Science.gov

Sample records for atmospheric co2 variations

  1. Seasonal and interannual variations of atmospheric CO2 and climate

    USGS Publications Warehouse

    Dettinger, M.D.; Ghil, M.

    1998-01-01

    Interannual variations of atmospheric CO2 concentrations at Mauna Loa are almost masked by the seasonal cycle and a strong trend; at the South Pole, the seasonal cycle is small and is almost lost in the trend and interannual variations. Singular-spectrum analysis (SSA) issued here to isolate and reconstruct interannual signals at both sites and to visualize recent decadal changes in the amplitude and phase of the seasonal cycle. Analysis of the Mauna Loa CO2 series illustrates a hastening of the CO2 seasonal cycle, a close temporal relation between Northern Hemisphere (NH) mean temperature trends and the amplitude of the seasonal CO2 cycle, and tentative ties between the latter and seasonality changes in temperature over the NH continents. Variations of the seasonal CO2 cycle at the South Pole differ from those at Mauna Loa: it is phase changes of the seasonal cycle at the South Pole, rather than amplitude changes, that parallel hemispheric and global temperature trends. The seasonal CO2 cycles exhibit earlier occurrences of the seasons by 7 days at Mauna Loa and 18 days at the South Pole. Interannual CO2 variations are shared at the two locations, appear to respond to tropical processes, and can be decomposed mostly into two periodicities, around (3 years)-1 and (4 years)-1, respectively. Joint SSA analyses of CO2 concentrations and tropical climate indices isolate a shared mode with a quasi-triennial (QT) period in which the CO2 and sea-surface temperature (SST) participation are in phase opposition. The other shared mode has a quasi-quadrennial (QQ) period and CO2 variations are in phase with the corresponding tropical SST variations throughout the tropics. Together these interannual modes exhibit a mean lag between tropical SSTs and CO2 variations of about 6-8 months, with SST leading. Analysis of the QT and QQ signals in global gridded SSTs, joint SSA of CO2 and ??13C isotopic ratios, and SSA of CO2 and NH-land temperatures indicate that the QT variations in

  2. Influence of Atmospheric CO2 Variation on Strom Track Behavior

    NASA Astrophysics Data System (ADS)

    Martynova, Yuliya; Krupchatnikov, Vladimir

    2015-04-01

    The storm tracks are the regions of strong baroclinicity where surface cyclones occur. The effect of increase with following decrease of anthropogenic load on storm tracks activity in the Northern Hemisphere was studied. The global climate system model of intermediate complexity ('Planet Simulator', Fraedrich K. et al., 2005) was used in this study. Anthropogenic forcing was set according to climatic scenario RCP8.5 continued till 4000 AD with fixed CO2 concentration till 3000 AD and linear decrease of anthropogenic load to preindustrial value at two different rates: for 100 and 1000 years. Modeling data analysis showed meridional shift of storm tracks due to atmospheric CO2 concentration variation. When CO2 concentration increases storm tracks demonstrate poleward shifting. When CO2 concentration decreases to preindustrial value storm tracks demonstrate a tendency to equator-ward shifting. Storm tracks, however, don't recover their original activity and location to the full. This manifests itself particularly for 'fast' CO2 concentration decrease. Heat and moisture fluxes demonstrate the same behavior. In addition, analysis of eddy length scale (Kidston J. Et al., 2011) showed their increase at mid-latitudes and decrease at tropic latitudes due to intensive CO2 concentration increase. This might cause poleward shift of mid-latitude jets. Acknowledgements. This work is partially supported by SB RAS project VIII.80.2.1, RFBR grant 13-05-12034, 13-05-00480, 14-05-00502 and grant of the President of the Russian Federation. Fraedrich K., Jansen H., Kirk E., Luksch U., and Lunkeit F. The Planet Simulator: Towards a user friendly model // Meteorol. Zeitschrift. 2005, 14, 299-304. Kidston J., Vallis G.K., Dean S.M., Renwick J.A. Can the increase in the eddy length scale ander global warming cause the poleward shift of the jet streams? // J. Climate. 2011, V.24. P. 3764-3780.

  3. Effect on atmospheric CO2 from seasonal variations in the high latitude ocean

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1989-01-01

    Data from the North Pacific gyre, Bering Sea, and North Atlantic show large seasonal fluctuations in the pCO2 of surface waters. The seasonal variation in these latitudes apparently has a generic pattern: higher surface water pCO2 in winter and lower in summer. Satellite data will eventually help decipher the relative effects of temperature and biological production in the seasonal carbon cycle, but as yet little work has been done on what possible role the seasonality of pCO2 in the high latitudes might have on the average value of atmospheric pCO2. A model is developed that shows the average value for atmospheric pCO2 depends upon the ratio of the rates at which the ocean/atmosphere system moves toward equilibrium values during the summer and winter conditions of the high latitude ocean.

  4. Changes in the High-latitude Ocean as Possible Causes of Atmospheric CO2 Variations

    NASA Technical Reports Server (NTRS)

    Siegenthaler, U.

    1984-01-01

    Measurements on air enclosed in old polar ice have indicated that the atmospheric CO2 concentration was ca. 50 to 70 ppm lower in late glacial times than during the Holocene. Similar measurements performed on samples from a Greenland ice core, dating ca. 30,000 to 40,000 B.P., and have yielded evidence of several CO2 oscillations with an amplitude of ca. 50 ppm. Each change lasted on the order of a few centuries. A mechanism by which circulation changes in the high-latitude ocean could lead to rapid variations in atmospheric CO2 is proposed. In the Antarctic Ocean a slowing down of the vertical mixing would imply a smaller upward flux of sigma CO2 and nutrients. Assuming constant productivity, sigma CO2 and nutrients would be more completely used which would imply lower CO2 in these high-latitude surface waters. In areas with a warm surface, a slowing down of the circulation would not have a direct impact on CO2 because productivity would automatically decrease by the same factor as the upwelling rate of nutrients. Studies with a simple box model of the ocean-atmosphere system suggest that a suddent decrease by a factor of 2 of the water exchange between the surface and deep sea in high latitudes could lead to a CO2 decrease of ca. 40 to 50 ppm with a time constant of ca. 200 years. Deep-sea sediment studies indicate rapid changes in the high-latitude surface conditions of the North Atlantic and the Antarctic Oceans at the end of the last glaciation. Studies of carbon isotope ratios should help ascertain whether this proposed mechanism was indeed responsible for the CO2 variation.

  5. Simulation and Observation of Global Variations in Surface Exchange and Atmospheric Mixing Ratios of CO2

    NASA Astrophysics Data System (ADS)

    Denning, A.; Conner-Gausepohl, S.; Kawa, S.; Baker, I. T.; Zhu, Z.; Brown, M.; Vay, S.; Wofsy, S. C.; Philpott, A.; Collatz, G.; Schaefer, K.; Kleist, J.

    2005-12-01

    We have performed a simulation of hourly variations of terrestrial surface fluxes and the atmospheric mixing ratio of carbon dioxide from January 1, 2000 through December 31, 2004, and have evaluated the simulation by comparison to a number of observations. Terrestrial photosynthesis and ecosystem respiration were computed using the Simple Biosphere Model (SiB), driven by diurnally-varying weather analyzed by the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS), with vegetation parameters specified using imagery from the NOAA Advanced High Resolution Radiometer (AVHRR). CO2 emissions due to the combustion of fossil fuel and to air-sea gas exchange were also prescribed as boundary forcing to the atmospheric transport Parameterized Chemical Transport model (PCTM). Preliminary results showed reasonable agreement with spatial and synoptic variations, but suffered from a systematic offset with respect to the observed seasonal cycle of CO2 at many flask observing stations. Subsequent analysis showed that these problems were traceable to temporal interpolation of the satellite vegetation imagery and the treatment of leaf-to-canopy scaling in SiB, which have both been substantially revised as a result of these analyses. Comparisons to eddy covariance data at several sites, to tower-based continuous observations of CO2 mixing ratio, and to data collected by airborne sampling show that the coupled simulation successfully captures many features of the observed temporal and spatial variations of terrestrial surface exchange and atmospheric transport of CO2. The simulations demonstrate the sensitivity of both surface exchange and atmospheric transport of CO2 to synoptic weather events in middle latitudes, and suggest that high-frequency variations in continental [CO2] data can be interpreted in terms of surface flux anomalies.

  6. Temporal variations of atmospheric CO2 and CO at Ahmedabad in western India

    NASA Astrophysics Data System (ADS)

    Chandra, Naveen; Lal, Shyam; Venkataramani, S.; Patra, Prabir K.; Sheel, Varun

    2016-05-01

    About 70 % of the anthropogenic carbon dioxide (CO2) is emitted from the megacities and urban areas of the world. In order to draw effective emission mitigation policies for combating future climate change as well as independently validating the emission inventories for constraining their large range of uncertainties, especially over major metropolitan areas of developing countries, there is an urgent need for greenhouse gas measurements over representative urban regions. India is a fast developing country, where fossil fuel emissions have increased dramatically in the last three decades and are predicted to continue to grow further by at least 6 % per year through to 2025. The CO2 measurements over urban regions in India are lacking. To overcome this limitation, simultaneous measurements of CO2 and carbon monoxide (CO) have been made at Ahmedabad, a major urban site in western India, using a state-of-the-art laser-based cavity ring down spectroscopy technique from November 2013 to May 2015. These measurements enable us to understand the diurnal and seasonal variations in atmospheric CO2 with respect to its sources (both anthropogenic and biospheric) and biospheric sinks. The observed annual average concentrations of CO2 and CO are 413.0 ± 13.7 and 0.50 ± 0.37 ppm respectively. Both CO2 and CO show strong seasonality with lower concentrations (400.3 ± 6.8 and 0.19 ± 0.13 ppm) during the south-west monsoon and higher concentrations (419.6 ± 22.8 and 0.72 ± 0.68 ppm) during the autumn (SON) season. Strong diurnal variations are also observed for both the species. The common factors for the diurnal cycles of CO2 and CO are vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in the CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found significant contributions of biospheric respiration and anthropogenic emissions in the late night (00:00-05:00 h, IST

  7. Variations in atmospheric CO2 growth rates coupled with tropical temperature

    PubMed Central

    Wang, Weile; Ciais, Philippe; Nemani, Ramakrishna R.; Canadell, Josep G.; Piao, Shilong; Sitch, Stephen; White, Michael A.; Hashimoto, Hirofumi; Milesi, Cristina; Myneni, Ranga B.

    2013-01-01

    Previous studies have highlighted the occurrence and intensity of El Niño–Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r2 ≈ 0.50) between interannual variations of the CO2 growth rate and tropical land–surface air temperature during 1959 to 2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ± 0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anomaly on average. Analysis of simulation results from Dynamic Global Vegetation Models suggests that this temperature–CO2 coupling is contributed mainly by the additive responses of heterotrophic respiration (Rh) and net primary production (NPP) to temperature variations in tropical ecosystems. However, we find a weaker and less consistent (r2 ≈ 0.25) interannual coupling between CO2 growth rate and tropical land precipitation than diagnosed from the Dynamic Global Vegetation Models, likely resulting from the subtractive responses of tropical Rh and NPP to precipitation anomalies that partly offset each other in the net ecosystem exchange (i.e., net ecosystem exchange ≈ Rh − NPP). Variations in other climate variables (e.g., large-scale cloudiness) and natural disturbances (e.g., volcanic eruptions) may induce transient reductions in the temperature–CO2 coupling, but the relationship is robust during the past 50 y and shows full recovery within a few years after any such major variability event. Therefore, it provides an important diagnostic tool for improved understanding of the contemporary and future global carbon cycle. PMID:23884654

  8. The 1994 to 2008 concentration variations of atmospheric CO2 observed at Jubany Station (Antarctica)

    NASA Astrophysics Data System (ADS)

    Gallo, Veronica; de Simone, Sara; Ciattaglia, Luigi; Rafanelli, Claudio; Diego, Piero

    2010-05-01

    Since 1994 the Italian PNRA (National Research Program in Antarctica) and the Argentina DNA (Direction National de Antartico) have been collecting continuous atmospheric carbon dioxide measurements at Jubany. The Antarctic station at Jubany (62° 14'S, 58° 40'W) is located in King George Island, in the South Shetland archipelago, north of the Antarctic Peninsula. The laboratory is situated at an elevation of 15 m.s.l. on the SE slope of Potter Bay. The measurements are taken by using a Siemens U5 analyzer based on NDIR (Non Dispersive InfraRed) absorption method. Details are given on the station environment, meteorological conditions, instrumentation, and data selection strategy. The paper presents the first 14 years (1994-2008) of continuous atmospheric CO2 measurements; the interannual and seasonal variations of CO2 data are described

  9. Marginal Lands Gross Primary Production Dominate Atmospheric CO2 Interannual Variations

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Raupach, M. R.; Schurgers, G.; Arneth, A.; Jung, M.; Reichstein, M.; Smith, B.

    2014-12-01

    Since the 1960s terrestrial ecosystems have acted as a substantial sink for atmospheric CO2, sequestering about one quarter of anthropogenic emissions in an average year. Variations in this land carbon sink are also responsible for most of the large interannual variability in atmospheric CO2 concentrations. While most evidence places the majority of the sink in highly productive forests and at high latitudes experiencing warmer and longer growing seasons, the location and the processes governing the interannual variations are still not well characterised. Here we evaluate the hypothesis that the long-term trend and the variability in the land CO2 sink are respectively dominated by geographically distinct regions: the sink by highly productive lands, mainly forests, and the variability by semi-arid or "marginal" lands where vegetation activity is strongly limited by water and therefore responds strongly to climate variability. Using novel analysis methods and data from both upscaled flux-tower measurements and a dynamic global vegetation model, we show that (1) the interannual variability in the terrestrial CO2 sink arises mainly from variability in terrestrial gross primary production (GPP); (2) most of the interannual variability in GPP arises in tropical and subtropical marginal lands, where negative anomalies are driven mainly by warm, dry conditions and positive anomalies by cool, wet conditions; (3) the variability in the GPP of high-latitude marginal lands (tundra and shrublands) is instead controlled by temperature and light, with warm bright conditions resulting in positive anomalies. The influence of ENSO (El Niño-Southern Oscillation) on the growth rate of atmospheric CO2 concentrations is mediated primarily through climatic effects on GPP in marginal lands, with opposite signs in subtropical and higher-latitude regions. Our results show that the land sink of CO2 (dominated by forests) and its interannual variability (dominated by marginal lands) are

  10. Spatial variations in atmospheric CO2 concentrations during the ARCTAS-CARB 2008 Summer Campaign

    NASA Astrophysics Data System (ADS)

    Vadrevu, K. P.; Choi, Y.; Vay, S. A.

    2009-12-01

    The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) was a major NASA field campaign designed to understand the transport and transformation of trace gases and aerosols on transcontinental and intercontinental scales and their impact on the composition of the arctic atmosphere and climate. Preceding the summer ARCTAS deployment, measurements were conducted over the state of California in collaboration with the California Air Resources Board (CARB) utilizing the airborne chemistry payload already integrated on the NASA DC-8. In situ CO2 measurements were made using a modified infrared CO2 gas analyzer having a precision of 0.1 ppmv and accuracy of ±0.25 ppmv traceable to the WMO scale. This analysis focuses on the atmospheric CO2 variability and biospheric/atmospheric exchange over California. We used multi-satellite remote sensing datasets to relate airborne observations of CO2 to infer sources and sinks. Georeferencing the airborne CO2 transect data with the LANDSAT derived land cover datasets over California suggested significant spatial variations. The airborne CO2 concentrations were found to be 375-380ppm over the Pacific ocean, 385-391ppm in the highly vegetated agricultural areas, 400-420 in the near coastal areas and greater than 425ppmv in the urban areas. Analysis from MODIS fire products suggested significant fires in northern California. CO2 emissions exceeded 425ppmv in the fire affected regions, where mostly Douglas and White Fir conifers and mixed Chaparral vegetation was burnt. Analysis from GOES-East and GOES-West visible satellite imagery suggested significant smoke plumes moving from northern California towards Nevada and Idaho. To infer the biospheric uptake of CO2, we tested the potential correlations between airborne CO2 data and MODIS normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Results suggested significant anti-correlations between the airborne CO2 data and

  11. [Characteristics of atmospheric CO2 concentration and variation of carbon source & sink at Lin'an regional background station].

    PubMed

    Pu, Jing-Jiao; Xu, Hong-Hui; Kang, Li-Li; Ma, Qian-Li

    2011-08-01

    Characteristics of Atmospheric CO2 concentration obtained by Flask measurements were analyzed at Lin'an regional background station from August 2006 to July 2009. According to the simulation results of carbon tracking model, the impact of carbon sources and sinks on CO2 concentration was evaluated in Yangtze River Delta. The results revealed that atmospheric CO2 concentrations at Lin'an regional background station were between 368.3 x 10(-6) and 414.8 x 10(-6). The CO2 concentration varied as seasons change, with maximum in winter and minimum in summer; the annual difference was about 20.5 x 10(-6). The long-term trend of CO2 concentration showed rapid growth year by year; the average growth rate was about 3.2 x 10(-6)/a. CO2 flux of Yangtze River Delta was mainly contributed by fossil fuel burning, terrestrial biosphere exchange and ocean exchange, while the contribution of fire emission was small. CO2 flux from fossil fuel burning played an important role in carbon source; terrestrial biosphere and ocean were important carbon sinks in this area. Seasonal variations of CO2 concentration at Lin'an regional background station were consistent with CO2 fluxes from fossil fuel burning and terrestrial biosphere exchange.

  12. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    PubMed

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  13. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    NASA Astrophysics Data System (ADS)

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco; SMS Science Team; Acton, Gary; Askin, Rosemary; Atkins, Clifford; Bassett, Kari; Beu, Alan; Blackstone, Brian; Browne, Gregory; Ceregato, Alessandro; Cody, Rosemary; Cornamusini, Gianluca; Corrado, Sveva; DeConto, Robert; Del Carlo, Paola; Di Vincenzo, Gianfranco; Dunbar, Gavin; Falk, Candice; Field, Brad; Fielding, Christopher; Florindo, Fabio; Frank, Tracy; Giorgetti, Giovanna; Grelle, Thomas; Gui, Zi; Handwerger, David; Hannah, Michael; Harwood, David M.; Hauptvogel, Dan; Hayden, Travis; Henrys, Stuart; Hoffmann, Stefan; Iacoviello, Francesco; Ishman, Scott; Jarrard, Richard; Johnson, Katherine; Jovane, Luigi; Judge, Shelley; Kominz, Michelle; Konfirst, Matthew; Krissek, Lawrence; Kuhn, Gerhard; Lacy, Laura; Levy, Richard; Maffioli, Paola; Magens, Diana; Marcano, Maria C.; Millan, Cristina; Mohr, Barbara; Montone, Paola; Mukasa, Samuel; Naish, Timothy; Niessen, Frank; Ohneiser, Christian; Olney, Mathew; Panter, Kurt; Passchier, Sandra; Patterson, Molly; Paulsen, Timothy; Pekar, Stephen; Pierdominici, Simona; Pollard, David; Raine, Ian; Reed, Joshua; Reichelt, Lucia; Riesselman, Christina; Rocchi, Sergio; Sagnotti, Leonardo; Sandroni, Sonia; Sangiorgi, Francesca; Schmitt, Douglas; Speece, Marvin; Storey, Bryan; Strada, Eleonora; Talarico, Franco; Taviani, Marco; Tuzzi, Eva; Verosub, Kenneth; von Eynatten, Hilmar; Warny, Sophie; Wilson, Gary; Wilson, Terry; Wonik, Thomas; Zattin, Massimiliano

    2016-03-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (˜280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (˜500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene.

  14. Antarctic Ice Sheet Sensitivity to Atmospheric CO2 Variations During the Early to Mid-Miocene

    NASA Astrophysics Data System (ADS)

    Levy, R. H.; Harwood, D. M.; Florindo, F.; Sangiorgi, F.; Eagle, R.; von Eynatten, H.; Gasson, E.; Kuhn, G.; Tripati, A.; Deconto, R. M.; Fielding, C. R.; Field, B.; Golledge, N. R.; Mckay, R. M.; Naish, T.; Olney, M.; Pollard, D.; Schouten, S.; Talarico, F. M.; Warny, S.; Willmott, V.

    2015-12-01

    The Early to mid-Miocene (23 to 14 million years ago) is a compelling interval to study Antarctic ice sheet sensitivity to changes in atmospheric CO2 as oceanic and atmospheric circulation patterns in the southern hemisphere were broadly similar to present and reconstructed atmospheric CO2 concentrations were analogous to those projected for the next several decades. This time interval includes the Miocene Climatic Optimum (MCO), a period of global warmth during which average surface temperatures were 3 to 4°C higher than today. Miocene sediments in the AND-2A drill core from the Western Ross Sea, Antarctica provide direct information regarding ice sheet variability through this key time interval and offer insight into the potential Antarctic contribution to future sea level rise. A multi-proxy dataset derived from AND-2A identifies four distinct environmental "motifs" based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of marine-based ice across the Ross Sea. They all correlate with major positive shifts in benthic oxygen isotope records and episodes of sea-level fall, and generally coincide with intervals when atmospheric CO2 concentrations were below current levels (~400 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for significant ice mass loss during episodes of high (>400 ppm) atmospheric CO2. These results suggest that polar climate and the Antarctic Ice Sheet (AIS) were highly sensitive to relatively small changes in CO2 during the early to mid-Miocene, which is supported by numerical ice sheet and climate modelling.

  15. Impact of nitrogen limitation on terrestrial carbon cycle responses to climate variations and atmosphere CO2

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Ji, D.; Dai, Y. J.

    2014-12-01

    The responses of the terrestrial carbon cycle to its natural and anthropogenic driving factors are considered to be altered substantially by nitrogen dynamics. In this study, we use a land surface model coupling the carbon (C) and nitrogen (N) cycles to quantify the effect of nitrogen cycle on the sensitivity of terrestrial carbon cycle to atmosphere CO2 and concurrent climatic change. The model is Common Land Model (CoLM) updated by adopting the plant and soil C and N scheme from the Dynamic Nitrogen Scheme (DyN). We forced the model with reconstructed historical climate fields of CRUNCEP data and observed rising atmospheric CO2 concentration from 1900 to 2012. The simulated sensitivity of carbon fluxes by our carbon only (CoLM-C) and carbon nitrogen cycles model (CoLM-CN) to climate variability and atmospheric CO2 trends are compared with other independent studies. Global-scale results of CoLM-CN show that the model produces realistic estimates of current period C and N stocks, despite some regional biases. In response to rising atmospheric CO2 concentration, the simulated Gross Primary Production (GPP) and Net Primary Production (NPP) increases are suppressed by N limitations by 30% and 20%, respectively. The relative response of NPP to CO2 (12% per 100 ppm) when N is accounted for compares well with the sensitivity derived from Free-Air CO2 Enrichment (FACE) experiments (13% per 100 ppm). For the last 30 years, N limitation decreases the Net Biosphere Production (NBP) sensitivity to atmosphere CO2 by 16%. In response to the climatic changes, our results show that the interannual variability of C fluxes (GPP, NPP, NBP) is more closed controlled by precipitation in tropical and temperate ecosystems, while temperature is more important in boreal ecosystems. Including N cycle did not change the phase but reduce the magnitude of interannual variability of these fluxes. Globally, the model simulated a positive correlation between NBP and precipitation (2.2±1.5 Pg C

  16. Carbon allocation changes: an adaptive response to variations in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Harrison, Sandy; Li, Guangqi; Prentice, Iain Colin

    2016-04-01

    Given the ubiquity of nutrient constraints on primary production, an optimal carbon allocation strategy is expected to increase total below-ground allocation (fine root production and turnover, allocation to mycorrhizae and carbon exudation to the rhizophere) as atmospheric CO2 concentration increases. Conversely, below-ground allocation should be reduced when atmospheric CO2 concentrations were low, as occurred during glacial times. Using a coupled generic primary production and tree-growth model, we quantify the changes in carbon allocation that are required to explain the apparent homoeostasis of tree radial growth during recent decades and between glacial and interglacial conditions. These results suggest a resolution of the apparent paradox of continuing terrestrial CO2 uptake (a consequence of CO2 fertilization) and the widespread lack of observed enhancement of stem growth in trees. Adaptive shifts in carbon allocation are thus a key feature that should to be accounted for in models to predict tree growth and future timber harvests, as well as in large-scale ecosystem and carbon cycle models.

  17. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene.

    PubMed

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Gasson, Edward; Kuhn, Gerhard; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-03-29

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23-14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3-4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2 These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. PMID:26903644

  18. Antarctic ice sheet sensitivity to atmospheric CO2 variations in the early to mid-Miocene

    PubMed Central

    Levy, Richard; Harwood, David; Florindo, Fabio; Sangiorgi, Francesca; Tripati, Robert; von Eynatten, Hilmar; Tripati, Aradhna; DeConto, Robert; Fielding, Christopher; Field, Brad; Golledge, Nicholas; McKay, Robert; Naish, Timothy; Olney, Matthew; Pollard, David; Schouten, Stefan; Talarico, Franco; Warny, Sophie; Willmott, Veronica; Acton, Gary; Panter, Kurt; Paulsen, Timothy; Taviani, Marco

    2016-01-01

    Geological records from the Antarctic margin offer direct evidence of environmental variability at high southern latitudes and provide insight regarding ice sheet sensitivity to past climate change. The early to mid-Miocene (23–14 Mya) is a compelling interval to study as global temperatures and atmospheric CO2 concentrations were similar to those projected for coming centuries. Importantly, this time interval includes the Miocene Climatic Optimum, a period of global warmth during which average surface temperatures were 3–4 °C higher than today. Miocene sediments in the ANDRILL-2A drill core from the Western Ross Sea, Antarctica, indicate that the Antarctic ice sheet (AIS) was highly variable through this key time interval. A multiproxy dataset derived from the core identifies four distinct environmental motifs based on changes in sedimentary facies, fossil assemblages, geochemistry, and paleotemperature. Four major disconformities in the drill core coincide with regional seismic discontinuities and reflect transient expansion of grounded ice across the Ross Sea. They correlate with major positive shifts in benthic oxygen isotope records and generally coincide with intervals when atmospheric CO2 concentrations were at or below preindustrial levels (∼280 ppm). Five intervals reflect ice sheet minima and air temperatures warm enough for substantial ice mass loss during episodes of high (∼500 ppm) atmospheric CO2. These new drill core data and associated ice sheet modeling experiments indicate that polar climate and the AIS were highly sensitive to relatively small changes in atmospheric CO2 during the early to mid-Miocene. PMID:26903644

  19. On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia

    NASA Astrophysics Data System (ADS)

    Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.

    2015-07-01

    The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.

  20. [Remote sensing of seasonal variation in column concentration of atmospheric CO2 and CH4 in Hefei].

    PubMed

    Cheng, Si-Yang; Gao, Min-Guang; Xu, Liang; Jin, Ling; Li, Sheng; Tong, Jing-Jing; Wei, Xiu-Li; Liu, Jian-Guo; Liu, Wen-Qing

    2014-03-01

    In order to observe two kinds of greenhouse gases, CO2 and CH4, making the biggest contribution to global warming, a ground-based Fourier transform near-infrared spectral remote sensing system was developed to record the perpendicular incidence sun spectra from February 2012 to April 2013 in Hefei continuously. The measured total transmittances in the atmosphere were obtained from perpendicular incidence sun spectra. Methods of line-by-line and low-order polynomial approximation were used to model the total atmospheric transmittances in forward model. The measured transmittance spectra were fitted iteratively using the modeled transmittance spectra in the regions of CO2 6,150-6,270 and CH4 5,970-6,170 cm(-1) in order to obtain their column concentrations. The column-average dry-air mole fractions of CO2 and CH4 were obtained with the internal standard function of O2 column concentrations. CO2 and CH4 daily average values of column-average dry-air mole fractions changed with a larger fluctuation and obvious seasonal periodicity. Their monthly average values were consistent as a whole, although there were different characteristics. Compared with the results reported by Japanese greenhouse-gas satellite in the area of Waliguan, there was a time lag corresponding to peak and trough of CO2 content and the change from peak to trough costed a longtime. CHR content showed variation tendency of unique peak and trough, higher in summer and lower in winter, compared with average values of nationwide CH4 column concentrations based on SCIAMACHY data. The variation characteristics were related to complex factors such as the balance of source and sink, meteorological and climate conditions, and required long-term observation and further study.

  1. Seasonal Variation Of Atmospheric CO2 And Carbon Flux From Biosphere Simulated By A Global Coupled Model

    NASA Astrophysics Data System (ADS)

    Iguchi, T.; Kida, H.; Kazaoka, R.

    2004-12-01

    To investigate contribution of the biosphere to atmospheric CO2, a simulation was implemented using a global transport model coupled with a biosphere model. The transport model, which was developed by Iguchi and Kida, divides the atmosphere into grid boxes and calculates fluxes between boxes. So it surely conserves total mass of tracers. Sim-CYCLE, the biosphere model developed by Ito and Oikawa, calculates carbon dynamics within the plant and soil of each grid area. In the coupled model, carbon absorption by photosynthesis and emission by respiration and decomposition calculated by Sim-CYCLE are summed up to surface CO2 fluxes of the transport model. Oppositely, CO2 distribution calculated by the transport model is input to Sim-CYCLE. Both models need input data of the atmosphere or soil. In the simulation, 1990 ECMWF/TOGA data set was used for the transport model, and 1990 NCEP/NCAR re-analysis data set was used for Sim-CYCLE. Also NASA/GISS carbon exchange data set was used as carbon flux from fossil fuel consumption, land use change, and ocean. Result of the simulation was compared with CO2 distribution interpolated from 1990 WMO/WDCGG monthly observation data set. Annual and zonal mean CO2 values calculated in the simulation become higher than those observed. Global and annual carbon absorption by the biosphere calculated by Sim-CYCLE was 1.24GtC. Monthly and zonal mean computed CO2 distributions showed seasonal variation that is similar to observation from winter to summer, but not from summer to winter. This result requires the biosphere model more precise reproduction of leaf falling. Seasonal variations of computed and observed CO2 at observation sites were also compared. At most of the sites, the month of the minimum CO2 computed is later than that observed. As concerns seasonal variation of carbon flux from the biosphere, result of the simulation and NASA/GISS carbon flux data set of vegetation were compared. Computed flux by Sim-CYCLE showed longer

  2. Atmospheric Fossil Fuel CO2 Traced by Δ(14)C in Beijing and Xiamen, China: Temporal Variations, Inland/Coastal Differences and Influencing Factors.

    PubMed

    Niu, Zhenchuan; Zhou, Weijian; Wu, Shugang; Cheng, Peng; Lu, Xuefeng; Xiong, Xiaohu; Du, Hua; Fu, Yunchong; Wang, Gehui

    2016-06-01

    One year of atmospheric Δ(14)CO2 were observed in 2014 in the inland city of Beijing and coastal city of Xiamen, China, to trace temporal CO2ff variations and to determine the factors influencing them. The average CO2ff concentrations at the sampling sites in Beijing and Xiamen were 39.7 ± 36.1 ppm and 13.6 ± 12.3 ppm, respectively. These contributed 75.2 ± 14.6% and 59.1 ± 26.8% to their respective annual ΔCO2 offsets over background CO2 concentrations. Significantly (p < 0.05) high CO2ff values were observed in winter in Beijing. We did not find any significant differences in CO2ff values between weekdays and weekends. Diurnal CO2ff variations were plainly evident, with high values between midnight and 4:00, and during morning and afternoon rush hours. The sampling site in the inland city of Beijing displayed much higher CO2ff inputs and overall temporal variations than the site in the coastal city of Xiamen. The variations of CO2ff at both sites were controlled by a combination of emission sources, topography, and atmospheric dispersion. In particular, diurnal observations at the urban site in Beijing showed that CO2ff was easily accumulated under the southeast wind conditions. PMID:27171980

  3. Carbon allocation changes: an adaptive response to variations in atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Harrison, S. P.; Li, G.; Prentice, I. C. C.

    2015-12-01

    Given the ubiquity of nutrient constraints on primary production, an optimal carbon allocation strategy is expected to increase total below-ground allocation (fine root production and turnover, allocation to mycorrhizae and carbon exudation to the rhizophere) as CO2 concentration increases. Conversely, below-ground allocation should be reduced under low CO2 concentrations, as occurred during glacial times. Using a coupled generic primary production and tree-growth model, we quantify the changes in carbon allocation that are required to explain the apparent homoeostasis of tree radial growth during recent decades and between glacial and interglacial conditions. These results suggest a resolution of the apparent paradox of continuing terrestrial CO2 uptake (a consequence of CO2 fertilization) and the widespread lack of observed radial growth enhancement in trees. Adaptive shifts in carbon allocation are thus a key feature that needs to be accounted for in models to predict, for example, future timber yields as well as in large-scale ecosystem and carbon cycle models.

  4. Temporal variations in atmospheric CO2 concentrations in Kuwait City, Kuwait with comparisons to Phoenix, Arizona, USA.

    PubMed

    Nasrallah, Hassan A; Balling, Robert C; Madi, Shaker Mohammed; Al-Ansari, Lamya

    2003-01-01

    Hourly atmospheric carbon dioxide (CO2) concentration measurements are available from 1996 to present for a suburban site within the growing metropolitan area of Kuwait City. Analyses of this record reveal (a) an annual cycle with highest values in February and lowest values in September reflecting the growth and decay of vegetation in the Northern Hemisphere as well as fluctuations in motor traffic, (b) a weekly cycle with highest values during the weekdays and lowest values during weekends, and (c) a diurnal cycle with highest values after sunset when the local atmosphere becomes more stable following vehicular emission of CO2 throughout the day and lowest values in late afternoon following several hours of relatively unstable conditions. During the daytime, CO2 concentrations are related to wind direction, with westerly winds (coming from the desert) promoting lowest CO2 concentrations. At night, lowest CO2 levels are associated with higher wind speeds and winds from the north. The findings from the Kuwait City area, particularly when contrasted with the situation in Phoenix, further our understanding of the dynamics of CO2 levels in urban environments.

  5. Atmospheric 14 C CO 2 variations in Japan during 1982--1999 based on 14 C measurements of rice grains.

    PubMed

    Shibata, Setsuko; Kawano, Eiko; Nakabayashi, Takeshige

    2005-08-01

    (14)C in rice grains is a useful tracer of atmospheric (14)C(CO(2)). (14)C measurement in rice grains for 17 years during 1982--1999 reveals the following. There is negative correlation between Delta(14)C and the population densities of localities in Japan. Under-populated areas in the northern area of Japan and Okinawa remained clean in the 1990s. The (14)C(CO(2)) decline rates at those areas are near to that of Shauinsland. A latitudinal effect due to Chinese nuclear tests is observed in 1982. Small Seuss effects is observed at the middle latitudes in East Asia after 1995.

  6. Evaluation of variations in CO2 gas exchange in the atmosphere of the BTLSS with plants grown in a conveyor mode on the soil-like substrate

    NASA Astrophysics Data System (ADS)

    Velichko, Vladimir; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Ushakova, Sofya

    2016-07-01

    The soil-like substrate (SLS) included in the bioregenerative life support system (BLSS) exerts a substantial effect on its gas exchange. This effect is determined by the non-uniform rate of organic matter degradation in the SLS, on the one hand, and by the variable intensity of photosynthesis of the plants grown on it, on the other. The purpose of this study was to compare CO2 variations in the atmosphere of the higher plants - SLS system at different intervals in uneven-aged higher plant conveyers. The study showed that CO2 concentration could reach and exceed the levels of atmospheric carbon dioxide acceptable for humans (over 1%) even when the conveyer interval was rather short. CO2 variations in the atmosphere of the higher plants - SLS system were determined not only by the frequency of adding plant waste to the SLS and the mass of the waste but also by the amount of the harvested actively photosynthesizing plant biomass. At the same time, no significant differences were found in the mineral and production components between the plants in different experiments. Results of the study can be used to optimize the conveyor interval and the associated effectiveness of mineralization of the plant waste added to the SLS and to stabilize the CO2 gas exchange. This study was carried out in the IBP SB RAS and supported by the grant of the Russian Science Foundation (Project No. 14-14-00599).

  7. [Responses of tissue carbon and delta 13C in epilithic mosses to the variations of anthropogenic CO2 and atmospheric nitrogen deposition in city area].

    PubMed

    Liu, Xue-yan; Xiao, Hua-yun; Liu, Cong-qiang; Li, You-yi; Xiao, Hong-wei

    2009-01-01

    We investigated the carbon (C) and nitrogen (N) concentrations and isotopic signatures (delta 13C and delta15 N) in epilithic mosses collected from urban sites to rural sites along four directions at Guiyang area. Mosses C (34.47%-52.76%) decreased significantly with distance from urban to rural area and strongly correlated with tissue N (0.85%-2.97%), showing atmospheric N deposition has positive effect on C assimilation of epilithic mosses, higher atmospheric N/NHx deposition at urban area has improved the photosynthesis and C fixation of mosses near urban, which also caused greater 13C discrimination for urban mosses. Mosses delta 13C signatures (-30.69% per hundred - -26.96% per hundred) got less negative with distance from urban to rural area, which was also related to the anthropogenic CO2 emissions in the city, and these 12C-enriched CO2 sources would lead to more negative mosses delta 13C through enhancing the atmospheric CO2 concentration in urban area. Moreover, according to the characteristics of mosses C and delta 13C variations with distance, it is estimated that the influences of urban anthropogenic CO2 sources on plants was mainly within 20 km from city center. This study mainly focused on the factors regulating tissue C and delta 13C of mosses in city area and the interaction between C and N in mosses, the responses of mosses C and delta 13C to urban CO2 emission and atmospheric N deposition have been revealed, which could provide new geochemical evidences for the control of city atmospheric pollution and the protection of ecosystems around city.

  8. Atmospheric CO2 Variability Observed From ASCENDS Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Browell, Edward; Campbell, Joel; Choi, Yonghoon; Dobler, Jeremy; Fan, Tai-Fang; Harrison, F. Wallace; Kooi, Susan; Liu, Zhaoyan; Meadows, Byron; Nehrir, Amin; Obland, Michael; Plant, James; Yang, Melissa

    2015-01-01

    Significant atmospheric CO2 variations on various spatiotemporal scales were observed during ASCENDS flight campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200x300 sq km over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  9. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011.

    PubMed

    Barichivich, Jonathan; Briffa, Keith R; Myneni, Ranga B; Osborn, Timothy J; Melvin, Thomas M; Ciais, Philippe; Piao, Shilong; Tucker, Compton

    2013-10-01

    We combine satellite and ground observations during 1950-2011 to study the long-term links between multiple climate (air temperature and cryospheric dynamics) and vegetation (greenness and atmospheric CO(2) concentrations) indicators of the growing season of northern ecosystems (>45°N) and their connection with the carbon cycle. During the last three decades, the thermal potential growing season has lengthened by about 10.5 days (P < 0.01, 1982-2011), which is unprecedented in the context of the past 60 years. The overall lengthening has been stronger and more significant in Eurasia (12.6 days, P < 0.01) than North America (6.2 days, P > 0.05). The photosynthetic growing season has closely tracked the pace of warming and extension of the potential growing season in spring, but not in autumn when factors such as light and moisture limitation may constrain photosynthesis. The autumnal extension of the photosynthetic growing season since 1982 appears to be about half that of the thermal potential growing season, yielding a smaller lengthening of the photosynthetic growing season (6.7 days at the circumpolar scale, P < 0.01). Nevertheless, when integrated over the growing season, photosynthetic activity has closely followed the interannual variations and warming trend in cumulative growing season temperatures. This lengthening and intensification of the photosynthetic growing season, manifested principally over Eurasia rather than North America, is associated with a long-term increase (22.2% since 1972, P < 0.01) in the amplitude of the CO(2) annual cycle at northern latitudes. The springtime extension of the photosynthetic and potential growing seasons has apparently stimulated earlier and stronger net CO(2) uptake by northern ecosystems, while the autumnal extension is associated with an earlier net release of CO(2) to the atmosphere. These contrasting responses may be critical in determining the impact of continued warming on northern terrestrial ecosystems and the

  10. Atmospheric CO2 Removal by Enhancing Weathering

    NASA Astrophysics Data System (ADS)

    Koster van Groos, A. F.; Schuiling, R. D.

    2014-12-01

    The increase of the CO2 content in the atmosphere by the release of anthropogenic CO2 may be addressed by the enhancement of weathering at the surface of the earth. The average emission of mantle-derived CO2 through volcanism is ~0.3 Gt/year (109 ton/year). Considering the ~3.000 Gt of CO2 present in the atmosphere, the residence time of CO2 in the earth's atmosphere is ~10,000 years. Because the vast proportion of carbon in biomass is recycled through the atmosphere, CO2 is continuously removed by a series of weathering reactions of silicate minerals and stored in calcium and magnesium carbonates. The addition of anthropogenic CO2 from fossil fuel and cement production, which currently exceeds 35 Gt/year and dwarfs the natural production 100-fold, cannot be compensated by current rates of weathering, and atmospheric CO2 levels are rising rapidly. To address this increase in CO2 levels, weathering rates would have to be accelerated on a commensurate scale. Olivine ((Mg,Fe)2SiO4) is the most reactive silicate mineral in the weathering process. This mineral is the major constituent in relatively common ultramafic rocks such as dunites (olivine content > 90%). To consume the current total annual anthropogenic release of CO2, using a simplified weathering reaction (Mg2SiO4 + 4CO2 + 4H2O --> 2 Mg2+ + 4HCO3- + H4SiO4) would require ~30 Gt/year or ~8-9 km3/year of dunite. This is a large volume; it is about double the total amount of ore and gravel currently mined (~ 17 Gt/year). To mine and crush these rocks to <100 μm costs ~ 8/ton. The transport and distribution over the earth's surface involves additional costs, that may reach 2-5/ton. Thus, the cost of remediation for the release of anthropogenic CO2 is 300-400 billion/year. This compares to a 2014 global GDP of ~80 trillion. Because weathering reactions require the presence of water and proceed more rapidly at higher temperatures, the preferred environments to enhance weathering are the wet tropics. From a socio

  11. Atmospheric CO2 concentrations over the last glacial termination.

    PubMed

    Monnin, E; Indermühle, A; Dällenbach, A; Flückiger, J; Stauffer, B; Stocker, T F; Raynaud, D; Barnola, J M

    2001-01-01

    A record of atmospheric carbon dioxide (CO2) concentration during the transition from the Last Glacial Maximum to the Holocene, obtained from the Dome Concordia, Antarctica, ice core, reveals that an increase of 76 parts per million by volume occurred over a period of 6000 years in four clearly distinguishable intervals. The close correlation between CO2 concentration and Antarctic temperature indicates that the Southern Ocean played an important role in causing the CO2 increase. However, the similarity of changes in CO2 concentration and variations of atmospheric methane concentration suggests that processes in the tropics and in the Northern Hemisphere, where the main sources for methane are located, also had substantial effects on atmospheric CO2 concentrations.

  12. Estimating lake-atmosphere CO2 exchange

    USGS Publications Warehouse

    Anderson, D.E.; Striegl, R.G.; Stannard, D.I.; Michmerhuizen, C.M.; McConnaughey, T.A.; LaBaugh, J.W.

    1999-01-01

    Lake-atmosphere CO2 flux was directly measured above a small, woodland lake using the eddy covariance technique and compared with fluxes deduced from changes in measured lake-water CO2 storage and with flux predictions from boundary-layer and surface-renewal models. Over a 3-yr period, lake-atmosphere exchanges of CO2 were measured over 5 weeks in spring, summer, and fall. Observed springtime CO2 efflux was large (2.3-2.7 ??mol m-2 s-1) immediately after lake-thaw. That efflux decreased exponentially with time to less than 0.2 ??mol m-2 s-1 within 2 weeks. Substantial interannual variability was found in the magnitudes of springtime efflux, surface water CO2 concentrations, lake CO2 storage, and meteorological conditions. Summertime measurements show a weak diurnal trend with a small average downward flux (-0.17 ??mol m-2 s-1) to the lake's surface, while late fall flux was trendless and smaller (-0.0021 ??mol m-2 s-1). Large springtime efflux afforded an opportunity to make direct measurement of lake-atmosphere fluxes well above the detection limits of eddy covariance instruments, facilitating the testing of different gas flux methodologies and air-water gas-transfer models. Although there was an overall agreement in fluxes determined by eddy covariance and those calculated from lake-water storage change in CO2, agreement was inconsistent between eddy covariance flux measurements and fluxes predicted by boundary-layer and surface-renewal models. Comparison of measured and modeled transfer velocities for CO2, along with measured and modeled cumulative CO2 flux, indicates that in most instances the surface-renewal model underpredicts actual flux. Greater underestimates were found with comparisons involving homogeneous boundary-layer models. No physical mechanism responsible for the inconsistencies was identified by analyzing coincidentally measured environmental variables.

  13. Trapping atmospheric CO2 with gold.

    PubMed

    Collado, Alba; Gómez-Suárez, Adrián; Webb, Paul B; Kruger, Hedi; Bühl, Michael; Cordes, David B; Slawin, Alexandra M Z; Nolan, Steven P

    2014-10-01

    The ability of gold-hydroxides to fix CO2 is reported. [Au(IPr)(OH)] and [{Au(IPr)}2(μ-OH)][BF4] react with atmospheric CO2 to form the trigold carbonate complex [{Au(IPr)}3(μ(3)-CO3)][BF4]. Reactivity studies revealed that this complex behaves as two basic and one cationic Au centres, and that it is catalytically active. DFT calculations and kinetic experiments have been carried out.

  14. Atmospheric CO2 Variability Observed during ASCENDS Flight Campaigns

    NASA Astrophysics Data System (ADS)

    Lin, B.; Browell, E. V.; Campbell, J. F.; Choi, Y.; Dobler, J. T.; Fan, T. F.; Harrison, F. W.; Kooi, S. A.; Liu, Z.; Meadows, B.; Nehrir, A. R.; Obland, M. D.; Plant, J.; Yang, M. M.

    2015-12-01

    Accurate observations of atmospheric CO2 with a space-based lidar system, such as for the NASA ASCENDS mission, will improve knowledge of global CO2 distribution and variability and increase the confidence in predictions of future climate changes. To prepare for the ASCENDS mission, the NASA Langley Research Center and Exelis Inc. (now part of Harris Corp.) have been collaborating in the development and evaluation of an Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 from space. Two airborne IM-CW lidars operating in the 1.57-mm CO2 absorption band have been developed and flight tested to demonstrate precise atmospheric CO2 column measurements. A total of 14 flight campaigns have been conducted with the two lidar and in-situ CO2 measurement systems. Significant atmospheric CO2 variations on various spatiotemporal scales were observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200×300 km2 over Iowa during a summer 2014 flight. Even over extended forests, about 2-ppm CO2 column variability was measured within about 500-km distance. For winter times, especially over snow covered ground, relatively less horizontal CO2 variability was observed, likely owing to minimal interactions between the atmosphere and land surface. Inter-annual variations of CO2 drawdown over cornfields in the Mid-West were found to be larger than 5 ppm due to slight differences in the corn growing phase and meteorological conditions even in the same time period of a year. Furthermore, considerable differences in atmospheric CO2 profiles were found during winter and summer campaigns. In the winter CO2 was found to decrease from about 400 ppm in the atmospheric boundary layer (ABL) to about 392 ppm above 10 km, while in the summer CO2 increased from 386 ppm in the ABL to about 396 ppm in free troposphere. These and other CO2 observations are discussed in this presentation.

  15. Atmospheric CO2 stabilization and ocean acidification

    NASA Astrophysics Data System (ADS)

    Cao, Long; Caldeira, Ken

    2008-10-01

    We use a coupled climate/carbon-cycle model to examine the consequences of stabilizing atmospheric CO2 at different levels for ocean chemistry. Our simulations show the potential for major damage to at least some ocean ecosystems at atmospheric CO2 stabilization levels as low as 450 ppm. Before the industrial revolution, more than 98% of corals reefs were surrounded by waters that were >3.5 times saturated with respect to their skeleton materials (aragonite). If atmospheric CO2 is stabilized at 450 ppm only 8% of existing coral reefs will be surrounded by water with this saturation level. Also at this CO2 level 7% of the ocean South of 60°S will become undersaturated with respect to aragonite, and parts of the high latitude ocean will experience a decrease in pH by more than 0.2 units. Results presented here provide an independent and additional basis for choosing targets of atmospheric CO2 stabilization levels.

  16. Role of Atmospheric CO2 in the Ice Ages (Invited)

    NASA Astrophysics Data System (ADS)

    Toggweiler, J. R.

    2010-12-01

    Ice cores from Antarctica provide our most highly resolved records of glacial-interglacial climate change. They feature big transitions every 100,000 years or so in which Antarctica warms by up to 10 deg. C while the level of atmospheric CO2 rises by up to 100 ppm. We have no other records like these from any other location, so the assumption is often made that the Earth's mean temperature varies like the temperatures in Antarctica. The striking co-variation between the two records is taken to mean 1) that there is a causal relationship between the global temperature and atmospheric CO2 and 2) that atmospheric CO2 is a powerful agent of climate change during the ice ages. The problem is that the mechanism most often invoked to explain the CO2 variations operates right next to Antarctica and, as such, provides a fairly direct way to explain the temperature variations in Antarctica as well. If so, Antarctic temperatures go up and down for the same reason that atmospheric CO2 goes up and down, in which case no causation can be inferred. Climate models suggest that the 100-ppm CO2 increases during the big transitions did not increase surface temperatures by more than 2 deg. C. This is not nearly enough to explain the observed variability. A better reason for thinking that atmospheric CO2 is important is that its temporal variations are concentrated in the 100,000-yr band. In my presentation I will argue that atmospheric CO2 is important because it has the longest time scale in the system. We observe empirically that atmospheric CO2 remains low for 50,000 years during the second half of each 100,000-yr cycle. The northern ice sheets become especially large toward the ends of these intervals, and it is large ice sheets that make the Earth especially cold. This leads me to conclude that atmospheric CO2 is important because of its slow and persistent influence on the northern ice sheets over the second half of each 100,000-yr cycle.

  17. CO2 Impacts on the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Kelley, Michael; Bauer, James; Bodewits, Dennis; Farnham, Tony; Stevenson, Rachel; Yelle, Roger

    2014-09-01

    The dynamically new comet C/2013 A1 (Siding Spring) will pass Mars at the extremely close distance of 140,000 km on 2014 Oct 19. This encounter is unique---a record close approach to a planet with spacecraft that can observe its passage---and currently, all 5 Mars orbiters have plans to observe the comet and/or its effects on the planet. Gas from the comet's coma is expected to collide with the Martian atmosphere, altering the abundances of some species and producing significant heating, inflating the upper atmosphere. We propose DDT observations with Spitzer/IRAC to measure the comet's CO2+CO coma (observing window Oct 30 - Nov 20), to use these measurements to derive the coma's CO2 density at Mars during the closest approach, and to aid the interpretation of any observed effects or changes in the Martian atmosphere.

  18. Atmospheric CO2 from fossil plant cuticles.

    PubMed

    Kerp, Hans

    2002-01-01

    Plants respond to changes in atmospheric carbon dioxide levels by regulating the number of stomata in their leaves. In his reconstruction of a continuous, 300-million-year record of atmospheric CO2, Retallack bases his curve on stomatal counts of fossil plant cuticles taken from published micrographs. However, the preservation of cuticles from Permian times is generally too fragmentary for the stomatal index to be reliably determined, the micrographs used could have biased the results, and there are important errors in the supplementary data - all of which cast doubt on the Permian part of Retallack's record.

  19. Energyless CO2 Absorption, Generation, and Fixation Using Atmospheric CO2.

    PubMed

    Inagaki, Fuyuhiko; Okada, Yasuhiko; Matsumoto, Chiaki; Yamada, Masayuki; Nakazawa, Kenta; Mukai, Chisato

    2016-01-01

    From an economic and ecological perspective, the efficient utilization of atmospheric CO2 as a carbon resource should be a much more important goal than reducing CO2 emissions. However, no strategy to harvest CO2 using atmospheric CO2 at room temperature currently exists, which is presumably due to the extremely low concentration of CO2 in ambient air (approximately 400 ppm=0.04 vol%). We discovered that monoethanolamine (MEA) and its derivatives efficiently absorbed atmospheric CO2 without requiring an energy source. We also found that the absorbed CO2 could be easily liberated with acid. Furthermore, a novel CO2 generator enabled us to synthesize a high value-added material (i.e., 2-oxazolidinone derivatives based on the metal catalyzed CO2-fixation at room temperature) from atmospheric CO2.

  20. Atmospheric effects on CO2 laser propagation

    NASA Technical Reports Server (NTRS)

    Murty, S. S. R.; Bilbro, J. W.

    1978-01-01

    An investigation was made of the losses encountered in the propagation of CO2 laser radiation through the atmosphere, particularly as it applies to the NASA/Marshall Space Flight Center Pulsed Laser Doppler System. As such it addresses three major areas associated with signal loss: molecular absorption, refractive index changes in a turbulent environment, and aerosol absorption and scattering. In particular, the molecular absorption coefficients of carbon dioxide, water vapor, and nitrous oxide are calculated for various laser lines in the region of 10.6 mu m as a function of various pressures and temperatures. The current status in the physics of low-energy laser propagation through a turbulent atmosphere is presented together with the analysis and evaluation of the associated heterodyne signal power loss. Finally, aerosol backscatter and extinction coefficients are calculated for various aerosol distributions and the results incorporated into the signal-to-noise ratio equation for the Marshall Space Flight Center system.

  1. A role for atmospheric CO2 in preindustrial climate forcing.

    PubMed

    van Hoof, Thomas B; Wagner-Cremer, Friederike; Kürschner, Wolfram M; Visscher, Henk

    2008-10-14

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO(2) concentration. CO(2) trends based on leaf remains of Quercus robur (English oak) from the Netherlands support the presence of significant CO(2) variability during the first half of the last millennium. The amplitude of the reconstructed multidecadal fluctuations, up to 34 parts per million by volume, considerably exceeds maximum shifts measured in Antarctic ice. Inferred changes in CO(2) radiative forcing are of a magnitude similar to variations ascribed to other mechanisms, particularly solar irradiance and volcanic activity, and may therefore call into question the concept of the Intergovernmental Panel on Climate Change, which assumes an insignificant role of CO(2) as a preindustrial climate-forcing factor. The stomata-based CO(2) trends correlate with coeval sea-surface temperature trends in the North Atlantic Ocean, suggesting the possibility of an oceanic source/sink mechanism for the recorded CO(2) changes.

  2. A role for atmospheric CO2 in preindustrial climate forcing.

    PubMed

    van Hoof, Thomas B; Wagner-Cremer, Friederike; Kürschner, Wolfram M; Visscher, Henk

    2008-10-14

    Complementary to measurements in Antarctic ice cores, stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of preindustrial atmospheric CO(2) concentration. CO(2) trends based on leaf remains of Quercus robur (English oak) from the Netherlands support the presence of significant CO(2) variability during the first half of the last millennium. The amplitude of the reconstructed multidecadal fluctuations, up to 34 parts per million by volume, considerably exceeds maximum shifts measured in Antarctic ice. Inferred changes in CO(2) radiative forcing are of a magnitude similar to variations ascribed to other mechanisms, particularly solar irradiance and volcanic activity, and may therefore call into question the concept of the Intergovernmental Panel on Climate Change, which assumes an insignificant role of CO(2) as a preindustrial climate-forcing factor. The stomata-based CO(2) trends correlate with coeval sea-surface temperature trends in the North Atlantic Ocean, suggesting the possibility of an oceanic source/sink mechanism for the recorded CO(2) changes. PMID:18838689

  3. Effects of increasing CO2 levels and the secular variation of the Earth's magnetic field on the upper atmosphere, and their dependence on solar activity (Invited)

    NASA Astrophysics Data System (ADS)

    Cnossen, I.

    2013-12-01

    The increase in atmospheric CO2 concentration is generally seen as the main driver of long-term change in the thermosphere and ionosphere. However, long-term change in the Earth's magnetic field can also be important, especially in the ionosphere. I will present a quantitative comparison of the effects of the increase in CO2 concentration and changes in the magnetic field on multi-decadal to centennial timescales based on simulations with the Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM). These show that magnetic field changes are at least as important as the increase in CO2 concentration for long-term trends in the peak height of the ionospheric F2 layer and much more important for trends in the F2 critical frequency and the daily amplitude of solar quiet (Sq) magnetic perturbations. Changes in the magnetic field even affect the neutral temperature trend at about 300 km altitude, although the increase in CO2 concentration is more important for this variable. As a further aid to discriminate between these two causes of long-term change, we also examine the solar cycle dependence of their effects. Changes in CO2 concentration are well-known to be more important under solar minimum than solar maximum conditions. Preliminary results indicate that a different type of solar activity dependence is present for the effects of changes in the Earth's magnetic field.

  4. An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2

    SciTech Connect

    Erickson, D; Mills, R; Gregg, J; Blasing, T J; Hoffman, F; Andres, Robert Joseph; Devries, M; Zhu, Z; Kawa, S

    2008-01-01

    Monthly estimates of the global emissions of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with coefficients as a function of latitude, the annual fluxes are decomposed into monthly flux estimates based on data for the United States and applied globally. These monthly anthropogenic CO2 flux estimates are then used to model atmospheric CO2 concentrations using meteorological fields from the NASA GEOS-4 data assimilation system. We find that the use of monthly resolved fluxes makes a significant difference in the seasonal cycle of atmospheric CO2 in and near those regions where anthropogenic CO2 is released to the atmosphere. Local variations of 2-6 ppmv CO2 in the seasonal cycle amplitude are simulated; larger variations would be expected if smaller source-receptor distances could be more precisely specified using a more refined spatial resolution. We also find that in the midlatitudes near the sources, synoptic scale atmospheric circulations are important in the winter and that boundary layer venting and diurnal rectifier effects are more important in the summer. These findings have implications for inverse-modeling efforts that attempt to estimate surface source/sink regions especially when the surface sinks are colocated with regions of strong anthropogenic CO2 emissions.

  5. Improving Constraints on Carbon Fluxes using Measurements of Atmospheric CO2 and Ocean pCO2

    NASA Astrophysics Data System (ADS)

    Suntharalingam, P.; Watson, A. J.; Schuster, U.

    2014-12-01

    Spatial and temporal variations in the large-scale distribution of tropospheric CO2 provide valuable constraints on regional to hemispheric-scale carbon exchange between the atmosphere and land and ocean reservoirs. These constraints have been widely exploited in top-down inverse analyses that combine atmospheric measurements of CO2, prior information on component CO2 fluxes, and representations of atmospheric transport. The inversion procedure typically estimates surface carbon fluxes by minimizing the differences between measured and modeled atmospheric CO2 concentrations. Here we report on regional to hemispheric-scale inter-annual CO2 flux estimates for the period 1990-2012, derived from a hierarchy of top-down methods, ranging in complexity from a simple two-box hemispheric analysis, with mixing rates constrained by SF6 data, to Bayesian synthesis inversions developed using the GEOS-Chem atmospheric transport model. A primary aim of this inter-comparison is to investigate the impact on CO2 flux estimates, of recently derived prior ocean fluxes developed using pCO2 measurements from the SOCAT database (http://www.socat.info/). Sensitivity of flux estimates to assumptions on atmospheric transport, and in particular, inter-hemispheric mixing, will also be discussed.

  6. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2-3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute

  7. Different representations of biological nitrogen fixation cause major variation in projected terrestrial biosphere responses to elevated levels of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Meyerholt, J.; Zaehle, S.; Smith, M. J.

    2015-12-01

    Including a land nitrogen (N) cycle in current Earth system models has led to substantial attenuation of predicted land-climate feedbacks, but the magnitude of this N effect remains highly uncertain. The current magnitude and global change responses of major land N cycle processes are still not well understood. Biological nitrogen fixation (BNF) is one particularly important process, being the largest natural land input of N. However, global terrestrial BNF rates are highly uncertain and models lack observations on which to base their predictions. The current variety of terrestrial biosphere models use a wide array of differing, largely untested BNF representations. We tested the six most widely used formulations within the O-CN model and examined the resulting differences in model predictions both under current atmospheric [CO2], as well as under future scenarios of elevated atmospheric [CO2]: a prescribed global map of static BNF rates, two simple empirical relationships between BNF and other ecosystem variables (net primary production and evapotranspiration), two process-based formulations based on plant N status, and an approach following a basic form of optimality of plant N acquisition. We found that the predicted global BNF rates for current conditions were fairly comparable, ranging from 93 to 134 Tg N yr-1 (median 118 Tg N yr-1). However, at 587 ppm atmospheric [CO2], model responses in BNF rates ranged from -5 Tg N yr-1 (-4 %) to 113 Tg N yr-1 (+88 %) (median 14 Tg N yr-1 (+15 %)). As a consequence, future projections of global net primary productivity and carbon storage (increases of different magnitudes), as well as N2O emission (negative responses or unchanged) differed significantly across the different model formulations. Our results emphasize the importance of better understanding the nature and magnitude of BNF responses to change induced perturbations; particularly through new empirical perturbation experiments.

  8. Observational constraints on the global atmospheric CO2 budget

    NASA Technical Reports Server (NTRS)

    Tans, Pieter P.; Fung, Inez Y.; Takahashi, Taro

    1990-01-01

    Observed atmospheric concentrations of CO2 and data on the partial pressures of CO2 in surface ocean waters are combined to identify globally significant sources and sinks of CO2. The atmospheric data are compared with boundary layer concentrations calculated with the transport fields generated by a general circulation model (GCM) for specified source-sink distributions. In the model the observed north-south atmospheric concentration gradient can be maintained only if sinks for CO2 are greater in the Northern than in the Southern Hemisphere. The observed differences between the partial pressure of CO2 in the surface waters of the Northern Hemisphere and the atmosphere are too small for the oceans to be the major sink of fossil fuel CO2. Therefore, a large amount of the CO2 is apparently absorbed on the continents by terrestrial ecosystems.

  9. Will atmospheric CO2 concentration continue to increase if anthropogenic CO2 emissions cease?

    NASA Astrophysics Data System (ADS)

    MacDougall, A. H.; Eby, M.; Weaver, A. J.

    2013-12-01

    If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that overall carbon sinks would dominate. However, these models have typically neglected the permafrost carbon pool, which has the potential to introduce an additional terrestrial source of carbon to the atmosphere. Here we use the University of Victoria Earth System Climate Model, which has recently been expanded to include permafrost carbon stocks and exchanges with the atmosphere. In a scenario of zeroed CO2 and sulphate aerosol emissions, we assess whether the warming induced by specified constant concentrations of non-CO2 greenhouse gases could slow the CO2 decline following zero emissions, or even reverse this trend and cause CO2 to increase over time. We find that a radiative forcing from non-CO2 gases of approximately 0.6 W m-2 results in a near balance of CO2 emissions from the terrestrial biosphere and uptake of CO2 by the oceans, resulting in near-constant atmospheric CO2 concentrations for at least a century after emissions are eliminated. At higher values of non-CO2 radiative forcing, CO2 concentrations increase over time, regardless of when emissions cease during the 21st century. Given that the present-day radiative forcing from non-CO2 greenhouse gases is about 0.95 W m-2, our results suggest that if we were to eliminate all CO2 and aerosols emissions without also decreasing non-CO2 greenhouse gas emissions, CO2 levels would increase over time, resulting in a small increase in climate warming. The sudden and total cessation of anthropogenic CO2 emissions is an unlikely future scenario. However, such cessation experiments provide a useful method for evaluating the relative strength of the terrestrial and oceanic carbon cycle feedbacks in the presence of forcing from non-CO2 greenhouse gasses.

  10. Interaction between atmospheric CO2 and glucosinolates in broccoli.

    PubMed

    Schonhof, I; Kläring, H-P; Krumbein, A; Schreiner, M

    2007-01-01

    Total and individual glucosinolate contents of broccoli cv Marathon were assessed at ambient CO2 (430-480 ppm) and elevated atmospheric CO2 (685-820 ppm) to determine the ecological relationship between changing atmospheric CO2 concentrations and phytochemicals. Elevated atmospheric CO2 concentration had a differing effect on individual glucosinolates and glucosinolate groups. Total glucosinolate content increased at elevated atmospheric CO2 concentration as a result of a strong increase in both methylsulfinylalkyl glucosinolates glucoraphanin and glucoiberin. In contrast, indole glucosinolates simultaneously decreased, predominantly because of a reduction of glucobrassicin and 4-methoxy-glucobrassicin contents. We conclude that changes in N content and N/S ratios as well as alterations in photochemical processes at elevated atmospheric CO2 concentration can influence total and individual glucosinolates contents of Brassicaceae, as demonstrated in the greenhouse, for broccoli.

  11. Halloysite Nanotubes Capturing Isotope Selective Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Jana, Subhra; Das, Sankar; Ghosh, Chiranjit; Maity, Abhijit; Pradhan, Manik

    2015-03-01

    With the aim to capture and subsequent selective trapping of CO2, a nanocomposite has been developed through selective modification of the outer surface of the halloysite nanotubes (HNTs) with an organosilane to make the nanocomposite a novel solid-phase adsorbent to adsorb CO2 from the atmosphere at standard ambient temperature and pressure. The preferential adsorption of three major abundant isotopes of CO2 (12C16O2, 13C16O2, and 12C16O18O) from the ambient air by amine functionalized HNTs has been explored using an optical cavity-enhanced integrated cavity output spectroscopy. CO2 adsorption/desorption cycling measurements demonstrate that the adsorbent can be regenerated at relatively low temperature and thus, recycled repeatedly to capture atmospheric CO2. The amine grafted halloysite shows excellent stability even in oxidative environments and has high efficacy of CO2 capture, introducing a new route to the adsorption of isotope selective atmospheric CO2.

  12. Comparison of Surface and Column Variations of CO2 Over Urban Areas for Future Active Remote CO2 Sensors

    NASA Technical Reports Server (NTRS)

    Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward

    2015-01-01

    High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.

  13. Why capture CO2 from the atmosphere?

    PubMed

    Keith, David W

    2009-09-25

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering. Although air capture will cost more than capture from power plants when both are operated under the same economic conditions, air capture allows one to apply industrial economies of scale to small and mobile emission sources and enables a partial decoupling of carbon capture from the energy infrastructure, advantages that may compensate for the intrinsic difficulty of capturing carbon from the air.

  14. Why Capture CO2 from the Atmosphere?

    NASA Astrophysics Data System (ADS)

    Keith, David W.

    2009-09-01

    Air capture is an industrial process for capturing CO2 from ambient air; it is one of an emerging set of technologies for CO2 removal that includes geological storage of biotic carbon and the acceleration of geochemical weathering. Although air capture will cost more than capture from power plants when both are operated under the same economic conditions, air capture allows one to apply industrial economies of scale to small and mobile emission sources and enables a partial decoupling of carbon capture from the energy infrastructure, advantages that may compensate for the intrinsic difficulty of capturing carbon from the air.

  15. Carboxylation of Phenols with CO2 at Atmospheric Pressure.

    PubMed

    Luo, Junfei; Preciado, Sara; Xie, Pan; Larrosa, Igor

    2016-05-10

    A convenient and efficient method for the ortho-carboxylation of phenols under atmospheric CO2 pressure has been developed. This method provides an alternative to the previously reported Kolbe-Schmitt method, which requires very high pressures of CO2 . The addition of a trisubstituted phenol has proved essential for the successful carboxylation of phenols with CO2 at standard atmospheric pressure, allowing the efficient preparation of a broad variety of salicylic acids.

  16. Laser Sounder Technique for Remotely Measuring Atmospheric CO2 Concentrations

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Collatz, G. J.; Sun, X.; Riris, H.; Andrews, A. E.; Krainak, M.

    2001-12-01

    We describe progress in developing a lidar technique for the remote measurement of the tropospheric CO2 concentrations. Our goal is to demonstrate a technique and technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft at the few ppm level, with a capability of scaling to permit global CO2 measurements from orbit. Accurate remote sensing measurements of CO2 mixing ratio from aircraft and space appear difficult. Potential error sources include possible interferences from other trace gas species, the effects of clouds and aerosols in the path, and variability in dry air density caused by pressure or topographic changes. Some potential instrumental errors include frequency drifts in the transmitter and sensitivity drifts in the receiver. High signal-to-noise ratios are needed for estimates at the few ppm level. We are developing a laser sounder approach as a candidate for these measurements. It uses 3 laser transmitters to permit simultaneous measurement of CO2 and O2 extinction, and aerosol backscatter at 1064 nm in the same atmospheric path. It directs the co-aligned laser beams from the lidar toward nadir, and measures the energy of the laser backscatter from land and water surfaces. During each measurement period, the two narrow linewidth lasers are rapidly tuned on and off the selected CO2 and O2 absorption lines. The receiver records and averages the energies of the laser echoes. The column extinction and column densities of both CO2 and O2 are estimated via the differential absorption lidar technique. For the on-line wavelength, the side of the gas absorption line is used, which weights its measurements to 0-4 km in the troposphere. Simultaneous measurements of O2 column abundance are made using an identical approach using an O2 line near 770 nm. Atmospheric baskscatter profiles are measured with the 1064 nm channel, which permits identifying and excluding measurements containing clouds or aerosols backscatter

  17. Atmospheric measurement of point source fossil CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2014-05-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m above ground level. We also determined the surface CO2ff content averaged over several weeks from the 14C content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~ one week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14C sampling strategies.

  18. Positive feedback between increasing atmospheric CO2 and ecosystem productivity

    NASA Astrophysics Data System (ADS)

    Gelfand, I.; Hamilton, S. K.; Robertson, G. P.

    2009-12-01

    Increasing atmospheric CO2 will likely affect both the hydrologic cycle and ecosystem productivity. Current assumptions that increasing CO2 will lead to increased ecosystem productivity and plant water use efficiency (WUE) are driving optimistic predictions of higher crop yields as well as greater availability of freshwater resources due to a decrease in evapotranspiration. The plant physiological response that drives these effects is believed to be an increase in carbon uptake either by (a) stronger CO2 gradient between the stomata and the atmosphere, or by (b) reduced CO2 limitation of enzymatic carboxylation within the leaf. The (a) scenario will lead to increased water use efficiency (WUE) in plants. However, evidence for increased WUE is mostly based on modeling studies, and experiments producing a short duration or step-wise increase in CO2 concentration (e.g. free-air CO2 enrichment). We hypothesize that the increase in atmospheric CO2 concentration is having a positive effect on ecosystem productivity and WUE. To investigate this hypothesis, we analyzed meteorological, ANPP, and soil CO2 flux datasets together with carbon isotopic ratio (13C/12C) of archived plant samples from the long term ecological research (LTER) program at Kellogg Biological Station. The datasets were collected between 1989 and 2007 (corresponding to an increase in atmospheric CO2 concentration of ~33 ppmv at Mauna Loa). Wheat (Triticum aestivum) samples taken from 1989 and 2007 show a significant decrease in the C isotope discrimination factor (Δ) over time. Stomatal conductance is directly related to Δ, and thus Δ is inversely related to plant intrinsic WUE (iWUE). Historical changes in the 13C/12C ratio (δ13C) in samples of a perennial forb, Canada goldenrod (Solidago canadensis), taken from adjacent successional fields, indicate changes in Δ upon uptake of CO2 as well. These temporal trends in Δ suggest a positive feedback between the increasing CO2 concentration in the

  19. Wave-Modulated CO2 Condensation in Mars' Polar Atmosphere

    NASA Astrophysics Data System (ADS)

    Banfield, D.; Neumann, G. A.

    2016-09-01

    We have identified regions where atmospheric waves would be expected to significantly modulate CO2 cloud formation in Mars' polar winters. We have correlated this with MOLA cloud identifications but, surprisingly, only poor correlations were found.

  20. Atmospheric CO2 Supersaturation Observed in the Martian Polar Nights

    NASA Astrophysics Data System (ADS)

    Noguchi, K.; Kuroda, T.; Hayashi, H.

    2016-09-01

    The present study shows the spatio-temporal distribution of the occurrence of CO2 supersaturation in the martian atmosphere by using the Mars Global Surveyor radio occultation data. We also compare the results with numerical simulation results.

  1. Laser Sounder Approach for Measuring Atmospheric CO2 from Orbit

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Andrews, Arlyn E.; Allan, Graham R.; Burris, John F.; Collatz, G. James; Riris, Harris; Stephen, Mark A.; Sun, Xiao-Li; Abshire, James B.

    2004-01-01

    We report on an active remote sensing approach using an erbium fiber amplifier based transmitter for atmospheric CO2 measurements in an overtone band near 1.57 microns and initial horizontal path measurements to less than 1% precision.

  2. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    PubMed

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass.

  3. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae.

    PubMed

    Cheah, Wai Yan; Show, Pau Loke; Chang, Jo-Shu; Ling, Tau Chuan; Juan, Joon Ching

    2015-05-01

    The unceasing rise of greenhouse gas emission has led to global warming and climate change. Global concern on this phenomenon has put forward the microalgal-based CO2 sequestration aiming to sequester carbon back to the biosphere, ultimately reducing greenhouse effects. Microalgae have recently gained enormous attention worldwide, to be the valuable feedstock for renewable energy production, due to their high growth rates, high lipid productivities and the ability to sequester carbon. The photosynthetic process of microalgae uses atmospheric CO2 and CO2 from flue gases, to synthesize nutrients for their growth. In this review article, we will primarily discuss the efficiency of CO2 biosequestration by microalgae species, factors influencing microalgal biomass productions, microalgal cultivation systems, the potential and limitations of using flue gas for microalgal cultivation as well as the bio-refinery approach of microalgal biomass. PMID:25497054

  4. [Monitoring Atmospheric CO2 and delta(13)C (CO2) Background Levels at Shangdianzi Station in Beijing, China].

    PubMed

    Xia, Ling-ju; Zhou, Ling-xi; Liu, Li-xin; Zhang, Gen

    2016-04-15

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together with delta(13)CO2) values during 2009 and 2013. The "representative data" of CO2 and delta(13)C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385.6 x 10(-6) in 2007 to 398.1 x 10(-6) in 2013, with an average growth rate of 2.0 x 10(-6) a(-1), while the delta(13)C values decreased from -8.38% per hundred in 2009 to -8.52% per hundred in 2013, with a mean growth rate of -0.03% per hundred x a(-1). The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 and delta(13)C seasonal variations were 23. 9 x 10 -6 and 1. 03%o, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The delta8 value for heating season I (Jan. 01-Mar. 14) was -21.30% per hundred, while -25.39% per hundred for heating season 11 (Nov. 15-Dec.31) , and for vegetative season (Mar. 15-Nov. 14) the delta(bio) value was estimated to be -21.28% per hundred, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season. PMID:27548943

  5. [Monitoring Atmospheric CO2 and delta(13)C (CO2) Background Levels at Shangdianzi Station in Beijing, China].

    PubMed

    Xia, Ling-ju; Zhou, Ling-xi; Liu, Li-xin; Zhang, Gen

    2016-04-15

    The study presented time series of atmospheric CO2 concentrations from flask sampling at SDZ regional station in Beijing during 2007 and 2013, together with delta(13)CO2) values during 2009 and 2013. The "representative data" of CO2 and delta(13)C (CO2) were selected from the complete data for further analysis. Annual CO2 concentrations increased from 385.6 x 10(-6) in 2007 to 398.1 x 10(-6) in 2013, with an average growth rate of 2.0 x 10(-6) a(-1), while the delta(13)C values decreased from -8.38% per hundred in 2009 to -8.52% per hundred in 2013, with a mean growth rate of -0.03% per hundred x a(-1). The absolute increase of CO2 from 2007 to 2008 reached the lowest level during 2007 and 2013, possibly due to relatively less carbon emissions during the 2008 Olympic Games period. The peak-to-peak amplitudes of atmospheric CO2 and delta(13)C seasonal variations were 23. 9 x 10 -6 and 1. 03%o, respectively. The isotopic signatures of CO2 sources/sinks were also discussed in this study. The delta8 value for heating season I (Jan. 01-Mar. 14) was -21.30% per hundred, while -25.39% per hundred for heating season 11 (Nov. 15-Dec.31) , and for vegetative season (Mar. 15-Nov. 14) the delta(bio) value was estimated to be -21.28% per hundred, likely suggesting the significant impact of fossil fuel and corn straw combustions during winter heating season and biological activities during vegetative season.

  6. Monitoring Atmospheric CO2 From Space: Challenge & Approach

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Nehrir, Amin; Browell, Edward; Dobler, Jeremy; Campbell, Joel; Meadows, Byron; Obland, Michael; Kooi, Susan; Fan, Tai-Fang; Ismail, Syed

    2015-01-01

    Atmospheric CO2 is the key radiative forcing for the Earth's climate and may contribute a major part of the Earth's warming during the past 150 years. Advanced knowledge on the CO2 distributions and changes can lead considerable model improvements in predictions of the Earth's future climate. Large uncertainties in the predictions have been found for decades owing to limited CO2 observations. To obtain precise measurements of atmospheric CO2, certain challenges have to be overcome. For an example, global annual means of the CO2 are rather stable, but, have a very small increasing trend that is significant for multi-decadal long-term climate. At short time scales (a second to a few hours), regional and subcontinental gradients in the CO2 concentration are very small and only in an order of a few parts per million (ppm) compared to the mean atmospheric CO2 concentration of about 400 ppm, which requires atmospheric CO2 space monitoring systems with extremely high accuracy and precision (about 0.5 ppm or 0.125%) in spatiotemporal scales around 75 km and 10-s. It also requires a decadal-scale system stability. Furthermore, rapid changes in high latitude environments such as melting ice, snow and frozen soil, persistent thin cirrus clouds in Amazon and other tropical areas, and harsh weather conditions over Southern Ocean all increase difficulties in satellite atmospheric CO2 observations. Space lidar approaches using Integrated Path Differential Absorption (IPDA) technique are considered to be capable of obtaining precise CO2 measurements and, thus, have been proposed by various studies including the 2007 Decadal Survey (DS) of the U.S. National Research Council. This study considers to use the Intensity-Modulated Continuous-Wave (IM-CW) lidar to monitor global atmospheric CO2 distribution and variability from space. Development and demonstration of space lidar for atmospheric CO2 measurements have been made through joint adventure of NASA Langley Research Center and

  7. Air exchange rates from atmospheric CO2 daily cycle

    PubMed Central

    Carrilho, João Dias; Mateus, Mário; Batterman, Stuart; da Silva, Manuel Gameiro

    2015-01-01

    We propose a new approach for measuring ventilation air exchange rates (AERs). The method belongs to the class of tracer gas techniques, but is formulated in the light of systems theory and signal processing. Unlike conventional CO2 based methods that assume the outdoor ambient CO2 concentration is constant, the proposed method recognizes that photosynthesis and respiration cycle of plants and processes associated with fuel combustion produce daily, quasi-periodic, variations in the ambient CO2 concentrations. These daily variations, which are within the detection range of existing monitoring equipment, are utilized for estimating ventilation rates without the need of a source of CO2 in the building. Using a naturally-ventilated residential apartment, AERs obtained using the new method compared favorably (within 10%) to those obtained using the conventional CO2 decay fitting technique. The new method has the advantages that no tracer gas injection is needed, and high time resolution results are obtained. PMID:26236090

  8. Halloysite Nanotubes Capturing Isotope Selective Atmospheric CO2

    PubMed Central

    Jana, Subhra; Das, Sankar; Ghosh, Chiranjit; Maity, Abhijit; Pradhan, Manik

    2015-01-01

    With the aim to capture and subsequent selective trapping of CO2, a nanocomposite has been developed through selective modification of the outer surface of the halloysite nanotubes (HNTs) with an organosilane to make the nanocomposite a novel solid-phase adsorbent to adsorb CO2 from the atmosphere at standard ambient temperature and pressure. The preferential adsorption of three major abundant isotopes of CO2 (12C16O2, 13C16O2, and 12C16O18O) from the ambient air by amine functionalized HNTs has been explored using an optical cavity-enhanced integrated cavity output spectroscopy. CO2 adsorption/desorption cycling measurements demonstrate that the adsorbent can be regenerated at relatively low temperature and thus, recycled repeatedly to capture atmospheric CO2. The amine grafted halloysite shows excellent stability even in oxidative environments and has high efficacy of CO2 capture, introducing a new route to the adsorption of isotope selective atmospheric CO2. PMID:25736700

  9. A 40-million-year history of atmospheric CO(2).

    PubMed

    Zhang, Yi Ge; Pagani, Mark; Liu, Zhonghui; Bohaty, Steven M; Deconto, Robert

    2013-10-28

    The alkenone-pCO2 methodology has been used to reconstruct the partial pressure of ancient atmospheric carbon dioxide (pCO2) for the past 45 million years of Earth's history (Middle Eocene to Pleistocene epochs). The present long-term CO2 record is a composite of data from multiple ocean localities that express a wide range of oceanographic and algal growth conditions that potentially bias CO2 results. In this study, we present a pCO2 record spanning the past 40 million years from a single marine locality, Ocean Drilling Program Site 925 located in the western equatorial Atlantic Ocean. The trends and absolute values of our new CO2 record site are broadly consistent with previously published multi-site alkenone-CO2 results. However, new pCO2 estimates for the Middle Miocene are notably higher than published records, with average pCO2 concentrations in the range of 400-500 ppm. Our results are generally consistent with recent pCO2 estimates based on boron isotope-pH data and stomatal index records, and suggest that CO2 levels were highest during a period of global warmth associated with the Middle Miocene Climatic Optimum (17-14 million years ago, Ma), followed by a decline in CO2 during the Middle Miocene Climate Transition (approx. 14 Ma). Several relationships remain contrary to expectations. For example, benthic foraminiferal δ(18)O records suggest a period of deglaciation and/or high-latitude warming during the latest Oligocene (27-23 Ma) that, based on our results, occurred concurrently with a long-term decrease in CO2 levels. Additionally, a large positive δ(18)O excursion near the Oligocene-Miocene boundary (the Mi-1 event, approx. 23 Ma), assumed to represent a period of glacial advance and retreat on Antarctica, is difficult to explain by our CO2 record alone given what is known of Antarctic ice sheet history and the strong hysteresis of the East Antarctic Ice Sheet once it has grown to continental dimensions. We also demonstrate that in the

  10. Silicon microring refractometric sensor for atmospheric CO(2) gas monitoring.

    PubMed

    Mi, Guangcan; Horvath, Cameron; Aktary, Mirwais; Van, Vien

    2016-01-25

    We report a silicon photonic refractometric CO(2) gas sensor operating at room temperature and capable of detecting CO(2) gas at atmospheric concentrations. The sensor uses a novel functional material layer based on a guanidine polymer derivative, which is shown to exhibit reversible refractive index change upon absorption and release of CO(2) gas molecules, and does not require the presence of humidity to operate. By functionalizing a silicon microring resonator with a thin layer of the polymer, we could detect CO(2) gas concentrations in the 0-500ppm range with a sensitivity of 6 × 10(-9) RIU/ppm and a detection limit of 20ppm. The microring transducer provides a potential integrated solution in the development of low-cost and compact CO(2) sensors that can be deployed as part of a sensor network for accurate environmental monitoring of greenhouse gases.

  11. Does sedimentary organic delta 13C record variations in quaternary ocean [CO2(aq)]?

    NASA Technical Reports Server (NTRS)

    Rau, G. H.; Froelich, P. N.; Takahashi, T.; Des Marais, D. J.

    1991-01-01

    Ocean surface water [CO2(aq)] variations based on glacial/interglacial changes in sediment delta 13Corg are shown to compare favorably with reconstructions based on ice core [CO2]. In particular, an approximate 80 microatmospheres increase in atmospheric pCO2 during the last glacial-interglacial transition is calculated to correspond to a 3-4 micromolar increase in ocean surface water [CO2(aq)] at atmospheric equilibrium. A widespread marine delta 13Corg decrease of 1-2% accompanied this event and was not preceded by an equivalent isotopic change in surface water total dissolved inorganic carbon. These observations support the hypothesis that [CO2(aq)] influences photosynthetic isotope fractionation between marine inorganic and organic carbon pools, and therefore that plankton/sediment delta 13Corg may serve as a proxy for surface water [CO2(aq)].

  12. Response of atmospheric CO2 to the abrupt cooling event 8200 years ago

    NASA Astrophysics Data System (ADS)

    Ahn, Jinho; Brook, Edward J.; Buizert, Christo

    2014-01-01

    Atmospheric CO2 records for the centennial scale cooling event 8200 years ago (8.2 ka event) may help us understand climate-carbon cycle feedbacks under interglacial conditions, which are important for understanding future climate, but existing records do not provide enough detail. Here we present a new CO2 record from the Siple Dome ice core, Antarctica, that covers 7.4-9.0 ka with 8 to 16 year resolution. We observe a small, about 1-2 ppm, increase of atmospheric CO2 during the 8.2 ka event. The increase is not significant when compared to other centennial variations in the Holocene that are not linked to large temperature changes. Our results do not agree with leaf stomata records that suggest a CO2 decrease of up to ~25 ppm and imply that the sensitivity of atmospheric CO2 to the primarily Northern Hemisphere cooling of the 8.2 ka event was limited.

  13. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought.

  14. Spatial response of coastal marshes to increased atmospheric CO2

    PubMed Central

    Ratliff, Katherine M.; Braswell, Anna E.; Marani, Marco

    2015-01-01

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought. PMID:26644577

  15. Spatial response of coastal marshes to increased atmospheric CO2.

    PubMed

    Ratliff, Katherine M; Braswell, Anna E; Marani, Marco

    2015-12-22

    The elevation and extent of coastal marshes are dictated by the interplay between the rate of relative sea-level rise (RRSLR), surface accretion by inorganic sediment deposition, and organic soil production by plants. These accretion processes respond to changes in local and global forcings, such as sediment delivery to the coast, nutrient concentrations, and atmospheric CO2, but their relative importance for marsh resilience to increasing RRSLR remains unclear. In particular, marshes up-take atmospheric CO2 at high rates, thereby playing a major role in the global carbon cycle, but the morphologic expression of increasing atmospheric CO2 concentration, an imminent aspect of climate change, has not yet been isolated and quantified. Using the available observational literature and a spatially explicit ecomorphodynamic model, we explore marsh responses to increased atmospheric CO2, relative to changes in inorganic sediment availability and elevated nitrogen levels. We find that marsh vegetation response to foreseen elevated atmospheric CO2 is similar in magnitude to the response induced by a varying inorganic sediment concentration, and that it increases the threshold RRSLR initiating marsh submergence by up to 60% in the range of forcings explored. Furthermore, we find that marsh responses are inherently spatially dependent, and cannot be adequately captured through 0-dimensional representations of marsh dynamics. Our results imply that coastal marshes, and the major carbon sink they represent, are significantly more resilient to foreseen climatic changes than previously thought. PMID:26644577

  16. Modeling Atmospheric CO2 Processes to Constrain the Missing Sink

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Denning, A. S.; Erickson, D. J.; Collatz, J. C.; Pawson, S.

    2005-01-01

    We report on a NASA supported modeling effort to reduce uncertainty in carbon cycle processes that create the so-called missing sink of atmospheric CO2. Our overall objective is to improve characterization of CO2 source/sink processes globally with improved formulations for atmospheric transport, terrestrial uptake and release, biomass and fossil fuel burning, and observational data analysis. The motivation for this study follows from the perspective that progress in determining CO2 sources and sinks beyond the current state of the art will rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. The major components of this effort are: 1) Continued development of the chemistry and transport model using analyzed meteorological fields from the Goddard Global Modeling and Assimilation Office, with comparison to real time data in both forward and inverse modes; 2) An advanced biosphere model, constrained by remote sensing data, coupled to the global transport model to produce distributions of CO2 fluxes and concentrations that are consistent with actual meteorological variability; 3) Improved remote sensing estimates for biomass burning emission fluxes to better characterize interannual variability in the atmospheric CO2 budget and to better constrain the land use change source; 4) Evaluating the impact of temporally resolved fossil fuel emission distributions on atmospheric CO2 gradients and variability. 5) Testing the impact of existing and planned remote sensing data sources (e.g., AIRS, MODIS, OCO) on inference of CO2 sources and sinks, and use the model to help establish measurement requirements for future remote sensing instruments. The results will help to prepare for the use of OCO and other satellite data in a multi-disciplinary carbon data assimilation system for analysis and prediction of carbon cycle changes and carbodclimate interactions.

  17. Regional and Global Atmospheric CO2 Measurements Using 1.57 Micron IM-CW Lidar

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Obland, Michael; Nehrir, Amin; Browell, Edward; Harrison, F. Wallace; Dobler, Jeremy; Campbell, Joel; Kooi, Susan; Meadows, Byron; Fan, Tai-Fang; Liu, Zhaoyan

    2015-01-01

    Atmospheric CO2 is a critical forcing for the Earth's climate, and knowledge of its distribution and variations influences predictions of the Earth's future climate. Accurate observations of atmospheric CO2 are also crucial to improving our understanding of CO2 sources, sinks and transports. To meet these science needs, NASA is developing technologies for the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission, which is aimed at global CO2 observations. Meanwhile an airborne investigation of atmospheric CO2 distributions as part of the NASA Suborbital Atmospheric Carbon and Transport â€" America (ACT-America) mission will be conducted with lidar and in situ instrumentation over the central and eastern United States during all four seasons and under a wide range of meteorological conditions. In preparing for the ASCENDS mission, NASA Langley Research Center and Exelis Inc./Harris Corp. have jointly developed and demonstrated the capability of atmospheric CO2 column measurements with an intensity-modulated continuous-wave (IM-CW) lidar. Since 2005, a total of 14 flight campaigns have been conducted. A measurement precision of approx.0.3 ppmv for a 10-s average over desert and vegetated surfaces has been achieved, and the lidar CO2 measurements also agree well with in-situ observations. Significant atmospheric CO2 variations on various spatiotemporal scales have been observed during these campaigns. For example, around 10-ppm CO2 changes were found within free troposphere in a region of about 200A-300 sq km over Iowa during a summer 2014 flight. Results from recent flight campaigns are presented in this paper. The ability to achieve the science objectives of the ASCENDS mission with an IM-CW lidar is also discussed in this paper, along with the plans for the ACT-America aircraft investigation that begins in the winter of 2016.

  18. CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes

    NASA Technical Reports Server (NTRS)

    Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.

    2012-01-01

    Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.

  19. Atmospheric CO2: principal control knob governing Earth's temperature.

    PubMed

    Lacis, Andrew A; Schmidt, Gavin A; Rind, David; Ruedy, Reto A

    2010-10-15

    Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.

  20. Atmospheric CO2: Principal Control Knob Governing Earth's Temperature

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew A.; Schmidt, Gavin A.; Rind, David; Ruedy, Reto A.

    2010-01-01

    Ample physical evidence shows that carbon dioxide (CO2) is the single most important climate-relevant greenhouse gas in Earth s atmosphere. This is because CO2, like ozone, N2O, CH4, and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO2 and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state.

  1. Atmospheric CO2: principal control knob governing Earth's temperature.

    PubMed

    Lacis, Andrew A; Schmidt, Gavin A; Rind, David; Ruedy, Reto A

    2010-10-15

    Ample physical evidence shows that carbon dioxide (CO(2)) is the single most important climate-relevant greenhouse gas in Earth's atmosphere. This is because CO(2), like ozone, N(2)O, CH(4), and chlorofluorocarbons, does not condense and precipitate from the atmosphere at current climate temperatures, whereas water vapor can and does. Noncondensing greenhouse gases, which account for 25% of the total terrestrial greenhouse effect, thus serve to provide the stable temperature structure that sustains the current levels of atmospheric water vapor and clouds via feedback processes that account for the remaining 75% of the greenhouse effect. Without the radiative forcing supplied by CO(2) and the other noncondensing greenhouse gases, the terrestrial greenhouse would collapse, plunging the global climate into an icebound Earth state. PMID:20947761

  2. Three dimensional global modeling of atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Fung, I.; Hansen, J.; Rind, D.

    1983-01-01

    A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.

  3. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  4. The Effect of CO2 Ice Cap Sublimation on Mars Atmosphere

    NASA Technical Reports Server (NTRS)

    Batterson, Courtney

    2016-01-01

    Sublimation of the polar CO2 ice caps on Mars is an ongoing phenomenon that may be contributing to secular climate change on Mars. The transfer of CO2 between the surface and atmosphere via sublimation and deposition may alter atmospheric mass such that net atmospheric mass is increasing despite seasonal variations in CO2 transfer. My study builds on previous studies by Kahre and Haberle that analyze and compare data from the Phoenix and Viking Landers 1 and 2 to determine whether secular climate change is happening on Mars. In this project, I use two years worth of temperature, pressure, and elevation data from the MSL Curiosity rover to create a program that allows for successful comparison of Curiosity pressure data to Viking Lander pressure data so a conclusion can be drawn regarding whether CO2 ice cap sublimation is causing a net increase in atmospheric mass and is thus contributing to secular climate change on Mars.

  5. Improvement of Atmospheric CO2 Inversion Analysis at JMA

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Maki, T.; Machida, T.; Matsuda, H.; Sawa, Y.; Niwa, Y.

    2015-12-01

    The Japan Meteorological Agency (JMA) has developed a new inversion system of atmospheric CO2 mole fraction and flux for better understanding of global carbon budget and contribution to global carbon cycle studies. The new system introduces a newly developed on-line atmospheric tracer transport model (GSAM-TM). Its tracer transport process is directly coupled with a low resolution version (TL95) of JMA's operational global numerical weather prediction (NWP) model (JMA_GSM), using mass conservative semi-Lagrangian scheme and Arakawa-Shubert mass flux scheme for vertical convective transportation. It represents mass transportation, mass conservation, and structures of tracer distribution more precisely than JMA's previous transport model (CDTM), which is off-line tracer transport model using semi-Lagrangian scheme and Kuo-based convection scheme with multiplying globally uniform coefficient for mass conservation. The new system also introduces new a priori fluxes for fossil fuel consumption and oceanic CO2 exchange. In this study, we compare CO2 mole fraction field and flux estimates of the new system against that of current annual JMA analysis with CDTM. The new system represents better atmospheric CO2 distribution structure than the current system does especially vertical gradient around tropopause. Due to improvement of fossil fuel CO2 diffusion estimates, analyzed regional budget over Eurasian Continent changed clearly. Budgets for less observation area (South America and Africa) are also changed. Globally averaged atmospheric CO2 budget is not changed significantly. This new system is planned to be operationally implemented in 2016, and we will further improve the CO2 inversion analysis for understanding of carbon cycle.

  6. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    PubMed

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  7. Can increased atmospheric CO2 levels trigger a runaway greenhouse?

    PubMed

    Ramirez, Ramses M; Kopparapu, Ravi Kumar; Lindner, Valerie; Kasting, James F

    2014-08-01

    Recent one-dimensional (globally averaged) climate model calculations by Goldblatt et al. (2013) suggest that increased atmospheric CO(2) could conceivably trigger a runaway greenhouse on present Earth if CO(2) concentrations were approximately 100 times higher than they are today. The new prediction runs contrary to previous calculations by Kasting and Ackerman (1986), which indicated that CO(2) increases could not trigger a runaway, even at Venus-like CO(2) concentrations. Goldblatt et al. argued that this different behavior is a consequence of updated absorption coefficients for H(2)O that make a runaway more likely. Here, we use a 1-D climate model with similar, up-to-date absorption coefficients, but employ a different methodology, to show that the older result is probably still valid, although our model nearly runs away at ∼12 preindustrial atmospheric levels of CO(2) when we use the most alarmist assumptions possible. However, we argue that Earth's real climate is probably stable given more realistic assumptions, although 3-D climate models will be required to verify this result. Potential CO(2) increases from fossil fuel burning are somewhat smaller than this, 10-fold or less, but such increases could still cause sufficient warming to make much of the planet uninhabitable by humans.

  8. Can increased atmospheric CO2 levels trigger a runaway greenhouse?

    PubMed

    Ramirez, Ramses M; Kopparapu, Ravi Kumar; Lindner, Valerie; Kasting, James F

    2014-08-01

    Recent one-dimensional (globally averaged) climate model calculations by Goldblatt et al. (2013) suggest that increased atmospheric CO(2) could conceivably trigger a runaway greenhouse on present Earth if CO(2) concentrations were approximately 100 times higher than they are today. The new prediction runs contrary to previous calculations by Kasting and Ackerman (1986), which indicated that CO(2) increases could not trigger a runaway, even at Venus-like CO(2) concentrations. Goldblatt et al. argued that this different behavior is a consequence of updated absorption coefficients for H(2)O that make a runaway more likely. Here, we use a 1-D climate model with similar, up-to-date absorption coefficients, but employ a different methodology, to show that the older result is probably still valid, although our model nearly runs away at ∼12 preindustrial atmospheric levels of CO(2) when we use the most alarmist assumptions possible. However, we argue that Earth's real climate is probably stable given more realistic assumptions, although 3-D climate models will be required to verify this result. Potential CO(2) increases from fossil fuel burning are somewhat smaller than this, 10-fold or less, but such increases could still cause sufficient warming to make much of the planet uninhabitable by humans. PMID:25061956

  9. Acidification of reverse micellar nanodroplets by atmospheric pressure CO2.

    PubMed

    Levinger, Nancy E; Rubenstrunk, Lauren C; Baruah, Bharat; Crans, Debbie C

    2011-05-11

    Water absorption of atmospheric carbon dioxide lowers the solution pH due to carbonic acid formation. Bulk water acidification by CO(2) is well documented, but significantly less is known about its effect on water in confined spaces. Considering its prominence as a greenhouse gas, the importance of aerosols in acid rain, and CO(2)-buffering in cellular systems, surprisingly little information exists about the absorption of CO(2) by nanosized water droplets. The fundamental interactions of CO(2) with water, particularly in nanosized structures, may influence a wide range of processes in our technological society. Here results from experiments investigating the uptake of gaseous CO(2) by water pools in reverse micelles are presented. Despite the small number of water molecules in each droplet, changes in vanadium probes within the water pools, measured using vanadium-51 NMR spectroscopy, indicate a significant drop in pH after CO(2) introduction. Collectively, the pH-dependent vanadium probes show CO(2) dissolves in the nanowater droplets, causing the reverse micelle acidity to increase.

  10. Where does CO2 in Antarctica cool the atmosphere ?

    NASA Astrophysics Data System (ADS)

    Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas

    2016-04-01

    In a recent study we have shown that for the high altitude plateau in Antarctica CO2 causes a surplus in infrared emission to space compared to what is emitted from the surface. This corresponds to a negative greenhouse effect, and is due to the fact that for this region the surface is typically colder than the atmosphere above, opposite to the rest of the world. As a consequence, for this region an increase in CO2 leads to an increase in the energy loss to space, leading to an increase in the negative greenhouse effect. We now studied in more detail the radiative effect of CO2 and compared the results with available measurements from Antarctica. H. Schmithüsen, J. Notholt, G. Köngig-Langlo, T, Jung. How increasing CO2 leads to an increased negative greenhouse effect in Antarctica. Geophysical Research Letters, in press, 2015. doi: 10.1002/2015GL066749.

  11. A global coupled Eulerian-Lagrangian model and 1 1 km CO2 surface flux dataset for high-resolution atmospheric CO2 transport simulations

    SciTech Connect

    Ganshin, A; Oda, T; Saito, M; Maksyutov, S; Valsala, V; Andres, Robert Joseph; Fischer, R; Lowry, D; Lukyanov, A; Matsueda, H; Nisbet, E; Rigby, M; Sawa, Y; Toumi, R; Tsuboi, K; Varlagin, A; Zhuravlev, R

    2012-01-01

    Abstract. We designed a method to simulate atmospheric CO2 concentrations at several continuous observation sites around the globe using surface fluxes at a very high spatial resolution. The simulations presented in this study were performed using the Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA), comprising a Lagrangian particle dispersion model coupled to a global atmospheric tracer transport model with prescribed global surface CO2 flux maps at a 1 1 km resolution. The surface fluxes used in the simulations were prepared by assembling the individual components of terrestrial, oceanic and fossil fuel CO2 fluxes. This experimental setup (i.e. a transport model running at a medium resolution, coupled to a high-resolution Lagrangian particle dispersion model together with global surface fluxes at a very high resolution), which was designed to represent high-frequency variations in atmospheric CO2 concentration, has not been reported at a global scale previously. Two sensitivity experiments were performed: (a) using the global transport model without coupling to the Lagrangian dispersion model, and (b) using the coupled model with a reduced resolution of surface fluxes, in order to evaluate the performance of Eulerian-Lagrangian coupling and the role of high-resolution fluxes in simulating high-frequency variations in atmospheric CO2 concentrations. A correlation analysis between observed and simulated atmospheric CO2 concentrations at selected locations revealed that the inclusion of both Eulerian-Lagrangian coupling and highresolution fluxes improves the high-frequency simulations of the model. The results highlight the potential of a coupled Eulerian-Lagrangian model in simulating high-frequency atmospheric CO2 concentrations at many locations worldwide. The model performs well in representing observations of atmospheric CO2 concentrations at high spatial and temporal resolutions, especially for coastal sites and sites located close to sources of

  12. Rapid Removal of Atmospheric CO2 by Urban Soils.

    PubMed

    Washbourne, Carla-Leanne; Lopez-Capel, Elisa; Renforth, Phil; Ascough, Philippa L; Manning, David A C

    2015-05-01

    The measured calcium carbonate content of soils to a depth of 100 mm at a large urban development site has increased over 18 months at a rate that corresponds to the sequestration of 85 t of CO2/ha (8.5 kg of CO2 m(-2)) annually. This is a consequence of rapid weathering of calcium silicate and hydroxide minerals derived from the demolition of concrete structures, which releases Ca that combines with CO2 ultimately derived from the atmosphere, precipitating as calcite. Stable isotope data confirm an atmospheric origin for carbonate carbon, and 14C dating indicates the predominance of modern carbon in the pedogenic calcite. Trial pits show that carbonation extends to depths of ≥1 m. Work at other sites shows that the occurrence of pedogenic carbonates is widespread in artificially created urban soils containing Ca and Mg silicate minerals. Appropriate management of fewer than 12000 ha of urban land to maximize calcite precipitation has the potential to remove 1 million t of CO2 from the atmosphere annually. The maximal global potential is estimated to be approximately 700-1200 Mt of CO2 per year (representing 2.0-3.7% of total emissions from fossil fuel combustion) based on current rates of production of industry-derived Ca- and Mg-bearing materials.

  13. Rapid Removal of Atmospheric CO2 by Urban Soils.

    PubMed

    Washbourne, Carla-Leanne; Lopez-Capel, Elisa; Renforth, Phil; Ascough, Philippa L; Manning, David A C

    2015-05-01

    The measured calcium carbonate content of soils to a depth of 100 mm at a large urban development site has increased over 18 months at a rate that corresponds to the sequestration of 85 t of CO2/ha (8.5 kg of CO2 m(-2)) annually. This is a consequence of rapid weathering of calcium silicate and hydroxide minerals derived from the demolition of concrete structures, which releases Ca that combines with CO2 ultimately derived from the atmosphere, precipitating as calcite. Stable isotope data confirm an atmospheric origin for carbonate carbon, and 14C dating indicates the predominance of modern carbon in the pedogenic calcite. Trial pits show that carbonation extends to depths of ≥1 m. Work at other sites shows that the occurrence of pedogenic carbonates is widespread in artificially created urban soils containing Ca and Mg silicate minerals. Appropriate management of fewer than 12000 ha of urban land to maximize calcite precipitation has the potential to remove 1 million t of CO2 from the atmosphere annually. The maximal global potential is estimated to be approximately 700-1200 Mt of CO2 per year (representing 2.0-3.7% of total emissions from fossil fuel combustion) based on current rates of production of industry-derived Ca- and Mg-bearing materials. PMID:25837769

  14. Sensitivity Analysis for Atmospheric Infrared Sounder (AIRS) CO2 Retrieval

    NASA Technical Reports Server (NTRS)

    Gat, Ilana

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS) is a thermal infrared sensor able to retrieve the daily atmospheric state globally for clear as well as partially cloudy field-of-views. The AIRS spectrometer has 2378 channels sensing from 15.4 micrometers to 3.7 micrometers, of which a small subset in the 15 micrometers region has been selected, to date, for CO2 retrieval. To improve upon the current retrieval method, we extended the retrieval calculations to include a prior estimate component and developed a channel ranking system to optimize the channels and number of channels used. The channel ranking system uses a mathematical formalism to rapidly process and assess the retrieval potential of large numbers of channels. Implementing this system, we identifed a larger optimized subset of AIRS channels that can decrease retrieval errors and minimize the overall sensitivity to other iridescent contributors, such as water vapor, ozone, and atmospheric temperature. This methodology selects channels globally by accounting for the latitudinal, longitudinal, and seasonal dependencies of the subset. The new methodology increases accuracy in AIRS CO2 as well as other retrievals and enables the extension of retrieved CO2 vertical profiles to altitudes ranging from the lower troposphere to upper stratosphere. The extended retrieval method for CO2 vertical profile estimation using a maximum-likelihood estimation method. We use model data to demonstrate the beneficial impact of the extended retrieval method using the new channel ranking system on CO2 retrieval.

  15. CO2 vertical profile retrieval from ground-based IR atmospheric spectra

    NASA Astrophysics Data System (ADS)

    Khosravian, Kobra; Loehnert, Ulrich; Turner, David; Ebell, Kerstin

    2016-04-01

    CO2 vertical profile retrieval from ground-based IR atmospheric spectra In this study, we developed an algorithm for retrieving the CO2 vertical profile from atmospheric ground-based zenith spectra in the mid IR. Providing the CO2 profile from continuous (24h/day) ground-based spectra would be a great potential for studying the carbon cycle, the evaluation of satellite measurements or the assessment of numerical models, which forecast the near-surface CO2 flux. In order to retrieve the CO2 profile, we used observations of the Atmospheric Emitted Radiance Interferometer (AERI) that was installed at the JOYCE (Jülich ObservatorY for Cloud Evolution), Germany in 2012. AERI measures downwelling infrared radiances from 520 cm-1 (3.3 μm) to 3020 cm-1 (19 μm) with a spectral resolution of 1 cm-1 and a temporal resolution of 1 minute. In a first step, we performed sensitivity studies for finding the most-suited spectral bands with highest sensitivity to the mean column amount of CO2 volume mixing ratio (VMR). Then an algorithm, known as AERIoe (Turner and Löhnert 2014), was applied to retrieve the mean column amount of CO2 VMR using simulated radiances in clear sky cases. AERIoe is a variational retrieval algorithm to provide information on Temperature, humidity, trace gases and clouds. The simulated AERI radiances were generated by a line by line radiative transfer model (LBLRTM) using model temperature, humidity and CO2 profile. The retrieval results of mean column amount of CO2 VMR are in good agreement with the true ones. In addition to the mean column amount, we modified AERIoe to retrieve the CO2 vertical profile. First results reveal that there is more than 1 degree of freedom for CO2 profile. We will show results how the retrieval method is refined to optimally exploit the information on the CO2 profile contained in the AERI measurements.

  16. RISING ATMOSPHERIC CO2 AND CARBON SEQUESTRATION IN FORESTS

    EPA Science Inventory

    Rising CO2 concentrations in the Earth's atmosphere could alter Earth's climate system, but it is thought that higher concentrations may improve plant growth by way of the fertilization effect. Forests, an important part of the Earth's carbon cycle, are postulated to sequester a...

  17. In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China

    NASA Astrophysics Data System (ADS)

    Fang, S. X.; Zhou, L. X.; Tans, P. P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T.

    2014-03-01

    Atmospheric carbon dioxide (CO2) mole fractions were continuously measured from January 2009 to December 2011 at four atmospheric observatories in China using cavity ring-down spectroscopy instruments. The stations are Lin'an (LAN), Longfengshan (LFS), Shangdianzi (SDZ), and Waliguan (WLG), which are regional (LAN, LFS, SDZ) or global (WLG) measurement stations of the World Meteorological Organization's Global Atmosphere Watch program (WMO/GAW). LAN is located near the megacity of Shanghai, in China's economically most developed region. LFS is in a forest and rice production area, close to the city of Harbin in northeastern China. SDZ is located 150 km northeast of Beijing. WLG, hosting the longest record of measured CO2 mole fractions in China, is a high-altitude site in northwestern China recording background CO2 concentration. The CO2 growth rates are 3.7 ± 1.2 ppm yr-1 for LAN, 2.7 ± 0.8 ppm yr-1 for LFS, 3.5 ± 1.6 ppm yr-1 for SDZ, and 2.2 ± 0.8 ppm yr-1 (1σ) for WLG during the period of 2009 to 2011. The highest annual mean CO2 mole fraction of 404.2 ± 3.9 ppm was observed at LAN in 2011. A comprehensive analysis of CO2 variations, their diurnal and seasonal cycles as well as the analysis of the influence of local sources on the CO2 mole fractions allows a characterization of the sampling sites and of the key processes driving the CO2 mole fractions. These data form a basis to improve our understanding of atmospheric CO2 variations in China and the underlying fluxes using atmospheric inversion models.

  18. A Test of Sensitivity to Convective Transport in a Global Atmospheric CO2 Simulation

    NASA Technical Reports Server (NTRS)

    Bian, H.; Kawa, S. R.; Chin, M.; Pawson, S.; Zhu, Z.; Rasch, P.; Wu, S.

    2006-01-01

    Two approximations to convective transport have been implemented in an offline chemistry transport model (CTM) to explore the impact on calculated atmospheric CO2 distributions. GlobalCO2 in the year 2000 is simulated using theCTM driven by assimilated meteorological fields from the NASA s Goddard Earth Observation System Data Assimilation System, Version 4 (GEOS-4). The model simulates atmospheric CO2 by adopting the same CO2 emission inventory and dynamical modules as described in Kawa et al. (convective transport scheme denoted as Conv1). Conv1 approximates the convective transport by using the bulk convective mass fluxes to redistribute trace gases. The alternate approximation, Conv2, partitions fluxes into updraft and downdraft, as well as into entrainment and detrainment, and has potential to yield a more realistic simulation of vertical redistribution through deep convection. Replacing Conv1 by Conv2 results in an overestimate of CO2 over biospheric sink regions. The largest discrepancies result in a CO2 difference of about 7.8 ppm in the July NH boreal forest, which is about 30% of the CO2 seasonality for that area. These differences are compared to those produced by emission scenario variations constrained by the framework of Intergovernmental Panel on Climate Change (IPCC) to account for possible land use change and residual terrestrial CO2 sink. It is shown that the overestimated CO2 driven by Conv2 can be offset by introducing these supplemental emissions.

  19. Pulsed airborne lidar measurements of atmospheric CO2 column absorption

    NASA Astrophysics Data System (ADS)

    Abshire, James B.; Riris, Haris; Allan, Graham R.; Weaver, Clark J.; Mao, Jianping; Sun, Xiaoli; Hasselbrack, William E.; Kawa, S. Randoph; Biraud, Sebastien

    2010-11-01

    ABSTRACT We report initial measurements of atmospheric CO2 column density using a pulsed airborne lidar operating at 1572 nm. It uses a lidar measurement technique being developed at NASA Goddard Space Flight Center as a candidate for the CO2 measurement in the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission. The pulsed multiple-wavelength lidar approach offers several new capabilities with respect to passive spectrometer and other lidar techniques for high-precision CO2 column density measurements. We developed an airborne lidar using a fibre laser transmitter and photon counting detector, and conducted initial measurements of the CO2 column absorption during flights over Oklahoma in December 2008. The results show clear CO2 line shape and absorption signals. These follow the expected changes with aircraft altitude from 1.5 to 7.1 km, and are in good agreement with column number density estimates calculated from nearly coincident airborne in-situ measurements.

  20. Implications of ``peak oil'' for atmospheric CO2 and climate

    NASA Astrophysics Data System (ADS)

    Kharecha, Pushker A.; Hansen, James E.

    2008-09-01

    Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration, and recent trends are toward lower estimates, we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired power plants without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 beneath the 450 ppm ceiling.

  1. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    PubMed

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled. PMID:26154449

  2. Evolutionary History of Atmospheric CO2 during the Late Cenozoic from Fossilized Metasequoia Needles.

    PubMed

    Wang, Yuqing; Momohara, Arata; Wang, Li; Lebreton-Anberrée, Julie; Zhou, Zhekun

    2015-01-01

    The change in ancient atmospheric CO2 concentrations provides important clues for understanding the relationship between the atmospheric CO2 concentration and global temperature. However, the lack of CO2 evolution curves estimated from a single terrestrial proxy prevents the understanding of climatic and environmental impacts due to variations in data. Thus, based on the stomatal index of fossilized Metasequoia needles, we reconstructed a history of atmospheric CO2 concentrations from middle Miocene to late Early Pleistocene when the climate changed dramatically. According to this research, atmospheric CO2 concentration was stabile around 330-350 ppmv in the middle and late Miocene, then it decreased to 278-284 ppmv during the Late Pliocene and to 277-279 ppmv during the Early Pleistocene, which was almost the same range as in preindustrial time. According to former research, this is a time when global temperature decreased sharply. Our results also indicated that from middle Miocene to Pleistocene, global CO2 level decreased by more than 50 ppmv, which may suggest that CO2 decrease and temperature decrease are coupled.

  3. Atmospheric CO2 consequences of heavy dependence on coal.

    PubMed Central

    Rotty, R M

    1979-01-01

    Accurate and regular measurements of the concentration of CO2 in the atmosphere during the past 20 years show an accelerating increase. Although clearing of tropical forests has released large amounts of carbon to the atmosphere, evidence is strong that a major contributor is the combustion of fossil fuels. Future energy demands of the world will require extensive further exploitation of fossil fuels, and projections show that without major development of nonfossil fuel alternatives, the atmospheric concentration will double within the next 75 years. Four issues require serious attention. The developing countries will require vastly increased amounts of energy. Major efforts to develop suitable (inexpensive) nonfossil energy sources to meet at least a portion of this demand are required. The distribution of carbon released from fossil fuels and from other anthropogenic sources among the reservoirs of the carbon cycle must be better defined. Uncertainties regarding the effect of the increased concentration of CO2 in the atmosphere on global climate must be reduced. Possible political and social responses to a substantial climate change must be studied in order to more fully understand all of the implication of increased atmospheric CO2. PMID:120253

  4. Atmospheric CO2 consequences of heavy dependence on coal.

    PubMed

    Rotty, R M

    1979-12-01

    Accurate and regular measurements of the concentration of CO2 in the atmosphere during the past 20 years show an accelerating increase. Although clearing of tropical forests has released large amounts of carbon to the atmosphere, evidence is strong that a major contributor is the combustion of fossil fuels. Future energy demands of the world will require extensive further exploitation of fossil fuels, and projections show that without major development of nonfossil fuel alternatives, the atmospheric concentration will double within the next 75 years. Four issues require serious attention. The developing countries will require vastly increased amounts of energy. Major efforts to develop suitable (inexpensive) nonfossil energy sources to meet at least a portion of this demand are required. The distribution of carbon released from fossil fuels and from other anthropogenic sources among the reservoirs of the carbon cycle must be better defined. Uncertainties regarding the effect of the increased concentration of CO2 in the atmosphere on global climate must be reduced. Possible political and social responses to a substantial climate change must be studied in order to more fully understand all of the implication of increased atmospheric CO2.

  5. Atmospheric correlation time measurements using coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.

    1986-01-01

    A pulsed TEA-CO2 lidar with coherent detection was used to measure the correlation time of backscatter from an ensemble of atmospheric aerosol particles which are illuminated by the pulsed radiation. The correlation time of the backscatter return signal is important in studies of atmospheric turbulence and its effects on optical propagation and backscatter. If the temporal coherence of the pulse is large enough, then the temporal coherence of the return signal is dominated by the turbulence and shear for a variety of interesting atmospheric conditions. Various techniques for correlation time measurement are discussed and evaluated.

  6. Implications of 'Peak Oil' for Atmospheric CO2 and Climate

    NASA Astrophysics Data System (ADS)

    Kharecha, P. A.; Hansen, J. E.

    2008-12-01

    Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration -- and recent trends are toward lower estimates -- we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired facilities without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 below 450 ppm. It is also plausible that CO2 can be returned below 350 ppm by 2100 or sooner, if more aggressive mitigation measures are enacted, most notably a phase-out of global coal emissions by circa 2030 and large- scale reforestation, primarily in the tropics but also in temperate regions.

  7. Atmospheric verification of anthropogenic CO2 emission trends

    NASA Astrophysics Data System (ADS)

    Francey, Roger J.; Trudinger, Cathy M.; van der Schoot, Marcel; Law, Rachel M.; Krummel, Paul B.; Langenfelds, Ray L.; Paul Steele, L.; Allison, Colin E.; Stavert, Ann R.; Andres, Robert J.; Rödenbeck, Christian

    2013-05-01

    International efforts to limit global warming and ocean acidification aim to slow the growth of atmospheric CO2, guided primarily by national and industry estimates of production and consumption of fossil fuels. Atmospheric verification of emissions is vital but present global inversion methods are inadequate for this purpose. We demonstrate a clear response in atmospheric CO2 coinciding with a sharp 2010 increase in Asian emissions but show persisting slowing mean CO2 growth from 2002/03. Growth and inter-hemispheric concentration difference during the onset and recovery of the Global Financial Crisis support a previous speculation that the reported 2000-2008 emissions surge is an artefact, most simply explained by a cumulative underestimation (~ 9PgC) of 1994-2007 emissions; in this case, post-2000 emissions would track mid-range of Intergovernmental Panel on Climate Change emission scenarios. An alternative explanation requires changes in the northern terrestrial land sink that offset anthropogenic emission changes. We suggest atmospheric methods to help resolve this ambiguity.

  8. Leveraging atmospheric CO2 observations to constrain the climate sensitivity of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Richter, A.; Franklin, O.; Evans, S. E.; Dieckmann, U.

    2014-12-01

    A significant challenge in understanding, and therefore modeling, the response of terrestrial carbon cycling to climate and environmental drivers is that vegetation varies on spatial scales of order a few kilometers whereas Earth system models (ESMs) are run with characteristic length scales of order 100 km. Atmospheric CO2 provides a constraint on carbon fluxes at spatial scales compatible with the resolution of ESMs due to the fact that atmospheric mixing renders a single site representative of fluxes within a large spatial footprint. The variations in atmospheric CO2 at both seasonal and interannual timescales largely reflect terrestrial influence. I discuss the use of atmospheric CO2 observations to benchmark model carbon fluxes over a range of spatial scales. I also discuss how simple models can be used to test functional relationships between the CO2 growth rate and climate variations. In particular, I show how atmospheric CO2 provides constraints on ecosystem sensitivity to climate drivers in the tropics, where tropical forests and semi-arid ecosystems are thought to account for much of the variability in the contemporary carbon sink.

  9. Infrared polarization spectroscopy of CO 2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Alwahabi, Z. T.; Li, Z. S.; Zetterberg, J.; Aldén, M.

    2004-04-01

    Polarisation spectroscopy (PS) was used to probe CO 2 gas concentration in a CO 2/N 2 binary mixture at atmospheric pressure and ambient temperature. The CO 2 molecules were probed by a direct laser excitation to an overtone and combination vibrational state. The tuneable narrow linewidth infrared laser radiation at 2 μm was obtained by Raman shifting of the output from a single-longitudinal-mode pulsed alexandrite laser-system to the second Stokes component in a H 2 gas cell. Infrared polarisation spectroscopy (IRPS) and time-resolved infrared laser-induced fluorescence (IRLIF) spectra were collected. A linear dependence of the IRPS signal on the CO 2 mole fraction has been found. This indicates that the IRPS signal is only weakly affected by the molecular collisions and that the inter- and intra- molecular energy transfer processes do not strongly influence the molecular alignment at the time scale of the measurements. Thus IRPS holds great potential for quantitative instantaneous gas concentration diagnostics in general. This is especially important for molecules which do not posses an accessible optical transition such as CO, CO 2 and N 2O. In addition, an accurate experimental method to measure the extinction ratio of the IR polarisers employed in this study has been developed and applied. With its obvious merits as simplicity, easy alignment and high accuracy, the method can be generalized to all spectral regions, different polarisers and high extinction ratios.

  10. Biomass burial and storage to reduce atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Zeng, N.

    2012-04-01

    To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a theoretical carbon sequestration potential for wood burial is 10 ± 5 GtC/y, but probably 1-3 GtC/y can be realized in practice. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other environmental concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from forest industry, the cost for wood burial is estimated to be 14/tCO2 (50/tC), lower than the typical cost for power plant CO2 capture with geological storage. The low cost for carbon sequestration with wood burial is possible because the technique uses the natural process of photosynthesis to remove carbon from the atmosphere. The technique is low tech, distributed, safe, and can be stopped at any time, thus an attractive option for large-scale implementation in a world-wide carbon market.

  11. Evolutionary context for understanding and manipulating plant responses to past, present and future atmospheric [CO2].

    PubMed

    Leakey, Andrew D B; Lau, Jennifer A

    2012-02-19

    Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration

  12. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.

    PubMed

    Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F

    2016-02-11

    No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration.

  13. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.

    PubMed

    Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F

    2016-02-11

    No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration. PMID:26840491

  14. The CO2 greenhouse effect and the thermal history of the atmosphere.

    PubMed

    Marx, G; Miskolci, F

    1981-01-01

    The influence of the expected rise of CO2 content in our atmosphere upon terrestrial temperature is uncertain. A significant increase in temperature could be threatening to certain aspects of terrestrial biology. On the other hand, it is a general consensus among paleobiologists that the Earth possessed a CO2 atmosphere in the past billion years, without dramatic temperature variations endangering the continuity of life. In order to clarify this problem, and to contribute to the understanding of the CO2 greenhouse effect on Venus we have computed the absorption spectrum of CO2 for a wide range of atmospheric concentrations. More than 2500 spectral lines of the 15 micron band were taken into account in our line-by-line calculation. We have used an empirical exponential line-shape function at the line edges. Our results agree with the experimental data of F. W. Taylor. The estimated increase in surface temperature does not reach the boiling point of water even for CO2 concentrations thousands of times larger than the present concentrations. Higher energy (>666 cm-1) CO2 bands and/or an increase in atmospheric H2O may, however, amplify the greenhouse effect.

  15. Simulation and Observation of Global Atmospheric CO2 from 2009-2010

    NASA Astrophysics Data System (ADS)

    Denning, A.; O'Dell, C. W.; Baker, D. F.; Parazoo, N.; McKeown, R.; Baker, I. T.; Kawa, S. R.; Doney, S. C.

    2011-12-01

    We compare global variations in atmospheric CO2 concentrations using a comprehensive model of surface carbon cycling and atmospheric transport to retrievals of column CO2 mole fraction from near-infrared spectroscopy from the GOSAT mission. Surface carbon exchanges due to photosynthesis, respiration, decomposition, biomass burning, fossil fuel combustion, and air-sea gas exchange are computed every hour. These fluxes are used as input to a global atmospheric tranport model to obtain three-dimensional fields of CO2, which are sampled at the time and location of quality-screened GOSAT data retrieved by the Atmospheric Carbon Observations from Space (ACOS) team. The system is operated on a 0.5° x 0.67° grid (dx ~ 50 km), providing global mesoscale coverage, and has good skill at replicating diurnal, synoptic, and seasonal variations over vegetated land surfaces. It is driven by meteorological output from the NASA Goddard EOS Data Assimilation System. Surface weather from the system drives calculations of terrestrial ecosystem metabolism (radiation, precipitation, humidity, temperature) and air-sea gas exchange (wind), with other input data coming from satellite data products. Simulated spatial patterns and seasonal variations of simulated and observed column CO2 exhibit broad agreement, but some offsets in latitude and seasonal variations are noted. These are attributed to both model and satellite retrieval errors.

  16. Simulations of airglow variations induced by the CO2 increase and solar cycle variation from 1980 to 1991

    NASA Astrophysics Data System (ADS)

    Huang, Tai-Yin

    2016-09-01

    Airglow intensity and Volume Emission Rate (VER) variations induced by the increase of CO2 gas concentration and F10.7 variation (used as a proxy for the 11-year solar cycle variation) were investigated for the period from 1980 to 1991, encompassing a full solar cycle. Two airglow models are used to simulate the induced variations of O(1S) greenline, O2(0,1) atmospheric band , and OH(8,3) airglow for this study. The results show that both the airglow intensities and peak VERs correlate positively with the F10.7 solar cycle variation and display a small linear trend due to the increase of CO2 gas concentration. The solar-cycle induced airglow intensity variations show that O(1S) greenline has the largest variation (~26%) followed by the O2(0,1) atmospheric band (~23%) and then OH(8,3) airglow (~8%) over the 11 year timespan. The magnitudes of the induced airglow intensity variations by the increase of CO2 gas concentration are about an order of magnitude smaller than those by the F10.7 solar cycle variation. In general, the F10.7 solar cycle variation and CO2 increase do not seem to systematically alter the VER peak altitude of the airglow emissions, though the OH(8,3) VER peak altitude moves up slightly during the years when the F10.7 value falls under 100 SFU.

  17. Atmospheric CO2 Reconstructions from Polar Ice: What Do High-Resolution CO2 Records and δ13CO2 Analyses Tell Us about Past Climate and Global Carbon Cycle Processes?

    NASA Astrophysics Data System (ADS)

    Schmitt, J.; Eggleston, S.; Marcott, S. A.; Brook, E.; Chappellaz, J. A.; Köhler, P.; Joos, F.; Fischer, H.

    2014-12-01

    Today, a monitoring network measures atmospheric CO2 at high temporal and spatial resolution. Atmospheric transport models then calculate regional CO2 source and sink fluxes. Prior to this instrumental period, archived air, firn air, and air trapped in polar ice are the only direct atmospheric archives to reconstruct past CO2 changes. Only ice from Antarctica allows reliable CO2 measurements, either from classical ice cores or outcropping ice, while Greenland records are subject to in situ production. They provide high-resolution and high-precision CO2 reconstructions up to 800,000 years back in time. Ice core records have revealed an intimate connection between CO2 variations and major changes in Earth's climate and have fundamentally shaped the community's view of the global carbon cycle. Knowing the concentration of past atmospheric CO2 and the other greenhouse gases is key to provide the radiative forcing for climate simulations. Ice core reconstructions broadly fulfilled this task. On the contrary, we are far from a coherent understanding of the mechanisms driving these changes. Analyzing phase relations between CO2, other ice-core derived species, and proxies from marine sediment cores allow for the identification of factors likely responsible for the observed CO2 changes. Specifically, the strength of the Atlantic overturning circulation and Southern Ocean upwelling are thought to be key players. However, the observed CO2 changes cannot uniquely be related to a specific process. Here, stable carbon isotope analysis on CO2 extracted from ice provides additional constraints as any process leads to isotope fractionation of the reservoir. Analytical progress during the last decade affords us with a growing data set on this long-awaited parameter. This presentation provides a state-of-the-art overview on ice-based CO2 and its carbon isotopic signature focusing both on the long-term orbital changes as well as rapid changes documented during the last deglaciation.

  18. Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2.

    PubMed

    Morgan, J A; Pataki, D E; Körner, C; Clark, H; Del Grosso, S J; Grünzweig, J M; Knapp, A K; Mosier, A R; Newton, P C D; Niklaus, P A; Nippert, J B; Nowak, R S; Parton, W J; Polley, H W; Shaw, M R

    2004-06-01

    Atmospheric CO2 enrichment may stimulate plant growth directly through (1) enhanced photosynthesis or indirectly, through (2) reduced plant water consumption and hence slower soil moisture depletion, or the combination of both. Herein we describe gas exchange, plant biomass and species responses of five native or semi-native temperate and Mediterranean grasslands and three semi-arid systems to CO2 enrichment, with an emphasis on water relations. Increasing CO2 led to decreased leaf conductance for water vapor, improved plant water status, altered seasonal evapotranspiration dynamics, and in most cases, periodic increases in soil water content. The extent, timing and duration of these responses varied among ecosystems, species and years. Across the grasslands of the Kansas tallgrass prairie, Colorado shortgrass steppe and Swiss calcareous grassland, increases in aboveground biomass from CO2 enrichment were relatively greater in dry years. In contrast, CO2-induced aboveground biomass increases in the Texas C3/C4 grassland and the New Zealand pasture seemed little or only marginally influenced by yearly variation in soil water, while plant growth in the Mojave Desert was stimulated by CO2 in a relatively wet year. Mediterranean grasslands sometimes failed to respond to CO2-related increased late-season water, whereas semiarid Negev grassland assemblages profited. Vegetative and reproductive responses to CO2 were highly varied among species and ecosystems, and did not generally follow any predictable pattern in regard to functional groups. Results suggest that the indirect effects of CO2 on plant and soil water relations may contribute substantially to experimentally induced CO2-effects, and also reflect local humidity conditions. For landscape scale predictions, this analysis calls for a clear distinction between biomass responses due to direct CO2 effects on photosynthesis and those indirect CO2 effects via soil moisture as documented here.

  19. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    When a bean leaf was sealed in a closed chamber under a lamp (Rooney, 1988), in two hours the atmospheric CO2 in the microcosm reached an isotopic steady state with a 13C abundance astonishingly similar to the global mean value of atmospheric CO2 at that time (-7.5‰ in the δ13C notation introduced below). Almost concurrently, another research group sealed a suspension of asparagus cells in a different type of microcosm in which within about two hours the atmospheric O2 reached an isotopic steady state with 18O enrichment relative to water in the microcosm that was, too, remarkably similar to the global-scale offset between atmospheric O2 and mean ocean water (21‰ versus 23.5‰ in the δ18O notation introduced below; Guy et al., 1987). These classic experiments capture some of the foundations underlying the isotopic composition of atmospheric CO2 and O2. First, in both cases the biological system rapidly imposed a unique isotopic value on the microcosms' atmosphere via their massive photosynthetic and respiratory exchange of CO2 and O2. Second, in both cases the biological system acted on materials with isotopic signals previously formed by the global carbon and hydrological cycles. That is, the bean leaf introduced its previously formed organic matter (the source of the CO2 respired into microcosm's atmosphere), and the asparagus cells were introduced complete with local tap water (from which photosynthesis released molecular oxygen). Therefore, while the isotopic composition of the biological system used was slave to long-term processes, intense metabolic processes centered on few specific enzymes (Yakir, 2002) dictated the short-term atmospheric composition.In a similar vein, on geological timescales of millions of years, the atmosphere and its isotopic composition are integral parts of essentially a single dynamic ocean-atmosphere-biosphere system. This dynamic system exchanges material, such as carbon and oxygen, with the sediments and the lithosphere via

  20. Changes in atmospheric CO2 - Influence of the marine biota at high latitude

    NASA Technical Reports Server (NTRS)

    Knox, F.; Mcelroy, M. B.

    1984-01-01

    Approximately half of the nitrogen and phosphorus entering deep waters of the contemporary ocean are transported from the surface in inorganic form as preformed nutrients. A simple model for ocean chemistry is presented and shown to account for the present level of atmospheric CO2. Fluctuations in preformed nutrients, modulated by changes in insolation and circulation at high latitudes, can result in significant variations in CO2. It is suggested that these changes may account for the apparent control on climate exercised by secular variations in the orbital parameters of the earth.

  1. A joint data assimilation system (Tan-Tracker) to simultaneously estimate surface CO2 fluxes and 3-D atmospheric CO2 concentrations from observations

    NASA Astrophysics Data System (ADS)

    Tian, X.; Xie, Z.; Liu, Y.; Cai, Z.; Fu, Y.; Zhang, H.; Feng, L.

    2014-12-01

    We have developed a novel framework ("Tan-Tracker") for assimilating observations of atmospheric CO2 concentrations, based on the POD-based (proper orthogonal decomposition) ensemble four-dimensional variational data assimilation method (PODEn4DVar). The high flexibility and the high computational efficiency of the PODEn4DVar approach allow us to include both the atmospheric CO2 concentrations and the surface CO2 fluxes as part of the large state vector to be simultaneously estimated from assimilation of atmospheric CO2 observations. Compared to most modern top-down flux inversion approaches, where only surface fluxes are considered as control variables, one major advantage of our joint data assimilation system is that, in principle, no assumption on perfect transport models is needed. In addition, the possibility for Tan-Tracker to use a complete dynamic model to consistently describe the time evolution of CO2 surface fluxes (CFs) and the atmospheric CO2 concentrations represents a better use of observation information for recycling the analyses at each assimilation step in order to improve the forecasts for the following assimilations. An experimental Tan-Tracker system has been built based on a complete augmented dynamical model, where (1) the surface atmosphere CO2 exchanges are prescribed by using a persistent forecasting model for the scaling factors of the first-guess net CO2 surface fluxes and (2) the atmospheric CO2 transport is simulated by using the GEOS-Chem three-dimensional global chemistry transport model. Observing system simulation experiments (OSSEs) for assimilating synthetic in situ observations of surface CO2 concentrations are carefully designed to evaluate the effectiveness of the Tan-Tracker system. In particular, detailed comparisons are made with its simplified version (referred to as TT-S) with only CFs taken as the prognostic variables. It is found that our Tan-Tracker system is capable of outperforming TT-S with higher assimilation

  2. Lidar Observations of Atmospheric CO2 Column During 2014 Summer Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrison, F. Wallace; Fan, Tai-Fang

    2015-01-01

    Advanced knowledge in atmospheric CO2 is critical in reducing large uncertainties in predictions of the Earth' future climate. Thus, Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) from space was recommended by the U.S. National Research Council to NASA. As part of the preparation for the ASCENDS mission, NASA Langley Research Center (LaRC) and Exelis, Inc. have been collaborating in development and demonstration of the Intensity-Modulated Continuous-Wave (IM-CW) lidar approach for measuring atmospheric CO2 column from space. Airborne laser absorption lidars such as the Multi-Functional Fiber Laser Lidar (MFLL) and ASCENDS CarbonHawk Experiment Simulator (ACES) operating in the 1.57 micron CO2 absorption band have been developed and tested to obtain precise atmospheric CO2 column measurements using integrated path differential absorption technique and to evaluate the potential of the space ASCENDS mission. This presentation reports the results of our lidar atmospheric CO2 column measurements from 2014 summer flight campaign. Analysis shows that for the 27 Aug OCO-2 under flight over northern California forest regions, significant variations of CO2 column approximately 2 ppm) in the lower troposphere have been observed, which may be a challenge for space measurements owing to complicated topographic condition, heterogeneity of surface reflection and difference in vegetation evapotranspiration. Compared to the observed 2011 summer CO2 drawdown (about 8 ppm) over mid-west, 2014 summer drawdown in the same region measured was much weak (approximately 3 ppm). The observed drawdown difference could be the results of the changes in both meteorological states and the phases of growing seasons. Individual lidar CO2 column measurements of 0.1-s integration were within 1-2 ppm of the CO2 estimates obtained from on-board in-situ sensors. For weak surface reflection conditions such as ocean surfaces, the 1- s integrated signal-to-noise ratio (SNR) of

  3. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming.

    PubMed

    Finlay, Kerri; Vogt, Richard J; Bogard, Matthew J; Wissel, Björn; Tutolo, Benjamin M; Simpson, Gavin L; Leavitt, Peter R

    2015-03-12

    Boreal lakes are biogeochemical hotspots that alter carbon fluxes by sequestering particulate organic carbon in sediments and by oxidizing terrestrial dissolved organic matter to carbon dioxide (CO2) or methane through microbial processes. At present, such dilute lakes release ∼1.4 petagrams of carbon annually to the atmosphere, and this carbon efflux may increase in the future in response to elevated temperatures and increased hydrological delivery of mineralizable dissolved organic matter to lakes. Much less is known about the potential effects of climate changes on carbon fluxes from carbonate-rich hardwater and saline lakes that account for about 20 per cent of inland water surface area. Here we show that atmospheric warming may reduce CO2 emissions from hardwater lakes. We analyse decadal records of meteorological variability, CO2 fluxes and water chemistry to investigate the processes affecting variations in pH and carbon exchange in hydrologically diverse lakes of central North America. We find that the lakes have shifted progressively from being substantial CO2 sources in the mid-1990s to sequestering CO2 by 2010, with a steady increase in annual mean pH. We attribute the observed changes in pH and CO2 uptake to an atmospheric-warming-induced decline in ice cover in spring that decreases CO2 accumulation under ice, increases spring and summer pH, and enhances the chemical uptake of CO2 in hardwater lakes. Our study suggests that rising temperatures do not invariably increase CO2 emissions from aquatic ecosystems.

  4. Modeling The Anthropogenic CO2 Footprint in Europe Using a High Resolution Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Gruber, Nicolas; Brunner, Dominik

    2015-04-01

    The localized nature of most fossil fuel emission sources leaves a distinct footprint on atmospheric CO2 concentrations, yet to date, most studies have used relatively coarse atmospheric transport models to simulate this footprint, causing an excess amount of spatial smoothing. In addition, most studies have considered only monthly variations in emissions, neglecting their substantial diurnal and weekly fluctuations. With the fossil fuel emission fluxes dominating the carbon balance in Europe and many other industrialized countries, it is paramount to simulate the fossil fuel footprint in atmospheric CO2 accurately in time and space in order to discern the footprint of the terrestrial biosphere. Furthermore, a good understanding of the fossil fuel footprint also provides the opportunity to monitor and verify any change in fossil fuel emission. We use here a high resolution (7 km) atmospheric model setup for central Europe based on the operational weather forecast model COSMO and simulate the atmospheric CO2 concentrations separately for 5 fossil fuel emission sectors (i.e., power generation, heating, transport, industrial processes, and rest), and for 10 different country-based regions. The emissions were based on high-resolution emission inventory data (EDGAR(10km) and MeteoTest(500m)), to which we have added detailed time functions for each process and country. The total anthropogenic CO2 footprint compares well with observational estimates based on radiocarbon (C14) and CO for a number of sites across Europe, providing confidence in the emission inventory and atmospheric transport. Despite relatively rapid atmospheric mixing, the fossil fuel footprint shows strong annual mean structures reflecting the point-source nature of most emissions. Among all the processes, the emissions from power plants dominates the fossil fuel footprint, followed by industry, while traffic emissions are less distinct, largely owing to their spatially more distributed nature. However

  5. Implications of high amplitude atmospheric CO2 fluctuations on past millennium climate change

    NASA Astrophysics Data System (ADS)

    van Hoof, Thomas; Kouwenberg, Lenny; Wagner-Cremer, Friederike; Visscher, Henk

    2010-05-01

    Stomatal frequency analysis of leaves of land plants preserved in peat and lake deposits can provide a proxy record of pre-industrial atmospheric CO2 concentration complementary to measurements in Antarctic ice cores. Stomatal frequency based CO2 trends from the USA and NW European support the presence of significant CO2 variability during the first half of the last millennium (Kouwenberg et al., 2005; Wagner et al., 2004; van Hoof et al., 2008). The timing of the most significant perturbation in the stomata records (1200 AD) is in agreement with an observed CO2 fluctuation in the D47 Antarctic ice-core record (Barnola et al., 1995; van Hoof et al., 2005). The amplitude of the stomatal frequency based CO2 changes (> 34ppmv) exceeds the maximum amplitude of CO2 variability in the D47 ice core (< 10 ppmv). A modelling experiment taking into account firn-densification based smoothing processes in the D47 ice core proved, however, that the amplitude difference between the stomata record and the D47 ice-core can be explained by natural smoothing processes in the ice (van Hoof et al., 2005). This observation gives credence to the existence of high-amplitude CO2 fluctuations during the last millennium and suggests that high resolution ice core CO2 records should be regarded as a smoothed representation of the atmospheric CO2 signal. In the present study, potential marine and terrestrial sources and sinks associated with the observed atmospheric CO2 perturbation will be discussed. The magnitude of the observed CO2 variability implies that inferred changes in CO2 radiative forcing are of a similar magnitude as variations ascribed to other forcing mechanisms (e.g. solar forcing and volcanism), therefore challenging the IPCC concept of CO2 as an insignificant preindustrial climate forcing factor. References Barnola J.M., M. Anklin, J. Porcheron, D. Raynaud, J. Schwander and B. Stauffer 1995. CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice

  6. Inclusion of CO2 fluxes in a coupled mesoscale land surface and atmospheric model

    NASA Astrophysics Data System (ADS)

    Uebel, M.; Shrestha, P.; Sulis, M.; Bott, A.

    2012-12-01

    An essential part of numerical weather prediction models is the accurate simulation of the interaction of the land surface with the lower atmosphere. Thus, a detailed knowledge of the land surface characteristics is an inevitable precondition for a successful numerical weather forecast. Here, we present a fully coupled atmospheric model system that comprehensively simulates the exchange processes between the soil, the vegetation and the atmosphere in terms of water, carbon dioxide (CO2), heat and momentum fluxes. The model system couples the Community Land Model (CLM) to the non-hydrostatic weather prediction model COSMO of the German Meteorological Service. Field measurements on the regional scale indicate distinct spatio-temporal heterogeneities of atmospheric CO2 concentrations. This variable atmospheric CO2 partial pressure induces a direct response of the stomatal resistance of the plants resulting in a modified plant transpiration. This effect has a noticeable influence on the moisture and heat fluxes at the land surface which in turn may have a strong impact on the time evolution of the atmospheric planetary boundary layer (PBL). Since the evapotranspiration of plants is strongly controlled by the atmospheric humidity and CO2 concentration, for a consistent modeling of latent and sensible heat fluxes at the land surface a detailed treatment of the exchange of CO2 between the canopy and the PBL is of particular importance. To account for these effects, as a first step we implemented CO2 in the COSMO model as a passive tracer so that the spatial and temporal variations of the atmospheric CO2 concentration as caused by advective, turbulent and convective processes can now be simulated with reasonable accuracy. In the offline version of CLM photosynthesis and plant transpiration are calculated by utilizing a constant value of the atmospheric CO2 partial pressure. In contrast to this treatment, the coupled model system COSMO-CLM considers the varying atmospheric

  7. [Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].

    PubMed

    He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing

    2009-01-01

    With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.

  8. An Assessment of Biases in Satellite CO2 Measurements Using Atmospheric Inversion

    NASA Astrophysics Data System (ADS)

    Baker, D. F.; O'Dell, C.

    2014-12-01

    Column-integrated CO2 mixing ratio measurements from satellite should provide a new view of the global carbon cycle, thanks to their ability to measure with great coverage in places that are poorly sampled by the in situ network (e.g. the tropics) using a new approach (full-column averages rather than point measurements). For this new insight to be useful, however, systematic errors in these data must first be identified and removed. Here we use atmospheric transport modeling to perform a global comparison of satellite CO2 measurements to higher-quality reference data (in situ data from flasks and aircraft, column CO2 data from the upward-looking spectrometers of the TCCON network) to assess systematic errors in the satellite data. This broad comparison is meant to complement the more direct validation done at specific TCCON sites. A suite of 3-D CO2 mixing ratio histories are generated across 2009-2014 using combinations of several different a priori fossil fuel, land biospheric, and oceanic CO2 fluxes run through the PCTM off-line atmospheric transport model driven by MERRA 1°x1.25° winds and vertical mixing parameters. Each member of the suite is forced to agree with in situ CO2 measurements (flask, tall tower, and routine light aircraft profiles) through use of a variational carbon data assimilation (4Dvar) system. The optimized 3-D CO2 fields are then compared to ACOS column CO2 retrievals of GOSAT data, with the differences being fit to different independent variables (aerosol optical depth, atmospheric path length, surface albedo, etc.) to derive a GOSAT bias correction. ACOS-GOSAT CO2 retrievals, corrected by this scheme, as well as with the "official" ACOS bias correction, will then be assimilated using the same 4Dvar approach. The benefit of the GOSAT data with and without the bias corrections will then be assessed by comparing the optimized CO2 fields to independent data (TCCON column data, as well as aircraft data left out of the in situ inversions

  9. Development of a mobile and high-precision atmospheric CO2 monitoring station

    NASA Astrophysics Data System (ADS)

    Molnár, M.; Haszpra, L.; Major, I.; Svingor, É.; Veres, M.

    2009-04-01

    Nowadays one of the most burning questions for the science is the rate and the reasons of the recent climate change. Greenhouse gases (GHG), mainly CO2 and CH4 in the atmosphere could affect the climate of our planet. However, the relation between the amount of atmospheric GHG and the climate is complex, full with interactions and feedbacks partly poorly known even by now. The only way to understand the processes, to trace the changes, to develop and validate mathematical models for forecasts is the extensive, high precision, continuous monitoring of the atmosphere. Fossil fuel CO2 emissions are a major component of the European carbon budget. Separation of the fossil fuel signal from the natural biogenic one in the atmosphere is, therefore, a crucial task for quantifying exchange flux of the continental biosphere through atmospheric observations and inverse modelling. An independent method to estimate trace gas emissions is the top-down approach, using atmospheric CO2 concentration measurements combined with simultaneous radiocarbon (14C) observations. As adding fossil fuel CO2 to the atmosphere, therefore, leads not only to an increase in the CO2 content of the atmosphere but also to a decrease in the 14C/12C ratio in atmospheric CO2. The ATOMKI has more than two decade long experience in atmospheric 14CO2 monitoring. As a part of an ongoing research project being carried out in Hungary to investigate the amount and temporal and spatial variations of fossil fuel CO2 in the near surface atmosphere we developed a mobile and high-precision atmospheric CO2 monitoring station. We describe the layout and the operation of the measuring system which is designed for the continuous, unattended monitoring of CO2 mixing ratio in the near surface atmosphere based on an Ultramat 6F (Siemens) infrared gas analyser. In the station one atmospheric 14CO2 sampling unit is also installed which is developed and widely used since more than one decade by ATOMKI. Mixing ratio of CO2 is

  10. Deep Sea Memory of High Atmospheric CO2 Concentration

    NASA Astrophysics Data System (ADS)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-04-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a powerful measure to mitigate global warming and ocean acidification. Planetary-scale interventions of that kind are often portrayed as "last-resort strategies", which need to weigh in if humankind keeps on enhancing the climate-system stock of CO2. Yet even if CDR could restore atmospheric CO2 to substantially lower concentrations, would it really qualify to undo the critical impacts of past emissions? In the study presented here, we employed an Earth System Model of Intermediate Complexity (EMIC) to investigate how CDR might erase the emissions legacy in the marine environment, focusing on pH, temperature and dissolved oxygen. Against a background of a world following the RCP8.5 emissions path ("business-as-usual") for centuries, we simulated the effects of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, starting in 2250. We found that the 5 GtC yr-1 scheme would have only minor ameliorative influence on the oceans, even after several centuries of application. By way of contrast, the extreme 25 GtC yr-1 scheme eventually leads to tangible improvements. However, even with such an aggressive measure, past CO2 emissions leave a substantial legacy in the marine environment within the simulated period (i.e., until 2700). In summary, our study demonstrates that anthropogenic alterations of the oceans, caused by continued business-as-usual emissions, may not be reversed on a multi-centennial time scale by the most aspirational geoengineering measures. We also found that a transition from the RCP8.5 state to the state of a strong mitigation scenario (RCP2.6) is not possible, even under the assumption of extreme extraction rates (25 GtC yr-1). This is explicitly demonstrated by simulating additional scenarios, starting CDR already in 2150 and operating until the atmospheric CO2 concentration reaches 280 ppm and 180 ppm, respectively. The simulated

  11. Weathering of olivine under CO2 atmosphere: A martian perspective

    NASA Astrophysics Data System (ADS)

    Dehouck, E.; Gaudin, A.; Mangold, N.; Lajaunie, L.; Dauzères, A.; Grauby, O.; Le Menn, E.

    2014-06-01

    Recent analyses from the Curiosity rover at Yellowknife Bay (Gale crater, Mars) show sedimentary rocks deposited in a lacustrine environment and containing smectite clays thought to derive from the alteration of olivine. However, little is known about the weathering processes of olivine under early martian conditions, and about the stability of smectite clays in particular. Here, we present a 3-month experiment investigating the weathering of forsteritic olivine powders (Fo90) under a dense CO2 atmosphere, and under present-day terrestrial conditions for comparison. The experiment also evaluates the potential effects of hydrogen peroxide (H2O2), as a representation of the highly oxidizing compounds produced by photochemical reactions throughout martian history. The weathered samples were characterized by means of near-infrared spectroscopy (NIR), X-ray diffraction (XRD), transmission electron microscopy with energy dispersive X-ray spectrometry (TEM-EDX), Mössbauer spectroscopy and thermogravimetry. The results show that a Mg-rich smectite phase formed from the weathering of olivine under CO2 conditions, although in lower abundance than under terrestrial conditions. The main secondary phase formed under CO2 turns out to be a silica-rich phase (possibly acting as a “passivating” layer) with a non-diagnostic near-infrared spectral signature. The use of H2O2 highlights the critical importance of both the redox conditions and Fe content of the initial olivine on the nature of the secondary phases.

  12. The Stable Isotopic Composition of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Yakir, D.

    2003-12-01

    When a bean leaf was sealed in a closed chamber under a lamp (Rooney, 1988), in two hours the atmospheric CO2 in the microcosm reached an isotopic steady state with a 13C abundance astonishingly similar to the global mean value of atmospheric CO2 at that time (-7.5‰ in the δ13C notation introduced below). Almost concurrently, another research group sealed a suspension of asparagus cells in a different type of microcosm in which within about two hours the atmospheric O2 reached an isotopic steady state with 18O enrichment relative to water in the microcosm that was, too, remarkably similar to the global-scale offset between atmospheric O2 and mean ocean water (21‰ versus 23.5‰ in the δ18O notation introduced below; Guy et al., 1987). These classic experiments capture some of the foundations underlying the isotopic composition of atmospheric CO2 and O2. First, in both cases the biological system rapidly imposed a unique isotopic value on the microcosms' atmosphere via their massive photosynthetic and respiratory exchange of CO2 and O2. Second, in both cases the biological system acted on materials with isotopic signals previously formed by the global carbon and hydrological cycles. That is, the bean leaf introduced its previously formed organic matter (the source of the CO2 respired into microcosm's atmosphere), and the asparagus cells were introduced complete with local tap water (from which photosynthesis released molecular oxygen). Therefore, while the isotopic composition of the biological system used was slave to long-term processes, intense metabolic processes centered on few specific enzymes (Yakir, 2002) dictated the short-term atmospheric composition.In a similar vein, on geological timescales of millions of years, the atmosphere and its isotopic composition are integral parts of essentially a single dynamic ocean-atmosphere-biosphere system. This dynamic system exchanges material, such as carbon and oxygen, with the sediments and the lithosphere via

  13. Evaluation of the sinks and sources of atmospheric CO2 by artificial upwelling.

    PubMed

    Pan, Yiwen; Fan, Wei; Huang, Ting-Hsuan; Wang, Shu-Lun; Chen, Chen-Tung Arthur

    2015-04-01

    Artificial upwelling is considered a promising way to reduce the accumulation of anthropogenic carbon dioxide in the atmosphere. This practice could transport nutrient-rich deep water to the euphotic zone, enhance phytoplankton growth and consequently increase organic carbon exportation to the deep ocean via the biological pump. However, only a few studies quantitatively assess changes in oceanic CO2 uptake resulting from artificial upwelling. This article uses a simulation to examine the effect of hypothetical artificial upwelling-induced variations of CO2 fugacity in seawater (fCO2) using observed carbon and nutrient data from 14 stations, ranging from 21 to 43°N, in the West Philippine Sea (WPS), the East China Sea (ECS) and the Sea of Japan. Calculations are based on two basic assumptions: First, a near-field mixing of a nutrient-rich deep-ocean water plume in a stratified ocean environment is assumed to form given the presence of an artificial upwelling devise with appropriate technical parameters. Second, it is assumed that photosynthesis of marine phytoplankton could deplete all available nutrients following the stoichiometry of the modified Redfield ratio C/H/O/N/S/P=103.1/181.7/93.4/11.7/2.1/1. Results suggest artificial upwelling has significant effects on regional changes in sea-air differences (ΔfCO2sea-air) and the carbon sequestration potential (ΔfCO2mixed-amb). Large variations of ΔfCO2sea-air and ΔfCO2mixed-amb are shown to be associated with different regions, seasons and technical parameters of the artificial upwelling device. With proper design, it is possible to reverse the contribution of artificial upwelling from a strong CO2 source to sink. Thus, artificial upwelling has the potential to succeed as a geoengineering technique to sequester anthropogenic CO2, with appropriate technical parameters in the right region and season.

  14. Atmospheric observations inform CO2 flux responses to enviroclimatic drivers

    NASA Astrophysics Data System (ADS)

    Fang, Yuanyuan; Michalak, Anna M.

    2015-05-01

    Understanding the response of the terrestrial biospheric carbon cycle to variability in enviroclimatic drivers is critical for predicting climate-carbon interactions. Here we apply an atmospheric-inversion-based framework to assess the relationships between the spatiotemporal patterns of net ecosystem CO2 exchange (NEE) and those of enviroclimatic drivers. We show that those relationships can be directly observed at 1° × 1° 3-hourly resolution from atmospheric CO2 measurements for four of seven large biomes in North America, namely, (i) boreal forests and taiga; (ii) temperate coniferous forests; (iii) temperate grasslands, savannas, and shrublands; and (iv) temperate broadleaf and mixed forests. We find that shortwave radiation plays a dominant role during the growing season over all four biomes. Specific humidity and precipitation also play key roles and are associated with decreased CO2 uptake (or increased release). The explanatory power of specific humidity is especially strong during transition seasons, while that of precipitation appears during both the growing and dormant seasons. We further find that the ability of four prototypical terrestrial biospheric models (TBMs) to represent the spatiotemporal variability of NEE improves as the influence of radiation becomes more dominant, implying that TBMs have a better skill in representing the impact of radiation relative to other drivers. Even so, we show that TBMs underestimate the strength of the relationship to radiation and do not fully capture its seasonality. Furthermore, the TBMs appear to misrepresent the relationship to precipitation and specific humidity at the examined scales, with relationships that are not consistent in terms of sign, seasonality, or significance relative to observations. More broadly, we demonstrate the feasibility of directly probing relationships between NEE and enviroclimatic drivers at scales with no direct measurements of NEE, opening the door to the study of emergent

  15. Variations in Mid-Ocean Ridge CO2 Emissions Driven By Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Burley, J. M.; Katz, R. F.; Huybers, P. J.

    2014-12-01

    Glacial cycles impact continental volcanism through pressure changes associated with growth and retreat of ice sheets [e.g. Iceland - Jull, 1996]. Similarly, changes in sea level accompanying glacial cycles modulate mid-ocean ridge (MOR) volcanism by pressure changes and their influence on melt production [Crowley 2014; Lund 2011; Huybers 2009]. CO2 transport through the upper mantle is sensitive to mantle melting because CO2 partitions completely into the melt phase when present. Melt then transports CO2 to the ridge axis, where it enters the climate system. We present models of CO2 transport that investigate how sea level modulates the rate of CO2 emission from MORs. The total carbon reservoir in the mantle is circa 10^7 GtC [Dasgupta 2010], orders of magnitude more than the oceans (40,000 GtC) and atmosphere (600 GtC). Changes in the rate of CO2 emission from the solid Earth therefore have the potential to significantly affect the surface carbon system. We have developed an analytical model of CO2 transport from the depth of first silicate melting (~60km) to the ridge axis, enabling a calculation of CO2 emission rate for a generic section of MOR. The model assumes homogeneous mantle and energy-conserving melt production from a simplified 2-component mantle; CO2 is taken as a perfectly incompatible trace element. Pressure variations modulate the depth of initial silicate melting and hence the flux of CO2 into the melting regime. The model can also be applied to any species that is strongly partitioned into the melt (eg. Uranium, Thorium, Niobium, Barium, Rubidium). Results suggest that changing sea level over the past Myr could have altered the CO2 emissions from MOR by ~8%. The magnitude of variation in emissions is sensitive to the mantle permeability, the ridge spreading rate, and the rate of change of sea level. The travel time of melt through the mantle causes a delay between sea-level change and the CO2 response of the MOR. This delay is sensitive to plate

  16. Enhanced Volcanic Degassing Decoupled Atmospheric CO2 and Temperature During the Last Interglacial-Glacial Transition

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Knorr, G.; Hasenclever, J.; Köhler, P.; Morgan, J. P.; Garofalo, K.; Barker, S.; Lohmann, G.; Hall, I. R.

    2015-12-01

    Evidence from the joint interpretation of proxy data as well as geodynamical and biogeochemical modeling results point to complex interactions between sea level drawdown, volcanic degassing, and atmospheric CO2 that hampered the climate system's decent into the last ice age. Ice core data shows that atmospheric CO2 dropped abruptly into glacial Marine Isotope Stage (MIS) 4 at ~71 ka, while Antarctic temperatures display a more gradual decline between ~85 ka to ~71 ka across the MIS 5/4 transition. Based on 2D and 3D geodynamical simulations, we show that a ~60-100 m sea level drop associated with the MIS 5/4 transition led to a significant increase in magma and possibly CO2 flux at mid-ocean ridges (MOR) and oceanic hotspot volcanoes. The MOR signal is assessed with 2D thermomechanical models that account for mantle melting and resolve the flux of incompatible carbon dioxide. These models have been run at different spreading rates and integrated with the global distribution of opening rates to compute global variations in magma and CO2 flux across the MIS 5/4 transition. 3D plume models have been used to quantify the impact of a dropping sea level on oceanic hotspot melting and CO2 release. Here a wide range of simulations with differing plume fluxes, lithospheric thicknesses as well as speeds, and plume excess temperatures have been integrated with data from ~40 hotspots in order to compute a global signal. Biogeochemical carbon cycle modeling shows that the predicted increase in volcanic emissions is likely to have raised atmospheric CO2 by up to 15 ppmv, sufficient to explain the bulk of the decoupling between temperature and atmospheric CO2 during the global change to pronounced glacial conditions across the MIS 5/4 transition.

  17. The paper trail of the 13C of atmospheric CO2 since the industrial revolution period

    NASA Astrophysics Data System (ADS)

    Yakir, Dan

    2011-07-01

    The 13C concentration in atmospheric CO2 has been declining over the past 150 years as large quantities of 13C-depleted CO2 from fossil fuel burning are added to the atmosphere. Deforestation and other land use changes have also contributed to the trend. Looking at the 13C variations in the atmosphere and in annual growth rings of trees allows us to estimate CO2 uptake by land plants and the ocean, and assess the response of plants to climate. Here I show that the effects of the declining 13C trend in atmospheric CO2 are recorded in the isotopic composition of paper used in the printing industry, which provides a well-organized archive and integrated material derived from trees' cellulose. 13C analyses of paper from two European and two American publications showed, on average, a - 1.65 ± 1.00‰ trend between 1880 and 2000, compared with - 1.45 and - 1.57‰ for air and tree-ring analyses, respectively. The greater decrease in plant-derived 13C in the paper we tested than in the air is consistent with predicted global-scale increases in plant intrinsic water-use efficiency over the 20th century. Distinct deviations from the atmospheric trend were observed in both European and American publications immediately following the World War II period.

  18. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure

  19. CO2 flux estimation accuracy evaluation of Global and Regional atmospheric CO2 mission concepts

    NASA Astrophysics Data System (ADS)

    Lee, M.; Miller, C.; Weidner, R. J.; Duren, R. M.; Sander, S.; Eldering, A.

    2012-12-01

    We developed an observing system simulation experiment (OSSE) framework to evaluate mission-science-return quantitatively as a function of instrument payload, observation frequency, orbit, and sampling strategy for space-based remote sensing. The OSSE framework integrates GEOSChem and its adjoint system to perform forward/inverse modeling of the simulated measurements. During 2011-2012, we extended the OSSE framework to evaluate CO2 mission concepts in collaboration with the NASA's carbon monitoring system (CMS) flux pilot project team. In this paper, we employ the OSSE framework to analyze the science impact of multiple, simultaneous space-based column CO2 observations from simulated combinations of GOSAT, OCO-2, OCO-3, and a geo-stationary mission concept (GEOFTS). The OSSE process involved generating a CO2 concentration forecast, sampling the CO2 field at the appropriate time and location for each satellite sensor, incorporating realistic cloud climatologies to generate accurate clear-sky viewing statistics, retrieving CO2 profile simulaton in the presence of measurement noise, and finally assimilating the simulated column CO2 retrievals to estimate CO2 fluxes and flux uncertainty reductions. The OSSE process was applied over one-year-long mission period (2009/Jan - 2009/Dec) and the CO2 flux estimation error was analyzed to compute the probability density function (PDF) of CO2 flux estimation-error-reduction. The global OSSEs were performed in 2deg x 2.5 deg spatial resolution with the monthly-average CO2 flux estimation-error-reduction as the science-impact metric. Regional OSSEs were performed in 0.5 deg by 0.666 deg over N. America and the weekly average of the CO2 flux estimation-error-reduction was employed as the science-impact metric. We discuss the results and the projected performance of planned and potential space-based CO2 observing systems.

  20. Isotopic disequilibrium during uptake of atmospheric CO2 into mine process waters: implications for CO2 sequestration.

    PubMed

    Wilson, Siobhan A; Barker, Shaun L L; Dipple, Gregory M; Atudorei, Viorel

    2010-12-15

    Dypingite, a hydrated Mg-carbonate mineral, was precipitated from high-pH, high salinity solutions to investigate controls on carbon fixation and to identify the isotopic characteristics of mineral sequestration in mine tailings. δ(13)C values of dissolved inorganic carbon content and synthetic dypingite are significantly more negative than those predicted for equilibrium exchange of CO(2) gas between the atmosphere and solution. The measured δ(13)C of aqueous carbonate species is consistent with a kinetic fractionation that results from a slow diffusion of atmospheric CO(2) into solution. During dypingite precipitation, dissolved inorganic carbon concentrations decrease and δ(13)C values become more negative, indicating that the rate of CO(2) uptake into solution was outpaced by the rate of carbon fixation within the precipitate. This implies that CO(2) gas uptake is rate-limiting to CO(2) fixation. δ(13)C of carbonate mineral precipitates in mine tailings and of DIC in mine process waters display similar (13)C-depletions that are inconsistent with equilibrium fractionation. Thus, the rate of carbon fixation in mine tailings may also be limited by supply of CO(2). Carbon sequestration could be accelerated by increasing the partial pressure of CO(2) in tailings ponds or by using chemicals that enhance the uptake of gaseous CO(2) into aqueous solution.

  1. A critique of Phanerozoic climatic models involving changes in the CO 2 content of the atmosphere

    NASA Astrophysics Data System (ADS)

    Boucot, A. J.; Gray, Jane

    2001-12-01

    planktonic and benthic taxa, and it is not safe to assume that these organisms were absent or of no potential significance in the pre-embryophytic, i.e. earlier Ordovician and well back into the Precambrian. Berner's models have met with a large measure of consensus about CO 2 balance during the Phanerozoic, about the role played by tracheophytes, and have been used to test or evaluate other data. After reviewing the biological and geological assumptions and estimates on which these Models are based, we conclude that they do not provide reliable information about atmospheric CO 2 composition through Phanerozoic time, particularly in the Early Phanerozoic. We compare many atmospheric CO 2 models, while considering the numerous proxies on which they are based and conclude that the competing models are inadequate for atmospheric CO 2 estimation. Many possibilities not considered in present models must either be included or eliminated based on reliable evidence. We suggest that assessing Phanerozoic climate/temperature based on the available geological/climatic proxies would appear to provide a more reliable method of estimating variations in CO 2, and hence atmospheric CO 2:O 2 balance, than most proxy constructs on which atmospheric models are presently based, because of the critical role postulated for atmospheric CO 2 in regulating Earth's surface temperature. We present our own Phanerozoic climate estimate, based on readily available geological/climatic data, for comparison with postulated coeval atmospheric CO 2 levels as a test of the postulated correlation.

  2. Agricultural green revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    SciTech Connect

    Zeng, Ning; Zhao, Fang; Collatz, George; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 256N and 606N and the high-latitude natural vegetation between 506N and 706 N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 percent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001–2010 than in 1961–1970

  3. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude.

    PubMed

    Zeng, Ning; Zhao, Fang; Collatz, George J; Kalnay, Eugenia; Salawitch, Ross J; West, Tristram O; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in

  4. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude

    NASA Astrophysics Data System (ADS)

    Zeng, Ning; Zhao, Fang; Collatz, George J.; Kalnay, Eugenia; Salawitch, Ross J.; West, Tristram O.; Guanter, Luis

    2014-11-01

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 +/- 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in 1961

  5. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude.

    PubMed

    Zeng, Ning; Zhao, Fang; Collatz, George J; Kalnay, Eugenia; Salawitch, Ross J; West, Tristram O; Guanter, Luis

    2014-11-20

    The atmospheric carbon dioxide (CO2) record displays a prominent seasonal cycle that arises mainly from changes in vegetation growth and the corresponding CO2 uptake during the boreal spring and summer growing seasons and CO2 release during the autumn and winter seasons. The CO2 seasonal amplitude has increased over the past five decades, suggesting an increase in Northern Hemisphere biospheric activity. It has been proposed that vegetation growth may have been stimulated by higher concentrations of CO2 as well as by warming in recent decades, but such mechanisms have been unable to explain the full range and magnitude of the observed increase in CO2 seasonal amplitude. Here we suggest that the intensification of agriculture (the Green Revolution, in which much greater crop yield per unit area was achieved by hybridization, irrigation and fertilization) during the past five decades is a driver of changes in the seasonal characteristics of the global carbon cycle. Our analysis of CO2 data and atmospheric inversions shows a robust 15 per cent long-term increase in CO2 seasonal amplitude from 1961 to 2010, punctuated by large decadal and interannual variations. Using a terrestrial carbon cycle model that takes into account high-yield cultivars, fertilizer use and irrigation, we find that the long-term increase in CO2 seasonal amplitude arises from two major regions: the mid-latitude cropland between 25° N and 60° N and the high-latitude natural vegetation between 50° N and 70° N. The long-term trend of seasonal amplitude increase is 0.311 ± 0.027 per cent per year, of which sensitivity experiments attribute 45, 29 and 26 per cent to land-use change, climate variability and change, and increased productivity due to CO2 fertilization, respectively. Vegetation growth was earlier by one to two weeks, as measured by the mid-point of vegetation carbon uptake, and took up 0.5 petagrams more carbon in July, the height of the growing season, during 2001-2010 than in

  6. The effect of atmospheric CO2 concentration on carbon isotope fractionation in C3 land plants

    NASA Astrophysics Data System (ADS)

    Schubert, Brian A.; Jahren, A. Hope

    2012-11-01

    Because atmospheric carbon dioxide is the ultimate source of all land-plant carbon, workers have suggested that pCO2 level may exert control over the amount of 13C incorporated into plant tissues. However, experiments growing plants under elevated pCO2 in both chamber and field settings, as well as meta-analyses of ecological and agricultural data, have yielded a wide range of estimates for the effect of pCO2 on the net isotopic discrimination (Δδ13Cp) between plant tissue (δ13Cp) and atmospheric CO2 (δ13CCO2). Because plant stomata respond sensitively to plant water status and simultaneously alter the concentration of pCO2 inside the plant (ci) relative to outside the plant (ca), any experiment that lacks environmental control over water availability across treatments could result in additional isotopic variation sufficient to mask or cancel the direct influence of pCO2 on Δδ13Cp. We present new data from plant growth chambers featuring enhanced dynamic stabilization of moisture availability and relative humidity, in addition to providing constant light, nutrient, δ13CCO2, and pCO2 level for up to four weeks of plant growth. Within these chambers, we grew a total of 191 C3 plants (128 Raphanus sativus plants and 63 Arabidopsis thaliana) across fifteen levels of pCO2 ranging from 370 to 4200 ppm. Three types of plant tissue were harvested and analyzed for carbon isotope value: above-ground tissues, below-ground tissues, and leaf-extracted nC31-alkanes. We observed strong hyperbolic correlations (R ⩾ 0.94) between the pCO2 level and Δδ13Cp for each type of plant tissue analyzed; furthermore the linear relationships previously suggested by experiments across small (10-350 ppm) changes in pCO2 (e.g., 300-310 ppm or 350-700 ppm) closely agree with the amount of fractionation per ppm increase in pCO2 calculated from our hyperbolic relationship. In this way, our work is consistent with, and provides a unifying relationship for, previous work on carbon isotopes

  7. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion. PMID:26509211

  8. CO2 Exsolution from CO2 Saturated Water: Core-Scale Experiments and Focus on Impacts of Pressure Variations.

    PubMed

    Xu, Ruina; Li, Rong; Ma, Jin; Jiang, Peixue

    2015-12-15

    For CO2 sequestration and utilization in the shallow reservoirs, reservoir pressure changes are due to the injection rate changing, a leakage event, and brine withdrawal for reservoir pressure balance. The amounts of exsolved CO2 which are influenced by the pressure reduction and the subsequent secondary imbibition process have a significant effect on the stability and capacity of CO2 sequestration and utilization. In this study, exsolution behavior of the CO2 has been studied experimentally using a core flooding system in combination with NMR/MRI equipment. Three series of pressure variation profiles, including depletion followed by imbibitions without or with repressurization and repetitive depletion and repressurization/imbibition cycles, were designed to investigate the exsolution responses for these complex pressure variation profiles. We found that the exsolved CO2 phase preferentially occupies the larger pores and exhibits a uniform spatial distribution. The mobility of CO2 is low during the imbibition process, and the residual trapping ratio is extraordinarily high. During the cyclic pressure variation process, the first cycle has the largest contribution to the amount of exsolved CO2. The low CO2 mobility implies a certain degree of self-sealing during a possible reservoir depletion.

  9. Response of atmospheric CO2 to the abrupt cooling event 8200 years ago

    NASA Astrophysics Data System (ADS)

    Ahn, J.; Brook, E.; Buizert, C.

    2013-12-01

    The abrupt cooling event 8200 years ago (8.2 ka event) is the most prominent centennial scale climate event during the Holocene and was likely caused by a reduction in the Atlantic meridional overturning circulation (AMOC). Atmospheric CO2 records for this event may help us understand climate-carbon cycle feedbacks under interglacial conditions, which are important for understanding future climate, but existing ice core records do not provide enough detail and natural smoothing of the CO2 time series by diffusion and gradual bubble close-off in the firn layer (unconsolidated snow layer in the top of ice sheets) limits their resolution. Studies of leaf stomata records suggest a CO2 decrease of up to ~25 ppm during the 8.2 ka event, but relatively large uncertainties in reconstructed CO2 levels from leaves and dating make firm conclusions difficult. Here we present a new CO2 record from the Siple Dome ice core, Antarctica, that covers 7.4-9.0 ka with 8- to 16-year resolution. The relatively high snow accumulation rate at Siple Dome results minimizes smoothing relative to other records and the timing of the 8.2 ka event is precisely constrained by a CH4 record from the same core. We observe a small, ~2 ppm, increase of atmospheric CO2 during the 8.2 ka event. The increase is not remarkable when compared to other centennial variations in the Holocene that are not linked to large temperature changes. Our results imply that the sensitivity of atmospheric CO2 to the primarily northern hemisphere cooling of the 8.2 ka event was limited.

  10. Sustained effects of atmospheric [CO2] and nitrogen availability on forest soil CO2 efflux.

    PubMed

    Oishi, A Christopher; Palmroth, Sari; Johnsen, Kurt H; McCarthy, Heather R; Oren, Ram

    2014-04-01

    Soil CO2 efflux (Fsoil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO2] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on Fsoil are less clear. Expanding on previous studies at the Duke Free-Air CO2 Enrichment (FACE) site, we quantified the effects of elevated [CO2] and N fertilization on Fsoil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient unfertilized plots, annual Fsoil increased under elevated [CO2] (ca. 17%) and decreased with N (ca. 21%). N fertilization under elevated [CO2] reduced Fsoil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity, but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Interannually, low soil water content decreased annual Fsoil from potential values - estimated based on temperature alone assuming nonlimiting soil water content - by ca. 0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO2]. Variability in soil N availability among plots accounted for the spatial variability in Fsoil , showing a decrease of ca. 114 g C m(-2) yr(-1) per 1 g m(-2) increase in soil N availability, with consistently higher Fsoil in elevated [CO2] plots ca. 127 g C per 100 ppm [CO2] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO2] and N fertilization on Fsoil in this stand are sustained beyond the early stages of stand development and

  11. Reservoir timescales for anthropogenic CO2 in the atmosphere

    PubMed

    O'Neill, B C; Gaffin, S R; Tubiello, F N; Oppenheimer, M

    1994-11-01

    Non-steady state timescales are complicated and their application to specific geophysical systems requires a common theoretical foundation. We first extend reservoir theory by quantifying the difference between turnover time and transit time (or residence time) for time-dependent systems under any mixing conditions. We explicitly demonstrate the errors which result from assuming these timescales are equal, which is only true at steady state. We also derive a new response function which allows the calculation of age distributions and timescales for well-mixed reservoirs away from steady state, and differentiate between timescales based on gross and net fluxes. These theoretical results are particularly important to tracer-calibrated "box models" currently used to study the carbon cycle, which usually approximate reservoirs as well-mixed. We then apply the results to the important case of anthropogenic CO2 in the atmosphere, since timescales describing its behavior are commonly used but ambiguously defined. All relevant timescales, including lifetime, transit time, and adjustment time, are precisely defined and calculated from data and models. Apparent discrepancies between the current, empirically determined turnover time of 30-60 years and longer model-derived estimates of expected lifetime and adjustment time are explained within this theoretical framework. We also discuss the results in light of policy issues related to global warming, in particular since any comparisons of the "lifetimes" of different greenhouse gases (CO2, CH4, N2O, CFC's etc.) must use a consistent definition to be meaningful. PMID:11541520

  12. Reservoir timescales for anthropogenic CO2 in the atmosphere

    PubMed

    O'Neill, B C; Gaffin, S R; Tubiello, F N; Oppenheimer, M

    1994-11-01

    Non-steady state timescales are complicated and their application to specific geophysical systems requires a common theoretical foundation. We first extend reservoir theory by quantifying the difference between turnover time and transit time (or residence time) for time-dependent systems under any mixing conditions. We explicitly demonstrate the errors which result from assuming these timescales are equal, which is only true at steady state. We also derive a new response function which allows the calculation of age distributions and timescales for well-mixed reservoirs away from steady state, and differentiate between timescales based on gross and net fluxes. These theoretical results are particularly important to tracer-calibrated "box models" currently used to study the carbon cycle, which usually approximate reservoirs as well-mixed. We then apply the results to the important case of anthropogenic CO2 in the atmosphere, since timescales describing its behavior are commonly used but ambiguously defined. All relevant timescales, including lifetime, transit time, and adjustment time, are precisely defined and calculated from data and models. Apparent discrepancies between the current, empirically determined turnover time of 30-60 years and longer model-derived estimates of expected lifetime and adjustment time are explained within this theoretical framework. We also discuss the results in light of policy issues related to global warming, in particular since any comparisons of the "lifetimes" of different greenhouse gases (CO2, CH4, N2O, CFC's etc.) must use a consistent definition to be meaningful.

  13. Marine biological controls on atmospheric CO2 and climate

    NASA Technical Reports Server (NTRS)

    Mcelroy, M. B.

    1983-01-01

    It is argued that the ocean is losing N gas faster than N is being returned to the ocean, and that replenishment of the N supply in the ocean usually occurs during ice ages. Available N from river and estruarine transport and from rainfall after formation by lightning are shown to be at a rate too low to compensate for the 10,000 yr oceanic lifetime of N. Ice sheets advance and transfer moraine N to the ocean, lower the sea levels, erode the ocean beds, promote greater biological productivity, and reduce CO2. Ice core samples have indicated a variability in the atmospheric N content that could be attributed to the ice age scenario.

  14. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko

    2016-10-01

    Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char. PMID:27403861

  15. Sugarcane vinasse CO2 gasification and release of ash-forming matters in CO2 and N2 atmospheres.

    PubMed

    Dirbeba, Meheretu Jaleta; Brink, Anders; DeMartini, Nikolai; Lindberg, Daniel; Hupa, Mikko

    2016-10-01

    Gasification of sugarcane vinasse in CO2 and the release of ash-forming matters in CO2 and N2 atmospheres were investigated using a differential scanning calorimetry and thermogravimetric analyzer (DSC-TGA) at temperatures between 600 and 800°C. The results showed that pyrolysis is the main mechanism for the release of the organics from vinasse. Release of ash-forming matters in the vinasse is the main cause for vinasse char weight losses in the TGA above 700°C. The losses are higher in N2 than in CO2, and increase considerably with temperature. CO2 gasification also consumes the carbon in the vinasse chars while suppressing alkali release. Alkali release was also significant due to volatilization of KCl and reduction of alkali sulfate and carbonate by carbon. The DSC measured thermal events during heating up in N2 atmosphere that correspond to predicted melting temperatures of alkali salts in the char.

  16. A Climactic Feedback? Variations in Mid-Ocean Ridge CO2 Emissions Driven by Glacial Cycles

    NASA Astrophysics Data System (ADS)

    Burley, J. M.; Katz, R. F.; Huybers, P. J.

    2015-12-01

    Changes in sea level associated with glacial cycles affect the pressure beneath a mid-ocean ridge (MOR) [1,2,3]. Pressure controls the depth of first melting, and therefore the rate of change of pressure controls the rate of change of the depth of first melting. The changing depth of first melting alters the effective rate at which mantle, and thus CO2, enters the melting region. Melt then transports CO2 to the ridge axis, where it enters the climate system. We calculate that the lag between sea level change and consequent variation in MOR CO2 emissions is 40-120 kyrs[4], similar to the timescale of glacial cycles. Could these variations in MOR CO2 emissions feed back on climate and lead to ice-age pacing at a small multiple of the obliquity period? [5]To test this hypothesis we begin with a climate model comprised of a global energy balance and a 1D ice sheet. The ice sheet flows under its own weight, accumulates due to precipitation, and melts in response to the local energy balance[6]. This model broadly replicates Early Pleistocene 40 kyr glacial cycles. We extend the model to include a variable greenhouse effect, according to atmospheric CO2, and variable MOR CO2 emissions driven by sea level. The lag between sea level change and MOR CO2 emissions is controlled by mantle permeability. If this model does not demonstrate MOR CO2 emissions altering glacial cycles, it would suggest this hypothesised feedback mechanism can be rejected. References[1] Huybers & Langmuir 2009; 10.1016/j.epsl.2009.07.014[2] Lund & Asimow 2011; 10.1029/2011GC003693[3] Crowley et al 2015; 10.1126/science.1261508[4] Burley & Katz 2015; 10.1016/j.epsl.2015.06.031[5] Huybers (in prep.)[6] Huybers & Tziperman 2008; 10.1029/2007PA001463

  17. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2.

    PubMed

    Watson, A J; Bakker, D C; Ridgwell, A J; Boyd, P W; Law, C S

    2000-10-12

    Photosynthesis by marine phytoplankton in the Southern Ocean, and the associated uptake of carbon, is thought to be currently limited by the availability of iron. One implication of this limitation is that a larger iron supply to the region in glacial times could have stimulated algal photosynthesis, leading to lower concentrations of atmospheric CO2. Similarly, it has been proposed that artificial iron fertilization of the oceans might increase future carbon sequestration. Here we report data from a whole-ecosystem test of the iron-limitation hypothesis in the Southern Ocean, which show that surface uptake of atmospheric CO2 and uptake ratios of silica to carbon by phytoplankton were strongly influenced by nanomolar increases of iron concentration. We use these results to inform a model of global carbon and ocean nutrients, forced with atmospheric iron fluxes to the region derived from the Vostok ice-core dust record. During glacial periods, predicted magnitudes and timings of atmospheric CO2 changes match ice-core records well. At glacial terminations, the model suggests that forcing of Southern Ocean biota by iron caused the initial approximately 40 p.p.m. of glacial-interglacial CO2 change, but other mechanisms must have accounted for the remaining 40 p.p.m. increase. The experiment also confirms that modest sequestration of atmospheric CO2 by artificial additions of iron to the Southern Ocean is in principle possible, although the period and geographical extent over which sequestration would be effective remain poorly known.

  18. Temporal variations in CO2 and CO at Ahmedabad in western India

    NASA Astrophysics Data System (ADS)

    Chandra, N.; Lal, S.; Venkataramani, S.; Patra, P. K.; Sheel, V.

    2015-11-01

    About 70 % of the anthropogenic CO2 is emitted from the megacities and urban areas of the world. In-situ simultaneous measurements of carbon dioxide (CO2) and carbon monoxide (CO) have been made using a state-of-the-art laser based cavity ring down spectroscopy technique at Ahmedabad, an urban site in western India, from November 2013 to May 2015 with a break during March to June 2014. Annual average concentrations of CO2 and CO have been found to be 413.0 ± 13.7 ppm and 0.50 ± 0.37 ppm respectively. Both the species show strong seasonality, with lower concentrations of 400.3 ± 6.8 ppm and 0.19 ± 0.13 ppm, respectively during the south-west monsoon, and higher values of 419.6 ± 22.8 ppm and 0.72 ± 0.68 ppm, respectively in autumn (SON). Strong diurnal variations are also observed for both the species. The common factors for diurnal cycles of CO2 and CO are the vertical mixing and rush hour traffic, while the influence of biospheric fluxes is also seen in CO2 diurnal cycle. Using CO and CO2 covariation, we differentiate the anthropogenic and biospheric components of CO2 and found that significant contributions of biospheric respiration and anthropogenic emission in the late night (00:00-05:00 IST) and evening rush hours (18:00-22:00 IST) respectively. We compute total yearly emission of CO to be 69.2 ± 0.07 Gg for the study region using the observed CO : CO2 correlation slope and bottom-up CO2 emission inventory. This calculated emission of CO is 52 % larger than the estimated emission of CO by the EDGAR inventory. The observations of CO2 have been compared with an atmospheric chemistry transport model (i.e., ACTM), which incorporates various components of CO2 fluxes. ACTM is able to capture the basic variabilities, but both diurnal and seasonal amplitudes are largely underestimated compared to the observations. We attribute this underestimation by model to uncertainties in terrestrial biosphere fluxes and coarse model resolution. The fossil fuel signal from

  19. Assessing filtering of mountaintop CO2 mixing ratios for application to inverse models of biosphere-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Brooks, B.-G. J.; Desai, A. R.; Stephens, B. B.; Bowling, D. R.; Burns, S. P.; Watt, A. S.; Heck, S. L.; Sweeney, C.

    2011-09-01

    There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are difficult to measure often due to unusual and complicated influences associated with atmospheric transport in complex terrain. Using five years of CO2 mixing ratio observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON), five statistical (subsetting) filters are used to investigate a range of approaches for identifying regionally representative CO2 mixing ratios. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diurnal variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mixing ratio variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that even when standardized to common subset sizes these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to constrain subsets of site measurements that are representative on model scales.

  20. Influence of Carbonic Anhydrase Activity in Terrestrial Vegetation on the 18O Content of Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Gillon, Jim; Yakir, Dan

    2001-03-01

    The oxygen-18 (18O) content of atmospheric carbon dioxide (CO2) is an important indicator of CO2 uptake on land. It has generally been assumed that during photosynthesis, oxygen in CO2 reaches isotopic equilibrium with oxygen in 18O-enriched water in leaves. We show, however, large differences in the activity of carbonic anhydrase (which catalyzes CO2 hydration and 18O exchange in leaves) among major plant groups that cause variations in the extent of 18O equilibrium (θeq). A clear distinction in θeq between C3 trees and shrubs, and C4 grasses makes atmospheric C18OO a potentially sensitive indicator to changes in C3 and C4 productivity. We estimate a global mean θeq value of ~0.8, which reasonably reconciles inconsistencies between 18O budgets of atmospheric O2 (Dole effect) and CO2.

  1. Diurnal variations in CO2 flux from peatland floodplains: Implications for models of ecosystem respiration

    NASA Astrophysics Data System (ADS)

    Goulsbra, Claire; Rickards, Nathan; Brown, Sarah; Evans, Martin; Boult, Stephen; Alderson, Danielle

    2016-04-01

    Peatlands are important terrestrial carbon stores, and within these environments, floodplains have been identified as hotspots of carbon processing, potentially releasing substantial amounts of CO2 into the atmosphere. Previous monitoring campaigns have shown that such CO2 release from ecosystem respiration is linked not only to soil temperature and water table depth, but also to CO2 sequestration via primary productivity, thought to be because the root exudates produced during photosynthesis stimulate microbial activity. This suggests that extrapolation models that are parameterised on data collected during day light hours, when vegetation is photosynthesising, may overestimate ecosystem respiration rates at night, which has important implications for estimates of annual CO2 flux and carbon budgeting. To investigate this hypothesis, monitoring data is collected on the CO2 flux from UK peatland floodplains over the full diurnal cycle. This is done via ex-situ manual data collection from mesocosms using an infra-red gas analyser, and the in-situ automated collection of CO2 concentration data from boreholes within the peat using GasClams®. Preliminary data collected during the summer months suggest that night time respiration is suppressed compared to that during the day, and that the significant predictors of respiration are different when examining day and night time data. This highlights the importance of incorporating diurnal variations into models of ecosystem respiration.

  2. Atmospheric Mixing of CO2 above Carbon Storage Sites: Coupling Physics Based Models within a CO2 Sequestration System Modeling Framework

    NASA Astrophysics Data System (ADS)

    Stauffer, P. H.; Olsen, S. C.; Viswanathan, H. S.; Dubey, M. K.; Guthrie, G. D.; Pawar, R. J.

    2006-12-01

    The Zero Emissions Research and Technology (ZERT) project at the Los Alamos National Laboratory is studying the injection of CO2 into geologic repositories. We are formulating the problem as science based decision framework that can address issues of risk, cost, and technical requirements at all stages of the sequestration process. The framework, called CO2-PENS , is implemented in a system model that is capable of performing stochastic simulations to address uncertainty in different geologic sequestration scenarios. In this talk we examine the changes atmospheric concentrations directly above a potential repository caused by diffuse CO2 leakage that migrates to the atmosphere from the repository. We present an atmospheric mixing model that accounts for local surface effects, local climate data, and daily variations in the mixing layer thickness. We compare model results to field data collected at a controlled flux tower experiment. We next show how the atmospheric mixing model can provide estimates of uncertainty when used from within the CO2- PENS framework. Finally, we discuss data needs and future work needed to make the atmospheric component more flexible so that it can quickly be applied to any potential repository.

  3. Atmospheric Variability of CO2 impact on space observation Requirements

    NASA Astrophysics Data System (ADS)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal

  4. Measurement of Lower-Atmospheric CO2 Concentration Distribution Using a Compact 1.6 μm DIAL

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Knowledge of present carbon sources and sinks including their spatial distribution and their variation in time is one of the essential information for predicting future CO2 atmospheric concentration levels. The differential absorption lidar (DIAL) is expected to measure atmospheric CO2 profiles in the atmospheric boundary layer and lower troposphere from a ground platform. We have succeeded to develop a compact 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This 1.6 μm DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and a 25 cm telescope. CO2 concentration profiles were obtained up to 2.5 km altitude.

  5. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  6. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Brooks, B.-G. J.; Desai, A. R.; Stephens, B. B.; Bowling, D. R.; Burns, S. P.; Watt, A. S.; Heck, S. L.; Sweeney, C.

    2012-02-01

    There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON), five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  7. Linear and Non-linear Effects of Atmospheric CO2 and Soils on Plant Productivity and Soil CO2 Efflux in Grassland and Switchgrass Monocultures

    NASA Astrophysics Data System (ADS)

    Fay, P. A.; Polley, W.; Jin, V.; Procter, A.; Jackson, R. B.

    2009-12-01

    Increasing atmospheric CO2 concentrations are expected to cause fundamental changes in the structure and functioning of terrestrial ecosystems. The magnitude of these changes is likely to differ across soils in significant but poorly quantified ways and may differ. Such variation has important consequences for predicting ecosystem responses to climate change at landscape scales. To test the hypothesis that CO2 effects differed among soils, we measured total aboveground net primary productivity (ANPP) and soil CO2 efflux (JCO2) in native perennial grassland and monocultures of switchgrass (Panicum virgatum cv. Alamo) established in large experimental soil monoliths. The monoliths differed in texture, water holding capacity, and soil N, and were arrayed along an experimental CO2 gradient (250 ? 500 ppm) in central TX, USA. Grassland monoliths were watered to replicate average growing season rainfall inputs, and thus experienced strong water limitation in mid summer. Switchgrass monoliths were fertilized and watered to replace evapotranspiration, estimated from weighing lysimeters. Mean soil water content (0-30 cm) in grassland monoliths increased linearly with increasing [CO2] on all soils, and more strongly on a sandy loam alfisol (Bastrop series, Udic Paleustalf) than on a lowland clay vertisol (Houston Black series, Udic Haplustert) and an upland silty clay mollisol (Austin series, Udorthentic Haplustol). ANPP in grassland monoliths increased with CO2 across all soils (p < 0.0001). The ANPP increase was linear on the sandy loam. However, grassland ANPP responded non-linearly on the two clay soils, showing diminishing gains in ANPP with increasing [CO2], suggesting increasing limitation of plant productivity by resources other than CO2. Grassland JCO2 also increased with [CO2] on two of the soils (p < 0.0001). JCO2 increased linearly on the sandy loam, but was progressively limited at higher [CO2] on the clay soil, and was not associated with [CO2] on the silty

  8. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    NASA Astrophysics Data System (ADS)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  9. Optimisation modelling predicts leaf trait variation and response to elevated CO2

    NASA Astrophysics Data System (ADS)

    Pepper, D. A.; McMurtrie, R. E.; Norby, R. J.

    2009-12-01

    The capacities of a plant to obtain the resources it requires and the efficiencies of use of those resources are important determinants of the rate of plant carbon production. Such capacities and efficiencies rely strongly on plant traits, across all relevant scales of plant function (molecular to whole plant). Within inherent (genetic) constraints to the expression of plant traits by any one plant species, a plant would do well to adjust its traits in such a way as to maximise production. We test this hypothesis using a simple plant carbon-nitrogen model applied to a free-air CO2 enrichment (FACE) experiment on sweetgum forest at Oak Ridge, Tennessee, USA. The sweetgum (Liquidambar styraciflua) stand, exposed to ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998, has shown a positive response of net primary productivity (NPP) to elevated CO2 compared to the ambient control. Experiments like this one have been conducted to gauge the response of the biosphere to the significant increase in atmospheric CO2 concentration. In this study we use optimisation modelling to maximise photosynthetic nitrogen use efficiency and output corresponding optimal leaf traits, including (on a per unit leaf area basis): leaf nitrogen content (N), leaf mass (LMA), maximum rate of CO2 assimilation (Amax), average rate of CO2 assimilation (A), and leaf respiration (R). The optimal leaf traits change under a diminishing light level with canopy depth. Integration over canopy depth provides an estimate of canopy total carbon (carbon allocated to leaves), carbon production, canopy carbon export (carbon allocation to wood, fine roots and reproductive structures), and plant N demand to support a canopy comprised of optimal leaves. Thus, simulated plant N demand depends on leaf traits and light level. When simulated plant N demand exceeds N availability, leaf area adjustment occurs, which has impacts on canopy total carbon, carbon production, and canopy carbon export (plant

  10. Stable isotope ratios of atmospheric CO_{2} and CH_{4} over Siberia measured at ZOTTO

    NASA Astrophysics Data System (ADS)

    Timokhina, Anastasiya; Prokushkin, Anatily; Lavric, Jost; Heimann, Martin

    2016-04-01

    The boreal and arctic zones of Siberia housing the large amounts of carbon stored in the living biomass of forests and wetlands, as well as in soils and specifically permafrost, play a crucial role in earth's global carbon cycle. The long-term studies of greenhouse gases (GHG) concentrations are important instruments to analyze the response of these systems to climate warming. In parallel to GHG observations, the measurements of their stable isotopic composition can provide useful information for distinguishing contribution of individual GHG source to their atmospheric variations, since each source has its own isotopic signature. In this study we report first results of laboratory analyses of the CO2 and CH4 concentrations, the stable isotope ratio of δ13C-CO2, δ18O-CO2, δ13C-CH4, δD-CH4 measured in one-liter glass flasks which were obtained from 301 height of ZOTTO (Zotino Tall Tower Observatory, near 60° N, 90° E, about 20 km west of the Yenisei River) during 2008 - 2013 and 2010 - 2013 for stable isotope composition of CO2 and CH4. The magnitudes of δ13C-CO2 and δ18O-CO2 in a seasonal cycle are -1.4±0.1‰ (-7.6 - -9.0‰) and -2.2±0.2‰ (-0.1 - -2.3‰), respectively. The δ13C-CO2 seasonal pattern opposes the CO2 concentrations, with a gradual enrichment in heavy isotope occurring during May - July, reflecting its discrimination in photosynthesis, and further depletion in August - September as photosynthetic activity decreases comparatively to ecosystem respiration. Relationship between the CO2 concentrations and respective δ13C-CO2 (Keeling plot) reveals isotopic source signature for growing season (May - September) -27.3±1.4‰ and -30.4±2.5‰ for winter (January - March). The behavior of δ18O-CO2 associated with both high photosynthetic rate in the June (enrichment of atmospheric CO2 by 18O as consequence of CO2 equilibrium with "heavy" leaf water) and respiratory activity of forest floor in June - October (depletion of respired CO2 by 18O

  11. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    NASA Astrophysics Data System (ADS)

    Forget, F.; Wordsworth, R.; Millour, E.; Madeleine, J.-B.; Kerber, L.; Leconte, J.; Marcq, E.; Haberle, R. M.

    2013-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO2 atmosphere with surface pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet. Previous studies had suggested that they could have warmed the planet thanks to their scattering greenhouse effect. However, even assuming parameters that maximize this effect, it does not exceed +15 K. Combined with the revised CO2 spectroscopy and the impact of surface CO2 ice on the planetary albedo, we find that a CO2 atmosphere could not have raised the annual mean temperature above 0 °C anywhere on the planet. The collapse of the atmosphere into permanent CO2 ice caps is predicted for pressures higher than 3 bar, or conversely at pressure lower than 1 bar if the obliquity is low enough. Summertime diurnal mean surface temperatures above 0 °C (a condition which could have allowed rivers and lakes to form) are predicted for obliquity larger than 40° at high latitudes but not in locations where most valley networks or layered sedimentary units are observed. In the absence of other warming mechanisms, our climate model results are thus consistent

  12. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Cao, Long

    2016-02-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations.

  13. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification.

    PubMed

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  14. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification.

    PubMed

    Zhang, Han; Cao, Long

    2016-02-03

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations.

  15. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification

    PubMed Central

    Zhang, Han; Cao, Long

    2016-01-01

    Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480

  16. Target Atmospheric CO2: Where Should Humanity Aim?

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Beerling, David; Berner, Robert; Masson-Delmotte, Valerie; Pagani, Mark; Raymo, Maureen; Royer, Dana L.; Zachos, James C.

    2008-11-01

    Paleoclimate data show that climate sensitivity is ~3 deg-C for doubled CO2, including only fast feedback processes. Equilibrium sensitivity, including slower surface albedo feedbacks, is ~6 deg-C for doubled CO2 for the range of climate states between glacial conditions and ice-free Antarctica. Decreasing CO2 was the main cause of a cooling trend that began 50 million years ago, large scale glaciation occurring when CO2 fell to 450 +/- 100 ppm, a level that will be exceeded within decades, barring prompt policy changes. If humanity wishes to preserve a planet similar to that on which civilization developed and to which life on Earth is adapted, paleoclimate evidence and ongoing climate change suggest that CO2 will need to be reduced from its current 385 ppm to at most 350 ppm. The largest uncertainty in the target arises from possible changes of non-CO2 forcings. An initial 350 ppm CO2 target may be achievable by phasing out coal use except where CO2 is captured and adopting agricultural and forestry practices that sequester carbon. If the present overshoot of this target CO2 is not brief, there is a possibility of seeding irreversible catastrophic effects.

  17. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  18. Atmospheric CO2 and soil extracellular enzyme activity: A meta-analysis and CO2 gradient experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising atmospheric CO2 concentrations may alter carbon and nutrient cycling and microbial processes in terrestrial ecosystems. One of the primary ways that microbes interact with soil organic matter is through the production of extracellular enzymes, which break down large, complex organic molecules...

  19. Influence of Fossil Fuel Emissions on CO2 Flux Estimation by Atmospheric Inversions

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.; van der Laan-Luijkx, I. T.; Peters, W.

    2015-12-01

    Top-down approaches (or atmospheric inversions) using atmospheric transport models with CO2 observations are an effective way to estimate carbon fluxes at global and regional scales. CO2 flux estimation by Bayesian inversions require a priori knowledge of terrestrial biosphere and oceanic fluxes and fossil fuel (FF) CO2 emissions. In most inversion frameworks, FF CO2 is assumed to be a known quantity because FF CO2 based on world statistics are thought to be more reliable than natural CO2 fluxes. However different databases of FF CO2 emissions may have different temporal and spatial variations especially at locations where statistics are not so accurate. In this study, we use 3 datasets of fossil fuel emissions in inversion estimations and evaluate the sensitivity of the optimized CO2 fluxes to FF emissions with two different inverse models, JAMSTEC's ACTM and CarbonTracker Europe (CTE). Interannually varying a priori FF CO2 emissions were based on 1) CDIAC database, 2) EDGARv4.2 database, and 3) IEA database, with some modifications. Biosphere and oceanic fluxes were optimized. Except for FF emissions, other conditions were kept the same in our inverse experiments. The three a priori FF emissions showed ~5% (~0.3GtC/yr) differences in their global total emissions in the early 2000's and the differences reached ~9% (~0.9 GtC/yr) in 2010. This resulted in 0.5-1 GtC/yr (2001-2011) and 0.3-0.6 GtC/yr (2007-2011) differences in the estimated global total emissions for the ACTM and CTE inversions, respectively. Regional differences in the FF emissions were relatively large in East Asia (~0.5 GtC/yr for ACTM and ~0.3 GtC/yr for CTE) and Europe (~0.3 GtC/yr for ACTM). These a priori flux differences caused differences in the estimated biosphere fluxes for ACTM in East Asia and Europe and also their neighboring regions such as West Asia, Boreal Eurasia, and North Africa. The main differences in the biosphere fluxes for CTE were found in Asia and the Americas.

  20. Potential of satellite CO2 data to infer CO2 fluxes, using atmospheric inversion: influence of data uncertainty correlations

    NASA Astrophysics Data System (ADS)

    Montandon, V.; Peylin, P.; Bousquet, P.; Ciais, P.; Breon, F.-M.

    2003-04-01

    Knowledge of present surface sources and sinks of atmospheric CO2 is crucial to quantify the future man-induced green-house effect. Measurements of radiation from space potentially offer denser samplings of CO2 column amount, both in time and space than in situ measurements. This could allow in turn to decrease the uncertainties of CO2 flux estimates, depending on the achievable precision of CO2 retrievals from space, and on the removal of any spatially coherent bias. In the framework of the COCO project, shaped to take advantage of the sooncoming or present satellite missions, we enriched some investigations about the satellite observations potential to improve the atmospheric CO2 sinks and sources knowledge. Our particular study dealt with the introduction of spatial correlations between the individual measurement errors of CO2 column amount, to inverstigate possible coherent biases between satellite data. One year of pseudo-data was generated according to the CARBOSAT project instrumental and orbital characteristics. These individual data were then grouped month by month onto the grid of the LMDZ transport model. The classical independance assumption made in all priors study about the measurement errors lead to a large decrease of the final satellite data uncertainty. However, spatially coherent bias would bring correlated data uncertainties, a feature that would largely affect the results. We quantified here the influence of these correlations on the retrieved CO2 flux uncertainties. Several transport model grids (regular / non regular) were used to aggregate the individual measurements, and their influence is also discussed. Such results could also be applied to other reactive chemical species like CH4, CO, ...

  1. Effects of explicit atmospheric convection at high CO2.

    PubMed

    Arnold, Nathan P; Branson, Mark; Burt, Melissa A; Abbot, Dorian S; Kuang, Zhiming; Randall, David A; Tziperman, Eli

    2014-07-29

    The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a "superparameterized" model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden-Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO.

  2. Effects of explicit atmospheric convection at high CO2

    PubMed Central

    Arnold, Nathan P.; Branson, Mark; Burt, Melissa A.; Abbot, Dorian S.; Kuang, Zhiming; Randall, David A.; Tziperman, Eli

    2014-01-01

    The effect of clouds on climate remains the largest uncertainty in climate change predictions, due to the inability of global climate models (GCMs) to resolve essential small-scale cloud and convection processes. We compare preindustrial and quadrupled CO2 simulations between a conventional GCM in which convection is parameterized and a “superparameterized” model in which convection is explicitly simulated with a cloud-permitting model in each grid cell. We find that the global responses of the two models to increased CO2 are broadly similar: both simulate ice-free Arctic summers, wintertime Arctic convection, and enhanced Madden–Julian oscillation (MJO) activity. Superparameterization produces significant differences at both CO2 levels, including greater Arctic cloud cover, further reduced sea ice area at high CO2, and a stronger increase with CO2 of the MJO. PMID:25024204

  3. Is guava phenolic metabolism influenced by elevated atmospheric CO2?

    PubMed

    Mendes de Rezende, Fernanda; Pereira de Souza, Amanda; Silveira Buckeridge, Marcos; Maria Furlan, Cláudia

    2015-01-01

    Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO(2) (∼390 ppm) and two with elevated CO(2) (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO(2) after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO(2). Results suggest that elevated CO(2) seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance. PMID:25129845

  4. Is guava phenolic metabolism influenced by elevated atmospheric CO2?

    PubMed

    Mendes de Rezende, Fernanda; Pereira de Souza, Amanda; Silveira Buckeridge, Marcos; Maria Furlan, Cláudia

    2015-01-01

    Seedlings of Psidium guajava cv. Pedro Sato were distributed into four open-top chambers: two with ambient CO(2) (∼390 ppm) and two with elevated CO(2) (∼780 ppm). Monthly, five individuals of each chamber were collected, separated into root, stem and leaves and immediately frozen in liquid nitrogen. Chemical parameters were analyzed to investigate how guava invests the surplus carbon. For all classes of phenolic compounds analyzed only tannins showed significant increase in plants at elevated CO(2) after 90 days. There was no significant difference in dry biomass, but the leaves showed high accumulation of starch under elevated CO(2). Results suggest that elevated CO(2) seems to be favorable to seedlings of P. guajava, due to accumulation of starch and tannins, the latter being an important anti-herbivore substance.

  5. Constraining terrestrial ecosystem CO2 fluxes by integrating models of biogeochemistry and atmospheric transport and data of surface carbon fluxes and atmospheric CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Zhuang, Q.; Henze, D.; Bowman, K.; Chen, M.; Liu, Y.; He, Y.; Matsueda, H.; Machida, T.; Sawa, Y.; Oechel, W.

    2014-09-01

    Regional net carbon fluxes of terrestrial ecosystems could be estimated with either biogeochemistry models by assimilating surface carbon flux measurements or atmospheric CO2 inversions by assimilating observations of atmospheric CO2 concentrations. Here we combine the ecosystem biogeochemistry modeling and atmospheric CO2 inverse modeling to investigate the magnitude and spatial distribution of the terrestrial ecosystem CO2 sources and sinks. First, we constrain a terrestrial ecosystem model (TEM) at site level by assimilating the observed net ecosystem production (NEP) for various plant functional types. We find that the uncertainties of model parameters are reduced up to 90% and model predictability is greatly improved for all the plant functional types (coefficients of determination are enhanced up to 0.73). We then extrapolate the model to a global scale at a 0.5° × 0.5° resolution to estimate the large-scale terrestrial ecosystem CO2 fluxes, which serve as prior for atmospheric CO2 inversion. Second, we constrain the large-scale terrestrial CO2 fluxes by assimilating the GLOBALVIEW-CO2 and mid-tropospheric CO2 retrievals from the Atmospheric Infrared Sounder (AIRS) into an atmospheric transport model (GEOS-Chem). The transport inversion estimates that: (1) the annual terrestrial ecosystem carbon sink in 2003 is -2.47 Pg C yr-1, which agrees reasonably well with the most recent inter-comparison studies of CO2 inversions (-2.82 Pg C yr-1); (2) North America temperate, Europe and Eurasia temperate regions act as major terrestrial carbon sinks; and (3) The posterior transport model is able to reasonably reproduce the atmospheric CO2 concentrations, which are validated against Comprehensive Observation Network for TRace gases by AIrLiner (CONTRAIL) CO2 concentration data. This study indicates that biogeochemistry modeling or atmospheric transport and inverse modeling alone might not be able to well quantify regional terrestrial carbon fluxes. However, combining

  6. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate.

    PubMed

    Datta, Shuvo Jit; Khumnoon, Chutharat; Lee, Zhen Hao; Moon, Won Kyung; Docao, Son; Nguyen, Thanh Huu; Hwang, In Chul; Moon, Dohyun; Oleynikov, Peter; Terasaki, Osamu; Yoon, Kyung Byung

    2015-10-16

    Capturing CO2 from humid flue gases and atmosphere with porous materials remains costly because prior dehydration of the gases is required. A large number of microporous materials with physical adsorption capacity have been developed as CO2-capturing materials. However, most of them suffer from CO2 sorption capacity reduction or structure decomposition that is caused by co-adsorbed H2O when exposed to humid flue gases and atmosphere. We report a highly stable microporous coppersilicate. It has H2O-specific and CO2-specific adsorption sites but does not have H2O/CO2-sharing sites. Therefore, it readily adsorbs both H2O and CO2 from the humid flue gases and atmosphere, but the adsorbing H2O does not interfere with the adsorption of CO2. It is also highly stable after adsorption of H2O and CO2 because it was synthesized hydrothermally.

  7. In-situ measurement of atmospheric CO2 at the four WMO/GAW stations in China

    NASA Astrophysics Data System (ADS)

    Fang, S. X.; Zhou, L. X.; Tans, P. P.; Ciais, P.; Steinbacher, M.; Xu, L.; Luan, T.

    2013-10-01

    Atmospheric carbon dioxide (CO2) mole fractions were continuously measured from January 2009 to December 2011 at 4 atmospheric observatories in China ((Lin'an, LAN), (Longfengshan, LFS), (Shangdianzi, SDZ), and (Waliguan, WLG)) using Cavity Ring Down Spectroscopy instruments. All sites are regional (LAN, LFS, SDZ) or global (WLG) measurement stations of the World Meteorological Organization/Global Atmosphere Watch program (WMO/GAW). LAN is located near the megacity of Shanghai, in China's most economically developed region. LFS is in a forest and rice production area, close to the city of Harbin in the northern east of China. SDZ is located 150 km north east of Beijing. WLG, hosting the longest record of measured CO2 mole fractions in China, is a high altitude site in northwest China recording background CO2 values. The CO2 growth rates are 2.2 ± 0.2 ppm yr-1 for LAN, 2.3 ± 0.2 ppm yr-1 for LFS, 2.0 ± 0.2 ppm yr-1 for SDZ, and 1.2 ± 0.1 ppm yr-1 (1σ) for WLG, during the period of 2009 to 2011. The growth rate at WLG may be underestimated due to the data gaps during the observation period. The highest annual mean CO2 mole fraction of 404.1 ± 4.1 ppm was observed at LAN in 2011. A comprehensive analysis of CO2 variations, their diurnal and seasonal cycles as well as the analysis of the influence of different wind regimes on the CO2 mole fractions allows a thorough characterization of the sampling sites and of the key processes driving the CO2 mole fractions. These data form a basis to improve our understanding of atmospheric CO2 variations in China and the underlying fluxes, using atmospheric inversion models.

  8. Evidence for CO2 Ice Formation and CO2 Gas Depletion in the South Polar Winter Atmosphere of Mars from Mars Climate Sounder Measurements

    NASA Astrophysics Data System (ADS)

    Kleinboehl, A.; Patel, P.; Schofield, J. T.; Kass, D. M.; Hayne, P. O.; McCleese, D. J.

    2016-09-01

    New 2D retrievals from MCS data show south polar winter atmospheric temperatures below the CO2 frost point, consistent with CO2 gas removal through condensation. Limb emission features suggest CO2 ice occurrence correlated with CO2 gas depletion.

  9. Low atmospheric CO2 levels during the Little Ice Age due to cooling-induced terrestrial uptake

    NASA Astrophysics Data System (ADS)

    Rubino, M.; Etheridge, D. M.; Trudinger, C. M.; Allison, C. E.; Rayner, P. J.; Enting, I.; Mulvaney, R.; Steele, L. P.; Langenfelds, R. L.; Sturges, W. T.; Curran, M. A. J.; Smith, A. M.

    2016-09-01

    Low atmospheric carbon dioxide (CO2) concentration during the Little Ice Age has been used to derive the global carbon cycle sensitivity to temperature. Recent evidence confirms earlier indications that the low CO2 was caused by increased terrestrial carbon storage. It remains unknown whether the terrestrial biosphere responded to temperature variations, or there was vegetation re-growth on abandoned farmland. Here we present a global numerical simulation of atmospheric carbonyl sulfide concentrations in the pre-industrial period. Carbonyl sulfide concentration is linked to changes in gross primary production and shows a positive anomaly during the Little Ice Age. We show that a decrease in gross primary production and a larger decrease in ecosystem respiration is the most likely explanation for the decrease in atmospheric CO2 and increase in atmospheric carbonyl sulfide concentrations. Therefore, temperature change, not vegetation re-growth, was the main cause of the increased terrestrial carbon storage. We address the inconsistency between ice-core CO2 records from different sites measuring CO2 and δ13CO2 in ice from Dronning Maud Land (Antarctica). Our interpretation allows us to derive the temperature sensitivity of pre-industrial CO2 fluxes for the terrestrial biosphere (γL = -10 to -90 Pg C K-1), implying a positive climate feedback and providing a benchmark to reduce model uncertainties.

  10. Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.

    PubMed

    Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi

    2014-05-01

    Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux.

  11. Seven years of observational atmospheric CO2 at a maritime site in northernmost Japan and its implications.

    PubMed

    Zhu, Chunmao; Yoshikawa-Inoue, Hisayuki

    2015-08-15

    Surface atmospheric CO2 mixing ratio reflects both natural fluctuation of the carbon cycle and the effect of anthropogenic activities. Long-term observation of atmospheric CO2 forms the basis for model simulations of the carbon cycle both in the straightforward and the inversion ways. Atmospheric CO2 has been measured on Rishiri Island (45.1°N, 141.2°E) in the western North Pacific since May 2006. We report the first 7-year temporal CO2 variations from diurnal to inter-annual scales and the implications on the vegetation phenology. Diurnally, an obvious cycle appeared as a minimum in the afternoon and maximum at midnight in the summer months, caused by local vegetation. Seasonally, the maximum CO2 concentration appeared around the beginning of April, while the minimum appeared around the middle of August. This seasonal variation implied the natural cycle of terrestrial biological activities of the boreal forest, mostly in the east Eurasia. A mean growing season length of ~126 days was estimated. In the period from 2007 to 2012, the peak-to-peak amplitude increased until 2009 and decreased thereafter, with a mean value of 19.7 ppm. Inter-annually, atmospheric CO2 is increasing by a mean growth rate of 2.1 ppm year(-1). The study provides invaluable dataset and useful information to better understand the carbon cycle and its interaction with climate change. PMID:25911544

  12. Seven years of observational atmospheric CO2 at a maritime site in northernmost Japan and its implications.

    PubMed

    Zhu, Chunmao; Yoshikawa-Inoue, Hisayuki

    2015-08-15

    Surface atmospheric CO2 mixing ratio reflects both natural fluctuation of the carbon cycle and the effect of anthropogenic activities. Long-term observation of atmospheric CO2 forms the basis for model simulations of the carbon cycle both in the straightforward and the inversion ways. Atmospheric CO2 has been measured on Rishiri Island (45.1°N, 141.2°E) in the western North Pacific since May 2006. We report the first 7-year temporal CO2 variations from diurnal to inter-annual scales and the implications on the vegetation phenology. Diurnally, an obvious cycle appeared as a minimum in the afternoon and maximum at midnight in the summer months, caused by local vegetation. Seasonally, the maximum CO2 concentration appeared around the beginning of April, while the minimum appeared around the middle of August. This seasonal variation implied the natural cycle of terrestrial biological activities of the boreal forest, mostly in the east Eurasia. A mean growing season length of ~126 days was estimated. In the period from 2007 to 2012, the peak-to-peak amplitude increased until 2009 and decreased thereafter, with a mean value of 19.7 ppm. Inter-annually, atmospheric CO2 is increasing by a mean growth rate of 2.1 ppm year(-1). The study provides invaluable dataset and useful information to better understand the carbon cycle and its interaction with climate change.

  13. Impact of oceanic circulation changes on atmospheric δ13CO2

    NASA Astrophysics Data System (ADS)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-12-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale and glacial/interglacial changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using two Earth system models of intermediate complexity we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW) and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW and AAIW are negatively correlated with changes in δ13CO2: namely strong oceanic ventilation decreases atmospheric δ13CO2. However, since large scale ocean circulation reorganizations also impact nutrient utilization and the Earth's climate the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the upwelling of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent.

  14. Modeling of collision induced absorption spectra of CO2-CO2 pairs for planetary atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Borysow, Aleksandra

    1995-01-01

    The objective of the proposal was to model the rototranslational and rotovibrational collision induced absorption spectral bands of importance for the radiative transfer analysis of the atmosphere of Venus. Our main task has involved CO2 pairs. The approach is not straightforward: whereas computational techniques to compute CIA spectra of small linear molecules exist, and were successfully applied to molecules like H2 or N2, they fail when applied to large molecules like CO2. For small molecules one can safely assume that the interaction potential is isotropic. The same approximation does not work for CO2, and when employed, it gives an incorrect band shape and only 50 percent of the CIA intensity.

  15. Comprehensive studies of the sputtering effects on CO2 atmospheres: Mars and Venus

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Luhmann, J. G.; Curry, S.; Leblanc, F.; Fang, X.; Johnson, R. E.; Ma, Y.; Ip, W.

    2013-12-01

    The atmospheric loss rates related to the solar wind interactions with the weakly magnetized planets in the inner solar system are important for understanding their evolution histories. Besides photochemical mechanisms, sputtering by the re-impact of the heavy pick-up ions may play a key role, provided that their planetary fields were weak throughout much of their past. We use a 3D Monte Carlo model coupled to a molecular dynamic calculation to simulate the atmospheric sputtering effects due to pick-up O+ on CO2 atmospheres of Venus and Mars. The pick-up O+ precipitation distributions are obtained from a 3D Monte Carlo Pickup Ion Transport model, which includes the electromagnetic backgrounds from the 3D multi-species MHD simulations. The influences on the sputtering efficiencies due to different atmosphere and exosphere structures, the existence of the crustal fields at Mars, and the variation with the solar wind conditions at their heliocentric distances are examined for the two planets. The escape rates and the formation of hot coronae due to sputtering are compared in order to provide a comprehensive point of view on the sputtering efficiencies of these two terrestrial planets with CO2 atmospheres.

  16. Effect of elevated atmospheric CO2 concentration on soil CO2 and N2O effluxes in a loess grassland

    NASA Astrophysics Data System (ADS)

    Cserhalmi, Dóra; Balogh, János; Papp, Marianna; Horváth, László; Pintér, Krisztina; Nagy, Zoltán

    2014-05-01

    Increasing atmospheric CO2 concentration proved to be the primary factor causing global climate change. Exposition systems to study the response to increasing CO2 levels by the terrestrial vegetation include the open top chamber (OTC) exposition system, also used in this study. Response of biomass growth and ecophysiological variables (e.g. emission of greenhouse gases (CO2, N2O) from the soil) to elevated atmospheric CO2 concentration were investigated in the OTC station, located in the Botanical Garden of the Szent István University, Gödöllő , Hungary. Loess grassland (Salvio nemorosae - Festucetum rupicolae) monoliths were studied in OTCs with target air CO2 concentration of 600 mikromol.mol-1 in 3 chambers. The chamber-effect (shade effect of the side of the chambers) was measured in 3 control chambers under present CO2 level. This management was compared to 3 free air parcels under the natural conditions. Changes of soil temperature and soil water content were recorded in each treatment, while PAR, air temperature, precipitation, wind velocity and humidity were measured by a micrometeorological station. Plant biomass was cut down to 5 cm height once a year. Leaf area index (LAI) was estimated weekly from ceptometer measurements, soil CO2 and N2O effluxes were also measured weekly during the growing period and less frequently during the rest of the year. Soil water content in the upper 30 cm of the soil was lower in the chambers by 3 % (v/v) in average than in the field plots. Soil temperature in the chambers at 3 cm depth was 1.5oC lower than in the free air parcels probably due to the shading effect of the larger biomass in the chambers. In the chambers (both the high CO2 and control ones) biomass values (536.59 ±222.43 gm-2) were higher than in the free parcels (315.67 ±73.36 gm-2). Average LAI was also higher (3.07 ± 2.78) in the chambers than in the free air treatment (2.08 ± 1.95). Soil respiration values in the high CO2 treatment was higher in

  17. Differential absorption lidar for volcanic CO(2) sensing tested in an unstable atmosphere.

    PubMed

    Queisser, Manuel; Burton, Mike; Fiorani, Luca

    2015-03-01

    Motivated by the need for an extremely durable and portable instrument to quantify volcanic CO(2) we have produced a corresponding differential absorption lidar (DIAL). It was tested on a volcano (Vulcano, Italy), sensing a non-uniform volcanic CO(2) signal under turbulent atmospheric conditions. The measured CO(2) mixing ratio trend agrees qualitatively well but quantitatively poorly with a reference CO(2) measurement. The disagreement is not in line with the precision of the DIAL determined under conditions that largely exclude atmospheric effects. We show evidence that the disagreement is mainly due to atmospheric turbulence. We conclude that excluding noise associated with atmospheric turbulence, as commonly done in precision analysis of DIAL instruments, may largely underestimate the error of measured CO(2) concentrations in turbulent atmospheric conditions. Implications for volcanic CO(2) sensing with DIAL are outlined.

  18. Differential absorption lidar for volcanic CO(2) sensing tested in an unstable atmosphere.

    PubMed

    Queisser, Manuel; Burton, Mike; Fiorani, Luca

    2015-03-01

    Motivated by the need for an extremely durable and portable instrument to quantify volcanic CO(2) we have produced a corresponding differential absorption lidar (DIAL). It was tested on a volcano (Vulcano, Italy), sensing a non-uniform volcanic CO(2) signal under turbulent atmospheric conditions. The measured CO(2) mixing ratio trend agrees qualitatively well but quantitatively poorly with a reference CO(2) measurement. The disagreement is not in line with the precision of the DIAL determined under conditions that largely exclude atmospheric effects. We show evidence that the disagreement is mainly due to atmospheric turbulence. We conclude that excluding noise associated with atmospheric turbulence, as commonly done in precision analysis of DIAL instruments, may largely underestimate the error of measured CO(2) concentrations in turbulent atmospheric conditions. Implications for volcanic CO(2) sensing with DIAL are outlined. PMID:25836880

  19. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change. PMID:26253981

  20. The optimal atmospheric CO2 concentration for the growth of winter wheat (Triticum aestivum).

    PubMed

    Xu, Ming

    2015-07-20

    This study examined the optimal atmospheric CO2 concentration of the CO2 fertilization effect on the growth of winter wheat with growth chambers where the CO2 concentration was controlled at 400, 600, 800, 1000, and 1200 ppm respectively. I found that initial increase in atmospheric CO2 concentration dramatically enhanced winter wheat growth through the CO2 fertilization effect. However, this CO2 fertilization effect was substantially compromised with further increase in CO2 concentration, demonstrating an optimal CO2 concentration of 889.6, 909.4, and 894.2 ppm for aboveground, belowground, and total biomass, respectively, and 967.8 ppm for leaf photosynthesis. Also, high CO2 concentrations exceeding the optima not only reduced leaf stomatal density, length and conductance, but also changed the spatial distribution pattern of stomata on leaves. In addition, high CO2 concentration also decreased the maximum carboxylation rate (Vc(max)) and the maximum electron transport rate (J(max)) of leaf photosynthesis. However, the high CO2 concentration had little effect on leaf length and plant height. The optimal CO2 fertilization effect found in this study can be used as an indicator in selecting and breeding new wheat strains in adapting to future high atmospheric CO2 concentrations and climate change.

  1. Speculations on Cold, Dense Atmospheres, Faint Suns, and CO2 Rain

    NASA Astrophysics Data System (ADS)

    Hecht, M. H.

    2016-09-01

    If the early Mars atmosphere was sufficiently dense (>5 bar), liquid CO2 would have been a stable state. The result would be a mixed-phased system, with CO2 rain, lakes, rivers, and maybe oceans, with CO2 frost and snow in colder spots.

  2. Assessing the Effects of Elevated Atmospheric CO2 and LAI Perturbations on Southeastern Grassland Water Vapor and Co2 Fluxes

    NASA Astrophysics Data System (ADS)

    Novick, K. A.; Katul, G.; Ellsworth, D.

    2002-05-01

    Projected increases in atmospheric carbon dioxide concentration increased international interest in predicting CO2 fluxes over various ecosystems. Temperate grassland ecosystems are an important component of this global carbon cycle; however, investigations into the response of grassland ecosystems to human-and climate induced perturbations have been limited. This study reports on the relative importance of Leaf Area Index (LAI) and elevated atmospheric CO2 on Net Ecosystem Exchange (NEE) of CO2 over a Southeastern U.S. grassland for a typical growing season. Towards this end, a combination of model results and field experiments was used. A model for stomatal conductance to water vapor was developed from a boundary layer analysis of latent heat fluxes and vapor pressure deficit (VPD) measured from May-August, 2001. The conductance model was combined with LAI, incident Photosynthetic Active Radiation (PAR), and temperature measurements collected during the same period to model net carbon assimilation prior to and after an LAI perturbation. The predicted assimilation patterns were compared with CO2 fluxes measured by the Eddy Correlation technique, with good agreement even when influenced by rapid transients in LAI. We perturbed the model by increasing the ambient CO2 concentration to 560 ppm, and found the background temperature increment required to maintain present NEE rates varied highly with LAI. Southeastern grasslands with high LAI will require a global "background" temperature increment similar to the increase projected by climate models; hence, the extra C gain in photosynthesis associated with elevated CO2 will be compensated for by the concurrent increase in temperature. Grasslands with low LAI will be unable to support current growing season NEE rates in future climate scenarios; therefore, grazed and mowed grasslands will primarily function as carbon sources during the growing season in future climates.

  3. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. PMID:25953075

  4. Inter-annual changes in detritus-based food chains can enhance plant growth response to elevated atmospheric CO2.

    PubMed

    Hines, Jes; Eisenhauer, Nico; Drake, Bert G

    2015-12-01

    Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2.

  5. Effect of temperature-dependent organic carbon decay on atmospheric pCO2

    NASA Astrophysics Data System (ADS)

    Matsumoto, Katsumi; Hashioka, Taketo; Yamanaka, Yasuhiro

    2007-06-01

    Extendingy an almost universal observation that the rate of microbial activity increases with temperature, we propose that marine microbial activity was suppressed during previous glacial periods and allowed proportionally more organic carbon to be exported out of the surface ocean. A stronger organic carbon pump and therefore lower rain ratios of CaCO3 to organic carbon may have contributed to the low atmospheric CO2 content during the Last Glacial Maximum. Previous study of temperature-dependent export production (Laws et al., 2000) and our map of data-based, global distribution of the rain ratios lend support to today's rain ratios being controlled at least partly by temperature. A close examination with a high-resolution regional ocean ecosystem model indicates that the correlation between rain ratio and temperature is caused indeed by preferential remineralization of organic matter, but a part of the correlation is also driven by temperature-dependent community composition. An extrapolation of these results to the globe using a global carbon cycle box model with a module for sediments indicates that the drawdown of atmospheric CO2 by the proposed mechanism is approximately 30 ppm. While this estimate is subject to uncertainty, the fact that it represents nearly one third of the glacial-interglacial variation in atmosphere pCO2 suggests the potential importance of the new mechanism. Given the historical difficulty in explaining the full CO2 amplitude with a single cause, we suggest that a set of multiple mechanisms were responsible and that the temperature-dependent POC degradation rate is one of them. We discuss two possible difficulties with our proposal that have to do with the potentially important role that ballasts play in organic carbon export and the possibility that enhanced biological pump is self limiting.

  6. Vertical and horizontal soil CO2 transport and its exchanges with the atmosphere

    NASA Astrophysics Data System (ADS)

    Sánchez-Cañete, Enrique P.; Serrano-Ortíz, Penélope; Kowalski, Andrew S.; Curiel Yuste, Jorge; Domingo, Francisco; Oyonarte, Cecilio

    2015-04-01

    The CO2 efflux from soils to the atmosphere constitutes one of the major fluxes of the terrestrial carbon cycle and is a key determinant for sources and sinks of CO2 in land-atmosphere exchanges. Because of their large global magnitude, even small changes in soil CO2 effluxes directly affect the atmospheric CO2 content. Despite much research, models of soil CO2 efflux rates are highly uncertain, with the positive or negative feedbacks between underground carbon pools and fluxes and their temperature sensitivities in future climate scenarios largely unknown. Now it is necessary to change the point of view regarding CO2 exchange studies from an inappropriately conceived static system in which all respired CO2 is directly emitted by molecular processes to the atmosphere, to a dynamic system with gas transport by three different processes: convection, advection and molecular diffusion. Here we study the effects of wind-induced advection on the soil CO2 molar fraction during two years in a shrubland plateau situated in the Southeast of Spain. A borehole and two subterranean profiles (vertical and horizontal) were installed to study CO2 transport in the soil. Exchanges with the atmosphere were measured by an eddy covariance tower. In the vertical profile, two CO2 sensors (GMP-343, Vaisala) were installed at 0.15m and 1.5m along with soil temperature and humidity probes. The horizontal profile was designed to measure horizontal movements in the soil CO2 molar fraction due to down-gradient CO2 from the plant, where the majority CO2 is produced, towards bare soil. Three CO2 sensors (GMM-222, Vaisala) were installed, the first below plant (under-plant), the second in bare soil separated 25 cm from the first sensor (near-plant) and the third in bare soil at 25 cm from the second sensor (bare soil). The results show how the wind induces the movement of subterranean air masses both horizontally and vertically, affecting atmospheric CO2 exchanges. The eddy covariance tower

  7. How much has the increase in atmospheric CO2 directly affected past soybean production?

    NASA Astrophysics Data System (ADS)

    Sakurai, Gen; Iizumi, Toshichika; Nishimori, Motoki; Yokozawa, Masayuki

    2014-05-01

    Understanding the effects of climate change is vital for food security. Among the most important environmental impacts of climate change is the direct effect of increased atmospheric carbon dioxide concentration ([CO2]) on crop yields, known as the CO2 fertilization effect. Although several statistical studies have estimated past impacts of temperature and precipitation on crop yield at regional scales, the impact of past CO2 fertilization is not well known. We evaluated how soybean yields have been enhanced by historical atmospheric [CO2] increases in three major soybean-producing countries. The estimated average yields during 2002-2006 in the USA, Brazil, and China were 4.34%, 7.57%, and 5.10% larger, respectively, than the average yields estimated using the atmospheric [CO2] of 1980. Our results demonstrate the importance of considering atmospheric [CO2] increases in evaluations of the past effects of climate change on crop yields.

  8. How much has the increase in atmospheric CO2 directly affected past soybean production?

    PubMed

    Sakurai, Gen; Iizumi, Toshichika; Nishimori, Motoki; Yokozawa, Masayuki

    2014-05-15

    Understanding the effects of climate change is vital for food security. Among the most important environmental impacts of climate change is the direct effect of increased atmospheric carbon dioxide concentration ([CO2]) on crop yields, known as the CO2 fertilization effect. Although several statistical studies have estimated past impacts of temperature and precipitation on crop yield at regional scales, the impact of past CO2 fertilization is not well known. We evaluated how soybean yields have been enhanced by historical atmospheric [CO2] increases in three major soybean-producing countries. The estimated average yields during 2002-2006 in the USA, Brazil, and China were 4.34%, 7.57%, and 5.10% larger, respectively, than the average yields estimated using the atmospheric [CO2] of 1980. Our results demonstrate the importance of considering atmospheric [CO2] increases in evaluations of the past effects of climate change on crop yields.

  9. How much has the increase in atmospheric CO2 directly affected past soybean production?

    PubMed

    Sakurai, Gen; Iizumi, Toshichika; Nishimori, Motoki; Yokozawa, Masayuki

    2014-01-01

    Understanding the effects of climate change is vital for food security. Among the most important environmental impacts of climate change is the direct effect of increased atmospheric carbon dioxide concentration ([CO2]) on crop yields, known as the CO2 fertilization effect. Although several statistical studies have estimated past impacts of temperature and precipitation on crop yield at regional scales, the impact of past CO2 fertilization is not well known. We evaluated how soybean yields have been enhanced by historical atmospheric [CO2] increases in three major soybean-producing countries. The estimated average yields during 2002-2006 in the USA, Brazil, and China were 4.34%, 7.57%, and 5.10% larger, respectively, than the average yields estimated using the atmospheric [CO2] of 1980. Our results demonstrate the importance of considering atmospheric [CO2] increases in evaluations of the past effects of climate change on crop yields. PMID:24827887

  10. [CO2 Budget and Atmospheric Rectification (COBRA) Over North America

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The purpose of the CO2 Budget and Rectification Airborne (COBRA) study was to assess terrestrial sources and sinks of carbon dioxide using an air-borne study. The study was designed to address the measurement gap between plot-scale direct flux measurements and background hemispheric-scale constraints and to refine techniques for measuring terrestrial fluxes at regional to continental scales. The initial funded effort (reported on here) was to involve two air-borne campaigns over North America, one in summer and one in winter. Measurements for COBRA (given the acronym C02BAR in the initial proposal) were conducted from the University of North Dakota Citation 11, a twin-engine jet aircraft capable of profiling from the surface to 12 km and cruising for up to 4 hours and 175m/s. Onboard instrumentation measured concentrations of CO2, CO, and H2O, and meteorological parameters at high rates. In addition, two separate flask sampling systems collected discrete samples for laboratory analysis of CO2,CO, CH4, N2O, SF6, H2, 13CO2, C18O16O,O2/N2, and Ar/N2. The project involved a collaboration between a number of institutions, including (but not limited to) Harvard, NOAA-CMDL, the University of North Dakota, and Scripps.

  11. Isoprene leaf emission under CO2 free atmosphere: why and how?

    NASA Astrophysics Data System (ADS)

    Garcia, S.

    2015-12-01

    Isoprene (C5H8) is a reactive hydrocarbon gas emitted at high rates by tropical vegetation, which affects atmospheric chemistry and climate and, in the leaf level, is a very important agent against environmental stress. Under optimal conditions for photosynthesis, the majority of carbon used for isoprene biosynthesis is a direct product from recently assimilated atmospheric CO2. However, the contribution of 'alternate' carbon sources, that increase with leaf temperature, have been demonstrated and emissions of isoprene from 'alternate' carbon sources under ambient CO2 below the compensation point for photosynthesis have been observed. In this study, we investigated the response of leaf isoprene emissions under 450 ppm CO2 and CO2 free atmosphere as a function of light and leaf temperature. At constant leaf temperature (30 °C) and CO2 free atmospheres, leaves of the tropical species Inga edulis showed net emissions of CO2 and light-dependent isoprene emissions which stagnated at low light levels (75 µmol m-2 s-1 PAR) and account for 25% of that observed with 450 ppm CO2. Under constant light (1000 µmol m-2 s-1 PAR) and CO2 free atmospheres, a increase of leaf temperatures from 25 to 40 °C resulted in net emissions of CO2 and temperature-dependent isoprene emissions which reached values up to 17% of those under 450 ppm CO2. Our observations suggest that, under environmental stress, as high light/temperature and drought (when the stomata close and the amount of internal CO2 decreases), the 'alternate' carbon can maintain photosynthesis rates resulting in the production of isoprene, independent of atmospheric CO2, through the re-assimilation of internal released CO2 as an 'alternate' carbon sources for isoprene.

  12. On the potential of the ICOS atmospheric CO2 measurement network for estimating the biogenic CO2 budget of Europe

    NASA Astrophysics Data System (ADS)

    Kadygrov, N.; Broquet, G.; Chevallier, F.; Rivier, L.; Gerbig, C.; Ciais, P.

    2015-11-01

    We present a performance assessment of the European Integrated Carbon Observing System (ICOS) atmospheric network for constraining European biogenic CO2 fluxes (hereafter net ecosystem exchange, NEE). The performance of the network is assessed in terms of uncertainty in the fluxes, using a state-of-the-art mesoscale variational atmospheric inversion system assimilating hourly averages of atmospheric data to solve for NEE at 6 h and 0.5° resolution. The performance of the ICOS atmospheric network is also assessed in terms of uncertainty reduction compared to typical uncertainties in the flux estimates from ecosystem models, which are used as prior information by the inversion. The uncertainty in inverted fluxes is computed for two typical periods representative of northern summer and winter conditions in July and in December 2007, respectively. These computations are based on a observing system simulation experiment (OSSE) framework. We analyzed the uncertainty in a 2-week-mean NEE as a function of the spatial scale with a focus on the model native grid scale (0.5°), the country scale and the European scale (including western Russia and Turkey). Several network configurations, going from 23 to 66 sites, and different configurations of the prior uncertainties and atmospheric model transport errors are tested in order to assess and compare the improvements that can be expected in the future from the extension of the network, from improved prior information or transport models. Assimilating data from 23 sites (a network comparable to present-day capability) with errors estimated from the present prior information and transport models, the uncertainty reduction on a 2-week-mean NEE should range between 20 and 50 % for 0.5° resolution grid cells in the best sampled area encompassing eastern France and western Germany. At the European scale, the prior uncertainty in a 2-week-mean NEE is reduced by 50 % (66 %), down to ~ 43 Tg C month-1 (26 Tg C month-1) in July

  13. GEOCARBSULF: A combined model for Phanerozoic atmospheric O 2 and CO 2

    NASA Astrophysics Data System (ADS)

    Berner, Robert A.

    2006-12-01

    A model for the combined long-term cycles of carbon and sulfur has been constructed which combines all the factors modifying weathering and degassing of the GEOCARB III model [Berner R.A., Kothavala Z., 2001. GEOCARB III: a revised model of atmospheric CO 2 over Phanerozoic time. Am. J. Sci. 301, 182-204] for CO 2 with rapid recycling and oxygen dependent carbon and sulfur isotope fractionation of an isotope mass balance model for O 2 [Berner R.A., 2001. Modeling atmospheric O 2 over Phanerozoic time. Geochim. Cosmochim. Acta65, 685-694]. New isotopic data for both carbon and sulfur are used and new feedbacks are created by combining the models. Sensitivity analysis is done by determining (1) the effect on weathering rates of using rapid recycling (rapid recycling treats carbon and sulfur weathering in terms of young rapidly weathering rocks and older more slowly weathering rocks); (2) the effect on O 2 of using different initial starting conditions; (3) the effect on O 2 of using different data for carbon isotope fractionation during photosynthesis and alternative values of oceanic δ13C for the past 200 million years; (4) the effect on sulfur isotope fractionation and on O 2 of varying the size of O 2 feedback during sedimentary pyrite formation; (5) the effect on O 2 of varying the dependence of organic matter and pyrite weathering on tectonic uplift plus erosion, and the degree of exposure of coastal lands by sea level change; (6) the effect on CO 2 of adding the variability of volcanic rock weathering over time [Berner, R.A., 2006. Inclusion of the weathering of volcanic rocks in the GEOCARBSULF model. Am. J. Sci.306 (in press)]. Results show a similar trend of atmospheric CO 2 over the Phanerozoic to the results of GEOCARB III, but with some differences during the early Paleozoic and, for variable volcanic rock weathering, lower CO 2 values during the Mesozoic. Atmospheric oxygen shows a major broad late Paleozoic peak with a maximum value of about 30% O 2 in

  14. Reconstructing atmospheric CO2 during the Plio-Pleistocene transition by fossil Typha.

    PubMed

    Bai, Yun-Jun; Chen, Li-Qun; Ranhotra, Parminder S; Wang, Qing; Wang, Yu-Fei; Li, Cheng-Sen

    2015-02-01

    The Earth has undergone a significant climate switch from greenhouse to icehouse during the Plio-Pleistocene transition (PPT) around 2.7-2.4 million years ago (Ma), marked by the intensification of the Northern Hemisphere glaciation (NHG) ~2.7 Ma. Evidence based on oceanic CO2 [(CO2)aq], supposed to be in close equilibrium with the atmospheric CO2 [(CO2)atm], suggests that the CO2 decline might drive such climate cooling. However, the rarity of direct evidence from [CO2]atm during the interval prevents determination of the atmospheric CO2 level and further assessment on the impact of its fluctuation. Here, we reconstruct the [CO2]atm level during 2.77-2.52 Ma based on a new developed proxy of stomatal index on Typha orientalis leaves from Shanxi, North China, and depict the first [CO2]atm curve over the past 5 Ma by using stomata-based [CO2]atm data. Comparisons of the terrestrial-based [CO2]atm and the existed marine-based [CO2]aq curves show a similar general trend but with different intensity of fluctuations. Our data reveal that the high peak of [CO2]atm occurred at 2.77-2.52 Ma with a lower [CO2]aq background. The subsequent sharp fall in [CO2]atm level might be responsible for the intensification of the NHG based on their general temporal synchronism. These findings shed a significant light for our understanding toward the [CO2]atm changes and its ecological impact since 5 Ma.

  15. Quantifying the drivers of ocean-atmosphere CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Lauderdale, Jonathan M.; Dutkiewicz, Stephanie; Williams, Richard G.; Follows, Michael J.

    2016-07-01

    A mechanistic framework for quantitatively mapping the regional drivers of air-sea CO2 fluxes at a global scale is developed. The framework evaluates the interplay between (1) surface heat and freshwater fluxes that influence the potential saturated carbon concentration, which depends on changes in sea surface temperature, salinity and alkalinity, (2) a residual, disequilibrium flux influenced by upwelling and entrainment of remineralized carbon- and nutrient-rich waters from the ocean interior, as well as rapid subduction of surface waters, (3) carbon uptake and export by biological activity as both soft tissue and carbonate, and (4) the effect on surface carbon concentrations due to freshwater precipitation or evaporation. In a steady state simulation of a coarse-resolution ocean circulation and biogeochemistry model, the sum of the individually determined components is close to the known total flux of the simulation. The leading order balance, identified in different dynamical regimes, is between the CO2 fluxes driven by surface heat fluxes and a combination of biologically driven carbon uptake and disequilibrium-driven carbon outgassing. The framework is still able to reconstruct simulated fluxes when evaluated using monthly averaged data and takes a form that can be applied consistently in models of different complexity and observations of the ocean. In this way, the framework may reveal differences in the balance of drivers acting across an ensemble of climate model simulations or be applied to an analysis and interpretation of the observed, real-world air-sea flux of CO2.

  16. Application of Advanced Very High Resolution Radiometer vegetation index to study atmosphere-biosphere exchange of CO2

    NASA Technical Reports Server (NTRS)

    Fung, I. Y.; Tucker, C. J.; Prentice, K. C.

    1987-01-01

    Normalized difference vegetation indices derived from radiances measured by the Advanced Very High Resolution Radiometer were used to prescribe the phasing of terrestrial photosynthesis. The satellite data were combined with field data on soil respiration and a global map of net primary productivity to obtain the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained were employed as source/sink functions in a global three-dimensional atmospheric tracer transport model to simulate the annual oscillations of CO2 in the atmosphere. The results demonstrate that satellite data of high spatial and temporal resolution can be used to provide quantitative information about seasonal and longer-term variations of photosynthetic activity on a global scale.

  17. A multiscale and multidisciplinary investigation of ecosystem-atmosphere CO2 exchange over the rocky mountains of colorado

    USGS Publications Warehouse

    Sun, Jielun; Oncley, S.P.; Burns, Sean P.; Stephens, B.B.; Lenschow, D.H.; Campos, T.; Monson, Russell K.; Schimel, D.S.; Sacks, W.J.; De Wekker, S. F. J.; Lai, C.-T.; Lamb, B.; Ojima, D.; Ellsworth, P.Z.; Sternberg, L.S.L.; Zhong, S.; Clements, C.; Moore, D.J.P.; Anderson, D.E.; Watt, A.S.; Hu, Jiawen; Tschudi, M.; Aulenbach, S.; Allwine, E.; Coons, T.

    2010-01-01

    A field study combined with modeling investigation demonstrated that the organization of CO2 transport by mountain terrain strongly affects the regional CO2 budget. Atmospheric dynamics can lead to complicated flows generated by inhomogeneous landscapes, topography or synoptic weather systems. The field campaign conducted of a ground deployment, the Carbon in the Mountain Experiment (CME04), and an aircraft deployment of the national Center for Atmospheric Research (NCAR) C-130, the Airborne Carbon in the Mountains Experiment (ACME04) over the period of spring to fall of 2004 to cover the seasonal variation of ecosystem-atmosphere carbon exchange. The role of the mountain circulation in CO2 transport can be played over seemingly flat terrain by mesoscale flows generated by various physical processes. The three dimensional observation strategy considered can also be applied over flat terrain.

  18. Deep CO2 soil inhalation / exhalation induced by synoptic pressure changes and atmospheric tides in a carbonated semiarid steppe

    NASA Astrophysics Data System (ADS)

    Sánchez-Cañete, E. P.; Kowalski, A. S.; Serrano-Ortiz, P.; Pérez-Priego, O.; Domingo, F.

    2013-10-01

    Knowledge of all the mechanisms and processes involved in soil CO2 emissions is essential to close the global carbon cycle. Apart from molecular diffusion, the main physical component of such CO2 exchange is soil ventilation. Advective CO2 transport, through soil or snow, has been correlated with the wind speed, friction velocity or pressure (p). Here we examine variations in subterranean CO2 molar fractions (χc) over two years within a vertical profile (1.5 m) in a semiarid ecosystem, as influenced by short-timescale p changes. Analyses to determine the factors involved in the variations in subterranean χc were differentiated between the growing period and the dry period. In both periods it was found that variations in deep χc (0.5-1.5 m) were due predominantly to static p variations and not to wind or biological influences. Within a few hours, the deep χc can vary by fourfold, showing a pattern with two cycles per day, due to p oscillations caused by atmospheric tides. By contrast, shallow χc (0.15 m) generally has one cycle per day as influenced by biological factors like soil water content and temperature in both periods, while the wind was an important factor in shallow χc variations only during the dry period. Evidence of emissions was registered in the atmospheric boundary layer by eddy covariance during synoptic pressure changes when subterranean CO2 was released; days with rising barometric pressure - when air accumulated belowground, including soil-respired CO2 - showed greater ecosystem uptake than days with falling pressure. Future assessments of the net ecosystem carbon balance should not rely exclusively on Fick's law to calculate soil CO2 effluxes from profile data.

  19. Deep CO2 soil inhalation/exhalation induced by synoptic pressure changes and atmospheric tides in a carbonated semiarid steppe

    NASA Astrophysics Data System (ADS)

    Sánchez-Cañete, E. P.; Kowalski, A. S.; Serrano-Ortiz, P.; Pérez-Priego, O.; Domingo, F.

    2013-03-01

    Knowledge of all the mechanisms and processes involved in soil CO2 emissions is essential to close the global carbon cycle. Apart from molecular diffusion, the main physical component of such CO2 exchange is soil ventilation. Advective CO2 transport, through soil or snow, has been correlated with the wind speed, friction velocity or pressure (p). Here we examine variations in subterranean CO2 molar fractions (χc) over two years within a vertical profile (1.5 m) in a semiarid ecosystem, as influenced by short-timescale p changes. Analyses to determine the factors involved in the variations in subterranean χc were differentiated between the growing period and the dry period. In both periods it was found that variations in deep χc (0.5-1.5 m) were due predominantly to static p variations and not to wind or biological influences. Within a few hours, the deep χc can vary by fourfold showing a pattern with two cycles per day, due to p oscillations caused by atmospheric tides. By contrast, shallow χc (0.15 m) generally has one cycle per day as influenced by biological factors like soil water content and temperature in both periods, while the wind was an important factor in shallow χc variations only during the dry period. Evidence of emissions was registered in the atmospheric boundary layer by eddy covariance during synoptic pressure changes when subterranean CO2 was released; days with rising barometric pressure - when air accumulated belowground, including soil-respired CO2 - showed greater ecosystem uptake than days with falling pressure. Future assessments of the net ecosystem carbon balance should not rely exclusively on Fick's law to calculate soil CO2 effluxes from profile data.

  20. Mars - CO2 adsorption and capillary condensation on clays: Significance for volatile storage and atmospheric history

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Cannon, W. A.

    1979-01-01

    Results on the adsorbate-adsorbent system CO2-nontronite are reported at 230, 196, and 158 deg K, covering the range of subsurface regolith temperature on Mars. A three-part regolith-atmosphere-cap model reveals that cold nontronite, and expanding clays in general, are far better but far more complex CO2 adsorbers than cold pulverized basalt. In addition, the layered terrain, and possibly the adjacent debris mantle, contains about 2% or more by mass of atmosphere-exchangeable CO2 and the total regolith inventory of available adsorbed CO2 is estimated to be 400 g/ sq cm.

  1. Atmospheric CO2 Column Measurements Under Clear and Cloudy Conditions Using an Airborne Intensity-Modulated Continuous-Wave Lidar

    NASA Astrophysics Data System (ADS)

    Lin, B.; Ismail, S.; Harrison, F. W.; Nehrir, A. R.; Browell, E. V.; Fan, T. F.; Kooi, S. A.; Dobler, J. T.; Meadows, B.; Obland, M. D.

    2014-12-01

    This study focuses on the atmospheric CO2 measurements using the Exelis' airborne Intensity-Modulated Continuous-Wave (IM-CW) Laser Absorption Spectrometer (LAS) system operating in the 1.57-mm CO2 absorption band. The atmospheric CO2 estimates above clouds and for entire columns are retrieved from the data obtained during the summer 2011 and spring 2013 ASCENDS flight campaigns. The lidar returns from clouds and surfaces are discriminated by the range-encoded IM signals transmitted by the airborne LAS system. Under thin cloud conditions, lidar systems generally have strong enough return signals from the surface for CO2 retrieval. For optically thick clouds, CO2 columns above the clouds are estimated with lidar returns from the cloud tops, and neighboring clear sky areas are used to measure the total CO2 columns to the surface. Case studies show that the full-column atmospheric CO2 measurements are very similar in adjacent clear and thin-cloud regions, while the signal-to-noise ratio (SNR) values of the CO2 columns are very different due to differences in the transmissions from aircraft to surface over cloudy and clear regions. For example, the measured CO2 columns to land surfaces were found to be about 398 ppm with an average SNR values for 0.1-s averages of about 140 and 38 in clear and thin-cloud conditions, respectively. Under thick clouds conditions, considerable variations in lidar returns for the extended targets are found. Also, their CO2 differential absorption optical depth values are normally smaller than those to the surface. These effects significantly reduce the precisions of CO2 column measurements both above clouds and to the surface under cloudy conditions compared to those to the surface in clear skies. Still, column-averaged CO2 mixing ratio (XCO2) estimates above clouds for daytime observations are expected to be slightly higher than those for the entire atmospheric column due to CO2 uptake by vegetation at the surface.

  2. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming.

    PubMed

    Parrenin, F; Masson-Delmotte, V; Köhler, P; Raynaud, D; Paillard, D; Schwander, J; Barbante, C; Landais, A; Wegner, A; Jouzel, J

    2013-03-01

    Understanding the role of atmospheric CO2 during past climate changes requires clear knowledge of how it varies in time relative to temperature. Antarctic ice cores preserve highly resolved records of atmospheric CO2 and Antarctic temperature for the past 800,000 years. Here we propose a revised relative age scale for the concentration of atmospheric CO2 and Antarctic temperature for the last deglacial warming, using data from five Antarctic ice cores. We infer the phasing between CO2 concentration and Antarctic temperature at four times when their trends change abruptly. We find no significant asynchrony between them, indicating that Antarctic temperature did not begin to rise hundreds of years before the concentration of atmospheric CO2, as has been suggested by earlier studies.

  3. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures.

  4. Atmospheric CO2 capture by algae: Negative carbon dioxide emission path.

    PubMed

    Moreira, Diana; Pires, José C M

    2016-09-01

    Carbon dioxide is one of the most important greenhouse gas, which concentration increase in the atmosphere is associated to climate change and global warming. Besides CO2 capture in large emission point sources, the capture of this pollutant from atmosphere may be required due to significant contribution of diffuse sources. The technologies that remove CO2 from atmosphere (creating a negative balance of CO2) are called negative emission technologies. Bioenergy with Carbon Capture and Storage may play an important role for CO2 mitigation. It represents the combination of bioenergy production and carbon capture and storage, keeping carbon dioxide in geological reservoirs. Algae have a high potential as the source of biomass, as they present high photosynthetic efficiencies and high biomass yields. Their biomass has a wide range of applications, which can improve the economic viability of the process. Thus, this paper aims to assess the atmospheric CO2 capture by algal cultures. PMID:27005790

  5. Climate change and the middle atmosphere. I - The doubled CO2 climate

    NASA Technical Reports Server (NTRS)

    Rind, D.; Prather, M. J.; Suozzo, R.; Balachandran, N. K.

    1990-01-01

    The effect of doubling the atmospheric content of CO2 on the middle-atmosphere climate is investigated using the GISS global climate model. In the standard experiment, the CO2 concentration is doubled both in the stratosphere and troposphere, and the SSTs are increased to match those of the doubled CO2 run of the GISS model. Results show that the doubling of CO2 leads to higher temperatures in the troposphere, and lower temperatures in the stratosphere, with a net result being a decrease of static stability for the atmosphere as a whole. The middle atmosphere dynamical differences found were on the order of 10-20 percent of the model values for the current climate. These differences, along with the calculated temperature differences of up to about 10 C, may have a significant impact on the chemistry of the future atmosphere, including that of stratospheric ozone, the polar ozone 'hole', and basic atmospheric composition.

  6. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon Forest

    NASA Astrophysics Data System (ADS)

    Fan, Song-Miao; Wofsy, Steven C.; Bakwin, Peter S.; Jacob, Daniel J.; Fitzjarrald, David R.

    1990-09-01

    Measurements of vertical fluxes for CO2 and O3 were made at a level 10 m above the canopy of the Amazon forest during the wet season, using eddy correlation techniques. Vertical profiles of CO2 and O3 were recorded continuously from above the canopy to the soil surface, and forest floor respiration was measured using soil enclosures. Nocturnal respiration of CO2 by the forest ecosystem averaged 2.57 kgC/ha/h, with about 85% from the forest floor. During the daytime, CO2 was taken up at a mean rate of 4.4 kgC/ha/h. Net ecosystem uptake of carbon dioxide increased with solar flux by 0.015 (kgC/ha/h)/(W m-2), corresponding to fixation of 0.0076 moles CO2 per mole photons (about 0.017 moles CO2 per mole of absorbed photons at photosynthetically active wavelengths). The relationship between net ecosystem exchange and solar flux was virtually the same in the Amazon forest as in forests in Canada (Desjardins et al., 1982, 1985) and Tennessee (Baldocchi et al., 1987a,b). The relatively high efficiency for utilization of light (about 30% of the theoretical maximum) and the strong dependence of net CO2 uptake on solar flux suggest that light may significantly regulate net ecosystem exchange and carbon storage in the tropical forest. Changes in the distribution of cloud cover, associated for example with climatic shifts, might induce globally significant changes in carbon storage. Rates for uptake of O3 averaged 2.3×1011 molecules cm-2s-1 in the daytime (10 hours, 700-1700 hours), dropping by roughly a factor of 10 during the 14 hours from dusk to dawn. The mean O3 deposition velocity at 40 m was 0.26 cm s-1 in the night and 1.8 cm s-1 in the day. Diurnal variation of O3 deposition was regulated both by stratification of the atmospheric boundary layer and by stomatal response to light and water deficit. The total flux of O3 to the forest was limited largely by supply from the free troposphere above. Deposition of O3 to the forest canopy appears to be a regionally, and

  7. Atmosphere-biosphere exchange of CO2 and O3 in the central Amazon forest

    NASA Astrophysics Data System (ADS)

    Wofsy, Steven C.; Bakwin, Peter S.; Jacob, Daniel J.; Fitzjarrald, David R.

    1990-09-01

    Measurements of vertical fluxes for CO2 and O3 were made at a level 10 m above the canopy of the Amazon forest during the wet season, using eddy correlation techniques. Vertical profiles of CO2 and O3 were recorded continuously from above the canopy to the soil surface, and forest floor respiration was measured using soil enclosures. Nocturnal respiration of CO2 by the forest ecosystem averaged 2.57 kgC/ha/h, with about 85% from the forest floor. During the daytime, CO2 was taken up at a mean rate of 4.4 kgC/ha/h. Net ecosystem uptake of carbon dioxide increased with solar flux by 0.015 (kgC/ha/h)/(W m-2), corresponding to fixation of 0.0076 moles CO2 per mole photons (about 0.017 moles CO2 per mole of absorbed photons at photosynthetically active wavelengths). The relationship between net ecosystem exchange and solar flux was virtually the same in the Amazon forest as in forests in Canada (Desjardins et al., 1982, 1985) and Tennessee (Baldocchi et al., 1987ab). The relatively high efficiency for utilization of light (about 30% of the theoretical maximum) and the strong dependence of net CO2 uptake on solar flux suggest that light may significantly regulate net ecosystem exchange and carbon storage in the tropical forest. Changes in the distribution of cloud cover, associated for example with climatic shifts, might induce globally significant changes in the carbon storage. Rates for uptake of O3 averaged 2.3×1011 molecules cm-2 s-1 in the daytime (10 hours, 700-1700 hours) dropping by roughly a factor of 10 during the 14 hours from dusk to dawn. The mean O3 deposition velocity at 40 m was 0.26 cm s-1 in the night and 1.8 cm s-1 in the day. Diurnal variation of O3 deposition was regulated both by stratification of the atmospheric boundary layer and by stomatal response to light and water deficit. The total flux of O3 to the forest was limited largely by supply from the free troposphere above. Deposition of O3 to the forest canopy appears to be a regionally, and

  8. Photosynthetic adaptations to low atmospheric CO2 evels of the Late Pleistocene

    SciTech Connect

    Sage, R.F.

    1995-06-01

    The Pleistocene was a period where atmospheric CO2 level fell to its lowest point (180 ppm) of the past 200 million years. At these low levels. photosynthesis in C3 plants is strongly limited by the availability of CO2 for the carboxylation reaction of Rubisco, and by photorespiration, which becomes extensive above 20{degrees}C. A reduction of CO2 to 180 ppm results in a mean 50% decline in photosynthesis relative to the rate at 350 ppm CO2. Plants can potentially adapt to low atmospheric CO2 by either increasing the specificity of Rubisco for CO2, minimizing leaf temperature, or through faster CO2 delivery to the chloroplast. Of these mechanisms, the facilitation of CO2 delivery (via C4, HCO3-1 pumping, or carbonic anhydrase) has been the most effective. Differences in Rubisco specificity for CO2 are not pronounced in organisms containing chloroplasts, indicating little evolutionary advancement in Rubisco in recent geological times. Avoidance of elevated leaf temperature through morphological, temporal, or stomatal adjustments has been of limited value, and usually involves a significant cost. Given the pronounced reduction in photosyntheticpotential because of low CO2 during the Pleistocene, it is not readily apparent how C3 species were able to maintain widespread dominance in the presence of CO2-concentrating species such as C4 plants. Paleo-ecological surveys indicate they did, however. Possible mechanisms for ecological success of C3 plants during the Pleistocene will be discussed.

  9. The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Brooks, B. J.; Hoffman, F. M.; Mills, R. T.; Erickson, D. J.; Blasing, T. J.

    2009-12-01

    A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO2 by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO2 flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO2 flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO2 seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO2 emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA‧ (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO2 concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO2 between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO2 seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO2 concentrations depend strongly on the natural sources and sinks of CO2, but also on the strength of local anthropogenic CO2 emissions and geographic position. This work further

  10. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2.

    PubMed

    DeConto, Robert M; Pollard, David

    2003-01-16

    The sudden, widespread glaciation of Antarctica and the associated shift towards colder temperatures at the Eocene/Oligocene boundary (approximately 34 million years ago) (refs 1-4) is one of the most fundamental reorganizations of global climate known in the geologic record. The glaciation of Antarctica has hitherto been thought to result from the tectonic opening of Southern Ocean gateways, which enabled the formation of the Antarctic Circumpolar Current and the subsequent thermal isolation of the Antarctic continent. Here we simulate the glacial inception and early growth of the East Antarctic Ice Sheet using a general circulation model with coupled components for atmosphere, ocean, ice sheet and sediment, and which incorporates palaeogeography, greenhouse gas, changing orbital parameters, and varying ocean heat transport. In our model, declining Cenozoic CO2 first leads to the formation of small, highly dynamic ice caps on high Antarctic plateaux. At a later time, a CO2 threshold is crossed, initiating ice-sheet height/mass-balance feedbacks that cause the ice caps to expand rapidly with large orbital variations, eventually coalescing into a continental-scale East Antarctic Ice Sheet. According to our simulation the opening of Southern Ocean gateways plays a secondary role in this transition, relative to CO2 concentration.

  11. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2.

    PubMed

    DeConto, Robert M; Pollard, David

    2003-01-16

    The sudden, widespread glaciation of Antarctica and the associated shift towards colder temperatures at the Eocene/Oligocene boundary (approximately 34 million years ago) (refs 1-4) is one of the most fundamental reorganizations of global climate known in the geologic record. The glaciation of Antarctica has hitherto been thought to result from the tectonic opening of Southern Ocean gateways, which enabled the formation of the Antarctic Circumpolar Current and the subsequent thermal isolation of the Antarctic continent. Here we simulate the glacial inception and early growth of the East Antarctic Ice Sheet using a general circulation model with coupled components for atmosphere, ocean, ice sheet and sediment, and which incorporates palaeogeography, greenhouse gas, changing orbital parameters, and varying ocean heat transport. In our model, declining Cenozoic CO2 first leads to the formation of small, highly dynamic ice caps on high Antarctic plateaux. At a later time, a CO2 threshold is crossed, initiating ice-sheet height/mass-balance feedbacks that cause the ice caps to expand rapidly with large orbital variations, eventually coalescing into a continental-scale East Antarctic Ice Sheet. According to our simulation the opening of Southern Ocean gateways plays a secondary role in this transition, relative to CO2 concentration. PMID:12529638

  12. Physiological Significance of Low Atmospheric CO 2 for Plant-Climate Interactions

    NASA Astrophysics Data System (ADS)

    Cowling, Sharon A.; Sykes, Martin T.

    1999-09-01

    Methods of palaeoclimate reconstruction from pollen are built upon the assumption that plant-climate interactions remain the same through time or that these interactions are independent of changes in atmospheric CO2. The latter may be problematic because air trapped in polar ice caps indicates that atmospheric CO2 has fluctuated significantly over at least the past 400,000 yr, and likely the last 1.6 million yr. Three other points indicate potential biases for vegetation-based climate proxies. First, C3-plant physiological research shows that the processes that determine growth optima in plants (photosynthesis, mitochondrial respiration, photorespiration) are all highly CO2-dependent, and thus were likely affected by the lower CO2 levels of the last glacial maximum. Second, the ratio of carbon assimilation per unit transpiration (called water-use efficiency) is sensitive to changes in atmospheric CO2 through effects on stomatal conductance and may have altered C3-plant responses to drought. Third, leaf gas-exchange experiments indicate that the response of plants to carbon-depleting environmental stresses are strengthened under low CO2 relative to today. This paper reviews the scope of research addressing the consequences of low atmospheric CO2 for plant and ecosystem processes and highlights why consideration of the physiological effects of low atmospheric CO2 on plant function is recommended for any future refinements to pollen-based palaeoclimatic reconstructions.

  13. Implications of a Changing Arctic on Summertime Surface Seawater pCO2 Variations in the Eastern Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Burgers, T.; Miller, L. A.; Thomas, H.; Else, B. G. T.; Gosselin, M.; Papakyriakou, T. N.

    2015-12-01

    Arctic marine carbonate chemistry and rates of air-sea CO2 exchange are anticipated to be affected by current changes in sea-ice structure and extent, freshwater inputs, ocean circulation patterns, and the seasonality of phytoplankton blooms. This study examines how such changes will impact rates of air-sea CO2 exchange in northern Baffin Bay, Nares Strait, and the eastern Canadian Arctic Archipelago. This complex oceanographic region includes the North Water polynya; one of the most biologically productive areas in the Arctic Ocean, and the convergence site of the warm West Greenland Current with cold exported Arctic waters. Continuous measurements of atmospheric and surface seawater CO2 (pCO2) were collected onboard the Canadian Coast Guard Ship Amundsen during its 2013 and 2014 summer cruises. Surface seawater pCO2 displayed considerable variability (145 - 389 ppm), but never exceeded atmospheric concentrations. Calculated CO2 fluxes ranged from 0 to -45 mmol m-2 day-1 (oceanic uptake), and were estimated using the Sweeney et al. (2007) parameterization with in-situ wind speed measurements. Ancillary measurements of chlorophyll a reveal low productivity in surface waters during mid-summer with isolated sub-surface blooms. This is likely the result of nutrient limitation within the highly stratified polar mixed layer (PML). Measurements of stable oxygen isotope ratios (δ18O) and total alkalinity were used to estimate freshwater inputs (sea-ice melt vs. meteoric water) to the PML. These and in-situ observations of sea ice cover were used to interpret seawater pCO2 variations. Surface waters influenced by sea-ice melt exhibit lower pCO2 than those influenced by meteoric water. The results of this investigation shed light on the future role of this region as a summertime sink of atmospheric CO2.

  14. Impact of oceanic circulation changes on atmospheric δ13CO2

    NASA Astrophysics Data System (ADS)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-11-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ13CO2: namely, strong oceanic ventilation decreases atmospheric δ13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C.

  15. Horizontal displacement of carbon associated with agriculture and its impacts on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Ciais, P.; Bousquet, P.; Freibauer, A.; Naegler, T.

    2007-06-01

    The growth of crops represents a sink of atmospheric CO2, whereas biomass is consumed by humans and housed animals, yielding respiratory sources of CO2. This process induces a lateral displacement of carbon and creates geographic patterns of CO2 sources and sinks at the surface of the globe. We estimated the global carbon flux harvested in croplands to be 1290 TgC/yr. Most of this carbon is transported into domestic trade, whereas a small fraction (13%) enters into international trade circuits. We then calculated the global patterns of CO2 fluxes associated with food and feedstuff trade, using country-based agricultural statistics and activity maps of human and housed animal population densities. The CO2 flux maps show regional dipoles of sources and sinks in Asia and North America. The effect of these fluxes on atmospheric CO2 was simulated using a global atmospheric transport model. The mean latitudinal CO2 gradients induced by the displacement of crop products are fairly small (≈0.2 ppm) compared with observations (4-5 ppm), indicating that this process has a only a small influence in explaining the latitudinal distribution of CO2 fluxes. On the other hand, the simulated longitudinal mean atmospheric CO2 gradients at northern midlatitudes (≈ up to 0.5 ppm) are comparable to the ones measured between atmospheric stations, suggesting that CO2 fluxes from crop products trade are an important component of continental- and regional-scale CO2 budgets. Thus they should be accounted for as prior information in regional inversions.

  16. Radiocarbon isotopic evidence for assimilation of atmospheric CO2 by the seagrass Zostera marina

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Kuwae, T.

    2015-10-01

    Submerged aquatic vegetation takes up water-column dissolved inorganic carbon (DIC) as a carbon source across its thin cuticle layer. It is expected that marine macrophytes also use atmospheric CO2 when exposed to air during low tide, although assimilation of atmospheric CO2 has never been quantitatively evaluated. Using the radiocarbon isotopic signatures (Δ14C) of the seagrass Zostera marina, DIC and particulate organic carbon (POC), we show quantitatively that Z. marina takes up and assimilates atmospheric modern CO2 in a shallow coastal ecosystem. The Δ14C values of the seagrass (-40 to -10 ‰) were significantly higher than those of aquatic DIC (-46 to -18 ‰), indicating that the seagrass uses a 14C-rich carbon source (atmospheric CO2, +17 ‰). A carbon-source mixing model indicated that the seagrass assimilated 0-40 % (mean, 17 %) of its inorganic carbon as atmospheric CO2. CO2 exchange between the air and the seagrass might be enhanced by the presence of a very thin film of water over the air-exposed leaves during low tide. Our radiocarbon isotope analysis, showing assimilation of atmospheric modern CO2 as an inorganic carbon source, improves our understanding of the role of seagrass meadows in coastal carbon dynamics.

  17. Impacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps.

    PubMed

    Karnosky, David F

    2003-06-01

    Atmospheric CO(2) is rising rapidly, and options for slowing the CO(2) rise are politically charged as they largely require reductions in industrial CO(2) emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO(2) on forest tree growth, productivity, and forest ecosystem function. In this paper, I review knowledge gaps and research needs on the effects of elevated atmospheric CO(2) on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phenology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, I discuss research needs regarding modeling of the impacts of elevated atmospheric CO(2) on forests.Even though there has been a tremendous amount of research done with elevated CO(2) and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO(2). Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO(2). The more we study the impacts of increasing CO(2), the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO(2) with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O(3). Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO(2) enrichment

  18. Impacts of elevated atmospheric CO(2) on forest trees and forest ecosystems: knowledge gaps.

    PubMed

    Karnosky, David F

    2003-06-01

    Atmospheric CO(2) is rising rapidly, and options for slowing the CO(2) rise are politically charged as they largely require reductions in industrial CO(2) emissions for most developed countries. As forests cover some 43% of the Earth's surface, account for some 70% of terrestrial net primary production (NPP), and are being bartered for carbon mitigation, it is critically important that we continue to reduce the uncertainties about the impacts of elevated atmospheric CO(2) on forest tree growth, productivity, and forest ecosystem function. In this paper, I review knowledge gaps and research needs on the effects of elevated atmospheric CO(2) on forest above- and below-ground growth and productivity, carbon sequestration, nutrient cycling, water relations, wood quality, phenology, community dynamics and biodiversity, antioxidants and stress tolerance, interactions with air pollutants, heterotrophic interactions, and ecosystem functioning. Finally, I discuss research needs regarding modeling of the impacts of elevated atmospheric CO(2) on forests.Even though there has been a tremendous amount of research done with elevated CO(2) and forest trees, it remains difficult to predict future forest growth and productivity under elevated atmospheric CO(2). Likewise, it is not easy to predict how forest ecosystem processes will respond to enriched CO(2). The more we study the impacts of increasing CO(2), the more we realize that tree and forest responses are yet largely uncertain due to differences in responsiveness by species, genotype, and functional group, and the complex interactions of elevated atmospheric CO(2) with soil fertility, drought, pests, and co-occurring atmospheric pollutants such as nitrogen deposition and O(3). Furthermore, it is impossible to predict ecosystem-level responses based on short-term studies of young trees grown without interacting stresses and in small spaces without the element of competition. Long-term studies using free-air CO(2) enrichment

  19. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy.

    PubMed

    Tor-ngern, Pantana; Oren, Ram; Ward, Eric J; Palmroth, Sari; McCarthy, Heather R; Domec, Jean-Christophe

    2015-01-01

    Models of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2 ]-induced structural changes, such as increasing leaf-area index (LD), may cause, or compensate for, reduced mean canopy stomatal conductance (GS), keeping transpiration (EC) and, hence, runoff unaltered. We investigated GS responses to increasing [CO2] of conifer and broadleaved trees in a temperate forest subjected to 17-yr free-air CO2 enrichment (FACE; + 200 μmol mol(-1)). During the final phase of the experiment, we employed step changes of [CO2] in four elevated-[CO2 ] plots, separating direct response to changing [CO2] in the leaf-internal air-space from indirect effects of slow changes via leaf hydraulic adjustments and canopy development. Short-term manipulations caused no direct response up to 1.8 × ambient [CO2], suggesting that the observed long-term 21% reduction of GS was an indirect effect of decreased leaf hydraulic conductance and increased leaf shading. Thus, EC was unaffected by [CO2] because 19% higher canopy LD nullified the effect of leaf hydraulic acclimation on GS . We advocate long-term experiments of duration sufficient for slow responses to manifest, and modifying models predicting forest water, energy and carbon cycles accordingly.

  20. Increases in atmospheric CO2 have little influence on transpiration of a temperate forest canopy.

    PubMed

    Tor-ngern, Pantana; Oren, Ram; Ward, Eric J; Palmroth, Sari; McCarthy, Heather R; Domec, Jean-Christophe

    2015-01-01

    Models of forest energy, water and carbon cycles assume decreased stomatal conductance with elevated atmospheric CO2 concentration ([CO2]) based on leaf-scale measurements, a response not directly translatable to canopies. Where canopy-atmosphere are well-coupled, [CO2 ]-induced structural changes, such as increasing leaf-area index (LD), may cause, or compensate for, reduced mean canopy stomatal conductance (GS), keeping transpiration (EC) and, hence, runoff unaltered. We investigated GS responses to increasing [CO2] of conifer and broadleaved trees in a temperate forest subjected to 17-yr free-air CO2 enrichment (FACE; + 200 μmol mol(-1)). During the final phase of the experiment, we employed step changes of [CO2] in four elevated-[CO2 ] plots, separating direct response to changing [CO2] in the leaf-internal air-space from indirect effects of slow changes via leaf hydraulic adjustments and canopy development. Short-term manipulations caused no direct response up to 1.8 × ambient [CO2], suggesting that the observed long-term 21% reduction of GS was an indirect effect of decreased leaf hydraulic conductance and increased leaf shading. Thus, EC was unaffected by [CO2] because 19% higher canopy LD nullified the effect of leaf hydraulic acclimation on GS . We advocate long-term experiments of duration sufficient for slow responses to manifest, and modifying models predicting forest water, energy and carbon cycles accordingly. PMID:25346045

  1. Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land-use effects

    USGS Publications Warehouse

    Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, J.S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.

    2002-01-01

    An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.

  2. Quantifying the combined effects of elevated atmospheric CO2 and nutrient amendments on subsurface CO2 production in a southern Loblolly pine plantation using Inverse Methods

    NASA Astrophysics Data System (ADS)

    Daly, E.; Porporato, A.; Oren, R.; Katul, G.

    2005-12-01

    Subsurface CO_2 production (S), one of the largest CO_2 sources to the atmosphere, has been the subject of intense studies because of its potential role in amplifying global warming. Projected warming trends associated with rise in atmospheric CO_2 can lead to higher soil temperature and greater S thereby completing the positive feedback.Surprisingly, the individual and combined effects of elevated atmospheric CO_2 and nitrogen deposition rates on S remain poorly understood, especially in forested ecosystems. Field studies on the effects of elevated atmospheric CO_2 on S are mixed with several studies reporting an increase in S because of an increase in root biomass and enhanced microbial activity, while others reporting only transient changes. On the other hand, several field experiments documented a clear suppression of S with increased nitrogen amendments. Resolving the combined effects of elevated atmospheric CO_2 and nitrogen amendments on S is complicated by an intricate balance between various physical and biological processes. To begin confronting this problems, frequent in situ measurements of root and microbial respiration at multiple soil depths and at the same location must be conducted. Here, we quantify the joint and individual effects of elevated atmospheric CO_2 and nutrient amendments on CO_2 production rates in the soil pore spaces within the root-zone using a combination of field measurements and inverse modeling* across a wide range of soil moisture states. The field experiment utilizes the Free Air CO_2 Enrichment facility in which 30 m rings enriched with CO_2 are also fertilized. The inverse model calculations use an array of small solid-state CO_2 sensors for measured spatial concentration distributions along with measured soil moisture and soil temperature to estimate gas-phase CO_2 diffusivity. Implications to below ground carbon cycling and their linkages to alterations in root-water uptake patterns due to elevated CO_2 and N are also

  3. Grasses and Gases: Impacts of Atmospheric CO2 Enrichment on Grasslands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concentration of carbon dioxide (CO2) gas in the atmosphere has increased by about 40% since the beginning of the Industrial revolution 200 years ago to the current level of 380 parts per million (ppm). Fossil fuel consumption and changes in land use account for much of this increase in CO2. A...

  4. Nitrogen and carbon cycling in a grassland community ecosystem as affected by elevated atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing global atmospheric CO2 concentration has led to concerns regarding its potential effects on terrestrial ecosystem and the long-term storage of C and N in soil. This study examined responses to elevated CO2 in a grass ecosystem invaded with a leguminous shrub Acacia farnesiana (L.) Willd (...

  5. Modeling plant-atmosphere carbon and water fluxes along a CO2 gradient

    Technology Transfer Automated Retrieval System (TEKTRAN)

    At short time scales (hourly to daily), plant photosynthesis and transpiration respond nonlinearly to atmospheric CO2 concentration and vapor pressure deficit, depending on plant water status and thus soil moisture. Modeling vegetation and soil responses to different values of CO2 at multiple time s...

  6. Measurement of Concentration of CO2 in Atmosphere In Situ Based on TDLAS

    NASA Astrophysics Data System (ADS)

    Xin, Fengxin; Guo, Jinjia; Chen, Zhen; Liu, Zhishen

    2014-11-01

    As one of the main greenhouse gases in the atmosphere, CO2has a significant impact on global climate change and the ecological environment. Because of close relationship between human activities and the CO2 emissions, it is very meaningful of detecting atmospheric CO2accurately. Based on the technology of tunable diode laser absorption spectroscopy, the wavelength of distributed feedback laser is modulated, Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by corner reflector, and focuses the receiving laser-beam to the photoelectric detector. The second harmonic signal is received through lock-in amplifier and collected by AD data acquisition card, after that the system is built up.By choosing the infrared absorption line of CO2at 1.57μm, the system is calibrated by 100% CO2 gas cell. The atmospheric CO2 in situ is measured with long open-path way. Furthermore, the results show that CO2 concentration decreases along time in the morning of day. It is proved that TDLAS technology has many advantages, including fast response, high sensitivity and resolution. This research provides a technique for monitoring secular change of CO2 in atmosphere.

  7. Quantifying Diurnal and Spatial Variations in CO2 Concentrations and Partial Columns using High-Resolution Global Model Simulations

    NASA Astrophysics Data System (ADS)

    Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.

    2015-12-01

    Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio

  8. Dissolved inorganic carbon and stable carbon isotopic evolution of neutral mine drainage interacting with atmospheric CO2(g).

    PubMed

    Abongwa, Pride Tamasang; Atekwana, Eliot Anong; Puckette, James

    2016-03-01

    We investigated the spatial variations in the concentrations of dissolved inorganic carbon (DIC), the stable carbon isotopic composition (δ(13)C) of DIC and the δ(13)C of carbonate precipitated from neutral mine drainage interacting with the atmospheric CO2(g). We assessed the chemical, DIC and δ(13)CDIC evolution of the mine drainage and the δ(13)C evolution of carbonate precipitates for a distance of 562 m from the end of an 8 km tunnel that drains a mine. Our results show that as the mine drainage interacts with atmospheric CO2(g) the outgassing of CO2 due to the high initial partial pressure of CO2 (pCO2) causes the DIC to evolve under kinetic conditions followed by equilibration and then under equilibrium conditions. The carbonate evolution was characterized by spatial increases in pH, decreasing concentrations of Ca(2+) and DIC and by the precipitation of carbonate. The δ(13)CDIC showed a larger enrichment from the tunnel exit to 38 m, moderate continuous enrichment to 318 m and almost no enrichment to 562 m. On the other hand, the δ(13)C of the carbonate precipitates also showed large enrichment from the tunnel exit to 38 m, moderate enrichment to 318 m after which the δ(13)C remained nearly constant. The enrichment in the δ(13)C of the DIC and the carbonate precipitates from 0 to 38 m from kinetic fractionation caused by CO2(g) outgassing was followed by a mix of kinetic fractionation and equilibrium fractionation controlled by carbon exchange between DIC and atmospheric CO2(g) to 318 m and then by equilibrium fractionation from 318 to 562 m. From the carbonate evolution in this neutral mine drainage, we estimated that 20% of the carbon was lost via CO2 outgassing, 12% was sequestered in sediments in the drainage ponds from calcite precipitation and the remainder 68% was exported to the local stream.

  9. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation.

    PubMed

    Yung, Y L; Nair, H; Gerstell, M F

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  10. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Nair, H.; Gerstell, M. F.

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface.

  11. CO2 greenhouse in the early martian atmosphere: SO2 inhibits condensation.

    PubMed

    Yung, Y L; Nair, H; Gerstell, M F

    1997-01-01

    Many investigators of the early martian climate have suggested that a dense carbon dioxide atmosphere was present and warmed the surface above the melting point of water (J.B. Pollack, J.F. Kasting, S.M. Richardson, and K. Poliakoff 1987. Icarus 71, 203-224). However, J.F. Kasting (1991. Icarus 94, 1-13) pointed out that previous thermal models of the primitive martian atmosphere had not considered the condensation of CO2. When this effect was incorporated, Kasting found that CO2 by itself is inadequate to warm the surface. SO2 absorbs strongly in the near UV region of the solar spectrum. While a small amount of SO2 may have a negligible effect by itself on the surface temperature, it may have significantly warmed the middle atmosphere of early Mars, much as ozone warms the terrestrial stratosphere today. If this region is kept warm enough to inhibit the condensation of CO2, then CO2 remains a viable greenhouse gas. Our preliminary radiative modeling shows that the addition of 0.1 ppmv of SO2 in a 2 bar CO2 atmosphere raises the temperature of the middle atmosphere by approximately 10 degrees, so that the upper atmosphere in a 1 D model remains above the condensation temperature of CO2. In addition, this amount of SO2 in the atmosphere provides an effective UV shield for a hypothetical biosphere on the martian surface. PMID:11541436

  12. Regional and Local Carbon Flux Information from a Continuous Atmospheric CO2 Network in the Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Heck, S. L.; Stephens, B.; Watt, A.

    2007-12-01

    We will present preliminary carbon flux estimates from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON). In order to improve our understanding of regional carbon fluxes in the Rocky Mountain West, we have developed and deployed autonomous, inexpensive, and robust CO2 analyzers (AIRCOA) at five sites throughout Colorado and Utah, and plan additional deployments on the Navajo Reservation, Arizona in September 2007 and atop Mount Kenya, Africa in November 2007. We have used a one- dimensional CO2 budget equation, following Bakwin et al. (2004), to estimate regional monthly-mean fluxes from our continuous CO2 concentrations. These comparisons between our measurements and estimates of free- tropospheric background concentrations reveal regional-scale CO2 flux signals that are generally consistent with one another across the Rocky RACCOON sites. We will compare the timing and magnitude of these estimates with expectations from local-scale eddy-correlation flux measurements and bottom-up ecosystem models. We will also interpret the differences in monthly-mean flux signals between our sites in terms of their varying upwind areas of influence and inferred regional variations in CO2 fluxes. Our measurements will be included in future CarbonTracker assimilation runs and other planned model-data fusion efforts. However, questions still exist concerning the ability of these models to accurately represent the various influences on CO2 concentrations in continental boundary layers, and at mountaintop sites in particular. We will present an analysis of the diurnal cycles in CO2 concentration and CO2 variability at our sites, and compare these to various model estimates. Several of our sites near major population centers reflect the influence of industrial CO2 sources in afternoon upslope flows, with CO2 concentration increasing and variable in the mid to late afternoon. Other more remote sites show more consistent and decreasing CO2

  13. Bioenergy from forestry and changes in atmospheric CO2: reconciling single stand and landscape level approaches.

    PubMed

    Cherubini, Francesco; Guest, Geoffrey; Strømman, Anders H

    2013-11-15

    Analyses of global warming impacts from forest bioenergy systems are usually conducted either at a single stand level or at a landscape level, yielding findings that are sometimes interpreted as contrasting. In this paper, we investigate and reconcile the scales at which environmental impact analyses of forest bioenergy systems are undertaken. Focusing on the changes caused in atmospheric CO2 concentration of forest bioenergy systems characterized by different initial states of the forest, we show the features of the analyses at different scales and depict the connections between them. Impacts on atmospheric CO2 concentration at a single stand level are computed through impulse response functions (IRF). Results at a landscape level are elaborated through direct application of IRFs to the emission profile, so to account for the fluxes from all the stands across time and space. Impacts from fossil CO2 emissions are used as a benchmark. At a landscape level, forest bioenergy causes an increase in atmospheric CO2 concentration for the first decades that is similar to the impact from fossil CO2, but then the dynamics clearly diverge because while the impact from fossil CO2 continues to rise that from bioenergy stabilizes at a certain level. These results perfectly align with those obtained at a single stand for which characterization factors have been developed. In the hypothetical case of a sudden cessation of emissions, the change caused in atmospheric CO2 concentration from biogenic CO2 emissions reverses within a couple of decades, while that caused by fossil CO2 emissions remains considerably higher for centuries. When counterfactual aspects like the additional sequestration that would have occurred in the forest if not harvested and the theoretical displacement of fossil CO2 are included in the analysis, results can widely differ, as the CO2 debt at a landscape level ranges from a few years to several centuries (depending on the underlying assumptions considered).

  14. The stomatal CO2 proxy does not saturate at high atmospheric CO2 concentrations: evidence from stomatal index responses of Araucariaceae conifers.

    PubMed

    Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C

    2011-09-01

    The inverse relationship between the number of stomata on a leaf surface and the atmospheric carbon dioxide concentration ([CO(2)]) in which the leaf developed allows plants to optimise water-use efficiency (WUE), but it also permits the use of fossil plants as proxies of palaeoatmospheric [CO(2)]. The ancient conifer family Araucariaceae is often represented in fossil floras and may act as a suitable proxy of palaeo-[CO(2)], yet little is known regarding the stomatal index (SI) responses of extant Araucariaceae to [CO(2)]. Four Araucaria species (Araucaria columnaris, A. heterophylla, A. angustifolia and A. bidwillii) and Agathis australis displayed no significant relationship in SI to [CO(2)] below current ambient levels (~380 ppm). However, representatives of the three extant genera within the Araucariaceae (A. bidwillii, A. australis and Wollemia nobilis) all exhibited significant reductions in SI when grown in atmospheres of elevated [CO(2)] (1,500 ppm). Stomatal conductance was reduced and WUE increased when grown under elevated [CO(2)]. Stomatal pore length did not increase alongside reduced stomatal density (SD) and SI in the three araucariacean conifers when grown at elevated [CO(2)]. These pronounced SD and SI reductions occur at higher [CO(2)] levels than in other species with more recent evolutionary origins, and may reflect an evolutionary legacy of the Araucariaceae in the high [CO(2)] world of the Mesozoic Era. Araucariacean conifers may therefore be suitable stomatal proxies of palaeo-[CO(2)] during periods of "greenhouse" climates and high [CO(2)] in the Earth's history.

  15. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation

    PubMed Central

    Tokoro, Tatsuki; Hosokawa, Shinya; Miyoshi, Eiichi; Tada, Kazufumi; Watanabe, Kenta; Montani, Shigeru; Kayanne, Hajime; Kuwae, Tomohiro

    2014-01-01

    ‘Blue Carbon’, which is carbon captured by marine living organisms, has recently been highlighted as a new option for climate change mitigation initiatives. In particular, coastal ecosystems have been recognized as significant carbon stocks because of their high burial rates and long-term sequestration of carbon. However, the direct contribution of Blue Carbon to the uptake of atmospheric CO2 through air-sea gas exchange remains unclear. We performed in situ measurements of carbon flows, including air-sea CO2 fluxes, dissolved inorganic carbon changes, net ecosystem production, and carbon burial rates in the boreal (Furen), temperate (Kurihama), and subtropical (Fukido) seagrass meadows of Japan from 2010 to 2013. In particular, the air-sea CO2 flux was measured using three methods: the bulk formula method, the floating chamber method, and the eddy covariance method. Our empirical results show that submerged autotrophic vegetation in shallow coastal waters can be functionally a sink for atmospheric CO2. This finding is contrary to the conventional perception that most near-shore ecosystems are sources of atmospheric CO2. The key factor determining whether or not coastal ecosystems directly decrease the concentration of atmospheric CO2 may be net ecosystem production. This study thus identifies a new ecosystem function of coastal vegetated systems; they are direct sinks of atmospheric CO2. PMID:24623530

  16. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    PubMed

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  17. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2

    PubMed Central

    Friend, Andrew D.; Lucht, Wolfgang; Rademacher, Tim T.; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B.; Dankers, Rutger; Falloon, Pete D.; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R.; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F. Ian

    2014-01-01

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510–758 ppm of CO2), vegetation carbon increases by 52–477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended. PMID:24344265

  18. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    PubMed

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-01

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  19. A 2-Micron Pulsed Integrated Path Differential Absorption Lidar Development For Atmospheric CO2 Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Reithmaier, Karl; Bai, Yingxin; Trieu, Bo C.; Refaat, Tamer F.; Kavaya, Michael J.; Singh, Upendra N.

    2012-01-01

    A 2-micron pulsed, Integrated Path Differential Absorption (IPDA) lidar instrument for ground and airborne atmospheric CO2 concentration measurements via direct detection method is being developed at NASA Langley Research Center. This instrument will provide an alternate approach to measure atmospheric CO2 concentrations with significant advantages. A high energy pulsed approach provides high-precision measurement capability by having high signal-to-noise level and unambiguously eliminates the contamination from aerosols and clouds that can bias the IPDA measurement.

  20. Climatic effects of enhanced CO2 levels in Mars early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1987-01-01

    Results are presented of one-dimensional radiation convection modeling of the early Mars atmosphere. Up to 5 bars of CO2 would have been required to raise the surface temperature (orbitally and globally averaged) above the freezing point, although at the equator at perihelion, 1 bar would have sufficed. Such an atmospheric CO2 invertory, the author argued, is not inconsistent with any known constraint on Mars' degassed volatile inventory.

  1. Interannual physiological responses of glacial trees to changes in atmospheric [CO2] since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Gerhart, L. M.; Harris, J. M.; Ward, J. K.

    2009-12-01

    During the Last Glacial Maximum, atmospheric [CO2] were as low as 180 ppm and have currently risen to a modern value of 385 ppm as a result of fossil fuel combustion and deforestation. In order to understand how changing [CO2] influenced the physiology of trees over the last 50,000 years, we analyzed carbon isotope ratios of individual tree rings from juniper wood specimens from the Rancho La Brea tar pits in southern California and kauri wood specimens from peat bogs in New Zealand (North Island). Modern trees from different altitudes were compared to account for changes in precipitation and temperature through time in order to isolate the effects of changing [CO2]. We hypothesized that over the last 50,000 years, the ratio of ci (intracellular [CO2]) to ca (atmospheric [CO2]) would be maintained within each species. Consequently, ci values would be significantly lower in glacial trees due to lower ca levels during the LGM. In addition, we hypothesized that low [CO2] (which does not vary between years during the LGM) dominated tree physiology during the LGM as evidenced by low levels of inter-annual variation in ci/ca ratios relative to modern trees (which are known to respond to high frequency variation in water and temperature between years). In both kauri and juniper trees, mean ci/ca values remained constant throughout 50,000 years despite major climatic and [CO2] changes, indicating that there is a long-term physiological set point in these species. Limitations on the ci values of glacial junipers suggest that 90 ppm CO2 represents a survival compensation point for this species. In addition, glacial trees showed very low inter-annual variation in ci/ca values compared to modern trees. This suggests that glacial tree physiology may have been dominated by low CO2 that was constant between years, whereas modern trees may be dominated by climatic factors that vary substantially between years. Consequently, while each species maintained mean ci/ca values over time

  2. Acetylene fuel from atmospheric CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Linne, Diane L.

    1992-01-01

    The Mars mission scenario proposed by Baker and Zubrin (1990) intended for an unmanned preliminary mission is extended to maximize the total impulse of fuel produced with a minimum mass of hydrogen from Earth. The hydrogen along with atmospheric carbon dioxide is processed into methane and oxygen by the exothermic reaction in an atmospheric processing module. Use of simple chemical reactions to produce acetylene/oxygen rocket fuel on Mars from hydrogen makes it possible to produce an amount of fuel that is nearly 100 times the mass of hydrogen brought from earth. If such a process produces the return propellant for a manned Mars mission, the required mission mass in LEO is significantly reduced over a system using all earth-derived propellants.

  3. Emissions and Atmospheric CO2 Stabilization: Long-Term Limits and Paths

    SciTech Connect

    Kheshgi, Haroon; Smith, Steven J.; Edmonds, James A.

    2005-04-01

    Over the very long term, cumulative CO2 emissions "over all time, by all people" are uniquely related to ultimate atmospheric CO2 concentration level, with limited approximation. A corollary to this relation is that net CO2 emissions must peak and then gradually approach zero over 1,000+ years if a constant CO2 concentration is to be maintained, regardless of the level. The objective of stabilization of greenhouse gas concentrations is often envisioned as a monotonic approach to constant concentrations. But, if emissions decline less gradually to zero, the pattern of transient CO2 concentrations changes to one with a maximum CO2 concentration followed by a long-term decline to a lower level. Such emissionsconcentration trajectories spend a finite time at the maximum concentration and could have smaller overall climate impacts than trajectories that maintain the maximum concentration. Climate impacts in response to such trajectories, however, remain to be studied.

  4. Effects of stabilizing atmospheric CO2 on global climate in the next two centuries

    NASA Astrophysics Data System (ADS)

    Dai, Aiguo; Wigley, T. M. L.; Meehl, G. A.; Washington, W. M.

    Previous coupled ocean-atmosphere model simulations showed that the reduction in global warming is only moderate by year 2100 under CO2 stabilization (STA) scenarios compared with that under business-as-usual (BAU) scenarios. To further illustrate the long-term effect of stabilizing CO2 on global climate, we integrated a coupled ocean-atmosphere model from 1870 to 2200 forced by historical and projected CO2, SO2 and other greenhouse gases under newly updated BAU and STA scenarios. Our results show that the reduction in global warming resulting from CO2 stabilization could be large (∼1.5°C globally, and up to 12°C in DJF at northern high-latitudes) by the later part of the 22nd century. Stabilizing the CO2 level also results in reduced changes in precipitation, soil moisture and diurnal temperature range. BAU and STA patterns of change are similar for all variables examined.

  5. Carbon and Oxygen Stable Isotope Measurements of Martian Atmospheric CO2 by the Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Niles, Paul B.; Boynton, W. V.; Hoffman, J. H.; Ming, D. W.; Hamara, D.

    2010-01-01

    Precise stable isotope measurements of the CO2 in the martian atmosphere have the potential to provide important constraints for our understanding of the history of volatiles, the carbon cycle, current atmospheric processes, and the degree of water/rock interaction on Mars [1]. The isotopic composition of the martian atmosphere has been measured using a number of different methods (Table 1), however a precise value (<1%) has yet to be achieved. Given the elevated Delta(sup 13)C values measured in carbonates in martian meteorites [2-4] it has been proposed that the martian atmosphere was enriched in 13C [8]. This was supported by measurements of trapped CO2 gas in EETA 79001[2] which showed elevated Delta(sup 13)C values (Table 1). More recently, Earth-based spectroscopic measurements of the martian atmosphere have measured the martian CO2 to be depleted in C-13 relative to CO2 in the terrestrial atmosphere[ 7, 9-11]. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Mars Phoenix Lander [12] included a magnetic-sector mass spectrometer (EGA) [13] which had the goal of measuring the isotopic composition of martian atmospheric CO2 to within 0.5%. The mass spectrometer is a miniature instrument intended to measure both the martian atmosphere as well as gases evolved from heating martian soils.

  6. Evapotranspiration of beech stands and transpiration of beech leaves subject to atmospheric CO(2) enrichment.

    PubMed

    Overdieck, D.; Forstreuter, M.

    1994-01-01

    Beech trees (Fagus sylvatica L.) show reduced stomatal conductance and increased leaf area index in response to increased atmospheric CO(2) concentration. To determine whether the reduction in stomatal conductance results in lower stand evapotranspiration, we compared transpiration on a leaf-area basis and stand evapotranspiration on a ground-area basis in young European beech trees growing in greenhouses at ambient (360 +/- 34 micro mol mol(-1)) and elevated (698 +/- 10 micro mol mol(-1)) CO(2) concentrations. Trees were grown in homogenized natural soil at constant soil water supply for two growing seasons. At light saturation, leaf transpiration rates were, on average, 18% lower in the elevated CO(2) treatment than in the ambient CO(2) treatment. Mean transpiration coefficients (transpiration/net CO(2) uptake) of leaves were 179 and 110 in the ambient and elevated CO(2) treatments, respectively, indicating improved water use efficiency in trees in the elevated CO(2) treatment. Total leaf conductance was decreased by 32% at light saturation. The elevated CO(2) treatment resulted in a 14% reduction in stand evapotranspiration. In both CO(2) treatments, evapotranspiration increased linearly at a rate of 0.2 kg H(2)O m(-2) day(-1) for each 1 degrees C rise in air temperature between 14 and 25 degrees C. We conclude that, under Central European conditions, water losses from deciduous forest stands will be reduced by a doubling of tropospheric CO(2) concentration.

  7. Assessing Atmospheric CO2 Entrapped in Clay Nanotubes using Residual Gas Analyzer.

    PubMed

    Das, Sankar; Maity, Abhijit; Pradhan, Manik; Jana, Subhra

    2016-02-16

    A residual gas analyzer (RGA) coupled with a high-vacuum chamber has been explored to measure atmospheric CO2 entrapped in aminosilane-modified clay nanotubes. Ambient CO2 uptake efficacy together with stability of these novel adsorbents composed of both primary and/or secondary amine sites has been demonstrated at standard ambient temperature and pressure. The unprecedented sensitivity and accuracy of the RGA-based mass spectrometry technique toward atmospheric CO2 measurement has been substantiated with a laser-based optical cavity-enhanced integrated cavity output spectroscopy. The adsorption kinetics of atmospheric CO2 on amine-functionalized clay nanotubes followed the fractional-order kinetic model compared to that of the pseudo-first-order or pseudo-second-order rate equations. The efficiency along with stability of these novel adsorbents has also been demonstrated by their repetitive use for CO2 capture in the oxidative environment. Our findings thus point to a fundamental study on the atmospheric CO2 adsorption by amine-loaded adsorbents using an easy handling and low-cost benchtop RGA-based mass spectrometer, opening a new strategy for CO2 capture and sequestering study. PMID:26790755

  8. Development of a Coherent Differential Absorption Lidar for Range Resolved Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulgueta; Chen, Songsheng; Bai, Yingxin; Petzar, Paul J.; Trieu, Bo. C.; Koch, Grady J.; Beyon, Jeffery J.; Singh, Upendra N.

    2010-01-01

    A pulsed, 2-m coherent Differential Absorption Lidar (DIAL) / Integrated Path Differential Absorption (IPDA) transceiver, developed under the Laser Risk Reduction Program (LRRP) at NASA, is integrated into a fully functional lidar instrument. This instrument will measure atmospheric CO2 profiles (by DIAL) initially from a ground platform, and then be prepared for aircraft installation to measure the atmospheric CO2 column densities in the atmospheric boundary layer (ABL) and lower troposphere. The airborne prototype CO2 lidar can measure atmospheric CO2 column density in a range bin of 1km with better than 1.5% precision at horizontal resolution of less than 50km. It can provide the image of the pooling of CO2 in lowlying areas and performs nighttime mass balance measurements at landscape scale. This sensor is unique in its capability to study the vertical ABL-free troposphere exchange of CO2 directly. It will allow the investigators to pursue subsequent in science-driven deployments, and provides a unique tool for Active Sensing of CO2 Emissions over Night, Days, and Seasons (ASCENDS) validation that was strongly advocated in the recent ASCENDS Workshop.

  9. Assessing Atmospheric CO2 Entrapped in Clay Nanotubes using Residual Gas Analyzer.

    PubMed

    Das, Sankar; Maity, Abhijit; Pradhan, Manik; Jana, Subhra

    2016-02-16

    A residual gas analyzer (RGA) coupled with a high-vacuum chamber has been explored to measure atmospheric CO2 entrapped in aminosilane-modified clay nanotubes. Ambient CO2 uptake efficacy together with stability of these novel adsorbents composed of both primary and/or secondary amine sites has been demonstrated at standard ambient temperature and pressure. The unprecedented sensitivity and accuracy of the RGA-based mass spectrometry technique toward atmospheric CO2 measurement has been substantiated with a laser-based optical cavity-enhanced integrated cavity output spectroscopy. The adsorption kinetics of atmospheric CO2 on amine-functionalized clay nanotubes followed the fractional-order kinetic model compared to that of the pseudo-first-order or pseudo-second-order rate equations. The efficiency along with stability of these novel adsorbents has also been demonstrated by their repetitive use for CO2 capture in the oxidative environment. Our findings thus point to a fundamental study on the atmospheric CO2 adsorption by amine-loaded adsorbents using an easy handling and low-cost benchtop RGA-based mass spectrometer, opening a new strategy for CO2 capture and sequestering study.

  10. Analysis of Vertical Weighting Functions for Lidar Measurements of Atmospheric CO2 and O2

    NASA Astrophysics Data System (ADS)

    Kooi, S.; Mao, J.; Abshire, J. B.; Browell, E. V.; Weaver, C. J.; Kawa, S. R.

    2011-12-01

    Several NASA groups have developed integrated path differential absorption (IPDA) lidar approaches to measure atmospheric CO2 concentrations from space as a candidates for NASA's ASCENDS space mission. For example, the Goddard CO2 Sounder approach uses two pulsed lasers to simultaneously measure both CO2 and O2 absorption in the vertical path to the surface at a number of wavelengths across a CO2 line near 1572 nm and an O2 line doublet near 764 nm. The measurements of CO2 and O2 absorption allow computing their vertically weighted number densities and then their ratios for estimating CO2 concentration relative to dry air. Since both the CO2 and O2 densities and their absorption line-width decrease with altitude, the absorption response (or weighting function) varies with both altitude and absorption wavelength. We have used some standard atmospheres and HITRAN 2008 spectroscopy to calculate the vertical weighting functions for two CO2 lines near 1571 nm and the O2 lines near 764.7 and 1260 nm for candidate online wavelength selections for ASCENDS. For CO2, the primary candidate on-line wavelengths are 10-12 pm away from line center with the weighting function peaking in the atmospheric boundary layer to measure CO2 sources and sinks at the surface. Using another on-line wavelength 3-5 pm away from line center allows the weighting function to peak in the mid- to upper troposphere, which is sensitive to CO2 transport in the free atmosphere. The Goddard CO2 sounder team developed an airborne precursor version of a space instrument. During the summers of 2009, 2010 and 2011 it has participated in airborne measurement campaigns over a variety of different sites in the US, flying with other NASA ASCENDS lidar candidates along with accurate in-situ atmospheric sensors. All flights used altitude patterns with measurements at steps in altitudes between 3 and 13 km, along with spirals from 13 km altitude to near the surface. Measurements from in-situ sensors allowed an

  11. Infrared heterodyne spectroscopy of CO2 in the atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Betz, A. L.; Mclaren, R. A.; Johnson, M. A.; Sutton, E. C.

    1977-01-01

    An infrared heterodyne spectrometer with a resolving power of 6 million has been used to obtain detailed profiles of the 10-micron absorption lines of CO2 in the atmosphere of Mars. An analysis of the results with an empirical model-atmosphere calculation indicates a nearly pure CO2 atmosphere with an average surface pressure of 5.2 + or - 0.5 mbar in the observed regions, a subsolar surface temperature near 275 K, an atmospheric temperature of 235 to 240 K above the subsolar point, and a lapse rate of 2 K/km.

  12. Land plants equilibrate O2 and CO2 concentrations in the atmosphere.

    PubMed

    Igamberdiev, Abir U; Lea, Peter J

    2006-02-01

    The role of land plants in establishing our present day atmosphere is analysed. Before the evolution of land plants, photosynthesis by marine and fresh water organisms was not intensive enough to deplete CO(2) from the atmosphere, the concentration of which was more than the order of magnitude higher than present. With the appearance of land plants, the exudation of organic acids by roots, following respiratory and photorespiratory metabolism, led to phosphate weathering from rocks thus increasing aquatic productivity. Weathering also replaced silicates by carbonates, thus decreasing the atmospheric CO(2) concentration. As a result of both intensive photosynthesis and weathering, CO(2 )was depleted from the atmosphere down to low values approaching the compensation point of land plants. During the same time period, the atmospheric O(2) concentration increased to maximum levels about 300 million years ago (Permo-Carboniferous boundary), establishing an O(2)/CO(2) ratio above 1000. At this point, land plant productivity and weathering strongly decreased, exerting negative feedback on aquatic productivity. Increased CO(2) concentrations were triggered by asteroid impacts and volcanic activity and in the Mesozoic era could be related to the gymnosperm flora with lower metabolic and weathering rates. A high O(2)/CO(2) ratio is metabolically linked to the formation of citrate and oxalate, the main factors causing weathering, and to the production of reactive oxygen species, which triggered mutations and stimulated the evolution of land plants. The development of angiosperms resulted in a decrease in CO(2) concentration during the Cenozoic era, which finally led to the glacial-interglacial oscillations in the Pleistocene epoch. Photorespiration, the rate of which is directly related to the O(2)/CO(2) ratio, due to the dual function of Rubisco, may be an important mechanism in maintaining the limits of O(2) and CO(2) concentrations by restricting land plant productivity

  13. Elevated CO2 affects plant responses to variation in boron availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of elevated CO2 on N relations are well studied, but effects on other nutrients, especially micronutrients, are not. We investigated effects of elevated CO2 on response to variation in boron (B) availability in three unrelated species: geranium (Pelargonium x hortorum), barley (Hordeum vulga...

  14. NUCLEAR POWERED CO2 CAPTURE FROM THE ATMOSPHERE

    SciTech Connect

    Sherman, S

    2008-09-22

    A process for capturing CO{sub 2} from the atmosphere was recently proposed. This process uses a closed cycle of sodium and calcium hydroxide, carbonate, and oxide transformations to capture dilute CO{sub 2} from the atmosphere and to generate a concentrated stream of CO{sub 2} that is amenable to sequestration or subsequent chemical transformations. In one of the process steps, a fossil-fueled lime kiln is needed, which reduces the net CO{sub 2} capture of the process. It is proposed to replace the fossil-fueled lime kiln with a modified kiln heated by a high-temperature nuclear reactor. This will have the effect of eliminating the use of fossil fuels for the process and increasing the net CO{sub 2} capture. Although the process is suitable to support sequestration, the use of a nuclear power source for the process provides additional capabilities, and the captured CO{sub 2} may be combined with nuclear-produced hydrogen to produce liquid fuels via Fischer-Tropsch synthesis or other technologies. Conceivably, such plants would be carbon-neutral, and could be placed virtually anywhere without being tied to fossil fuel sources or geological sequestration sites.

  15. Latitudinal variations in plankton delta C-13 - Implications for CO2 and productivity in past oceans

    NASA Technical Reports Server (NTRS)

    Rau, Greg H.; Takahashi, Taro; Des Marais, David J.

    1989-01-01

    Low C-13/C-12 in present-day Antarctic plankton has been ascribed to high CO2 availability. It is reported here, however, that this high-latitude C-13 depletion develops at CO2 partial pressures that are often below that of the present atmosphere and usually below that of equatorial upwelling systems. Nevertheless, because of much lower water temperatures and hence greater CO2 solubility at high latitude, the preceding pCO2 measurements translate into Antarctic surface-water CO2 (aq) concentrations that are as much as 2.5 times higher than in equatorial waters. It is calculated that an oceanic pCO2 level greater than 800 micro-atm is a warmer low-latitude Cretaceous ocean would have been required to produce the plankton C-13 depletion preserved in Cretaceous sediments.

  16. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.

    1999-01-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17

  17. Phanerozoic atmospheric CO 2 change: evaluating geochemical and paleobiological approaches

    NASA Astrophysics Data System (ADS)

    Royer, Dana L.; Berner, Robert A.; Beerling, David J.

    2001-08-01

    recently developed δ11B technique shows that it currently is not yet well constrained. Most importantly, it requires the assumption that the boron isotopic composition of the ocean remains nearly constant through time. In addition, it assumes that there are no biological or temperature effects and that diagenetic alteration of the boron isotopic composition does not occur. A fifth CO 2 proxy, based on the redox chemistry of marine cerium, has several fundamental flaws and is not discussed in detail here.

  18. Intercomparison of two cavity ring-down spectroscopy analyzers for atmospheric 13CO2 / 12CO2 measurement

    NASA Astrophysics Data System (ADS)

    Pang, Jiaping; Wen, Xuefa; Sun, Xiaomin; Huang, Kuan

    2016-08-01

    Isotope ratio infrared spectroscopy (IRIS) permits continuous in situ measurement of CO2 isotopic composition under ambient conditions. Previous studies have mainly focused on single IRIS instrument performance; few studies have considered the comparability among different IRIS instruments. In this study, we carried out laboratory and ambient measurements using two Picarro CO2δ13C analyzers (G1101-i and G2201-i (newer version)) and evaluated their performance and comparability. The best precision was 0.08-0.15 ‰ for G1101-i and 0.01-0.04 ‰ for G2201-i. The dependence of δ13C on CO2 concentration was 0.46 ‰ per 100 ppm and 0.09 ‰ per 100 ppm, the instrument drift ranged from 0.92-1.09 ‰ and 0.19-0.37 ‰, and the sensitivity of δ13C to the water vapor mixing ratio was 1.01 ‰ / % H2O and 0.09 ‰ / % H2O for G1101-i and G2201-i, respectively. The accuracy after correction by the two-point mixing ratio gain and offset calibration method ranged from -0.04-0.09 ‰ for G1101-i and -0.13-0.03 ‰ for G2201-i. The sensitivity of δ13C to the water vapor mixing ratio improved from 1.01 ‰ / % H2O before the upgrade of G1101-i (G1101-i-original) to 0.15 ‰ / % H2O after the upgrade of G1101-i (G1101-i-upgraded). Atmospheric δ13C measured by G1101-i and G2201-i captured the rapid changes in atmospheric δ13C signals on hourly to diurnal cycle scales, with a difference of 0.07 ± 0.24 ‰ between G1101-i-original and G2201-i and 0.05 ± 0.30 ‰ between G1101-i-upgraded and G2201-i. A significant linear correlation was observed between the δ13C difference of G1101-i-original and G2201-i and the water vapor concentration, but there was no significant correlation between the δ13C difference of G1101-i-upgraded and G2201-i and the water vapor concentration. The difference in the Keeling intercept values decreased from 1.24 ‰ between G1101-i-original and G2201-i to 0.36 ‰ between G1101-i-upgraded and G2201-i, which indicates the importance of consistency

  19. Characteristics of atmospheric CO2 and CH4 at the Shangdianzi regional background station in China

    NASA Astrophysics Data System (ADS)

    Fang, Shuang-xi; Tans, Pieter P.; Dong, Fan; Zhou, Huaigang; Luan, Tian

    2016-04-01

    Atmospheric CO2 and CH4 have been continuously measured at the Shangdianzi regional background station (SDZ) in China from 2009 to 2013. Based on the influences of local surface wind and long-distance transport, the observed records were flagged into locally influenced, Beijing-Tianjin-Hebei (BTH) influenced, and Russia, Mongolia, and Inner Mongolia autonomous region influenced (RMI). ∼ 81.4% of CO2 and ∼75.6% of CH4 mole fractions were flagged as locally representative, indicating that the atmospheric CO2 and CH4 at SDZ were strongly influenced by local sources and sinks. Cluster analysis of back trajectories proved that the atmospheric CO2 and CH4 were influenced by air masses from northwest (RMI) or from south and southeast (BTH). The CO2 and CH4 mole fractions in BTH are always higher than in RMI, with the largest difference of 11.5 ± 0.3 ppm for CO2 and 102 ± 1 ppb for CH4 in July. The annual growth rates of CO2 and CH4 in BTH are 3.8 ± 0.01 ppm yr-1 and 10 ± 0.1 ppb yr-1, respectively, which are apparently higher than those of the RMI and the global means. The long-term trends of CO2 and CH4 in BTH are deviating from those in RMI, with ratios of ∼1.0 ppm yr-1 for CO2 and ∼2 ppb yr-1 for CH4, indicating the strengths of CO2 and CH4 emission in Beijing-Tianjin-Hebei plain increased more than 20% every year.

  20. Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.

    2008-01-01

    A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.

  1. A new ground-based differential absorption sunphotometer for measuring atmospheric columnar CO2 and preliminary applications

    NASA Astrophysics Data System (ADS)

    Xie, Yisong; Li, Zhengqiang; Zhang, Xingying; Xu, Hua; Li, Donghui; Li, Kaitao

    2015-10-01

    Carbon dioxide is commonly considered as the most important greenhouse gas. Ground-based remote sensing technology of acquiring CO2 columnar concentration is needed to provide validation for spaceborne CO2 products. A new groundbased sunphotometer prototype for remotely measuring atmospheric CO2 is introduced in this paper, which is designed to be robust, portable, automatic and suitable for field observation. A simple quantity, Differential Absorption Index (DAI) related to CO2 optical depth, is proposed to derive the columnar CO2 information based on the differential absorption principle around 1.57 micron. Another sun/sky radiometer CE318, is used to provide correction parameters of aerosol extinction and water vapor absorption. A cloud screening method based on the measurement stability is developed. A systematic error assessment of the prototype and DAI is also performed. We collect two-year DAI observation from 2010 to 2012 in Beijing, analyze the DAI seasonal variation and find that the daily average DAI decreases in growing season and reaches to a minimum on August, while increases after that until January of the next year, when DAI reaches its highest peak, showing generally the seasonal cycle of CO2. We also investigate the seasonal differences of DAI variation and attribute the tendencies of high in the morning and evening while low in the noon to photosynthesis efficiency variation of vegetation and anthropogenic emissions. Preliminary comparison between DAI and model simulated XCO2 (Carbon Tracker 2011) is conducted, showing that DAI roughly reveals some temporal characteristics of CO2 when using the average of multiple measurements.

  2. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils.

    PubMed

    Beerling, D J; Lomax, B H; Royer, D L; Upchurch, G R; Kump, L R

    2002-06-11

    The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO(2) injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO(2) and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO(2) concentration (pCO(2)) levels with special emphasis on providing a pCO(2) estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO(2) levels of 350-500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO(2) outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO(2) increase. Instead, we calculate that the postboundary pCO(2) rise is most consistent with the instantaneous transfer of approximately 4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W.m(-2) would have been sufficient to warm the Earth's surface by approximately 7.5 degrees C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB.

  3. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils

    PubMed Central

    Beerling, D. J.; Lomax, B. H.; Royer, D. L.; Upchurch, G. R.; Kump, L. R.

    2002-01-01

    The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO2 injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO2 and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO2 concentration (pCO2) levels with special emphasis on providing a pCO2 estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO2 levels of 350–500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO2 outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO2 increase. Instead, we calculate that the postboundary pCO2 rise is most consistent with the instantaneous transfer of ≈4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W⋅m−2 would have been sufficient to warm the Earth's surface by ≈7.5°C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB. PMID:12060729

  4. Effects of Elevated Atmospheric CO(2) on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem.

    PubMed

    Nguyen, L M; Buttner, M P; Cruz, P; Smith, S D; Robleto, E A

    2011-10-01

    The effects of elevated atmospheric carbon dioxide [CO(2)] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO(2)] using Free-Air CO(2) Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO(2)], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO(2)]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO(2)]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO(2)]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO(2)]. These results indicate that elevated [CO(2)] changes structure and representation of microorganisms associated with roots of desert plants.

  5. Effects of Elevated Atmospheric CO2 on Rhizosphere Soil Microbial Communities in a Mojave Desert Ecosystem

    PubMed Central

    Nguyen, L.M.; Buttner, M.P.; Cruz, P.; Smith, S.D.; Robleto, E.A.

    2011-01-01

    The effects of elevated atmospheric carbon dioxide [CO2] on microbial communities in arid rhizosphere soils beneath Larrea tridentata were examined. Roots of Larrea were harvested from plots fumigated with elevated or ambient levels of [CO2] using Free-Air CO2 Enrichment (FACE) technology. Twelve bacterial and fungal rRNA gene libraries were constructed, sequenced and categorized into operational taxonomical units (OTUs). There was a significant decrease in OTUs within the Firmicutes (bacteria) in elevated [CO2], and increase in Basiomycota (fungi) in rhizosphere soils of plots exposed to ambient [CO2]. Phylogenetic analyses indicated that OTUs belonged to a wide range of bacterial and fungal taxa. To further study changes in bacterial communities, Quantitative Polymerase Chain Reaction (QPCR) was used to quantify populations of bacteria in rhizosphere soil. The concentration of total bacteria 16S rDNA was similar in conditions of enriched and ambient [CO2]. However, QPCR of Gram-positive microorganisms showed a 43% decrease in the population in elevated [CO2]. The decrease in representation of Gram positives and the similar values for total bacterial DNA suggest that the representation of other bacterial taxa was promoted by elevated [CO2]. These results indicate that elevated [CO2] changes structure and representation of microorganisms associated with roots of desert plants. PMID:21779135

  6. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria

    PubMed Central

    Okubo, Takashi; Liu, Dongyan; Tsurumaru, Hirohito; Ikeda, Seishi; Asakawa, Susumu; Tokida, Takeshi; Tago, Kanako; Hayatsu, Masahito; Aoki, Naohiro; Ishimaru, Ken; Ujiie, Kazuhiro; Usui, Yasuhiro; Nakamura, Hirofumi; Sakai, Hidemitsu; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol−1) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields. PMID:25750640

  7. Photochemical consequences of enhanced CO2 levels in earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Greatly enhanced atmospheric CO2 concentrations are the most likely mechanism for offsetting the effects of reduced solar luminosity early in the earth's history. CO2 levels of 80 to 600 times the present value could have maintained a mean surface temperature of 0 C to 15 C, given a 25 percent decrease in solar output. Such high CO2 levels are at least qualitatively consistent with the present understanding of the carbonate-silicate geochemical cycle. The presence of large amounts of CO2 has important implications for the composition of the earth's prebiotic atmosphere. The hydrogen budget of a high-CO2 primitive atmosphere would have been strongly influenced by rainout of H2O2 and H2CO. The reaction of H2O2 with dissolved ferrous iron in the early oceans could have been a major sink for atmospheric oxygen. The requirement that this loss of oxygen be balanced by a corresponding loss of hydrogen (by escape to space and rainout of H2CO) implies that the atmospheric H2 mixing ratio was greater than 2 x 10 to the -5th and the ground level O2 mixing ratio was below 10 to the -12th, even if other surface sources of H2 were small. These results are only weakly dependent on changes in solar UV flux, rainout rates, and vertical mixing rates in the primitive atmosphere.

  8. Phenotypic Plasticity Conditions the Response of Soybean Seed Yield to Elevated Atmospheric CO2 Concentration.

    PubMed

    Kumagai, Etsushi; Aoki, Naohiro; Masuya, Yusuke; Shimono, Hiroyuki

    2015-11-01

    Selection for cultivars with superior responsiveness to elevated atmospheric CO2 concentrations (eCO2) is a powerful option for boosting crop productivity under future eCO2. However, neither criteria for eCO2 responsiveness nor prescreening methods have been established. The purpose of this study was to identify traits responsible for eCO2 responsiveness of soybean (Glycine max). We grew 12 Japanese and U.S. soybean cultivars that differed in their maturity group and determinacy under ambient CO2 and eCO2 for 2 years in temperature gradient chambers. CO2 elevation significantly increased seed yield per plant, and the magnitude varied widely among the cultivars (from 0% to 62%). The yield increase was best explained by increased aboveground biomass and pod number per plant. These results suggest that the plasticity of pod production under eCO2 results from biomass enhancement, and would therefore be a key factor in the yield response to eCO2, a resource-rich environment. To test this hypothesis, we grew the same cultivars at low planting density, a resource-rich environment that improved the light and nutrient supplies by minimizing competition. Low planting density significantly increased seed yield per plant, and the magnitude ranged from 5% to 105% among the cultivars owing to increased biomass and pod number per plant. The yield increase due to low-density planting was significantly positively correlated with the eCO2 response in both years. These results confirm our hypothesis and suggest that high plasticity of biomass and pod production at a low planting density reveals suitable parameters for breeding to maximize soybean yield under eCO2.

  9. Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere

    NASA Astrophysics Data System (ADS)

    Barclay, Richard S.; Wing, Scott L.

    2016-04-01

    Stomatal properties of fossil Ginkgo have been used widely to infer the atmospheric concentration of CO2 in the geological past (paleo-pCO2). Many of these estimates of paleo-pCO2 have relied on the inverse correlation between pCO2 and stomatal index (SI - the proportion of epidermal cells that are stomata) observed in recent Ginkgo biloba, and therefore depend on the accuracy of this relationship. The SI - pCO2 relationship in G. biloba has not been well documented, however. Here we present new measurements of SI for leaves of G. biloba that grew under pCO2 from 290 to 430 ppm. We prepared and imaged all specimens using a consistent procedure and photo-documented each count. As in prior studies, we found a significant inverse relationship between SI and pCO2, however, the relationship is more linear, has a shallower slope, and a lower correlation coefficient than previously reported. We examined leaves of G. biloba grown under pCO2 of 1500 ppm, but found they had highly variable SI and a large proportion of malformed stomata. We also measured stomatal dimensions, stomatal density, and the carbon isotope composition of G. biloba leaves in order to test a mechanistic model for inferring pCO2. This model overestimated observed pCO2, performing less well than the SI method between 290 and 430 ppm. We used our revised SI-pCO2 response curve, and new observations of selected fossils, to estimate late Cretaceous and Cenozoic pCO2 from fossil Ginkgo adiantoides. All but one of the new estimates is below 800 ppm, and together they show little long-term change in pCO2 or relation to global temperature. The low Paleogene pCO2 levels indicated by the Ginkgo SI proxy are not consistent with the high pCO2 inferred by some climate and carbon cycle models. We cannot currently resolve the discrepancy, but greater agreement between proxy data and models may come from a better understanding of the stomatal response of G. biloba to elevated pCO2, better counts and measurements of

  10. Root Damage by Insects Reverses the Effects of Elevated Atmospheric CO2 on Eucalypt Seedlings

    PubMed Central

    Johnson, Scott N.; Riegler, Markus

    2013-01-01

    Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus) modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2). Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models. PMID:24260232

  11. Ocean carbon sink duration under stabilization of atmospheric CO2: A 1,000-year timescale

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.

    2004-10-01

    Ocean CO2 uptake, moderated by the slow mixing of dissolved inorganic carbon to the ocean depths, is estimated to have a duration of ~1,000 years when the atmosphere is held at a constant ``stabilized'' CO2 concentration. This timescale is found to be several times longer than the relaxation time for the atmosphere-ocean system to come to equilibrium when forced by a CO2 emission impulse. Furthermore, the 1,000 year timescale is found to be insensitive to atmospheric CO2 concentration level. Beyond 2,000 years, sediment CaCO3 neutralization becomes the dominant mechanism for CO2 uptake further extending the timescale of the ocean carbon sink. The equilibration time of the atmosphere-ocean system, on the other hand, is shown to lengthen with increasing magnitude of CO2 emissions. Estimates are based on the response of a 3D-ocean carbon cycle model, and this behavior explained using the analytic solution of a simple box model.

  12. Land-atmosphere CO2 exchange simulated by a land surface process model coupled to an atmospheric general circulation model

    NASA Astrophysics Data System (ADS)

    Bonan, Gordon B.

    1995-02-01

    CO2 uptake during plant photosynthesis and CO2 loss during plant and microbial respiration were added to a land surface process model to simulate the diurnal and annual cycles of biosphere-atmosphere CO2 exchange. The model was coupled to a modified version of the National Center for Atmospheric Research (NCAR) Community Climate Model version 2 (CCM2), and the coupled model was run for 5 years. The geographic patterns of annual net primary production are qualitatively similar to other models. When compared by vegetation type, annual production and annual microbial respiration are consistent with other models, except for needleleaf evergreen tree vegetation, where production is too high, and semidesert vegetation, where production and microbial respiration are too low. The seasonality of the net CO2 flux agrees with other models in the southern hemisphere and the tropics. The diurnal range is large for photosynthesis and lower for plant and microbial respiration, which agrees with qualitative expectations. The simulation of the central United States is poor due to temperature and precipitation biases in the coupled model. Despite these deficiencies the current approach is a promising means to include terrestrial CO2 fluxes in a climate system model that simulates atmospheric CO2 concentrations, because it alleviates important parameterization discrepancies between standard biogeochemical models and the land surface models typically used in general circulation models, and because the model resolves the diurnal range of CO2 exchange, which can be large (15 - 45 micromol CO2 sq m/s).

  13. Indian Monsoon controlling the effect of anthropogenic emission on the seasonal variation of air-CO2 over Bangalore, India

    NASA Astrophysics Data System (ADS)

    Guha, T.; Ghosh, P.

    2012-12-01

    India is one of prime emitting country of green house gases identified by the International Energy Agency and the major contribution comes from energy sectors specifically from coal based power plants. Biomass burning is another source of CO2 for the tropical country and more frequencies of burning are observed during the dry seasons. Indian region experiences seasonal reversal of the wind pattern associated with monsoon circulations. The monsoon rainfall promotes green cover and uptake of CO2 from atmosphere. The study of atmospheric CO2 composition can provide important information on the temporal variability of anthropogenic emission as well as the biosphere response. In this context, urban locations being hot spots of anthropogenic emission are more suitable for air-CO2 monitoring. We are monitoring mixing ratio and carbon isotopic ratio (δ13C) of atmospheric CO2 for last three years from Bangalore (BLR), an urban station in Southern India. Region experiences four distinct seasons i.e. dry hot summer (March-May), southwest monsoon (SWM) (June-September), post monsoon (October-November) and winter (December-February). Air samples were collected from the campus of IISc, Bangalore (12° 58‧ N, 77° 38‧ E, masl= 920 m) using an experimental set up calibrated with respect to internationally accepted JRAS Reference material. The external precision for the measurement of mixing ratio and δ13C are ±2μmol.mol-1 and ±0.02‰ respectively based on repeat analysis of JRAS mixture. The seasonal variation of both CO2 mixing ratio and δ13C of air CO2 is observed from BLR station where the amplitude of signal is found to be lower in 2011 which was a La Nina year (compared to 2009, 2010). The δ13C of CO2 is maximum (-8‰) in October and it slowly decreases during dry summer months and reaches its minima (-9‰) in April, May. Subsequently, it increases slowly with the advancement of the SWM months prior to reaching maxima again during the month of October. During

  14. Free-air CO2 enrichment (face): model analysis of gaseous dispersion arrays for studying rising atmospheric CO2 effects on vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide (CO2) has risen from about 280 to 380 micromol/mol since the beginning of the industrial revolution due mainly to burning of fossil fuels. Free-Air CO2 Enrichment (FACE) arrays have been devised with large areas and undisturbed aerial conditions that allow secondary soil o...

  15. Attributing the increase of atmospheric CO2 to emitters and absorbers

    NASA Astrophysics Data System (ADS)

    Gasser, T.; Ciais, P.; Paris, J.; Caldeira, K.; Raupach, M. R.; Canadell, J.; Patwardhan, A.; Friedlingstein, P.; Piao, S.; Gitz, V.

    2010-12-01

    Climate change mitigation strategies involve reductions of greenhouse gases emissions, chiefly CO2. Current international negotiations are exploring the feasibility of new accounting rules, especially when dealing with land-atmosphere fluxes. Here we attempt to attribute the increase in the atmospheric CO2 burden to regional emissions from fossil fuel and land-use change, and removal by regional land sinks and the ocean. Through its regional approach, this study extends the ‘Brazilian Proposal’, which proposed to assign national emission targets based on each country's historical responsibility for the anthropogenic greenhouse effect. A carbon-cycle box model is used to attribute the increase of CO2 above pre-industrial levels to four emitting and absorbing regions, namely “OECD”, “Former Soviet Union”, “Africa and Latin America”, and “Asia and Oceania”. The model includes prescribed fossil-fuel and cement emissions, and calculates global ocean uptake and both land-use and undisturbed ecosystems fluxes regionally. In this basic study the biospheric sink, driven by the fertilization effect, and the oceanic sink generates most of the CO2 uptake, but including climate feedback in the model may alter the results. We note that there is no unique attribution approach, as it depends on choices for how to account for sinks and sources. Here, we focus on two different but equally valid perspectives on regional attribution of increased atmospheric CO2 where the two approaches differ only in the apportionment of land sinks. In the first approach, each absorber region is considered accountable for CO2 uptake by the land biosphere present within its territory, similarly to any other natural resource. In the second approach, it is assumed that each emitter region is accountable for the sink that its emissions have induced elsewhere through fertilization. Under both approaches, the largest share (about one third) of the historical increase of CO2 since pre

  16. Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels

    NASA Astrophysics Data System (ADS)

    Zeebe, R. E.; Archer, D.

    2005-05-01

    Iron fertilization of macronutrient-rich but biologically unproductive ocean waters has been proposed for sequestering anthropogenic carbon dioxide (CO2). The first carbon export measurements in the Southern Ocean (SO) during the recent SO-Iron Experiment (SOFeX) yielded ~900 t C exported per 1.26 t Fe added. This allows the first realistic, data-based feasibility assessment of large-scale iron fertilization and corresponding future atmospheric CO2 prognosis. Using various carbon cycle models, we find that if 20% of the world's surface ocean were fertilized 15 times per year until year 2100, it would reduce atmospheric CO2 by $\\lesssim$15 ppmv at an expected level of ~700 ppmv for business-as-usual scenarios. Thus, based on the SOFeX results and currently available technology, large-scale oceanic iron fertilization appears not a feasible strategy to sequester anthropogenic CO2.

  17. 2-Micron Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2014-01-01

    A 2-micron high energy, pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. Development of this lidar heavily leverages the 2-micron laser technologies developed in LaRC over the last decade. The high pulse energy, direct detection lidar operating at CO2 2-micron absorption band provides an alternate approach to measure CO2 concentrations. This new 2-micron pulsed IPDA lidar has been flown in spring of this year for total ten flights with 27 flight hours. It is able to make measurements of the total amount of atmospheric CO2 from the aircraft to the ground or cloud. It is expected to provide high-precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  18. Communication: evidence of stable van der Waals CO2 clusters relevant to Venus atmosphere conditions.

    PubMed

    Asfin, Ruslan E; Buldyreva, Jeanna V; Sinyakova, Tatyana N; Oparin, Daniil V; Filippov, Nikolai N

    2015-02-01

    Non-intrusive spectroscopic probing of weakly bound van der Waals complexes forming in gaseous carbon dioxide is generally performed at low pressures, for instance in supersonic jets, where the low temperature favors dimers, or in few-atmosphere samples, where the signature of dimers varying as the squared gas density is entangled with the dominating collision-induced absorption. We report experimental and theoretical results on CO2 dimers at very high pressures approaching the liquid phase. We observe that the shape of the CO2-dimer bands undergoes a distinctive line-mixing transformation, which reveals an unexpected stability of the dimers despite the collisions with the surrounding particles and negates the common belief that CO2 dimers are short-lived complexes. Our results furnish a deeper insight allowing a better modeling of CO2-rich atmospheres and provide also a new spectroscopic tool for studying the robustness of molecular clusters.

  19. Atmospheric pressure variation and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Gierasch, P. J.; Toon, O. B.

    1973-01-01

    If Mars has permanent CO2 polar caps, atmospheric heat transport may cause the atmospheric pressure to be extremely sensitive to variations of solar heating at the poles. This could happen because atmospheric heating depends on density, which depends strongly on the polar temperature through the vapor pressure relation. A simple climatological model is used to study the question.

  20. Evolution of the stable carbon isotope composition of atmospheric CO2 over the last glacial cycle

    NASA Astrophysics Data System (ADS)

    Eggleston, S.; Schmitt, J.; Bereiter, B.; Schneider, R.; Fischer, H.

    2016-03-01

    We present new δ13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in δ13C(atm) of 0.5‰ occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in δ13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of δ13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.

  1. Impact of Irrigated Agriculture on Soil C Storage and Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Suarez, D. L.; Water Reuse; Remediation Unit

    2011-12-01

    In arid regions inorganic C (IC) can comprise more than 90% of the total C in the soil. The link of this C pool to atmospheric CO2 and climate change relates primarily to the precipitation/dissolution of the carbonate minerals in the near surface environment. The impact of changes in soil IC on atmospheric CO2 depends on local environmental and hydrological conditions. Under most environmental conditions, dissolution of these minerals leads to net removal of CO2 from the atmosphere. Practices favoring dissolution of carbonates include irrigation with surface waters, and irrigation with water in large excess of plant transpiration. Accumulation of IC in the soil is favored by lower irrigation water applications relative to transpiration (leaching < 30% of applied water), irrigation with ground waters at elevated CO2 concentrations, application of gypsum, and use of nitrate fertilizer. The net effect of irrigation on a global scale, neglecting the effect of fertilizer addition, is to increase soil IC by 30 Tg C/y as well as to release an almost equal amount of C to the atmosphere. Addition of acidifying fertilizers (NH4) reduce IC accumulation and increase CO2 emissions above 30 Tg C/y.There is conflicting evidence regarding actual changes in C storage as a result of irrigation. Liming practices in humid regions throughout the world are estimated to have no net effect on inorganic soil C but release up to 85 Tg C/y to the atmosphere.

  2. Simulation of CO2 dispersion in the atmospheric boundary layer using a mesoscale model

    NASA Astrophysics Data System (ADS)

    Granvold, P. W.; Chow, F. K.; Oldenburg, C. M.

    2007-12-01

    The consequences of unexpected releases of CO2 from underground carbon sequestration sites must be understood before large-scale carbon capture and storage projects are implemented. Carbon dioxide gas can migrate through faults, fractures, or abandoned wells that penetrate the subsurface storage site and provide a pathway to the ground surface. Though such leakage is typically slow and in small amounts, CO2 can accumulate at the ground surface because it is denser than the surrounding atmosphere. Such accumulation presents health risks for humans and animals in the vicinity, and can cause damage to crops, trees, and other vegetation. Because atmospheric dispersion of CO2 is driven by gravity and ambient wind conditions, the danger from CO2 is greatest in regions with topographic depressions where the dense gas can pool, or under stably- stratified background atmospheric conditions which further inhibit mixing and dilution of the gas. We are developing a simulation tool for predictions of CO2 releases from underground storage sites in a mesoscale atmospheric model. The model solves the compressible fluid flow equations, and has been modified to account for transport of dense gases. Example simulations from sources of different release strengths over various topography and background atmospheric conditions illustrate the behavior of the model and its utility for risk assessment and certification of carbon sequestration sites.

  3. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem.

    PubMed

    Lipson, David A; Wilson, Richard F; Oechel, Walter C

    2005-12-01

    This study reports the effects of long-term elevated atmospheric CO2 on root production and microbial activity, biomass, and diversity in a chaparral ecosystem in southern California. The free air CO2 enrichment (FACE) ring was located in a stand dominated by the woody shrub Adenostoma fasciculatum. Between 1995 and 2003, the FACE ring maintained an average daytime atmospheric CO2 concentration of 550 ppm. During the last two years of operation, observations were made on soil cores collected from the FACE ring and adjacent areas of chaparral with ambient CO2 levels. Root biomass roughly doubled in the FACE plot. Microbial biomass and activity were related to soil organic matter (OM) content, and so analysis of covariance was used to detect CO2 effects while controlling for variation across the landscape. Extracellular enzymatic activity (cellulase and amylase) and microbial biomass C (chloroform fumigation-extraction) increased more rapidly with OM in the FACE plot than in controls, but glucose substrate-induced respiration (SIR) rates did not. The metabolic quotient (field respiration over potential respiration) was significantly higher in FACE samples, possibly indicating that microbial respiration was less C limited under high CO2. The treatments also differed in the ratio of SIR to microbial biomass C, indicating a metabolic difference between the microbial communities. Bacterial diversity, described by 16S rRNA clone libraries, was unaffected by the CO2 treatment, but fungal biomass was stimulated. Furthermore, fungal biomass was correlated with cellulase and amylase activities, indicating that fungi were responsible for the stimulation of enzymatic activity in the FACE treatment.

  4. LA Megacity: An Integrated Land-Atmosphere System for Urban CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Feng, S.; Lauvaux, T.; Newman, S.; Rao, P.; Patarasuk, R.; o'Keefe, D.; Huang, J.; Ahmadov, R.; Wong, C.; Song, Y.; Gurney, K. R.; Diaz Isaac, L. I.; Jeong, S.; Fischer, M. L.; Miller, C. E.; Duren, R. M.; Li, Z.; Yung, Y. L.; Sander, S. P.

    2015-12-01

    About 10% of the global population lives in the word's 20 megacities (cities with urban populations greater than 10 million people). Megacities account for approximately 20% of the global anthropogenic fossil fuel CO2 (FFCO2) emissions, and their proportion of emissions increases monotonically with the world population and urbanization. Megacities range in spatial extent from ~1000 - 10,000 km2 with complex topography and variable landscapes. We present here the first attempt at building an integrated land-atmosphere modeling system for megacity environments, developed and evaluated for urban CO2 emissions over the Los Angeles (LA) Megacity area. The Weather Research and Forecasting (WRF) - Chem model was coupled to a ~1.3-km FFCO2 emission product, "Hestia-LA", to simulate the transport of CO2 across the LA magacity. We define the optimal model resolution to represent both the spatial variability of the atmospheric dynamics and the spatial patterns from the CO2 emission distribution. In parallel, we evaluate multiple configurations of WRF with various physical schemes, using meteorological observations from the CalNex-LA campaign of May-June 2010. Our results suggest that there is no remarkable difference between the medium- (4-km) and high- (1.3-km) resolution simulations in terms of atmospheric model performance. However, the high-resolution modeled CO2 mixing ratios clearly outperform the results at medium resolution for capturing both the spatial distribution and the temporal variability of the urban CO2 signals. We compare the impact of physical representation errors and emission aggregation errors on the modeled CO2 mixing ratios across the LA megacity. Finally, we present a novel approach to evaluate the design of the current surface network over the LA megacity using the modeled spatial correlations. These results reinforce the importance of using high-resolution emission products over megacities to represent correctly the large spatial gradients in

  5. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  6. Observation of vertcal CO2 concentration profiles in the lower-atmosphere using a compact direct detection 1.6 μm DIAL

    NASA Astrophysics Data System (ADS)

    Nagasawa, C.; Shibata, Y.; Abo, M.

    2015-12-01

    Knowledge of present carbon sources and sinks including their spatial profile and their variation in time is one of the essential informations for predicting future CO2 atmospheric concentration levels. Moewover, for the detailed analysis of forest carbon dynamics and CO2 fluxes of urban area, the CO2 concentration measurement techniques with high spatial and temporal resolution are required in the lower atmosphere. A differential absorption lidar (DIAL) is expected to measure atmospheric CO2 concentration profiles in the atmospheric boundary layer from a ground platform. We have succeeded to develop a compact direct detection 1.6 μm DIAL system for measuring CO2 concentration profiles in the lower atmosphere. This DIAL system consists of the optical parametric generator (OPG) transmitter that excited by the LD pumped Nd:YAG laser with high repetition rate and the receiving optics that included the near-infrared photomultiplier tube operating at the analog mode and the 25 cm telescope. We have succeeded in observing the daytime temporal change of vertical CO2 concentration profiles for the range from 0.25 to 2.5 km with integration time of 30 minutes and range resolution of 300 m. This compact direct detection CO2 DIAL is usefull for the estimation of CO2 flux. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.

  7. CO2 Dissociation using the Versatile Atmospheric Dielectric Barrier Discharge Experiment (VADER)

    NASA Astrophysics Data System (ADS)

    Lindon, Michael Allen

    As of 2013, the Carbon Dioxide Information Analysis Center (CDIAC) estimates that the world emits approximately 36 trillion metric tons of Carbon Dioxide (CO2) into the atmosphere every year. These large emissions have been correlated to global warming trends that have many consequences across the globe, including glacial retraction, ocean acidification and increased severity of weather events. With green technologies still in the infancy stage, it can be expected that CO2 emissions will stay this way for along time to come. Approximately 41% of the emissions are due to electricity production, which pump out condensed forms of CO2. This danger to our world is why research towards new and innovative ways of controlling CO2 emissions from these large sources is necessary. As of now, research is focused on two primary methods of CO2 reduction from condensed CO2 emission sources (like fossil fuel power plants): Carbon Capture and Sequestration (CCS) and Carbon Capture and Utilization (CCU). CCS is the process of collecting CO2 using absorbers or chemicals, extracting the gas from those absorbers and finally pumping the gas into reservoirs. CCU on the other hand, is the process of reacting CO2 to form value added chemicals, which can then be recycled or stored chemically. A Dielectric Barrier discharge (DBD) is a pulsed, low temperature, non-thermal, atmospheric pressure plasma which creates high energy electrons suitable for dissociating CO2 into its components (CO and O) as one step in the CCU process. Here I discuss the viability of using a DBD for CO2 dissociation on an industrial scale as well as the fundamental physics and chemistry of a DBD for CO2 dissociation. This work involved modeling the DBD discharge and chemistry, which showed that there are specific chemical pathways and plasma parameters that can be adjusted to improve the CO2 reaction efficiencies and rates. Experimental studies using the Versatile Atmospheric dielectric barrier Discharge Expe

  8. Modern soil system constraints on reconstructing deep-time atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Montañez, Isabel P.

    2013-01-01

    Paleosol carbonate-based estimates of paleo-atmospheric CO2 play a prominent role in constraining radiative-forcing and climate sensitivity in the deep-time. Large uncertainty in paleo-CO2 estimates made using the paleosol-carbonate CO2-barometer, however, arises primarily from their sensitivity to soil-respired CO2 (S(z)). This parameter is poorly constrained due to a paucity of soil CO2 measurements during carbonate formation in modern soils and a lack of widely applicable proxies of paleo-soil CO2. Here the δ13C values of carbonate and soil organic matter (SOM) pairs from 130 Holocene soils are applied to a two-component CO2-mixing equation to define soil order-specific ranges of soil CO2 applicable for constraining S(z) in their corresponding paleosol analogs. Equilibrium carbonate-SOM pairs, characterized by Δ13Ccarb-SOM values of 12.2-15.8‰, define a mean effective fractionation of 14.1‰ and overall inferred total soil CO2 contents during calcite formation of <1000-10,000 ppmv. For those Aridisols and Alfisols, characterized by a net soil-moisture deficit, and their paleosol analogs (Calcisols and Argillisols), a best estimate of S(z) during calcite formation is 1500-2000 ppmv (range of 500-2500 ppmv). Overall higher values (2000-5000 ppmv) are indicated by the subset of these soils characterized by higher moisture content and productivity. Near atmospheric levels (400 ± 200 ppmv) of estimated S(z) are indicated by immature soils, recording their low soil productivity. Vertisols define the largest range in total soil CO2 (<1000 to >25,000 ppmv) reflecting their seasonally driven dynamic hydrochemistry. A S(z) range of 1000-10,000 ppmv is suggested for paleo-Vertisols for which calcite precipitation can be constrained to have occurred in an open system with two-component CO2 mixing, with a best estimate of 2000 ppmv ± 1000 ppmv appropriate for paleo-Vertisols for which evidence of protracted water saturation is lacking. Mollisol pairs define a best

  9. Atomic carbon emission from photodissociation of CO2. [planetary atmospheric chemistry

    NASA Technical Reports Server (NTRS)

    Wu, C. Y. R.; Phillips, E.; Lee, L. C.; Judge, D. L.

    1978-01-01

    Atomic carbon fluorescence, C I 1561, 1657, and 1931 A, has been observed from photodissociation of CO2, and the production cross sections have been measured. A line emission source provided the primary photons at wavelengths from threshold to 420 A. The present results suggest that the excited carbon atoms are produced by total dissociation of CO2 into three atoms. The cross sections for producing the O I 1304-A fluorescence through photodissociation of CO2 are found to be less than 0.01 Mb in the wavelength region from 420 to 835 A. The present data have implications with respect to photochemical processes in the atmospheres of Mars and Venus.

  10. Diurnal variation in respiratory CO2 flux in an arid ecosystem

    NASA Astrophysics Data System (ADS)

    van Asperen, Hella; Warneke, Thorsten; Sabbatini, Simone; Höpker, Martin; Chiti, Tommaso; Nicolini, Giacomo; Papale, Dario; Böhm, Michael; Notholt, Justus

    2016-04-01

    The application of stable isotopes to study ecosystem processes is increasingly used. However, continuous in-situ observation of CO2 concentrations, CO2 fluxes, and their isotopic components are still sparse. In this study, we present results from an arid grassland in Italy, in which continuous measurements of δ13CO2 and CO2 were performed by means of an in-situ Fourier Transform Infrared Spectrometer connected to a concentration-tower set up and to soil flux chambers. By use of Keeling plots, daily nighttime Keeling plot-intercepts and hourly flux chamber Keeling plot-intercepts could be derived. The flux chambers solely showed CO2 emission, with respiration peaks during the day. Keeling plot intercepts from the tower, overlooking the arid grassland, showed more enriched δ13CO2 values than Keeling plot intercepts derived from chamber measurements, indicating different dominating respiratory sources in their footprint. Flux chamber respiratory δ13CO2 values showed a daily pattern with on average 3.5‰ more depleted δ13CO2 fluxes during the night. It is hypothesized that the observed diurnal variation in respiratory δ13CO2 is a consequence of the physical process of diffusive fractionation taking place during the nocturnal boundary layer build up.

  11. CO2 induced climatic change and spectral variations in the outgoing terrestrial infrared radiation

    NASA Technical Reports Server (NTRS)

    Charlock, T. P.

    1984-01-01

    The published temperature changes produced in general circulation model simulations of CO2 induced climate modification are used to compute the top of the atmosphere, clear sky outgoing infrared radiance changes expected for doubled CO2. A significant wavenumber shift is produced, with less radiance emerging in the 500-800 per cm (20.0-12.5 micron) CO2 band and with more emerging in the 800-1200 per cm (12.5-8.3 micron) window. The effect varies greatly with latitude. The radiance shift in the 2300 per cm (4.3 micron) region is of the order of 10-30 percent for doubled CO2. It is suggested that the 2300 per cm region be carefully monitored as an aid in detecting the climatic effects of increasing CO2. The change in the wavenumber-integrated radiant exitance is at most a few percent.

  12. Intra-seasonal variability of atmospheric CO2 concentrations over India during summer monsoons

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, K.; Valsala, Vinu; Tiwari, Yogesh K.; Revadekar, J. V.; Pillai, Prasanth; Chakraborty, Supriyo; Murtugudde, Raghu

    2016-10-01

    In a study based on a data assimilation product of the terrestrial biospheric fluxes of CO2 over India, the subcontinent was hypothesized to be an anomalous source (sink) of CO2 during the active (break) spells of rain in the summer monsoon from June to September (Valsala et al., 2013). We test this hypothesis here by investigating intraseasonal variability in the atmospheric CO2 concentrations over India by utilizing a combination of ground-based and satellite observations and model outputs. The results show that the atmospheric CO2 concentration also varies in synchrony with the active and break spells of rainfall with amplitude of ±2 ppm which is above the instrumental uncertainty of the present day techniques of atmospheric CO2 measurements. The result is also consistent with the signs of the Net Ecosystem Exchange (NEE) flux anomalies estimated in our earlier work. The study thus offers the first observational affirmation of the above hypothesis although the data gap in the satellite measurements during monsoon season and the limited ground-based stations over India still leaves some uncertainty in the robust assertion of the hypothesis. The study highlights the need to capture these subtle variabilities and their responses to climate variability and change since it has implications for inverse estimates of terrestrial CO2 fluxes.

  13. The time scale of the silicate weathering negative feedback on atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Colbourn, G.; Ridgwell, A.; Lenton, T. M.

    2015-05-01

    The ultimate fate of CO2 added to the ocean-atmosphere system is chemical reaction with silicate minerals and burial as marine carbonates. The time scale of this silicate weathering negative feedback on atmospheric pCO2 will determine the duration of perturbations to the carbon cycle, be they geological release events or the current anthropogenic perturbation. However, there has been little previous work on quantifying the time scale of the silicate weathering feedback, with the primary estimate of 300-400 kyr being traceable to an early box model study by Sundquist (1991). Here we employ a representation of terrestrial rock weathering in conjunction with the "GENIE" (Grid ENabled Integrated Earth system) model to elucidate the different time scales of atmospheric CO2 regulation while including the main climate feedbacks on CO2 uptake by the ocean. In this coupled model, the main dependencies of weathering—runoff, temperature, and biological productivity—were driven from an energy-moisture balance atmosphere model and parameterized plant productivity. Long-term projections (1 Myr) were conducted for idealized scenarios of 1000 and 5000 PgC fossil fuel emissions and their sensitivity to different model parameters was tested. By fitting model output to a series of exponentials we determined the e-folding time scale for atmospheric CO2 drawdown by silicate weathering to be ˜240 kyr (range 170-380 kyr), significantly less than existing quantifications. Although the time scales for reequilibration of global surface temperature and surface ocean pH are similar to that for CO2, a much greater proportion of the peak temperature anomaly persists on this longest time scale; ˜21% compared to ˜10% for CO2.

  14. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO2 concentration data

    NASA Astrophysics Data System (ADS)

    Ogle, Stephen M.; Davis, Kenneth; Lauvaux, Thomas; Schuh, Andrew; Cooley, Dan; West, Tristram O.; Heath, Linda S.; Miles, Natasha L.; Richardson, Scott; Breidt, F. Jay; Smith, James E.; McCarty, Jessica L.; Gurney, Kevin R.; Tans, Pieter; Denning, A. Scott

    2015-03-01

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Furthermore, verifying biogenic fluxes provides a check on estimated emissions associated with managing lands for carbon sequestration and other activities, which often have large uncertainties. We report here on the challenges and results associated with a case study using atmospheric measurements of CO2 concentrations and inverse modeling to verify nationally-reported biogenic CO2 emissions. The biogenic CO2 emissions inventory was compiled for the Mid-Continent region of United States based on methods and data used by the US government for reporting to the UNFCCC, along with additional sources and sinks to produce a full carbon balance. The biogenic emissions inventory produced an estimated flux of -408 ± 136 Tg CO2 for the entire study region, which was not statistically different from the biogenic flux of -478 ± 146 Tg CO2 that was estimated using the atmospheric CO2 concentration data. At sub-regional scales, the spatial density of atmospheric observations did not appear sufficient to verify emissions in general. However, a difference between the inventory and inversion results was found in one isolated area of West-central Wisconsin. This part of the region is dominated by forestlands, suggesting that further investigation may be warranted into the forest C stock or harvested wood product data from this portion of the study area. The results suggest that observations of atmospheric CO2 concentration data and inverse modeling could be used to verify biogenic emissions, and provide more confidence in biogenic GHG emissions reporting to the UNFCCC.

  15. [Direct Observation on the Temporal and Spatial Patterns of the CO2 Concentration in the Atmospheric of Nanjing Urban Canyon in Summer].

    PubMed

    Gao, Yun-qiu; Liu, Shou-dong; Hu, Ning; Wang, Shu-min; Deng, Li-chen; Yu, Zhou; Zhang, Zhen; Li, Xu-hui

    2015-07-01

    Direct observation of urban atmospheric CO2 concentration is vital for the research in the contribution of anthropogenic activity to the atmospheric abundance since cities are important CO2 sources. The observations of the atmospheric CO2 concentration at multiple sites/heights can help us learn more about the temporal and spatial patterns and influencing mechanisms. In this study, the CO2 concentration was observed at 5 sites (east, west, south, north and middle) in the main city area of Nanjing from July 18 to 25, 2014, and the vertical profile of atmospheric CO2 concentration was measured in the middle site at 3 heights (30 m, 65 m and 110 m). The results indicated that: (1) An obvious vertical CO2 gradient was found, with higher CO2 concentration [molar fraction of 427. 3 x 10(-6) (±18. 2 x 10(-6))] in the lower layer due to the strong influences of anthropogenic emissions, and lower CO2 concentration in the upper layers [411. 8 x 10(-6) (±15. 0 x 10(-6)) and 410. 9 x 10(-6) (±14. 6 x 10(-6)) at 65 and 110 m respectively] for the well-mixed condition. The CO2 concentration was higher and the vertical gradient was larger when the atmosphere was stable. (2) The spatial distribution pattern of CO2 concentration was dominated by wind and atmospheric stability. During the observation, the CO2 concentration in the southwest was higher than that in the northeast region with the CO2 concentration difference of 7. 8 x 10(-6), because the northwest wind was prevalent. And the CO2 concentration difference reduced with increasing wind speed since stronger wind diluted CO2 more efficiently. The more stable the atmosphere was, the higher the CO2 concentration was. (3) An obvious diurnal variation of CO2 concentration was shown in the 5 sites. A peak value occurred during the morning rush hours, the valley value occurred around 17:00 (Local time) and another high value occurred around 19:00 because of evening rush hour sometimes.

  16. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary.

    PubMed

    Tanner, L H; Hubert, J F; Coffey, B P; McInerney, D P

    2001-06-01

    The Triassic/Jurassic boundary, 208 million years ago, is associated with widespread extinctions in both the marine and terrestrial biota. The cause of these extinctions has been widely attributed to the eruption of flood basalts of the Central Atlantic Magmatic Province. This volcanic event is thought to have released significant amounts of CO2 into the atmosphere, which could have led to catastrophic greenhouse warming, but the evidence for CO2-induced extinction remains equivocal. Here we present the carbon isotope compositions of pedogenic calcite from palaeosol formations, spanning a 20-Myr period across the Triassic/Jurassic boundary. Using a standard diffusion model, we interpret these isotopic data to represent a rise in atmospheric CO2 concentrations of about 250 p.p.m. across the boundary, as compared with previous estimates of a 2,000-4,000 p.p.m. increase. The relative stability of atmospheric CO2 across this boundary suggests that environmental degradation and extinctions during the Early Jurassic were not caused by volcanic outgassing of CO2. Other volcanic effects-such as the release of atmospheric aerosols or tectonically driven sea-level change-may have been responsible for this event. PMID:11395765

  17. Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary.

    PubMed

    Tanner, L H; Hubert, J F; Coffey, B P; McInerney, D P

    2001-06-01

    The Triassic/Jurassic boundary, 208 million years ago, is associated with widespread extinctions in both the marine and terrestrial biota. The cause of these extinctions has been widely attributed to the eruption of flood basalts of the Central Atlantic Magmatic Province. This volcanic event is thought to have released significant amounts of CO2 into the atmosphere, which could have led to catastrophic greenhouse warming, but the evidence for CO2-induced extinction remains equivocal. Here we present the carbon isotope compositions of pedogenic calcite from palaeosol formations, spanning a 20-Myr period across the Triassic/Jurassic boundary. Using a standard diffusion model, we interpret these isotopic data to represent a rise in atmospheric CO2 concentrations of about 250 p.p.m. across the boundary, as compared with previous estimates of a 2,000-4,000 p.p.m. increase. The relative stability of atmospheric CO2 across this boundary suggests that environmental degradation and extinctions during the Early Jurassic were not caused by volcanic outgassing of CO2. Other volcanic effects-such as the release of atmospheric aerosols or tectonically driven sea-level change-may have been responsible for this event.

  18. Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type

    PubMed Central

    Ellis, J. Christopher; Fay, Philip A.; Polley, H. Wayne; Jackson, Robert B.

    2014-01-01

    Soils sequester and release substantial atmospheric carbon, but the contribution of fungal communities to soil carbon balance under rising CO2 is not well understood. Soil properties likely mediate these fungal responses but are rarely explored in CO2 experiments. We studied soil fungal communities in a grassland ecosystem exposed to a preindustrial-to-future CO2 gradient (250 to 500 ppm) in a black clay soil and a sandy loam soil. Sanger sequencing and pyrosequencing of the rRNA gene cluster revealed that fungal community composition and its response to CO2 differed significantly between soils. Fungal species richness and relative abundance of Chytridiomycota (chytrids) increased linearly with CO2 in the black clay (P < 0.04, R2 > 0.7), whereas the relative abundance of Glomeromycota (arbuscular mycorrhizal fungi) increased linearly with elevated CO2 in the sandy loam (P = 0.02, R2 = 0.63). Across both soils, decomposition rate was positively correlated with chytrid relative abundance (r = 0.57) and, in the black clay soil, fungal species richness. Decomposition rate was more strongly correlated with microbial biomass (r = 0.88) than with fungal variables. Increased labile carbon availability with elevated CO2 may explain the greater fungal species richness and Chytridiomycota abundance in the black clay soil, whereas increased phosphorus limitation may explain the increase in Glomeromycota at elevated CO2 in the sandy loam. Our results demonstrate that soil type plays a key role in soil fungal responses to rising atmospheric CO2. PMID:25239904

  19. Radiative transfer in CO2-rich atmospheres: 1. Collisional line mixing implies a colder early Mars

    NASA Astrophysics Data System (ADS)

    Ozak, N.; Aharonson, O.; Halevy, I.

    2016-06-01

    Fast and accurate radiative transfer methods are essential for modeling CO2-rich atmospheres, relevant to the climate of early Earth and Mars, present-day Venus, and some exoplanets. Although such models already exist, their accuracy may be improved as better theoretical and experimental constraints become available. Here we develop a unidimensional radiative transfer code for CO2-rich atmospheres, using the correlated k approach and with a focus on modeling early Mars. Our model differs from existing models in that it includes the effects of CO2 collisional line mixing in the calculation of the line-by-line absorption coefficients. Inclusion of these effects results in model atmospheres that are more transparent to infrared radiation and, therefore, in colder surface temperatures at radiative-convective equilibrium, compared with results of previous studies. Inclusion of water vapor in the model atmosphere results in negligible warming due to the low atmospheric temperatures under a weaker early Sun, which translate into climatically unimportant concentrations of water vapor. Overall, the results imply that sustained warmth on early Mars would not have been possible with an atmosphere containing only CO2 and water vapor, suggesting that other components of the early Martian climate system are missing from current models or that warm conditions were not long lived.

  20. Regional atmospheric CO2 inversion reveals seasonal and geographic differences in Amazon net biome exchange.

    PubMed

    Alden, Caroline B; Miller, John B; Gatti, Luciana V; Gloor, Manuel M; Guan, Kaiyu; Michalak, Anna M; van der Laan-Luijkx, Ingrid T; Touma, Danielle; Andrews, Arlyn; Basso, Luana S; Correia, Caio S C; Domingues, Lucas G; Joiner, Joanna; Krol, Maarten C; Lyapustin, Alexei I; Peters, Wouter; Shiga, Yoichi P; Thoning, Kirk; van der Velde, Ivar R; van Leeuwen, Thijs T; Yadav, Vineet; Diffenbaugh, Noah S

    2016-10-01

    Understanding tropical rainforest carbon exchange and its response to heat and drought is critical for quantifying the effects of climate change on tropical ecosystems, including global climate-carbon feedbacks. Of particular importance for the global carbon budget is net biome exchange of CO2 with the atmosphere (NBE), which represents nonfire carbon fluxes into and out of biomass and soils. Subannual and sub-Basin Amazon NBE estimates have relied heavily on process-based biosphere models, despite lack of model agreement with plot-scale observations. We present a new analysis of airborne measurements that reveals monthly, regional-scale (~1-8 × 10(6)  km(2) ) NBE variations. We develop a regional atmospheric CO2 inversion that provides the first analysis of geographic and temporal variability in Amazon biosphere-atmosphere carbon exchange and that is minimally influenced by biosphere model-based first guesses of seasonal and annual mean fluxes. We find little evidence for a clear seasonal cycle in Amazon NBE but do find NBE sensitivity to aberrations from long-term mean climate. In particular, we observe increased NBE (more carbon emitted to the atmosphere) associated with heat and drought in 2010, and correlations between wet season NBE and precipitation (negative correlation) and temperature (positive correlation). In the eastern Amazon, pulses of increased NBE persisted through 2011, suggesting legacy effects of 2010 heat and drought. We also identify regional differences in postdrought NBE that appear related to long-term water availability. We examine satellite proxies and find evidence for higher gross primary productivity (GPP) during a pulse of increased carbon uptake in 2011, and lower GPP during a period of increased NBE in the 2010 dry season drought, but links between GPP and NBE changes are not conclusive. These results provide novel evidence of NBE sensitivity to short-term temperature and moisture extremes in the Amazon, where monthly and sub

  1. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    USGS Publications Warehouse

    Carr, Michael H.

    1989-01-01

    Channels on the Martian surface suggest that Mars had an early, relatively thick atmosphere. If the atmosphere was thick enough for water to be stable at the surface, CO2 in the atmosphere would have been fixed as carbonates on a relatively short time scale, previously estimated to be 1 bar every 107 years. This loss must have been offset by some replenishment mechanism to account for the numerous valley networks in the oldest surviving terrains. Impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by addition of carbon to Mars from the impacting bolides. Depending on the relationship between the transient cavity diameter and the diameter of the resulting crater, burial rates as a result of impact gardening at the end of heavy bombardment are estimated to range from 20 to 45 m/106 years, on the assumption that cratering rates in Mars were similar to those of the Nectarian Period on the Moon. At these rates 0.1-0.2 bar of CO2 could have been released every 107 years as a result of burial to depths where dissociation temperatures of carbonates were reached. Modeling of large impacts suggests that an additional 0.01 to 0.02 bar of CO2 could have been released every 107 years during the actual impacts. In the unlikely event that all the impacting material was composed of carbonaceous chondrites, a further 0.3 bar of CO2 could have been added to the atmosphere every 107 years by oxidation of meteoritic carbon. Even when supplemented by the volcanically induced release of CO2, these release rates are barely sufficient to sustain an early atmosphere if water were continuously present at the surface. The results suggest that water may have been only intermittently present on the surface early in the planet's history.

  2. Experimental and Numerical Modelling of CO2 Atmospheric Dispersion in Hazardous Gas Emission Sites.

    NASA Astrophysics Data System (ADS)

    Gasparini, A.; sainz Gracia, A. S.; Grandia, F.; Bruno, J.

    2015-12-01

    Under stable atmospheric conditions and/or in presence of topographic depressions, CO2 concentrations can reach high values resulting in lethal effect to living organisms. The distribution of denser than air gases released from the underground is governed by gravity, turbulence and dispersion. Once emitted, the gas distribution is initially driven by buoyancy and a gas cloud accumulates on the ground (gravitational phase); with time the density gradient becomes less important due to dispersion or mixing and gas distribution is mainly governed by wind and atmospheric turbulence (passive dispersion phase). Natural analogues provide evidences of the impact of CO2 leakage. Dangerous CO2 concentration in atmosphere related to underground emission have been occasionally reported although the conditions favouring the persistence of such a concentration are barely studied.In this work, the dynamics of CO2 in the atmosphere after ground emission is assessed to quantify their potential risk. Two approaches have been followed: (1) direct measurement of air concentration in a natural emission site, where formation of a "CO2 lake" is common and (2) numerical atmospheric modelling. Two sites with different morphology were studied: (a) the Cañada Real site, a flat terrain in the Volcanic Field of Campo de Calatrava (Spain); (b) the Solforata di Pomezia site, a rough terrain in the Alban Hills Volcanic Region (Italy). The comparison between field data and model calculations reveal that numerical dispersion models are capable of predicting the formation of CO2 accumulation over the ground as a consequence of underground gas emission. Therefore, atmospheric modelling could be included as a valuable methodology in the risk assessment of leakage in natural degassing systems and in CCS projects. Conclusions from this work provide clues on whether leakage may be a real risk for humans and under which conditions this risk needs to be included in the risk assessment.

  3. Reduced Atmospheric CH4 Consumption by Temperate Forest Soils Under Elevated CO2

    NASA Astrophysics Data System (ADS)

    Dubbs, L. E.; Whalen, S. C.; Fischer, E. N.

    2004-12-01

    Models project that atmospheric CO2 concentrations, by the end of the present century, will exceed the preindustrial concentration by up to 250%. The regional and global impact of this projected concentration increase on other biogeochemical cycles is uncertain. We recently reported in a two year study a 17 (year 2) to 30% (year 1) decrease in atmospheric CH4 consumption by soils in CO2-enriched plots in a temperate loblolly pine (Pinus taeda) forest, although the reason for the decline was unclear. Consumption by upland soils is the only terrestrial sink for atmospheric CH4, which is second only to CO2 in terms of radiative forcing. Forest ecosystems occupy about half of the Earth's terrestrial surface. A sustained CO2-induced negative feedback on forest soil CH4 consumption could lead to a 25% reduction (7.5 Tg CH4 yr-1) in the current upland soil sink of ˜30 Tg yr-1. However, CO2-enriched tundra ecosystems showed down regulation in at least the photosynthetic response after 3 yr of fertilization and it is uncertain whether decreased atmospheric CH4 consumption represents a transient or sustained response of forest-soil systems to elevated CO2. We report here the early results of our efforts to determine the duration and underlying causes for the decline in atmospheric CH4 consumption in a CO2-enriched forest. Reduced CH4 consumption persisted in elevated CO2 plots, which showed declines of 13% (year 3) and 34% (year 5, to date), relative to unenriched controls. This decline may be related to the rate of supply of CH4 to the subsurface zone of oxidation, as soil moisture was significantly higher in CO2-enriched plots. A single experiment to date showed that changes in the chemical composition of leachate from aboveground plant material had no impact on the CH4 oxidizing community, as rates of CH4 consumption by soil samples amended with throughfall from CO2-enriched and control plots were not significantly different.

  4. First observations of 14CO2 at the Boulder Atmospheric Observatory (BAO)

    NASA Astrophysics Data System (ADS)

    Lafranchi, B. W.; Petron, G.; Andrews, A. E.; Miller, J. B.; Lehman, S. J.; Montzka, S. A.; Miller, B. R.; Guilderson, T. P.

    2010-12-01

    Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the near absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such measurements to facilitate carbon cycle studies and the validation of greenhouse gas emissions inventories. Here we report on the first ever 14CO2 observations from the Boulder Atmospheric Observatory (BAO), located 35 km north of Denver, CO. The BAO tower is one of 8 tall towers in the NOAA/ESRL greenhouse gas flask sampling network that has recently begun sampling for atmospheric 14C, as well as other trace gases. We will present observations of Δ14C in whole air samples collected between June 2009 and March 2010 at BAO (300 m a.g.l.). Values ranged from -10‰ to +46 ‰ corresponding to estimated fossil fuel CO2 (CO2ff) mixing ratios as high as 10 ppm above the background. Strong correlations between [CO2] and Δ14C suggest that much of the day-to-day variability in [CO2] is driven primarily by changes in [CO2ff] reaching the site. This variability is expected to be a function of the fossil fuel emission strength, regional transport, and boundary layer height. An analysis of differences in Δ14C with day of week provides a simple means to disentangle changes in the emission source strength of CO2ff from natural meteorological variability. Performing this analysis, we find that on average the site experiences slightly less fossil fuel emissions on weekends than on weekdays, presumably due to changes in anthropogenic emission patterns. Lastly, we will examine the correlations of Δ14C with traces gases, such as benzene, CO, and acetylene, in order to better assess the potential for using these relationships to interpolate [CO2ff] to faster time-scales, to extrapolate over a longer observational period, and

  5. Resistivity Variation due to CO2 Migration in Different Temperature and Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Onishi, K.; Yamada, Y.; Matsuoka, T.; Xue, Z.

    2007-12-01

    CO2 geological sequestration is one of the effective approaches solving the global warming problem. Captured CO2 is injected to the deep aquifers or depleted oil and gas fields. Injected CO2 migrates thorough the reservoir rock, however, the details behavior of injected CO2 under the ground at super critical phase is not yet fully understood. Migration of injected CO2 will change by the condition of the injected reservoir such as the temperature and pressure. Also density and permeability of the rock may be changed due to temperature or pressure variations. These changes control the migration behavior of injected CO2. In this study, experiments of resistivity measurements were conducted to detect the migration difference of CO2 in different temperature and pressure conditions by using sandstone core samples. Core sample was taken from Berea sandstone and processed to 5cm diameter and 12cm length. For the resistivity measurement, impression electrode was set on the both end and the measurement electrode of ring condition was set on the side of the rock sample. We stetted the core sample in the pressure vessel and recreated the condition of underground reservoir which is high pressure and high temperature. We injected supercritical CO2 in different pressure and temperature for each experiment. Pressure was changed in range of 8 to 11MPa and temperature was changed in range of 35° to 45°. This means that all the experiments were conducted in supercritical phase. From the measured resistivity variation, we verified the migration of CO2 and compared the migration behavior of CO2 in different conditions.

  6. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  7. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; Martin-Torres, F. J.; Zorzano, M.

    2015-01-01

    One of the most compelling features of the Gale landing site is its age. Based on crater counts, the formation of Gale crater is dated to be near the beginning of the Hesperian near the pivotal Hesperian/Noachian transition. This is a time period on Mars that is linked to increased fluvial activity through valley network formation and also marks a transition from higher erosion rates/clay mineral formation to lower erosion rates with mineralogies dominated by sulfate minerals. Results from the Curiosity mission have shown extensive evidence for fluvial activity within the crater suggesting that sediments on the floor of the crater and even sediments making up Mt. Sharp itself were the result of longstanding activity of liquid water. Warm/wet conditions on early Mars are likely due to a thicker atmosphere and increased abundance of greenhouse gases including the main component of the atmosphere, CO2. Carbon dioxide is minor component of the Earth's atmosphere yet plays a major role in surface water chemistry, weathering, and formation of secondary minerals. An ancient martian atmosphere was likely dominated by CO2 and any waters in equilibrium with this atmosphere would have different chemical characteristics. Studies have noted that high partial pressures of CO2 would result in increased carbonic acid formation and lowering of the pH so that carbonate minerals are not stable. However, if there were a dense CO2 atmosphere present at the Hesperian/Noachian transition, it would have to be stored in a carbon reservoir on the surface or lost to space. The Mt. Sharp sediments are potentially one of the best places on Mars to investigate these CO2 reservoirs as they are proposed to have formed in the early Hesperian, from an alkaline lake, and record the transition to an aeolian dominated regime near the top of the sequence. The total amount of CO2 in the Gale crater soils and sediments is significant but lower than expected if a thick atmosphere was present at the

  8. Evaluating the Capacity of Global CO2 Flux and Atmospheric Transport Models to Incorporate New Satellite Observations

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Collatz, G. J.; Erickson, D. J.; Denning, A. S.; Wofsy, S. C.; Andrews, A. E.

    2007-01-01

    interannual variations generally respond adequately, but discrepancies in the tropics suggest the need for a refinement of the soil moisture dependence of the respiration flux in CASA. Examples and inferences for interpretation of satellite data will be discussed. In general, the fidelity of these simulations leads us to anticipate incorporation of real-time, highly resolved remote sensing and other observations into quantitative analyses that will reduce uncertainty in the terrestrial CO2 sink and revolutionize our understanding of the key processes controlling atmospheric CO2 and its evolution with time.

  9. The persistent and pernicious myth of the early CO2-N2 atmospheres of terrestrial planets

    NASA Astrophysics Data System (ADS)

    Shaw, G. H.

    2009-12-01

    The accepted model for early atmospheres of terrestrial planets has settled on a CO2-N2 composition. Unfortunately, while it is largely based on a brilliant geological analysis by Rubey, there is no compelling evidence whatsoever for such a composition as the first “permanent” atmosphere for Earth or any other planet. In fact, geological discoveries of the past 50+ years reveal several problems with a CO2-N2 atmosphere, some of which Rubey recognized in his own analysis. He clearly addressed the problem of timing of degassing, concluding that early massive degassing of CO2 would produce readily observed and profound effects, which are not evident. Modeling and constraints on the timing of planetary accretion and core formation indicate massive early degassing. If early degassing emitted CO2-N2, the effects are concealed. Plate tectonic recycling is not a solution, as conditions would have persisted beyond the time of the earliest rocks, which do not show the effects. Attempts to return degassed CO2 to the mantle are not only ad hoc, but inconsistent with early thermal structure of the Earth. Second, production of prebiotic organic compounds from a CO2-N2 atmosphere has been a nagging problem. At best this has been addressed by invoking hydrogen production from the mantle to provide reducing capacity. While hydrogen may be emitted in volcanic eruptions, it is exceedingly difficult to imagine this process generating enough organics to yield high concentrations in a global ocean. The recent fashion of invoking organic synthesis at deep-sea vents suffers from the same problem: how to achieve sufficient concentrations of organics in a global ocean by abiotic synthesis when hydrothermal activity stirs the solution and carries the prebiotic products off to great dilution? Suggesting life began at deep-sea vents, and continues to carry on chemosynthesis there, begs the question. Unless you get high enough concentrations of prebiotics by abiotic processes, you simply

  10. Long-term response of oceans to CO2 removal from the atmosphere

    NASA Astrophysics Data System (ADS)

    Mathesius, Sabine; Hofmann, Matthias; Caldeira, Ken; Schellnhuber, Hans Joachim

    2015-12-01

    Carbon dioxide removal (CDR) from the atmosphere has been proposed as a measure for mitigating global warming and ocean acidification. To assess the extent to which CDR might eliminate the long-term consequences of anthropogenic CO2 emissions in the marine environment, we simulate the effect of two massive CDR interventions with CO2 extraction rates of 5 GtC yr-1 and 25 GtC yr-1, respectively, while CO2 emissions follow the extended RCP8.5 pathway. We falsify two hypotheses: the first being that CDR can restore pre-industrial conditions in the ocean by reducing the atmospheric CO2 concentration back to its pre-industrial level, and the second being that high CO2 emissions rates (RCP8.5) followed by CDR have long-term oceanic consequences that are similar to those of low emissions rates (RCP2.6). Focusing on pH, temperature and dissolved oxygen, we find that even after several centuries of CDR deployment, past CO2 emissions would leave a substantial legacy in the marine environment.

  11. Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals.

    PubMed

    Hentley, William T; Vanbergen, Adam J; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N

    2014-10-01

    Research into the impact of atmospheric change on predator-prey interactions has mainly focused on density dependent responses and trophic linkages. As yet, the chemical ecology underpinning predator-prey interactions has received little attention in environmental change research. Group living animals have evolved behavioral mechanisms to escape predation, including chemical alarm signalling. Chemical alarm signalling between conspecific prey could be susceptible to environmental change if the physiology and behavior of these organisms are affected by changes in dietary quality resulting from environmental change. Using Rubus idaeus plants, we show that elevated concentrations of atmospheric CO2 (eCO2) severely impaired escape responses of the aphid Amphorophora idaei to predation by ladybird larvae (Harmonia axyridis). Escape responses to ladybirds was reduced by >50% after aphids had been reared on plants grown under eCO2. This behavioral response was rapidly induced, occurring within 24 h of being transferred to plants grown at eCO2 and, once induced, persisted even after aphids were transferred to plants grown at ambient CO2. Escape responses were impaired due to reduced sensitivity to aphid alarm pheromone, (E)-β-farnesene, via an undefined plant-mediated mechanism. Aphid abundance often increases under eCO2, however, reduced efficacy of conspecific signalling may increase aphid vulnerability to predation, highlighting the need to study the chemical ecology of predator-prey interactions under environmental change. PMID:25273846

  12. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    PubMed

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  13. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2.

    PubMed

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K; Chauhan, Bhagirath S; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant's functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be of

  14. Glyphosate Resistance of C3 and C4 Weeds under Rising Atmospheric CO2

    PubMed Central

    Fernando, Nimesha; Manalil, Sudheesh; Florentine, Singarayer K.; Chauhan, Bhagirath S.; Seneweera, Saman

    2016-01-01

    The present paper reviews current knowledge on how changes of plant metabolism under elevated CO2 concentrations (e[CO2]) can affect the development of the glyphosate resistance of C3 and C4 weeds. Among the chemical herbicides, glyphosate, which is a non-selective and post-emergence herbicide, is currently the most widely used herbicide in global agriculture. As a consequence, glyphosate resistant weeds, particularly in major field crops, are a widespread problem and are becoming a significant challenge to future global food production. Of particular interest here it is known that the biochemical processes involved in photosynthetic pathways of C3 and C4 plants are different, which may have relevance to their competitive development under changing environmental conditions. It has already been shown that plant anatomical, morphological, and physiological changes under e[CO2] can be different, based on (i) the plant’s functional group, (ii) the available soil nutrients, and (iii) the governing water status. In this respect, C3 species are likely to have a major developmental advantage under a CO2 rich atmosphere, by being able to capitalize on the overall stimulatory effect of e[CO2]. For example, many tropical weed grass species fix CO2 from the atmosphere via the C4 photosynthetic pathway, which is a complex anatomical and biochemical variant of the C3 pathway. Thus, based on our current knowledge of CO2 fixing, it would appear obvious that the development of a glyphosate-resistant mechanism would be easier under an e[CO2] in C3 weeds which have a simpler photosynthetic pathway, than for C4 weeds. However, notwithstanding this logical argument, a better understanding of the biochemical, genetic, and molecular measures by which plants develop glyphosate resistance and how e[CO2] affects these measures will be important before attempting to innovate sustainable technology to manage the glyphosate-resistant evolution of weeds under e[CO2]. Such information will be

  15. Large-Scale Atmospheric Variability in AIRS CO2 and O3

    NASA Astrophysics Data System (ADS)

    Li, Q.; Jiang, X.; Chahine, M.; Yung, Y.; Olsen, E.; Chen, L.

    2006-12-01

    We present a modeling analysis of carbon dioxide (CO2) and ozone (O3) from AIRS with results from two atmospheric chemistry and transport models (CTMs), in the context of the large-scale atmospheric transport. AIRS data, from selected periods in 2003 are retrieved applying the Vanishing Partial Derivative (VPD) method (Chahine et al. [GRL, 2005] and the presentation by Chahine et al., this meeting). Corresponding model results are simulated by 2-D and 3-D atmospheric CTMs. The AIRS retrieved and model simulated CO2 mixing ratios, averaged over 300-500 hPa, are compared with the Matsueda et al. observations in the tropics between 9 and 13 km (see the presentation by Jiang et al., this meeting). The latitudinal distributions of O3, both retrieved and simulated, are compared with ozonesonde data. Both comparisons show reasonable agreement. We then examine the spatiotemporal variabilities of CO2 and O3 and their correlation, both in the AIRS data and model results. Our objective is to better understand the AIRS observed atmospheric variability in CO2 that is associated with underlying large-scale atmospheric transport, particularly the stratosphere-troposphere- exchange (STE) at northern high latitudes in spring and the Asian monsoon summer circulation over South Asia.

  16. Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO(2) column measurements.

    PubMed

    Lin, Bing; Ismail, Syed; Wallace Harrison, F; Browell, Edward V; Nehrir, Amin R; Dobler, Jeremy; Moore, Berrien; Refaat, Tamer; Kooi, Susan A

    2013-10-10

    The focus of this study is to model and validate the performance of intensity-modulated continuous-wave (IM-CW) CO(2) laser absorption spectrometer (LAS) systems and their CO(2) column measurements from airborne and satellite platforms. The model accounts for all fundamental physics of the instruments and their related CO(2) measurement environments, and the modeling results are presented statistically from simulation ensembles that include noise sources and uncertainties related to the LAS instruments and the measurement environments. The characteristics of simulated LAS systems are based on existing technologies and their implementation in existing systems. The modeled instruments are specifically assumed to be IM-CW LAS systems such as the Exelis' airborne multifunctional fiber laser lidar (MFLL) operating in the 1.57 μm CO(2) absorption band. Atmospheric effects due to variations in CO(2), solar radiation, and thin clouds, are also included in the model. Model results are shown to agree well with LAS atmospheric CO(2) measurement performance. For example, the relative bias errors of both MFLL simulated and measured CO(2) differential optical depths were found to agree to within a few tenths of a percent when compared to the in situ observations from the flight of 3 August 2011 over Railroad Valley (RRV), Nevada, during the summer 2011 flight campaign. In addition, the horizontal variations in the model CO(2) differential optical depths were also found to be consistent with those from MFLL measurements. In general, the modeled and measured signal-to-noise ratios (SNRs) of the CO(2) column differential optical depths (τd) agreed to within about 30%. Model simulations of a spaceborne IM-CW LAS system in a 390 km dawn/dusk orbit for CO(2) column measurements showed that with a total of 42 W of transmitted power for one offline and two different sideline channels (placed at different locations on the side of the CO(2) absorption line), the accuracy of the

  17. Recent advances in developing COS as a tracer of Biosphere-atmosphere exchange of CO2

    NASA Astrophysics Data System (ADS)

    Asaf, D.; Stimler, K.; Yakir, D.

    2012-04-01

    Potential use of COS as tracer of CO2 flux into vegetation, based on its co-diffusion with CO2 into leaves without outflux, stimulated research on COS-CO2 interactions. Atmospheric measurements by NOAA in recent years, across a global latitudinal transect, indicated a ratio of the seasonal drawdowns in COS and CO2 (normalized to their respective ambient concentrations) of about 6. We carried out leaf-scale gas exchange measurements of COS and CO2 in 22 plant species of deciduous, evergreen trees, grasses, and shrubs, under a range of light intensities and ambient COS concentrations (using mid IR laser spectroscopy). A narrow range in the normalized ratio of the net uptake rates of COS and CO2 (termed leaf relative uptake; LRU) was observed with a mean value of 1.61±0.26. These results reflect the dominance of stomatal conductance over both COS and CO2 uptake, imposing a relatively constant ratio between the two fluxes, except under low light conditions when CO2, but not COS, metabolism is light limited. A relatively constant ratio under common ambient conditions will facilitate the application of COS as a tracer of gross photosynthesis from leaf to global scales. We also report first eddy flux measurements of COS/CO2 at the ecosystem scales. Preliminarily results indicate a ratio of the COS flux, Fcos, to net ecosystem CO2 exchange, NEE, of 3-5 (termed ecosystem relative uptake; ERU). Combining measurements of COS and CO2 and the new information on their ratios at different scales should permit the direct estimation of gross CO2 uptake, GPP, by land ecosystems according to: GPP=NEE*ERU/LRU. In addition, we show that COS effect on stomatal conductance may require a special attention. Increasing COS concentrations between 250 and 2800 pmol mol-1 (enveloping atmospheric levels) stimulate stomatal conductance. It seems likely that the stomata are responding to H2S produced in the leaves from COS.

  18. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.).

    PubMed

    Saha, Saurav; Chakraborty, Debashis; Sehgal, Vinay K; Pal, Madan

    2015-11-15

    Experiments were conducted in open-top chambers to assess the effect of atmospheric CO2 enrichment (E-CO2) on the quality of grains in chickpea (Cicer arietinum L.) crop. Physical attributes of the grains was not affected, but the hydration and swelling capacities of the flour increased. Increase in carbohydrates and reduction in protein made the grains more carbonaceous (higher C:N) under E-CO2. Among other mineral nutrients, K, Ca and Zn concentrations decreased, while P, Mg, Cu, Fe, Mn and B concentrations did not change. The pH, bulk density and cooking time of chickpea flour remained unaffected, although the water absorption capacity of flour increased and oil absorption reduced. Results suggest that E-CO2 could affect the grain quality adversely and nutritional imbalance in grains of chickpea might occur.

  19. Potential impact of rising atmospheric CO2 on quality of grains in chickpea (Cicer arietinum L.).

    PubMed

    Saha, Saurav; Chakraborty, Debashis; Sehgal, Vinay K; Pal, Madan

    2015-11-15

    Experiments were conducted in open-top chambers to assess the effect of atmospheric CO2 enrichment (E-CO2) on the quality of grains in chickpea (Cicer arietinum L.) crop. Physical attributes of the grains was not affected, but the hydration and swelling capacities of the flour increased. Increase in carbohydrates and reduction in protein made the grains more carbonaceous (higher C:N) under E-CO2. Among other mineral nutrients, K, Ca and Zn concentrations decreased, while P, Mg, Cu, Fe, Mn and B concentrations did not change. The pH, bulk density and cooking time of chickpea flour remained unaffected, although the water absorption capacity of flour increased and oil absorption reduced. Results suggest that E-CO2 could affect the grain quality adversely and nutritional imbalance in grains of chickpea might occur. PMID:25977047

  20. A tunable coherent CO2 lidar for measurements of atmospheric aerosol backscatter and attenuation

    NASA Technical Reports Server (NTRS)

    Menzies, R. T.

    1983-01-01

    A coherent laser radar system using a grating-tunable, injection-locked TEA-CO2 transmitter is being used to measure the altitude dependence of atmospheric aerosol backscatter and attenuation at a variety of CO2 laser wavelengths in the 9-11 micron region. Injection control of the TEA-CO2 laser allows one to obtain Single-Longitudinal-Mode (SLM) pulses which will follow the frequency of the injected radiation if the TEA laser cavity length is adjusted so that a cavity resonance is in proximity with the injected signal frequency, and if various additional conditions are satisfied. Requirements for generation of SLM pulses in this manner from a TEA CO2 laser with an unstable resonator cavity will be discussed. Procedures used for quantitative range-gated measurements of aerosol backscatter and attenuation will also be discussed.

  1. Elevated atmospheric CO2 affects soil microbial diversity associated with trembling aspen.

    PubMed

    Lesaulnier, Celine; Papamichail, Dimitris; McCorkle, Sean; Ollivier, Bernard; Skiena, Steven; Taghavi, Safiyh; Zak, Donald; van der Lelie, Daniel

    2008-04-01

    The effects of elevated atmospheric CO(2) (560 p.p.m.) and subsequent plant responses on the soil microbial community composition associated with trembling aspen was assessed through the classification of 6996 complete ribosomal DNA sequences amplified from the Rhinelander WI free-air CO(2) and O(3) enrichment (FACE) experiments microbial community metagenome. This in-depth comparative analysis provides an unprecedented, detailed and deep branching profile of population changes incurred as a response to this environmental perturbation. Total bacterial and eukaryotic abundance does not change; however, an increase in heterotrophic decomposers and ectomycorrhizal fungi is observed. Nitrate reducers of the domain bacteria and archaea, of the phylum Crenarchaea, potentially implicated in ammonium oxidation, significantly decreased with elevated CO(2). These changes in soil biota are evidence for altered interactions between trembling aspen and the microorganisms in its surrounding soil, and support the theory that greater plant detritus production under elevated CO(2) significantly alters soil microbial community composition.

  2. A biogenic CO2 flux adjustment scheme for the mitigation of large-scale biases in global atmospheric CO2 analyses and forecasts

    NASA Astrophysics Data System (ADS)

    Agustí-Panareda, Anna; Massart, Sébastien; Chevallier, Frédéric; Balsamo, Gianpaolo; Boussetta, Souhail; Dutra, Emanuel; Beljaars, Anton

    2016-08-01

    Forecasting atmospheric CO2 daily at the global scale with a good accuracy like it is done for the weather is a challenging task. However, it is also one of the key areas of development to bridge the gaps between weather, air quality and climate models. The challenge stems from the fact that atmospheric CO2 is largely controlled by the CO2 fluxes at the surface, which are difficult to constrain with observations. In particular, the biogenic fluxes simulated by land surface models show skill in detecting synoptic and regional-scale disturbances up to sub-seasonal time-scales, but they are subject to large seasonal and annual budget errors at global scale, usually requiring a posteriori adjustment. This paper presents a scheme to diagnose and mitigate model errors associated with biogenic fluxes within an atmospheric CO2 forecasting system. The scheme is an adaptive scaling procedure referred to as a biogenic flux adjustment scheme (BFAS), and it can be applied automatically in real time throughout the forecast. The BFAS method generally improves the continental budget of CO2 fluxes in the model by combining information from three sources: (1) retrospective fluxes estimated by a global flux inversion system, (2) land-use information, (3) simulated fluxes from the model. The method is shown to produce enhanced skill in the daily CO2 10-day forecasts without requiring continuous manual intervention. Therefore, it is particularly suitable for near-real-time CO2 analysis and forecasting systems.

  3. Global carbon - nitrogen - phosphorus cycle interactions: A key to solving the atmospheric CO2 balance problem?

    NASA Technical Reports Server (NTRS)

    Peterson, B. J.; Mellillo, J. M.

    1984-01-01

    If all biotic sinks of atmospheric CO2 reported were added a value of about 0.4 Gt C/yr would be found. For each category, a very high (non-conservative) estimate was used. This still does not provide a sufficient basis for achieving a balance between the sources and sinks of atmospheric CO2. The bulk of the discrepancy lies in a combination of errors in the major terms, the greatest being in a combination of errors in the major terms, the greatest being in the net biotic release and ocean uptake segments, but smaller errors or biases may exist in calculations of the rate of atmospheric CO2 increase and total fossil fuel use as well. The reason why biotic sinks are not capable of balancing the CO2 increase via nutrient-matching in the short-term is apparent from a comparison of the stoichiometry of the sources and sinks. The burning of fossil fuels and forest biomass releases much more CO2-carbon than is sequestered as organic carbon.

  4. Evidence against dust-mediated control of glacial-interglacial changes in atmospheric CO2.

    PubMed

    Maher, B A; Dennis, P F

    2001-05-10

    The low concentration of atmospheric CO2 inferred to have been present during glacial periods is thought to have been partly caused by an increased supply of iron-bearing dust to the ocean surface. This is supported by a recent model that attributes half of the CO2 reduction during past glacial stages to iron-stimulated uptake of CO2 by phytoplankton in the Southern Ocean. But atmospheric dust fluxes to the Southern Ocean, even in glacial periods, are thought to be relatively low and therefore it has been proposed that Southern Ocean productivity might be influenced by iron deposited elsewhere-for example, in the Northern Hemisphere-which is then transported south via ocean circulation (similar to the distal supply of iron to the equatorial Pacific Ocean). Here we examine the timing of dust fluxes to the North Atlantic Ocean, in relation to climate records from the Vostok ice core in Antarctica around the time of the penultimate deglaciation (about 130 kyr ago). Two main dust peaks occurred 155 kyr and 130 kyr ago, but neither was associated with the CO2 rise recorded in the Vostok ice core. This mismatch, together with the low dust flux supplied to the Southern Ocean, suggests that dust-mediated iron fertilization of the Southern Ocean did not significantly influence atmospheric CO2 at the termination of the penultimate glaciation. PMID:11346790

  5. Low atmospheric CO(2) levels during the Permo- Carboniferous glaciation inferred from fossil lycopsids.

    PubMed

    Beerling, D J

    2002-10-01

    Earth history was punctuated during the Permo-Carboniferous [300-250 million years (Myr) ago] by the longest and most severe glaciation of the entire Phanerozoic Eon. But significant uncertainty surrounds the concentration of CO(2) in the atmosphere through this time interval and therefore its role in the evolution of this major prePleistocene glaciation. Here, I derive 24 Late Paleozoic CO(2) estimates from the fossil cuticle record of arborsecent lycopsids of the equatorial Carboniferous and Permian swamp communities. Quantitative calibration of Late Carboniferous (330-300 Myr ago) and Permian (270-260 Myr ago) lycopsid stomatal indices yield average atmospheric CO(2) concentrations of 344 ppm and 313 ppm, respectively. The reconstructions show a high degree of self-consistency and a degree of precision an order of magnitude greater than other approaches. Low CO(2) levels during the Permo-Carboniferous glaciation are in agreement with glaciological evidence for the presence of continental ice and coupled models of climate and ice-sheet growth on Pangea. Moreover, the Permian data indicate atmospheric CO(2) levels were low 260 Myr ago, by which time continental deglaciation was already underway. Positive biotic feedbacks on climate, and geotectonic events, therefore are implicated as mechanisms underlying deglaciation.

  6. Long- and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano, Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Hernández, P. A.; Padilla, G.; Calvo, D.; Padrón, E.; Melian, G.; Dionis, S.; Nolasco, D.; Barrancos, J.; Rodríguez, F.; Pérez, N.

    2012-04-01

    Lanzarote Island is an emergent part of the East Canary Ridge and it is situated approximately 100 km from the NW coast of Morocco, covering an area of about 795km2. The largest historical eruption of the Canary Islands, Timanfaya, took place during 1730-36 in this island when long-term eruptions from a NE-SW-trending fissure formed the Montañas del Fuego. The last eruption at Lanzarote Island occurred during 1824, Tinguaton volcano, and produced a much smaller lava flow that reached the SW coast. At present, one of the most prominent phenomena at Timanfaya volcanic field is the high maintained superficial temperatures occurring in the area since the 1730 volcanic eruption. The maximum temperatures recorded in this zone are 605°C, taken in a slightly inclined well 13 m deep. Since fumarolic activity is absent at the surface environment of Lanzarote, to study the diffuse CO2 emission becomes an ideal geochemical tool for monitoring its volcanic activity. Soil CO2 efflux surveys were conducted throughout Timanfaya volcanic field and surrounding areas during the summer periods of 2006, 2007, 2008, 2009, fall period of 2010 and winter, spring and summer periods of 2011 to investigate long and short-term temporal variations of the diffuse CO2 emission from Timanfaya volcano. Soil CO2 efflux surveys were undertaken at Timanfaya volcanic field always under stable weather conditions to minimize effects of meteorological conditions on the CO2 at the soil atmosphere. Approximately 370-430 sampling sites were selected at the surface environment of Timanfaya to obtain an even distribution of the sampling points over the study area. The accumulation chamber method (Parkinson et al., 1981) was used to perform soil CO2 efflux measurements in-situ by means of a portable non dispersive infrared (NDIR) CO2 analyzer, which was interfaced to a hand size computer that runs data acquisition software. At each sampling site, soil temperature at 15 and 40cm depth was also measured by

  7. Side-line tunable laser transmitter for differential absorption lidar measurements of CO2: design and application to atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Koch, Grady J.; Beyon, Jeffrey Y.; Gibert, Fabien; Barnes, Bruce W.; Ismail, Syed; Petros, Mulugeta; Petzar, Paul J.; Yu, Jirong; Modlin, Edward A.; Davis, Kenneth J.; Singh, Upendra N.

    2008-03-01

    A 2 μm wavelength, 90 mJ, 5 Hz pulsed Ho laser is described with wavelength control to precisely tune and lock the wavelength at a desired offset up to 2.9 GHz from the center of a CO2 absorption line. Once detuned from the line center the laser wavelength is actively locked to keep the wavelength within 1.9 MHz standard deviation about the setpoint. This wavelength control allows optimization of the optical depth for a differential absorption lidar (DIAL) measuring atmospheric CO2 concentrations. The laser transmitter has been coupled with a coherent heterodyne receiver for measurements of CO2 concentration using aerosol backscatter; wind and aerosols are also measured with the same lidar and provide useful additional information on atmospheric structure. Range-resolved CO2 measurements were made with <2.4% standard deviation using 500 m range bins and 6.7 min⁡ (1000 pulse pairs) integration time. Measurement of a horizontal column showed a precision of the CO2 concentration to <0.7% standard deviation using a 30 min⁡ (4500 pulse pairs) integration time, and comparison with a collocated in situ sensor showed the DIAL to measure the same trend of a diurnal variation and to detect shorter time scale CO2 perturbations. For vertical column measurements the lidar was setup at the WLEF tall tower site in Wisconsin to provide meteorological profiles and to compare the DIAL measurements with the in situ sensors distributed on the tower up to 396 m height. Assuming the DIAL column measurement extending from 153 m altitude to 1353 m altitude should agree with the tower in situ sensor at 396 m altitude, there was a 7.9 ppm rms difference between the DIAL and the in situ sensor using a 30 min⁡ rolling average on the DIAL measurement.

  8. A model of the CO2 exchanges between biosphere and atmosphere in the tundra

    NASA Technical Reports Server (NTRS)

    Labgaa, Rachid R.; Gautier, Catherine

    1992-01-01

    A physical model of the soil thermal regime in a permafrost terrain has been developed and validated with soil temperature measurements at Barrow, Alaska. The model calculates daily soil temperatures as a function of depth and average moisture contents of the organic and mineral layers using a set of five climatic variables, i.e., air temperature, precipitation, cloudiness, wind speed, and relative humidity. The model is not only designed to study the impact of climate change on the soil temperature and moisture regime, but also to provide the input to a decomposition and net primary production model. In this context, it is well known that CO2 exchanges between the terrestrial biosphere and the atmosphere are driven by soil temperature through decomposition of soil organic matter and root respiration. However, in tundra ecosystems, net CO2 exchange is extremely sensitive to soil moisture content; therefore it is necessary to predict variations in soil moisture in order to assess the impact of climate change on carbon fluxes. To this end, the present model includes the representation of the soil moisture response to changes in climatic conditions. The results presented in the foregoing demonstrate that large errors in soil temperature and permafrost depth estimates arise from neglecting the dependence of the soil thermal regime on soil moisture contents. Permafrost terrain is an example of a situation where soil moisture and temperature are particularly interrelated: drainage conditions improve when the depth of the permafrost increases; a decrease in soil moisture content leads to a decrease in the latent heat required for the phase transition so that the heat penetrates faster and deeper, and the maximum depth of thaw increases; and as excepted, soil thermal coefficients increase with moisture.

  9. An empirical response function for the long-term fate of excess atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Lord, Natalie S.; Ridgwell, Andy; Thorne, Mike. C.; Lunt, Dan. J.

    2015-04-01

    The long-term fate of fossil fuel CO2 emitted to the atmosphere is neutralization by a number of sedimentological and geological processes operating on timescales ranging from thousands to hundreds of thousands of years. However, the response of these carbon cycle processes to increasing total emissions is not known, such as whether saturation of the long-term CO2 sinks might occur or a weakening of the associated feedbacks. This could have important implications for components of the Earth system that are slow to respond to changes in temperature, such as ice sheets and methane hydrates. Here we use a 3D ocean-based Earth system model to assess the relative importance and timescales of these processes for different total emissions. A multi-exponential analysis is performed on an ensemble of 1 Myr duration CO2 decay curves spanning cumulative emissions of up to 20,000 PgC, generating an empirical response function characterizing the long-term (> 1 kyr) fate of CO2. For a realistic time-dependent carbon release, a simple pulse-response description results in large predictive errors early on in the simulation. As a result, we develop a convolution-based description of atmospheric CO2 decay which significantly decreases these initial residuals. Our response function represents a simple and practical tool for rapidly projecting the atmospheric lifetime of a wide range of CO2 emission sizes, and in convolution form, can be used across a large range of rates of release, allowing it to be used in place of more complex models for assessing the long-term atmospheric CO2 perturbation following future anthropogenic emissions. Our analysis also reveals that, as the marine CO2 sinks become saturated, both the fraction of total emissions that are removed from the atmosphere via carbonate weathering and burial and the timescale of removal progressively increase. However, we find that the ultimate CO2 sink - silicate weathering feedback - is approximately invariant with respect to

  10. Comparing Global Atmospheric CO2 Flux and Transport Models with Remote Sensing (and Other) Observations

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Collatz, G. J.; Pawson, S.; Wennberg, P. O.; Wofsy, S. C.; Andrews, A. E.

    2010-01-01

    We report recent progress derived from comparison of global CO2 flux and transport models with new remote sensing and other sources of CO2 data including those from satellite. The overall objective of this activity is to improve the process models that represent our understanding of the workings of the atmospheric carbon cycle. Model estimates of CO2 surface flux and atmospheric transport processes are required for initial constraints on inverse analyses, to connect atmospheric observations to the location of surface sources and sinks, to provide the basic framework for carbon data assimilation, and ultimately for future projections of carbon-climate interactions. Models can also be used to test consistency within and between CO2 data sets under varying geophysical states. Here we focus on simulated CO2 fluxes from terrestrial vegetation and atmospheric transport mutually constrained by analyzed meteorological fields from the Goddard Modeling and Assimilation Office for the period 2000 through 2009. Use of assimilated meteorological data enables direct model comparison to observations across a wide range of scales of variability. The biospheric fluxes are produced by the CASA model at 1x1 degrees on a monthly mean basis, modulated hourly with analyzed temperature and sunlight. Both physiological and biomass burning fluxes are derived using satellite observations of vegetation, burned area (as in GFED-3), and analyzed meteorology. For the purposes of comparison to CO2 data, fossil fuel and ocean fluxes are also included in the transport simulations. In this presentation we evaluate the model's ability to simulate CO2 flux and mixing ratio variability in comparison to remote sensing observations from TCCON, GOSAT, and AIRS as well as relevant in situ observations. Examples of the influence of key process representations are shown from both forward and inverse model comparisons. We find that the model can resolve much of the synoptic, seasonal, and interannual

  11. The Role of Artificial Atmospheric CO2 Removal in Stabilizing Earth's Climate

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna; Zickfeld, Kirsten

    2014-05-01

    Recent research showed that global mean temperature remains approximately constant for several centuries after complete cessation of CO2 emissions, while global mean thermosteric sea level continues to rise. This implies that a net artificial removal of CO2 from the atmosphere may be necessary to decrease the atmospheric CO2 concentrations more rapidly and bring the climate system components to their previous states on human timescales. The purpose of this study is to explore the reversibility of climate responses to a range of realistic CO2 emission scenarios, which follow a gradual transition from fossil-fuel driven economy to a zero-emission energy system with implementation of negative CO2 emissions, using the University of Victoria Earth System Climate Model of intermediate complexity (UVic ESCM 2.9). The CO2 emission pathways were designed to meet constraints related to the implementation of negative emission technologies derived from the integrated assessment literature. Our simulations show that while it is possible, in principle, to revert the global mean temperature after a phase of overshoot, the thermosteric sea level rise is not reversible on human timescales for the range of emission scenarios considered. During the negative emission phase, CO2 is released form the natural (terrestrial and marine) carbon sinks, which diminishes the efficiency of negative emissions implemented. In addition, spatial changes of vegetation distribution patterns are not entirely reversible on human timescales. We suggest that while negative emissions could potentially stabilize the global mean temperature at a desired level, such technology does not supersede reductions in fossil fuel emissions, as the artificial CO2 capture at large scale has many limitations and is unable to stabilize other climate system components (e.g. sea level) at desired levels.

  12. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks.

  13. Soil organic carbon dust emission: an omitted global source of atmospheric CO2.

    PubMed

    Chappell, Adrian; Webb, Nicholas P; Butler, Harry J; Strong, Craig L; McTainsh, Grant H; Leys, John F; Viscarra Rossel, Raphael A

    2013-10-01

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO(2)) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and transporting C dust quickly offshore; augmenting the net loss of C from terrestrial systems. However, the contribution of wind erosion to rates of C release and sequestration is poorly understood. Here, we describe how SOC dust emission is omitted from national C accounting, is an underestimated source of CO(2) and may accelerate SOC decomposition. Similarly, long dust residence times in the unshielded atmospheric environment may considerably increase CO(2) emission. We developed a first approximation to SOC enrichment for a well-established dust emission model and quantified SOC dust emission for Australia (5.83 Tg CO(2)-e yr(-1)) and Australian agricultural soils (0.4 Tg CO(2)-e yr(-1)). These amount to underestimates for CO(2) emissions of ≈10% from combined C pools in Australia (year = 2000), ≈5% from Australian Rangelands and ≈3% of Australian Agricultural Soils by Kyoto Accounting. Northern hemisphere countries with greater dust emission than Australia are also likely to have much larger SOC dust emission. Therefore, omission of SOC dust emission likely represents a considerable underestimate from those nations' C accounts. We suggest that the omission of SOC dust emission from C cycling and C accounting is a significant global source of uncertainty. Tracing the fate of wind-eroded SOC in the dust cycle is therefore essential to quantify the release of CO(2) from SOC dust to the atmosphere and the contribution of SOC deposition to downwind C sinks. PMID:23897802

  14. Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson Bay lowlands (HBLs)

    NASA Technical Reports Server (NTRS)

    Hamilton, J. David; Kelly, Carol A.; Rudd, John W. M.; Hesslein, Raymond H.; Roulet, Nigel T.

    1994-01-01

    Ponds on peatlands of the Hudson Bay lowlands (HBLs) are complex ecosystems in which the fluxes to the atmosphere of CH4 and CO2 were controlled by interacting physical and biological factors. This resulted in strong diel variations of both dissolved gas concentrations and gas fluxes to the atmosphere, necessitating frequent sampling on a 24-hour schedule to enable accurate estimates of daily fluxes. Ponds at three sites on the HBL were constant net sources of CH4 and CO2 to the atmosphere at mean rates of 110-180 mg CH4 m(exp -2)/d and 3700-11,000 mg CO2 m(exp -2)/d. Rates peaked in August and September. For CH4 the pond fluxes were 3-30 times higher than adjacent vegetated surfaces. For CO2 the net pond fluxes were similar in magnitude to the vegetated fluxes but the direction of the flux was opposite, toward atmosphere. Even though ponds cover only 8-12% of the HBL area, they accounted for 30% of its total CH4 flux to the atmosphere. There is some circumstantial evidence that the ponds are being formed by decomposition of the underlying peat and that this decomposition is being stimulated by the activity of N2 fixing cyanobacteria that grow in mats at the peat-water interface. The fact that the gas fluxes from the ponds were so different from the surrounding vegetated surfaces means that any change in the ratio of pond to vegetated area, as may occur in response to climate change, would affect the total HBL fluxes.

  15. Atmospheric pCO2 Reconstructed across the Early Eocene Hyperthermals

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Schubert, B.

    2015-12-01

    Negative carbon isotope excursions (CIEs) are commonly associated with extreme global warming. The Early Eocene is punctuated by five such CIEs, the Paleocene-Eocene thermal maximum (PETM, ca. 55.8 Ma), H1 (ca. 53.6 Ma), H2 (ca. 53.5 Ma), I1 (ca. 53.3 Ma), and I2 (ca. 53.2 Ma), each characterized by global warming. The negative CIEs are recognized in both marine and terrestrial substrates, but the terrestrial substrates exhibit a larger absolute magnitude CIE than the marine substrates. Here we reconcile the difference in CIE magnitude between the terrestrial and marine substrates for each of these events by accounting for the additional carbon isotope fractionation by C3 land plants in response to increased atmospheric pCO2. Our analysis yields background and peak pCO2 values for each of the events. Assuming a common mechanism for each event, we calculate that background pCO2 was not static across the Early Eocene, with the highest background pCO2 immediately prior to I2, the last of the five CIEs. Background pCO2 is dependent on the source used in our analysis with values ranging from 300 to 720 ppmv provided an injection of 13C-depleted carbon with δ13C value of -60‰ (e.g. biogenic methane). The peak pCO2 during each event scales according to the magnitude of CIE, and is therefore greatest during the PETM and smallest during H2. Both background and peak pCO2 are higher if we assume a mechanism of permafrost thawing (δ13C = -25‰). Our reconstruction of pCO2 across these events is consistent with trends in the δ18O value of deep-sea benthic foraminifera, suggesting a strong link between pCO2 and temperature during the Early Eocene.

  16. Atmospheric CO2 Inversions of the Mid-Continental Intensive (MCI) Region (Invited)

    NASA Astrophysics Data System (ADS)

    Schuh, A. E.; Denning, A.; Ogle, S. M.; Corbin, K.; Uliasz, M.; Davis, K. J.; Lauvaux, T.; Miles, N.; Andrews, A. E.; Petron, G.; Huntzinger, D. N.

    2009-12-01

    We combine the SiB3 biosphere model with the RAMS mesoscale meteorology model and associated Lagrangian particle dispersion model (LPDM) and use CO2 observations from an extensive tower network in 2007 to correct a priori ecosystem respiration (ER) and gross primary productivity (GPP) fluxes for a domain consisting of most of North America. In particular, eight of these towers are located in a concentrated ring around the Mid-Continent Intensive (MCI) region of the United States providing one of the densest tower networks (CO2) in the world, in the midst of one of the strongest areas of seasonal carbon flux in the world. The unique area combined with dense observations and relatively simple atmospheric transport provides an incredible test-bed to investigate atmospheric CO2 inversions. Multiple inversion approaches are compared and contrasted. The results are then investigated for sensitivity to a priori inversion designs, boundary inflow contributions, and network density.

  17. Recharge of the early atmosphere of Mars by impact-induced release of CO2

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1989-01-01

    The question as to whether high impact rates early in the history of Mars could have aided in maintaining a relatively thick CO2 atmosphere is discussed. Such impacts could have released CO2 into the atmosphere by burial, by shock-induced release during impact events, and by the addition of carbon to Mars from the impacting bolides. On the assumption that cratering rates on Mars were comparable to those of the moon's Nectarial period, burial rates are a result of 'impact gardening' at the end of heavy bombardment are estimated to have ranged from 20 to 45 m/million years; at these rates, 0.1-0.2 bar of CO2 would have been released every 10 million years as a result of burial to depths at which carbonate dissociation temperatures are encountered.

  18. Comparing Amazon Basin CO2 fluxes from an atmospheric inversion with TRENDY biosphere models

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Alden, C. B.; Harper, A. B.; Ahlström, A.; Touma, D. E.; Miller, J. B.; Gatti, L. V.; Gloor, M.

    2015-12-01

    Net exchange of carbon dioxide (CO2) between the atmosphere and the terrestrial biosphere is sensitive to environmental conditions, including extreme heat and drought. Of particular importance for local and global carbon balance and climate are the expansive tracts of tropical rainforest located in the Amazon Basin. Because of the Basin's size and ecological heterogeneity, net biosphere CO2 exchange with the atmosphere remains largely un-constrained. In particular, the response of net CO2 exchange to changes in environmental conditions such as temperature and precipitation are not yet well known. However, proper representation of these relationships in biosphere models is a necessary constraint for accurately modeling future climate and climate-carbon cycle feedbacks. In an effort to compare biosphere response to climate across different biosphere models, the TRENDY model intercomparison project coordinated the simulation of CO2 fluxes between the biosphere and atmosphere, in response to historical climate forcing, by 9 different Dynamic Global Vegetation Models. We examine the TRENDY model results in the Amazon Basin, and compare this "bottom-up" method with fluxes derived from a "top-down" approach to estimating net CO2 fluxes, obtained through atmospheric inverse modeling using CO2 measurements sampled by aircraft above the basin. We compare the "bottom-up" and "top-down" fluxes in 5 sub-regions of the Amazon basin on a monthly basis for 2010-2012. Our results show important periods of agreement between some models in the TRENDY suite and atmospheric inverse model results, notably the simulation of increased biosphere CO2 loss during wet season heat in the Central Amazon. During the dry season, however, model ability to simulate observed response of net CO2 exchange to drought was varied, with few models able to reproduce the "top-down" inversion flux signals. Our results highlight the value of atmospheric trace gas observations for helping to narrow the

  19. Atmospheric inversion for cost effective quantification of city CO2 emissions

    NASA Astrophysics Data System (ADS)

    Wu, L.; Broquet, G.; Ciais, P.; Bellassen, V.; Vogel, F.; Chevallier, F.; Xueref-Remy, I.; Wang, Y.

    2015-11-01

    Cities, currently covering only a very small portion (< 3 %) of the world's land surface, directly release to the atmosphere about 44 % of global energy-related CO2, and are associated with 71-76 % of CO2 emissions from global final energy use. Although many cities have set voluntary climate plans, their CO2 emissions are not evaluated by Monitoring, Reporting and Verification (MRV) procedures that play a key role for market- or policy-based mitigation actions. Here we propose a monitoring tool that could support the development of such procedures at the city scale. It is based on an atmospheric inversion method that exploits inventory data and continuous atmospheric CO2 concentration measurements from a network of stations within and around cities to estimate city CO2 emissions. We examine the cost-effectiveness and the performance of such a tool. The instruments presently used to measure CO2 concentrations at research stations are expensive. However, cheaper sensors are currently developed and should be useable for the monitoring of CO2 emissions from a megacity in the near-term. Our assessment of the inversion method is thus based on the use of several types of hypothetical networks, with a range of numbers of sensors sampling at 25 m a.g.l. The study case for this assessment is the monitoring of the emissions of the Paris metropolitan area (~ 12 million inhabitants and 11.4 Tg C emitted in 2010) during the month of January 2011. The performance of the inversion is evaluated in terms of uncertainties in the estimates of total and sectoral CO2 emissions. These uncertainties are compared to a notional ambitious target to diagnose annual total city emissions with an uncertainty of 5 % (2-sigma). We find that, with 10 stations only, which is the typical size of current pilot networks that are deployed in some cities, the uncertainty for the 1-month total city CO2 emissions is significantly reduced by the inversion by ~ 42 % but still corresponds to an annual

  20. An approach for verifying biogenic greenhouse gas emissions inventories with atmospheric CO 2 concentration data

    DOE PAGES

    Ogle, Stephen; Davis, Kenneth J.; Lauvaux, Thomas; Schuh, Andrew E.; Cooley, Dan; West, Tristram O.; Heath, L.; Miles, Natasha; Richardson, S. J.; Breidt, F. Jay; et al

    2015-03-10

    Verifying national greenhouse gas (GHG) emissions inventories is a critical step to ensure that reported emissions data to the United Nations Framework Convention on Climate Change (UNFCCC) are accurate and representative of a country’s contribution to GHG concentrations in the atmosphere. Verification could include a variety of evidence, but arguably the most convincing verification would be confirmation of a change in GHG concentrations in the atmosphere that is consistent with reported emissions to the UNFCCC. We report here on a case study evaluating this option based on a prototype atmospheric CO2 measurement network deployed in the Mid-Continent Region of themore » conterminous United States. We found that the atmospheric CO2 measurement data did verify the accuracy of the emissions inventory within the confidence limits of the emissions estimates, suggesting that this technology could be further developed and deployed more widely in the future for verifying reported emissions.« less

  1. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2.

    PubMed

    Barker, Stephen; Elderfield, Henry

    2002-08-01

    A record of foraminiferal shell weight across glacial-interglacial Termination I shows a response related to seawater carbonate ion concentration and allows reconstruction of a record of carbon dioxide in surface seawater that matches the atmospheric record. The results support suggestions that higher atmospheric carbon dioxide directly affects marine calcification, an effect that may be of global importance to past and future changes in atmospheric CO2. The process provides negative feedback to the influence of marine calcification on atmospheric carbon dioxide and is of practical importance to the application of paleoceanographic proxies.

  2. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Technical Reports Server (NTRS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer F.; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2015-01-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new 2-miron pulsed IPDA lidar has been flown in spring of 2014 for total ten flights with 27 flight hours. It provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the IPDA measurement.

  3. Airborne 2-Micron Double Pulsed Direct Detection IPDA Lidar for Atmospheric CO2 Measurement

    NASA Astrophysics Data System (ADS)

    Yu, Jirong; Petros, Mulugeta; Refaat, Tamer; Reithmaier, Karl; Remus, Ruben; Singh, Upendra; Johnson, Will; Boyer, Charlie; Fay, James; Johnston, Susan; Murchison, Luke

    2016-06-01

    An airborne 2-micron double-pulsed Integrated Path Differential Absorption (IPDA) lidar has been developed for atmospheric CO2 measurements. This new instrument has been flown in spring of 2014 for a total of ten flights with 27 flight hours. This IPDA lidar provides high precision measurement capability by unambiguously eliminating contamination from aerosols and clouds that can bias the results.

  4. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined th...

  5. Soil type influences the sensitivity of nutrient dynamics to changes in atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous studies have indicated that increases in atmospheric CO2 have the potential to decrease nitrogen availability through the process of progressive nitrogen limitation (PNL). The timing and magnitude of PNL in field experiments is varied due to numerous ecosystem processes. Here we examined ...

  6. Amplifying effects of land-use change on future atmospheric CO2 levels

    NASA Astrophysics Data System (ADS)

    Gitz, Vincent; Ciais, Philippe

    2003-03-01

    We constructed a model to analyze the interactions between land-use change and atmospheric CO2 during the recent past and for the future. The primary impact of the conversion of forested lands to cultivated lands is to increase atmospheric CO2, via losses of biomass and soil carbon to the atmosphere. This increase is likely to continue in the next decades, but its magnitude can vary according to each land-use scenario. We show that this first-order effect is further amplified by the correlated diminution of terrestrial sinks, because when croplands replace forests, the turnover time of excess carbon in the biosphere decreases, and hence the sink capacity of terrestrial ecosystems decreases. This effect acts to further increase by up to 100 ppm the CO2 level reached by 2100, and it is of the same order of magnitude, although smaller, than climate-carbon feedbacks. Uncertainties on the magnitude of this land-use induced effect are large, because of uncertainties in the sink role of terrestrial ecosystems in the future and because of uncertainties inherent to the modeling of land-use induced carbon emissions. Such an extra rise in atmospheric CO2 is however partially offset by the ocean reservoir and by sinks operating over undisturbed, pristine ecosystems, suggesting that conserving pristine forests with long turnover times might be efficient in mitigating the greenhouse effect.

  7. The role of carbon dust emission as a global source of atmospheric CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO2) budget, because wind erosion contributes to the C cycle by selectively removing4 SOC from vast areas and ...

  8. Soil organic carbon dust emission: an omitted global source of atmospheric CO2?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion redistributes soil organic carbon (SOC) within terrestrial ecosystems, to the atmosphere and oceans. Dust export is an essential component of the carbon (C) and carbon dioxide (CO2) budget because wind erosion contributes to the C cycle by removing selectively SOC from vast areas and tr...

  9. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1985-01-01

    Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.

  10. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  11. Impacts of elevated atmospheric CO2 on nutrient content and yield of important food crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the many ways that climate change may affect human health is by altering the nutrient content of food crops. However, previous attempts to study the effects of increased atmospheric CO2 on crop nutrition have been limited by small sample sizes and/or artificial growing conditions. Here we p...

  12. Rising atmospheric CO2 lowers food zinc, iron, and protein concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary deficiencies of zinc and iron are a major global public health problem. Most people who experience these deficiencies depend on agricultural crops for zinc and iron. In this context, the influence of rising concentrations of atmospheric CO2 on the availability of these nutrients from crops i...

  13. Stability of CO2 Atmospheres on Terrestrial Exoplanets in the Proximity of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Gao, P.; Hu, R.; Yung, Y. L.

    2013-12-01

    M dwarfs are promising targets for the search and characterization of terrestrial exoplanets that might be habitable, as the habitable planets around M dwarfs are in much more close-in orbits compared to their counterparts around Sun-like stars. CO2, one of the most important greenhouse gases on our planet, is conventionally adopted as a major greenhouse gas in studying the habitability of terrestrial exoplanets around M dwarfs. However, the stability of CO2 in terrestrial atmospheres has been called into question due to the high FUV/NUV flux ratio of some M dwarfs in comparison to that of Sun-like stars. While CO2 is photolyzed into CO and O by photons in the FUV, with O2 forming from the O atoms through third body catalytic reactions, NUV photons are able to photolyze water, producing HOx radicals which go on to catalytically recombine the relatively stable CO and O2 molecules back into CO2. The comparatively low NUV flux of some M dwarfs leads to a significantly reduced efficiency of catalytic recombination of CO and O2 and the possible net destruction of CO2 and the build up of CO and O2. In this work we test the above hypothesis using a 1D photochemical kinetics model for a Mars-sized planet with an initial atmospheric composition similar to that of Mars and the incoming stellar flux of a weakly active M dwarf, assuming the exoplanet is 0.1 AU away from its parent star, in proximity of its habitable zone. We show that a CO2-dominated atmosphere can be converted into a CO2/CO/O2-dominated atmosphere in 10^3-10^4 years by CO2 photolysis. This process is kept from running away by a combination of O2 photolysis, three body reactions of O, O2, and another species to form O3, and reactions of CO with OH to form CO2 and H. However, such a large amount of O2 and CO, combined with some amount of H and H2, may be susceptible to spontaneous combustion or detonation, and thus could prove to be an especially unstable state in itself. Thus there could arise a situation

  14. Enhanced photosynthetic efficiency in trees world-wide by rising atmospheric CO2 levels

    NASA Astrophysics Data System (ADS)

    Ehlers, Ina; Wieloch, Thomas; Groenendijk, Peter; Vlam, Mart; van der Sleen, Peter; Zuidema, Pieter A.; Robertson, Iain; Schleucher, Jürgen

    2014-05-01

    The atmospheric CO2 concentration is increasing rapidly due to anthropogenic emissions but the effect on the Earth's biosphere is poorly understood. The ability of the biosphere to fix CO2 through photosynthesis will determine future atmospheric CO2 concentrations as well as future productivity of crops and forests. Manipulative CO2 enrichment experiments (e.g. FACE) are limited to (i) short time spans, (ii) few locations and (iii) large step increases in [CO2]. Here, we apply new stable isotope methodology to tree-ring archives, to study the effect of increasing CO2 concentrations retrospectively during the past centuries. We cover the whole [CO2] increase since industrialization, and sample trees with global distribution. Instead of isotope ratios of whole molecules, we use intramolecular isotope distributions, a new tool for tree-ring analysis with decisive advantages. In experiments on annual plants, we have found that the intramolecular distribution of deuterium (equivalent to ratios of isotopomer abundances) in photosynthetic glucose depends on growth [CO2] and reflects the metabolic flux ratio of photosynthesis to photorespiration. By applying this isotopomer methodology to trees from Oak Ridge FACE experiment, we show that this CO2 response is present in trees on the leaf level. This CO2 dependence constitutes a physiological signal, which is transferred to the wood of the tree rings. In trees from 13 locations on all continents the isotopomer ratio of tree-ring cellulose is correlated to atmospheric [CO2] during the past 200 years. The shift of the isotopomer ratio is universal for all 12 species analyzed, including both broad-leafed trees and conifers. Because the trees originate from sites with widely differing D/H ratios of precipitation, the generality of the response demonstrates that the signal is independent of the source isotope ratio, because it is encoded in an isotopomer abundance ratio. This decoupling of climate signals and physiological

  15. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, Margret; Porter, Amanda S.; Holohan, Aidan; Kunzmann, Lutz; Collinson, Margaret; McElwain, Jennifer C.

    2016-02-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results suggest that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oligocene transition and that when a certain threshold of pCO2 change was crossed, the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  16. Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene-Oligocene boundary

    NASA Astrophysics Data System (ADS)

    Steinthorsdottir, M.; Porter, A. S.; Holohan, A.; Kunzmann, L.; Collinson, M.; McElwain, J. C.

    2015-10-01

    A unique stratigraphic sequence of fossil leaves of Eotrigonobalanus furcinervis (extinct trees of the beech family, Fagaceae) from central Germany has been used to derive an atmospheric pCO2 record with multiple data points spanning the late middle to late Eocene, two sampling levels which may be earliest Oligocene, and two samples from later in the Oligocene. Using the inverse relationship between the density of stomata and pCO2, we show that pCO2 decreased continuously from the late middle to late Eocene, reaching a relatively stable low value before the end of the Eocene. Based on the subsequent records, pCO2 in parts of the Oligocene was similar to latest Eocene values. These results show that a decrease in pCO2 preceded the large shift in marine oxygen isotope records that characterizes the Eocene-Oliogocene transition. This may be related to the "hysteresis effect" previously proposed - where a certain threshold of pCO2 change was crossed before the cumulative effects of this and other factors resulted in rapid temperature decline, ice build up on Antarctica and hence a change of climate mode.

  17. Persistent stimulation of photosynthesis in short rotation coppice mulberry under elevated CO2 atmosphere.

    PubMed

    Madhana Sekhar, Kalva; Rachapudi, Venkata Sreeharsha; Mudalkar, Shalini; Reddy, Attipalli Ramachandra

    2014-08-01

    Current study was undertaken to elucidate the responses of short rotation coppice (SRC) mulberry under elevated CO2 atmosphere (550μmolmol(-1)). Throughout the experimental period, elevated CO2 grown mulberry plants showed significant increase in light saturated photosynthetic rates (A') by increasing intercellular CO2 concentrations (Ci) despite reduced stomatal conductance (gs). Reduced gs was linked to decrease in transpiration (E) resulting in improved water use efficiency (WUE). There was a significant increase in carboxylation efficiency (CE) of Rubisco, apparent quantum efficiency (AQE), light and CO2 saturated photosynthetic rates (AMAX), photosynthetic nitrogen use efficiency (PNUE), chlorophyll a fluorescence characteristics (FV/FM and PIABS), starch and other carbohydrates in high CO2 grown plants which clearly demonstrate no photosynthetic acclimation in turn resulted marked increase in above and below ground biomass. Our results strongly suggest that short rotation forestry (<1year) with mulberry plantations should be effective to mitigate raising CO2 levels as well as for the production of renewable bio-energy.

  18. Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L.

    PubMed

    Geissler, Nicole; Hussin, Sayed; Koyro, Hans-Werner

    2010-02-01

    Our study aimed at investigating the influence of elevated atmospheric CO(2) concentration on the salinity tolerance of the cash crop halophyte Aster tripolium L., thereby focussing on protein expression and enzyme activities. The plants were grown in hydroponics using a nutrient solution with or without addition of NaCl (75% seawater salinity), under ambient (380 ppm) and elevated (520 ppm) CO(2). Under ambient CO(2) concentration enhanced expressions and activities of the antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and glutathione-S-transferase in the salt-treatments were recorded as a reaction to oxidative stress. Elevated CO(2) led to significantly higher enzyme expressions and activities in the salt-treatments, so that reactive oxygen species could be detoxified more effectively. Furthermore, the expression of a protective heat shock protein (class 20) increased under salinity and was even further enhanced under elevated CO(2) concentration. Additional energy had to be provided for the mechanisms mentioned above, which was indicated by the increased expression of a beta ATPase subunit and higher v-, p- and f-ATPase activities under salinity. The higher ATPase expression and activities also enable a more efficient ion transport and compartmentation for the maintenance of ion homeostasis. We conclude that elevated CO(2) concentration is able to improve the survival of A. tripolium under salinity because more energy is provided for the synthesis and enhanced activity of enzymes and proteins which enable a more efficient ROS detoxification and ion compartmentation/transport.

  19. Digging deeper: Fine root responses to rising atmospheric [CO2] in forested ecosystems

    SciTech Connect

    Iversen, Colleen M

    2010-01-01

    Experimental evidence from a diverse set of forested ecosystems indicates that CO2 enrichment may lead to deeper rooting distributions. While the causes of greater root production at deeper soil depths under elevated CO2 concentration ([CO2]) require further investigation, altered rooting distributions are expected to affect important ecosystem processes. The depth at which fine roots are produced may influence root chemistry, physiological function, and mycorrhizal infection, leading to altered nitrogen (N) uptake rates and slower turnover. Also, soil processes such as microbial decomposition are slowed at depth in the soil, potentially affecting the rate at which root detritus becomes incorporated into soil organic matter. Deeper rooting distributions under elevated [CO2] provide exciting opportunities to use novel sensors and chemical analyses throughout the soil profile to track the effects of root proliferation on carbon (C) and N cycling. Models do not currently incorporate information on root turnover and C and N cycling at depth in the soil, and modification is necessary to accurately represent processes associated with altered rooting depth distributions. Progress in understanding and modeling the interface between deeper rooting distributions under elevated [CO2] and soil C and N cycling will be critical in projecting the sustainability of forest responses to rising atmospheric [CO2].

  20. Double-Pulsed 2-Micrometer Lidar Validation for Atmospheric CO2 Measurements

    NASA Technical Reports Server (NTRS)

    Singh, Upendra N.; Refaat, Tamer F.; Yu, Jirong; Petros, Mulugeta; Remus, Ruben

    2015-01-01

    A double-pulsed, 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument for atmospheric carbon dioxide (CO2) measurements is successfully developed at NASA Langley Research Center (LaRC). Based on direct detection technique, the instrument can be operated on ground or onboard a small aircraft. Key features of this compact, rugged and reliable IPDA lidar includes high transmitted laser energy, wavelength tuning, switching and locking, and sensitive detection. As a proof of concept, the IPDA ground and airborne CO2 measurement and validation will be presented. IPDA lidar CO2 measurements ground validation were conducted at NASA LaRC using hard targets and a calibrated in-situ sensor. Airborne validation, conducted onboard the NASA B-200 aircraft, included CO2 plum detection from power stations incinerators, comparison to in-flight CO2 in-situ sensor and comparison to air sampling at different altitude conducted by NOAA at the same site. Airborne measurements, spanning for 20 hours, were obtained from different target conditions. Ground targets included soil, vegetation, sand, snow and ocean. In addition, cloud slicing was examined over the ocean. These flight validations were conducted at different altitudes, up to 7 km, with different wavelength controlled weighing functions. CO2 measurement results agree with modeling conducted through the different sensors, as will be discussed.

  1. Atmospheric radon, CO2 and CH4 dynamics in an Australian coal seam gas field

    NASA Astrophysics Data System (ADS)

    Tait, D. R.; Santos, I. R.; Maher, D. T.

    2013-12-01

    Atmospheric radon (222Rn), carbon dioxide (CO2), and methane concentrations (CH4) as well as carbon stable isotope ratios (δ13C) were used to gain insight into atmospheric chemistry within an Australian coal seam gas (CSG) field (Surat Basin, Tara region, Queensland). A˜3 fold increase in maximum 222Rn concentration was observed inside the gas field compared to outside of it. There was a significant relationship between maximum and average 222Rn concentrations and the number of gas wells within a 2 km to 4 km radius of the sampling sites (n = 5 stations; p < 0.05). We hypothesize that the radon relationship was a response to enhanced emissions within the gas field related to point sources (well heads, pipelines, etc.) and diffse soil sources due to changes in the soil structural and hydrological characteristics. A rapid qualitative assessment of CH4 and CO2 concentration, and carbon isotopes using a mobile cavity ring-down spectrometer system showed a widespread enrichment of both CH4 and CO2 within the production gas field. Concentrations of CH4 and CO2 were as high as 6.89 ppm and 541 ppm respectively compared average concentrations of 1.78 ppm (CH4) and 388 ppm (CO2) outside the gas field. The δ13C values showed distinct differences between areas inside and outside the production field with the δ13C value of the CH4 source within the field matching that of the methane in the CSG.

  2. Late Ordovician land plant spore 13C fractionation records atmospheric CO2 and climate change

    NASA Astrophysics Data System (ADS)

    Beerling, D. J.; Nelson, D. M.; Pearson, A.; Wellman, C.

    2008-12-01

    Molecular systematics and spore wall ultrastructure studies indicate that late Ordovician diad and triad fossil spores were likely produced by plants most closely related to liverworts. Here, we report the first δ13C estimates of Ordovician fossil land plant spores, which were obtained using a spooling wire micro-combustion device interfaced with an isotope-ratio mass spectrometer (Sessions et al., 2005, Analytical Chemistry, 77, 6519). The spores all originate from Saudi Arabia on the west of Gondwana and date to before (Cardadoc, ca. 460 Ma), during (443Ma) and after (Llandovery, ca. 440Ma) the Hirnantian glaciation. We use these numbers along with marine carbonate δ13C records to estimate atmospheric CO2 by implementing a theoretical model that captures the strong CO2-dependency of 13C fractionation in non-vascular land plants (Fletcher et al., 2008, Nature Geoscience, 1, 43). Although provisional at this stage, reconstructed CO2 changes are consistent with the Kump et al. (2008) (Paleo. Paleo. Paleo. 152, 173) 'weathering hypothesis' whereby pre-Hirnantian cooling is caused by relatively low CO2 (ca. 700ppm) related to enhanced weathering of young basaltic rocks during the early phase of the Taconic uplift, with background values subsequently rising to around double this value by the earliest Silurian. Further analyses will better constrain atmospheric CO2 change during the late Ordovician climatic perturbation and address controversial hypotheses concerning the causes and timing of the Earth system transition into an icehouse state.

  3. Potential effects of elevated atmospheric carbon dioxide (CO2) on coastal wetlands

    USGS Publications Warehouse

    McKee, Karen

    2006-01-01

    Carbon dioxide (CO2) concentration in the atmosphere has steadily increased from 280 parts per million (ppm) in preindustrial times to 381 ppm today and is predicted by some models to double within the next century. Some of the important pathways whereby changes in atmospheric CO2 may impact coastal wetlands include changes in temperature, rainfall, and hurricane intensity (fig. 1). Increases in CO2 can contribute to global warming, which may (1) accelerate sea-level rise through melting of polar ice fields and steric expansion of oceans, (2) alter rainfall patterns and salinity regimes, and (3) change the intensity and frequency of tropical storms and hurricanes. Sea-level rise combined with changes in storm activity may affect erosion and sedimentation rates and patterns in coastal wetlands and maintenance of soil elevations.Feedback loops between plant growth and hydroedaphic conditions also contribute to maintenance of marsh elevations through accumulation of organic matter. Although increasing CO2 concentration may contribute to global warming and climate changes, it may also have a direct impact on plant growth and development by stimulating photosynthesis or improving water use efficiency. Scientists with the U.S. Geological Survey are examining responses of wetland plants to elevated CO2 concentration and other factors. This research will lead to a better understanding of future changes in marsh species composition, successional rates and patterns, ecological functioning, and vulnerability to sea-level rise and other global change factors.

  4. Why CO2 cools the middle atmosphere - a consolidating model perspective

    NASA Astrophysics Data System (ADS)

    Goessling, Helge F.; Bathiany, Sebastian

    2016-08-01

    Complex models of the atmosphere show that increased carbon dioxide (CO2) concentrations, while warming the surface and troposphere, lead to lower temperatures in the stratosphere and mesosphere. This cooling, which is often referred to as "stratospheric cooling", is evident also in observations and considered to be one of the fingerprints of anthropogenic global warming. Although the responsible mechanisms have been identified, they have mostly been discussed heuristically, incompletely, or in combination with other effects such as ozone depletion, leaving the subject prone to misconceptions. Here we use a one-dimensional window-grey radiation model of the atmosphere to illustrate the physical essence of the mechanisms by which CO2 cools the stratosphere and mesosphere: (i) the blocking effect, associated with a cooling due to the fact that CO2 absorbs radiation at wavelengths where the atmosphere is already relatively opaque, and (ii) the indirect solar effect, associated with a cooling in places where an additional (solar) heating term is present (which on Earth is particularly the case in the upper parts of the ozone layer). By contrast, in the grey model without solar heating within the atmosphere, the cooling aloft is only a transient blocking phenomenon that is completely compensated as the surface attains its warmer equilibrium. Moreover, we quantify the relative contribution of these effects by simulating the response to an abrupt increase in CO2 (and chlorofluorocarbon) concentrations with an atmospheric general circulation model. We find that the two permanent effects contribute roughly equally to the CO2-induced cooling, with the indirect solar effect dominating around the stratopause and the blocking effect dominating otherwise.

  5. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2.

    PubMed

    Drigo, Barbara; Pijl, Agata S; Duyts, Henk; Kielak, Anna M; Gamper, Hannes A; Houtekamer, Marco J; Boschker, Henricus T S; Bodelier, Paul L E; Whiteley, Andrew S; van Veen, Johannes A; Kowalchuk, George A

    2010-06-15

    Rising atmospheric CO(2) levels are predicted to have major consequences on carbon cycling and the functioning of terrestrial ecosystems. Increased photosynthetic activity is expected, especially for C-3 plants, thereby influencing vegetation dynamics; however, little is known about the path of fixed carbon into soil-borne communities and resulting feedbacks on ecosystem function. Here, we examine how arbuscular mycorrhizal fungi (AMF) act as a major conduit in the transfer of carbon between plants and soil and how elevated atmospheric CO(2) modulates the belowground translocation pathway of plant-fixed carbon. Shifts in active AMF species under elevated atmospheric CO(2) conditions are coupled to changes within active rhizosphere bacterial and fungal communities. Thus, as opposed to simply increasing the activity of soil-borne microbes through enhanced rhizodeposition, elevated atmospheric CO(2) clearly evokes the emergence of distinct opportunistic plant-associated microbial communities. Analyses involving RNA-based stable isotope probing, neutral/phosphate lipid fatty acids stable isotope probing, community fingerprinting, and real-time PCR allowed us to trace plant-fixed carbon to the affected soil-borne microorganisms. Based on our data, we present a conceptual model in which plant-assimilated carbon is rapidly transferred to AMF, followed by a slower release from AMF to the bacterial and fungal populations well-adapted to the prevailing (myco-)rhizosphere conditions. This model provides a general framework for reappraising carbon-flow paths in soils, facilitating predictions of future interactions between rising atmospheric CO(2) concentrations and terrestrial ecosystems. PMID:20534474

  6. Impact of atmospheric CO2 rise on chemical weathering of the continental surfaces

    NASA Astrophysics Data System (ADS)

    Godderis, Y.; Roelandt, C.; Beaulieu, E.; Kaplan, J. O.; Schott, J.

    2009-04-01

    Continental weathering consumes atmospheric CO2. Recent analysis of field data has shown that this flux is rapidly reacting to ongoing climate (ref 1) and land use changes (ref 2), displaying an increase of up to 40 % over a few decades. Weathering processes are thus a potentially important component of the present day global carbon cycle. We developed numerical model describing continental weathering reactions based on laboratory kinetic laws and coupled to numerical model of the productivity of the biosphere (B-WITCH)(ref 3,4). This model is able to simulate the chemical composition of streams for both small and large continental watersheds. In this model, we emphasized the role of land plants in controlling belowground hydrological fluxes and decreasing the pH of percolating water through root respiration, both of which heavily impact weathering rates. Both climate change and increasing atmospheric CO2 concentrations affect the productivity and biogeography of the terrestrial biosphere through direct climate effects and CO2 fertilization. With our weathering model coupled to a dynamic global vegetation model, we have the capability to explore the impact of CO2 and climate change on rock weathering. With regards to CO2 fertilization, we calculate that the overall weathering rate may potentially rise by 20 % when CO2 increases up to 8 times the present day pressure for a large tropical watershed (Orinoco). This change is driven by a decrease in evapotranspiration when CO2 rises, and thus by an increase in the weathering profile drainage. We extend our sensitivity tests to the fertilization effect to 20 sites all over the world under various climatic, biospheric and lithologic conditions, and the results will be discussed. ref 1: Gislason et al., EPSL, 277, 213-222, 2008 ref 2: Raymond et al.,Nature, 451, 449-452, 2008 ref 3: Godd

  7. Changes in Atmospheric CO2 Influence the Allergenicity of Aspergillus fumigatus fungal spore

    NASA Astrophysics Data System (ADS)

    Lang-Yona, N.; Levin, Y.; Dannemoller, K. C.; Yarden, O.; Peccia, J.; Rudich, Y.

    2013-12-01

    Increased allergic susceptibility has been documented without a comprehensive understanding for its causes. Therefore understanding trends and mechanisms of allergy inducing agents is essential. In this study we investigated whether elevated atmospheric CO2 levels can affect the allergenicity of Aspergillus fumigatus, a common allergenic fungal species. Both direct exposure to changing CO2 levels during fungal growth, and indirect exposure through changes in the C:N ratios in the growth media were inspected. We determined the allergenicity of the spores through two types of immunoassays, accompanied with genes expression analysis, and proteins relative quantification. We show that fungi grown under present day CO2 levels (392 ppm) exhibit 8.5 and 3.5 fold higher allergenicity compared to fungi grown at preindustrial (280 ppm) and double (560 ppm) CO2 levels, respectively. A corresponding trend is observed in the expression of genes encoding for known allergenic proteins and in the major allergen Asp f1 concentrations, possibly due to physiological changes such as respiration rates and the nitrogen content of the fungus, influenced by the CO2 concentrations. Increased carbon and nitrogen levels in the growth medium also lead to a significant increase in the allergenicity, for which we propose two different biological mechanisms. We suggest that climatic changes such as increasing atmospheric CO2 levels and changes in the fungal growth medium may impact the ability of allergenic fungi such as Aspergillus fumigatus to induce allergies. The effect of changing CO2 concentrations on the total allergenicity per 10^7 spores of A. fumigatus (A), the major allergen Asp f1 concentration in ng per 10^7 spores (B), and the gene expression by RT-PCR (C). The error bars represent the standard error of the mean.

  8. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2

    PubMed Central

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M.; Batke, Sven P.; Lawson, Tracy; McElwain, Jennifer C.

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency. PMID:27605929

  9. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2.

    PubMed

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M; Batke, Sven P; Lawson, Tracy; McElwain, Jennifer C

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency. PMID:27605929

  10. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2.

    PubMed

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M; Batke, Sven P; Lawson, Tracy; McElwain, Jennifer C

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.

  11. Does Size Matter? Atmospheric CO2 May Be a Stronger Driver of Stomatal Closing Rate Than Stomatal Size in Taxa That Diversified under Low CO2

    PubMed Central

    Elliott-Kingston, Caroline; Haworth, Matthew; Yearsley, Jon M.; Batke, Sven P.; Lawson, Tracy; McElwain, Jennifer C.

    2016-01-01

    One strategy for plants to optimize stomatal function is to open and close their stomata quickly in response to environmental signals. It is generally assumed that small stomata can alter aperture faster than large stomata. We tested the hypothesis that species with small stomata close faster than species with larger stomata in response to darkness by comparing rate of stomatal closure across an evolutionary range of species including ferns, cycads, conifers, and angiosperms under controlled ambient conditions (380 ppm CO2; 20.9% O2). The two species with fastest half-closure time and the two species with slowest half-closure time had large stomata while the remaining three species had small stomata, implying that closing rate was not correlated with stomatal size in these species. Neither was response time correlated with stomatal density, phylogeny, functional group, or life strategy. Our results suggest that past atmospheric CO2 concentration during time of taxa diversification may influence stomatal response time. We show that species which last diversified under low or declining atmospheric CO2 concentration close stomata faster than species that last diversified in a high CO2 world. Low atmospheric [CO2] during taxa diversification may have placed a selection pressure on plants to accelerate stomatal closing to maintain adequate internal CO2 and optimize water use efficiency.

  12. The potential impacts of nutrient and CO2 variations on ecosystem oxidative ratio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A fraction of fossil fuel carbon dioxide (CO2) emissions are being taken up by the terrestrial biosphere and the oceans. One particularly effective way of determining the sizes of these terrestrial biosphere and ocean carbon sinks is based on the measurements of changes in atmospheric oxygen (O2) a...

  13. Influence of Past Changes in Atmospheric CO2 on Boron/Calcium of Planktic Fossil Foraminifera

    NASA Astrophysics Data System (ADS)

    Domeyko, R. A.; Allen, K. A.; deMenocal, P. B.

    2014-12-01

    Culture experiments have revealed that B/Ca of shells grown by the foraminiferal species Globigerinoides ruber increase with increasing seawater pH. Specifically, B/Ca responds to changes in the relative abundance of pH-sensitive dissolved carbon and boron species (Allen et al. 2011, 2012). Here, we present a high-resolution study on fossilized G. ruber from two sites in North Atlantic subtropical gyres (VM25-21 and ODP 1055B) through 20 ka BP to evaluate how B/Ca responds to past changes in atmospheric CO2. Forams were picked and crushed gently, then cleaned and dissolved using a variation of the Boyle and Keigwin (1985) and Barker et al. (2003) cleaning protocols prior to analysis. ODP 1055B (from Carolina Slope, West Atlantic) produced a high-resolution record with lower B/Ca values during the glacial period followed by a rapid shift to higher B/Ca values in the early deglaciation, with values remaining high through the Holocene. These results were not predicted by culture calibrations, but they are consistent with B/Ca records from the Caribbean (ODP 999, Foster et al. 2008), suggesting this pattern is characteristic of surface waters in the greater North Atlantic region.

  14. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally.

    PubMed

    Higgins, Steven I; Scheiter, Simon

    2012-08-01

    It is possible that anthropogenic climate change will drive the Earth system into a qualitatively different state. Although different types of uncertainty limit our capacity to assess this risk, Earth system scientists are particularly concerned about tipping elements, large-scale components of the Earth system that can be switched into qualitatively different states by small perturbations. Despite growing evidence that tipping elements exist in the climate system, whether large-scale vegetation systems can tip into alternative states is poorly understood. Here we show that tropical grassland, savanna and forest ecosystems, areas large enough to have powerful impacts on the Earth system, are likely to shift to alternative states. Specifically, we show that increasing atmospheric CO2 concentration will force transitions to vegetation states characterized by higher biomass and/or woody-plant dominance. The timing of these critical transitions varies as a result of between-site variance in the rate of temperature increase, as well as a dependence on stochastic variation in fire severity and rainfall. We further show that the locations of bistable vegetation zones (zones where alternative vegetation states can exist) will shift as climate changes. We conclude that even though large-scale directional regime shifts in terrestrial ecosystems are likely, asynchrony in the timing of these shifts may serve to dampen, but not nullify, the shock that these changes may represent to the Earth system.

  15. North America's net terrestrial CO2 exchange with the atmosphere 1990-2009

    NASA Astrophysics Data System (ADS)

    King, A. W.; Andres, R. J.; Davis, K. J.; Hafer, M.; Hayes, D. J.; Huntzinger, D. N.; de Jong, B.; Kurz, W. A.; McGuire, A. D.; Vargas, R.; Wei, Y.; West, T. O.; Woodall, C. W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990-2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4:1.

  16. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    USGS Publications Warehouse

    King, A.W.; Andres, R.J.; Davis, K.J.; Hafer, M.; Hayes, D.J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, W.A.; McGuire, Anthony; Vargas, Rodrigo I.; Wei, Y.; West, Tristram O.; Woodall, Christopher W.

    2015-01-01

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North American land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from −890 to −280 Tg C yr−1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, "best" estimates (i.e., measures of central tendency) are −472 ± 281 Tg C yr−1 based on the mean and standard deviation of the distribution and −360 Tg C yr−1 (with an interquartile range of −496 to −337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr−1 and assuming the estimate of −472 Tg C yr−1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was

  17. North America's net terrestrial CO2 exchange with the atmosphere 1990–2009

    DOE PAGES

    King, Anthony W.; Andres, Robert; Davis, Kenneth J.; Hafer, M.; Hayes, Daniel J.; Huntzinger, Deborah N.; de Jong, Bernardus; Kurz, Werner; McGuire, A. David; Vargas, Rodrigo; et al

    2015-01-21

    Scientific understanding of the global carbon cycle is required for developing national and international policy to mitigate fossil fuel CO2 emissions by managing terrestrial carbon uptake. Toward that understanding and as a contribution to the REgional Carbon Cycle Assessment and Processes (RECCAP) project, this paper provides a synthesis of net land–atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990–2009. Only CO2 is considered, not methane or other greenhouse gases. This synthesis is based on results from three different methods: atmospheric inversion, inventory-based methods and terrestrial biosphere modeling. All methods indicate that the North Americanmore » land surface was a sink for atmospheric CO2, with a net transfer from atmosphere to land. Estimates ranged from -890 to -280 Tg C yr-1, where the mean of atmospheric inversion estimates forms the lower bound of that range (a larger land sink) and the inventory-based estimate using the production approach the upper (a smaller land sink). This relatively large range is due in part to differences in how the approaches represent trade, fire and other disturbances and which ecosystems they include. Integrating across estimates, \\"best\\" estimates (i.e., measures of central tendency) are -472 ± 281 Tg C yr-1 based on the mean and standard deviation of the distribution and -360 Tg C yr-1 (with an interquartile range of -496 to -337) based on the median. Considering both the fossil fuel emissions source and the land sink, our analysis shows that North America was, however, a net contributor to the growth of CO2 in the atmosphere in the late 20th and early 21st century. With North America's mean annual fossil fuel CO2 emissions for the period 1990–2009 equal to 1720 Tg C yr-1 and assuming the estimate of -472 Tg C yr-1 as an approximation of the true terrestrial CO2 sink, the continent's source : sink ratio for this time period was 1720:472, or nearly 4

  18. Impacts of Elevated