactions of biology, climate, atmospheric chemistry and humans.

  2. Hydrogen atom initiated chemistry. [chemical evolution in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Hong, J. H.; Becker, R. S.

    1979-01-01

    H Atoms have been created by the photolysis of H2S. These then initiated reactions in mixtures involving acetylene-ammonia-water and ethylene-ammonia-water. In the case of the acetylene system, the products consisted of two amino acids, ethylene and a group of primarily cyclic thio-compounds, but no free sulfur. In the case of the ethylene systems, seven amino acids, including an aromatic one, ethane, free sulfur, and a group of solely linear thio-compounds were produced. Total quantum yields for the production of amino acids were about 3 x 10 to the -5th and about 2 x 10 to the -4th with ethylene and acetylene respectively as carbon substrates. Consideration is given of the mechanism for the formation of some of the products and implications regarding planetary atmosphere chemistry, particularly that of Jupiter, are explored.

  3. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  4. TROPOLITE, on the path of atmospheric chemistry made simple

    NASA Astrophysics Data System (ADS)

    Maresi, Luca; Van Der Meulen, Wencke; Vink, Rob

    2014-10-01

    Accurate, reliable and stable long term measurements of Earth's Atmospheric Chemistry from Space are currently done by complex instruments, whose mass is in excess of 100 Kg. TROPOMI is the more recent instrument being developed jointly by ESA and NSO and due for launch in 2015. TROPOMI, consisting of four spectrometers ranging from UV to SWIR, is paving the way to the development of high performance spectrometers that will compose the backbone of the European Copernicus system. The objective of TROPOMI is to measure trace gases with an accuracy one order of magnitude better of what is currently done from Space. While teams of engineers are still busy finalizing TROPOMI, ESA, NSO, and TNO have launched an initiative along a different development axis: to explore the possibility of a lighter version of TROPOMI, to address a market valuing a cost effective instrument for Atmospheric Chemistry. TROPOLITE, as it is dubbed, leverages on all the technology developments and the lessons learnt from TROPOMI, but with the clear objective of a design to cost solution. Furthermore, mass and power of the instrument shall be within the envelope of a payload of a small satellite, namely 20kg and 30W and possibly within a volume of 20 x 20 x 40 cm3. The scope of TROPOLITE is to address a larger user base that is interested in an affordable instrument to perform from a small satellite some specific tasks relevant to Air Quality and/or Climate. The paper, after a short overview of the TROPOMI design and current status, presents the design philosophy of TROPOLITE, and shows what are the technologies and processes stemming from the experience gained with TROPOMI that make possible a simplified, but still very performing, version of TROPOMI. A comparison in terms of performance and functionalities of the two instruments is discussed. Finally, the development plan from the current development status of TROPOLITE up to Qualification Model is presented.

  5. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation.

    PubMed

    Kulmala, M; Petäjä, T; Ehn, M; Thornton, J; Sipilä, M; Worsnop, D R; Kerminen, V-M

    2014-01-01

    The recent development in measurement techniques and theoretical understanding has enabled us to study atmospheric vapor, cluster and nanoparticle concentrations, dynamics, and their connection to atmospheric nucleation. Here we present a summary of the chemistry of atmospheric clustering, growing nanoparticles, and their precursors. In this work, we focus particularly on atmospheric gas-to-particle conversion and recent progress in its understanding.

  6. A review of atmospheric chemistry observations at mountain sites

    NASA Astrophysics Data System (ADS)

    Okamoto, Sachiko; Tanimoto, Hiroshi

    2016-12-01

    Located far from anthropogenic emission sources, high-altitude mountain stations are considered to be ideal sites for monitoring climatic and environmentally important baseline changes in free tropospheric trace gases and aerosols. In addition, the observations taken at these stations are often used to study the long-range transport of dust as well as anthropogenic and biomass burning pollutants from source regions and to evaluate the performance of global and regional models. In this paper, we summarize the results from past and ongoing field measurements of atmospheric constituents at high-altitude stations across the globe, with particular emphasis on reactive trace species including tropospheric ozone, along with its precursors such as carbon monoxide, nitrogen oxides, total reactive nitrogen, and nonmethane hydrocarbons. Over the past decades, our understanding of the temporal variability and meteorological mechanisms of long-range transport has advanced in tandem with progress in instrumentation and modeling. Finally, the future needs of atmospheric chemistry observations at mountain sites are addressed.

  7. Incorporating Student-Designed Research Projects in the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Iimoto, Devin S.; Frederick, Kimberley A.

    2011-01-01

    Although many chemistry students at small liberal arts colleges participate in undergraduate research projects with faculty members, they do not get much experience framing their own research questions and designing their own projects, which is an important part of science. We have implemented a developmental process to help students design and…

  8. Solar Energy Project, Activities: Chemistry & Physics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of science activities which present concepts of solar energy in the context of chemistry and physics experiments. Each unit presents an introduction to the unit; objectives; required skills and knowledge; materials; method; questions; recommendations for further work; and a teacher information sheet.…

  9. Implementing a Student-Designed Green Chemistry Laboratory Project in Organic Chemistry

    ERIC Educational Resources Information Center

    Graham, Kate J.; Jones, T. Nicholas; Schaller, Chris P.; McIntee, Edward J.

    2014-01-01

    A multiweek organic chemistry laboratory project is described that emphasizes sustainable practices in experimental design. An emphasis on student-driven development of the project is meant to mirror the independent nature of research. Students propose environmentally friendly modifications of several reactions. With instructor feedback, students…

  10. The 1-way on-line coupled atmospheric chemistry model system MECO(n) - Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy

    NASA Astrophysics Data System (ADS)

    Kerkweg, A.; Jöckel, P.

    2012-01-01

    The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  11. Street Canyon Atmospheric Composition: Coupling Dynamics and Chemistry

    NASA Astrophysics Data System (ADS)

    Bright, V.; Bloss, W. J.; Cai, X.

    2010-12-01

    Atmospheric composition within the urban environment, particularly within street canyons (formed by a road running between two rows of buildings), has a direct effect on the air quality of an environment in which a large majority of people live and work. The composition of air within a street canyon is determined by the composition of background air mixed in from above, advection of air into and out of the canyon, vehicle exhaust and other emissions from within the street, together with the mixing and chemical processing of pollutants within the canyon. This occurs on a timescale of a few seconds to minutes and as a result, within-canyon atmospheric processes can have a significant effect on atmospheric composition on such timescales. This paper outlines a modelling study of street canyon atmospheric composition, integrating the combined effects of emissions, dynamics and chemistry. This work builds upon an existing dynamical model of canyon atmospheric motion (Large Eddy Simulation (LES) model) by adding a detailed chemical reaction scheme. Previous studies have considered basic NOx-O3 cycles with only a small number of chemical reactions included. Initially, a zero-dimensional box model was used to develop and assess the accuracy of a suitable reduced chemical scheme to be included within the LES. The reduced chemical scheme, based upon a subset of the Master Chemical Mechanism (MCM), includes 51 chemical species and 136 reactions. Vehicle emissions taken from the UK National Atmospheric Emissions Inventory (NAEI) were subsequently added to the box model. These elements were then combined with the canyon dynamics simulated by the Large Eddy Simulation (LES) model. Results demonstrate that the enhanced model is a suitable tool to be used to further investigate the combined effects of mixing and chemical processing upon air quality within the street canyon. Subsequently, a number of key questions relating to urban atmospheric composition are addressed using the

  12. First Global Observations of Atmospheric COCIF from the Atmospheric Chemistry Experiment Mission

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Boone, Chris D.; Bernath, Peter F.; Weisenstein, Debra K.; Rinsland, Curtis P.; Manney, Gloria L.; Walker, Kaley A.

    2010-01-01

    Carbonyl chlorofluoride (COCIF) is an important reservoir of chlorine and fluorine in the Earth's atmosphere. Satellite-based remote sensing measurements of COCIF, obtained by the Atmospheric Chemistry Experiment (ACE) for a time period spanning February 2004 through April 2007, have been used in a global distribution study. There is a strong source region for COCIF in the tropical stratosphere near 27 km. A layer of enhanced COCIF spans the low- to mid-stratosphere over all latitudes, with volume mixing ratios of 40-100 parts per trillion by volume, largest in the tropics and decreasing toward the poles. The COCIF volume mixing ratio profiles are nearly zonally symmetric, but they exhibit a small hemispheric asymmetry that likely arises from a hemispheric asymmetry in the parent molecule CCl3 F. Comparisons are made with a set of in situ stratospheric measurements from the mid-1980s and with predictions from a 2-D model.

  13. Appendix C: First Global Observations of Atmospheric COClF from the Atmospheric Chemistry Experiment Mission

    NASA Technical Reports Server (NTRS)

    Fu, Djian; Boone, Chris D.; Bernath, Peter F.; Walker, Kaley A.; Rinsland, Curtis P.; Weisenstein, Debra K.; Manney, Gloria L.

    2009-01-01

    Carbonyl chlorofluoride (COCIF) is an important reservoir of chlorine and Fluorine in the Earth's atmosphere. Satellite-based remote sensing measurements of COCIF, obtained by Received in revised form the Atmospheric Chemistry Experiment (ACE) for a time period spanning February 2004 through April 2007, have been used in a global distribution study. There is a strong Accepted 18 February 2009 source region for COCIF in the tropical stratosphere near 27 km. A layer of enhanced COCIF spans the low- to mid-stratosphere over all latitudes, with volume mixing ratios of 40-100 parts Per trillion by volume, largest in the tropics and decreasing toward the poles. The COCIF volume mixing ratio profiles are nearly zonally symmetric, but they exhibit a small hemispheric asymmetry that likely arises from a hemispheric asymmetry in the parent molecule CCl3F. Comparisons are made with a set of in situ stratospheric measurements from the mid-1980s and with predictions from a 2-D model.

  14. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  15. Molecular identification of organic compounds in atmospheric complex mixtures and relationship to atmospheric chemistry and sources.

    PubMed Central

    Mazurek, Monica A

    2002-01-01

    This article describes a chemical characterization approach for complex organic compound mixtures associated with fine atmospheric particles of diameters less than 2.5 m (PM2.5). It relates molecular- and bulk-level chemical characteristics of the complex mixture to atmospheric chemistry and to emission sources. Overall, the analytical approach describes the organic complex mixtures in terms of a chemical mass balance (CMB). Here, the complex mixture is related to a bulk elemental measurement (total carbon) and is broken down systematically into functional groups and molecular compositions. The CMB and molecular-level information can be used to understand the sources of the atmospheric fine particles through conversion of chromatographic data and by incorporation into receptor-based CMB models. Once described and quantified within a mass balance framework, the chemical profiles for aerosol organic matter can be applied to existing air quality issues. Examples include understanding health effects of PM2.5 and defining and controlling key sources of anthropogenic fine particles. Overall, the organic aerosol compositional data provide chemical information needed for effective PM2.5 management. PMID:12634131

  16. Some Tests For Adaptative Observations In Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Quélo, D.; Michelangeli, P.-A.; Sportisse, B.

    Air pollution forecast requires the coupling of models with data through data assimi- lation. A key question is related to the choice of observations (apart from technical require- ments). One wants to choose in a judicious way the species to observe, in which loca- tions and at which moments. The appropriate strategies are related to the techniques of "targeting" and "adaptative observations". We will investigate these techniques on a simplified model. The first part reports the influence of the slow-fast behaviour of atmospheric chem- istry. The second part presents the use of singular vectors and second-order adjoint techniques in order to determine the "optimal" choice of observations. This project is led in the framework of the INRIA Cooperative Research Action CO- MODE (COupling MOdels and Data in Environment).

  17. Stereoscopic Projection in the Chemistry Classroom

    ERIC Educational Resources Information Center

    McGrew, LeRoy A.

    1972-01-01

    Describes the development of a three-dimensional projection system used to present structural principles by means of slides. Polarization of images from two planar projectors and viewing through polarized lenses gives stereo results. Techniques used in producing the slides and constructing the equipment are given. (TS)

  18. Building Bridges between Science Courses Using Honors Organic Chemistry Projects

    ERIC Educational Resources Information Center

    Hickey, Timothy; Pontrello, Jason

    2016-01-01

    Introductory undergraduate science courses are traditionally offered as distinct units without formalized student interaction between classes. To bridge science courses, the authors used three Honors Organic Chemistry projects paired with other science courses. The honors students delivered presentations to mainstream organic course students and…

  19. Chemistry-Materials Laboratory Project Book, 1979-80.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Bureau of Vocational-Technical Schools.

    This Chemistry-Materials Laboratory Project Book, assembled through a survey of science instructors in vocational-technical schools in Connecticut, is intended to meet a variety of needs. It can serve as an idea book, with the instructor taking from it as needed and adding or substituting material related to class interests; as a guide book for…

  20. An Integrated Biology-Chemistry Freshman Laboratory Project in Biotechnology.

    ERIC Educational Resources Information Center

    Schendel, Marilyn Shimizu

    1999-01-01

    Describes a freshman biology laboratory project that uses the polymerase chain reaction to introduce students to the interrelationship between biology and chemistry. Students must develop their own experimental protocol, perform calculations introduced in freshman classes, and evaluate group dynamics. (Author/WRM)

  1. Nucla circulating atmospheric fluidized bed demonstration project

    SciTech Connect

    Keith, Raymond E.

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  2. NASA's Atmospheric Effects of Aviation Project

    NASA Technical Reports Server (NTRS)

    Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Winstead, E. L.; Pui, C.; Chen, Da-ren; Hagen, D. E.; Whitefield, P.

    2001-01-01

    During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties has been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.

  3. Composition and chemistry of the Venusian atmosphere after Venus Express

    NASA Astrophysics Data System (ADS)

    Marcq, Emmanuel

    The ESA/Venus Express orbiter mission is expected to end before the end of this year (2014), and time has come to summarize its results and examine how they changed our view of this planet. Venus Express instruments (especially the spectrometers VIRTIS and SPICAV/SOIR) have been addressing numerous scientific issues since 2006, among which remote sensing of many minor species from the lower troposphere up to the mesosphere at various latitudes and local solar time, often evidencing spatial or temporal variability. In preparation of a new synthesis of our current knowledge about Venusian atmospheric chemistry and composition to be included in the Venus III book (expected to be published in 2015), we shall present an overview of the most significant updates in this domain. A non-exhaustive list of the sub-topics we would like to address is; (1) Lower tropospheric measurements: Venus Express has been able to study in detail most of the thermal infrared windows, yielding extensive night side measurements of some key minor species (CO, OCS, H_2O, HDO, SO_2) (2) Profiles at an unparalleled vertical resolution of many minor species in the lower mesosphere thanks to stellar and solar occultation techniques. (3) Spatial and temporal variability of minor species at various scales, the most striking example being SO_2 above cloud top. (4) New theoretical understanding and modeling of the interplay between the various chemical cycles (carbon, sulfur, halogens) and the condensed phase particulate matter from the clouds and hazes, based on the newest available observational constraints from Venus Express and ground-based telescopes.

  4. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Steil, B.; Tost, H.; Sander, R.

    2010-06-01

    The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx, and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM), and scavenging (substituting the existing submodel SCAV). We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  5. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Steil, B.; Tost, H.; Sander, R.

    2010-02-01

    The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM), and scavenging (substituting the existing submodel SCAV). We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  6. Atmospheric OCS measurements on Project Gametag

    NASA Astrophysics Data System (ADS)

    Torres, A. L.; Maroulis, P. J.; Goldberg, A. B.; Bandy, A. R.

    1980-12-01

    In the spring of 1978, carbonyl sulfide measurements were made at Drexel University in Philadelphia, Pennsylvania, and on Project Gametag (Global Atmospheric Measurements Experiment of Tropospheric Aerosols and Gases). At Drexel University, measurements were made on 7 days in mid-March, using a dual-channel sampling system. These data had a mean concentration and standard deviation of 544±27 pptv on channel 1 and 522±27 pptv on channel 2. In project Gametag, 346 measurements of the tropospheric concentration of OCS were made over a latitude range 57°S to 70°N. Samples were obtained over the central and southern Pacific Ocean and the western sections of the United States and Canada. Overall OCS levels averaged 512 pptv with a standard deviation of 65 pptv and a standard error of the mean of 4 pptv. Carbonyl sulfide levels were statistically the same in the free troposphere and the boundary layer and over continental and marine areas. The apparent north-south gradient seen in the Gametag data set was attributed to a change in the calibration system as a function of time during the experiment.

  7. First Global Observations of Atmospheric COClF from the Atmospheric Chemistry Experiment Mission

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Boone, Chris D.; Bernath, Peter F.; Weisenstein, Debra K.; Rinsland, Curtis P.; Manney, Gloria L.; Walker, Kaley A.

    2009-01-01

    Carbonyl chlorofluoride (COClF) is an important reservoir of chlorine and fluorine in the Earth's atmosphere. Satellite-based remote sensing measurements of COClF, obtained by the Atmospheric Chemistry Experiment (ACE) for a time period spanning February 2004 through April 2007, have been used in a global distribution study. There is a strong source region for COClF in the tropical stratosphere near 27 km. A layer of enhanced COClF spans the low- to mid-stratosphere over all latitudes, with volume mixing ratios of 40-100 parts per trillion by volume, largest in the tropics and decreasing toward the poles. The COClF volume mixing ratio profiles are nearly zonally symmetric, but they exhibit a small hemispheric asymmetry that likely arises from a hemispheric asymmetry in the parent molecule CCl3F. Comparisons are made with a set of in situ stratospheric measurements from the mid-1980s and with predictions from a 2-D model.

  8. Advanced Placement Chemistry: Project Advance and the Advanced Placement Program: A Comparison of Students' Performance on the AP Chemistry Examination.

    ERIC Educational Resources Information Center

    Mercurio, Joseph; And Others

    1984-01-01

    Compared performance of Syracuse University Project Advance (PA) chemistry students (N=35) with advanced placement (AP) candidates on the AP chemistry examination. PA students scored slightly above the national average on the examination, and students who performed well (B or better) in AP chemistry also did well on the examination. (JN)

  9. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of

  10. Simulating the impacts of large scale insect- and disease-driven tree mortality on atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Geddes, J.; Heald, C. L.; Silva, S. J.; Martin, R.

    2015-12-01

    Land-use and land-cover change (LUC) is an important driver of global change through the alteration of local energy, moisture, and carbon exchanges. LUC can also directly impact the emission and deposition of important reactive trace gases, altering the oxidative chemistry of the atmosphere and subsequently air quality and climate. Large-scale tree mortality as a result of insects and disease may therefore have unexplored feedbacks on atmospheric chemistry. Between 2013 and 2027, over 80 million acres of treed land in the United States is predicted to experience basal area mortality rates exceeding 25%. We harmonized the description of land cover across the relevant surface-atmosphere exchange processes in the GEOS-Chem chemical transport model to facilitate LUC simulations, and used this adapted model to test the impact of projected tree mortality according to the 2012 USDA National Insect and Disease Risk Assessment. Nation-wide biogenic VOC emissions were reduced by 5%, with local impacts approaching 50% in some regions. By themselves, these emission reductions resulted in lower surface-level O3 mixing ratios, but this was counteracted by decreases in the O3 deposition velocity (by up to 10%) due to the reduction in vegetation density. Organic aerosol mass concentrations were also significantly affected across the United States, decreasing by 5-10% across the eastern U.S. and the northwest, with local impacts exceeding 25% in some regions. We discuss the general impacts on air quality in clean and polluted regions of the US, and point to developments needed for a more robust understanding of land cover change feedbacks.

  11. Alternative Solvents through Green Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  12. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    NASA Technical Reports Server (NTRS)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere

  13. Understanding Heterogeneous Chemistry at the Molecular-Level using Broadband Nonlinear Technologies: Application to Atmospheric Aerosol Growth and Chemistry

    NASA Astrophysics Data System (ADS)

    Allen, H. C.

    2001-12-01

    Surface reactions on liquid and solid particles can significantly impact tropospheric chemistry since many reactions that are slow to occur in the gas phase may in fact be favored on these atmospheric particles. Currently, we are investigating the surface structure of a variety of solid and liquid surfaces in order to understand particle growth and chemistry in the troposphere. The structure of a surface is different than the bulk media and consequently, the chemistry occurring at a surface is often unique. Surface vibrational sum frequency generation is the primary tool used in these studies because of its surface and molecular selectivity. New advances in our lab using broadband technology and ultra-fast laser sources for probing reactions taking place on surfaces on short timescales and at atmospheric pressures will be presented. Surface structures and adsorption of gas-phase water at the surface of various organic solutions (e.g. ethylene glycol and methylnapthalene) will be discussed.

  14. Evaluated Kinetic, Photochemical and Heterogeneous Data for Atmospheric Chemistry: Supplement V, IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry

    SciTech Connect

    Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F. Jr.; Kerr, J.A. Chairman; Rossi, M.J.; Troe, J.

    1997-05-01

    This paper updates and extends previous critical evaluations of the kinetics and photochemistry of gas-phase chemical reactions of neutral species involved in atmospheric chemistry [J. Phys. Chem. Ref. Data {bold 9}, 295 (1980); {bold 11}, 327 (1982); {bold 13}, 1259 (1984); {bold 18}, 881 (1989); {bold 21}, 1125 (1992)]. The work has been carried out by the authors under the auspices of the IUPAC Subcommittee on Gas Phase Kinetic Data Evaluation for Atmospheric Chemistry. Data sheets have been prepared for 658 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each reaction, a preferred value of the rate coefficient at 298 K is given together with a temperature dependence where possible. The selection of the preferred value is discussed and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. The data sheets are intended to provide the basic physical chemical data needed as input for calculations which model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available data on enthalpies of formation of the reactant and product species. We have also included for the first time in this series of evaluations a section on heterogeneous reactions of importance in atmospheric chemistry. {ital Key words:} air pollution; atmospheric chemistry; chemical kinetics; data evaluation; gas phase; heterogeneous atmospheric reactions; photoabsorption cross-section, photochemistry; quantum yield; rate coefficient.{copyright} {ital 1997 American Institute of Physics and American Chemical Society.}

  15. Project-based learning in the secondary chemistry classroom

    NASA Astrophysics Data System (ADS)

    Crane, Elizabeth L.

    This study investigated the use of project-based learning (PBL) in a high school chemistry classroom. PBL encourages the use of projects, which promote continual learning, rather than a summative project at the end of a unit after the learning has already been done. Along with implementing PBL, the study also incorporated many of the strategies included in the broader strategy known as Assessment for Learning (AfL), which stresses developing assessments that are part of the learning process rather than simply a measurement of the amount of learning that has occurred upon completion of a unit. The hypothesis of this research was that PBL would increase student comprehension and motivation as measured through pre and post-test data and a student survey. The new project-based unit required students to research and present the properties and structures of elements and how we use them. The expectation was that this approach would engage students with the material, the computer modeling would allow for more concrete visualization of structures and the project-based format would allow students to become more invested in their own learning. This study provided evidence to support the hypothesis that the implementation of project-based learning, supported by formative assessment and other assessment for learning strategies, will improve student comprehension and motivation in the secondary chemistry classroom.

  16. The Skylab concentrated atmospheric radiation project

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Marlatt, W. E.; Whitehead, V. S. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Comparison of several existing infrared radiative transfer models under somewhat controlled conditions and with atmospheric observations of Skylab's S191 and S192 radiometers illustrated that the models tend to over-compute atmospheric attenuation in the window region of the atmospheric infrared spectra.

  17. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella; Salama, Farid

    2013-01-01

    Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.

  18. Atmospheric Halogen Chemistry of Volcanic Plumes in WRF-Chem

    NASA Astrophysics Data System (ADS)

    Surl, Luke; Donohoue, Deanna; von Glasow, Roland

    2015-04-01

    Volcanic eruptions are known to be a strong and concentrated source of reactive halogen species. The chemistry that these species are known to take part in include ozone-destruction cycles. Despite the potentially large perturbation to the chemistry of the troposphere that eruptions may cause, the magnitude of such impacts on global and regional scales is largely unknown. We used WRF-Chem to investigate the influence of Mount Etna on the tropospheric chemistry of the Mediterranean region. The chemistry of bromine, chlorine and mercury has been added to the chemical mechanism CBMZ and we have coupled WRF-Chem with the emissions program PrepChem. We developed a simple parameterisation of the key multiphase reaction cycles involving halogens. Comparison with published field data shows that the model is able to reproduce the bromine explosion phenomenon seen in spectroscopic investigations of volcanic plumes. From the model results we are able to determine a detailed picture of the chemistry of a volcanic plume; results are presented which show in detail how the character of the volcanic plume evolves as it is advected downwind and we identify which parts of the chemical cycle are most likely to be the limiting factors for the speed of the processing. Additionally, these modelled results are supplemented with, and compared against, measurements of ozone depletion that we made within the plume at the summit of Mount Etna.

  19. CHEMISTRY OF SILICATE ATMOSPHERES OF EVAPORATING SUPER-EARTHS

    SciTech Connect

    Schaefer, Laura; Fegley, Bruce E-mail: bfegley@levee.wustl.ed

    2009-10-01

    We model the formation of silicate atmospheres on hot volatile-free super-Earths. Our calculations assume that all volatile elements such as H, C, N, S, and Cl have been lost from the planet. We find that the atmospheres are composed primarily of Na, O{sub 2}, O, and SiO gas, in order of decreasing abundance. The atmospheric composition may be altered by fractional vaporization, cloud condensation, photoionization, and reaction with any residual volatile elements remaining in the atmosphere. Cloud condensation reduces the abundance of all elements in the atmosphere except Na and K. We speculate that large Na and K clouds such as those observed around Mercury and Io may surround hot super-Earths. These clouds would occult much larger fractions of the parent star than a closely bound atmosphere, and may be observable through currently available methods.

  20. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)

    1991-01-01

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.

  1. Experimental and Theoretical Studies of Atmosphereic Inorganic Chlorine Chemistry

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Friedl, Randall R.

    1993-01-01

    Over the last five years substantial progress has been made in defining the realm of new chlorine chemistry in the polar stratosphere. Application of existing experimental techniques to potentially important chlorine-containing compounds has yielded quantitative kinetic and spectroscopic data as well as qualitative mechanistic insights into the relevant reactions.

  2. The Titan Haze Simulation experiment on COSmIC: Probing Titan's atmospheric chemistry at low temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Ricketts, Claire L.; Salama, Farid

    2014-11-01

    The aim of the Titan Haze Simulation (THS) experiment is to contribute to a better understanding of aerosol formation in Titan's atmosphere through the study of the chemical formation pathways that link the simpler gas phase molecules resulting from the first steps of the N2-CH4 chemistry, to the more complex gas phase precursors of aerosols; and more specifically, to investigate the role of polycyclic aromatic hydrocarbons (PAHs) and nitrogenated polycyclic aromatic hydrocarbons (PANHs), among other hydrocarbons, in this process. In the THS experiment developed at the NASA Ames Cosmic simulation facility (COSmIC), Titan's atmospheric chemistry is simulated by a pulsed plasma jet expansion at temperature conditions (∼150 K) close to those found in Titan's atmosphere in regions where aerosols are formed. In addition, because of the very short residence time of the gas in the plasma discharge, only the initial steps of the chemistry occur, making the COSmIC/THS a unique tool to study the first and intermediate (when adding heavier precursors to the initial N2-CH4 mixture) steps of Titan's atmospheric chemistry at low temperature as shown in the study presented here. We further illustrate the potential of COSmIC/THS for the simulation of Titan's atmospheric chemistry by presenting very promising results from a preliminary comparison of the laboratory data to data from the Cassini Plasma Spectrometer-Ion Beam Spectrometer (CAPS-IBS) instrument.

  3. Atmospheric Chemistry of Volcanic Plumes in WRF-Chem

    NASA Astrophysics Data System (ADS)

    Surl, L.; Donohoue, D.; von Glasow, R.

    2014-12-01

    Volcanic eruptions are known to be a strong and concentrated source of reactive halogen species. The chemistry that these species are known to take part in include ozone-destruction cycles. Despite the potentially large perturbation to the chemistry of the troposphere that eruptions may cause the magnitude of such impacts on global and regional scales is largely unknown. We used WRF-Chem to investigate the influence of Mount Etna on the tropospheric chemistry of the Mediterranean region. The chemistry of bromine, chlorine and mercury has been added to the chemical mechanism CBMZ and we have coupled WRF-Chem with the emissions program PrepChem. We developed a simple parameterisation of the key multiphase reaction cycles involving halogens. Comparison with published field data shows that the model is able to reproduce the bromine explosion phenomenon seen in spectroscopic investigations of volcanic plumes. From the model results we are able to determine a detailed picture of the chemistry of a volcanic plume; results are presented which show how the character of the volcanic plume evolves as it is advected downwind. We determine the magnitude of Mt. Etna's regional influence under typical conditions. We also present results which show how the variation in volcanic output, as well as meteorological variation within the region, can influence the extent of Mt. Etna's regional impact. As WRF-Chem is very flexible, we also performed model runs fir other volcanoes.. The model results are compared to satellite measurements of BrO and SO2 to improve our understanding of chemical processes in tropospheric volcanic plumes.

  4. Vesper - Venus Chemistry and Dynamics Orbiter - A NASA Discovery Mission Proposal: Submillimeter Investigation of Atmospheric Chemistry and Dynamics

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.

  5. The THS experiment: Simulating Titan's atmospheric chemistry at low temperature (200 K)

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jack L.; Salama, Farid

    2016-10-01

    In the Titan Haze Simulation (THS) experiment, Titan's atmospheric chemistry is simulated by plasma discharge in the stream of a supersonic expansion, i.e. at low Titan-like temperature (150 K). Here, we present complementary gas and solid phase analyses of four N2-CH4-based gas mixtures that demonstrate the unique capability of the THS to monitor the chemical growth evolution in order to better understand Titan's chemistry and the origin of aerosol formation.

  6. Potential changes in atmospheric chemistry in the decades ahead: Climate and biosphere interactions and feedbacks

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1991-10-01

    Atmospheric chemistry is a challenging area of research where much knowledge is needed if we are to continue to survive as a species. This paper outlines research needs in the decades ahead in this key area of scientific endeavor. Highlighted are areas of research that are likely to lead to climatic and biospheric impacts and have been given little attention in the past. In particular, the possible organic transformation chemistries that may lead to chemical and physical changes in tropospheric cloud chemistries are highlighted and emphasized as an area where research is needed in the future. 22 refs.

  7. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  8. The role of computational chemistry in the science and measurements of the atmosphere

    NASA Technical Reports Server (NTRS)

    Phillips, D. H.

    1978-01-01

    The role of computational chemistry in determining the stability, photochemistry, spectroscopic parameters, and parameters for estimating reaction rates of atmospheric constituents is discussed. Examples dealing with the photolysis cross sections of HOCl and (1 Delta g) O2 and with the stability of gaseous NH4Cl and asymmetric ClO3 are presented. It is concluded that computational chemistry can play an important role in the study of atmospheric constituents, particularly reactive and short-lived species which are difficult to investigate experimentally.

  9. The Validity of Stirling's Approximation: A Physical Chemistry Project

    NASA Astrophysics Data System (ADS)

    Wallner, A. S.; Brandt, K. A.

    1999-10-01

    Often in physical chemistry courses, the direct proof of Stirling's approximation is omitted owing to the complexity of the mathematics involved. We present an accessible proof of this result that requires only an understanding of first-year calculus. We also present an undergraduate project dealing with the validity of Stirling's approximation. This assignment asks students to study the validity of the formula using mathematical tools such as programmable calculators, commercially available computer software such as Derive, and basic computer programming. Examples of students' solutions are provided.

  10. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    USGS Publications Warehouse

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  11. Size resolved fog water chemistry and its atmospheric implications

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida; Ervens, Barbara; Bhattu, Deepika

    2015-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world. It usually contains substantial quantity of liquid water and results in severe visibility reduction leading to disruption of normal life. Fog is generally seen as a natural cleansing agent but it also has the potential to form Secondary Organic Aerosol (SOA) via aqueous processing of ambient aerosols. Size- resolved fog water chemistry for inorganics were reported in previous studies but processing of organics inside the fog water and quantification of aqSOA remained a challenge. To assess the organics processing via fog aqueous processing, size resolved fog water samples were collected in two consecutive winter seasons (2012-13, 2013-14) at Kanpur, a heavily polluted urban area of India. Caltech 3 stage fog collector was used to collect the fog droplets in 3 size fraction; coarse (droplet diameter > 22 µm), medium (22> droplet diameter >16 µm) and fine (16> droplet diameter >4 µm). Collected samples were atomized into various instruments such as Aerosol Mass Spectrometer (AMS), Cloud Condensation Nucleus Counter (CCNc), Total Organic Carbon (TOC) and a thermo denuder (TD) for the physico-chemical characterization of soluble constituents. Fine droplets are found to be more enriched with different aerosol species and interestingly contain more aged and less volatile organics compared to other coarser sizes. Organics inside fine droplets have an average O/C = 0.87 compared to O/C of 0.67 and 0.74 of coarse and medium droplets. Metal chemistry and higher residence time of fine droplets are seemed to be the two most likely reasons for this outcome from as the results of a comprehensive modeling carried out on the observed data indicate. CCN activities of the aerosols from fine droplets are also much higher than that of coarse or medium droplets. Fine droplets also contain light absorbing material as was obvious from their 'yellowish' solution. Source apportionment of fog water organics via

  12. Electrostatic activation of prebiotic chemistry in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Stark, C. R.; Helling, Ch.; Diver, D. A.; Rimmer, P. B.

    2014-04-01

    Charged dust grains in the atmospheres of exoplanets may play a key role in the formation of prebiotic molecules, necessary to the origin of life. Dust grains submerged in an atmospheric plasma become negatively charged and attract a flux of ions that are accelerated from the plasma. The energy of the ions upon reaching the grain surface may be sufficient to overcome the activation energy of particular chemical reactions that would be unattainable via ion and neutral bombardment from classical, thermal excitation. As a result, prebiotic molecules or their precursors could be synthesized on the surface of dust grains that form clouds in exoplanetary atmospheres. This paper investigates the energization of the plasma ions, and the dependence on the plasma electron temperature, in the atmospheres of substellar objects such as gas giant planets. Calculations show that modest electron temperatures of ~1 eV (~104 K) are enough to accelerate ions to sufficient energies that exceed the activation energies required for the formation of formaldehyde, ammonia, hydrogen cyanide and the amino acid glycine.

  13. Advances in atmospheric chemistry modeling: the LLNL impact tropospheric/stratospheric chemistry model

    SciTech Connect

    Rotman, D A; Atherton, C

    1999-10-07

    We present a unique modeling capability to understand the global distribution of trace gases and aerosols throughout both the troposphere and stratosphere. It includes the ability to simulate tropospheric chemistry that occurs both in the gas phase as well as on the surfaces of solid particles. We have used this capability to analyze observations from particular flight campaigns as well as averaged observed data. Results show the model to accurately simulate the complex chemistry occurring near the tropopause and throughout the troposphere and stratosphere.

  14. Biological regulation of atmospheric chemistry en route to planetary oxygenation.

    PubMed

    Izon, Gareth; Zerkle, Aubrey L; Williford, Kenneth H; Farquhar, James; Poulton, Simon W; Claire, Mark W

    2017-03-28

    Emerging evidence suggests that atmospheric oxygen may have varied before rising irreversibly ∼2.4 billion years ago, during the Great Oxidation Event (GOE). Significantly, however, pre-GOE atmospheric aberrations toward more reducing conditions-featuring a methane-derived organic-haze-have recently been suggested, yet their occurrence, causes, and significance remain underexplored. To examine the role of haze formation in Earth's history, we targeted an episode of inferred haze development. Our redox-controlled (Fe-speciation) carbon- and sulfur-isotope record reveals sustained systematic stratigraphic covariance, precluding nonatmospheric explanations. Photochemical models corroborate this inference, showing Δ(36)S/Δ(33)S ratios are sensitive to the presence of haze. Exploiting existing age constraints, we estimate that organic haze developed rapidly, stabilizing within ∼0.3 ± 0.1 million years (Myr), and persisted for upward of ∼1.4 ± 0.4 Myr. Given these temporal constraints, and the elevated atmospheric CO2 concentrations in the Archean, the sustained methane fluxes necessary for haze formation can only be reconciled with a biological source. Correlative δ(13)COrg and total organic carbon measurements support the interpretation that atmospheric haze was a transient response of the biosphere to increased nutrient availability, with methane fluxes controlled by the relative availability of organic carbon and sulfate. Elevated atmospheric methane concentrations during haze episodes would have expedited planetary hydrogen loss, with a single episode of haze development providing up to 2.6-18 × 10(18) moles of O2 equivalents to the Earth system. Our findings suggest the Neoarchean likely represented a unique state of the Earth system where haze development played a pivotal role in planetary oxidation, hastening the contingent biological innovations that followed.

  15. The Exchange of Soil Nitrite and Atmospheric HONO: a Missing Process in the Nitrogen Cycle and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Cheng, Yafang; Su, Hang; Oswald, Robert; Behrendt, Thomas; Trebs, Ivonne; Meixner, Franz X.; Andreae, Meinrat O.; Pöschl, Ulrich

    2013-04-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. We also show that the soil-atmosphere exchange of N(III), though not considered in the N cycle, might result in significant amount of reactive nitrogen emission (comparable to soil NO emissions). Fertilized soils with low pH appear to be particularly strong sources of HONO and OH. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. In view of the potentially large impact on atmospheric chemistry and global environmental change, we recommend further studies of HONO release from soil nitrite and related processes in the biogeochemical cycling of N in both agricultural and natural environments. Reference: Su, H., Cheng, Y., et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011. Su, H., et al., The Exchange of Soil Nitrite and Atmospheric HONO: A Missing Process in the Nitrogen Cycle and Atmospheric Chemistry, NATO Science for Peace and Security Series C: Environmental Security, Springer Netherlands, 93-99, 2013.

  16. Precipitation chemistry - Atmospheric loadings to the surface waters of the Indian River lagoon basin by rainfall

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III

    1990-01-01

    Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.

  17. Martian atmospheric chemistry during the time of low water abundance

    NASA Technical Reports Server (NTRS)

    Nair, Hari; Allen, Mark; Yung, Yuk L.; Clancy, R. Todd

    1992-01-01

    The importance of odd hydrogen (or HO(x)) radicals in the catalytic recombination of carbon monoxide and oxygen in the Martian atmosphere is a well known fact. The inclusion of recent chemical kinetics data, specifically temperature-dependent CO2 absorption cross sections, into our one dimensional photochemical model shows that HO(x) is too efficient in this regard. The absorption cross sections of CO2 are smaller than previously assumed; this leads to a reduction in the photolysis rate of CO2 while the photolysis rate of H2O has increased. As a consequence the predicted mixing ratio of CO in our models is substantially less than the observed value of 6.5(10)(exp -4). Simultaneous measurements of water, ozone, and carbon monoxide were obtained in the Martian atmosphere in early Dec. 1990 (L(sub s) for Mars was 344 deg.).

  18. Acid deposition and atmospheric chemistry at Allegheny Mountain

    SciTech Connect

    Pierson, W.R.; Brachaczek, W.W.; Gorse, R.A. Jr.; Japar, S.M.; Norbeck, J.M.; Keeler, G.J.

    1986-04-01

    In August, 1983 members of the Research Staff of Ford Motor Company carried out a field experiment at two rural sites in southwestern Pennsylvania involving various aspects of the acid deposition phenomenon. This presentation focuses on the wet (rain) deposition during the experiment, as well as the relative importance of wet and dry deposition processes for nitrate and sulfate at the sites. Other aspects of the experiment have been discussed elsewhere: the chemistry of dew and its role in acid deposition (1), the dry deposition of HNO/sub 3/ and SO/sub 2/ to surrogate surfaces (2), and the role of elemental carbon in light absorption and of light absorption in degradation of visibility (3).

  19. Theory of planetary atmospheres: an introduction to their physics and chemistry /2nd revised and enlarged edition/

    SciTech Connect

    Chamberlain, J.W.; Hunten, D.M.

    1987-01-01

    Theoretical models of planetary atmospheres are characterized in an introductory text intended for graduate physics students and practicing scientists. Chapters are devoted to the vertical structure of an atmosphere; atmospheric hydrodynamics; the chemistry and dynamics of the earth stratosphere; planetary astronomy; ionospheres; airglows, auroras, and aeronomy; and the stability of planetary atmospheres. Extensive graphs, diagrams, and tables of numerical data are provided.

  20. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Salama, F.

    2013-06-01

    Titan’s atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn’s magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSmIC simulation chamber at NASA Ames in order to study the different steps of Titan’s atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2-CH4 chemistry (C2H2, C2H4, C6H6…) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways leading to Titan’s haze formation. Aknowledgements: This research is supported by NASA SMD (PATM). E

  1. Ion chemistry and N-containing molecules in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Yelle, R. V.; McEwan, M. J.

    2007-11-01

    High-energy photons, electrons, and ions initiate ion-neutral chemistry in Titan's upper atmosphere by ionizing the major neutral species (nitrogen and methane). The Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft performed the first composition measurements of Titan's ionosphere. INMS revealed that Titan has the most compositionally complex ionosphere in the Solar System, with roughly 50 ions at or above the detection threshold. Modeling of the ionospheric composition constrains the density of minor neutral constituents, most of which cannot be measured with any other technique. The species identified with this approach include the most complex molecules identified so far on Titan. This confirms the long-thought idea that a very rich chemistry is actually taking place in this atmosphere. However, it appears that much of the interesting chemistry occurs in the upper atmosphere rather than at lower altitudes. The species observed by INMS are probably the first intermediates in the formation of even larger molecules. As a consequence, they affect the composition of the bulk atmosphere, the composition and optical properties of the aerosols and the flux of condensable material to the surface. In this paper, we discuss the production and loss reactions for the ions and how this affects the neutral densities. We compare our results to neutral densities measured in the stratosphere by other instruments, to production yields obtained in laboratory experiments simulating Titan's chemistry and to predictions of photochemical models. We suggest neutral formation mechanisms and highlight needs for new experimental and theoretical data.

  2. "Holes" in Student Understanding: Addressing Prevalent Misconceptions regarding Atmospheric Environmental Chemistry

    ERIC Educational Resources Information Center

    Kerr, Sara C.; Walz, Kenneth A.

    2007-01-01

    There is a misconception among undergraduate students that global warming is caused by holes in the ozone layer. In this study, we evaluated the presence of this and other misconceptions surrounding atmospheric chemistry that are responsible for the entanglement of the greenhouse effect and the ozone hole in students' conceptual frameworks. We…

  3. A Controlled-Environment Chamber for Atmospheric Chemistry Studies Using FT-IR Spectroscopy

    DTIC Science & Technology

    1990-06-01

    A one-meter diameter, Teflon coated, stainless steel sph ere has been constructed as a tool for conducting studies of the atmospheric chemistry of...port to determine their effects on gases under study . The chamber is equipped with an in situ, multipass optical system which allows infrared path

  4. [Relationship between atmospheric particles and rain water chemistry character].

    PubMed

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  5. Atmospheric Chemistry of Toxic Industrial Chemicals (Briefing Slides)

    DTIC Science & Technology

    2007-01-11

    22 days≥ 188 days≥ 400 days14 daysAcetylene ~4 days35 min36 min4.3 hourstrans- 2 - Butene 5 days205 days≥ 1300 yr5 daysn-Butane Cl [1 x 104 cm- 3 ...REPORT DATE (DD-MM-YYYY) 2 . REPORT TYPE 3 . DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...identical except that the lower right is accounting for the reactivity of 2 - methyl propene in the atmosphere. I’ve placed two arrows on the map to help

  6. Fundamental surface processes in heterogeneous atmospheric chemistry: Applications to sea-salt (NaCl) and oxide particulate chemistry

    NASA Astrophysics Data System (ADS)

    Allen, Heather Cecile

    1997-10-01

    Although heterogeneous phenomena are important in many atmospheric processes, these complex systems have been difficult to study at the fundamental level. Surface- sensitive techniques are currently being utilized to probe the chemistry of heterogeneous atmospheric systems. In addition to presenting fundamental surface chemistry of several systems, this dissertation shows that surface- sensitive and electron microscopy technology can provide substantial insight into heterogeneous atmospheric processes. Transmission electron microscopy and energy dispersive spectroscopy (TEM-EDS) were used to better understand fundamental mechanisms of the reaction of sodium chloride with nitric acid vapor (and reaction with nitrogen dioxide) followed by water vapor. Results show for the first time that exposures to water vapor can lead to major reconstruction and concurrent recrystallization of the surface after reaction of NaCl(s) with HNO3(g). This has significant implications for tropospheric chemistry in polluted urban regions. The entire volume of airborne sea-salt (i.e. NaCl) particles is available for reaction due to the water-induced reorganization of the surface. Additional studies presented here include: (1) Laser induced desorption-Fourier transform mass spectrometry (LID-FTMS) studies of the reactivity of thin films of aluminum oxide (γ- Al2O3/NiAl(100)) after exposure to molecules relevant to tropospheric and stratospheric particulate chemistry, (2) TEM-EDS studies of stratospheric particles, and (3) Thermal desorption spectroscopy (TDS) of CO/NiAl(100). TDS and LID-FTMS studies reveal that non-hydroxylated γ- Al2O3/NiAl(100) is inert toward the adsorption of CF2Cl2 and HCF2Cl. LID-FTMS results show that 1,3-butadiene desorbs intact from non- hydroxylated γ- Al2O3/NiAl(100) at ~200 K. The TEM-EDS studies of stratospheric particles reveal that submicron alumina spheres are amorphous. Previous studies of submicron alumina spheres showed that γ-alumina was the

  7. Equilibrium Chemistry of the Atmospheres of Scorched Rocky Exoplanets

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Lodders, K.; Fegley, B., Jr.

    2011-01-01

    The Kepler and COROT missions and Earth-based observations detected putative rocky exoplanets. Some of the planets are exposed to extreme temperatures as they orbit close to their host stars, e.g., CoRot-7b. Such planets can develop atmospheres through (partial) vaporization of their exterior crusts or even mantle silicates. We investigated the chemical equilibrium composition of such heated systems from 500 - 4000 K and total pressures from 10-6 to 10+2.5 bars. The major gas phase species formed by the volatile elements H, C, N, O, and S, and the lithophile elements Na, K, Fe, Si, Mg, Al, Ca, and Ti are H2O and CO2 at low temperatures, and Na, K, O2, SiO, and O at high temperatures. The effects on overall elemental composition of the evaporated systems will be discussed. The computational results will be useful in planning spectroscopic studies of the atmospheres of hot Earth-like exoplanets. This work was supported by the NSF Astronomy Program and the NASA Astrobiology Program.

  8. Atmospheric chemistry of CF3CF2OCH3

    NASA Astrophysics Data System (ADS)

    Østerstrøm, Freja F.; Nielsen, Ole John; Wallington, Timothy J.

    2016-06-01

    Smog chamber Fourier transform infrared techniques were used to investigate the kinetics of the reaction of CF3CF2OCH3 with Cl atoms and OH radicals: k(Cl + CF3CF2OCH3) = (1.09 ± 0.16) × 10-13 and k(OH + CF3CF2OCH3) = (1.28 ± 0.19) × 10-14 cm3 molecule-1 s-1 in 700 Torr total pressure of N2/O2 at 296 ± 2 K. The Cl-initiated oxidation of CF3CF2OCH3 gives CF3CF2OCHO in a yield indistinguishable from 100%. An estimate of k(Cl + CF3CF2OCHO) = (1.18 ± 0.34) × 10-14 cm3 molecule-1 s-1 is provided. Based on the OH reaction rate, the atmospheric lifetime of CF3CF2OCH3 is estimated to be 5.0 years. The 100-year time horizon global warming potential of CF3CF2OCH3 is estimated to be 585. The atmospheric impact of CF3CF2OCH3 is discussed.

  9. On the numerical treatment of problems in atmospheric chemistry

    SciTech Connect

    Aro, Colin J.

    1995-09-01

    Atmospheric chemical-radiative-transport (CRT) models are vital in performing research on atmospheric chemical change. Even with the enormous computing capability delivered by massively parallel systems, extended three dimensional CRT simulations are still not computationally feasible. The major obstacle in a CRT model is the nonlinear ODE system describing the chemical kinetics in the model. These ODE systems are usually very stiff and account for anywhere from 75% to 90% of the CPU time required to run a CRT model. In this study, a simple explicit class of time stepping method is developed and demonstrated to be useful in treating chemical ODE systems without the use of a Jacobian matrix. These methods, called preconditioned time differencing methods, are tested on small mathematically idealized problems, box model problems, and full 2-D and 3-D CRT models. The methods are found to be both fast and memory efficient. Studies are performed on both vector and parallel systems. The preconditioned time differencing methods are established as a viable alternative to the more common backward differentiation formulas in terms of CPU speed across architectural platforms.

  10. Soil Moisture-Atmosphere Feedbacks on Atmospheric Tracers: The Effects of Soil Moisture on Precipitation and Near-Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Tawfik, Ahmed B.

    The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate

  11. A simplified chemistry module for atmospheric transport and dispersion models: Proof-of-concept using SCIPUFF

    NASA Astrophysics Data System (ADS)

    Burns, Douglas S.; Rottmann, Shawn D.; Plitz, Angela B. L.; Wiseman, Floyd L.; Moore, William; Chynwat, Veeradej

    2012-09-01

    An atmospheric chemistry module was developed to predict the fate of environmentally hazardous compounds discharged into the atmosphere. The computationally efficient model captures the diurnal variation within the environment and in the degradation rates of the released compounds, follows the formation of toxic degradation products, runs rapidly, and in principle can be integrated with any atmospheric transport and dispersion model. To accomplish this, a detailed atmospheric chemistry mechanism for a target toxic industrial compound (TIC) was reduced to a simple empirical effective degradation rate term (keff). Empirically derived decay functions for keff were developed as a function of important meteorological parameters such as solar flux, temperature, humidity, and cloud cover for various land uses and locations by statistically analyzing data generated from a detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. 1-Butene and two degradation products (propanal and nitrooxybutanone) were used as representative chemicals in the algorithm development for this proof-of-concept demonstration of the capability of the model. The quality of the developed model was evaluated via comparison with experimental chamber data and the results (decay rates) compared favorably for ethene, propene, and 1-butene (within a factor of two 75% or more of the time).

  12. Trends in Mesospheric Dynamics and Chemistry: Simulations With a Model of the Entire Atmosphere

    NASA Astrophysics Data System (ADS)

    Brasseur, G. P.

    2005-05-01

    The cooling resulting from infrared CO2 radiative transfer is a major contribution to the energy budget of the middle atmosphere and thermosphere. The rapid increase of the atmospheric CO2 concentration resulting from anthropogenic emissions is therefore expected to lead, in general, to a substantial cooling in this height range. This can potentially be counteracted by heating due to absorption of near infrared radiation by CO2. Changes in ozone as a consequence of increasing methane and water vapor may also have an impact on the energy budget as dynamical changes caused by increased tropospheric temperatures. By means of numerical simulations with a general circulation and chemistry model of the entire atmosphere we will address the following questions: 1.) Can state-of-the-art atmospheric modeling explain the mesospheric temperature trends observed during the last decades? 2.)Which part of the temperature changes resulting from an increase of atmospheric CO2 is caused by local changes in the radiative budget and which part is influenced by remote dynamical effects? The model used is the newly developed Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA) that resolves the atmosphere from the Earth's surface up to about 250 km altitude, and is based on the 3-D dynamics from the ECHAM5 general circulation model and the chemistry scheme from MOZART-3. Results from different time slice experiment representative of years 1970 and 2000, and for a doubling of CO2 will be presented.

  13. The ChemViz Project: Using a Supercomputer To Illustrate Abstract Concepts in Chemistry.

    ERIC Educational Resources Information Center

    Beckwith, E. Kenneth; Nelson, Christopher

    1998-01-01

    Describes the Chemistry Visualization (ChemViz) Project, a Web venture maintained by the University of Illinois National Center for Supercomputing Applications (NCSA) that enables high school students to use computational chemistry as a technique for understanding abstract concepts. Discusses the evolution of computational chemistry and provides a…

  14. Making a Natural Product Chemistry Course Meaningful with a Mini Project Laboratory

    ERIC Educational Resources Information Center

    Hakim, Aliefman; Liliasari; Kadarohman, Asep; Syah, Yana Maolana

    2016-01-01

    This paper discusses laboratory activities that can improve the meaningfulness of natural product chemistry course. These laboratory activities can be useful for students from many different disciplines including chemistry, pharmacy, and medicine. Students at the third-year undergraduate level of chemistry education undertake the project to…

  15. Heterogeneous chemistry of HOBR on surfaces characteristic of atmospheric aerosols

    SciTech Connect

    Abbatt, J.P.D.

    1995-12-31

    The heterogeneous interactions of HOBr, HBr and HCl with ice and supercooled sulfuric acid solutions have been studied in a low temperatures low pressure flow tube coupled to a mass spectrometer. The heterogeneous reactions HOBr + HCl {yields} BrCl + H{sub 2}O and HOBr + HBr {yields} Br{sub 2} + H{sub 2}O have been demonstrated to proceed readily on these surfaces, and it has been shown that both HOBr and HBr are more easily partitioned to the condensed phase than their chlorine analogues. These heterogeneous reactions represent routes for the activation of halogen species in the atmosphere. In particular, the implications of this research to the depletion of stratospheric ozone after the Mt. Pinatubo volcanic eruption and to the depletion of ozone in the springtime Arctic boundary layer will be discussed.

  16. Atmospheric chemistry: Laboratory studies of kinetics of important reactions

    NASA Astrophysics Data System (ADS)

    Smith, S. J.

    Experiments to measure the rate constants for some reactions of the atmospherically important nitrate radical (NO3) are described using the discharge-flow technique. The nitrate radical was monitored by optical absorption at lambda = 662 nm. The reactions of NO3 with some stable organic and inorganic substrates are reported. The temperature dependences of some of the rate constants were also determined (298 less than T less than 523 K). In most cases, computer simulation was used to extract the rate constant for the primary process because the time-dependent behavior of (NO3) was affected by secondary reactions of NO3 with products of the primary interaction. The Arrhenius parameter for the reactions of NO3 with CH3CH3, CH2CH2, CH3OH, CHCl3, and HCl were determined. The activation energies for the reactions studied between NO3 and some alkynes are presented along with the corresponding pre-exponential factors. Some reactions were studied at room temperature (298 plus or minus 2 K) only and the rate constants found (in units of cubic cm/molecule sec) are: buta-1,3-diene (1.8 x 10 (exp -13), isobutene (2.8 x 10 (exp -13), HBr (1.3 x 10 (exp -15) and hex-2-yne (3.0 x 10 (exp -14). Non-Arrhenius behavior was found in the reactions of NO3 with n-butane, isobutane and propene. The empirical variation of these rate constants with temperature is presented. The curvature of the Arrhenius plots is discussed in terms of (1) a temperature-dependent pre-exponential factor, and (2) the possibility that two competing channels, possessing differing activation energies, exist for each reaction. The atmospheric implications of these reactions are discussed with reference to the nighttime production of nitric acid and the importance of the these reactions as loss processes for NO3.

  17. Science Project Ideas about Kitchen Chemistry. Revised Edition.

    ERIC Educational Resources Information Center

    Gardner, Robert

    This book presents science experiments that can be conducted in the kitchen. Contents include: (1) "Safety First"; (2) "Chemistry in and Near the Kitchen Sink"; (3) "Chemistry in the Refrigerator"; (4) "Chemistry on the Stove"; (5) "Chemistry on the Kitchen Counter"; and (6) "Further Reading and Internet Addresses." (YDS)

  18. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  19. Plant surface reactions: an ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2015-07-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: how much ozone effectively enters the plant through open stomata and how much is lost by chemical reactions at the plant surface? In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too. Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way, that ozone flux through the open stomata is strongly reduced. Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  20. Acid rain and atmospheric chemistry at Allegheny Mountain

    SciTech Connect

    Pierson, W.R.; Brachaczek, W.W.; Gorse, R.A. Jr.; Japar, S.M.; Norbeck, J.M.; Keeler, G.J.

    1987-07-01

    Rain chemistry was measured in August 1983 on Allegheny Mountain and Larel Hill in southwester Pennsylvania. The average composition approximated an H/sub 2/SO/sub 5//HNO/sub 3/ mixture with a volume-weighted average pH of 3.5 and an SO/sub 4//sup 2 -//NO/sub 3//sup -/ mole ratio of 1.8. There was very little undissociated (weak) acidity and very little S(IV). The acidic rains were associated with air masses traversing SO/sub 2/ source regions west of the sites; stagnation and intervening precipitation were important influences. The geographic scale for a halving of rain SO/sub 4//sup 2 -/ concentration downwind of SO/sub 2/ sources was approx.440 km. Scavenging ratios were inferred for SO/sub 2/, aerosol SO/sub 4//sup 2 -/, and HNO/sub 3/. On average about half of the rain SO/sub 4//sup 2 -/ resulted from scavenging of SO/sub 2/, the rest from scavenging of SO/sub 4//sup 2 -/. The rain H/sup +/ was attributed about 25% to HNO/sub 3/, 55% to scavenging of SO/sub 2/, and 20% to scavenging of aerosol acid SO/sub 4//sup 2 -/. Cumulative deposition totals in rain were compared with deposition in fog and with dry deposition in the same experiment. A crude acid-deposition budget was calculated as follows: 47%, H/sub 2/SO/sub 4/ in rain; 23%, SO/sub 2/ dry deposition without dew; 16%, HNO/sub 3/ in rain; 11%, HNO/sub 3/ dry deposition without dew; 2%, HNO/sub 3/ and H/sub 2/SO/sub 4/ in fog and dew; 0.5%, aerosol dry deposition without dew. 86 references, 4 figures, 8 tables.

  1. Understanding differences in chemistry climate model projections of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-04-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change ΔO3/ΔCly is a near-linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in ΔO3/ΔCly contribute little to the spread in CCM projections as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change ΔO3/ΔT due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  2. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  3. Atmospheric cloud physics laboratory project study

    NASA Technical Reports Server (NTRS)

    Schultz, W. E.; Stephen, L. A.; Usher, L. H.

    1976-01-01

    Engineering studies were performed for the Zero-G Cloud Physics Experiment liquid cooling and air pressure control systems. A total of four concepts for the liquid cooling system was evaluated, two of which were found to closely approach the systems requirements. Thermal insulation requirements, system hardware, and control sensor locations were established. The reservoir sizes and initial temperatures were defined as well as system power requirements. In the study of the pressure control system, fluid analyses by the Atmospheric Cloud Physics Laboratory were performed to determine flow characteristics of various orifice sizes, vacuum pump adequacy, and control systems performance. System parameters predicted in these analyses as a function of time include the following for various orifice sizes: (1) chamber and vacuum pump mass flow rates, (2) the number of valve openings or closures, (3) the maximum cloud chamber pressure deviation from the allowable, and (4) cloud chamber and accumulator pressure.

  4. HIRAC - A Highly Instrumented Reactor for Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Hemavibool, K.; Malkin, T. L.; Glowacki, D. R.; Goddard, A.; Heard, D. E.; Seakins, P. W.; Pilling, M. J.

    2008-12-01

    Environmental chambers are an important part of an integrated and multifaceted approach to understanding chemical processes in the atmosphere, by bridging the gap between laboratory measurements of individual elementary reactions and the complexity of the real atmosphere. The University of Leeds HIRAC chamber is a 2 m3 stainless steel vessel capable of operating at a variety of temperatures and pressures, enabling wide ranging kinetics experiments. Photolysis reactions are initiated by 8 rows of internal lights positioned to maximise the volume of the cell (> 85 % ) receiving a uniform ( ± 10 % ) light intensity. HIRAC's includes a suite of analytical devices comprising of: a long path FTIR system (operating from the UV to the far IR), GC-HID and GC-FID for HCHO and hydrocarbons detection respectively, commercial NOx/O3/H2O vapour and CO analysers, and laser-induced fluorescence at low pressure (FAGE) detection system for OH and HO2 measurement (detection limit of ~106 molecule cm- 3). HIRAC aims to validate mechanisms of hydrocarbon oxidation relevant for models such as the Master Chemical Mechanism (MCM), to measure the kinetics of reactions which cannot be studied by isolated techniques such as laser flash photolysis or discharge flow, and to provide a test bed for the development and calibration of field instrumentation. This poster intends to give an insight in to the characterisation of HIRAC and initial results. Relative rate measurements have been used to measure the kinetics of OH radical and Cl atom reactions with a variety of VOCs, using GC and FTIR detection. Relative rate measurements avoid the effects of secondary reactions and the need for direct measurement of highly reactive radicals. Measurements have been made with very high precision, generating high quality fall-off curves for the pressure dependent ethene and Cl atom reactions. The reaction between O3 and trans-2-butene has been studied by the detection of reagents and product acetaldehyde

  5. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Day, D. A.; Ortega, A. M.; Palm, B. B.; Hu, W. W.; Stark, H.; Li, R.; Tsigaridis, K.; Brune, W. H.; Jimenez, J. L.

    2015-09-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and

  6. Composition, Chemistry, and Climate of the Atmosphere. 2: Mean properties of the atmosphere

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B. (Editor); Salstein, David A.

    1994-01-01

    The atmosphere can be defined as the relatively thin gaseous envelope surrounding the entire planet Earth. It possesses a number of properties related to its physical state and chemical composition, and it undergoes a variety of internal processes and external interactions that can either maintain or alter these properties. Whereas descriptions of the atmosphere's chemical properties form much of the remaining chapters of this book, the present chapter will highlight the atmosphere's gases, and these define its temperature structure. In contrast, the larger-scale motions comprise the winds, the global organization of which is often referred to as the general circulation. The framework of the dynamical and thermodynamical laws, including the three principles of conversation of mass, momentum, and energy, are fundamental in describing both the internal processes of the atmosphere and its external interactions. The atmosphere is not a closed system, because it exchanges all three of these internally conservative quantities across the atmosphere's boundary below and receives input from regions outside it. Thus surface fluxes of moisture, momentum, and heat occur to and from the underlying ocean and land. The atmosphere exchanges very little mass and momentum with space, though it absorbs directly a portion of the solar radiational energy received from above.

  7. Atmospheric Chemistry: Laboratory Studies of Kinetics of Important Reactions.

    NASA Astrophysics Data System (ADS)

    Smith, S. J.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes the experiments to measure the rate constants for some reactions of the atmospherically important nitrate radical (NO_3) using the discharge-flow technique. The nitrate radical was monitored by optical absorption at lambda = 662 nm. The reactions of NO_3 with some stable organic and inorganic substrates are reported. The temperature dependences of some of the rate constants have also been determined (298 < T < 523 K). In most cases, computer simulation was used to extract the rate constant for the primary process because the time-dependent behaviour of (NO_3) was affected by secondary reactions of NO_3 with products of the primary interaction. The Arrhenius parameter in parentheses (E _{rm a}/kJ mol^ {-1}, A/cm^3 molecule ^{-1}s^ {-1} respectively) for the following reactions have been determined: ethane (37, 6.7 times 10^{-12}), ethylene (25.8, 6.3 times 10^ {-12}), CH_3OH (21.3, 1.2 times 10^ {-12}), CHCiota_3 (23.4, 8.6 times 10 ^{-13}) and HCl (27.7, 4 times 10^{-12}). The activation energies for the reactions studied between NO_3 and some alkynes are represented well by the value 25 +/- 3 kJ mol^{-1} and the corresponding pre-exponential factors (expressed as ln(10 ^{13}A/cm^3 molecule^{-1}s ^{-1}) are as follows: C_2H_2 (1.6 +/- 1.4), C_3H _4 (5.0 +/- 1.4), 1-C_4H_6 (5.8 +/- 1.0), 1-C_5 H_8 (5.7 +/- 0.6) and 1-C_6H _{10} (4.5 +/- 0.4). Some reactions were studied at room temperature _3(298 +/- 2 K) only and the rate constants found (in units of cm ^3 molecule^{ -1}s^{-1}) are: buta-1,3-diene (1.8 times 10 ^{-13}), isobutene (2.8 times 10^{-13 }), HBr (1.3 times 10 ^{-15}) and hex-2-yne (3.0 times 10^{-14 }). Non-Arrhenius behaviour was found in the reactions of NO_3 with n-butane, isobutane and propene. The empirical variation of these rate constants with temperature is well represented by the three parameter expressions:. k(T) = 1.2 times 10 ^{-46}T^{11

  8. Development of an aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan

    NASA Astrophysics Data System (ADS)

    Goto, D.; Nakajima, T.; Masaki, S.

    2014-12-01

    Air pollution has a great impact on both climate change and human health. One effective way to tackle with these issues is a use of atmospheric aerosol-chemistry models with high-resolution in a global scale. For this purpose, we have developed an aerosol-chemistry model based on a global cloud-resolving model (GCRM), Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh, Fluid. Dyn. Res. 2004; Satoh et al., J. Comput. Phys. 2008, PEPS, 2014) under MEXT/RECCA/SALSA project. In the present study, we have simulated aerosols and tropospheric ozone over Japan by our aerosol-chemistry model "NICAM-Chem" with a stretched-grid system of approximately 10 km resolution, for saving the computer resources. The aerosol and chemistry modules are based on Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., J. Geophys. Res., 2005) and Chemical AGCM for Study of Atmospheric Environment and Radiative Forcing (CHASER; Sudo et al., J. Geophys. Res., 2002). We found that our model can generally reproduce both aerosols and ozone, in terms of temporal variations (daily variations of aerosols and diurnal variations of ozone). Under MEXT/RECCA/SALSA project, we also have used these results obtained by NICAM-Chem for the assessment of their impact on human health.

  9. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes.

    PubMed

    Anglada, Josep M; Martins-Costa, Marilia; Francisco, Joseph S; Ruiz-López, Manuel F

    2015-03-17

    Oxidation reactions are ubiquitous and play key roles in the chemistry of the atmosphere, in water treatment processes, and in aerobic organisms. Ozone (O3), hydrogen peroxide (H2O2), hydrogen polyoxides (H2Ox, x > 2), associated hydroxyl and hydroperoxyl radicals (HOx = OH and HO2), and superoxide and ozonide anions (O2(-) and O3(-), respectively) are the primary oxidants in these systems. They are commonly classified as reactive oxygen species (ROS). Atmospheric chemistry is driven by a complex system of chain reactions of species, including nitrogen oxides, hydroxyl and hydroperoxide radicals, alkoxy and peroxy radicals, and ozone. HOx radicals contribute to keeping air clean, but in polluted areas, the ozone concentration increases and creates a negative impact on plants and animals. Indeed, ozone concentration is used to assess air quality worldwide. Clouds have a direct effect on the chemical composition of the atmosphere. On one hand, cloud droplets absorb many trace atmospheric gases, which can be scavenged by rain and fog. On the other hand, ionic species can form in this medium, which makes the chemistry of the atmosphere richer and more complex. Furthermore, recent studies have suggested that air-cloud interfaces might have a significant impact on the overall chemistry of the troposphere. Despite the large differences in molecular composition, concentration, and thermodynamic conditions among atmospheric, environmental, and biological systems, the underlying chemistry involving ROS has many similarities. In this Account, we examine ROS and discuss the chemical characteristics common to all of these systems. In water treatment, ROS are key components of an important subset of advanced oxidation processes. Ozonation, peroxone chemistry, and Fenton reactions play important roles in generating sufficient amounts of hydroxyl radicals to purify wastewater. Biochemical processes within living organisms also involve ROS. These species can come from pollutants in

  10. Impact of future land use and land cover changes on atmospheric chemistry-climate interactions

    NASA Astrophysics Data System (ADS)

    Ganzeveld, Laurens; Bouwman, Lex; Stehfest, Elke; van Vuuren, Detlef P.; Eickhout, Bas; Lelieveld, Jos

    2010-12-01

    To demonstrate potential future consequences of land cover and land use changes beyond those for physical climate and the carbon cycle, we present an analysis of large-scale impacts of land cover and land use changes on atmospheric chemistry using the chemistry-climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) constrained with present-day and 2050 land cover, land use, and anthropogenic emissions scenarios. Future land use and land cover changes are expected to result in an increase in global annual soil NO emissions by ˜1.2 TgN yr-1 (9%), whereas isoprene emissions decrease by ˜50 TgC yr-1 (-12%). The analysis shows increases in simulated boundary layer ozone mixing ratios up to ˜9 ppbv and more than a doubling in hydroxyl radical concentrations over deforested areas in Africa. Small changes in global atmosphere-biosphere fluxes of NOx and ozone point to compensating effects. Decreases in soil NO emissions in deforested regions are counteracted by a larger canopy release of NOx caused by reduced foliage uptake. Despite this decrease in foliage uptake, the ozone deposition flux does not decrease since surface layer mixing ratios increase because of a reduced oxidation of isoprene by ozone. Our study indicates that the simulated impact of land cover and land use changes on atmospheric chemistry depends on a consistent representation of emissions, deposition, and canopy interactions and their dependence on meteorological, hydrological, and biological drivers to account for these compensating effects. It results in negligible changes in the atmospheric oxidizing capacity and, consequently, in the lifetime of methane. Conversely, we expect a pronounced increase in oxidizing capacity as a consequence of anthropogenic emission increases.

  11. Carbon dioxide in the atmosphere. [and other research projects

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1974-01-01

    Research projects for the period ending September 15, 1973 are reported as follows: (1) the abundances of carbon dioxide in the atmosphere, and the processes by which it is released from carbonate deposits in the earth and then transferred to organic material by photosynthesis; the pathways for movement of carbon and oxygen through the atmosphere; (2) space science computation assistance by PDP computer; the performance characteristics and user instances; (3) OGO-6 data analysis studies of the variations of nighttime ion temperature in the upper atmosphere.

  12. The Effect of Web-Based Project Applications on Students' Attitudes towards Chemistry

    ERIC Educational Resources Information Center

    Morgil, Inci; Gungor Seyhan, Hatice; Ural Alsan, Evrim; Temel, Senar

    2008-01-01

    Students perform intensive web-based applications during their education. One of these is project-based application. In this study, the effect of web based project applications on students' attitudes towards chemistry has been investigated. 42 students attending Hacettepe University, Faculty of Education, and Department of Chemistry Education have…

  13. A New Project-Based Lab for Undergraduate Environmental and Analytical Chemistry

    ERIC Educational Resources Information Center

    Adami, Gianpiero

    2006-01-01

    A new project-based lab was developed for third year undergraduate chemistry students based on real world applications. The experience suggests that the total analytical procedure (TAP) project offers a stimulating alternative for delivering science skills and developing a greater interest for analytical chemistry and environmental sciences and…

  14. Computer Series, 101: Accurate Equations of State in Computational Chemistry Projects.

    ERIC Educational Resources Information Center

    Albee, David; Jones, Edward

    1989-01-01

    Discusses the use of computers in chemistry courses at the United States Military Academy. Provides two examples of computer projects: (1) equations of state, and (2) solving for molar volume. Presents BASIC and PASCAL listings for the second project. Lists 10 applications for physical chemistry. (MVL)

  15. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-02-01

    Clouds are multiphasic atmospheric systems in which the dissolved organic compounds, dominated by carboxylic acids, are subject to multiple chemical transformations in the aqueous phase. Among them, solar radiation, by generating hydroxyl radicals (•OH), is considered as the main catalyzer of the reactivity of organic species in clouds. We investigated to which extent the active biomass existing in cloud water represents an alternative route to the chemical reactivity of carboxylic acids. Pure cultures of seventeen bacterial strains (Arthrobacter, Bacillus, Clavibacter, Frigoribacterium, Pseudomonas, Sphingomonas and Rhodococcus), previously isolated from cloud water and representative of the viable community of clouds were first individually incubated in two artificial bulk cloud water solutions at 17 °C and 5 °C. These solutions mimicked the chemical composition of cloud water from "marine" and "continental" air masses, and contained the major carboxylic acids existing in the cloud water (i.e. acetate, formate, succinate and oxalate). The concentrations of these carboxylic compounds were monitored over time and biodegradation rates were determined. In average, they ranged from 2 ×10-19 for succinate to 1 × 10-18 mol cell-1 s-1 for formate at 17 °C and from 4 × 10-20 for succinate to 6 × 10-19 mol cell-1 s-1 for formate at 5 °C, with no significant difference between "marine" and "continental" media. In parallel, irradiation experiments were also conducted in these two artificial media to compare biodegradation and photodegradation of carboxylic compounds. To complete this comparison, the photodegradation rates of carboxylic acids by •OH radicals were calculated from literature data. Inferred estimations suggested a significant participation of microbes to the transformation of carboxylic acids in cloud water, particularly for acetate and succinate (up to 90%). Furthermore, a natural cloud water sample was incubated (including its indigenous microflora

  16. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    PubMed

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.

  17. Investigating Titan's Atmospheric Chemistry at Low Temperature with the Titan Haze Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, E. M.; Salama, F.

    2012-12-01

    Titan, Saturn's largest satellite, possesses a dense atmosphere (1.5 bar at the surface) composed mainly of N2 and CH4. The solar radiation and electron bombardment from Saturn's magnetosphere induces a complex organic chemistry between these two constituents leading to the production of more complex molecules and subsequently to solid aerosols. These aerosols in suspension in the atmosphere form the haze layers giving Titan its characteristic orange color. Since 2004, the instruments onboard the Cassini orbiter have produced large amounts of observational data, unraveling a chemistry much more complex than what was first expected, particularly in Titan's upper atmosphere. Neutral, positively and negatively charged heavy molecules have been detected in the ionosphere of Titan, including benzene (C6H6) and toluene (C6H5CH3). The presence of these critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds suggests that PAHs might play a role in the production of Titan's aerosols. The aim of the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC facility, is to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry to benzene, and to PAHs and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan's atmospheric chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Due to the short residence time of the gas in the plasma discharge, the THS experiment can be used to probe the first and intermediate steps of Titan's chemistry by injecting different gas mixtures in the plasma. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin deposits are also produced

  18. Atmospheric chemistry on Venus, Earth, and Mars: Main features and comparison

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2011-08-01

    This paper deals with two common problems and then considers major aspects of chemistry in the atmospheres of Mars and Venus. (1) The atmospheres of the terrestrial planets have similar origins but different evolutionary pathways because of the different masses and distances to the Sun. Venus lost its water by hydrodynamic escape, Earth lost CO 2 that formed carbonates and is strongly affected by life, Mars lost water in the reaction with iron and then most of the atmosphere by the intense meteorite impacts. (2) In spite of the higher solar radiation on Venus, its thermospheric temperatures are similar to those on Mars because of the greater gravity acceleration and the higher production of O by photolysis of CO 2. O stimulates cooling by the emission at 15 μm in the collisions with CO 2. (3) There is a great progress in the observations of photochemical tracers and minor constituents on Mars in the current decade. This progress is supported by progress in photochemical modeling, especially by photochemical GCMs. Main results in these areas are briefly discussed. The problem of methane presents the controversial aspects of its variations and origin. The reported variations of methane cannot be explained by the existing data on gas-phase and heterogeneous chemistry. The lack of current volcanism, SO 2, and warm spots on Mars favor the biological origin of methane. (4) Venus' chemistry is rich and covers a wide range of temperatures and pressures and many species. Photochemical models for the middle atmosphere (58-112 km), for the nighttime atmosphere and night airglow at 80-130 km, and the kinetic model for the lower atmosphere are briefly discussed.

  19. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater. 3. Lead

    NASA Astrophysics Data System (ADS)

    Maring, H. B.; Duce, R. A.

    1990-04-01

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm-2 yr-1 at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate paniculate lead can be reinjected into the atmosphere during sea salt aerosol production.

  20. Management of the Atmosphere Resource Recovery and Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Perry, Jay; Howard, David

    2013-01-01

    The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to further optimize atmosphere revitalization and environmental monitoring system architectures. This paper discusses project management strategies that tap into skill sets across multiple engineering disciplines, projects, field centers, and industry to achieve the project success. It is the project's objective to contribute to system advances that will enable sustained exploration missions beyond Lower Earth Orbit (LEO) and improve affordability by focusing on the primary goals of achieving high reliability, improving efficiency, and reducing dependence on ground-based logistics resupply. Technology demonstrations are achieved by infusing new technologies and concepts with existing developmental hardware and operating in a controlled environment simulating various crewed habitat scenarios. The ARREM project's strengths include access to a vast array of existing developmental hardware that perform all the vital atmosphere revitalization functions, exceptional test facilities to fully evaluate system performance, and a well-coordinated partnering effort among the NASA field centers and industry partners to provide the innovative expertise necessary to succeed.

  1. The THS Experiment: Simulating Titans Atmospheric Chemistry at Low Temperature (200K)

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella; Upton, Kathleen; Beauchamp, Jack L.; Salama, Farid; Contreras, Cesar Sanchez; Bejaoui, Salma; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    In Titan's atmosphere, composed mainly of N2 (95-98%) and CH4 (2-5%), a complex chemistry occurs at low temperature, and leads to the production of heavy organic molecules and subsequently solid aerosols. Here, we used the Titan Haze Simulation (THS) experiment, an experimental setup developed at the NASA Ames COSmIC simulation facility to study Titan's atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature ( approximately 150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (approximately 200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas- and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics. A recent mass spectrometry[1] study of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan's atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini's CAPS-IBS instrument. The results of a complementary study of the solid phase are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited on various substrates for ex situ analysis. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates. A mass spectrometry analysis of the solid phase has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine

  2. The THS: Simulating Titan’s atmospheric chemistry at low temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jack L.; Salama, Farid

    2015-08-01

    In Titan’s atmosphere, composed mainly of N2 (95-98%) and CH4 (2-5%), a complex chemistry occurs at low temperature, and leads to the production of heavy organic molecules and subsequently solid aerosols. Here, we used the Titan Haze Simulation (THS) experiment, an experimental setup developed at the NASA Ames COSmIC simulation facility to study Titan’s atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (~200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas- and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics.A recent mass spectrometry study of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan’s atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini’s CAPS-IBS instrument. The results of a complementary study of the solid phase are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited on various substrates for ex situ analysis. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates. A DART mass spectrometry analysis of the solid phase has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile

  3. An Extended View of Ozone and Chemistry in the Atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Smith, Ramsey L.; Fast, Kelly E.; Kostiuk, T.; Lefevre, Frank; Hewagama, Tilak; Livengood, Timothy A.

    2011-01-01

    We present an ongoing effort to characterize chemistry in Mars' atmosphere in multiple seasons on timescales longer than spaceflight missions through coordinated efforts by GSFC's HIPWAC spectrometer and Mars Express SPICAM, archival measurements, and tests/application of photochemical models. The trace species ozone (03) is an effective probe of Mars' atmospheric chemistry because it is destroyed by odd-hydrogen species (HOx, from water vapor photolysis). Observed ozone is a critical test for specific predictions by 3-D photochemical models (spatial, diurnal, seasonal). Coordinated measurements by HIPWAC and SPICAM quantitatively linked mission data to the 23-year GSFC ozone data record and also revealed unanticipated inter-decadal variability of same-season ozone abundances, a possible indicator of changing cloud activity (heterogeneous sink for HOx). A detailed study of long-term conditions is critical to characterizing the predictability of Mars' seasonal chemical behavior, particularly in light of the implications of and the lack of explanation for reported methane behavior.

  4. Chemistry and Climate in Asia - An Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  5. Global tropospheric experiment at the Hong Kong Atmosphere Chemistry Measurement Station

    NASA Technical Reports Server (NTRS)

    Carroll, Mary Ann; Wang, Tao

    1995-01-01

    The major activities of the Global Tropospheric Experiment at the Hong Kong Atmospheric Chemistry Measurement Station are presented for the period 1 January - 31 December 1995. Activities included data analysis, reduction, and archiving of atmospheric measurements and sampling. Sampling included O3, CO, SO2, NO, TSP, RSP, and ozone column density. A data archive was created for the surface meteorological data. Exploratory data analysis was performed, including examination of time series, frequency distributions, diurnal variations and correlation. The major results have been or will be published in scientific journals as well as presented at conferences/workshops. Abstracts are attached.

  6. Quantifying the Perturbation of Atmospheric Chemistry from Medium-Size Asteroid Impacts in the Ocean

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Garcia, R. R.; Kinnison, D. E.; Marsh, D. R.

    2009-12-01

    The continuous monitoring of space in the Earth’s neighborhood by the Spaceguard program has reassured us that there are currently no asteroids capable of causing mass extinctions threatening Earth. Although it is believed that about 80% of all Near-Earth Objects (NEOs) larger than 1 km in diameter have been discovered and catalogued, there is still a large number of undiscovered NEOs between 300m and 1km in diameter that are looming in our neighborhood. The consequences of a collision of a NEO in this size range with the Earth have never been explored in detail. If headed on a collision course with Earth, such NEOs will be more likely to hit the Earth’s oceans than continental areas. Using a 3D shock physics code SOVA, we estimated the amount of water vapor injected in the atmosphere by the impact of an asteroid 500m in diameter (with an average asteroidal impact velocity of 18km/s and impact angle of 45° from the surface) into a 4 km deep region of the ocean. While the ocean floor is hardly affected by the impact, large amounts of water are ejected in the atmosphere. We found that, overall, about 5×1012 kg of water was ejected in the middle atmosphere (above about 12 km). Liquid water is removed on a short timescale, but about 1×1012 kg of water vapor is entrained in the middle atmosphere where it can produce a sizeable perturbation to atmospheric chemistry. This is an important, yet largely unexplored, environmental effect of oceanic impacts. The localized distribution of water vapor from the impact simulation is introduced into the Whole Atmosphere Community Climate Model (WACCM) a 3D Chemistry-Climate Model whose vertical domain extends to about 140km. WACCM has a fully interactive Chemistry package that can track the chemical consequences of water vapor into the middle atmosphere. We will report on initial WACCM calculations of the perturbation to the atmospheric chemistry from the injected water vapor. Oceanic water contains significant amounts of

  7. Kinetic and photochemical data for atmospheric chemistry reactions of the nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Hampson, R. F., Jr.

    1980-01-01

    Data sheets for thermal and photochemical reactions of importance in the atmospheric chemistry of the nitrogen oxides are presented. For each reaction the available experimental data are summarized and critically evaluated, and a preferred value of the rate coefficient is given. The selection of the preferred value is discussed and an estimate of its accuracy is given. For the photochemical process, the data are summarized, and preferred for the photoabsorption cross section and primary quantum yields are given.

  8. Addition of a Project-Based Component to a Conventional Expository Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios; Gorezi, Marianna

    2007-01-01

    Students should enjoy their laboratory classes and for this purpose a project-based activity is added to a conventional physical chemistry laboratory. Students were given project work instead of conventional experiment and then they had to make progress in the project according to instructions and then carry out experiments related to the project.

  9. The Skylab concentrated atmospheric radiation project. [Arizona and New Mexico

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Whitehead, V. S.; Marlatt, W. E.

    1975-01-01

    The Skylab field phase in June, August and September of 1973 for the Skylab concentrated atmospheric radiation project provided an opportunity to conduct infrared and solar observations and subsequent calculations beneath the orbiting space vehicle during EREP overpasses. Infrared and solar transmission and absorption properties observed within the atmosphere were compared with EREP experiments, notably the S-191 and S-192. These same observations were later employed in the development and comparison of various atmospheric infrared and solar radiative transfer approximations. Solar radiation observations and calculations in the scattering atmosphere included the 0.4 to 1.1 microns spectral range while infrared observations and calculations covered the spectral band and portions thereof within the 5.0 to 40.0 microns region. Principal conclusions drawn from the solar radiation research and the infrared radiation research are discussed.

  10. Variational data assimilation schemes for transport and transformation models of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena; Antokhin, Pavel

    2016-04-01

    The work is devoted to data assimilation algorithm for atmospheric chemistry transport and transformation models. In the work a control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the constrained minimum of the target functional combining a control function norm with a norm of the misfit between measured data and its model-simulated analog. Transport and transformation processes model is acting as a constraint. The constrained minimization problem is solved with Euler-Lagrange variational principle [1] which allows reducing it to a system of direct, adjoint and control function estimate relations. This provides a physically-plausible structure of the resulting analysis without model error covariance matrices that are sought within conventional approaches to data assimilation. High dimensionality of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the data assimilation algorithms. Computational issues with complicated models can be solved by using a splitting technique. Within this approach a complex model is split to a set of relatively independent simpler models equipped with a coupling procedure. In a fine-grained approach data assimilation is carried out quasi-independently on the separate splitting stages with shared measurement data [2]. In integrated schemes data assimilation is carried out with respect to the split model as a whole. We compare the two approaches both theoretically and numerically. Data assimilation on the transport stage is carried out with a direct algorithm without iterations. Different algorithms to assimilate data on nonlinear transformation stage are compared. In the work we compare data assimilation results for both artificial and real measurement data. With these data we study the impact of transformation processes and data assimilation to the performance of the modeling system [3]. The

  11. Studies in photochemical smog chemistry. 1. Atmospheric chemistry of toulene. 2. Analysis of chemical reaction mechanisms for photochemical smog

    SciTech Connect

    Leone, J.A.

    1985-01-01

    This study focuses on two related topics in the gas phase organic chemistry of importance in urban air pollution. An experimental effort aimed at developing a new explicit reaction mechanism for the atmospheric photooxidation of toluene is described. This mechanism is tested using experimental data from both indoor and outdoor smog chamber facilities. The predictions of the new reaction mechanism are found to be in good agreement with both sets of experimental data. Additional simulations performed with the new mechanism are used to investigate various mechanistic paths. A theoretical analysis of lumped chemical reaction mechanisms for photochemical smog is presented. Included is a description of a new counter species analysis technique which can be used to analyze any complex chemical reaction mechanism. When applied to mechanisms for photochemical smog, this analysis is shown capable of providing answers to previously inaccessible questions such as the relative contributions of individual organics to photochemical ozone formation.

  12. A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan's atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, Mark A.

    2014-11-01

    Titan has a thick atmosphere composed primarily of nitrogen and methane. Complex organic chemistry induced by solar ultraviolet radiation and energetic particles, takes place in Titan's upper atmosphere, producing an optically thick reddish brown carbon based haze encircling this moon. The chemistry in Titan's atmosphere and its resulting chemical structures are still not fully understood in spite of a great many efforts being made. In our previous work, we have investigated the structure of the 13C and 15N labeled, simulated Titan haze aerosols (tholin) by NMR and identified several dominant small molecules in the tholin. Here we report our expanded structural investigation of the bulk of the tholin by more comprehensive NMR study. The NMR results show that the tholin materials are dominated by heavily nitrogenated compounds, in which the macromolecular structures are highly branched polymeric or oligomeric compounds terminated in methyl, amine, and nitrile groups. The structural characteristic suggest that the tholin materials are formed via different copolymerization or incorporation mechanisms of small precursors, such as HCN, CH2dbnd NH, NH3 and C2H2. This study helps to understand the formation process of nitrogenated organic aerosols in Titan's atmosphere and their prebiotic implications.

  13. Patterns of Soil and Streamwater Chemistry Relative to Atmospheric Deposition in Acadia National Park, Maine, USA

    NASA Astrophysics Data System (ADS)

    Ewing, H. A.; Weathers, K. C.; Hollister, C. C.; Steele, B.

    2006-12-01

    Atmospheric deposition is the source of many nutrients and pollutants to ecosystems, yet estimates of total deposition to complex landscapes are rare, thus limiting our understanding of the linkages between atmospheric deposition and ecosystem processes. Using a new model of atmospheric deposition to Acadia National Park, we have quantified deposition across elevational gradients and on a watershed basis, and here relate deposition to soil and streamwater chemistry. Soil samples collected across two elevational gradients varied three-fold in modeled deposition and four-fold in percent base saturation. Despite large variations in base saturation across sites and between surface and subsurface soil horizons, the relationship between deposition and Ca:Al ratios was weak. In the surface soil organic horizon, some trace metal concentrations (e.g., Pb) were strongly correlated with modeled deposition, but concentrations of other metals such as Cu and Zn were either unrelated or negatively correlated with modeled deposition. In general, the more biologically mobile trace metals were less well correlated with modeled deposition than those elements with lesser biological activity. At the watershed scale, deposition varied by a factor of two. Sulfate in streamwater was strongly correlated with modeled sulfur deposition to the watershed, suggesting that sulfur export may be strongly influenced by atmospheric inputs. Streamwater pH and ANC were variable among watersheds, however their patterns were weakly predicted by both deposition and landscape variables, suggesting that chemical and biological processing in the watershed may be more important than deposition in controlling these aspects of streamwater chemistry.

  14. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism.

    PubMed

    Wilson, Eric H; Atreya, Sushil K; Kaiser, Ralf I; Mahaffy, Paul R

    2016-08-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4(-)). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 10(7) molecules cm(-2) s(-1) sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  15. Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism

    NASA Astrophysics Data System (ADS)

    Wilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R.

    2016-08-01

    Recent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4-). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one-dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm-2 s-1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.

  16. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; General, S.; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-03-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean-Atmosphere-Sea Ice-Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase radical chemistry, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr, with a concomitant, decreased net O3 loss rate. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  17. Final Report for LDRD Project 05-ERD-050: "Developing a Reactive Chemistry Capability for the NARAC Operational Model (LODI)"

    SciTech Connect

    Cameron-Smith, P; Grant, K; Connell, P

    2008-02-11

    In support of the National Security efforts of LLNL, this project addressed the existing imbalance between dispersion and chemical capabilities of LODI (Lagrangian Operational Dispersion Integrator--the NARAC operational dispersion model). We have demonstrated potentially large effects of atmospheric chemistry on the impact of chemical releases (e.g., industrial chemicals and nerve agents). Prior to our work, LODI could only handle chains of first-order losses (exponential decays) that were independent of time and space, limiting NARAC's capability to respond when reactive chemistry is important. We significantly upgraded the chemistry and aerosol capability of LODI to handle (1) arbitrary networks of chemical reactions, (2) mixing and reactions with ambient species, (3) evaporation and condensation of aerosols, and (4) heat liberated from chemical reactions and aerosol condensation (which can cause a cold and dense plume hugging the ground to rise into the atmosphere, then descend to the ground again as droplets). When this is made operational, it will significantly improve NARAC's ability to respond to terrorist attacks and industrial accidents that involve reactive chemistry, including many chemical agents and toxic industrial chemicals (TICS). As a dual-use, the resulting model also has the potential to be a state-of-the-art air-quality model. Chemical releases are the most common type of airborne hazardous release and many operational applications involve such scenarios. The new capability we developed is therefore relevant to the needs of the Department of Energy (DOE), Department of Homeland Security (DHS) and Department of Defense (DoD).

  18. Effects of numerical tolerance levels on an atmospheric chemistry model for mercury

    SciTech Connect

    Ferris, D.C.; Burns, D.S.; Shuford, J.

    1996-12-31

    A Box Model was developed to investigate the atmospheric oxidation processes of mercury in the environment. Previous results indicated the most important influences on the atmospheric concentration of HgO(g) are (i) the flux of HgO(g) volatilization, which is related to the surface medium, extent of contamination, and temperature, and (ii) the presence of Cl{sub 2} in the atmosphere. The numerical solver which has been incorporated into the ORganic CHemistry Integrated Dispersion (ORCHID) model uses the Livermore Solver of Ordinary Differential Equations (LSODE). In the solution of the ODE`s, LSODE uses numerical tolerances. The tolerances effect computer run time, the relative accuracy of ODE calculated species concentrations and whether or not LSODE converges to a solution using this system of equations. The effects of varying these tolerances on the solution of the box model and the ORCHID model will be discussed.

  19. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    PubMed

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  20. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    SciTech Connect

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  1. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE PAGES

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; ...

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore » tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  2. Coupling between the atmosphere, the ionosphere and the magnetosphere : Project of microsatellite Taranis

    NASA Astrophysics Data System (ADS)

    Blanc, E.; Taranis Team

    2003-04-01

    Strong interactions between the middle and upper regions of the atmosphere and ionosphere are manifested by light emission in the middle and upper atmosphere, known as sprites and elves, gamma radiation of atmospheric origin, electromagnetic emissions recently observed above atmospheric storms. This direct coupling between active storm cells, the thermosphere and the ionosphere - and the considerable energies involved - gives rise to processes unsuspected until now regarding space plasmas as well as the chemistry and dynamics of the middle atmosphere. The electromagnetic and particle emissions could derive from the run away relativistic electrons initiated by the impact of cosmic rays on storm cells. These processes can have a significant effect on the Earth's magnetosphere, in particular by modifying the source terms and loss of the radiation belts. The microsatellite Taranis (Tool for the Analysis of RAdiations from lightNIngs and Sprites) proposes to study the coupling between atmosphere, ionosphere and magnetosphere during atmospheric storms. This has to be carried on a local and global scale in order to understand the physical mechanisms responsible for the impulsive transfers of energy between the neutral atmosphere and plasmas of the ionosphere and magnetosphere. The final goal is to establish the impact of these processes on the Earth's environment. The purpose of this presentation is to describe in a first part the project Taranis, his scientific objectives, the mission and the scientific payload. In a second part the first results of the experiment LSO (Lightning and Sprite Observations), on board of the International Space Station, will be presented. LSO is composed of two micro-cameras, fixed on a ISS window for observations at the horizon or at the nadir. One camera is equipped with a filter and measures the emissions from earth in a specific spectral window, the second works in the visible. The measurements allow the identification of sprites and

  3. New parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC

    NASA Astrophysics Data System (ADS)

    Astitha, M.; Lelieveld, J.; Abdel Kader, M.; Pozzer, A.; de Meij, A.

    2012-05-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. We present two versions of a parameterization scheme to compute desert dust emissions, incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these schemes and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET) and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others). The two schemes are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. The modelled dust concentrations and deposition fluxes compare well with observations at (island) stations in the Atlantic Ocean and Asia, and are underestimated in the Pacific Ocean where annual means are relatively low (<1 μg m-3). The two schemes perform similarly well, even though the total annual source differs by ~50%, indicating the importance of transport and deposition processes (being the same for the two schemes). Our results emphasize the need to represent arid regions individually and explicitly in global models according to their unique land characteristics and meteorological conditions.

  4. On the use of plant emitted volatile organic compounds for atmospheric chemistry simulation experiments

    NASA Astrophysics Data System (ADS)

    Kiendler-Scharr, A.; Hohaus, T.; Yu, Z.; Tillmann, R.; Kuhn, U.; Andres, S.; Kaminski, M.; Wegener, R.; Novelli, A.; Fuchs, H.; Wahner, A.

    2015-12-01

    Biogenic volatile organic compounds (BVOC) contribute to about 90% of the emitted VOC globally with isoprene being one of the most abundant BVOC (Guenther 2002). Intensive efforts in studying and understanding the impact of BVOC on atmospheric chemistry were undertaken in the recent years. However many uncertainties remain, e.g. field studies have shown that in wooded areas measured OH reactivity can often not be explained by measured BVOC and their oxidation products (e.g. Noelscher et al. 2012). This discrepancy may be explained by either a lack of understanding of BVOC sources or insufficient understanding of BVOC oxidation mechanisms. Plants emit a complex VOC mixture containing likely many compounds which have not yet been measured or identified (Goldstein and Galbally 2007). A lack of understanding BVOC sources limits bottom-up estimates of secondary products of BVOC oxidation such as SOA. Similarly, the widespread oversimplification of atmospheric chemistry in simulation experiments, using single compound or simple BVOC mixtures to study atmospheric chemistry processes limit our ability to assess air quality and climate impacts of BVOC. We will present applications of the new extension PLUS (PLant chamber Unit for Simulation) to our atmosphere simulation chamber SAPHIR. PLUS is used to produce representative BVOC mixtures from direct plant emissions. We will report on the performance and characterization of the newly developed chamber. As an exemplary application, trees typical of a Boreal forest environment were used to compare OH reactivity as directly measured by LIF to the OH reactivity calculated from BVOC measured by GC-MS and PTRMS. The comparison was performed for both, primary emissions of trees without any influence of oxidizing agents and using different oxidation schemes. For the monoterpene emitters investigated here, we show that discrepancies between measured and calculated total OH reactivity increase with increasing degree of oxidation

  5. Laboratory Simulations Of Titan’s Atmospheric Chemistry With The NASA Ames Titan Haze Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-05-01

    Solar UV radiation and electron bombardment from Saturn’s magnetosphere dissociate nitrogen and methane in Titan’s atmosphere, leading to the production of heavier molecules and solid organic aerosols that contribute to the haze layers giving Titan its characteristic orange color. The detection of benzene and toluene, critical precursors of polycyclic aromatic hydrocarbon (PAH), in Titan’s ionosphere, by the Cassini INMS suggests that PAHs might play a role in the production of Titan’s aerosols. The Titan Haze Simulation (THS) experiment has been developed at NASA Ames’ Cosmic Simulation facility (COSmIC) to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN..) to benzene, and to PAHs and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic jet expansion. With this unique design, the gas mixture is cooled to Titan-like temperature ( 150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing the first products of Titan’s N2-CH4 chemistry, but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin (Titan aerosol analogs) deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). We present the results of mass spectrometry studies using different gas mixtures, and discuss their relevance for the study of specific pathways in Titan’s atmospheric chemistry. Acknowledgements: This research is supported by NASA PATM. E.S.O., C.S.C. and C.L.R acknowledge the support of the NASA Postdoctoral Program. The authors acknowledge the

  6. Ozone productivity of atmospheric organics, coordinating research council project A-10. Final report

    SciTech Connect

    Seinfeld, J.H.; Bowman, F.M.

    1996-02-06

    This project addresses elucidating the fundamental chemical basis of incremental reactivities. The value of the incremental reactivity of a particular compound, given its atmospheric oxidation mechanism, depends on the VOC/NOx mixture in which the compound is imbedded. The dependence of incremental reactivity on the base VOC/NOx mixture has been an issue of concern since the introduction of the incremental reactivity as a regulatory concept. This project answers the basic question: how and why does the incremental reactivity of a compound change as the base VOC/NOx mixture is changed, both with respect to the individual VOC combustion and with respect to the overall VOC/NOx ratio. This paper is composed of several papers which describe the methodology used to examine incremental reactivities, indicate to what factors the incremental changes in ozone can be attributed, and explain the incremental reactivities of fuel oxygenates based on their reaction chemistry.

  7. Response of the AMOC to reduced solar radiation - the modulating role of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Muthers, Stefan; Raible, Christoph C.; Rozanov, Eugene; Stocker, Thomas F.

    2016-11-01

    The influence of reduced solar forcing (grand solar minimum or geoengineering scenarios like solar radiation management) on the Atlantic Meridional Overturning Circulation (AMOC) is assessed in an ensemble of atmosphere-ocean-chemistry-climate model simulations. Ensemble sensitivity simulations are performed with and without interactive chemistry. In both experiments the AMOC is intensified in the course of the solar radiation reduction, which is attributed to the thermal effect of the solar forcing: reduced sea surface temperatures and enhanced sea ice formation increase the density of the upper ocean in the North Atlantic and intensify the deepwater formation. Furthermore, a second, dynamical effect on the AMOC is identified driven by the stratospheric cooling in response to the reduced solar forcing. The cooling is strongest in the tropics and leads to a weakening of the northern polar vortex. By stratosphere-troposphere interactions, the stratospheric circulation anomalies induce a negative phase of the Arctic Oscillation in the troposphere which is found to weaken the AMOC through wind stress and heat flux anomalies in the North Atlantic. The dynamic mechanism is present in both ensemble experiments. In the experiment with interactive chemistry, however, it is strongly amplified by stratospheric ozone changes. In the coupled system, both effects counteract and weaken the response of the AMOC to the solar forcing reduction. Neglecting chemistry-climate interactions in model simulations may therefore lead to an overestimation of the AMOC response to solar forcing.

  8. Model projections of atmospheric steering of Sandy-like superstorms.

    PubMed

    Barnes, Elizabeth A; Polvani, Lorenzo M; Sobel, Adam H

    2013-09-17

    Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy's unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast.

  9. Model projections of atmospheric steering of Sandy-like superstorms

    PubMed Central

    Barnes, Elizabeth A.; Polvani, Lorenzo M.; Sobel, Adam H.

    2013-01-01

    Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy’s unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast. PMID:24003129

  10. Independent Learning Project for Advanced Chemistry (ILPAC). Teachers' and Technicians' Notes for First Year Units.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    The Independent Learning Project for Advanced Chemistry (ILPAC) has produced units of study for students in A-level chemistry. Students completing ILPAC units assume a greater responsibility for their own learning and can work, to some extent, at their own pace. By providing guidance, and detailed solutions to exercises in the units, supported by…

  11. Chemistry Teaching through the Student's World: A High School Project in Mexico.

    ERIC Educational Resources Information Center

    Garritz, Andoni; Chamizo, Jose A.

    1994-01-01

    Describes a project to revise high school chemistry courses in Mexico in the face of decreasing student selection of chemistry careers and the increasing social importance of chemical literacy. Changes include recognizing pedagogical advances and going beyond traditional subjects to teach chemical language, method, and quantitativeness. The new…

  12. A Collaborative, Wiki-Based Organic Chemistry Project Incorporating Free Chemistry Software on the Web

    ERIC Educational Resources Information Center

    Evans, Michael J.; Moore, Jeffrey S.

    2011-01-01

    In recent years, postsecondary instructors have recognized the potential of wikis to transform the way students learn in a collaborative environment. However, few instructors have embraced in-depth student use of chemistry software for the creation of interactive chemistry content on the Web. Using currently available software, students are able…

  13. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres

    SciTech Connect

    Hopke, P.K.

    1992-07-01

    This report covers the second year of the 28 month grant current grant to Clarkson University to study the chemical and physical behavior of the polonium 218 atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. Two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical process that affect the progeny's atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. This report describes the progress toward achieving these objectives.

  14. Human "Footprints" in the Atmosphere: Anthropogenic Evidence in MOPITT and TES Atmospheric Chemistry Data

    NASA Astrophysics Data System (ADS)

    Hunt, L. A.

    2005-05-01

    The Measurements Of Pollution In The Troposphere (MOPITT) experiment was launched on board the NASA Earth Observing System (EOS) Terra Satellite in December 1999 and has accumulated more than five years of global carbon monoxide measurements. Available MOPITT data products include Level 1 radiances and Level 2 derived CO total column and mixing ratio profiles at a horizontal resolution of about 22 km at nadir and a vertical resolution of about 4 km. The primary sources of CO are biomass burning and industrial pollution, making CO an indicator of the anthropogenic influence on the atmosphere. MOPITT is the first instrument to make long-term global measurements of this species and is providing a better understanding of its transport, sources and sinks. A number of visual results will be included in this presentation. The Tropospheric Emission Spectrometer (TES) instrument is a high-resolution imaging infrared Fourier-transform spectrometer that operates in both nadir and limb-sounding modes. TES is flying aboard Aura, the third of NASA's EOS satellites, which was launched in July 2004. Tropospheric ozone is a pollutant and a greenhouse gas. It has both natural and anthropogenic sources. TES makes global 3-D measurements of ozone and other chemical species involved in its formation and destruction, including water vapor, methane, carbon monoxide, nitrogen dioxide, and nitric acid. The spatial resolution is 0.5 x 5 km in the nadir and 2.3 x 23 km in the limb. Level 1B spectral radiance data are currently available, and the Level 2 species data products will be publicly available in Summer 2005. Preliminary visual results will be shown. These data are available free of charge from the NASA Langley Atmospheric Sciences Data Center. Additional information can be found at http://eosweb.larc.nasa.gov.

  15. A numerical method for parameterization of atmospheric chemistry - Computation of tropospheric OH

    NASA Technical Reports Server (NTRS)

    Spivakovsky, C. M.; Wofsy, S. C.; Prather, M. J.

    1990-01-01

    An efficient and stable computational scheme for parameterization of atmospheric chemistry is described. The 24-hour-average concentration of OH is represented as a set of high-order polynomials in variables such as temperature, densities of H2O, CO, O3, and NO(t) (defined as NO + NO2 + NO3 + 2N2O5 + HNO2 + HNO4) as well as variables determining solar irradiance: cloud cover, density of the overhead ozone column, surface albedo, latitude, and solar declination. This parameterization of OH chemistry was used in the three-dimensional study of global distribution of CH3CCl3. The proposed computational scheme can be used for parameterization of rates of chemical production and loss or of any other output of a full chemical model.

  16. Study of the diurnal variability of atmospheric chemistry with respect to boundary layer dynamics during DOMINO

    NASA Astrophysics Data System (ADS)

    van Stratum, B. J. H.; Vilà-Guerau de Arellano, J.; Ouwersloot, H. G.; van den Dries, K.; van Laar, T. W.; Martinez, M.; Lelieveld, J.; Diesch, J.-M.; Drewnick, F.; Fischer, H.; Hosaynali Beygi, Z.; Harder, H.; Regelin, E.; Sinha, V.; Adame, J. A.; Sörgel, M.; Sander, R.; Bozem, H.; Song, W.; Williams, J.; Yassaa, N.

    2012-03-01

    We study the interactions between atmospheric boundary layer (ABL) dynamics and atmospheric chemistry using a mixed-layer model (MXLCH) coupled to chemical reaction schemes. Guided by both atmospheric and chemical measurements obtained during the DOMINO campaign (2008), numerical experiments are performed to study the role of ABL dynamics and the accuracy of chemical schemes with different complexity: MOZART-4 and a reduced mechanism of this chemical system. Both schemes produce satisfactory results, indicating that the reduced scheme is capable of reproducing the O3-NOx-VOC-HOx diurnal cycle during conditions characterised by a low NOx regime and small O3 tendencies (less than 1 ppb per hour). By focussing on the budget equations of chemical species in the mixed-layer model, we show that for species like O3, NO and NO2, the influence of entrainment and boundary layer growth is of the same order as chemical production/loss. This indicates that an accurate representation of ABL processes is crucial in understanding the daily cycle of chemical species. By comparing the time scales of chemical reactive species with the mixing time scale of turbulence, we propose a classification based on the Damköhler number to further determine the importance of dynamics on chemistry during field campaigns. Our findings advocate an integrated approach, simultaneously solving the ABL dynamics and chemical reactions, in order to obtain a better understanding of chemical pathways and processes and the interpretation of the results obtained during measurement campaigns.

  17. Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes

    NASA Astrophysics Data System (ADS)

    Bossmeyer, J.; Brauers, T.; Richter, C.; Rohrer, F.; Wegener, R.; Wahner, A.

    2006-09-01

    Absolute reaction rate studies of NO3 radicals with 4 aldehydes were performed in the atmosphere simulation chamber SAPHIR at the Research Center Jülich. Rate coefficients (ethanal: 2.6 +/- 0.5, propanal: 5.8 +/- 1.0, butanal: 11.9 +/- 1.4, benzaldehyde: 2.2 +/- 0.6; in 10-15 cm3 s-1 at 300 K) were determined from measured concentration-time profiles of aldehydes and NO3 at near ambient conditions. The values for the aliphatic aldehydes are in good agreement with the most recent recommendations (IUPAC Subcommittee on Gas Kinetic Data Evaluation for Atmospheric Chemistry: Evaluated kinetic and photochemical data for atmospheric chemistry, 2005, available at http://www.iupac-kinetic.ch.cam.ac.uk). The measured concentration-time profiles of precursor aldehydes, NO3, NO2, and of product aldehydes were compared to model calculations based on the MCM v3 (Jenkin et al., 2003; Saunders et al., 2003). Differences between measurements and model are attributed to a major interference of the GC system to peroxyacyl nitrates. In addition modifications to the rate constants in the MCM are suggested.

  18. Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol

    NASA Astrophysics Data System (ADS)

    Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila

    2013-04-01

    The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.

  19. CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model

    SciTech Connect

    Lamarque, J.-F.; Emmons, L.; Hess, Peter; Kinnison, Douglas E.; Tilmes, S.; Vitt, Francis; Heald, C. L.; Holland, Elisabeth A.; Lauritzen, P. H.; Neu, J.; Orlando, J. J.; Rasch, Philip J.; Tyndall, G. S.

    2012-03-27

    We discuss and evaluate the representation of atmospheric chemistry in the global Community Atmosphere Model (CAM) version 4, the atmospheric component of the Community Earth System Model (CESM). We present a variety of configurations for the representation of tropospheric and stratospheric chemistry, wet removal, and online and offline meteorology. Results from simulations illustrating these configurations are compared with surface, aircraft and satellite observations. Major biases include a negative bias in the high-latitude CO distribution, a positive bias in upper-tropospheric/lower-stratospheric ozone, and a positive bias in summertime surface ozone (over the United States and Europe). The tropospheric net chemical ozone production varies significantly between configurations, partly related to variations in stratosphere-troposphere exchange. Aerosol optical depth tends to be underestimated over most regions, while comparison with aerosol surface measurements over the United States indicate reasonable results for sulfate, especially in the online simulation. Other aerosol species exhibit significant biases. Overall, the model-data comparison indicates that the offline simulation driven by GEOS5 meteorological analyses provides the best simulation, possibly due in part to the increased vertical resolution (52 levels instead of 26 for online dynamics). The CAM-chem code as described in this paper, along with all the necessary datasets needed to perform the simulations described here, are available for download at www.cesm.ucar.edu.

  20. Analytical Models of Exoplanetary Atmospheres. III. Gaseous C-H-O-N Chemistry with Nine Molecules

    NASA Astrophysics Data System (ADS)

    Heng, Kevin; Tsai, Shang-Min

    2016-10-01

    We present novel, analytical, equilibrium-chemistry formulae for the abundances of molecules in hot exoplanetary atmospheres that include the carbon, oxygen, and nitrogen networks. Our hydrogen-dominated solutions involve acetylene (C2H2), ammonia (NH3), carbon dioxide (CO2), carbon monoxide (CO), ethylene (C2H4), hydrogen cyanide (HCN), methane (CH4), molecular nitrogen (N2), and water (H2O). By considering only the gas phase, we prove that the mixing ratio of carbon monoxide is governed by a decic equation (polynomial equation of 10 degrees). We validate our solutions against numerical calculations of equilibrium chemistry that perform Gibbs free energy minimization and demonstrate that they are accurate at the ˜ 1 % level for temperatures from 500 to 3000 K. In hydrogen-dominated atmospheres, the ratio of abundances of HCN to CH4 is nearly constant across a wide range of carbon-to-oxygen ratios, which makes it a robust diagnostic of the metallicity in the gas phase. Our validated formulae allow for the convenient benchmarking of chemical kinetics codes and provide an efficient way of enforcing chemical equilibrium in atmospheric retrieval calculations.

  1. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    SciTech Connect

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  2. The NOx dependence of bromine chemistry in the Arctic atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Custard, K. D.; Thompson, C. R.; Pratt, K. A.; Shepson, P. B.; Liao, J.; Huey, L. G.; Orlando, J. J.; Weinheimer, A. J.; Apel, E.; Hall, S. R.; Flocke, F.; Mauldin, L.; Hornbrook, R. S.; Pöhler, D.; S., General; Zielcke, J.; Simpson, W. R.; Platt, U.; Fried, A.; Weibring, P.; Sive, B. C.; Ullmann, K.; Cantrell, C.; Knapp, D. J.; Montzka, D. D.

    2015-09-01

    Arctic boundary layer nitrogen oxides (NOx = NO2 + NO) are naturally produced in and released from the sunlit snowpack and range between 10 to 100 pptv in the remote background surface layer air. These nitrogen oxides have significant effects on the partitioning and cycling of reactive radicals such as halogens and HOx (OH + HO2). However, little is known about the impacts of local anthropogenic NOx emission sources on gas-phase halogen chemistry in the Arctic, and this is important because these emissions can induce large variability in ambient NOx and thus local chemistry. In this study, a zero-dimensional photochemical kinetics model was used to investigate the influence of NOx on the unique springtime halogen and HOx chemistry in the Arctic. Trace gas measurements obtained during the 2009 OASIS (Ocean - Atmosphere - Sea Ice - Snowpack) field campaign at Barrow, AK were used to constrain many model inputs. We find that elevated NOx significantly impedes gas-phase halogen radical-based depletion of ozone, through the production of a variety of reservoir species, including HNO3, HO2NO2, peroxyacetyl nitrate (PAN), BrNO2, ClNO2 and reductions in BrO and HOBr. The effective removal of BrO by anthropogenic NOx was directly observed from measurements conducted near Prudhoe Bay, AK during the 2012 Bromine, Ozone, and Mercury Experiment (BROMEX). Thus, while changes in snow-covered sea ice attributable to climate change may alter the availability of molecular halogens for ozone and Hg depletion, predicting the impact of climate change on polar atmospheric chemistry is complex and must take into account the simultaneous impact of changes in the distribution and intensity of anthropogenic combustion sources. This is especially true for the Arctic, where NOx emissions are expected to increase because of increasing oil and gas extraction and shipping activities.

  3. The Right Chemistry. Lawn Care Project Brings Science down to Earth.

    ERIC Educational Resources Information Center

    Dollar, David

    1992-01-01

    At Southwest High School in Fort Worth, Texas, an applied learning project enables chemistry students to determine the most effective, economical, and environmentally safe fertilizer for the lawns of schools in the district. (SK)

  4. Active upper-atmosphere chemistry and dynamics from polar circulation reversal on Titan.

    PubMed

    Teanby, Nicholas A; Irwin, Patrick G J; Nixon, Conor A; de Kok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B; Flasar, F Michael

    2012-11-29

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the co-location of peak haze production and the limit of dynamical transport by the circulation's upper branch. Here we report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  5. Active Upper-atmosphere Chemistry and Dynamics from Polar Circulation Reversal on Titan

    NASA Technical Reports Server (NTRS)

    Teanby, Nicholas A.; Irwin, Patrick Gerard Joseph; Nixon, Conor A.; DeKok, Remco; Vinatier, Sandrine; Coustenis, Athena; Sefton-Nash, Elliot; Calcutt, Simon B.; Flasar, Michael F.

    2012-01-01

    Saturn's moon Titan has a nitrogen atmosphere comparable to Earth's, with a surface pressure of 1.4 bar. Numerical models reproduce the tropospheric conditions very well but have trouble explaining the observed middle-atmosphere temperatures, composition and winds. The top of the middle-atmosphere circulation has been thought to lie at an altitude of 450 to 500 kilometres, where there is a layer of haze that appears to be separated from the main haze deck. This 'detached' haze was previously explained as being due to the colocation of peak haze production and the limit of dynamical transport by the circulation's upper branch. Herewe report a build-up of trace gases over the south pole approximately two years after observing the 2009 post-equinox circulation reversal, from which we conclude that middle-atmosphere circulation must extend to an altitude of at least 600 kilometres. The primary drivers of this circulation are summer-hemisphere heating of haze by absorption of solar radiation and winter-hemisphere cooling due to infrared emission by haze and trace gases; our results therefore imply that these effects are important well into the thermosphere (altitudes higher than 500 kilometres). This requires both active upper-atmosphere chemistry, consistent with the detection of high-complexity molecules and ions at altitudes greater than 950 kilometres, and an alternative explanation for the detached haze, such as a transition in haze particle growth from monomers to fractal structures.

  6. Observations of atmospheric and snowpack chemistry in the summer on the Juneau Icefield

    NASA Astrophysics Data System (ADS)

    Berry, J.; Thompson, C. R.; Pratt, K.

    2014-12-01

    Cryospheric environments, such as ice sheets and glaciers, are particularly sensitive to perturbations in radiative forcing due to climate change. In recent decades, research in Arctic regions has revealed unique local-scale chemistry related to the greenhouse gas ozone and chemical interactions with snow and ice surfaces. Additionally, these remote regions are often impacted by long range transport events that bring atmospheric pollutants, including both gases and atmospheric particles, from anthropogenic sources and biomass burning; these pollutants can reduce visibility, change absorption and/or scattering of solar radiation, and lead to reductions in snow albedo (e.g., through deposition of black carbon). Both ozone and black carbon particles have consequences on radiative forcing and can lead to increased snow ablation and glacier recession. The Juneau Icefield is a temperate tidewater glacier network located east of Juneau, Alaska. In July 2014, as part of the Juneau Icefield Research Program, we conducted a pilot study including measurements of ozone, size-resolved atmospheric particles, and atmospheric black carbon, in conjunction with snowpack black carbon, inorganic ion, and albedo measurements. Here, we present the initial findings from this study and discuss local-scale atmospheric composition and impacts of long-range transport on snow albedo.

  7. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Glocer, A.; Gronoff, G.; Hébrard, E.; Danchi, W.

    2016-06-01

    Nitrogen is a critical ingredient of complex biological molecules. Molecular nitrogen, however, which was outgassed into the Earth’s early atmosphere, is relatively chemically inert and nitrogen fixation into more chemically reactive compounds requires high temperatures. Possible mechanisms of nitrogen fixation include lightning, atmospheric shock heating by meteorites, and solar ultraviolet radiation. Here we show that nitrogen fixation in the early terrestrial atmosphere can be explained by frequent and powerful coronal mass ejection events from the young Sun--so-called superflares. Using magnetohydrodynamic simulations constrained by Kepler Space Telescope observations, we find that successive superflare ejections produce shocks that accelerate energetic particles, which would have compressed the early Earth’s magnetosphere. The resulting extended polar cap openings provide pathways for energetic particles to penetrate into the atmosphere and, according to our atmospheric chemistry simulations, initiate reactions converting molecular nitrogen, carbon dioxide and methane to the potent greenhouse gas nitrous oxide as well as hydrogen cyanide, an essential compound for life. Furthermore, the destruction of N2, CO2 and CH4 suggests that these greenhouse gases cannot explain the stability of liquid water on the early Earth. Instead, we propose that the efficient formation of nitrous oxide could explain a warm early Earth.

  8. Lessons Learned from the Bay Region Atmospheric Chemistry Experiment (BRACE) and Implications for Nitrogen Management of Tampa Bay

    EPA Science Inventory

    Results from air quality modeling and field measurements made as part of the Bay Region Atmospheric Chemistry Experiment (BRACE) along with related scientific literature were reviewed to provide an improved estimate of atmospheric reactive nitrogen (N) deposition to Tampa Bay, to...

  9. Contrail: A Module from Physical Chemistry On-Line Project

    ERIC Educational Resources Information Center

    Chen, Franklin; Zielinski, Theresa Julia; Long, George

    2007-01-01

    The impact of contrails on Earth's climate is researched to understand the active area. It is suggested that the process of contrail formation involves combustion, cooling and ice formation, which are good comprehensive learning exercise for physical chemistry students.

  10. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    NASA Technical Reports Server (NTRS)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  11. Diphosphine is an intermediate in the photolysis of phosphine to phosphorus and hydrogen. [Jupiter atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Benson, R.

    1980-01-01

    The photolysis of phosphine to red phosphorus (P4) and hydrogen is investigated in light of the potential significance of the reaction in the atmospheric chemistry of Jupiter. It is reported that the photolysis of PH3 at room temperature by a 206.2-nm light source gave rise to a product identified by its UV and IR spectra and gas chromatographic retention time as P2H4, the yield of which is found to increase to a maximum and then decrease to 20% of the maximum value with illumination time. A mechanism for phosphine photolysis including diphosphine formation as an intermediate step is proposed, and it is concluded that P2H4 is a likely constituent of the atmospheres of the Jovian planets.

  12. Development and application of the High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) model

    NASA Astrophysics Data System (ADS)

    Kenny, W.; Bohrer, G.; Chatziefstratiou, E.

    2013-12-01

    We have been working to develop a new post-processing model - High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) - which will be able to resolve the dispersion and chemistry of reacting chemical species given their emission rates from the vegetation and soil, driven by high resolution meteorological forcing and wind fields from various high resolution atmospheric regional and large-eddy simulations. Hi-VACC reads in fields of pressure, temperature, humidity, air density, short-wave radiation, wind (3-D u, v and w components) and sub-grid-scale turbulence that were simulated by a high resolution atmospheric model. This meteorological forcing data is provided as snapshots of 3-D fields. Presently, the advection-diffusion portion of the model is fully developed, and we have tested it using a number of RAMS-based Forest Large Eddy Simulation (RAFLES) runs. Here, we present results from utilizing Hi-VACC in a few different contexts where it performs smoke and particle dispersion well. These include simulations of smoke dispersion from a theoretical forest fire in a domain in The Pine Barrens in New Jersey, as well as simulations to test the effects of heat flux on a scalar plume dispersing over a vegetative windbreak in an agricultural setting. Additional, we show initial results from testing the coupled chemistry component of Hi-VACC. One of the primary benefits of Hi-VACC is that users of other models can utilize this tool with only minimal work on their part -- processing their output fields into the appropriate HI-VACC input format. We have developed our model such that for whatever atmospheric model is being used with it, a MATLAB function must be written to extract the necessary information from the output files of that model and shape it into the proper format. This is the only model-specific work required. As such, this sort of smoke dispersion modeling performed by Hi-VACC - as well as its other capabilities - can be easily performed in other

  13. UARS Measurements and their Relationship to Atmospheric Chemistry and Climate Issues

    NASA Astrophysics Data System (ADS)

    Russell, J. M.; Jackman, C. H.; Anderson, J.

    2001-12-01

    The Upper Atmosphere Research Satellite (UARS) was launched by the Space Shuttle Discovery at 7:11:04 on September 12, 1991 and after boosting, finally reaching a 585 km, 57o inclined orbit. The satellite hosts ten experiments focused on a range of atmospheric phenomena including chemistry, dynamics, solar coupling with the atmosphere and energetic particle effects. The satellite provided an explosion of new information about the middle atmosphere and began the process of characterizing the low stratosphere and the mid to upper troposphere; both regions being vital to climate research studies. UARS experiments confirmed the role of CFCs in O3 depletion, clarified chemical process responsible for the Antarctic ozone hole, identified chemical O3 destruction in the Arctic region and shed new light on the role of dynamics as it affects latitude regions equaterward of the polar vortex. It also provided the first global measurements of HCl, HF, ClO, ClONO2 and N2O5 simultaneous with other key constituents including O3 itself, H2O, CH4, NO, NO2, HNO3, N2O, CF2Cl3, CFCl3, CO, aerosols and Polar Mesospheric Clouds. The long life of the mission has provided extended time series of key constituents and yielded remarkable and provocative results that leave many unanswered questions regarding atmospheric phenomena. We discuss some of the chemistry and climate issues addressed by UARS in this paper and summarize findings. The ten-year chlorine record shows increases on altitude surfaces since the beginning of 2000 that are not understood; but on CH4 surfaces a clear leveling off of the pre-Montreal Protocol increase in accord with protocol predictions has occurred. The long-term fluorine record is consistent with the protocol on an altitude surface. UARS also provided important data on mid to upper troposphere H2O both in the form of vertical profiles and in altitude regions clearly showing the effect of the El Niño and correlations with sea surface temperature. We will

  14. Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kroll, Jesse H.; Seinfeld, John H.

    2008-05-01

    Secondary organic aerosol (SOA), particulate matter composed of compounds formed from the atmospheric transformation of organic species, accounts for a substantial fraction of tropospheric aerosol. The formation of low-volatility (semivolatile and possibly nonvolatile) compounds that make up SOA is governed by a complex series of reactions of a large number of organic species, so the experimental characterization and theoretical description of SOA formation presents a substantial challenge. In this review we outline what is known about the chemistry of formation and continuing transformation of low-volatility species in the atmosphere. The primary focus is chemical processes that can change the volatility of organic compounds: (1) oxidation reactions in the gas phase, (2) reactions in the particle phase, and (3) continuing chemistry (in either phase) over several generations. Gas-phase oxidation reactions can reduce volatility by the addition of polar functional groups or increase it by the cleavage of carbon-carbon bonds; key branch points that control volatility are the initial attack of the oxidant, reactions of alkylperoxy (RO2) radicals, and reactions of alkoxy (RO) radicals. Reactions in the particle phase include oxidation reactions as well as accretion reactions, non-oxidative processes leading to the formation of high-molecular-weight species. Organic carbon in the atmosphere is continually subject to reactions in the gas and particle phases throughout its atmospheric lifetime (until lost by physical deposition or oxidized to CO or CO2), implying continual changes in volatility over the timescales of several days. The volatility changes arising from these chemical reactions must be parameterized and included in models in order to gain a quantitative and predictive understanding of SOA formation.

  15. Analysis of atmospheric methane from Siberian tower observation using chemistry transport model

    NASA Astrophysics Data System (ADS)

    Ishijima, K.; Sasakawa, M.; Machida, T.; Patra, P. K.; Ito, A.; Ghosh, A.; Morimoto, S.; Aoki, S.; Nakazawa, T.

    2014-12-01

    Atmospheric methane (CH4) is the second greenhouse gas, which is originally a natural atmospheric component, but the amount in the atmosphere has been dramatically increased due to addition of various anthropogenic sources especially after industrialization triggered in 18th century. Such coexistence of both natural and anthropogenic sources at the present make it difficult to quantitatively understand CH4 cycles on the globe. For example, CH4 concentration was increasing in 1990s, became stable in 2000s, and began to increase again from 2007, but discussions on what caused such intriguing long-term variations remain inconclusive. On the other hand, it is well known that wetlands is the largest natural source of CH4. Of them, wetlands in Arctic regions have been recently receiving remarkable attention, because high-latitude regions are more sensitive to global warming than low-latitudes, possibly enhancing CH4 emissions there. In West Siberia, there are large wetland areas significantly contributing to the global CH4 budget. In order to monitor atmospheric CH4 variability, which strongly reflects CH4 emissions from surrounding wetlands, continuous measurements of CH4 concentration from an expanding network of towers (JR-STATION: Japan-Russia Siberian Tall Tower Inland Observation Network) have been conducted mainly in West Siberia since 2004. A previous study on the measurements has revealed that CH4 concentration has large diurnal and seasonal variability, which are driven by seasonally varying wetland and fossil fuel emissions as well as by significant diurnal and seasonal variations of planetary boundary layer height (PBLH). While chemistry transport model can be a useful tool to understand atmospheric CH4 variations in many cases, model simulation for the JR-STATION seems to be slightly challenging, since it is well known that present transport models' capability to reproduce PBLH is not enough. In this study, we validate model transport of the CCSR

  16. Studies in photochemical smog chemistry. I. Atmospheric chemistry of toluene. II. Analysis of chemical reaction mechanisms for photochemical smog

    SciTech Connect

    Leone, J.A.

    1985-01-01

    This study focuses on two related topics in the gas phase organic chemistry of importance in urban air pollution. Part I describes an experimental and modeling effort aimed at developing a new explicit reaction mechanism for the atmospheric photooxidation of toluene. This mechanism is tested using experimental data from both indoor and outdoor smog chamber facilities. The predictions of the new reaction mechanism are found to be in good agreement with both sets of experimental data. Additional simulations performed with the new mechanism are used to investigate various mechanistic paths, and to gain insight into areas where the understanding is not complete. The outdoor experimental facility, which was built to provide the second set of experimental data, consists of a 65 cubic meter teflon smog chamber together with full instrumentation capable of measuring ozone, nitrogen dioxide, nitric oxide, peroxyacetyl nitrate (PAN), carbon monoxide, relative humidity, temperature, aerosol size distributions, and of course toluene and its photooxidation products. In Part II, a theoretical analysis of lumped chemical reaction mechanisms for photochemical smog is presented. Included is a description of a new counter species analysis technique which can be used to analyze any complex chemical reaction mechanism. Finally, a new lumped mechanism for photochemical smog is developed and tested against experimental data from two smog chamber facilities. Advantages of this mechanism relative to the existing lumped mechanisms are discussed.

  17. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; Palm, Brett B.; Hu, Weiwei; Stark, Harald; Li, Rui; Tsigaridis, Kostas; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define "riskier OFR conditions" as those with either low H2O (< 0.1 %) or high OHRext ( ≥ 100 s-1 in OFR185 and > 200 s-1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O3, similarly to

  18. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    DOE PAGES

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; ...

    2016-04-06

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling.more » The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define “riskier OFR conditions” as those with either low H2O (< 0.1 %) or high OHRext ( ≥  100 s−1 in OFR185 and > 200 s−1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have

  19. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  20. Isotopic links between atmospheric chemistry and the deep sulphur cycle on Mars.

    PubMed

    Franz, Heather B; Kim, Sang-Tae; Farquhar, James; Day, James M D; Economos, Rita C; McKeegan, Kevin D; Schmitt, Axel K; Irving, Anthony J; Hoek, Joost; Dottin, James

    2014-04-17

    The geochemistry of Martian meteorites provides a wealth of information about the solid planet and the surface and atmospheric processes that occurred on Mars. The degree to which Martian magmas may have assimilated crustal material, thus altering the geochemical signatures acquired from their mantle sources, is unclear. This issue features prominently in efforts to understand whether the source of light rare-earth elements in enriched shergottites lies in crustal material incorporated into melts or in mixing between enriched and depleted mantle reservoirs. Sulphur isotope systematics offer insight into some aspects of crustal assimilation. The presence of igneous sulphides in Martian meteorites with sulphur isotope signatures indicative of mass-independent fractionation suggests the assimilation of sulphur both during passage of magmas through the crust of Mars and at sites of emplacement. Here we report isotopic analyses of 40 Martian meteorites that represent more than half of the distinct known Martian meteorites, including 30 shergottites (28 plus 2 pairs, where pairs are separate fragments of a single meteorite), 8 nakhlites (5 plus 3 pairs), Allan Hills 84001 and Chassigny. Our data provide strong evidence that assimilation of sulphur into Martian magmas was a common occurrence throughout much of the planet's history. The signature of mass-independent fractionation observed also indicates that the atmospheric imprint of photochemical processing preserved in Martian meteoritic sulphide and sulphate is distinct from that observed in terrestrial analogues, suggesting fundamental differences between the dominant sulphur chemistry in the atmosphere of Mars and that in the atmosphere of Earth.

  1. Comparative Experimental Investigation of Titan's Atmospheric Chemistry Driven by Solar EUV Radiation and Energetic Electron Precipitation

    NASA Astrophysics Data System (ADS)

    Imanaka, Hiroshi; Lavvas, P.; Yelle, R. V.; Smith, M. A.

    2010-10-01

    The observations by the Cassini Ion Neutral Mass Spectrometer (INMS) and the Cassini Plasma Spectrometer (CAPS) clearly demonstrate the importance of complex organic chemistry in the upper atmosphere of Titan; a complex coupling of neutral and ion chemistry for organic aerosol generation induced by EUV photons and Saturn's magnetospheric charged particles. To understand the dominant energy source for aerosol formation and its formation chemistry, we comparatively investigate the chemical mechanism in N2/CH4 gas mixtures resulting from EUV-VUV synchrotron radiation (50-150 nm) and tunable mono-energetic electron beam irradiation (5 eV - 2000 eV). These excitation energy sources cover the dominant energy source available in Titan's upper atmosphere. Our previous study of the EUV-VUV photolysis of N2/CH4 gas mixtures revealed the unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons and in the major nitrogen fixation process in Titan's upper atmosphere (Imanaka and Smith, 2007, 2009, 2010). However, relative roles of ion-molecule reactions and radical/neutral reactions in such complex chemistry remain to be determined. We characterized the electron energy distribution by conducting the Langmuir probe measurements. Degradation of the primary photoelectron from N2 photoionization at 20.6 eV photons is clearly observed, and the electron density rapidly decreases down to 109-10 cm-3, which suggests the complex coupling of ion-molecular reactions and dissociative ion-electron recombination reactions for the observed development of complex organic molecules. The electron beam irradiation experiments at energy larger than 200 eV shows distinct gaseous product distribution with nitrogenated gaseous species from those with EUV irradiation products. The generation of secondary electrons and multiple inelastic collisions of fast electrons might increases the nitrogen fixation efficiency. The much less stringent spin selection rules could

  2. Constraining the Sources and Sinks of Atmospheric Methane Using Stable Isotope Observations and Chemistry Climate Modeling

    NASA Astrophysics Data System (ADS)

    Feinberg, A.; Coulon, A.; Stenke, A.; Peter, T.

    2015-12-01

    Methane acts as both a greenhouse gas and a driver of atmospheric chemistry. There is a lack of consensus for the explanation behind the atmospheric methane trend in recent years (1980-2010). High uncertainties are associated with the magnitudes of individual methane source and sink processes. Methane isotopes have the potential to distinguish between the different methane fluxes, as each flux is characterized by an isotopic signature. Methane emissions from each source category are expressed explicitly in a chemistry climate model SOCOL, including wetlands, rice paddies, biomass burning, industry, etc. The model includes 48 methane tracers based on source type and geographical origin in order to track methane after it has been emitted. SOCOL simulations for the years 1980-2010 are performed in "nudged mode", so that model dynamics reflect observed meteorology. Available database estimates of the various surface emission fluxes are inputted into SOCOL. The model diagnostic methane tracers are compared to methane isotope observations from measurement networks. Inconsistencies between the model results and observations point to deficiencies in the available emission estimates or model sink processes. Because of their dependence on the OH sink, deuterated methane observations and methyl chloroform tracers are used to investigate the variability of OH mixing ratios in the model and the real world. The analysis examines the validity of the methane source and sink category estimates over the last 30 years.

  3. Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang

    2016-06-01

    In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.

  4. On the one-dimensional chemistry-diffusion model in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam

    Most of the current atmospheric chemistry models for planets (e.g., Krasnopolsky & Parshev 1981; Yung et al., 1984; Lavvas et al., 2008) and exo-planets (e.g., Moses et al., 2011; Line et al., 2011; Hu et al., 2012) adopt a one-dimensional (1D) chemistry-diffusion approach in the vertical coordinate such as pressure or altitude. Although only a crude approximation, these 1D models have succeeded in explaining the global-averaged vertical profiles of many chemical species in observations. One of the important assumptions of these models is that, all chemical species are transported via the same eddy diffusion profile. Here we show that, as also noticed in the Earth community (e.g., Holton 1986), in the presence of horizontal transport driven by eddies in the middle atmospheres such as the stratospheres on Earth and Titan, this “homogenous eddy diffusion” assumption generally breaks down. Instead, the eddy diffusion should depend both on the horizontal eddy mixing and the chemical lifetime of the species. It implies that the long-lived species and short-lived species could have significantly different eddy diffusion profiles. We show analytically why this new approach is more physically based. We also show numerically why the old approach fails compared with the globally averaged results from a more realistic two-dimensional (2D) simulation using the state-of-art Caltech/JPL 2D chemistry-diffusion-advection model (Zhang et al., 2013), and discuss the possible consequences. This research was supported by the Bisgrove Scholar Program in the University of Arizona.

  5. SIOUX project: a simultaneous multiband camera for exoplanet atmospheres studies

    NASA Astrophysics Data System (ADS)

    Christille, Jean Marc; Bonomo, Aldo Stefano; Borsa, Francesco; Busonero, Deborah; Calcidese, Paolo; Claudi, Riccardo; Damasso, Mario; Giacobbe, Paolo; Molinari, Emilio; Pace, Emanuele; Riva, Alberto; Sozzetti, Alesandro; Toso, Giorgio; Tresoldi, Daniela

    2016-08-01

    The exoplanet revolution is well underway. The last decade has seen order-of-magnitude increases in the number of known planets beyond the Solar system. Detailed characterization of exoplanetary atmospheres provide the best means for distinguishing the makeup of their outer layers, and the only hope for understanding the interplay between initial composition chemistry, temperature-pressure atmospheric profiles, dynamics and circulation. While pioneering work on the observational side has produced the first important detections of atmospheric molecules for the class of transiting exoplanets, important limitations are still present due to the lack of systematic, repeated measurements with optimized instrumentation at both visible (VIS) and near-infrared (NIR) wavelengths. It is thus of fundamental importance to explore quantitatively possible avenues for improvements. In this paper we report initial results of a feasibility study for the prototype of a versatile multi-band imaging system for very high-precision differential photometry that exploits the choice of specifically selected narrow-band filters and novel ideas for the execution of simultaneous VIS and NIR measurements. Starting from the fundamental system requirements driven by the science case at hand, we describe a set of three opto-mechanical solutions for the instrument prototype: 1) a radial distribution of the optical flux using dichroic filters for the wavelength separation and narrow-band filters or liquid crystal filters for the observations; 2) a tree distribution of the optical flux (implying 2 separate foci), with the same technique used for the beam separation and filtering; 3) an 'exotic' solution consisting of the study of a complete optical system (i.e. a brand new telescope) that exploits the chromatic errors of a reflecting surface for directing the different wavelengths at different foci. In this paper we present the first results of the study phase for the three solutions, as well as the

  6. Laboratory studies on N(2D) reactions of relevance to the chemistry of planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Balucani, N.; Casavecchia, P.

    Molecular nitrogen is a very stable molecule, practically inert from a chemical point of view. For a nitrogen chemistry to occur in the planetary atmospheres which contain N2 , it is necessary to transform it into an active form, such as atoms or ions. As far as the production of atomic nitrogen in the upper atmospheres of planets (like Mars) or moons (like Titan) is concerned, several processes - as N2 dissociation induced by electron impact, EUV photolysis (λ <80 nm) and dissociative photoionization, or galactic cosmic ray absorption and N+ dissociative recombination all 2 lead to atomic nitrogen, notably in the ground, 4 S3/2 , and first electronically excited, 2 D3/2,5/2 , states with comparable yields. The radiative lifetimes of the metastable states 2 D3/2 and 2 D5/2 are quite long (12.3 and 48 hours, respectively), because the transition from a doublet to a quartet state is strongly forbidden. In addition, the physical quenching of N(2 D) is often a slow process and in some important cases the main fate of N(2 D) is chemical reaction with other constituents of the planetary atmospheres. The production of N atoms in the 2 D state is an important fact, because N(4 S) atoms exhibit very low reactivity with closed-shell molecules and the probability of collision with an open-shell radical is small. Unfortunately laboratory experiments on the gas-phase reactions of N(2 D) have been lacking until recently, because of serious experimental difficulties in studying these reactive systems. Accurate kinetic data on the reactions of N(2 D) with the some molecules of relevance to the chemistry of planetary atmospheres have finally become available in the late 90's, but a better knowledge of the reactive behavior requires a dynamical investigation of N(2 D) reactions. The capability of generating intense continuous beams of N(2 D) achieved in our laboratory some years ago has opened up the possibility of studying the reactive scattering of this species under single

  7. Upper Atmosphere Sounding Rocket Projects at Esrange Space Center

    NASA Astrophysics Data System (ADS)

    Lockowandt, Christian; Kemi, Stig; Sjolander, Krister; Abrahamsson, Mattias

    Swedish Space Corporation, SSC has a long tradition of developing and launching scientific sounding rockets from Esrange Space Center with the aim to study the different layers of the atmosphere and near space. Now a new era has started with an initiative from the Swedish National Space Board, SNSB. The sounding rocket and atmospheric balloon activities will be vitalised with a national program offering the scientific community yearly rocket launches and balloon flights. The three upcoming sounding rocket missions that have recently started are: O-STATES O STATES (Oxygen transformation in the thermosphere) is a research project at the Meteorological Institute of Stockholm University with Prof. Jörg Gumbel, as responsible researcher. The payload comprises two instrument modules with totally 7 instruments for studying oxygen in its various forms. The payload will be launched twice on two sounding rockets at the same launch campaign, in different atmospheric conditions. This provides a cost-effective mission with a large research exchange. The launches from Esrange Space Center are preliminary scheduled to take place in August 2014 with an apogee of approximately 250 km. SPIDER SPIDER (Small Payloads for Investigation of Disturbances in Electrojet by Rockets) is a research project at Space and Plasma Physics, Royal Institute of Technology, Stockholm with Nicholay Ivchenko as responsible researcher. The mission includes up to 10 subsidiary payloads ejected from the main payload to measure the structure of the electrostatic turbulence in the ionosphere. The measurements take place entirely in the subsidiary payloads, which are completely autonomous and recovered individually after the flight. The launch from Esrange Space Center is preliminary scheduled to take place in March 2015 with a desired apogee of approximately 140 km. LEEWAVES LEEWAVES (Local Excitation and Effects of Waves on Atmospheric Vertical Structure) is a research project at the Meteorological

  8. Project of the URAN array for registration of atmospheric neutrons

    NASA Astrophysics Data System (ADS)

    Gromushkin, D. M.; Barbashina, N. S.; Bogdanov, F. A.; Kokoulin, R. P.; Ovchinnikov, V. V.; Petrukhin, A. A.; Stenkin, Yu V.; Khokhlov, S. S.; Shulzhenko, I. A.; Yashin, I. I.

    2016-02-01

    The project of a new setup is directed at the registration of atmospheric neutrons (URAN) generated by hadronic component of extensive air showers (EAS). The setup includes 72 en-detector which simultaneously register two major EAS components: electromagnetic by the group passage of charged particles and hadron component by the thermal neutrons. The neutrons and charged particles are detected using a specialized scintillation composition made of granulated alloy of crystals based on the ZnS(Ag) powder with an admixture of B2O3.

  9. Geochemical cycles of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Drever, J. I.

    1988-01-01

    The processes that control the atmosphere and atmospheric changes are reviewed. The geochemical cycles of water vapor, nitrogen, carbon dioxide, oxygen, and minor atmospheric constituents are examined. Changes in atmospheric chemistry with time are discussed using evidence from the rock record and analysis of the present atmosphere. The role of biological evolution in the history of the atmosphere and projected changes in the future atmosphere are considered.

  10. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics.

    PubMed

    Lefèvre, Franck; Forget, François

    2009-08-06

    The detection of methane on Mars has revived the possibility of past or extant life on this planet, despite the fact that an abiogenic origin is thought to be equally plausible. An intriguing aspect of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced and change with the seasons. However, methane has a photochemical lifetime of several centuries, and is therefore expected to have a spatially uniform distribution on the planet. Here we use a global climate model of Mars with coupled chemistry to examine the implications of the recently observed variations of Martian methane for our understanding of the chemistry of methane. We find that photochemistry as currently understood does not produce measurable variations in methane concentrations, even in the case of a current, local and episodic methane release. In contrast, we find that the condensation-sublimation cycle of Mars' carbon dioxide atmosphere can generate large-scale methane variations differing from those observed. In order to reproduce local methane enhancements similar to those recently reported, we show that an atmospheric lifetime of less than 200 days is necessary, even if a local source of methane is only active around the time of the observation itself. This implies an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry. The existence of such a fast loss in the Martian atmosphere is difficult to reconcile with the observed distribution of other trace gas species. In the case of a destruction mechanism only active at the surface of Mars, destruction of methane must occur with an even shorter timescale of the order of approximately 1 hour to explain the observations. If recent observations of spatial and temporal variations of methane are confirmed, this would suggest an extraordinarily harsh environment for the survival of organics on the planet.

  11. National Atmospheric Deposition Program (NADP) Networks: Data on the chemistry of precipitation

    DOE Data Explorer

    The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a nationwide network of sites collecting data on the chemistry of precipitation for monitoring of geographical and temporal long-term trends. The precipitation at each station is collected weekly according to strict clean-handling procedures. It is then sent to the Central Analytical Laboratory where it is analyzed for hydrogen (acidity as pH), sulfate, nitrate, ammonium, chloride, and base cations (such as calcium, magnesium, potassium and sodium). The network is a cooperative effort between many different groups, including the State Agricultural Experiment Stations, U.S. Geological Survey, U.S. Department of Agriculture, and numerous other governmental and private entities. DOE is one of these cooperating agencies, though it plays a smaller funding role than some of the other federal sources. Since 1978, the NADP/NTN has grown from 22 stations to over 250 sites spanning the continental United States, Alaska, and Puerto Rico, and the Virgin Islands. The National Atmospheric Deposition Program has also expanded its sampling to two additional networks: 1) the Mercury Deposition Network (MDN), currently with over 90 sites, was formed in 1995 to collect weekly samples of precipitation which are analyzed by Frontier Geosciences for total mercury, and 2) the Atmospheric Integrated Research Monitoring Network (AIRMoN), formed for the purpose of studying precipitation chemistry trends with greater temporal resolution than the NTN. [taken from the NADP History and Overview page at http://nadp.sws.uiuc.edu/nadpoverview.asp] Data from these networks are freely available in via customized search interfaces linked to interactive maps of the stations in the three networks. Animated Isopleth maps in Flash and PowerPoint are also available to display concentrations and depositions various substances such as sulfate, nitrate, etc. (Specialized Interface)

  12. Fire risk, atmospheric chemistry and radiative forcing assessment of wildfires in eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Athanasopoulou, E.; Rieger, D.; Walter, C.; Vogel, H.; Karali, A.; Hatzaki, M.; Gerasopoulos, E.; Vogel, B.; Giannakopoulos, C.; Gratsea, M.; Roussos, A.

    2014-10-01

    The current research study aims at investigating the atmospheric implications of a major fire event in the Mediterranean area. For this purpose, a regional aerosol model coupled online with meteorology (COSMO-ART) is applied over Greece during late summer 2007. Fire risk model results proved to be adequate in reproducing the highly destructive event, which supports further applications for national meteorological forecasts and early warning systems for fire prevention. Columnar aerosol loading field predictions are consistent with satellite maps, which further allows for the correlation of this wildfire event to the atmospheric chemistry and the radiative forcing. Gaseous chemistry resembles that in urban environments and led to nitrogen dioxide and ozone exceedances in several cities in proximity to and downwind the fire spots, respectively. Influence in Athens is found significant from the Euboean plume (45% of total surface PM10) and small (5%) from the fires in Peloponnese. Fire events are indicated by sharp increases in organic to elemental carbon (6), together with sharp decreases in secondary to total organic components (0.1), in comparison to their values during the pre- and post-fire period over Athens (1 and 0.6, respectively). The change in the radiative budget induced by the fire plume is found negative (3-day-average value up to -10 W m-2). Direct heat input is found negligible, thus the net temperature effect is also negative over land (-0.5 K). Nevertheless, positive temperature changes are found overseas (hourly value up to +2 K), due to the amplified radiation absorption by aged soot, coupled to the intense stabilization of the atmosphere above the sea surface.

  13. Evaluation of the atmospheric chemistry general circulation model ECHAM5/MESSy1

    NASA Astrophysics Data System (ADS)

    Joeckel, P.; Tost, H.; Pozzer, A.; Bruehl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M. G.; Metzger, S.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; van Aardenne, J.; Lelieveld, J.

    2006-12-01

    We present the new Modular Earth Submodel System (MESSy) coupled to the 5th generation European Centre Hamburg GCM, ECHAM5. MESSy describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. This approach is chosen to face the challenges associated with increasing model complexity. The resulting model system is portable, user-friendly and easily expandable. The system enables the testing of different modules of the same processes (e.g. convection) under otherwise identical numerical conditions. In a first model evaluation simulation we apply a 90-layer model setup up to 0.01 hPa at T42 spectral resolution to simulate the dynamics and chemistry, both coupled via radiation, of the lower and middle atmosphere. A Newtonian relaxation technique was applied in the troposphere to weakly nudge the model towards the analysed (ECMWF) meteorology during the period 1998-2005. This technique allows a direct comparison of model results with observations. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi- Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. The model realistically simulates stratosphere-troposphere exchange processes as shown by comparisons with satellite and in situ measurements. The main characteristics of the trace gas distributions are reproduced well. In summary, the model consistently simulates the state of the atmosphere from the surface to the mesosphere without the need to prescribe artifical boundary conditions, e.g., such as ozone at the tropopause.

  14. Chemistry of atmospheric precipitation at Lewes, Delaware, as part of the MAP3S study

    SciTech Connect

    Church, T.M.

    1986-07-31

    The purpose of this proposal is to request continuation of funding for the routine operation and research activities at the MAP3S precipitation chemistry site at Lewes, Delaware (Site No. 7). Specifically, financial support is being requested to provide for (1) collection of precipitation samples on an event basis, (2) routine field analyses, processing and shipment of samples to Battelle Northwest Laboratories for further analyses, and (3) modest additional salary and laboratory costs to partially support centrally related research projects as described later.

  15. The Middle Atmosphere Program: A special project for the Antarctic Middle Atmosphere (AMA)

    NASA Technical Reports Server (NTRS)

    Hirasawa, T.

    1982-01-01

    Areas of concern are: dynamics, structure, and atmospheric composition of the middle atmosphere in Antarctica; particle precipitation and interaction of the middle atmosphere with the lower ionosphere; atmospheric pollution; and the difference between the northern and southern polar middle atmosphere.

  16. The Middle Atmosphere Program: A special project for the Antarctic Middle Atmosphere (AMA)

    NASA Astrophysics Data System (ADS)

    Hirasawa, T.

    1982-04-01

    Areas of concern are: dynamics, structure, and atmospheric composition of the middle atmosphere in Antarctica; particle precipitation and interaction of the middle atmosphere with the lower ionosphere; atmospheric pollution; and the difference between the northern and southern polar middle atmosphere.

  17. UNESCO Chemistry Teaching Project in Asia: Experiments on Nuclear Science.

    ERIC Educational Resources Information Center

    Dhabanandana, Salag

    This teacher's guide on nuclear science is divided into two parts. The first part is a discussion of some of the concepts in nuclear chemistry including radioactivity, types of disintegration, radioactive decay and growth, and tracer techniques. The relevant experiments involving the use of radioisotopes are presented in the second part. The…

  18. The Titan Haze Simulation experiment: laboratory simulation of Titan's atmospheric chemistry at low temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, E.; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-04-01

    In Titan’s atmosphere, a complex organic chemistry between its two main constituents, N2 and CH4, leads to the production of heavy molecules and subsequently to solid organic aerosols. Several instruments onboard Cassini have detected neutral, positively and negatively charged particles and heavy molecules in the ionosphere of Titan[1,2]. In particular, the presence of benzene (C6H6) and toluene (C6H5CH3)[3], which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, suggests that PAHs might play a role in the production of Titan’s aerosols. The Titan Haze Simulation (THS) experiment has been developed at NASA Ames’ Cosmic Simulation facility (COSmIC) to study the chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN…) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic jet expansion. With this unique design, the gas mixture is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing the first products of Titan’s N2-CH4 chemistry but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy[4] and Time-Of-Flight Mass Spectrometry[5]. Thin tholin deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). We will present the results of ongoing mass spectrometry studies on the THS experiment using different gas mixtures: N2-CH4, N2-C2H2, N2-C2H4, N2-C2H6, N2-C6H6, and similar mixtures with an N2-CH4 (90:10) mixture instead of pure N2, to study specific pathways

  19. ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON

    SciTech Connect

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce E-mail: lodders@wustl.ed

    2010-06-20

    We use thermochemical equilibrium calculations to model iron, magnesium, and silicon chemistry in the atmospheres of giant planets, brown dwarfs, extrasolar giant planets (EGPs), and low-mass stars. The behavior of individual Fe-, Mg-, and Si-bearing gases and condensates is determined as a function of temperature, pressure, and metallicity. Our equilibrium results are thus independent of any particular model atmosphere. The condensation of Fe metal strongly affects iron chemistry by efficiently removing Fe-bearing species from the gas phase. Monatomic Fe is the most abundant Fe-bearing gas throughout the atmospheres of EGPs and L dwarfs, and in the deep atmospheres of giant planets and T dwarfs. Mg- and Si-bearing gases are effectively removed from the atmosphere by forsterite (Mg{sub 2}SiO{sub 4}) and enstatite (MgSiO{sub 3}) cloud formation. Monatomic Mg is the dominant magnesium gas throughout the atmospheres of EGPs and L dwarfs and in the deep atmospheres of giant planets and T dwarfs. Silicon monoxide (SiO) is the most abundant Si-bearing gas in the deep atmospheres of brown dwarfs and EGPs, whereas SiH{sub 4} is dominant in the deep atmosphere of Jupiter and other gas giant planets. Several other Fe-, Mg-, and Si-bearing gases become increasingly important with decreasing effective temperature. In principle, a number of Fe, Mg, and Si gases are potential tracers of weather or diagnostic of temperature in substellar atmospheres.

  20. Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event

    NASA Astrophysics Data System (ADS)

    Melott, A.

    2009-12-01

    We estimate atmospheric chemistry changes from ionization at the 1908 Tunguska airburst event, finding agreement with nitrate enhancement in GISP2H and GISP2 ice cores and noting an unexplained accompanying ammonium spike. We then consider the candidate Younger Dryas comet impact. The estimated NOx production and O3 depletion are large, beyond accurate extrapolation. A modest nitrate deposition signal exists in ice core data. The predicted very large impulsive deposition might be visible in higher resolution data. Ammonium has been attributed to biomass burning, and found coincident with nitrate spikes at YD onset in both the GRIP and GISP2 ice cores. A similar result is well-resolved in Tunguska ice core data, but the Tunguska forest fire was far too small to account for this. Direct input of ammonia from a comet into the atmosphere is consistent with the spike for the candidate YD object, but also inadequate for Tunguska. An analog of the Haber process with hydrogen contributed by the cometary or surface water, atmospheric nitrogen, high temperatures, pressures, and the possible presence of catalytic iron from a comet could in principle divert a variable fraction of the reaction products to ammonia, accounting for ice core data in both events.

  1. Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event

    NASA Astrophysics Data System (ADS)

    Melott, A. L.; Thomas, B. C.; Dreschhoff, G.; Johnson, C. K.

    2010-04-01

    We find agreement between models of atmospheric chemistry changes from ionization for the 1908 Tunguska airburst event and nitrate enhancement in GISP2H and GISP2 ice cores, plus an unexplained ammonium spike. We then consider a candidate cometary impact at the Younger Dryas onset (YD). The large estimated NO_x production and O_3 depletion are beyond accurate extrapolation, but the ice core peak is much lower, possibly because of insufficient sampling resolution. Ammonium and nitrate spikes have been attributed to biomass burning at YD onset in both GRIP and GISP2 ice cores. A similar result is well-resolved in Tunguska ice core data, but that forest fire was far too small to account for this. Direct input of ammonia from a comet into the atmosphere is adequate for YD ice core data, but not Tunguska data. An analog of the Haber process with hydrogen contributed by cometary or surface water, atmospheric nitrogen, high pressures, and possibly catalytic iron from a comet could in principle produce ammonia, accounting for the peaks in both data sets.

  2. First Measurements of the HCFC-142b Trend from Atmospheric Chemistry Experiment (ACE) Solar Occultation Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Chiou, Linda; Boone,Chris; Bernath, Peter; Mahieu, Emmanuel

    2009-01-01

    The first measurement of the HCFC-142b (CH3CClF2) trend near the tropopause has been derived from volume mixing ratio (VMR) measurements at northern and southern hemisphere mid-latitudes for the 2004-2008 time period from spaceborne solar occultation observations recorded at 0.02/cm resolution with the ACE (atmospheric chemistry experiment) Fourier transform spectrometer. The HCFC-142b molecule is currently the third most abundant HCFC (hydrochlorofluorocarbon) in the atmosphere and ACE measurements over this time span show a continuous rise in its volume mixing ratio. Monthly average measurements at northern and southern hemisphere midlatitudes have similar increase rates that are consistent with surface trend measurements for a similar time span. A mean northern hemisphere profile for the time span shows a near constant VMR at 8-20km altitude range, consistent on average for the same time span with in situ results. The nearly constant vertical VMR profile also agrees with model predictions of a long lifetime in the lower atmosphere.

  3. CARBON-RICH GIANT PLANETS: ATMOSPHERIC CHEMISTRY, THERMAL INVERSIONS, SPECTRA, AND FORMATION CONDITIONS

    SciTech Connect

    Madhusudhan, Nikku; Mousis, Olivier; Johnson, Torrence V.; Lunine, Jonathan I.

    2011-12-20

    The recent inference of a carbon-rich atmosphere, with C/O {>=} 1, in the hot Jupiter WASP-12b motivates the exotic new class of carbon-rich planets (CRPs). We report a detailed study of the atmospheric chemistry and spectroscopic signatures of carbon-rich giant (CRG) planets, the possibility of thermal inversions in their atmospheres, the compositions of icy planetesimals required for their formation via core accretion, and the apportionment of ices, rock, and volatiles in their envelopes. Our results show that CRG atmospheres probe a unique region in composition space, especially at high temperature (T). For atmospheres with C/O {>=} 1, and T {approx}> 1400 K in the observable atmosphere, most of the oxygen is bound up in CO, while H{sub 2}O is depleted and CH{sub 4} is enhanced by up to two or three orders of magnitude each, compared to equilibrium compositions with solar abundances (C/O = 0.54). These differences in the spectroscopically dominant species for the different C/O ratios cause equally distinct observable signatures in the spectra. As such, highly irradiated transiting giant exoplanets form ideal candidates to estimate atmospheric C/O ratios and to search for CRPs. We also find that the C/O ratio strongly affects the abundances of TiO and VO, which have been suggested to cause thermal inversions in highly irradiated hot Jupiter atmospheres. A C/O = 1 yields TiO and VO abundances of {approx}100 times lower than those obtained with equilibrium chemistry assuming solar abundances, at P {approx} 1 bar. Such a depletion is adequate to rule out thermal inversions due to TiO/VO even in the most highly irradiated hot Jupiters, such as WASP-12b. We estimate the compositions of the protoplanetary disk, the planetesimals, and the envelope of WASP-12b, and the mass of ices dissolved in the envelope, based on the observed atmospheric abundances. Adopting stellar abundances (C/O = 0.44) for the primordial disk composition and low-temperature formation conditions

  4. Spatial and temporal dynamics of stream chemistry in a forested watershed impacted by atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Piatek, K. B.; Christopher, S. F.; Mitchell, M. J.

    2008-09-01

    We analyzed spatial and temporal dynamics of solute chemistry in a forest watershed impacted by atmospheric deposition in the Adirondack Mountains of New York State, USA. Spatial dynamics of solute chemistry and natural abundance isotopes of nitrate (15N and 18O) were examined in 6 locations and the watershed outlet in 2001 and 2002. Temporal dynamics were examined during 5 discharge periods: winter, snowmelt, spring, summer, and fall, which were based on discharge levels at the outlet. Solute concentrations were statistically significantly different (p≤0.05) among stream sampling locations and discharge periods, with no interaction effects. Groundwater sources located in upper watershed controlled stream chemistry at higher elevations with highest pH, Ca2+, sum of base cations, Si, NO3-, total N, and SO42- and lowest Al concentrations. Two low elevation wetlands had a substantial influence over stream chemistry at those locations contributing lowest NO3-, total N, and highest DOC and DON. Snowmelt exhibited among the lowest pH, sum of base cations, and SO42-, and highest NO3-, total N, DON, and total Al; snowmelt appeared to dilute groundwater, and flush stored soil-derived solutes. Summer discharge, composed mainly of groundwater, exhibited the lowest flow, among the highest Mg2+, Ca2+, and lowest DON, DOC, and total Al concentrations. Isotopic analysis together with patterns of NH4+ versus NO3- dynamics indicated that NO3- was microbial, generated in fall and accumulated in winter in upper watershed soils, and flushed to stream during high discharge events. Highest discharge in snowmelt 2001, a summer drought in 2002, and fall storms following the drought were further evaluated for their specific effects on stream chemistry. Snowmelt 2001 had the lowest pH and highest NO3-, base flow during summer drought had the lowest total Al, and storms in fall 2002 had highest SO42- of all periods, but all other solute concentrations were comparable to other discharge

  5. Simulating Titan’s atmospheric chemistry at low temperature (200K)

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jesse L.; Salama, Farid

    2016-06-01

    We present our latest results on the Titan Haze Simulation (THS) experiment developed on the COSmIC simulation chamber at NASA Ames Research Center. In Titan’s atmosphere, a complex organic chemistry induced by UV radiation and electron bombardment occurs between N2 and CH4 and leads to the production of larger molecules and solid aerosols. In the THS, the chemistry is simulated by pulsed plasma in the stream of a supersonic expansion, at Titan-like temperature (150 K). The residence time of the gas in the pulsed plasma discharge is on the order of 3 µs, hence the chemistry is truncated allowing us to probe the first and intermediate steps of the chemistry by adding heavier precursors into the initial N2-CH4 gas mixture.Two complementary studies of the gas phase and solid phase products have been performed in 4 different gas mixtures: N2-CH4, N2-CH4-C2H2, N2-CH4-C6H6 and N2-CH4-C2H2-C6H6 using a combination of in situ and ex situ diagnostics. The mass spectrometry analysis of the gas phase was the first to demonstrate that the THS is a unique tool to monitor the different steps of the N2-CH4 chemistry (Sciamma-O’Brien et al. 2014). The results of the solid phase study are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates that form in the gas phase were jet deposited on various substrates then collected for ex situ analysis. Scanning Electron Microscopy images have shown that more complex mixtures produce larger aggregates (100-500 nm in N2-CH4, up to 5 µm in N2-CH4-C2H2-C6H6). Moreover, the morphology of the grains seems to depend on the precursors, which could have a large impact for Titan’s models. We will present the latest results of the X-ray Absorption Near Edge Structure measurements, that show the different functional groups present in our samples and give the C/N ratio; as well as the Direct Analysis in Real Time Mass Spectrometry coupled with Collision Induced Dissociation analyses that have been

  6. Gas-to-Particle Conversion in Surface Discharge Nonthermal Plasmas and Its Implications for Atmospheric Chemistry

    PubMed Central

    Kim, Hyun-Ha; Ogata, Atsushi

    2011-01-01

    This paper presents some experimental data on gas-to-particle conversion of benzene using nonthermal plasma (NTP) technology and discusses the possibility of its technical application in atmospheric chemistry. Aerosol measurement using a differential mobility analyzer (DMA) revealed that the parts of benzene molecules were converted into a nanometer-sized aerosol. Aerosol formation was found to be highly related with the missing part in carbon balance. Scanning electron microscopy analysis showed that the aerosols formed in synthetic humid air are the collection of nanoparticles. The carbonyl band (C=O) was found to be an important chemical constituent in the aerosol. The potential of the NTP as an accelerated test tool in studying secondary organic aerosol (SOA) formation from VOCs will be also addressed. PMID:22163781

  7. Two-dimensional atmospheric transport and chemistry model - Numerical experiments with a new advection algorithm

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Ha, Yuk Lung; Wen, Jun-Shan; Yung, Yuk L.

    1990-01-01

    Extensive testing of the advective scheme proposed by Prather (1986) has been carried out in support of the California Institute of Technology-Jet Propulsion Laboratory two-dimensional model of the middle atmosphere. The original scheme is generalized to include higher-order moments. In addition, it is shown how well the scheme works in the presence of chemistry as well as eddy diffusion. Six types of numerical experiments including simple clock motion and pure advection in two dimensions have been investigated in detail. By comparison with analytic solutions, it is shown that the new algorithm can faithfully preserve concentration profiles, has essentially no numerical diffusion, and is superior to a typical fourth-order finite difference scheme.

  8. Partial Overhaul and Initial Parallel Optimization of KINETICS, a Coupled Dynamics and Chemistry Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Nguyen, Howard; Willacy, Karen; Allen, Mark

    2012-01-01

    KINETICS is a coupled dynamics and chemistry atmosphere model that is data intensive and computationally demanding. The potential performance gain from using a supercomputer motivates the adaptation from a serial version to a parallelized one. Although the initial parallelization had been done, bottlenecks caused by an abundance of communication calls between processors led to an unfavorable drop in performance. Before starting on the parallel optimization process, a partial overhaul was required because a large emphasis was placed on streamlining the code for user convenience and revising the program to accommodate the new supercomputers at Caltech and JPL. After the first round of optimizations, the partial runtime was reduced by a factor of 23; however, performance gains are dependent on the size of the data, the number of processors requested, and the computer used.

  9. Multiple sulfur isotope geochemistry of Dharwar Supergroup, Southern India: Late Archean record of changing atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Mishima, Kaoru; Yamazaki, Rie; Satish-Kumar, Madhusoodhan; Ueno, Yuichiro; Hokada, Tomokazu; Toyoshima, Tsuyoshi

    2017-04-01

    Earth's tectonic and climatic systems may have changed fundamentally before the Great Oxidation Event (GOE) at about 2.3 Ga. Sulfur Mass Independent Fractionation (S-MIF) has demonstrated that Earth's atmosphere was virtually oxygen-free before the GOE. During 3.0 to 2.4 Ga, the change in Δ33S and Δ36S signals may reflect the perturbation of atmospheric chemistry, though the mechanisms of the change are uncertain. Here, we reported multiple sulfur isotopic studies of Archean volcano-sedimentary sequences of the Dharwar Supergroup, distributed in the Chitradurga Schist Belt (CSB), Southern India. New field mapping and zircon U-Pb dating allows us to reconstruct detailed lithostratigraphy of the Dharwar Supergroup. The lower unit consists of post-3.0 Ga conglomerate, stromatolitic carbonate, siliciclastics with diamictite, chert/BIF and pillowed basalt in ascending order, all of which are older than the 2676 Ma dacite dyke that had intruded into the lower unit. The upper unit unconformably overlies the pillow basalts at the top of the lower unit, and consists of conglomerate/sandstone with ∼2600 Ma detrital zircons, komatiitic basalt, BIF and siliciclastic sequence with mafic volcanics. Sulfur isotope analysis of extracted sulfides shows MIF signals (Δ33S > + 1 ‰) with clear Δ33S- Δ36S correlations. The lower group of the Dharwar Supergroup shows a Δ36S / Δ33S slope of -1.48, the middle group shows -1.16 and -1.07, and the upper group shows -0.94. Reassessment of all the Archean S-MIF records from sedimentary rocks indicates that the Δ36S / Δ33S slope systematically changed during the Archean period. The observed trend in the Indian section is similar to those of its Pilbara-Kaapvaal equivalents, thus it could reflect a global atmospheric signature. Moreover, the isotopic trend seems to correlate with mid-Archean glaciation. Thus, the Δ36S / Δ33S slope could be a useful tracer for atmospheric chemistry and its link with climate change before the GOE.

  10. Troposphere-Stratosphere Coupled Chemistry-Climate Interactions: From Global Warming Projections to Air Quality

    NASA Astrophysics Data System (ADS)

    Nowack, P. J.; Abraham, N. L.; Maycock, A. C.; Braesicke, P.; Pyle, J. A.

    2015-12-01

    Changes in stratospheric composition can affect tropospheric composition and vice versa. Of particular interest are trace gas concentrations at the interface between these two atmospheric layers in the tropical upper troposphere and lower stratosphere (UTLS). This is due to the crucial importance of composition changes in the UTLS for the global energy budget. In a recent study (Nowack et al., 2015), we provided further evidence that composition changes in the tropical UTLS can significantly affect global warming projections. Using a state-of-the-art atmosphere-ocean chemistry-climate model, we found a ~20% smaller global warming in response to an abrupt 4xCO2 forcing if composition feedbacks were included in the calculations as compared to simulations in which composition feedbacks were not considered. We attributed this large difference in surface warming mainly to circulation-driven decreases in tropical UTLS ozone and related changes in stratospheric water vapor, partly counteracted by simultaneous changes in ice clouds. Here, we explain why this result is expected to differ between models and how, inter alia, tropospheric chemical mechanisms can contribute to this uncertainty. We highlight that improving our understanding of processes in the tropical UTLS and their representation in Earth system models remains a key challenge in climate research.Finally, taking geoengineering as a new example, we show that changes in the stratosphere can have an impact on air quality in the troposphere. In particular, we explain for a simple solar radiation management scenario how changes in surface ozone can be linked to changes in meteorology and composition in the troposphere and stratosphere. In conclusion, we highlight the importance of considering air quality impacts when evaluating a variety of geoengineering scenarios. Reference: Nowack, P.J., Abraham, N.L., Maycock, A.C., Braesicke, P., Gregory, J.M., Joshi, M.M., Osprey, A., and Pyle, J.A. Nature Climate Change 5, 41

  11. Springtime Arctic Trace Gas Measurements and Comparisons With the Atmospheric Chemistry Experiment on SCISAT

    NASA Astrophysics Data System (ADS)

    Lindenmaier, R.; Batchelor, R.; Strong, K.; Walker, K.; Manney, G.; Daffer, W.

    2009-05-01

    The process of rapid stratospheric ozone loss in the polar regions begins during the polar winter, when dynamical and chemical conditions lead to the formation of reactive chlorine and bromine radicals. Arctic ozone loss varies significantly from year to year because of changing dynamical conditions. Therefore, long-term data sets of Arctic chemical composition measurements are needed to better understand the process of ozone loss, the links between ozone depletion and climate change, and the future evolution of ozone. Solar absorption spectra have been recorded at Eureka, Nunavut in the sunlit part of each year since July 2006, when a Bruker 125HR high-resolution Fourier transform infrared spectrometer was installed at the Polar Environment Atmospheric Research Laboratory (PEARL). Applying the optimal estimation technique, total columns and some vertical profile information are retrieved for a suite of trace gases that are involved in stratospheric ozone depletion. Total columns of O3, HCl, ClONO2, HNO3, and HF will be presented, with a focus on three Canadian Arctic ACE Validation spring campaigns that took place in 2007, 2008, and 2009. Very different dynamical situations were observed over Eureka during these three spring periods: the impact of these conditions on the trace gas measurements will be shown. SCISAT, also known as the Atmospheric Chemistry Experiment (ACE), is a Canadian satellite mission for remote sounding of the Earth's atmosphere and was launched on August 12, 2003. Its primary instrument is a high spectral resolution Fourier Transform Spectrometer (FTS) measuring sequences of atmospheric absorption spectra in solar occultation. From these spectra the vertical distribution of trace gases can be determined. Results of the Bruker 125HR comparisons with the ACE-FTS, made with the purpose of validating the satellite measurements, will be also shown.

  12. Atmospheric Chemistry of Halogen Oxides and Oxygenated VOCs over the Tropical Pacific Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Volkamer, R.

    2009-12-01

    Recent indirect evidence from some satellites suggests the presence of iodine oxide (IO) and glyoxal (CHOCHO) over the open tropical Pacific Ocean, but different satellites disagree as to the presence of iodine oxide (IO), and the abundance of glyoxal (CHOCHO) over the oceans. Both gases absorb light in the blue spectral range, where also phytoplankton absorbs light and induces a change in ocean color. It is not clear whether IO and CHOCHO as seen from space indicate missing marine sources for halogens and hydrocarbons in current models, or could be an artifact in the satellite retrievals caused by a spectral interference of light absorbing phytoplankton. A novel Ship Multi AXis DOAS (CU SMAX-DOAS) instrument was developed at CU Boulder’s Atmospheric Trace Molecule Spectroscopy Laboratory (AMTOSpeclab) and first deployed from October 2008 to January 2009 on board NOAA’s RV Ronald H. Brown over the eastern tropical Pacific Ocean to probe directly the column abundance of iodine oxide (IO), iodine dioxide (OIO), bromine oxide (BrO), nitrogen dioxide (NO2), glyoxal (CHOCHO), and formaldehyde (HCHO), water vapor (H2O) and oxygen dimers (O4, an indicator for aerosol optical depth); the instrument also measures directly the vertical distribution of gases in the atmosphere, i.e., it can distinguish atmospheric absorbers from ocean color effects. This talk presents data from two field campaigns over the open tropical Pacific Ocean. Our measurements give first direct spectral proof for the presence of IO and CHOCHO in elevated concentrations over the open oceans, and locate IO and CHOCHO inside the marine boundary layer. The atmospheric chemistry of both gases is briefly reviewed. It is argued that the tropical Pacific Ocean is a large scale chemical reactor that destroys tropospheric ozone, and our observations might help explain past observations of Aitken mode sized particles over the open ocean.

  13. The impact of ice uptake of nitric acid on atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    von Kuhlmann, R.; Lawrence, M. G.

    2006-01-01

    The potential impact of the uptake of HNO3 on ice on the distribution of NOy species, ozone and OH has been assessed using the global scale chemistry-transport model MATCH-MPIC. Assuming equilibrium uptake according to dissociative Langmuir theory results in significant reductions of gas phase HNO3. Comparison to a large set of observations provides support that significant uptake of HNO3 on ice is occurring, but the degree of the uptake cannot be inferred from this comparison alone. Sensitivity simulations show that the uncertainties in the total amount of ice formation in the atmosphere and the actual expression of the settling velocity of ice particles only result in small changes in our results. The largest uncertainty is likely to be linked to the actual theory describing the uptake process and the value of the initial uptake coefficient. The inclusion of non-methane hydrocarbon chemistry partially compensates for the absence of HNO3 uptake on ice when this is neglected in the model. The calculated overall effect on upper tropospheric ozone concentrations and the tropospheric methane lifetime are moderate to low. These results support a shift in the motivation for future experimental and theoretical studies of HNO3-ice interaction towards the role of HNO3 in hydrometeor surface physics.

  14. The impact of ice uptake of nitric acid on atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    von Kuhlmann, R.; Lawrence, M. G.

    2005-08-01

    The potential impact of the uptake of HNO3 on ice on the distribution of NOy species, ozone and OH has been assessed using the global scale chemistry-transport model MATCH-MPIC. Assuming equilibrium uptake according to dissociative Langmuir theory results in significant reductions of gas phase HNO3. Comparison to a large set of observations provides support that significant uptake of HNO3 on ice is occurring, but the degree of the uptake cannot be inferred from this comparison alone. Sensitivity simulations show that the uncertainties in the total amount of ice formation in the atmosphere and the actual expression of the settling velocity of ice particles only result in small changes in our results. The largest uncertainty is likely to be linked to the actual theory describing the uptake process. The inclusion of non-methane hydrocarbon chemistry buffers the overall effect of neglected uptake of HNO3 on ice. The calculated overall effect on upper tropospheric ozone concentrations and the tropospheric methane lifetime are moderate to low. These results support a shift in the motivation for future experimental and theoretical studies of HNO3-ice interaction towards the role of HNO3 in hydrometeor surface physics.

  15. An adaptive reduction algorithm for efficient chemical calculations in global atmospheric chemistry models

    NASA Astrophysics Data System (ADS)

    Santillana, Mauricio; Le Sager, Philippe; Jacob, Daniel J.; Brenner, Michael P.

    2010-11-01

    We present a computationally efficient adaptive method for calculating the time evolution of the concentrations of chemical species in global 3-D models of atmospheric chemistry. Our strategy consists of partitioning the computational domain into fast and slow regions for each chemical species at every time step. In each grid box, we group the fast species and solve for their concentration in a coupled fashion. Concentrations of the slow species are calculated using a simple semi-implicit formula. Separation of species between fast and slow is done on the fly based on their local production and loss rates. This allows for example to exclude short-lived volatile organic compounds (VOCs) and their oxidation products from chemical calculations in the remote troposphere where their concentrations are negligible, letting the simulation determine the exclusion domain and allowing species to drop out individually from the coupled chemical calculation as their production/loss rates decline. We applied our method to a 1-year simulation of global tropospheric ozone-NO x-VOC-aerosol chemistry using the GEOS-Chem model. Results show a 50% improvement in computational performance for the chemical solver, with no significant added error.

  16. Insights Into Atmospheric Aqueous Organic Chemistry Through Controlled Experiments with Cloud Water Surrogates

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ramos, A.; Kirkland, J. R.; Lim, Y. B.; Seitzinger, S.

    2011-12-01

    There is considerable laboratory and field-based evidence that chemical processing in clouds and wet aerosols alters organic composition and contributes to the formation of secondary organic aerosol (SOA). Single-compound laboratory experiments have played an important role in developing aqueous-phase chemical mechanisms that aid prediction of SOA formation through multiphase chemistry. In this work we conduct similar experiments with cloud/fog water surrogates, to 1) evaluate to what extent the previously studied chemistry is observed in these more realistic atmospheric waters, and 2) to identify additional atmospherically-relevant precursors and products that require further study. We used filtered Camden and Pinelands, NJ rainwater as a surrogate for cloud water. OH radical (~10-12 M) was formed by photolysis of hydrogen peroxide and samples were analyzed in real-time by electrospray ionization mass spectroscopy (ESI-MS). Discrete samples were also analyzed by ion chromatography (IC) and ESI-MS after IC separation. All experiments were performed in duplicate. Standards of glyoxal, methylglyoxal and glycolaldehyde and their major aqueous oxidation products were also analyzed, and control experiments performed. Decreases in the ion abundance of many positive mode compounds and increases in the ion abundance of many negative mode compounds (e.g., organic acids) suggest that precursors are predominantly aldehydes, organic peroxides and/or alcohols. Real-time ESI mass spectra were consistent with the expected loss of methylglyoxal and subsequent formation of pyruvate, glyoxylate, and oxalate. New insights regarding other potential precursors and products will be provided.

  17. The importance of high spatial resolution for the performance of atmospheric chemistry-transport models

    NASA Astrophysics Data System (ADS)

    Mantzius Hansen, Kaj

    2010-05-01

    We have investigated the importance of spatial resolution for the performance of the Danish Eulerian Hemispheric Model (DEHM), a state-of-the-art atmospheric chemistry-transport model covering the majority of the Northern Hemisphere with a horizontal grid resolution of 150 km X 150 km. DEHM has 29 vertical layers in terrain-following sigma-coordinates extending up to a height of 100 hPa. Two-way nesting options with a nesting factor of three can be applied with higher resolution over a limited area of the model. At present the model can be run without nests or with one, two or three nests, each with resolutions of 50 km X 50 km, 16.7 km X 16.7 km, and 5.6 km X 5.6 km, respectively. The model includes a comprehensive chemistry scheme with more than 100 reactions and 67 atmospheric constituents, of which 4 relate to primary particulates (PM2.5, PM10, TSP and sea salt), other species are SOx, NOx, NHx, VOCs, and secondary inorganic particulates. DEHM is driven by meteorological data from the numerical weather prediction model MM5v3. Three simulations were performed with DEHM: one simulation with only the mother domain, one simulation with one nest over Europe, and one simulation with an additional nest covering Denmark and surrounding countries. All three simulations cover the period from 1989 to 2006. The predicted concentrations were evaluated against measurements from the EMEP monitoring network. Only sites within the innermost nest were included in the evaluation and the evaluations of the three simulations were compared to test the influence of spatial resolution on the performance of the model.

  18. The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE A) and Southern African Fire-Atmosphere Research Initiative (SAFARI): An introduction

    NASA Astrophysics Data System (ADS)

    Andreae, Meinrat O.; Fishman, Jack; Lindesay, Janette

    1996-10-01

    In November 1988 some 50 atmospheric scientists met at Dookie College, a small campus in the agricultural lands of Victoria, Australia, to map out the scientific goals of the International Global Atmospheric Chemistry (IGAC) Program, which was to become one of the first operational Core Projects of the International Geosphere-Biosphere Program (IGBP). They identified the tropical regions as one of the priority areas for future international, coordinated research in atmospheric chemistry because of the vast biological activity in the tropics, with a correspondingly large potential for biogenic emissions, and the rapidly growing human populations and resulting land use change in these regions. In view of the prominent role that biomass burning plays in the tropics as a source of atmospheric pollutants and of the important ecological functions of vegetation fires in the tropics, the scientists at Dookie created the Biomass Burning Experiment (BIBEX) with the goals of characterizing the fluxes of gases and aerosols from biomass burning to the global atmosphere and assessing the consequences of pyrogenic emissions on chemical and physical climate. The southern tropical Atlantic region, defined here as the region containing the Amazon basin, the tropical South Atlantic, and southern Africa, was the obvious first focus of research for this project. Large tropical forest and savanna fires had been known to occur here every year. In addition, observations from satellites and from the space shuttle had shown high levels of tropospheric ozone and carbon monoxide to be present over this region every year in the August-to-October period. Results from previous campaigns (ABLE 2A, CITE 3, DECAFE 88) also suggested a widespread impact of vegetation fires on both continents on the trace gas and aerosol content of the troposphere in this region.

  19. Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution

    NASA Astrophysics Data System (ADS)

    Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.

    Air quality models (AQM) consist of many modules (meteorology, emission, chemistry, deposition), and in some conditions such as: vicinity of clouds or aerosols plumes, complex local circulations (mountains, sea breezes), fully coupled models (online method) are necessary. In order to study the impact of lumped chemical mechanisms in AQM simulations, we examine the ability of both different chemical mechanisms: (i) simplified: Condensed Version of the MOdèle de Chimie Atmosphérique 2.2 (CV-MOCA2.2), and (ii) reference: Regional Atmospheric Chemistry Model (RACM), which are coupled online with the Regional Atmospheric Modeling Systems (RAMS) model, on the distribution of pollutants. During the ESCOMPTE experiment (Expérience sur Site pour COntraindre les Modèles de Pollution et de Transport d'Emissions) conducted over Southern France (including urban and industrial zones), Intensive observation periods (IOP) characterized by various meteorological and mixed chemical conditions are simulated. For both configurations of modeling, numerical results are compared with surface measurements (75 stations) for primary (NO x) and secondary (O 3) species. We point out the impact of the two different chemical mechanisms on the production of species involved in the oxidizing capacity such as ozone and radicals within urban and industrial areas. We highlight that both chemical mechanisms produce very similar results for the main pollutants (NO x and O 3) in three-dimensional (3D) distribution, despite large discrepancies in 0D modeling. For ozone concentration, we found sometimes small differences (5-10 ppb) between the mechanisms under study according to the cases (polluted or not). The relative difference between the two mechanisms over the whole domain is only -7% for ozone from CV-MOCA 2.2 versus RACM. When the order of magnitude is needed rather than an accurate estimate, a reduced mechanism is satisfactory. It has the advantage of running faster (four times less than CPU

  20. Nucla circulating atmospheric fluidized bed demonstration project. Final report

    SciTech Connect

    Not Available

    1991-10-01

    Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

  1. Pump-and-probe lidar for in-situ probing of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Clericetti, A.; Calpini, Bertrand; Durieux, E.; van den Bergh, Hubert; Rossi, Michel J.

    1992-12-01

    The troposphere is such a complex system that the prediction of air pollution scenarios often requires the use of sophisticated model calculations. Such models contain emissions, chemistry, transport (meteorology), and deposition processes. A large fraction of the information on the detailed processes which are put into the model, in particular where the chemistry is concerned, comes from laboratory measurements of homogeneous and inhomogeneous elementary reactions. The model is then tested against in situ measurements in the real troposphere. One of the key species in tropospheric chemistry is the OH radical which is an aggressive oxidizing agent. Due to its high reactivity, its concentration in the troposphere is low, generally below 5 X 106 radicals per cm3. This remains difficult to measure in general, although under optimal conditions long path optical absorption, as well as laser induced fluorescence (LIF) techniques, have now been successfully applied. If one wishes to investigate the reaction of, for example, OH radicals with molecule X, one approach called flash photolysis is often used in laboratory studies. A very high and easily observable concentration of OH radicals is created by a photochemical pathway using a short flash of light. The decay of the OH concentration to its equilibrium value in the presence of a large excess of X is studied in the time domain. This observation permits the determination of the rate constant k for the reaction OH + M yields products. We would like to test if our understanding of OH reactions in the atmosphere is sufficiently complete under many types of atmospheric conditions. The comparison of model calculations of OH concentrations with measurements is one solution to this problem, which, however, can not always be applied. Hence, we have proposed an alternative solution in which essentially a flash photolysis experiment is done in situ in the troposphere. Using a short laser pulse, for example a high concentration of

  2. A black carbon emission data base for atmospheric chemistry and climate studies

    SciTech Connect

    Dignon, J.; Eddleman, H.E.; Penner, J.E.

    1994-10-01

    A global data base of black carbon emissions to the atmosphere from fossil fuel combustion has been compiled for the use in atmospheric chemistry and climate studies. The resolution provided is at 1{degree} latitude by 1{degree} longitude based on previous work by Matthews, Lemer et al., and Dignon. A more extensive description of the assumptions made and emission factors used in this data base can be found in Penner et al. The original work of Penner et al. provides the emissions inventory data on a 5{degree} by 5{degree} resolution. The units of emission for this updated version of the inventory yield a global total of 12.6 TgC/y and are given as the mass in metric tons of carbon for each 1{degree} x 1{degree} grid. It is important to note that this is not equivalent to a flux, in that the area of the grid boxes vary latitudinally. The emissions are expected to represent the emissions for a typical mid-1980s year. The distribution of emission is based on national totals and then mapped on to the 1{degree} x 1{degree} grid according to the updated population mapping of Logan. A description of this mapping procedure can be found in Dignon.

  3. Photon and Water Mediated Sulfur Oxide and Acid Chemistry in the Atmosphere of Venus

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Vaida, Veronica

    2014-06-01

    Sulfur compounds have been observed in the atmospheres of a number of planetary bodies in our solar system including Venus, Earth, Mars, Io, Europa, and Callisto. The global cloud cover on Venus located at an altitude between 50 and 80 kilometers is composed primarily of sulfuric acid (H_2SO_4) and water. Planetary photochemical models have attempted to explain observations of sulfuric acid and sulfur oxides with significant discrepancies remaining between models and observation. In particular, high SO_2 mixing ratios are observed above 90 km which exceed model predictions by orders of magnitude. Work recently done in the Vaida lab has shown red light can drive photochemistry through overtone pumping for acids like H_2SO_4 and has been successful in explaining much of the sulfur chemistry in Earth's atmosphere. Water can have a number of interesting effects such as catalysis, suppression, and anti-catalysis of thermal and photochemical processes. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and present spectroscopic studies to document such effects. We investigate these reactions using FTIR and UV/Vis spectroscopy and will report on our findings.

  4. The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate

    NASA Astrophysics Data System (ADS)

    Arsenovic, P.; Rozanov, E.; Stenke, A.; Funke, B.; Wissing, J. M.; Mursula, K.; Tummon, F.; Peter, T.

    2016-11-01

    We investigate the influence of Middle Range Energy Electrons (MEE; typically 30-300 keV) precipitation on the atmosphere using the SOCOL3-MPIOM chemistry-climate model with coupled ocean. Model simulations cover the 2002-2010 period for which ionization rates from the AIMOS dataset and atmospheric composition observations from MIPAS are available. Results show that during geomagnetically active periods MEE significantly increase the amount of NOy and HOx in the polar winter mesosphere, in addition to other particles and sources, resulting in local ozone decreases of up to 35%. These changes are followed by an intensification of the polar night jet, as well as mesospheric warming and stratospheric cooling. The contribution of MEE also substantially enhances the difference in the ozone anomalies between geomagnetically active and quiet periods. Comparison with MIPAS NOy observations indicates that the additional source of NOy from MEE improves the model results, however substantial underestimation above 50 km remains and requires better treatment of the NOy source from the thermosphere. A surface air temperature response is detected in several regions, with the most pronounced warming occurring in the Antarctic during austral winter. Surface warming of up to 2 K is also seen over continental Asia during boreal winter.

  5. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry.

    PubMed

    Osborn, David L

    2017-03-15

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low-temperature combustion and in the oxidation of volatile organic compounds in Earth's atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization makes characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, and master equation methods enable a holistic treatment of both sequential and well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges. Expected final online publication date for the Annual Review of Physical Chemistry Volume 68 is April 20, 2017. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  6. Equilibrium Chemistry of the Atmospheres of Hot Earth-like Exoplanets

    NASA Astrophysics Data System (ADS)

    Schaefer, Laura; Lodders, K.; Fegley, B.

    2010-10-01

    The Kepler and COROT missions and Earth-based observations have discovered putative rocky exoplanets and at least some of these are very hot because they orbit their stars at close distance, e.g., CoRot-7b. Here we discuss atmospheric chemistry for an Earth-like planet hot enough to vaporize its crust. We computed the chemical equilibrium composition of a system with elemental abundances of the terrestrial continental crust from 500 - 4000 K as a function of pressure from 10-6 to 10+2.5 bars. Calculations were done with a Gibbs energy minimization code. We will present results for the major volatile elements H, C, N, O, and S, and the lithophile elements Na, K, Fe, Si, Mg, Al, Ca, and Ti at a nominal pressure of 100 bars as a function of temperature. The major gases are H2O and CO2 at low temperatures, and SiO, O, H, and O2 at high temperatures. We also present condensation temperatures for major compounds as a function of pressure, which will be useful in determining cloud composition. These results should be useful in planning spectroscopic studies of the atmospheres of hot Earth-like exoplanets. This work was supported by the NSF Astronomy Program and the NASA Astrobiology Program.

  7. A Simplified Model to Predict the Effect of Increasing Atmospheric CO[subscript 2] on Carbonate Chemistry in the Ocean

    ERIC Educational Resources Information Center

    Bozlee, Brian J.; Janebo, Maria; Jahn, Ginger

    2008-01-01

    The chemistry of dissolved inorganic carbon in seawater is reviewed and used to predict the potential effect of rising levels of carbon dioxide in the atmosphere. In agreement with more detailed treatments, we find that calcium carbonate (aragonite) may become unsaturated in cold surface seawater by the year 2100 C.E., resulting in the destruction…

  8. Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b

    SciTech Connect

    Barman, T S; Macintosh, B A; Konopacky, Q M; Marois, C

    2011-03-21

    Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrow-band photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a Hydrogen-rich atmosphere. Only weak CH{sub 4} absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH{sub 4} ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best fitting bulk parameters, T{sub eff} = 1100K {+-} 100 and log(g) = 3.5 {+-} 0.5 (for solar composition). Given the observed luminosity (log L{sub obs}/L{sub {circle_dot}} {approx} -5.1), these values correspond to a radius of 0.75 R{sub Jup{sub 0.12}{sup +0.17}} and mass {approx} 0.72 M{sub Jup{sub -0.6}{sup +2.6}} - strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to {approx} 10 x that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (< 1000K) required by the evolution models.

  9. Sensitivity of midnineteenth century tropospheric ozone to atmospheric chemistry-vegetation interactions

    NASA Astrophysics Data System (ADS)

    Hollaway, M. J.; Arnold, S. R.; Collins, W. J.; Folberth, G.; Rap, A.

    2017-02-01

    We use an Earth System model (HadGEM2-ES) to investigate the sensitivity of midnineteenth century tropospheric ozone to vegetation distribution and atmospheric chemistry-vegetation interaction processes. We conduct model experiments to isolate the response of midnineteenth century tropospheric ozone to vegetation cover changes between the 1860s and present day and to CO2-induced changes in isoprene emissions and dry deposition over the same period. Changes in vegetation distribution and CO2 suppression of isoprene emissions between midnineteenth century and present day lead to decreases in global isoprene emissions of 19% and 21%, respectively. This results in increases in surface ozone over the continents of up to 2 ppbv and of 2-6 ppbv in the tropical upper troposphere. The effects of CO2 increases on suppression of isoprene emissions and suppression of dry deposition to vegetation are small compared with the effects of vegetation cover change. Accounting for present-day climate in addition to present-day vegetation cover and atmospheric CO2 concentrations leads to increases in surface ozone concentrations of up to 5 ppbv over the entire northern hemisphere (NH) and of up to 8 ppbv in the NH free troposphere, compared with a midnineteenth century control simulation. Ozone changes are dominated by the following: (1) the role of isoprene as an ozone sink in the low NOx midnineteenth century atmosphere and (2) the redistribution of NOx to remote regions and the free troposphere via PAN (peroxyacetyl nitrate) formed from isoprene oxidation. We estimate a tropospheric ozone radiative forcing of 0.264 W m-2 and a sensitivity in ozone radiative forcing to midnineteenth century to present-day vegetation cover change of -0.012 W m-2.

  10. Evaluation of a Mineral Dust Simulation in the Atmospheric-Chemistry General Circulation Model-EMAC

    NASA Astrophysics Data System (ADS)

    Abdel Kader, M.; Astitha, M.; Lelieveld, J.

    2012-04-01

    This study presents an evaluation of the atmospheric mineral dust cycle in the Atmospheric Chemistry General Circulation Model (AC-GCM) using new developed dust emissions scheme. The dust cycle, as an integral part of the Earth System, plays an important role in the Earth's energy balance by both direct and indirect ways. As an aerosol, it significantly impacts the absorption and scattering of radiation in the atmosphere and can modify the optical properties of clouds and snow/ice surfaces. In addition, dust contributes to a range of physical, chemical and bio-geological processes that interact with the cycles of carbon and water. While our knowledge of the dust cycle, its impacts and interactions with the other global-scale bio-geochemical cycles has greatly advanced in the last decades, large uncertainties and knowledge gaps still exist. Improving the dust simulation in global models is essential to minimize the uncertainties in the model results related to dust. In this study, the results are based on the ECHAM5 Modular Earth Submodel System (MESSy) AC-GCM simulations using T106L31 spectral resolution (about 120km ) with 31 vertical levels. The GMXe aerosol submodel is used to simulate the phase changes of the dust particles between soluble and insoluble modes. Dust emission, transport and deposition (wet and dry) are calculated on-line along with the meteorological parameters in every model time step. The preliminary evaluation of the dust concentration and deposition are presented based on ground observations from various campaigns as well as the evaluation of the optical properties of dust using AERONET and satellite (MODIS and MISR) observations. Preliminarily results show good agreement with observations for dust deposition and optical properties. In addition, the global dust emissions, load, deposition and lifetime is in good agreement with the published results. Also, the uncertainties in the dust cycle that contribute to the overall model performance

  11. Analysis of coherent structures during the 2009 CABINEX field campaign: Implications for atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Pressley, S. N.; Steiner, A. L.; Chung, S. H.; Edburg, S. L.; Jones, E.; Botros, A.

    2010-12-01

    Intermittent coherent structures are an important component of turbulent exchange of mass, momentum, and energy at the biosphere-atmosphere interface. Specifically, above forested canopies, coherent structures can be responsible for a large fraction of the exchange of trace gases and aerosols between the sub-canopy (ground surface), canopy and the atmosphere. This study quantifies the coherent structures and associated turbulence intensity at the canopy interface for the Community Atmosphere-Biosphere Interactions Experiment (CABINEX) field campaign (July 1 - Aug 10, 2009) at the University of Michigan Biological Station (UMBS), and determines the effect of coherent structures on canopy air-parcel residence times and importance for atmospheric chemistry. Two different methods of analysis are used to estimate the coherent exchange: 1) wavelet analysis and 2) quadrant-hole (Q-H) analysis (also referred to as conditional sampling). Wavelet analysis uses wavelet transforms to detect non-periodic signals with a variable duration. Using temperature ramp structures, the timing and magnitude of individual coherent ‘events’ can be evaluated over the duration of the campaign. Conversely, the Q-H analysis detects ‘events’ when │u'w'│≥ H×urmswrms, where H is a threshold parameter, u is the stream-wise velocity and w is the vertical velocity. Events are primarily comprised of high momentum air penetrating into the canopy (sweeps, u’> 0; w’<0) and low momentum air escaping the canopy (ejections, u’<0; w’>0). Results from both techniques are compared under varying stability classes, and the number of events, total duration, and contribution to the total flux are analyzed for the full campaign. The contribution of coherent structures to the total canopy-atmosphere exchange is similar between the two methods, despite a greater number of events estimated from the Q-H analysis. These analyses improve the quantification of canopy mixing time at the UMBS site

  12. Introducing Second Year Chemistry Students to Research Work through Mini-Projects

    NASA Astrophysics Data System (ADS)

    Dunn, Jeffrey G.; Phillips, David N.

    1998-07-01

    In these so-called "mini-projects" second year students in an Applied Chemistry degree course gain their first insight to studying a chemistry-based problem prior to undertaking a major chemistry project at third year. They cover a range of topics including industrially based problems, improving current experiments in the second year Analytical Chemistry unit, or developing new experiments for future cohorts in Inorganic/Analytical Chemistry units. The class is divided into groups of 3 students, with each group being quite deliberately structured to include students of a range of ability. The program consists of one week for literature searching and four weeks of experimental work Each group is required to submit a joint written report and give an oral presentation to the whole class. The mini-projects provide an alternative experience for students to complement the standard laboratory exercises encountered in other sections of the course. They serve to introduce students on how to work in group situations, while also providing an insight to the type of work they will meet in their future employment. The assessment is based on self and peer assessment within each group, with the contribution of the class supervisor being only one-quarter of the total assessment. Valuable feedback has been obtained from student comments and the vast majority of comments reflect very favourably on the overall concept.

  13. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    PubMed

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration.

  14. A Transition from a Traditional to a Project-Like Physical Chemistry Laboratory via a Heterogeneous Catalysis Study.

    ERIC Educational Resources Information Center

    Goldwasser, M. R.; Leal, O.

    1979-01-01

    Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)

  15. Russian contribution to ExoMars Trace Gas Orbiter: Atmospheric Chemistry Suite (ACS)

    NASA Astrophysics Data System (ADS)

    Shakun, Alexey; Korablev, Oleg; Trokhimovskiy, Alexander; Grigoriev, Alexey; Anufreychik, Konstantin; Fedorova, Anna; Ignatiev, Nikolay; Ivanov, Yuriy; Moshkin, Boris; Kalinnikov, Yuriy; Montmessin, Franck

    2016-04-01

    Atmospheric Chemistry Suite (ACS) is a part of science payload of Trace Gas Orbiter (TGO), ExoMars mission. This project developed by European Space Agency (ESA) in collaboration with Russian Space Agency (Roscosmos). Russian contribution to ExoMars TGO is the Proton rocket and two science instruments ACS (three infrared spectrometers) and FREND (neutron detector). ACS consists of three infrared spectrometers (ACS/NIR, ACS/MIR and ACS/TIRVIM) capable to take spectral measurements from near to thermal infrared range simultaneously or separately. Spectrometric channels of ACS share common mechanical, electrical, and thermal interfaces. Electronic box (ACS/BE) provides to spectrometric channels power and data transfer interfaces. SpaceWire link is used for science data transfer and MIL-1553 link - for commanding and housekeeping data transfer. The NIR channel is an echelle spectrometer with acousto-optic tunable filter (AOTF) for the selection of diffraction orders. ACS NIR is capable to perform nadir and occultation observations. NIR covers the spectral range of 0.7-1.7 μm with resolving power of ~25000. NIR will perform unique for TGO instruments nightglow science (searching for O2, OH, NO nightglow emissions on Mars). From the 1.38 μm band NIR will do water vapour mapping in nadir and H2O vertical profiling in solar occultations. High resolution NIR measurements of 1.27 μm O2(a1Δg) dayglow will supply indirect ozone observations on the dayside on nadir. In solar occultation mode, the O2 vertical profiles will be measured from the surface (in case of low dust activity) to the 40 km altitude based on 0.76 μm absorption band. Together with MIR channel in solar occultation NIR will support the measurements of CO2 density profiles (based on 1.43 μm band) and aerosols characterization from 0.7 to 4 μm. The wide spectral range will allow not just determine aerosol particle sizes and density at different altitudes, but also distinguish between dust and ice particles

  16. Investigation of Atmospheric Chemistry in the Tropical UTLS with NASA's Global Hawk UAS during ATTREX

    NASA Astrophysics Data System (ADS)

    Stutz, J.; Atlas, E. L.; Cheung, R.; Chipperfield, M.; Colosimo, S. F.; Deutschmann, T.; Daube, B. C.; Gao, R. S.; Elkins, J. W.; Fahey, D. W.; Feng, W.; Hossaini, R.; Navarro, M. A.; Pittman, J. V.; Raecke, R.; Scalone, L.; Spolaor, M.; Tricoli, U.; Thornberry, T. D.; Tsai, J. Y.; Werner, B.; Wofsy, S. C.; Pfeilsticker, K.

    2015-12-01

    Bromine species play an important role in ozone chemistry in the tropical upper troposphere / lower stratosphere (UTLS). The tropical UTLS also serves as a gate to the stratosphere, and the vertical transport of organic and inorganic bromine species is an important source of halogens that impact stratospheric ozone chemistry. An accurate quantification of the sources, sinks, and chemical transformation of bromine species is thus crucial to the understanding of the bromine and ozone budget in the UTLS and the stratosphere. However, the investigation of the composition of the tropical UTLS is challenging, as the altitude of this region of 15 - 20 km requires high-altitude aircraft, or balloons. In recent years a new aircraft has become available to penetrate into this region: NASA's Global Hawk (GH) Unmanned Aircraft System (UAS). The GH has a ceiling altitude of 20 km and a 24h endurance with a full complement of scientific experiments. The GH provides a new and exciting platform that allows unique insights into atmospheric processes in the UTLS. Here we present observations of CH4, BrO, NO2, and ozone made on-board the GH during the 2011, 2013, and 2014 Airborne Tropical TRopopause EXperiment (ATTREX) in the pacific tropical UTLS. We will discuss the details of UV-vis remote sensing measurements of BrO and NO2 by the UCLA/HD limb scanning Differential Optical Absorption Spectroscopy instrument. We also present observations of organic bromine species from the University of Miami's Whole Air Sampler, in-situ ozone measurement by NOAA, and CH4 measurements by the Harvard Picarro instrument and the NOAA UCATS gas chromatograph. Methods to determine vertical trace gas profiles through aircraft maneuvers and by scanning the mini-DOAS telescope in viewing elevation will be discussed. The combination of the observations with calculations using the TOMCAT/SLIMCAT 3-D model allows quantification and interpretation of the bromine and ozone budget in the UTLS.

  17. s-Block Elements. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two sections and an appendix, focuses on the elements and compounds of Groups I and II (the s-block) of the periodic table. The groups are treated concurrently to note comparisons between groups and to…

  18. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    ERIC Educational Resources Information Center

    Draper, Alison J.

    2004-01-01

    An active service-learning research work is conducted in the field of advanced environmental chemistry. Multiple projects are assigned to students, which promote individual learning skills, self-confidence as scientists, and a deep understanding of the environmental chemist's profession.

  19. Undergraduate Introductory Quantitative Chemistry Laboratory Course: Interdisciplinary Group Projects in Phytoremediation

    ERIC Educational Resources Information Center

    Van Engelen, Debra L.; Suljak, Steven W.; Hall, J. Patrick; Holmes, Bert E.

    2007-01-01

    The laboratory course around the phytoremediation is designed to develop both individual skills and promote cooperative learning while starting students work on projects in a specific area of environmental chemistry and analysis. Many research-active undergraduate institutions have developed courses, which are interdisciplinary in nature that…

  20. Atomic Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on atomic structure is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one focuses on the atomic nucleus. Level two focuses on the arrangement of extranuclear electrons, approaching atomic orbitals through both electron bombardment and spectra.…

  1. Exploration of SO[subscript 2] Scrubbers: An Environmental Chemistry Project

    ERIC Educational Resources Information Center

    Schilling, Amber L.; Leber, Phyllis A.; Yoder, Claude H.

    2009-01-01

    The remediation of acid rain by SO[subscript 2] scrubbing is integrated into a laboratory project appropriate for first-year chemistry students. By burning a small amount of sulfur and bubbling the gas produced through distilled water, the student first observes one of the reactions that produces acid rain. The student then tests four different…

  2. Equilibrium II: Acids and Bases. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the application of equilibrium principles to equilibria involving weak acids and bases, including buffer solutions and indicators. Level one uses Le Chatelier's…

  3. The Halogens. Independent Learning Project for Advanced Chemistry (ILPAC). Unit I2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, focuses on the elements and compounds of Group IV (halogens) of the periodic table. Level one deals with the physical and chemical properties of the individual elements. Level two considers…

  4. Hydrocarbons. Independent Learning Project for Advanced Chemistry (ILPAC). Unit O1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on hydrocarbons is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit is divided into sections dealing with alkanes, alkenes, alkynes, arenes, and several aspects of the petroleum industry. Two experiments, exercises (with answers), and pre- and post-tests are included.…

  5. Enhancing Undergraduate Students' Chemistry Understanding through Project-Based Learning in an IT Environment

    ERIC Educational Resources Information Center

    Barak, Miri; Dori, Yehudit Judy

    2005-01-01

    Project-based learning (PBL), which is increasingly supported by information technologies (IT), contributes to fostering student-directed scientific inquiry of problems in a real-world setting. This study investigated the integration of PBL in an IT environment into three undergraduate chemistry courses, each including both experimental and…

  6. The Gaseous State. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P1.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the gaseous state is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. Level one deals with the distinctive characteristics of gases, then considers the gas laws, in particular the ideal gas equation and its applications. Level two concentrates on…

  7. Bonding and Structure. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S4.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical bonding is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides an introduction to the main types of chemical bonding and important aspects of structure. The main emphasis is placed on such topics as ionic and covalent bonding,…

  8. Chemical Energetics. Independent Learning Project for Advanced Chemistry (ILPAC). Unit S3.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on chemical energetics is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit, which consists of two levels, provides a clear yet detailed and thorough introduction to the topic. Level one extends ideas from previous courses, introduces and emphasizes the importance of Hess'…

  9. Equilibrium I: Principles. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P2.

    ERIC Educational Resources Information Center

    Inner London Education Authority (England).

    This unit on the principles of equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. After a treatment of non-mathematical aspects in level one (the idea of a reversible reaction, characteristics of an equilibrium state, the Le Chatelier's principle),…

  10. A Service-Learning Project in Chemistry: Environmental Monitoring of a Nature Preserve

    ERIC Educational Resources Information Center

    Kammler, David C.; Truong, Triet M.; VanNess, Garrett; McGowin, Audrey E.

    2012-01-01

    A collaborative environmental service-learning project was implemented between upper-level undergraduate science majors and graduate chemistry students at a large state school and first-year students at a small private liberal arts college. Students analyzed the water quality in a nature preserve by determining the quantities of 12 trace metals,…

  11. Projects that Assist with Content in a Traditional Organic Chemistry Course

    ERIC Educational Resources Information Center

    Esteb, John J.; Magers, John R.; McNulty, LuAnne; Wilson, Anne M.

    2006-01-01

    Two projects, the reaction notebook and the end-of-semester synthesis activity are described which could help students to adopt a discovery-based learning and engage students in practical applications of chemistry. Students have provided positive feedback on this classroom assignment and have felt that it has helped them crystallize their thought…

  12. A Wiki-Based Group Project in an Inorganic Chemistry Foundation Course

    ERIC Educational Resources Information Center

    Kristian, Kathleen E.

    2015-01-01

    A semester-long group project that utilizes wiki sites to enhance collaboration was developed for a foundation course in inorganic chemistry. Through structured assignments, student groups use metal-based or metal-combating therapeutic agents as a model for applying and understanding course concepts; they also gain proficiency with scientific- and…

  13. Simulation of a Forensic Chemistry Problem: A Multidisciplinary Project for Secondary School Chemistry Students.

    ERIC Educational Resources Information Center

    Long, G. A.

    1995-01-01

    Describes a project that uses a multidisciplinary approach to problem solving in analyzing a crime scene and suspect evidence. Requires each student to work effectively in a team, communicate in both written and oral forms, perform hands-on laboratory manipulations, and realize that the entire class was depending on their individual contributions…

  14. Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Jorba, Oriol; Voulgarakis, Apostolos; Dabdub, Donald; Pérez García-Pando, Carlos; Hilboll, Andreas; Gonçalves, María; Janjic, Zavisa

    2017-02-01

    This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3-0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error - RMSE - below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting

  15. The Titan Haze Simulation Experiment: Probing the Different Steps of Titan’s Atmospheric Chemistry at Low Temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Contreras, C. S.; Ricketts, C. L.; Salama, F.

    2012-10-01

    In Titan’s atmosphere, a complex chemistry between its two main constituents, N2 and CH4, leads to the production of heavy molecules and subsequently to solid aerosols. The Titan Haze Simulation (THS) experiment has been developed on the Ames simulation chamber, COSmIC, to study the chemical pathways that link the simple molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN...) to benzene, and to polycyclic aromatic hydrocarbons (PAHs) and nitrogen-containing PAHs (PANHs) as precursors to the production of solid aerosols. In the THS experiment, Titan’s atmospheric chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is cooled to Titan-like temperature ( 150K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of Titan’s chemistry but also much heavier molecules like PAHs or PANHs can be injected to study specific chemical reactions. The products of the chemistry are detected and studied using two complementary techniques: Cavity Ring Down Spectroscopy and Time-Of-Flight Mass Spectrometry. Thin tholin deposits are also produced in the THS experiment and can be analyzed by Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM). Here we present the results of a systematic mass spectrometry study using different gas mixtures of N2 with hydrocarbon precursors, and similar mixtures with N2-CH4 (90:10) instead of pure N2, to study specific pathways associated with the presence of these trace elements in Titan’s atmosphere. These results show the uniqueness of the THS experiment to help understand the first steps of Titan’s atmospheric chemistry as well as intermediate steps of the chemistry and specific chemical pathways leading to Titan’s haze formation. We will also present preliminary results of the tholin ex situ analysis and discuss the implications for our understanding of

  16. A sensitivity study of the obliquity of the early Earth with the ECHAM/MESSy Atmospheric Chemistry model

    NASA Astrophysics Data System (ADS)

    Hamann-Reinus, Anke; Kunze, Markus; Langematz, Ulrike; Godolt, Mareike; Jöckel, Patrick; Rauer, Heike

    Studying the evolution of early Earth's atmosphere is of crucial importance for the understand-ing of the habitability of the terrestrial planets and, in the end, the development of life. In this contribution we investigate the influence of the Earth's obliquity on atmospheric dynam-ics. For this parameter study of obliquity we use here the Chemistry Climate model EMAC (ECHAM/MESSy Atmospheric Chemistry model). According to Ito and Hamano (1995), the obliquity of the Earth's axis was only 19.5 at the age of 2.5 Gyr. To analyse in particular the sen-sitivity of the model dynamics we selected therefore three representative obliquity values: 23.5 (control run), 19.5 (lowered obliquity, see Ito and Hamano (1995)), 27.5 (increased obliquity-comparative study). For our numerical experiments we use the present day atmospheric compo-sition, land-mask, and solar luminosity. We present results regarding the atmospheric dynamics and circulation focussing thereby on the middle atmosphere.

  17. A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes

    NASA Astrophysics Data System (ADS)

    Delort, Anne-Marie; Vaïtilingom, Mickael; Amato, Pierre; Sancelme, Martine; Parazols, Marius; Mailhot, Gilles; Laj, Paolo; Deguillaume, Laurent

    2010-11-01

    Recent studies showed that living microorganisms, including bacteria, fungi and yeasts, are present in the atmospheric water phase (fog and clouds) and their role in chemical processes may have been underestimated. At the interface between atmospheric science and microbiology, information about this field of science suffers from the fact that not all recent findings are efficiently conveyed to both scientific communities. The purpose of this paper is therefore to provide a short overview of recent work linked to living organisms in the atmospheric water phase, from their activation to cloud droplets and ice crystal, to their potential impact on atmospheric chemical processes. This paper is focused on the microorganisms present in clouds and on the role they could play in atmospheric chemistry and nucleation processes. First, the life cycle of microorganisms via the atmosphere is examined, including their aerosolization from sources, their integration into clouds and their wet deposition on the ground. Second, special attention is paid to the possible impacts of microorganisms on liquid and ice nucleation processes. Third, a short description of the microorganisms that have been found in clouds and their variability in numbers and diversity is presented, emphasizing some specific characteristics that could favour their occurrence in cloud droplets. In the last section, the potential role of microbial activity as an alternative route to photochemical reaction pathways in cloud chemistry is discussed.

  18. Current Status of the Validation of the Atmospheric Chemistry Instruments on Envisat

    NASA Astrophysics Data System (ADS)

    Lecomte, P.; Koopman, R.; Zehner, C.; Laur, H.; Attema, E.; Wursteisen, P.; Snoeij, P.

    2003-04-01

    Envisat is ESA's advanced Earth observing satellite launched in March 2002 and is designed to provide measurements of the atmosphere, ocean, land and ice over a five-year period. After the launch and the switch-on period, a six-month commissioning phase has taken place for instrument calibration and geophysical validation, concluded with the Envisat Calibration Review held in September 2002. In addition to ESA and its industrial partners in the Envisat consortium, many other companies and research institutes have contributed to the calibration and validation programme under ESA contract as expert support laboratories (ESLs). A major contribution has also been made by the Principal Investigators of approved proposals submitted to ESA in response to a worldwide "Announcement of Opportunity for the Exploitation of the Envisat Data Products" in 1998. Working teams have been formed in which the different participants worked side by side to achieve the objectives of the calibration and validation programme. Validation is a comparison of Envisat level-2 data products and estimates of the different geophysical variables obtained by independent means, the validation instruments. Validation is closely linked to calibration because inconsistencies discovered in the comparison of Envisat Level 2 data products to well-known external instruments can have many different sources, including inaccuracies of the Envisat instrument calibration and the data calibration algorithms. Therefore, initial validation of the geophysical variables has provided feedback to calibration, de-bugging and algorithm improvement. The initial validation phase ended in December 2002 with the Envisat Validation Workshop at which, for a number of products, a final quality statement was given. Full validation of all data products available from the Atmospheric Chemistry Instruments on Envisat (MIPAS, GOMOS and SCIAMACHY) is quite a challenge and therefore it has been decided to adopt a step-wise approach

  19. Parameterization of gaseous dry deposition in atmospheric chemistry models: Sensitivity to aerodynamic resistance formulations under statically stable conditions

    NASA Astrophysics Data System (ADS)

    Toyota, Kenjiro; Dastoor, Ashu P.; Ryzhkov, Andrei

    2016-12-01

    Turbulence controls the vertical transfer of momentum, heat and trace constituents in the atmospheric boundary layer. In the lowest 10% of this layer lies the surface boundary layer (SBL) where the vertical fluxes of transferred quantities have been successfully parameterized using the Monin-Obukhov similarity theory in weather forecast, climate and atmospheric chemistry models. However, there is a large degree of empiricism in the stability-correction parameterizations used to formulate eddy diffusivity and aerodynamic resistance particularly under strongly stable ambient conditions. Although the influence of uncertainties in stability-correction parameterizations on eddy diffusivity is actively studied in boundary-layer meteorological modeling, its impact on dry deposition in atmospheric chemistry modeling is not well characterized. In this study, we address this gap by providing the mathematical basis for the relationship between the formulations of vertical surface flux used in meteorological and atmospheric chemistry modeling communities, and by examining the sensitivity of the modeled dry deposition velocities in statically stable SBL to the choice of stability-correction parameterizations used in three operational and/or research environmental models (GEM/GEM-MACH, ECMWF IFS and CMAQ-MM5). Aerodynamic resistances (ra) calculated by the three sets of parameterizations are notably different from each other and are also different from those calculated by a "z-less" scaling formulation under strongly stable conditions (the bulk Richardson number > 0.2). Furthermore, we show that many atmospheric chemistry models calculate ra using formulations which are inconsistent with the derivation of micro-meteorological parameters. Finally, practical implications of the differences in stability-correction algorithms are discussed for the computations of dry deposition velocities of SO2, O3 and reactive bromine compounds for specific cases of stable SBL.

  20. Laboratory studies of low temperature rate coefficients: The atmospheric chemistry of the outer planets

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1995-01-01

    The objectives of the research are to measure low temperature laboratory rate coefficients for key reactions relevant to the atmospheres of Titan and Saturn. These reactions are, for example, C2H + H2, CH4, C2H2, and other hydrocarbons which need to be measured at low temperatures, down to approximately 150 K. The results of this work are provided to NASA specialists who study modeling of the hydrocarbon chemistry of the outer planets. The apparatus for this work consists of a pulsed laser photolysis system and a tunable F-center probe laser to monitor the disappearance of C2H. A low temperature cell with a cryogenic circulating fluid in the outer jacket provides the gas handling system for this work. These elements have been described in detail in previous reports. Several new results are completed and the publications are just being prepared. The reaction of C2H with C2H2 has been measured with an improved apparatus down to 154 K. An Arrhenius plot indicates a clear increase in the rate coefficient at the lowest temperatures, most likely because of the long-lived (C4H3) intermediate. The capability to achieve the lowest temperatures in this work was made possible by construction of a new cell and addition of a multipass arrangement for the probe laser, as well as improvements to the laser system.

  1. Laser flash photolysis studies of atmospheric free radical chemistry using optical diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Wine, Paul H.; Nicovich, J. M.; Hynes, Anthony J.; Stickel, Robert E.; Thorn, R. P.; Chin, Mian; Cronkhite, Jeffrey A.; Shackelford, Christie J.; Zhao, Zhizhong; Daykin, Edward P.

    1993-01-01

    Some recent studies carried out in our laboratory are described where laser flash photolytic production of reactant free radicals has been combined with reactant and/or product detection using time-resolved optical techniques to investigate the kinetics and mechanisms of important atmospheric chemical reactions. Discussed are (1) a study of the radical-radical reaction O + BrO yields Br + O2 where two photolysis lasers are employed to prepare the reaction mixture and where the reactants O and BrO are monitored simultaneously using atomic resonance fluorescence to detect O and multipass UV absorption to detect BrO; (2) a study of the reaction of atomic chlorine with dimethylsulfide (CH3SCH3) where atomic resonance fluorescence detection of Cl is employed to elucidate the kinetics and tunable diode laser absorption spectroscopy is employed to investigate the HCl product yield; and (3) a study of the aqueous phase chemistry of Cl2(-) radicals where longpath UV absorption spectroscopy is employed to investigate the kinetics of the Cl2(-) + H2O reaction.

  2. Numerical Simulations and Diagnostic Studies Relating Meteorology To Atmospheric Chemistry during TRACE-P

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    2003-01-01

    The Florida State University (FSU) team participated extensively in the pre-mission planning for TRACE-P through meetings, telephone calls, and e-mails. During Spring 2001, Prof. Fuelberg served as DC-8 Mission Meteorologist during the field campaign. He prepared meteorological guidance for each flight of the DC-8 and flew on each mission. After the field phase, FSU prepared various meteorological products, included backward air trajectories, for each flight of the DC-8 and P-3B. These were posted on the FSU and NASA-GTE web sites for use by all the Science Team. During the two-year post mission period, FSU conducted research relating meteorology to atmospheric chemistry during TRACE-P. This led to three journal articles in the Journal of Geophysical Research. FSU personnel were the lead authors on each of these articles. Abstracts of these articles are attached. In addition, the FSU team collaborated with other members of the TRACE-P Science Team to incorporate meteorological factors into their research. A list of publications resulting from these interactions is included.

  3. Evaluation of NO+ reagent ion chemistry for online measurements of atmospheric volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Koss, Abigail R.; Warneke, Carsten; Yuan, Bin; Coggon, Matthew M.; Veres, Patrick R.; de Gouw, Joost A.

    2016-07-01

    NO+ chemical ionization mass spectrometry (NO+ CIMS) can achieve fast (1 Hz and faster) online measurement of trace atmospheric volatile organic compounds (VOCs) that cannot be ionized with H3O+ ions (e.g., in a PTR-MS or H3O+ CIMS instrument). Here we describe the adaptation of a high-resolution time-of-flight H3O+ CIMS instrument to use NO+ primary ion chemistry. We evaluate the NO+ technique with respect to compound specificity, sensitivity, and VOC species measured compared to H3O+. The evaluation is established by a series of experiments including laboratory investigation using a gas-chromatography (GC) interface, in situ measurement of urban air using a GC interface, and direct in situ measurement of urban air. The main findings are that (1) NO+ is useful for isomerically resolved measurements of carbonyl species; (2) NO+ can achieve sensitive detection of small (C4-C8) branched alkanes but is not unambiguous for most; and (3) compound-specific measurement of some alkanes, especially isopentane, methylpentane, and high-mass (C12-C15) n-alkanes, is possible with NO+. We also demonstrate fast in situ chemically specific measurements of C12 to C15 alkanes in ambient air.

  4. Studies of Tampa Bay Region Power Plant Plumes during the Bay Region Atmospheric Chemistry Experiment (BRACE)

    NASA Astrophysics Data System (ADS)

    Watson, T. B.; Luke, W. T.; Arnold, J. R.; Gunter, L. R.

    2003-12-01

    The NOAA Air Resources Laboratory made aircraft measurements of chemical and meteorological parameters during 21 flights of the NOAA Twin Otter as part of the Bay Region Atmospheric Chemistry Experiment (BRACE). BRACE was conducted in May 2002. The aircraft flew horizontal transects upwind and downwind of the urban area on 13 of these flights to characterize the urban and power plant plumes. Vertical profiles from 60 to 3000 m MSL were made on most flights. Profiles were made over the Gulf of Mexico, Tampa Bay, and various land sites. On many flights, transects were located immediately downwind of the urban region and power plants and at successive distances farther downwind to characterize the horizontal distribution and chemical processing of the plumes as they aged. At each distance, data was collected during multiple passes at different altitudes to characterize the vertical structure. Many of the downwind passes were flown over the Gulf where sources are limited and the plumes can be observed in relative isolation. The contribution of the power plant plumes are analyzed to determine changes in the vertical and horizontal distribution of the plumes; horizontal fluxes of NOx, NOy, and ozone; production of ozone; deposition rates; and changes on successive days of regional background and concentration maxima caused by the power plant emissions.

  5. Using "Household Chemistry Projects" To Develop Research Skills and To Teach Scientific Writing

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael H.

    1997-04-01

    Students in a junior-level Chemistry library resources and scientific writing course were assigned semester-long "Household Chemistry Projects." Students were asked to independently develop written proposals for research they could do at their homes using ordinary household supplies. Upon approval of their proposals, students performed the research and wrote up in their results in standard journal format. The final drafts were subjected to peer review, and published in a class journal. Through feedback and rewriting, students not only improved their scientific writing skills, but also learned about designing, conducting, and criticizing research.

  6. Results of an interactively coupled atmospheric chemistry A~é general circulation model: Comparison with observations

    NASA Astrophysics Data System (ADS)

    Hein, R.; Dameris, M.; Schnadt, C.; Land, C.; Grewe, V.; Köhler, I.; Ponater, M.; Sausen, R.; Steil, B.; Landgraf, J.; Brühl, C.

    2001-04-01

    The coupled climate-chemistry model ECHAM4.L39(DLR)/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990) and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR)/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas

  7. Impact of Improvements in Volcanic Implementation on Atmospheric Chemistry and Climate in the GISS-E2 Model

    NASA Technical Reports Server (NTRS)

    Tsigaridis, Kostas; LeGrande, Allegra; Bauer, Susanne

    2015-01-01

    The representation of volcanic eruptions in climate models introduces some of the largest errors when evaluating historical simulations, partly due to the crude model parameterizations. We will show preliminary results from the Goddard Institute for Space Studies (GISS)-E2 model comparing traditional highly parameterized volcanic implementation (specified Aerosol Optical Depth, Effective Radius) to deploying the full aerosol microphysics module MATRIX and directly emitting SO2 allowing us the prognosically determine the chemistry and climate impact. We show a reasonable match in aerosol optical depth, effective radius, and forcing between the full aerosol implementation and reconstructions/observations of the Mt. Pinatubo 1991 eruption, with a few areas as targets for future improvement. This allows us to investigate not only the climate impact of the injection of volcanic aerosols, but also influences on regional water vapor, O3, and OH distributions. With the skill of the MATRIX volcano implementation established, we explore (1) how the height of the injection column of SO2 influence atmospheric chemistry and climate response, (2) how the initial condition of the atmosphere influences the climate and chemistry impact of the eruption with a particular focus on how ENSO and QBO and (3) how the coupled chemistry could mitigate the climate signal for much larger eruptions (i.e. the 1258 eruption, reconstructed to be approximately 10x Pinatubo). During each sensitivity experiment we assess the impact on profiles of water vapor, O3, and OH, and assess how the eruption impacts the budget of each.

  8. Impact of improvements in volcanic implementation on atmospheric chemistry and climate in the GISS-E2 Model

    NASA Astrophysics Data System (ADS)

    LeGrande, A. N.; Tsigaridis, K.

    2014-12-01

    The representation of volcanic eruptions in climate models introduces some of the largest errors when evaluating historical simulations, partly due to the crude model parameterizations. We will show preliminary results from the Goddard Institute for Space Studies (GISS)-E2 model comparing traditional highly parameterized volcanic implementation (specified Aerosol Optical Depth, Effective Radius) to deploying the full aerosol modules (MATRIX) and directly emitting SO2 allowing us the prognosically determine the climate and chemistry impact. We show a reasonable match in aerosol optical depth, effective radius, and forcing between the full aerosol implementation and reconstructions/observations of the Mt. Pinatubo 1991 eruption, with a few areas as targets for future improvement. This allows us to investigate not only the climate impact of the injection of volcanic aerosols, but also influences on regional water vapor, O3, and OH distributions. With the skill of the MATRIX volcano implementation established, we explore (1) how the height of the injection column of SO2 influence atmospheric chemistry and climate response, (2) how the initial condition of the atmosphere influences the climate and chemistry impact of the eruption with a particular focus on how ENSO and QBO and (3) how the coupled chemistry could mitigate the climate signal for much larger eruptions (i.e., the 1258 eruption, reconstructed to be ~10x Pinatubo). During each sensitivity experiment we assess the impact on profiles of water vapor, O3, and OH, and assess how the eruption impacts the budget of each.

  9. Impact of improvements in volcanic implementation on atmospheric chemistry and climate in the GISS-E2 Model

    NASA Astrophysics Data System (ADS)

    Tsigaridis, Kostas; LeGrande, Allegra; Bauer, Susanne

    2015-04-01

    The representation of volcanic eruptions in climate models introduces some of the largest errors when evaluating historical simulations, partly due to the crude model parameterizations. We will show preliminary results from the Goddard Institute for Space Studies (GISS)-E2 model comparing traditional highly parameterized volcanic implementation (specified Aerosol Optical Depth, Effective Radius) to deploying the full aerosol microphysics module MATRIX and directly emitting SO2 allowing us the prognosically determine the chemistry and climate impact. We show a reasonable match in aerosol optical depth, effective radius, and forcing between the full aerosol implementation and reconstructions/observations of the Mt. Pinatubo 1991 eruption, with a few areas as targets for future improvement. This allows us to investigate not only the climate impact of the injection of volcanic aerosols, but also influences on regional water vapor, O3, and OH distributions. With the skill of the MATRIX volcano implementation established, we explore (1) how the height of the injection column of SO2 influence atmospheric chemistry and climate response, (2) how the initial condition of the atmosphere influences the climate and chemistry impact of the eruption with a particular focus on how ENSO and QBO and (3) how the coupled chemistry could mitigate the climate signal for much larger eruptions (i.e., the 1258 eruption, reconstructed to be ~10x Pinatubo). During each sensitivity experiment we assess the impact on profiles of water vapor, O3, and OH, and assess how the eruption impacts the budget of each.

  10. Atmospheric transport modeling and input data for Phase 1 of the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Ramsdell, J.V.; Burk, K.W.

    1991-07-01

    This report summarizes the information used in modeling atmospheric transport and diffusion for Phase I of the Hanford Environmental Dose Reconstruction (HEDR) Project. It also lists the results of the atmospheric transport calculations that were provided for use in dose estimation. The report does not contain a description of the atmospheric model or an analysis of the results of the atmospheric calculations. 9 refs., 3 figs., 14 tabs.

  11. Research in Physical Chemistry and Chemical Education: Part A--Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B--The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Maron, Marta Katarzyna

    2011-01-01

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…

  12. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  13. Carbon Dioxide (CO2) Retrievals from Atmospheric Chemistry Experiment (ACE) Solar Occultation Measurements

    NASA Technical Reports Server (NTRS)

    Rinsland, Curtis P.; Chiou, Linda; Boone, Chris; Bernath, Peter

    2010-01-01

    The Atmospheric Chemistry Experiment ACE satellite (SCISAT-1) was launched into an inclined orbit on 12 August 2003 and is now recording high signal-to-noise 0.02 per centimeter resolution solar absorption spectra covering 750-4400 per centimeter (2.3-13 micrometers). A procedure has been developed for retrieving average dry air CO2 mole fractions (X(sub CO2)) in the altitude range 7-10 kilometers from the SCISAT-1 spectra. Using the N2 continuum absorption in a window region near 2500 per centimeter, altitude shifts are applied to the tangent heights retrieved in version 2.2 SCISAT-1 processing, while cloudy or aerosol-impacted measurements are eliminated. Monthly-mean XCO2 covering 60 S to 60 N latitude for February 2004 to March 2008 has been analyzed with consistent trends inferred in both hemispheres. The ACE XCO2 time series have been compared with previously-reported surface network measurements, predictions based on upper tropospheric aircraft measurements, and space-based measurements. The retrieved X(sub CO2) from the ACE-FTS spectra are higher on average by a factor of 1.07 plus or minus 0.025 in the northern hemisphere and by a factor of 1.09 plus or minus 0.019 on average in the southern hemisphere compared to surface station measurements covering the same time span. The ACE derived trend is approximately 0.2% per year higher than measured at surface stations during the same observation period.

  14. Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry.

    PubMed

    Farmer, D K; Matsunaga, A; Docherty, K S; Surratt, J D; Seinfeld, J H; Ziemann, P J; Jimenez, J L

    2010-04-13

    Organonitrates (ON) are important products of gas-phase oxidation of volatile organic compounds in the troposphere; some models predict, and laboratory studies show, the formation of large, multifunctional ON with vapor pressures low enough to partition to the particle phase. Organosulfates (OS) have also been recently detected in secondary organic aerosol. Despite their potential importance, ON and OS remain a nearly unexplored aspect of atmospheric chemistry because few studies have quantified particulate ON or OS in ambient air. We report the response of a high-resolution time-of-flight aerosol mass spectrometer (AMS) to aerosol ON and OS standards and mixtures. We quantify the potentially substantial underestimation of organic aerosol O/C, commonly used as a metric for aging, and N/C. Most of the ON-nitrogen appears as NO(x)+ ions in the AMS, which are typically dominated by inorganic nitrate. Minor organonitrogen ions are observed although their identity and intensity vary between standards. We evaluate the potential for using NO(x)+ fragment ratios, organonitrogen ions, HNO(3)+ ions, the ammonium balance of the nominally inorganic ions, and comparison to ion-chromatography instruments to constrain the concentrations of ON for ambient datasets, and apply these techniques to a field study in Riverside, CA. OS manifests as separate organic and sulfate components in the AMS with minimal organosulfur fragments and little difference in fragmentation from inorganic sulfate. The low thermal stability of ON and OS likely causes similar detection difficulties for other aerosol mass spectrometers using vaporization and/or ionization techniques with similar or larger energy, which has likely led to an underappreciation of these species.

  15. Enabling drug discovery project decisions with integrated computational chemistry and informatics.

    PubMed

    Tsui, Vickie; Ortwine, Daniel F; Blaney, Jeffrey M

    2016-10-31

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  16. Enabling drug discovery project decisions with integrated computational chemistry and informatics

    NASA Astrophysics Data System (ADS)

    Tsui, Vickie; Ortwine, Daniel F.; Blaney, Jeffrey M.

    2016-10-01

    Computational chemistry/informatics scientists and software engineers in Genentech Small Molecule Drug Discovery collaborate with experimental scientists in a therapeutic project-centric environment. Our mission is to enable and improve pre-clinical drug discovery design and decisions. Our goal is to deliver timely data, analysis, and modeling to our therapeutic project teams using best-in-class software tools. We describe our strategy, the organization of our group, and our approaches to reach this goal. We conclude with a summary of the interdisciplinary skills required for computational scientists and recommendations for their training.

  17. Project-focused activity and knowledge tracker: a unified data analysis, collaboration, and workflow tool for medicinal chemistry project teams.

    PubMed

    Brodney, Marian D; Brosius, Arthur D; Gregory, Tracy; Heck, Steven D; Klug-McLeod, Jacquelyn L; Poss, Christopher S

    2009-12-01

    Advances in the field of drug discovery have brought an explosion in the quantity of data available to medicinal chemists and other project team members. New strategies and systems are needed to help these scientists to efficiently gather, organize, analyze, annotate, and share data about potential new drug molecules of interest to their project teams. Herein we describe a suite of integrated services and end-user applications that facilitate these activities throughout the medicinal chemistry design cycle. The Automated Data Presentation (ADP) and Virtual Compound Profiler (VCP) processes automate the gathering, organization, and storage of real and virtual molecules, respectively, and associated data. The Project-Focused Activity and Knowledge Tracker (PFAKT) provides a unified data analysis and collaboration environment, enhancing decision-making, improving team communication, and increasing efficiency.

  18. Chemistry Outreach Project to High Schools Using a Mobile Chemistry Laboratory, ChemKits, and Teacher Workshops

    ERIC Educational Resources Information Center

    Long, Gary L.; Bailey, Carol A.; Bunn, Barbara B.; Slebodnick, Carla; Johnson, Michael R.; Derozier, Shad

    2012-01-01

    The Chemistry Outreach Program (ChOP) of Virginia Tech was a university-based outreach program that addressed the needs of high school chemistry classes in underfunded rural and inner-city school districts. The primary features of ChOP were a mobile chemistry laboratory (MCL), a shipping-based outreach program (ChemKits), and teacher workshops.…

  19. Cooperative and Context-Based Learning on Eletrochemical Cells in Lower Secondary Chemistry: A Project of Participatory Action Research

    ERIC Educational Resources Information Center

    Markic, Silvija; Eilks, Ingo

    2006-01-01

    This paper discusses a project of Participatory Action Research (PAR) on lower secondary chemistry education. In this ongoing project, practicing teachers and university researchers in chemical education jointly carry out projects for developing and evaluating new lesson plans. The focus of the PAR group is to develop teaching/learning activities…

  20. The impact of temperature dependent CO2 cross section measurements: A role for heterogeneous chemistry in the atmosphere of Mars?

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Allen, M.; Nair, H.; Leu, M-T.; Yung, Y. L.

    1992-01-01

    Carbon dioxide comprises over 95 percent of the Mars atmosphere, despite continuous photolysis of CO2 by solar ultraviolet (UV) radiation. Since the direct recombination of CO and O is spinforbidden, the chemical stability of CO2 in the Martian atmosphere is thought to be the result of a HO(x)-catalyzed recombination scheme. Thus the rate of CO oxidation is sensitive to the abundance and altitude distribution of OH, H, and HO2. Most Martian atmospheric models assume that HO(x) abundances are governed purely by gas phase chemistry. However, it is well established that reactive HO(x) radical are adsorbed by a wide variety of surfaces. The authors have combined laboratory studies of H, OH, and HO2 adsorption on inorganic surfaces, observational data of aerosol distributions, and an updated photochemical model to demonstrate that adsorption on either dust or ice aerosols is capable of reducing HO(x) abundances significantly, thereby retarding the rate of CO oxidation.

  1. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    NASA Astrophysics Data System (ADS)

    Astitha, M.; Lelieveld, J.; Abdel Kader, M.; Pozzer, A.; de Meij, A.

    2012-11-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET) and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others). The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70-75% of the modelled monthly aerosol optical depth (AOD) in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions). Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  2. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce, Jr.

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. The results are independent of particular model atmospheres, and in principle, the equilibrium composition along the pressure-temperature profile of any object can be determined. Hydrogen sulfide (H2S) is the dominant S-bearing gas throughout substellar atmospheres and approximately represents the atmospheric sulfur inventory. Silicon sulfide (SiS) is a potential tracer of weather in substellar atmospheres. Disequilibrium abundances of phosphine (PH3) approximately representative of the total atmospheric phosphorus inventory are expected to be mixed upward into the observable atmospheres of giant planets and T dwarfs. In hotter objects, several P-bearing gases (e.g., P2, PH3, PH 2, PH, and HCP) become increasingly important at high temperatures.

  3. The Impacts of Marine Organic Emissions on Atmospheric Chemistry and Climate (Invited)

    NASA Astrophysics Data System (ADS)

    Meskhidze, N.; Gantt, B.

    2013-12-01

    Using laboratory studies and global/regional climate model results, this talk will contribute to two main research questions: 1) what can be learned about the carbon emission inducing stress factors for marine algae, and 2) what is a potential impact of marine biogenic volatile organic compound (VOC) emissions on global atmospheric chemistry and climate. Marine photosynthetic organisms emit VOCs which can form secondary organic aerosols (SOA). Currently large uncertainty exists in the magnitude of the marine biogenic sources, their spatiotemporal distribution, controlling factors, and contributions to natural background of organic aerosols. Here laboratory results for the production of isoprene and four monoterpene (α-pinene, β-pinene, camphene and d-limonene) compounds as a function of variable light and temperature regimes for 6 different phytoplankton species will be discussed. The experiment was designed to simulate the regions where phytoplankton is subjected to changeable light/temperature conditions. The samples were grown and maintained at a climate controlled room. VOCs accumulated in the water and headspace above the water were measured by passing the sample through a gas chromatography/mass system equipped with a sample pre-concentrator allowing detection of low ppt levels of hydrocarbons. The VOC production rates were distinctly different for light/temperature stressed (the first 12 hour cycle at light/temperature levels higher than what the cultures were acclimated to in a climate controlled room) and photo/temperature-acclimated (the second 12 hour light/temperature cycle) states. In general, all phytoplankton species showed a rapid increase in isoprene and monoterpene production at higher light levels (between 150 to 420 μE m-2 s-1) until a constant production rate was reached. Isoprene and α-pinene, production rates also increased with temperature until a certain level, after which the rates declined as temperature increased further. Two

  4. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    NASA Astrophysics Data System (ADS)

    Draper, Alison J.

    2004-02-01

    In an advanced environmental chemistry course, the inclusion of semester-long scientific service projects successfully integrated the research process with course content. Each project involved a unique community-based environmental analysis in which students assessed an aspect of environmental health. The projects were due in small pieces at even intervals, and students worked independently or in pairs. Initially, students wrote a project proposal in which they chose and justified a project. Following a literature review of their topic, they drafted sampling and analysis plans using methods in the literature. Samples were collected and analyzed, and all students assembled scientific posters describing the results of their study. In the last week of the semester, the class traveled to a regional professional meeting to present the posters. In all, students found the experience valuable. They learned to be professional environmental chemists and learned the value of the discipline to community health. Students not only learned about their own project in depth, but they were inspired to learn textbook material, not for an exam, but because it helped them understand their own project. Finally, having a community to answer to at the end of the project motivated students to do careful work.

  5. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  6. On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device

    NASA Astrophysics Data System (ADS)

    Schmidt-Bleker, Ansgar; Winter, Jörn; Bösel, André; Reuter, Stephan; Weltmann, Klaus-Dieter

    2016-02-01

    A novel approach combining experimental and numerical methods for the study of reaction mechanisms in a cold atmospheric \\text{Ar} plasma jet is introduced. The jet is operated with a shielding gas device that produces a gas curtain of defined composition around the plasma plume. The shielding gas composition is varied from pure {{\\text{N}}2} to pure {{\\text{O}}2} . The density of metastable argon \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) in the plasma plume was quantified using laser atom absorption spectroscopy. The density of long-living reactive oxygen and nitrogen species (RONS), namely {{\\text{O}}3} , \\text{N}{{\\text{O}}2} , \\text{NO} , {{\\text{N}}2}\\text{O} , {{\\text{N}}2}{{\\text{O}}5} and {{\\text{H}}2}{{\\text{O}}2} , was quantified in the downstream region of the jet in a multipass cell using Fourier-transform infrared spectroscopy (FTIR). The jet produces a turbulent flow field and features guided streamers propagating at several \\text{km}~{{\\text{s}}-1} that follow the chaotic argon flow pattern, yielding a plasma plume with steep spatial gradients and a time dependence on the \\text{ns} scale while the downstream chemistry unfolds within several seconds. The fast and highly localized electron impact reactions in the guided streamer head and the slower gas phase reactions of neutrals occurring in the plasma plume and experimental apparatus are therefore represented in two separate kinetic models. The first electron impact reaction kinetics model is correlated to the LAAS measurements and shows that in the guided streamer head primary reactive oxygen and nitrogen species are dominantly generated from \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) . The second neutral species plug-flow model hence uses an \\text{Ar}≤ft(4\\text{s}{{,}3}{{\\text{P}}2}\\right) source term as sole energy input and yields good agreement with the RONS measured by FTIR spectroscopy.

  7. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Gerken, Tobias; Wei, Dandan; Chase, Randy J.; Fuentes, Jose D.; Schumacher, Courtney; Machado, Luiz A. T.; Andreoli, Rita V.; Chamecki, Marcelo; Ferreira de Souza, Rodrigo A.; Freire, Livia S.; Jardine, Angela B.; Manzi, Antonio O.; Nascimento dos Santos, Rosa M.; von Randow, Celso; dos Santos Costa, Patrícia; Stoy, Paul C.; Tóta, Julio; Trowbridge, Amy M.

    2016-01-01

    From April 2014 to January 2015, ozone (O3) dynamics were investigated as part of GoAmazon 2014/5 project in the central Amazon rainforest of Brazil. Just above the forest canopy, maximum hourly O3 mixing ratios averaged 20 ppbv (parts per billion on a volume basis) during the June-September dry months and 15 ppbv during the wet months. Ozone levels occasionally exceeded 75 ppbv in response to influences from biomass burning and regional air pollution. Individual convective storms transported O3-rich air parcels from the mid-troposphere to the surface and abruptly enhanced the regional atmospheric boundary layer by as much as 25 ppbv. In contrast to the individual storms, days with multiple convective systems produced successive, cumulative ground-level O3 increases. The magnitude of O3 enhancements depended on the vertical distribution of O3 within storm downdrafts and origin of downdrafts in the troposphere. Ozone mixing ratios remained enhanced for > 2 h following the passage of storms, which enhanced chemical processing of rainforest-emitted isoprene and monoterpenes. Reactions of isoprene and monoterpenes with O3 are modeled to generate maximum hydroxyl radical formation rates of 6 × 106 radicals cm-3s-1. Therefore, one key conclusion of the present study is that downdrafts of convective storms are estimated to transport enough O3 to the surface to initiate a series of reactions that reduce the lifetimes of rainforest-emitted hydrocarbons.

  8. Photochemistry of Saturn's Atmosphere. 1; Hydrocarbon Chemistry and Comparisons with ISO Observations

    NASA Technical Reports Server (NTRS)

    Moses, Julianne I.; Bezard, Bruno; Lellouch, Emmanuel; Gladstone, G. Randall; Feuchtgruber, Helmut; Allen, Mark

    2000-01-01

    To investigate the details of hydrocarbon photochemistry on Saturn, we have developed a one-dimensional diurnally averaged model that couples hydrocarbon and oxygen photochemistry, molecular and eddy diffusion, radiative transfer, and condensation. The model results are compared with observations from the Infrared Space Observatory (ISO) to place tighter constraints on molecular abundances, to better define Saturn's eddy diffusion coefficient profile, and to identify important chemical schemes that control the abundances of the observable hydrocarbons in Saturn's upper atmosphere. From the ISO observations, we determine that the column 12 densities of CH3, CH3C2H, and C4H2 above 10 mbar are 4 (sup +2) (sub -1.5) x 10 (exp 13) cm (sup -2), (1.1 plus or minus 0.3) x 10 (exp 15) cm (exp -2), and (1.2 plus or minus 0.3) x 10 (exp 14) cm (sup -2), respectively. The observed ISO emission features also indicate C2H2 mixing ratios of 1.2 (sup +0.9) (sub -0.6) x 10 (exp -6) at 0.3 mbar and (2.7 plus or minus 0.8) x 10 (exp -7) at 1.4 mbar, and a C2H6 mixing ratio of (9 plus or minus 2.5) x 10 (exp -6) at 0.5 mbar. Upper limits are provided for C2H4, CH2CCH2, C3H8, and C6H2 sensitivity of the model results to variations in the eddy diffusion coefficient profile, the solar flux, the CH4 photolysis branching ratios, the atomic hydrogen influx, and key reaction rates are discussed in detail. We find that C4H2 and CH3C2H are particularly good tracers of important chemical processes and physical conditions in Saturn's upper atmosphere, and C2H6 is a good tracer of the eddy diffusion coefficient in Saturn's lower stratosphere. The eddy diffusion coefficient must be smaller than approximately 3 x 10 (exp 4) sq cm s (sup -1) at pressures greater than 1 mbar in order to reproduce the C2H6 abundance inferred from ISO observations. The eddy diffusion coefficients in the upper stratosphere could be constrained by observations of CH3 radicals if the low-temperature chemistry of CH3 were

  9. Finite-rate chemistry effects upon convective and radiative heating of an atmospheric entry vehicle. [reentry aerothermochemistry

    NASA Technical Reports Server (NTRS)

    Guillermo, P.

    1975-01-01

    A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.

  10. Condensing complex atmospheric chemistry mechanisms. 1: The direct constrained approximate lumping (DCAL) method applied to alkane photochemistry

    SciTech Connect

    Wang, S.W.; Georgopoulos, P.G.; Li, G.; Rabitz, H.

    1998-07-01

    Atmospheric chemistry mechanisms are the most computationally intensive components of photochemical air quality simulation models (PAQSMs). The development of a photochemical mechanism, that accurately describes atmospheric chemistry while being computationally efficient for use in PAQSMs, is a difficult undertaking that has traditionally been pursued through semiempirical (diagnostic) lumping approaches. The limitations of these diagnostic approaches are often associated with inaccuracies due to the fact that the lumped mechanisms have typically been optimized to fit the concentration profile of a specific species. Formal mathematical methods for model reduction have the potential (demonstrated through past applications in other areas) to provide very effective solutions to the need for computational efficiency combined with accuracy. Such methods, that can be used to condense a chemical mechanism, include kinetic lumping and domain separation. An application of the kinetic lumping method, using the direct constrained approximately lumping (DCAL) approach, to the atmospheric photochemistry of alkanes is presented in this work. It is shown that the lumped mechanism generated through the application of the DCAL method has the potential to overcome the limitations of existing semiempirical approaches, especially in relation to the consistent and accurate calculation of the time-concentration profiles of multiple species.

  11. Final Report. "Collaborative Project. Contributions of organic compounds to the growth of freshly nucleated atmospheric nanoparticles"

    SciTech Connect

    Smith, James N

    2015-12-23

    This is the final technical report for the portion of the project that took place at the National Center for Atmospheric Research, which covers approximately the first year of the three-year project. During this time we focused primarily on analysis and modeling of DOE-funded observations as well as preparation for laboratory studies of individual processes that contribute to atmospheric new particle formation.

  12. Final Technical Report for earmark project "Atmospheric Science Program at the University of Louisville"

    SciTech Connect

    Dowling, Timothy Edward

    2014-02-11

    We have completed a 3-year project to enhance the atmospheric science program at the University of Louisville, KY (est. 2008). The goals were to complete an undergraduate atmospheric science laboratory (Year 1) and to hire and support an assistant professor (Years 2 and 3). Both these goals were met on schedule, and slightly under budget.

  13. Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2011-01-01

    Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena

  14. Project CONDOR: Middle atmosphere wind structure obtained with lightweight inflatable spheres near the equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.

    1987-01-01

    Observed correlations between the atmospheric electric field and the neutral wind were studied using additional atmospheric measurements during Project CONDOR. Project CONDOR obtained measurements near the equatorial electrojet (12 S) during March 1983. Neutral atmosphere wind measurements were obtained using lightweight inflatable spheres and temperatures were obtained using a datasonde. The lightweight sphere technology, the wind structure, and temperature structure are described. Results show that the lightweight sphere gives higher vertical resolution of winds below 75 km compared with the standard sphere, but gives little or no improvement above 80 km, and no usable temperature and density data.

  15. Chemistry Simulations using the MERRA-2 Reanalysis with the GMI CTM and Replay in Support of the Atmospheric Composition Community

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Strahan, Susan E.

    2017-01-01

    Simulations using reanalysis meteorological fields have long been used to understand the causes of atmospheric composition change in the recent past. Using the new MERRA-2 reanalysis, we are conducting chemistry simulations to create products covering 1980-2016 for the atmospheric composition community. These simulations use the Global Modeling Initiative (GMI) chemical mechanism in two different models: the GMI Chemical Transport Model (CTM) and the GEOS-5 model in Replay mode. Replay mode means an integration of the GEOS-5 general circulation model that is incrementally adjusted each time step toward the MERRA-2 reanalysis. The GMI CTM is a 1 deg x 1.25 deg simulation and the MERRA-2 GMI Replay simulation uses the native MERRA-2 grid of approximately 1/2 deg horizontal resolution on the cubed sphere. A specialized set of transport diagnostics is included in both runs to better understand trace gas transport and its variability in the recent past.

  16. Large uncertainties in projected European summer warming and drying due to ocean-atmosphere and land-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Selten, Frank M.; Bintanja, Richard; Vautard, Robert; van den Hurk, Bart; Haarsma, Rein

    2016-04-01

    Europe is among the regions with the highest summer warming rates and largest spread in the projected warming in the latest CMIP5 climate model projections. The end-of-this-century summer warming under the RCP8.5 scenario ranges from about 3 to 9 degrees. Why do models disagree so much on the response of the summer climate in Europe to an increase in greenhouse gas concentrations? The origin of these uncertainties is traced through a combination of statistical analyses, theoretical arguments and additional model simulations to both the uncertain response of the ocean circulation to the warming and land-atmosphere interactions in continental Europe.

  17. Exploring lag times between monthly atmospheric deposition and stream chemistry in Appalachian forests using cross-correlation

    NASA Astrophysics Data System (ADS)

    DeWalle, David R.; Boyer, Elizabeth W.; Buda, Anthony R.

    2016-12-01

    Forecasts of ecosystem changes due to variations in atmospheric emissions policies require a fundamental understanding of lag times between changes in chemical inputs and watershed response. Impacts of changes in atmospheric deposition in the United States have been documented using national and regional long-term environmental monitoring programs beginning several decades ago. Consequently, time series of weekly NADP atmospheric wet deposition and monthly EPA-Long Term Monitoring stream chemistry now exist for much of the Northeast which may provide insights into lag times. In this study of Appalachian forest basins, we estimated lag times for S, N and Cl by cross-correlating monthly data from four pairs of stream and deposition monitoring sites during the period from 1978 to 2012. A systems or impulse response function approach to cross-correlation was used to estimate lag times where the input deposition time series was pre-whitened using regression modeling and the stream response time series was filtered using the deposition regression model prior to cross-correlation. Cross-correlations for S were greatest at annual intervals over a relatively well-defined range of lags with the maximum correlations occurring at mean lags of 48 months. Chloride results were similar but more erratic with a mean lag of 57 months. Few high-correlation lags for N were indicated. Given the growing availability of atmospheric deposition and surface water chemistry monitoring data and our results for four Appalachian basins, further testing of cross-correlation as a method of estimating lag times on other basins appears justified.

  18. Atmospheric chemistry of HFE-7300 and HFE-7500: Temperature dependent kinetics, atmospheric lifetimes, infrared spectra and global warming potentials

    NASA Astrophysics Data System (ADS)

    Rodríguez, Ana; Rodríguez, Diana; Moraleda, Araceli; Bravo, Iván; Moreno, Elena; Notario, Alberto

    2014-10-01

    The atmospheric degradation of two hydrofluoroethers, HFE-7300 [n-C2F5CF(OCH3)CF(CF3)2] and HFE-7500 [n-C3F7CF(OC2H5)CF(CF3)2] used in industrial applications has been studied. The kinetics and reaction products were determined at atmospheric pressure as a function of temperature in a reaction chamber using GC/FID and GC/MS techniques for the analysis. The following Arrhenius expressions were obtained (in units of cm3 molecule-1 s-1): kHFE-7300 + OH = (5.6 ± 2.0) × 10-13 exp(-(1186 ± 111)/T); kHFE-7300 + Cl = (3.8 ± 1.3) × 10-12 exp(-(968 ± 101)/T); and kHFE-7500 + OH = (7.6 ± 6.0) × 10-12 exp(-(1163 ± 385)/T) (temperature range 271-333 K). The atmospheric lifetimes calculated from kinetic data for HFE-7300 and HFE-7500 were 5.24 and 0.30 years, respectively. In the oxidation of HFE-7300 with OH and Cl radicals, the only detected product was CF3CF2CF(OCHO)CF(CF3)2, whereas in the oxidation of HFE-7500 by OH radicals the detected products were: C3F7CF(OC(O)CH3)CF(CF3)2 and C3F7CF(OC(O)H)CF(CF3)2. Infrared spectra of the studied HFEs have also been measured and radiative forcing efficiencies were determined. Combining these results with the kinetic data, we estimated 100-year time horizon global warming potentials of 440 and 12 for HFE-7300 and HFE-7500, respectively.

  19. The Gap Analysis for Integrated Atmospheric ECV Climate Monitoring Project

    NASA Astrophysics Data System (ADS)

    Thorne, P.; Mikalsen, A.; Madonna, F.; Kreher, K.; Lambert, J. C.; Bell, W.; Schulz, J.; De Maziere, M.

    2015-12-01

    The GAIA-CLIM project is a European Horizon 2020 funded project aimed at improving the use and usefulness of sub-orbital data to characterize and validate satellite measurements. The project consists of 18 partners with expertise in a broad range of sub-orbital and satellite observations and will run from 2015 through 2018. It intends to make use of primarily reference quality measurements (traceable with robust uncertainty quantification) to achieve its aims. Work packages cover: * Defining and mapping sub-orbital measurement capabilities based upon quantifable properties such as traceability and representivity; * Improving metrological characterisation of key measurements including robust uncertainty estimation; * Improved understanding of the effects of inevitable co-location mismatch related uncertainties; and * The use of data assimilation as tool for propogating information from reference network measurements. Outcomes will be presented through a 'Virtual Observatory' facility via EUMETSAT with the plan to potentially become an operational service for the future. There are many opportunities to get involved including, but not limited to, an envisaged series of user workshops. We would also appreciate having volunteers who may be interested in beta testing and providing feedback on the tools from the Virtual Observatory. Further details on the project can be found at www.gaia-clim.eu. This presentation will primarily provide an overview of project objectives. Some very initial results and outcomes shall be highlighted to give a flavor of what may be expected in the future.

  20. From Freshman Student to Upper-Secondary School Teacher in Chemistry: A New Approach with Projects and Group Work.

    ERIC Educational Resources Information Center

    Josephsen, Jens

    1985-01-01

    A special five and one-half year program for training upper secondary school chemistry teachers has been developed and tested over the past decade at Roskilde University near Copenhagen. The program (which emphasizes project work) and a student project on epoxy glue are described. Program graduates are generally problem-oriented and…

  1. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    ERIC Educational Resources Information Center

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  2. A Service-Learning Project Based on a Research Supportive Curriculum Format in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Kalivas, John H.

    2008-01-01

    This article describes a two-semester general chemistry laboratory teaching approach to assist students in gaining experience with science-process skills. The ultimate goal is successful completion of a second-semester service-learning project requiring use of their newly developed science-process skills. The project entails creating an…

  3. Triple Isotopic Composition of Atmospheric Carbonates: A Novel Technique to Identify Heterogeneous Chemistry on Aerosol Surfaces in Polluted Environment

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Horn, J.; Dominguez, G.; Masterson, A.; Ivanov, A. V.; Thiemens, M. H.

    2009-12-01

    In the ambient atmosphere, the physical and chemical properties of aerosol vary greatly between location and time due to various heterogeneous and photochemical reactions in the atmosphere. In polluted urban environments, the aerosol and gaseous mixtures interact to produce new compounds and particulates; consequently humans are exposed to many as yet undetected species. Studies of actual chemically-active, airborne particulates can better address the interaction of complex particulate and gaseous pollutant mixtures, however, it is notoriously difficult to measure chemical transformations of aerosols. Here we describe a new technique that can be used to understand the chemical transformation occurring on the surface of aerosols and thus to quantify the interaction of gaseous species and aerosol in the atmosphere. Fine and coarse aerosol samples were collected on filter papers in La Jolla, CA, USA for one week. The aerosol samples were digested with phosphoric acid and CO2 released was purified chromatographically and analyzed for 13 C. To obtain independent measurements of oxygen isotopes, the CO2 was fluorinated and oxygen gas obtained was analyzed using Mat253 Isotope Ratio Mass Spectrometer. The data indicated an excess 17O (0.6 to 4‰) in atmospheric carbonates. The oxygen isotope anomaly in atmospheric carbonates has been observed for the first time and it showed a highly significant correlation (r2 = 0.90) with urban index; an indirect measure of ozone chemistry. The δ13C in atmospheric carbonates was found to vary from -18 to -40‰. Controlled laboratory experiments to understand the origin and variation in the C and O isotopic composition of atmospheric carbonates were conducted using various mineral surfaces. Isotopic measurements of in-situ formed carbonated on CaOH, CaO, MgO, SiO2,Cu, CuO, Ni and Fe2O3 due to chemisorbed CO2 in the presence of thin water films were performed and we found that the δ13C in these carbonates ranged from -12 to -24

  4. Atmospheric chemistry of toxic contaminants. 6. Nitrosamines: Dialkyl nitrosamines and nitrosomorpholine

    SciTech Connect

    Grosjean, D. )

    1991-05-01

    Detailed mechanisms are outlined for the reactions that contribute to in-situ formation and atmospheric removal of dimethylnitrosamine, diethylnitrosamine, methyl-ethylnitrosamine, and nitrosomorpholine. In-situ formation involves the rapid reaction of amines with the hydroxyl radical, leading to nitrosamines, nitramines, amides, and aldehydes. Nitrosamine photolysis accounts for their rapid daytime removal, leading to amino radicals whose atmospheric reactions are also discussed.

  5. A study of the dissociative recombination of CaO+ with electrons: Implications for Ca chemistry in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bones, D. L.; Gerding, M.; Höffner, J.; Martín, Juan Carlos Gómez; Plane, J. M. C.

    2016-12-01

    The dissociative recombination of CaO+ ions with electrons has been studied in a flowing afterglow reactor. CaO+ was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar+ ion/electron plasma. A kinetic model describing the gas-phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10-7 cm3 molecule-1 s-1 at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca+/Fe+ ratio is 8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion-molecule chemistry of these two metals. Second, the rate of neutralization of Ca+ ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers.

  6. A study of the dissociative recombination of CaO+ with electrons: Implications for Ca chemistry in the upper atmosphere

    PubMed Central

    Bones, D. L.; Gerding, M.; Höffner, J.; Martín, Juan Carlos Gómez

    2016-01-01

    Abstract The dissociative recombination of CaO+ ions with electrons has been studied in a flowing afterglow reactor. CaO+ was generated by the pulsed laser ablation of a Ca target, followed by entrainment in an Ar+ ion/electron plasma. A kinetic model describing the gas‐phase chemistry and diffusion to the reactor walls was fitted to the experimental data, yielding a rate coefficient of (3.0 ± 1.0) × 10−7 cm3 molecule−1 s−1 at 295 K. This result has two atmospheric implications. First, the surprising observation that the Ca+/Fe+ ratio is ~8 times larger than Ca/Fe between 90 and 100 km in the atmosphere can now be explained quantitatively by the known ion‐molecule chemistry of these two metals. Second, the rate of neutralization of Ca+ ions in a descending sporadic E layer is fast enough to explain the often explosive growth of sporadic neutral Ca layers. PMID:28239205

  7. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry.

    PubMed

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-10-18

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO4(2-)) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO4(2-) aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions.

  8. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    NASA Astrophysics Data System (ADS)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-10-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42-) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42- aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions.

  9. DISEQUILIBRIUM CARBON, OXYGEN, AND NITROGEN CHEMISTRY IN THE ATMOSPHERES OF HD 189733b AND HD 209458b

    SciTech Connect

    Moses, Julianne I.; Visscher, C.; Fortney, J. J.; Showman, A. P.; Lewis, N. K.; Griffith, C. A.; Klippenstein, S. J.; Shabram, M.; Friedson, A. J.; Marley, M. S.; Freedman, R. S.

    2011-08-10

    We have developed a one-dimensional photochemical and thermochemical kinetics and diffusion model to study the effects of disequilibrium chemistry on the atmospheric composition of 'hot-Jupiter' exoplanets. Here we investigate the coupled chemistry of neutral carbon, hydrogen, oxygen, and nitrogen species on HD 189733b and HD 209458b and we compare the model results with existing transit and eclipse observations. We find that the vertical profiles of molecular constituents are significantly affected by transport-induced quenching and photochemistry, particularly on the cooler HD 189733b; however, the warmer stratospheric temperatures on HD 209458b help maintain thermochemical equilibrium and reduce the effects of disequilibrium chemistry. For both planets, the methane and ammonia mole fractions are found to be enhanced over their equilibrium values at pressures of a few bar to less than an mbar due to transport-induced quenching, but CH{sub 4} and NH{sub 3} are photochemically removed at higher altitudes. Disequilibrium chemistry also enhances atomic species, unsaturated hydrocarbons (particularly C{sub 2}H{sub 2}), some nitriles (particularly HCN), and radicals like OH, CH{sub 3}, and NH{sub 2}. In contrast, CO, H{sub 2}O, N{sub 2}, and CO{sub 2} more closely follow their equilibrium profiles, except at pressures {approx}<1 {mu}bar, where CO, H{sub 2}O, and N{sub 2} are photochemically destroyed and CO{sub 2} is produced before its eventual high-altitude destruction. The enhanced abundances of CH{sub 4}, NH{sub 3}, and HCN are expected to affect the spectral signatures and thermal profiles of HD 189733b and other relatively cool, transiting exoplanets. We examine the sensitivity of our results to the assumed temperature structure and eddy diffusion coefficients and discuss further observational consequences of these models.

  10. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    SciTech Connect

    Not Available

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  11. Projections of Southern Hemisphere atmospheric circulation interannual variability

    NASA Astrophysics Data System (ADS)

    Grainger, Simon; Frederiksen, Carsten S.; Zheng, Xiaogu

    2017-02-01

    An analysis is made of the coherent patterns, or modes, of interannual variability of Southern Hemisphere 500 hPa geopotential height field under current and projected climate change scenarios. Using three separate multi-model ensembles (MMEs) of coupled model intercomparison project phase 5 (CMIP5) models, the interannual variability of the seasonal mean is separated into components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. In the CMIP5 RCP8.5 and RCP4.5 experiments, there is very little change in the twenty-first century in the intraseasonal component modes, related to the Southern annular mode (SAM) and mid-latitude wave processes. The leading three slowly-varying internal component modes are related to SAM, the El Niño-Southern oscillation (ENSO), and the South Pacific wave (SPW). Structural changes in the slow-internal SAM and ENSO modes do not exceed a qualitative estimate of the spatial sampling error, but there is a consistent increase in the ENSO-related variance. Changes in the SPW mode exceed the sampling error threshold, but cannot be further attributed. Changes in the dominant slowly-varying external mode are related to projected changes in radiative forcing. They reflect thermal expansion of the tropical troposphere and associated changes in the Hadley Cell circulation. Changes in the externally-forced associated variance in the RCP8.5 experiment are an order of magnitude greater than for the internal components, indicating that the SH seasonal mean circulation will be even more dominated by a SAM-like annular structure. Across the three MMEs, there is convergence in the projected response in the slow-external component.

  12. Manual of downburst identification for Project NIMROD. [atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1978-01-01

    Aerial photography, Doppler radar, and satellite infrared imagery are used in the two year National Intensive Meteorological Research on Downburst (NIMROD) project to provide large area mapping of strong downdrafts that induce an outward burst of damaging winds over or near the earth. Topics discussed include scales of thunderstorm outflow; aerial photographs of downburst damage; microbursts and aviation hazards; radar echo characteristics; infrared imagery from GOES/SMS; and downburts-tornado relationships. Color maps of downbursts and tornadoes are included.

  13. Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust.

    PubMed

    Goetz, Walter; Bertelsen, Preben; Binau, Charlotte S; Gunnlaugsson, Haraldur P; Hviid, Stubbe F; Kinch, Kjartan M; Madsen, Daniel E; Madsen, Morten B; Olsen, Malte; Gellert, Ralf; Klingelhöfer, Göstar; Ming, Douglas W; Morris, Richard V; Rieder, Rudolf; Rodionov, Daniel S; de Souza, Paulo A; Schröder, Christian; Squyres, Steve W; Wdowiak, Tom; Yen, Albert

    2005-07-07

    The ubiquitous atmospheric dust on Mars is well mixed by periodic global dust storms, and such dust carries information about the environment in which it once formed and hence about the history of water on Mars. The Mars Exploration Rovers have permanent magnets to collect atmospheric dust for investigation by instruments on the rovers. Here we report results from Mössbauer spectroscopy and X-ray fluorescence of dust particles captured from the martian atmosphere by the magnets. The dust on the magnets contains magnetite and olivine; this indicates a basaltic origin of the dust and shows that magnetite, not maghemite, is the mineral mainly responsible for the magnetic properties of the dust. Furthermore, the dust on the magnets contains some ferric oxides, probably including nanocrystalline phases, so some alteration or oxidation of the basaltic dust seems to have occurred. The presence of olivine indicates that liquid water did not play a dominant role in the processes that formed the atmospheric dust.

  14. Response of lake chemistry to atmospheric deposition and climate in selected Class I wilderness areas in the western United States, 1993-2009

    USGS Publications Warehouse

    Mast, M. Alisa

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.

  15. Middle Atmosphere Program. Handbook for MAP, volume 11

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1984-01-01

    An overview is presented of the research activities and objectives of the middle atmosphere program (MAP). Status reports are presented of projects underway in the area of middle atmosphere climatology and atmospheric chemistry condensed minutes of MAP steering committee meetings are contained in this volume. Research recommendations for increased U.S. participation in the middle atmosphere program are given.

  16. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M. G.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; van Aardenne, J.; Lelieveld, J.

    2006-11-01

    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998-2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the

  17. Global trend analysis of surface CO simulated using the global atmospheric chemistry general circulation model, EMAC (ECHAM5/MESSy)

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Pozzer, Andrea; Lelieveld, Jos

    2013-04-01

    Carbon monoxide (CO) is an important trace gas in tropospheric chemistry. It directly influences the concentration of tropospheric hydroxyl radical (OH), and therefore regulates the lifetimes of various tropospheric trace gases. Since anthropogenic activity produces about 60% of the annual global emission of the tropospheric CO, temporal trend analysis of surface CO is needed to understand the increasing (decreasing) influence of humans on the cleansing capacity of the atmosphere. In this study, the global trend of surface CO from 2001 to 2010 was estimated using the EMAC (ECHAM5/MESSy for Atmospheric Chemistry) model. The simulation is based on the emission scenario based on RCP8.5 (Representative Concentration Pathways). The global EMAC simulations of monthly surface CO are evaluated with monthly MOPITT (Measurements Of Pollution In The Troposphere) observations (i.e. MOP03TM), and the spatial correlations range from 0.87 to 0.97. The simulated trends are compared with the data from a global surface CO monitoring network, the World Data Centre for Greenhouse Gases (WDCGG), which includes also the NOAA/CMDL (Climate Monitoring and Diagnostic Laboratory of the National Oceanic and Atmospheric Administration) Cooperative Air Sampling Network. Over the United States and Western Europe, the significant decreases of surface CO are estimated at -49.7±2.7 and -38.6±2.7 ppbv per decade. In contrast, the surface CO increased by +12.4±10.2 and +7.2±3.7 ppbv per decade over South America and South Africa, respectively.

  18. Assessment of two physical parameterization schemes for desert dust emissions in an atmospheric chemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Astitha, M.; Abdel Kader, M.; Pozzer, A.; Lelieveld, J.

    2012-04-01

    Atmospheric particulate matter and more specific desert dust has been the topic of numerous research studies in the past due to the wide range of impacts in the environment and climate and the uncertainty of characterizing and quantifying these impacts in a global scale. In this work we present two physical parameterizations of the desert dust production that have been incorporated in the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). The scope of this work is to assess the impact of the two physical parameterizations in the global distribution of desert dust and highlight the advantages and disadvantages of using either technique. The dust concentration and deposition has been evaluated using the AEROCOM dust dataset for the year 2000 and data from the MODIS and MISR satellites as well as sun-photometer data from the AERONET network was used to compare the modelled aerosol optical depth with observations. The implementation of the two parameterizations and the simulations using relatively high spatial resolution (T106~1.1deg) has highlighted the large spatial heterogeneity of the dust emission sources as well as the importance of the input parameters (soil size and texture, vegetation, surface wind speed). Also, sensitivity simulations with the nudging option using reanalysis data from ECMWF and without nudging have showed remarkable differences for some areas. Both parameterizations have revealed the difficulty of simulating all arid regions with the same assumptions and mechanisms. Depending on the arid region, each emission scheme performs more or less satisfactorily which leads to the necessity of treating each desert differently. Even though this is a quite different task to accomplish in a global model, some recommendations are given and ideas for future improvements.

  19. The atmospheric chemistry general circulation model ECHAM5/MESSy1: consistent simulation of ozone from the surface to the mesosphere

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Tost, H.; Pozzer, A.; Brühl, C.; Buchholz, J.; Ganzeveld, L.; Hoor, P.; Kerkweg, A.; Lawrence, M. G.; Sander, R.; Steil, B.; Stiller, G.; Tanarhte, M.; Taraborrelli, D.; van Aardenne, J.; Lelieveld, J.

    2006-07-01

    The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998-2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.

  20. Extraordinary cluster formation and intramolecular ligand-ligand interactions in cyanoacetylene [corrected] mediated by Mg+*: implications for the atmospheric chemistry of titan and for circumstellar chemistry.

    PubMed

    Milburn, Rebecca K; Hopkinson, Alan C; Bohme, Diethard K

    2005-09-21

    Experimental results are reported that track the kinetics of gas-phase reactions initiated by Mg+*, (c-C5H5)Mg+ and (c-C5H5)2Mg+* in hydrogen cyanide and cyanoacetylene. The experiments were performed with a selected-ion flow tube (SIFT) tandem mass spectrometer at a helium buffer-gas pressure of 0.35 +/- 0.01 Torr and at 294 +/- 3 K. The observed chemistries of Mg+* and (c-C5H5)Mg+ are dominated by sequential ligation, while that of (c-C5H5)2Mg+* is by ligand switching. The rate-coefficient measurements for sequential addition of cyanoacetylene to Mg+* indicate an extraordinary pattern in alternating chemical reactivity while multiple-collision induced dissociation experiments revealed an extraordinary stability for the Mg(HC3N)4+* cluster ion. Molecular orbital calculations with density functional theory (DFT) at the B3LYP level, Hartree-Fock (HF) and second-order Mphiller-Plesset (MP2) levels, all performed with a 6-31+G(d) basis set, have been used to calculate structures and energies for the observed Mg(HC3N)1-4(+)* cations. These calculations indicate that the path of formation of Mg(HC3N)4+* involves ligand-ligand interactions leading to two cyclic (HC3N)2 ligands which then interact to form 2,4,6,8-tetracyanosemibullvalene-Mg+ or 1,2,5,6-tetracyano-1,3,5,7-cyclooctatetraene-Mg+ cations. A case is made for the formation of similar complex organomagnesium ions in the upper atmosphere of Titan where subsequent electron-ion recombination may produce cyano derivatives of large unsaturated hydrocarbons. In contrast, circumstellar environments with their much higher relative content of free electrons are less likely to give rise to such chemistry.

  1. Description and Evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry Model (NMMB-MONARCH) Version 1.0: Gas-Phase Chemistry at Global Scale

    NASA Technical Reports Server (NTRS)

    Badia, Alba; Jorba, Oriol; Voulgarakis, Apostolos; Dabdub, Donald; Garcia-Pando, Carlos Perez; Hilboll, Andreas; Goncalves, Maria; Janjic, Zavisa

    2017-01-01

    This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMBMONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT).We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3-0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error - RMSE - below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability).

  2. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater: 2. Copper

    NASA Astrophysics Data System (ADS)

    Maring, H. B.; Duce, R. A.

    1989-01-01

    Atmospheric deposition contributes copper to the surface ocean. The biogeochemical importance and fate of this copper is poorly understood for open ocean regions. Atmospheric aerosols collected at Enewetak Atoll, in the tropical North Pacific, were exposed to seawater and artificial rainwater in laboratory experiments. Aerosol copper during the high-dust season at Enewetak Atoll is made up of aluminosilicate, oceanic, and possibly soil organic matter components. During the low-dust season, aerosol copper appears to be essentially all of oceanic origin. Virtually all nonaluminosilicate copper in marine aerosols collected at Enewetak is soluble in seawater. Dissolved organic matter and possibly cations in seawater increase the dissolution of aerosol copper. The net atmospheric flux of soluble copper to the tropical North Pacific near Enewetak is approximately 0.13 nmol cm-2 yr-1 out of a total net atmospheric copper flux of 0.14 nmol cm-2 yr-1. Atmospheric deposition supplies roughly the same quantity of soluble copper to tropical open North Pacific surface waters as does upwelling to eastern North Pacific surface waters. Atmospheric copper deposition, which appears to be primarily of natural origin, may be the most important input of copper to the surface waters of the central gyre of the North Pacific.

  3. Formative evaluation of traditional instruction and cooperative inquiry projects in undergraduate chemistry laboratory courses

    NASA Astrophysics Data System (ADS)

    Panichas, Michael A.

    Reform agendas for practice in undergraduate chemistry are moving curriculum beyond traditional behaviorist teaching strategies to include constructivist approaches, for extending student learning beyond simple mastery of chemistry content (Bunce & Robinson, 1997; Lagowski, 1998; Herron & Nurrenburn, 1999). Yet implementing new strategies requires assessment of their benefit to learning. This study was undertaken to provide a formal and formative evaluation of the curricula in General and Organic chemistry laboratory courses, which are structured with both Traditional expository lab exercises, and a cooperative inquiry exercise called the Open Ended Project. Using a mixed-methodological case study framework, the primary goal of the research was to determine how the inclusion of these teaching strategies impacts student learning in the areas of Academic Achievement and Affective Learning from the perspective of the students enrolled in these lab classes. The findings suggest that the current curriculum structure of including both Traditional Instruction and the Open Ended Project does address students' Academic Achievement and Affective Learning. However, students perceived that these curriculum components each contributed differently to their learning. For Academic Achievement, Traditional Experiments and the Project had a positive impact on students' operational skills, such as how to use and choose lab techniques for performing or designing experiments, as well as their conceptual learning, such as understanding concepts, and relating those concepts during data analysis. Yet for Affective Learning, such as students' sense of confidence, accomplishment, and engagement, the Project, which has a cooperative learning element, had a positive impact on student learning, while Traditional Experiments, which do not have a cooperative learning element, had a moderate negative impact. The findings point to Cooperative Learning as the key element, which makes the positive

  4. Lessons Learned from the Development and Implementation of the Atmosphere Resource Recovery and Environmental Monitoring Project

    NASA Technical Reports Server (NTRS)

    Roman, Monsi C.; Perry, Jay L.; Howard, David F.

    2014-01-01

    The Advanced Exploration Systems (AES) Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) Project have been developing atmosphere revitalization and environmental monitoring subsystem architectures suitable for enabling sustained crewed exploration missions beyond low Earth orbit (LEO). Using the International Space Station state-of-the-art (SOA) as the technical basis, the ARREM Project has contributed to technical advances that improve affordability, reliability, and functional efficiency while reducing dependence on a ground-based logistics resupply model. Functional demonstrations have merged new process technologies and concepts with existing ISS developmental hardware and operate them in a controlled environment simulating various crew metabolic loads. The ARREM Project's strengths include access to a full complement of existing developmental hardware that perform all the core atmosphere revitalization functions, unique testing facilities to evaluate subsystem performance, and a coordinated partnering effort among six NASA field centers and industry partners to provide the innovative expertise necessary to succeed. A project overview is provided and the project management strategies that have enabled a multidiscipinary engineering team to work efficiently across project, NASA field center, and industry boundaries to achieve the project's technical goals are discussed. Lessons learned and best practices relating to the project are presented and discussed.

  5. Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections

    NASA Technical Reports Server (NTRS)

    Legrande, Allegra N.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    The climate impact of a volcanic eruption is known to be dependent on the size, location and timing of the eruption. However, the chemistry and composition of the volcanic plume also control its impact on climate. It is not just sulfur dioxide gas, but also the coincident emissions of water, halogens and ash that influence the radiative and climate forcing of an eruption. Improvements in the capability of models to capture aerosol microphysics, and the inclusion of chemistry and aerosol microphysics modules in Earth system models, allow us to evaluate the interaction of composition and chemistry within volcanic plumes in a new way. These modeling efforts also illustrate the role of water vapor in controlling the chemical evolution, and hence climate impacts, of the plume. A growing realization of the importance of the chemical composition of volcanic plumes is leading to a more sophisticated and realistic representation of volcanic forcing in climate simulations, which in turn aids in reconciling simulations and proxy reconstructions of the climate impacts of past volcanic eruptions. More sophisticated simulations are expected to help, eventually, with predictions of the impact on the Earth system of any future large volcanic eruptions.

  6. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.

  7. Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado

    USGS Publications Warehouse

    Mast, M.A.; Turk, J.T.; Clow, D.W.; Campbell, D.H.

    2011-01-01

    Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 ??eq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 ??eq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93??C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering. ?? 2010 US Government.

  8. Probing Titan's Complex Atmospheric Chemistry Using the Atacama Large Millimeter/Submillimeter Array

    NASA Technical Reports Server (NTRS)

    Cordiner, Martin A.; Nixon, Conor; Charnley, Steven B.; Teanby, Nick; Irwin, Pat; Serigano, Joseph; Palmer, Maureen; Kisiel, Zbigniew

    2015-01-01

    Titan is Saturn's largest moon, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Atmospheric photochemistry results in the production of a wide range of complex organic molecules, including hydrocarbons, nitriles, aromatics and other species of possible pre-biotic relevance. Titan's carbon-rich atmosphere may be analogous to that of primitive terrestrial planets throughout the universe, yet its origin, evolution and complete chemical inventory are not well understood. Here we present spatially-resolved maps of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH in Titan's atmosphere, observed using the Atacama Large Millimeter/submillimeter Array (ALMA) in 2012-2013. These data show previously-undetected spatial structures for the observed species and provide the first spectroscopic detection of C2H5CN on Titan. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with photochemical production and transport in the upper atmosphere followed by subsidence over the poles. The HNC emission peaks are offset from the polar axis, indicating that Titan's mesosphere may be more longitudinally variable than previously thought.

  9. Atmospheric transport and dispersion modeling for the Hanford Environmental Dose Reconstruction Project

    SciTech Connect

    Ramsdell, J.V.

    1991-07-01

    Radiation doses that may have resulted from operations at the Hanford Site are being estimated in the Hanford Environmental Dose Reconstruction (HEDR) Project. One of the project subtasks, atmospheric transport, is responsible for estimating the transport, diffusion and deposition of radionuclides released to the atmosphere. This report discusses modeling transport and diffusion in the atmospheric pathway. It is divided into three major sections. The first section of the report presents the atmospheric modeling approach selected following discussion with the Technical Steering Panel that directs the HEDR Project. In addition, the section discusses the selection of the MESOI/MESORAD suite of atmospheric dispersion models that form the basis for initial calculations and future model development. The second section of the report describes alternative modeling approaches that were considered. Emphasis is placed on the family of plume and puff models that are based on Gaussian solution to the diffusion equations. The final portion of the section describes the performance of various models. The third section of the report discusses factors that bear on the selection of an atmospheric transport modeling approach for HEDR. These factors, which include the physical setting of the Hanford Site and the available meteorological data, serve as constraints on model selection. Five appendices are included in the report. 39 refs., 4 figs., 2 tabs.

  10. Why not take the train? Trans-Siberian atmospheric chemistry observations across central and East Asia

    NASA Astrophysics Data System (ADS)

    Oberlander, Eva A.; Brenninkmeijer, Carl A. M.; Crutzen, Paul J.; Lelieveld, Jos; Elansky, Nikolai F.

    With an area of ˜17 million square km (almost 10% of the world's land area), Russia is of considerable importance for the global atmosphere and its changes. Its ecosystems encompass 25% of the world's forest area (about 10% of the global biomass [Nilsson and Shvidenko, 1997]) and more than 25% of the global wetlands area [Aselmann and Crutzen, 1989]. Furthermore, Russia covers an area that is sensitive to climate changes. We highlight the following most significant features of Russian ecosystems: The wetlands are of special importance, not only as natural sources of atmospheric methane (60-175 Tg yr1 [Aselmann and Crutzen, 1989]), but also because large oil and natural gas fields are being exploited there. Repeatedly there have been speculations about large losses of natural gas being of significance for the global atmospheric methane budget (˜35-95 Tg yr1 [Lelieveld et al., 1998]).

  11. Studies of the chemistry of vibrationally and electronically excited species in planetary upper atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, J. L.

    1984-01-01

    The vibrational distribution of O2(+) in the atmospheres of Venus and Mars was investigated to compare with analogous values in the Earth's atmosphere. The dipole moment of the Z(2) Pi sub u - X(2) Pi sub g transition of O2(+) is calculated as a function of internuclear distance. The band absorption oscillator strengths and band transition probabilities of the second negative system are derived. The vibrational distribution of O2(+) in the ionosphere of Venus is calculated for a model based on data from the Pioneer Venus neutral mass spectrometer.

  12. DAVINCI: Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging

    NASA Technical Reports Server (NTRS)

    Glaze, Lori S.; Garvin, James B.; Robertson, Brent; Johnson, Natasha M.; Amato, Michael J.; Thompson, Jessica; Goodloe, Colby; Everette, Dave

    2017-01-01

    DAVINCI is one of five Discovery-class missions selected by NASA in October 2015 for Phase A studies. Launching in November 2021 and arriving at Venus in June of 2023, DAVINCI would be the first U.S. entry probe to target Venus atmosphere in 45 years. DAVINCI is designed to study the chemical and isotopic composition of a complete cross-section of Venus atmosphere at a level of detail that has not been possible on earlier missions and to image the surface at optical wavelengths and process-relevant scales.

  13. Fundamental remote sensing science research program: The Scene Radiation and Atmospheric Effects Characterization Project

    NASA Technical Reports Server (NTRS)

    Deering, D. W.

    1985-01-01

    The Scene Radiation and Atmospheric Effects Characterization (SRAEC) Project was established within the NASA Fundamental Remote Sensing Science Research Program to improve our understanding of the fundamental relationships of energy interactions between the sensor and the surface target, including the effect of the atmosphere. The current studies are generalized into the following five subject areas: optical scene modeling, Earth-space radiative transfer, electromagnetic properties of surface materials, microwave scene modeling, and scatterometry studies. This report has been prepared to provide a brief overview of the SRAEC Project history and objectives and to report on the scientific findings and project accomplishments made by the nineteen principal investigators since the project's initiation just over three years ago. This annual summary report derives from the most recent annual principal investigators meeting held January 29 to 31, 1985.

  14. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony; Hintze, Paul; Meier, Anne; Bayliss, Jon; Karr, Laurel; Paley, Steve; Marone, Matt; Gibson, Tracy; Surma, Jan; Mansell, Matt; Lunn, Griffin; Devor, Robert; Berggren, Mark

    2016-01-01

    The atmosphere of Mars, which is 96 percent carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASAs Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100 of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon has been tested with encouraging results.

  15. Mars Atmospheric In Situ Resource Utilization Projects at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Muscatello, A. C.; Hintze, P. E.; Caraccio, A. J.; Bayliss, J. A.; Karr, L. J.; Paley, M. S.; Marone, M. J.; Gibson, T. L.; Surma, J. M.; Mansell, J. M.; Lunn, G. M.; Devor, R. W.; Berggren, M.

    2016-01-01

    The atmosphere of Mars, which is approximately 95% carbon dioxide (CO2), is a rich resource for the human exploration of the red planet, primarily by the production of rocket propellants and oxygen for life support. Three recent projects led by NASA's Kennedy Space Center have been investigating the processing of CO2. The first project successfully demonstrated the Mars Atmospheric Processing Module (APM), which freezes CO2 with cryocoolers and combines sublimated CO2 with hydrogen to make methane and water. The second project absorbs CO2 with Ionic Liquids and electrolyzes it with water to make methane and oxygen, but with limited success so far. A third project plans to recover up to 100% of the oxygen in spacecraft respiratory CO2. A combination of the Reverse Water Gas Shift reaction and the Boudouard reaction eventually fill the reactor up with carbon, stopping the process. A system to continuously remove and collect carbon is under construction.

  16. Mars Atmospheric Oxidant Sensor (MAOS): An In-Situ Heterogeneous Chemistry Analysis

    NASA Technical Reports Server (NTRS)

    Zent, A. P.; Quinn, R. C.; Grunthaner, F. J.; Hecht, M. H.; Buehler, M. G.; McKay, C. P.; Ricco, A. J.

    2002-01-01

    We describe a chemometric array sensor, the Mars Atmospheric Oxidant Sensor (MAOS) that is designed to measure the oxidation rate of thin films on the martian surface. MAOS will discriminate among leading hypotheses for oxidant production. Additional information is contained in the original extended abstract.

  17. Atmospheric chemistry: Scientific basis for sound health-protective and cost-effective air pollution control strategies

    SciTech Connect

    Pitts, J.N. Jr.

    1995-12-01

    The validity of risk assessments for airborne toxics, and the effectiveness of associated risk management decisions, clearly depend on the accuracy of the data bases employed to estimate human and/or ecosystem exposures. Three current examples are used to illustrate the necessity of including in today`s risk assessments not only total emissions and ambient levels of specific primary pollutants, but also their reaction products: (1) indoor NO{sub 2} and gaseous HONO; (2) conversion of {open_quotes}non-toxic{close_quotes} polycyclic aromatic hydrocarbons to powerful bacterial mutagens; and (3) the conversion in polluted air of a {open_quotes}safe{close_quotes} pesticide, used to eradicate a major agricultural threat, to a more toxic compound to which hundreds of thousands of Southern Californians have been exposed. The pressing need for fundamental research on the atmospheric chemistry of such diverse classes of pollutants and the health effects of their reaction products is discussed.

  18. Modeling HOx/O3 chemistry in the tropical marine boundary during the Pacific Atmospheric Sulfur Experiment

    NASA Astrophysics Data System (ADS)

    Gu, D.; Gray, B. A.; Wang, Y.; Mauldin, L.; Cantrell, C.; Heikes, B. G.; Higbie, A.; O'Sullivan, D. W.; Campos, T.; Pollack, I. B.; Heizer, C. G.; Weinheimer, A. J.

    2008-12-01

    C-130 observations of OH, RO2, O3, CO, H2O2, and CH3OOH in the tropical marine boundary layer during the 2007 Pacific Atmospheric Sulfur Experiment are analyzed using a one- dimensional chemistry transport model. Meteorological parameters are simulated from the Weather Research and Forecasting model. The coupling of low-NOx photochemistry and mixing processes is examined over the relatively homogeneous region. Simulated vertical profiles of HOx radicals and peroxides are not always in agreement with the measurements. Potential factors contributing to the discrepancies are investigated. The large ozone decrease towards the surface is driven in part by large photochemical loss in the marine boundary layer. The vertical gradient is also regulated by the influx of ozone from free troposphere and diffusion transport in the boundary layer. This experimental constraint on model simulated vertical transport is evaluated.

  19. Development of ground support equipment for the NPS ionospheric spectroscopy and atmospheric chemistry (ISAAC) ultraviolet spectrograph. Master`s thesis

    SciTech Connect

    Fragiskos, L.

    1995-06-01

    This thesis details the design of Ground Support Equipment (GSE) for the Naval Postgraduate School`s Ionospheric Spectroscopy and Atmospheric Chemistry (ISAAC) Ultraviolet Spectrograph. ISAAC is one of the several experiments to be flown on the Advanced Research and Global Observation Satellite (ARGOS) in 1996. The GSE consists of several software programs written in LabVIEW. These programs simulate the timing signals that ISAAC will receive from the satellite bus. In addition, the programs acquire serial data from ISAAC, perform a serial to parallel conversion and display the resulting spectra. The GSE will allow testing of the spectrograph prior to the interface with the satellite bus. Although the complete flight instrument is not yet available for testing, this thesis describes how the GSE-to-ISAAC interface will be made and how it should be operated. Finally, some hardware/software incompatibilities are identified.

  20. The puzzling chemical composition of GJ 436B'S atmosphere: Influence of tidal heating on the chemistry

    SciTech Connect

    Agúndez, Marcelino; Selsis, Franck; Venot, Olivia; Iro, Nicolas

    2014-02-01

    The dissipation of the tidal energy deposited on eccentric planets may induce a heating of the planet that affects its atmospheric thermal structure. Here we study the influence of tidal heating on the atmospheric composition of the eccentric (e = 0.16) 'hot Neptune' GJ 436b, for which inconclusive chemical abundances are retrieved from multiwavelength photometric observations carried out during primary transit and secondary eclipse. We build up a one-dimensional model of GJ 436b's atmosphere in the vertical direction and compute the pressure-temperature and molecular abundances profiles for various plausible internal temperatures of the planet (up to 560 K) and metallicities (from solar to 100 times solar), using a radiative-convective model and a chemical model which includes thermochemical kinetics, vertical mixing, and photochemistry. We find that the CO/CH{sub 4} abundance ratio increases with metallicity and tidal heating, and ranges from 1/20 to 1000 within the ranges of metallicity and internal temperature explored. Water vapor locks most of the oxygen and reaches a very high abundance, whatever the metallicity and internal temperature of the planet. The CO{sub 2}/H{sub 2}O abundance ratio increases dramatically with metallicity, and takes values between 10{sup –5}-10{sup –4} with solar elemental abundances and ∼0.1 for a metallicity 100 times solar. None of the atmospheric models based on solid physical and chemical grounds provide a fully satisfactory agreement with available observational data, although the comparison of calculated spectra and observations seems to point to models with a high metallicity and efficient tidal heating, in which high CO/CH{sub 4} abundance ratios and warm temperatures in the dayside atmosphere are favored.

  1. Analysis of nitrate in the snow and atmosphere at Summit, Greenland: Chemistry and transport

    NASA Astrophysics Data System (ADS)

    Fibiger, Dorothy L.; Dibb, Jack E.; Chen, Dexian; Thomas, Jennie L.; Burkhart, John F.; Huey, L. Gregory; Hastings, Meredith G.

    2016-05-01

    As a major sink of atmospheric nitrogen oxides (NOx = NO + NO2), nitrate (NO3-) in polar snow can reflect the long-range transport of NOx and related species (e.g., peroxyacetyl nitrate). On the other hand, because NO3- in snow can be photolyzed, potentially producing gas phase NOx locally, NO3- in snow (and thus, ice) may reflect local processes. Here we investigate the relationship between local atmospheric composition at Summit, Greenland (72°35'N, 38°25'W) and the isotopic composition of NO3- to determine the degree to which local processes influence atmospheric and snow NO3-. Based on snow and atmospheric observations during May-June 2010 and 2011, we find no connection between the local atmospheric concentrations of a suite of gases (BrO, NO, NOy, HNO3, and nitrite (NO2-)) and the NO3- isotopic composition or concentration in snow. This suggests that (1) the snow NO3- at Summit is primarily derived from long-range transport and (2) this NO3- is largely preserved in the snow. Additionally, three isotopically distinct NO3- sources were found to be contributing to the NO3- in the snow at Summit during both 2010 and 2011. Through the complete isotopic composition of NO3-, we suggest that these sources are local anthropogenic particulate NO3- from station activities (δ15N = 16‰, Δ17O = 4‰, and δ18O = 23‰), NO3- formed from midlatitude NOx (δ15N = -10‰, Δ17O = 29‰, δ18O = 78‰) and a NO3- source that is possibly influenced by or derived from stratospheric ozone NO3- (δ15N = 5‰, Δ17O = 39‰, δ18O = 100‰).

  2. Reactions of substituted benzene anions with N and O atoms: Chemistry in Titan's upper atmosphere and the interstellar medium

    NASA Astrophysics Data System (ADS)

    Wang, Zhe-Chen; Bierbaum, Veronica M.

    2016-06-01

    The likely existence of aromatic anions in many important extraterrestrial environments, from the atmosphere of Titan to the interstellar medium (ISM), is attracting increasing attention. Nitrogen and oxygen atoms are also widely observed in the ISM and in the ionospheres of planets and moons. In the current work, we extend previous studies to explore the reactivity of prototypical aromatic anions (deprotonated toluene, aniline, and phenol) with N and O atoms both experimentally and computationally. The benzyl and anilinide anions both exhibit slow associative electron detachment (AED) processes with N atom, and moderate reactivity with O atom in which AED dominates but ionic products are also formed. The reactivity of phenoxide is dramatically different; there is no measurable reaction with N atom, and the moderate reactivity with O atom produces almost exclusively ionic products. The reaction mechanisms are studied theoretically by employing density functional theory calculations, and spin conversion is found to be critical for understanding some product distributions. This work provides insight into the rich gas-phase chemistry of aromatic ion-atom reactions and their relevance to ionospheric and interstellar chemistry.

  3. Heterogeneous Atmospheric Chemistry of Lead Oxide Particles with Nitrogen Dioxide Increases Lead Solubility: Environmental and Health Implications

    PubMed Central

    Baltrusaitis, Jonas; Chen, Haihan; Rubasinghege, Gayan

    2012-01-01

    Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its wide spread presence as a component of lead paint and as naturally occurring minerals, massicot and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surface of PbO particles react to form adsorbed nitrates and lead nitrate thin films with the extent of formation of nitrate relative humidity dependent. Surface adsorbed nitrate increases the amount of dissolved lead. These reacted particles are found to have an increase in the amount of lead that dissolves in aqueous suspensions at circumneutral pH compared to unreacted particles. These results point to the potential importance and impact that heterogeneous chemistry with trace atmospheric gases can have on increasing solubility and therefore the mobilization of heavy metals, such as lead, in the environment. This study also show that surface intermediates, such as adsorbed nitrates, that form can yield higher concentrations of lead in water systems. In the environment, these water systems can include drinking water, ground water, estuaries and lakes. PMID:23057678

  4. Studies of stratospheric and mesospheric chemistry in polar regions with the Berlin Climate Middle Atmosphere Model (CMAM CHEM)

    NASA Astrophysics Data System (ADS)

    Grenfell, J. L.; Mieth, P.; Kruger, K.; Langematz, U.; Labitzke, K.; Steil, B.

    2001-12-01

    The Berlin Climate Middle Atmosphere model (CMAM) with resolution T21 and lid at 84km (Langematz and Pawson, 1997) has been interactively coupled with the chemistry module of Steil et al., (1998). Chemical tracer fields from a test run which used the Palmer gravity wave drag (GWD) scheme have been found to compare well both with observations and other models (e.g. MA-ECHAM4-CHEM). However, in this run the model pole has a warm bias and dynamical variability is not well reproduced. Therefore we are currently testing a suite of orographic and non-orographic GWD schemes in the model. Preliminary results from these latter runs are presented here and focus on stratospheric and mesospheric chemical processes during polar winter, particularly those affecting ozone. The contrast between hemispheres, the springtime 'recovery' of polar stratospheric ozone and relevant chemical diurnal cycles are explored. Bibliography U. Langematz, and Pawson S., The Berlin troposphere-stratosphere-mesosphere GCM: Climatology and forcing mechanisms, Q. J. R. Meteorol. Soc., 123, 1075-1096, 1997 B. Steil, Dameris M., Brühl C., Crutzen P. J., Grewe V., Ponater M., and Sausen R., Development of a chemistry module for GCMs: first results of a multiannual integration, Ann. Geophys., 16, 205-228, 1998

  5. Reactions of Azine Anions with Nitrogen and Oxygen Atoms: Implications for Titan's Upper Atmosphere and Interstellar Chemistry.

    PubMed

    Wang, Zhe-Chen; Cole, Callie A; Demarais, Nicholas J; Snow, Theodore P; Bierbaum, Veronica M

    2015-08-26

    Azines are important in many extraterrestrial environments, from the atmosphere of Titan to the interstellar medium. They have been implicated as possible carriers of the diffuse interstellar bands in astronomy, indicating their persistence in interstellar space. Most importantly, they constitute the basic building blocks of DNA and RNA, so their chemical reactivity in these environments has significant astrobiological implications. In addition, N and O atoms are widely observed in the ISM and in the ionospheres of planets and moons. However, the chemical reactions of molecular anions with abundant interstellar and atmospheric atomic species are largely unexplored. In this paper, gas-phase reactions of deprotonated anions of benzene, pyridine, pyridazine, pyrimidine, pyrazine, and s-triazine with N and O atoms are studied both experimentally and computationally. In all cases, the major reaction channel is associative electron detachment; these reactions are particularly important since they control the balance between negative ions and free electron densities. The reactions of the azine anions with N atoms exhibit larger rate constants than reactions of corresponding chain anions. The reactions of azine anions with O atoms are even more rapid, with complex product patterns for different reactants. The mechanisms are studied theoretically by employing density functional theory; spin conversion is found to be important in determining some product distributions. The rich gas-phase chemistry observed in this work provides a better understanding of ion-atom reactions and their contributions to ionospheric chemistry as well as the chemical processing that occurs in the boundary layers between diffuse and dense interstellar clouds.

  6. AN EXAMINATION OF THE ATMOSPHERIC CHEMISTRY OF MERCURY USING 210PB AND 7BE. (R829796)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Applied Biology and Chemistry. Course Materials: Chemistry 111, 112, 113, 114. Seattle Tech Prep Applied Academics Project.

    ERIC Educational Resources Information Center

    South Seattle Community Coll., Washington.

    This publication contains materials for four courses in Applied Biology/Chemistry in the Applied Academics program at South Seattle Community College. It begins with the article, "Community College Applied Academics: The State of the Art?" (George B. Neff), which describes the characteristics, model, courses, and coordination activity…

  8. Marine Data Management within the EMODNet Chemistry project: data aggregation, quality control and products preparation.

    NASA Astrophysics Data System (ADS)

    Iona, Athanasia Sissy; Karagevrekis, Pelopidas; Balopoulou, Stavroula; Giorgetti, Alessandra; Schaap, Dick

    2015-04-01

    The European Commission in response to the EU Green Paper for an integrated maritime policy has initiated the European Marine Observation and Data Network (EMODnet) to improve Europe's marine data infrastructure, increase the availability of high quality data and assemble them under a common framework. In 2009, six service contracts were launched by DG-MARE for creating the pilot components of the network and setting up thematic web portals covering selected marine basins. In 2012, a second call was opened by DG-MARE to continue the further expand the pilot portals in terms of geographical coverage and range of products and concluded in seven service contracts for: bathymetry, geology, physical habitats, chemistry, biology, physics and human activities. Supporting activities are also foreseen to examine how the portals meet the needs of users from industry, public authorities and scientists, to identify data gaps and arguments why these gaps should be filled in future monitoring. The second EMODNet Chemistry proposal has been prepared and submitted by the SeaDataNet consortium which is the leading data management network in Europe, covering all sea basins in European waters with data input from almost all coastal states. It is the same consortium that had been awarded the first call for the preparatory actions and has been extended with new partners. EMODnet Chemistry (www.emodnet-chemistry.eu/) is focusing on measurement data for groups of chemical variables in water, sediments and biota with relevance to the Marine Strategy Framework Directive. Five regional groups corresponding to the five MSFD regions are performing quality control and aggregation on the data gathered from many distributed data providers of the SeaDataNet infrastructure in order to generate regional harmonized, aggregated and validated data sets for selected groups of chemicals variables. Then these data sets are used to prepare interpolated maps of chemical variables per region over time and

  9. Medicinal Chemistry Projects Requiring Imaginative Structure-Based Drug Design Methods.

    PubMed

    Moitessier, Nicolas; Pottel, Joshua; Therrien, Eric; Englebienne, Pablo; Liu, Zhaomin; Tomberg, Anna; Corbeil, Christopher R

    2016-09-20

    Computational methods for docking small molecules to proteins are prominent in drug discovery. There are hundreds, if not thousands, of documented examples-and several pertinent cases within our research program. Fifteen years ago, our first docking-guided drug design project yielded nanomolar metalloproteinase inhibitors and illustrated the potential of structure-based drug design. Subsequent applications of docking programs to the design of integrin antagonists, BACE-1 inhibitors, and aminoglycosides binding to bacterial RNA demonstrated that available docking programs needed significant improvement. At that time, docking programs primarily considered flexible ligands and rigid proteins. We demonstrated that accounting for protein flexibility, employing displaceable water molecules, and using ligand-based pharmacophores improved the docking accuracy of existing methods-enabling the design of bioactive molecules. The success prompted the development of our own program, Fitted, implementing all of these aspects. The primary motivation has always been to respond to the needs of drug design studies; the majority of the concepts behind the evolution of Fitted are rooted in medicinal chemistry projects and collaborations. Several examples follow: (1) Searching for HDAC inhibitors led us to develop methods considering drug-zinc coordination and its effect on the pKa of surrounding residues. (2) Targeting covalent prolyl oligopeptidase (POP) inhibitors prompted an update to Fitted to identify reactive groups and form bonds with a given residue (e.g., a catalytic residue) when the geometry allows it. Fitted-the first fully automated covalent docking program-was successfully applied to the discovery of four new classes of covalent POP inhibitors. As a result, efficient stereoselective syntheses of a few screening hits were prioritized rather than synthesizing large chemical libraries-yielding nanomolar inhibitors. (3) In order to study the metabolism of POP inhibitors by

  10. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    SciTech Connect

    Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

    2010-11-05

    A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

  11. Venusian atmospheric equilibrium chemistry at the Pioneer Venus anomalous event altitude

    NASA Technical Reports Server (NTRS)

    Craig, Roger A.

    1994-01-01

    No convincing explanation for the anomalous behavior of the Atmospheric Structure Experiment temperature sensors at approximately 13 km altitude has been found. It occurred on all of the widely-spaced probes, in a similar fashion. A preliminary effort has been made to determine atmospheric chemical species which might be present at 13 km. The purpose of this effort is to initiate suggestions of possible chemical interactions and to explore the effects of the presence of possible metal reactants including condensation. Equilibrium fractions of chemical species were calculated at a variety of conditions. Baseline calculations were made for the altitudes near 13 km. For comparison calculations were also made at 13 km but with the introduction of plausible metal atoms.

  12. Atmospheric chemistry. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor.

    PubMed

    Chao, Wen; Hsieh, Jun-Ting; Chang, Chun-Hung; Lin, Jim Jr-Min

    2015-02-13

    Carbonyl oxides, or Criegee intermediates, are important transient species formed in the reactions of unsaturated hydrocarbons with ozone. Although direct detection of Criegee intermediates has recently been realized, the main atmospheric sink of Criegee intermediates remains unclear. We report ultraviolet absorption spectroscopic measurements of the lifetime of the simplest Criegee intermediate, CH2OO, at various relative humidity levels up to 85% at 298 kelvin. An extremely fast decay rate of CH2OO was observed at high humidity. The observed quadratic dependence of the decay rate on water concentration implied a predominant reaction with water dimer. On the basis of the water dimer equilibrium constant, the effective rate coefficient of the CH2OO + (H2O)2 reaction was determined to be 6.5 (±0.8) × 10(-12) cubic centimeters per second. This work would help modelers to better constrain the atmospheric concentrations of CH2OO.