Sample records for atmospheric correction based

  1. [Evaluation of four dark object atmospheric correction methods based on ZY-3 CCD data].

    PubMed

    Guo, Hong; Gu, Xing-fa; Xie, Yong; Yu, Tao; Gao, Hai-liang; Wei, Xiang-qin; Liu, Qi-yue

    2014-08-01

    The present paper performed the evaluation of four dark-object subtraction(DOS) atmospheric correction methods based on 2012 Inner Mongolia experimental data The authors analyzed the impacts of key parameters of four DOS methods when they were applied to ZY-3 CCD data The results showed that (1) All four DOS methods have significant atmospheric correction effect at band 1, 2 and 3. But as for band 4, the atmospheric correction effect of DOS4 is the best while DOS2 is the worst; both DOS1 and DOS3 has no obvious atmospheric correction effect. (2) The relative error (RE) of DOS1 atmospheric correction method is larger than 10% at four bands; The atmospheric correction effect of DOS2 works the best at band 1(AE (absolute error)=0.0019 and RE=4.32%) and the worst error appears at band 4(AE=0.0464 and RE=19.12%); The RE of DOS3 is about 10% for all bands. (3) The AE of atmospheric correction results for DOS4 method is less than 0. 02 and the RE is less than 10% for all bands. Therefore, the DOS4 method provides the best accuracy of atmospheric correction results for ZY-3 image.

  2. Continental-scale Validation of MODIS-based and LEDAPS Landsat ETM+ Atmospheric Correction Methods

    NASA Technical Reports Server (NTRS)

    Ju, Junchang; Roy, David P.; Vermote, Eric; Masek, Jeffrey; Kovalskyy, Valeriy

    2012-01-01

    The potential of Landsat data processing to provide systematic continental scale products has been demonstrated by several projects including the NASA Web-enabled Landsat Data (WELD) project. The recent free availability of Landsat data increases the need for robust and efficient atmospheric correction algorithms applicable to large volume Landsat data sets. This paper compares the accuracy of two Landsat atmospheric correction methods: a MODIS-based method and the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) method. Both methods are based on the 6SV radiative transfer code but have different atmospheric characterization approaches. The MODIS-based method uses the MODIS Terra derived dynamic aerosol type, aerosol optical thickness, and water vapor to atmospherically correct ETM+ acquisitions in each coincident orbit. The LEDAPS method uses aerosol characterizations derived independently from each Landsat acquisition and assumes a fixed continental aerosol type and uses ancillary water vapor. Validation results are presented comparing ETM+ atmospherically corrected data generated using these two methods with AERONET corrected ETM+ data for 95 10 km×10 km 30 m subsets, a total of nearly 8 million 30 m pixels, located across the conterminous United States. The results indicate that the MODIS-based method has better accuracy than the LEDAPS method for the ETM+ red and longer wavelength bands.

  3. Atmospheric correction using near-infrared bands for satellite ocean color data processing in the turbid western Pacific region.

    PubMed

    Wang, Menghua; Shi, Wei; Jiang, Lide

    2012-01-16

    A regional near-infrared (NIR) ocean normalized water-leaving radiance (nL(w)(λ)) model is proposed for atmospheric correction for ocean color data processing in the western Pacific region, including the Bohai Sea, Yellow Sea, and East China Sea. Our motivation for this work is to derive ocean color products in the highly turbid western Pacific region using the Geostationary Ocean Color Imager (GOCI) onboard South Korean Communication, Ocean, and Meteorological Satellite (COMS). GOCI has eight spectral bands from 412 to 865 nm but does not have shortwave infrared (SWIR) bands that are needed for satellite ocean color remote sensing in the turbid ocean region. Based on a regional empirical relationship between the NIR nL(w)(λ) and diffuse attenuation coefficient at 490 nm (K(d)(490)), which is derived from the long-term measurements with the Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, an iterative scheme with the NIR-based atmospheric correction algorithm has been developed. Results from MODIS-Aqua measurements show that ocean color products in the region derived from the new proposed NIR-corrected atmospheric correction algorithm match well with those from the SWIR atmospheric correction algorithm. Thus, the proposed new atmospheric correction method provides an alternative for ocean color data processing for GOCI (and other ocean color satellite sensors without SWIR bands) in the turbid ocean regions of the Bohai Sea, Yellow Sea, and East China Sea, although the SWIR-based atmospheric correction approach is still much preferred. The proposed atmospheric correction methodology can also be applied to other turbid coastal regions.

  4. Systematic Analysis Of Ocean Colour Uncertainties

    NASA Astrophysics Data System (ADS)

    Lavender, Samantha

    2013-12-01

    This paper reviews current research into the estimation of uncertainties as a pixel-based measure to aid non- specialist users of remote sensing products. An example MERIS image, captured on the 28 March 2012, was processed with above-water atmospheric correction code. This was initially based on both the Antoine & Morel Standard Atmospheric Correction, with Bright Pixel correction component, and Doerffer Neural Network coastal water's approach. It's showed that analysis of the atmospheric by-products yield important information about the separation of the atmospheric and in-water signals, helping to sign-post possible uncertainties in the atmospheric correction results. Further analysis has concentrated on implementing a ‘simplistic' atmospheric correction so that the impact of changing the input auxiliary data can be analysed; the influence of changing surface pressure is demonstrated. Future work will focus on automating the analysis, so that the methodology can be implemented within an operational system.

  5. Atmospheric correction for remote sensing image based on multi-spectral information

    NASA Astrophysics Data System (ADS)

    Wang, Yu; He, Hongyan; Tan, Wei; Qi, Wenwen

    2018-03-01

    The light collected from remote sensors taken from space must transit through the Earth's atmosphere. All satellite images are affected at some level by lightwave scattering and absorption from aerosols, water vapor and particulates in the atmosphere. For generating high-quality scientific data, atmospheric correction is required to remove atmospheric effects and to convert digital number (DN) values to surface reflectance (SR). Every optical satellite in orbit observes the earth through the same atmosphere, but each satellite image is impacted differently because atmospheric conditions are constantly changing. A physics-based detailed radiative transfer model 6SV requires a lot of key ancillary information about the atmospheric conditions at the acquisition time. This paper investigates to achieve the simultaneous acquisition of atmospheric radiation parameters based on the multi-spectral information, in order to improve the estimates of surface reflectance through physics-based atmospheric correction. Ancillary information on the aerosol optical depth (AOD) and total water vapor (TWV) derived from the multi-spectral information based on specific spectral properties was used for the 6SV model. The experimentation was carried out on images of Sentinel-2, which carries a Multispectral Instrument (MSI), recording in 13 spectral bands, covering a wide range of wavelengths from 440 up to 2200 nm. The results suggest that per-pixel atmospheric correction through 6SV model, integrating AOD and TWV derived from multispectral information, is better suited for accurate analysis of satellite images and quantitative remote sensing application.

  6. Continental-Scale Validation of Modis-Based and LEDAPS Landsat ETM + Atmospheric Correction Methods

    NASA Technical Reports Server (NTRS)

    Ju, Junchang; Roy, David P.; Vermote, Eric; Masek, Jeffrey; Kovalskyy, Valeriy

    2012-01-01

    The potential of Landsat data processing to provide systematic continental scale products has been demonstratedby several projects including the NASA Web-enabled Landsat Data (WELD) project. The recent freeavailability of Landsat data increases the need for robust and efficient atmospheric correction algorithms applicableto large volume Landsat data sets. This paper compares the accuracy of two Landsat atmospheric correctionmethods: a MODIS-based method and the Landsat Ecosystem Disturbance Adaptive ProcessingSystem (LEDAPS) method. Both methods are based on the 6SV radiative transfer code but have different atmosphericcharacterization approaches. The MODIS-based method uses the MODIS Terra derived dynamicaerosol type, aerosol optical thickness, and water vapor to atmospherically correct ETM+ acquisitions ineach coincident orbit. The LEDAPS method uses aerosol characterizations derived independently from eachLandsat acquisition and assumes a fixed continental aerosol type and uses ancillary water vapor. Validationresults are presented comparing ETM+ atmospherically corrected data generated using these two methodswith AERONET corrected ETM+ data for 95 10 km10 km 30 m subsets, a total of nearly 8 million 30 mpixels, located across the conterminous United States. The results indicate that the MODIS-based methodhas better accuracy than the LEDAPS method for the ETM+ red and longer wavelength bands.

  7. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that nomore » further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.« less

  9. A parallel method of atmospheric correction for multispectral high spatial resolution remote sensing images

    NASA Astrophysics Data System (ADS)

    Zhao, Shaoshuai; Ni, Chen; Cao, Jing; Li, Zhengqiang; Chen, Xingfeng; Ma, Yan; Yang, Leiku; Hou, Weizhen; Qie, Lili; Ge, Bangyu; Liu, Li; Xing, Jin

    2018-03-01

    The remote sensing image is usually polluted by atmosphere components especially like aerosol particles. For the quantitative remote sensing applications, the radiative transfer model based atmospheric correction is used to get the reflectance with decoupling the atmosphere and surface by consuming a long computational time. The parallel computing is a solution method for the temporal acceleration. The parallel strategy which uses multi-CPU to work simultaneously is designed to do atmospheric correction for a multispectral remote sensing image. The parallel framework's flow and the main parallel body of atmospheric correction are described. Then, the multispectral remote sensing image of the Chinese Gaofen-2 satellite is used to test the acceleration efficiency. When the CPU number is increasing from 1 to 8, the computational speed is also increasing. The biggest acceleration rate is 6.5. Under the 8 CPU working mode, the whole image atmospheric correction costs 4 minutes.

  10. A Portable Ground-Based Atmospheric Monitoring System (PGAMS) for the Calibration and Validation of Atmospheric Correction Algorithms Applied to Aircraft and Satellite Images

    NASA Technical Reports Server (NTRS)

    Schiller, Stephen; Luvall, Jeffrey C.; Rickman, Doug L.; Arnold, James E. (Technical Monitor)

    2000-01-01

    Detecting changes in the Earth's environment using satellite images of ocean and land surfaces must take into account atmospheric effects. As a result, major programs are underway to develop algorithms for image retrieval of atmospheric aerosol properties and atmospheric correction. However, because of the temporal and spatial variability of atmospheric transmittance it is very difficult to model atmospheric effects and implement models in an operational mode. For this reason, simultaneous in situ ground measurements of atmospheric optical properties are vital to the development of accurate atmospheric correction techniques. Presented in this paper is a spectroradiometer system that provides an optimized set of surface measurements for the calibration and validation of atmospheric correction algorithms. The Portable Ground-based Atmospheric Monitoring System (PGAMS) obtains a comprehensive series of in situ irradiance, radiance, and reflectance measurements for the calibration of atmospheric correction algorithms applied to multispectral. and hyperspectral images. The observations include: total downwelling irradiance, diffuse sky irradiance, direct solar irradiance, path radiance in the direction of the north celestial pole, path radiance in the direction of the overflying satellite, almucantar scans of path radiance, full sky radiance maps, and surface reflectance. Each of these parameters are recorded over a wavelength range from 350 to 1050 nm in 512 channels. The system is fast, with the potential to acquire the complete set of observations in only 8 to 10 minutes depending on the selected spatial resolution of the sky path radiance measurements

  11. [Atmospheric correction of visible-infrared band FY-3A/MERSI data based on 6S model].

    PubMed

    Wu, Yong-Li; Luan, Qing; Tian, Guo-Zhen

    2011-06-01

    Based on the observation data from the meteorological stations in Taiyuan City and its surrounding areas of Shanxi Province, the atmosphere parameters for 6S model were supplied, and the atmospheric correction of visible-infrared band (precision 250 meters) FY-3A/MERSI data was conducted. After atmospheric correction, the range of visible-infrared band FY-3A/MERSI data was widened, reflectivity increased, high peak was higher, and distribution histogram was smoother. In the meantime, the threshold value of NDVI data reflecting vegetation condition increased, and its high peak was higher, more close to the real data. Moreover, the color synthesis image of correction data showed more abundant information, its brightness increased, contrast enhanced, and the information reflected was more close to real.

  12. Atmospheric correction for retrieving ground brightness temperature at commonly-used passive microwave frequencies.

    PubMed

    Han, Xiao-Jing; Duan, Si-Bo; Li, Zhao-Liang

    2017-02-20

    An analysis of the atmospheric impact on ground brightness temperature (Tg) is performed for numerous land surface types at commonly-used frequencies (i.e., 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz and 89.0 GHz). The results indicate that the atmosphere has a negligible impact on Tg at 1.4 GHz for land surfaces with emissivities greater than 0.7, at 6.93 GHz for land surfaces with emissivities greater than 0.8, and at 10.65 GHz for land surfaces with emissivities greater than 0.9 if a root mean square error (RMSE) less than 1 K is desired. To remove the atmospheric effect on Tg, a generalized atmospheric correction method is proposed by parameterizing the atmospheric transmittance τ and upwelling atmospheric brightness temperature Tba↑. Better accuracies with Tg RMSEs less than 1 K are achieved at 1.4 GHz, 6.93 GHz, 10.65 GHz, 18.7 GHz and 36.5 GHz, and worse accuracies with RMSEs of 1.34 K and 4.35 K are obtained at 23.8 GHz and 89.0 GHz, respectively. Additionally, a simplified atmospheric correction method is developed when lacking sufficient input data to perform the generalized atmospheric correction method, and an emissivity-based atmospheric correction method is presented when the emissivity is known. Consequently, an appropriate atmospheric correction method can be selected based on the available data, frequency and required accuracy. Furthermore, this study provides a method to estimate τ and Tba↑ of different frequencies using the atmospheric parameters (total water vapor content in observation direction Lwv, total cloud liquid water content Lclw and mean temperature of cloud Tclw), which is important for simultaneously determining the land surface parameters using multi-frequency passive microwave satellite data.

  13. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  14. On-sky Closed-loop Correction of Atmospheric Dispersion for High-contrast Coronagraphy and Astrometry

    NASA Astrophysics Data System (ADS)

    Pathak, P.; Guyon, O.; Jovanovic, N.; Lozi, J.; Martinache, F.; Minowa, Y.; Kudo, T.; Kotani, T.; Takami, H.

    2018-02-01

    Adaptive optic (AO) systems delivering high levels of wavefront correction are now common at observatories. One of the main limitations to image quality after wavefront correction comes from atmospheric refraction. An atmospheric dispersion compensator (ADC) is employed to correct for atmospheric refraction. The correction is applied based on a look-up table consisting of dispersion values as a function of telescope elevation angle. The look-up table-based correction of atmospheric dispersion results in imperfect compensation leading to the presence of residual dispersion in the point spread function (PSF) and is insufficient when sub-milliarcsecond precision is required. The presence of residual dispersion can limit the achievable contrast while employing high-performance coronagraphs or can compromise high-precision astrometric measurements. In this paper, we present the first on-sky closed-loop correction of atmospheric dispersion by directly using science path images. The concept behind the measurement of dispersion utilizes the chromatic scaling of focal plane speckles. An adaptive speckle grid generated with a deformable mirror (DM) that has a sufficiently large number of actuators is used to accurately measure the residual dispersion and subsequently correct it by driving the ADC. We have demonstrated with the Subaru Coronagraphic Extreme AO (SCExAO) system on-sky closed-loop correction of residual dispersion to <1 mas across H-band. This work will aid in the direct detection of habitable exoplanets with upcoming extremely large telescopes (ELTs) and also provide a diagnostic tool to test the performance of instruments which require sub-milliarcsecond correction.

  15. Caracterisation, modelisation et validation du transfert radiatif d'atmospheres non standard; impact sur les corrections atmospheriques d'images de teledetection

    NASA Astrophysics Data System (ADS)

    Zidane, Shems

    This study is based on data acquired with an airborne multi-altitude sensor on July 2004 during a nonstandard atmospheric event in the region of Saint-Jean-sur-Richelieu, Quebec. By non-standard atmospheric event we mean an aerosol atmosphere that does not obey the typical monotonic, scale height variation employed in virtually all atmospheric correction codes. The surfaces imaged during this field campaign included a diverse variety of targets : agricultural land, water bodies, urban areas and forests. The multi-altitude approach employed in this campaign allowed us to better understand the altitude dependent influence of the atmosphere over the array of ground targets and thus to better characterize the perturbation induced by a non-standard (smoke) plume. The transformation of the apparent radiance at 3 different altitudes into apparent reflectance and the insertion of the plume optics into an atmospheric correction model permitted an atmospheric correction of the apparent reflectance at the two higher altitudes. The results showed consistency with the apparent validation reflectances derived from the lowest altitude radiances. This approach effectively confirmed the accuracy of our non-standard atmospheric correction approach. This test was particularly relevant at the highest altitude of 3.17 km : the apparent reflectances at this altitude were above most of the plume and therefore represented a good test of our ability to adequately correct for the influence of the perturbation. Standard atmospheric disturbances are obviously taken into account in most atmospheric correction models, but these are based on monotonically decreasing aerosol variations with increasing altitude. When the atmospheric radiation is affected by a plume or a local, non-standard pollution event, one must adapt the existing models to the radiative transfer constraints of the local perturbation and to the reality of the measurable parameters available for ingestion into the model. The main inputs of this study were those normally used in an atmospheric correction : apparent at-sensor radiance and the aerosol optical depth (AOD) acquired using ground-based sunphotometry. The procedure we employed made use of a standard atmospheric correction code (CAM5S, for Canadian Modified 5S, which comes from the 5S radiative transfer model in the visible and near infrared) : however, we also used other parameters and data to adapt and correctly model the special atmospheric situation which affected the multi-altitude images acquired during the St. Jean field campaign. We then developed a modeling protocol for these atmospheric perturbations where auxiliary data was employed to complement our main data-set. This allowed for the development of a robust and simple methodology adapted to this atmospheric situation. The auxiliary data, i.e. meteorological data, LIDAR profiles, various satellite images and sun photometer retrievals of the scattering phase function, were sufficient to accurately model the observed plume in terms of a unusual, vertical distribution. This distribution was transformed into an aerosol optical depth profile that replaced the standard aerosol optical depth profile employed in the CAM5S atmospheric correction model. Based on this model, a comparison between the apparent ground reflectances obtained after atmospheric corrections and validation values of R*(0) obtained from the lowest altitude data showed that the error between the two was less than 0.01 rms. This correction was shown to be a significantly better estimation of the surface reflectance than that obtained using the atmospheric correction model. Significant differences were nevertheless observed in the non-standard solution : these were mainly caused by the difficulties brought about by the acquisition conditions, significant disparities attributable to inconsistencies in the co-sampling / co-registration of different targets from three different altitudes, and possibly modeling errors and / or calibration. There is accordingly room for improvement in our approach to dealing with such conditions. The modeling and forecasting of such a disturbance is explicitly described in this document: our goal in so doing is to permit the establishment of a better protocol for the acquisition of more suitable supporting data. The originality of this study stems from a new approach for incorporating a plume structure into an operational atmospheric correction model and then demonstrating that the approach was a significant improvement over an approach that ignored the perturbations in the vertical profile while employing the correct overall AOD. The profile model we employed was simple and robust but captured sufficient plume detail to achieve significant improvements in atmospheric correction accuracy. The overall process of addressing all the problems encountered in the analysis of our aerosol perturbation helped us to build an appropriate methodology for characterizing such events based on data availability, distributed freely and accessible to the scientific community. This makes our study adaptable and exportable to other types of non-standard atmospheric events. Keywords : non-standard atmospheric perturbation, multi-altitude apparent radiances, smoke plume, Gaussian plume modelization, radiance fit, AOD, CASI

  16. Characterization of Artifacts Introduced by the Empirical Volcano-Scan Atmospheric Correction Commonly Applied to CRISM and OMEGA Near-Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Wiseman, S.M.; Arvidson, R.E.; Wolff, M. J.; Smith, M. D.; Seelos, F. P.; Morgan, F.; Murchie, S. L.; Mustard, J. F.; Morris, R. V.; Humm, D.; hide

    2014-01-01

    The empirical volcano-scan atmospheric correction is widely applied to Martian near infrared CRISM and OMEGA spectra between 1000 and 2600 nanometers to remove prominent atmospheric gas absorptions with minimal computational investment. This correction method employs division by a scaled empirically-derived atmospheric transmission spectrum that is generated from observations of the Martian surface in which different path lengths through the atmosphere were measured and transmission calculated using the Beer-Lambert Law. Identifying and characterizing both artifacts and residual atmospheric features left by the volcano-scan correction is important for robust interpretation of CRISM and OMEGA volcano scan corrected spectra. In order to identify and determine the cause of spectral artifacts introduced by the volcano-scan correction, we simulated this correction using a multiple scattering radiative transfer algorithm (DISORT). Simulated transmission spectra that are similar to actual CRISM- and OMEGA-derived transmission spectra were generated from modeled Olympus Mons base and summit spectra. Results from the simulations were used to investigate the validity of assumptions inherent in the volcano-scan correction and to identify artifacts introduced by this method of atmospheric correction. We found that the most prominent artifact, a bowl-shaped feature centered near 2000 nanometers, is caused by the inaccurate assumption that absorption coefficients of CO2 in the Martian atmosphere are independent of column density. In addition, spectral albedo and slope are modified by atmospheric aerosols. Residual atmospheric contributions that are caused by variable amounts of dust aerosols, ice aerosols, and water vapor are characterized by the analysis of CRISM volcano-scan corrected spectra from the same location acquired at different times under variable atmospheric conditions.

  17. Characterization of artifacts introduced by the empirical volcano-scan atmospheric correction commonly applied to CRISM and OMEGA near-infrared spectra

    NASA Astrophysics Data System (ADS)

    Wiseman, S. M.; Arvidson, R. E.; Wolff, M. J.; Smith, M. D.; Seelos, F. P.; Morgan, F.; Murchie, S. L.; Mustard, J. F.; Morris, R. V.; Humm, D.; McGuire, P. C.

    2016-05-01

    The empirical 'volcano-scan' atmospheric correction is widely applied to martian near infrared CRISM and OMEGA spectra between ∼1000 and ∼2600 nm to remove prominent atmospheric gas absorptions with minimal computational investment. This correction method employs division by a scaled empirically-derived atmospheric transmission spectrum that is generated from observations of the martian surface in which different path lengths through the atmosphere were measured and transmission calculated using the Beer-Lambert Law. Identifying and characterizing both artifacts and residual atmospheric features left by the volcano-scan correction is important for robust interpretation of CRISM and OMEGA volcano-scan corrected spectra. In order to identify and determine the cause of spectral artifacts introduced by the volcano-scan correction, we simulated this correction using a multiple scattering radiative transfer algorithm (DISORT). Simulated transmission spectra that are similar to actual CRISM- and OMEGA-derived transmission spectra were generated from modeled Olympus Mons base and summit spectra. Results from the simulations were used to investigate the validity of assumptions inherent in the volcano-scan correction and to identify artifacts introduced by this method of atmospheric correction. We found that the most prominent artifact, a bowl-shaped feature centered near 2000 nm, is caused by the inaccurate assumption that absorption coefficients of CO2 in the martian atmosphere are independent of column density. In addition, spectral albedo and slope are modified by atmospheric aerosols. Residual atmospheric contributions that are caused by variable amounts of dust aerosols, ice aerosols, and water vapor are characterized by the analysis of CRISM volcano-scan corrected spectra from the same location acquired at different times under variable atmospheric conditions.

  18. Atmospheric refraction correction for Ka-band blind pointing on the DSS-13 beam waveguide antenna

    NASA Technical Reports Server (NTRS)

    Perez-Borroto, I. M.; Alvarez, L. S.

    1992-01-01

    An analysis of the atmospheric refraction corrections at the DSS-13 34-m diameter beam waveguide (BWG) antenna for the period Jul. - Dec. 1990 is presented. The current Deep Space Network (DSN) atmospheric refraction model and its sensitivity with respect to sensor accuracy are reviewed. Refraction corrections based on actual atmospheric parameters are compared with the DSS-13 station default corrections for the six-month period. Average blind-pointing improvement during the worst month would have amounted to 5 mdeg at 10 deg elevation using actual surface weather values. This would have resulted in an average gain improvement of 1.1 dB.

  19. Synchronous atmospheric radiation correction of GF-2 satellite multispectral image

    NASA Astrophysics Data System (ADS)

    Bian, Fuqiang; Fan, Dongdong; Zhang, Yan; Wang, Dandan

    2018-02-01

    GF-2 remote sensing products have been widely used in many fields for its high-quality information, which provides technical support for the the macroeconomic decisions. Atmospheric correction is the necessary part in the data preprocessing of the quantitative high resolution remote sensing, which can eliminate the signal interference in the radiation path caused by atmospheric scattering and absorption, and reducting apparent reflectance into real reflectance of the surface targets. Aiming at the problem that current research lack of atmospheric date which are synchronization and region matching of the surface observation image, this research utilize the MODIS Level 1B synchronous data to simulate synchronized atmospheric condition, and write programs to implementation process of aerosol retrieval and atmospheric correction, then generate a lookup table of the remote sensing image based on the radioactive transfer model of 6S (second simulation of a satellite signal in the solar spectrum) to correct the atmospheric effect of multispectral image from GF-2 satellite PMS-1 payload. According to the correction results, this paper analyzes the pixel histogram of the reflectance spectrum of the 4 spectral bands of PMS-1, and evaluates the correction results of different spectral bands. Then conducted a comparison experiment on the same GF-2 image based on the QUAC. According to the different targets respectively statistics the average value of NDVI, implement a comparative study of NDVI from two different results. The degree of influence was discussed by whether to adopt synchronous atmospheric date. The study shows that the result of the synchronous atmospheric parameters have significantly improved the quantitative application of the GF-2 remote sensing data.

  20. Atmospheric Phase Delay Correction of D-Insar Based on SENTINEL-1A

    NASA Astrophysics Data System (ADS)

    Li, X.; Huang, G.; Kong, Q.

    2018-04-01

    In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR) monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.

  1. [Atmospheric correction of HJ-1 CCD data for water imagery based on dark object model].

    PubMed

    Zhou, Li-Guo; Ma, Wei-Chun; Gu, Wan-Hua; Huai, Hong-Yan

    2011-08-01

    The CCD multi-band data of HJ-1A has great potential in inland water quality monitoring, but the precision of atmospheric correction is a premise and necessary procedure for its application. In this paper, a method based on dark pixel for water-leaving radiance retrieving is proposed. Beside the Rayleigh scattering, the aerosol scattering is important to atmospheric correction, the water quality of inland lakes always are case II water and the value of water leaving radiance is not zero. So the synchronous MODIS shortwave infrared data was used to obtain the aerosol parameters, and in virtue of the characteristic that aerosol scattering is relative stabilized in 560 nm, the water-leaving radiance for each visible and near infrared band were retrieved and normalized, accordingly the remotely sensed reflectance of water was computed. The results show that the atmospheric correction method based on the imagery itself is more effective for the retrieval of water parameters for HJ-1A CCD data.

  2. Atmospheric Correction Algorithm for Hyperspectral Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. J. Pollina

    1999-09-01

    In December 1997, the US Department of Energy (DOE) established a Center of Excellence (Hyperspectral-Multispectral Algorithm Research Center, HyMARC) for promoting the research and development of algorithms to exploit spectral imagery. This center is located at the DOE Remote Sensing Laboratory in Las Vegas, Nevada, and is operated for the DOE by Bechtel Nevada. This paper presents the results to date of a research project begun at the center during 1998 to investigate the correction of hyperspectral data for atmospheric aerosols. Results of a project conducted by the Rochester Institute of Technology to define, implement, and test procedures for absolutemore » calibration and correction of hyperspectral data to absolute units of high spectral resolution imagery will be presented. Hybrid techniques for atmospheric correction using image or spectral scene data coupled through radiative propagation models will be specifically addressed. Results of this effort to analyze HYDICE sensor data will be included. Preliminary results based on studying the performance of standard routines, such as Atmospheric Pre-corrected Differential Absorption and Nonlinear Least Squares Spectral Fit, in retrieving reflectance spectra show overall reflectance retrieval errors of approximately one to two reflectance units in the 0.4- to 2.5-micron-wavelength region (outside of the absorption features). These results are based on HYDICE sensor data collected from the Southern Great Plains Atmospheric Radiation Measurement site during overflights conducted in July of 1997. Results of an upgrade made in the model-based atmospheric correction techniques, which take advantage of updates made to the moderate resolution atmospheric transmittance model (MODTRAN 4.0) software, will also be presented. Data will be shown to demonstrate how the reflectance retrieval in the shorter wavelengths of the blue-green region will be improved because of enhanced modeling of multiple scattering effects.« less

  3. Correction of Atmospheric Haze in RESOURCESAT-1 LISS-4 MX Data for Urban Analysis: AN Improved Dark Object Subtraction Approach

    NASA Astrophysics Data System (ADS)

    Mustak, S.

    2013-09-01

    The correction of atmospheric effects is very essential because visible bands of shorter wavelength are highly affected by atmospheric scattering especially of Rayleigh scattering. The objectives of the paper is to find out the haze values present in the all spectral bands and to correct the haze values for urban analysis. In this paper, Improved Dark Object Subtraction method of P. Chavez (1988) is applied for the correction of atmospheric haze in the Resoucesat-1 LISS-4 multispectral satellite image. Dark object Subtraction is a very simple image-based method of atmospheric haze which assumes that there are at least a few pixels within an image which should be black (% reflectance) and such black reflectance termed as dark object which are clear water body and shadows whose DN values zero (0) or Close to zero in the image. Simple Dark Object Subtraction method is a first order atmospheric correction but Improved Dark Object Subtraction method which tends to correct the Haze in terms of atmospheric scattering and path radiance based on the power law of relative scattering effect of atmosphere. The haze values extracted using Simple Dark Object Subtraction method for Green band (Band2), Red band (Band3) and NIR band (band4) are 40, 34 and 18 but the haze values extracted using Improved Dark Object Subtraction method are 40, 18.02 and 11.80 for aforesaid bands. Here it is concluded that the haze values extracted by Improved Dark Object Subtraction method provides more realistic results than Simple Dark Object Subtraction method.

  4. Retrieval of atmospheric properties from hyper and multispectral imagery with the FLAASH atmospheric correction algorithm

    NASA Astrophysics Data System (ADS)

    Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael; Berk, Alexander; Anderson, Gail; Gardner, James; Felde, Gerald

    2005-10-01

    Atmospheric Correction Algorithms (ACAs) are used in applications of remotely sensed Hyperspectral and Multispectral Imagery (HSI/MSI) to correct for atmospheric effects on measurements acquired by air and space-borne systems. The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) algorithm is a forward-model based ACA created for HSI and MSI instruments which operate in the visible through shortwave infrared (Vis-SWIR) spectral regime. Designed as a general-purpose, physics-based code for inverting at-sensor radiance measurements into surface reflectance, FLAASH provides a collection of spectral analysis and atmospheric retrieval methods including: a per-pixel vertical water vapor column estimate, determination of aerosol optical depth, estimation of scattering for compensation of adjacency effects, detection/characterization of clouds, and smoothing of spectral structure resulting from an imperfect atmospheric correction. To further improve the accuracy of the atmospheric correction process, FLAASH will also detect and compensate for sensor-introduced artifacts such as optical smile and wavelength mis-calibration. FLAASH relies on the MODTRANTM radiative transfer (RT) code as the physical basis behind its mathematical formulation, and has been developed in parallel with upgrades to MODTRAN in order to take advantage of the latest improvements in speed and accuracy. For example, the rapid, high fidelity multiple scattering (MS) option available in MODTRAN4 can greatly improve the accuracy of atmospheric retrievals over the 2-stream approximation. In this paper, advanced features available in FLAASH are described, including the principles and methods used to derive atmospheric parameters from HSI and MSI data. Results are presented from processing of Hyperion, AVIRIS, and LANDSAT data.

  5. Correlated environmental corrections in TOPEX/POSEIDON, with a note on ionospheric accuracy

    NASA Technical Reports Server (NTRS)

    Zlotnicki, V.

    1994-01-01

    Estimates of the effectiveness of an altimetric correction, and interpretation of sea level variability as a response to atmospheric forcing, both depend upon assuming that residual errors in altimetric corrections are uncorrelated among themselves and with residual sea level, or knowing the correlations. Not surprisingly, many corrections are highly correlated since they involve atmospheric properties and the ocean surface's response to them. The full corrections (including their geographically varying time mean values), show correlations between electromagnetic bias (mostly the height of wind waves) and either atmospheric pressure or water vapor of -40%, and between atmospheric pressure and water vapor of 28%. In the more commonly used collinear differences (after removal of the geographically varying time mean), atmospheric pressure and wave height show a -30% correlation, atmospheric pressure and water vapor a -10% correlation, both pressure and water vapor a 7% correlation with residual sea level, and a bit surprisingly, ionospheric electron content and wave height a 15% correlation. Only the ocean tide is totally uncorrelated with other corrections or residual sea level. The effectiveness of three ionospheric corrections (TOPEX dual-frequency, a smoothed version of the TOPEX dual-frequency, and Doppler orbitography and radiopositioning integrated by satellite (DORIS) is also evaluated in terms of their reduction in variance of residual sea level. Smooth (90-200 km along-track) versions of the dual-frequency altimeter ionosphere perform best both globally and within 20 deg in latitude from the equator. The noise variance in the 1/s TOPEX inospheric samples is approximately (11 mm) squared, about the same as noise in the DORIS-based correction; however, the latter has its error over scales of order 10(exp 3) km. Within 20 deg of the equator, the DORIS-based correction adds (14 mm) squared to the residual sea level variance.

  6. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16,more » Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.« less

  7. Atmospheric correction for inland water based on Gordon model

    NASA Astrophysics Data System (ADS)

    Li, Yunmei; Wang, Haijun; Huang, Jiazhu

    2008-04-01

    Remote sensing technique is soundly used in water quality monitoring since it can receive area radiation information at the same time. But more than 80% radiance detected by sensors at the top of the atmosphere is contributed by atmosphere not directly by water body. Water radiance information is seriously confused by atmospheric molecular and aerosol scattering and absorption. A slight bias of evaluation for atmospheric influence can deduce large error for water quality evaluation. To inverse water composition accurately we have to separate water and air information firstly. In this paper, we studied on atmospheric correction methods for inland water such as Taihu Lake. Landsat-5 TM image was corrected based on Gordon atmospheric correction model. And two kinds of data were used to calculate Raleigh scattering, aerosol scattering and radiative transmission above Taihu Lake. Meanwhile, the influence of ozone and white cap were revised. One kind of data was synchronization meteorology data, and the other one was synchronization MODIS image. At last, remote sensing reflectance was retrieved from the TM image. The effect of different methods was analyzed using in situ measured water surface spectra. The result indicates that measured and estimated remote sensing reflectance were close for both methods. Compared to the method of using MODIS image, the method of using synchronization meteorology is more accurate. And the bias is close to inland water error criterion accepted by water quality inversing. It shows that this method is suitable for Taihu Lake atmospheric correction for TM image.

  8. Meterological correction of optical beam refraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, V.P.; Melamud, A.E.; Mironov, V.L.

    1986-02-01

    At the present time laser reference systems (LRS's) are widely used in agrotechnology and in geodesy. The demands for accuracy in LRS's constantly increase, so that a study of error sources and means of considering and correcting them is of practical importance. A theoretical algorithm is presented for correction of the regular component of atmospheric refraction for various types of hydrostatic stability of the atmospheric layer adjacent to the earth. The algorithm obtained is compared to regression equations obtained by processing an experimental data base. It is shown that within admissible accuracy limits the refraction correction algorithm obtained permits constructionmore » of correction tables and design of optical systems with programmable correction for atmospheric refraction on the basis of rapid meteorological measurements.« less

  9. Molecfit: A general tool for telluric absorption correction. II. Quantitative evaluation on ESO-VLT/X-Shooterspectra

    NASA Astrophysics Data System (ADS)

    Kausch, W.; Noll, S.; Smette, A.; Kimeswenger, S.; Barden, M.; Szyszka, C.; Jones, A. M.; Sana, H.; Horst, H.; Kerber, F.

    2015-04-01

    Context. Absorption by molecules in the Earth's atmosphere strongly affects ground-based astronomical observations. The resulting absorption line strength and shape depend on the highly variable physical state of the atmosphere, i.e. pressure, temperature, and mixing ratio of the different molecules involved. Usually, supplementary observations of so-called telluric standard stars (TSS) are needed to correct for this effect, which is expensive in terms of telescope time. We have developed the software package molecfit to provide synthetic transmission spectra based on parameters obtained by fitting narrow ranges of the observed spectra of scientific objects. These spectra are calculated by means of the radiative transfer code LBLRTM and an atmospheric model. In this way, the telluric absorption correction for suitable objects can be performed without any additional calibration observations of TSS. Aims: We evaluate the quality of the telluric absorption correction using molecfit with a set of archival ESO-VLT/X-Shooter visible and near-infrared spectra. Methods: Thanks to the wavelength coverage from the U to the K band, X-Shooter is well suited to investigate the quality of the telluric absorption correction with respect to the observing conditions, the instrumental set-up, input parameters of the code, the signal-to-noise of the input spectrum, and the atmospheric profiles. These investigations are based on two figures of merit, Ioff and Ires, that describe the systematic offsets and the remaining small-scale residuals of the corrections. We also compare the quality of the telluric absorption correction achieved with molecfit to the classical method based on a telluric standard star. Results: The evaluation of the telluric correction with molecfit shows a convincing removal of atmospheric absorption features. The comparison with the classical method reveals that molecfit performs better because it is not prone to the bad continuum reconstruction, noise, and intrinsic spectral features introduced by the telluric standard star. Conclusions: Fitted synthetic transmission spectra are an excellent alternative to the correction based on telluric standard stars. Moreover, molecfit offers wide flexibility for adaption to various instruments and observing sites. http://www.eso.org/sci/software/pipelines/skytools/

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  11. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states.

    PubMed

    Zhao, S M; Leach, J; Gong, L Y; Ding, J; Zheng, B Y

    2012-01-02

    The effect of atmosphere turbulence on light's spatial structure compromises the information capacity of photons carrying the Orbital Angular Momentum (OAM) in free-space optical (FSO) communications. In this paper, we study two aberration correction methods to mitigate this effect. The first one is the Shack-Hartmann wavefront correction method, which is based on the Zernike polynomials, and the second is a phase correction method specific to OAM states. Our numerical results show that the phase correction method for OAM states outperforms the Shark-Hartmann wavefront correction method, although both methods improve significantly purity of a single OAM state and the channel capacities of FSO communication link. At the same time, our experimental results show that the values of participation functions go down at the phase correction method for OAM states, i.e., the correction method ameliorates effectively the bad effect of atmosphere turbulence.

  12. Reconciling Satellite-Derived Atmospheric Properties with Fine-Resolution Land Imagery: Insights for Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Zelazowski, Przemyslaw; Sayer, Andrew M.; Thomas, Gareth E; Grainger, Roy G.

    2011-01-01

    This paper investigates to what extent satellite measurements of atmospheric properties can be reconciled with fine-resolution land imagery, in order to improve the estimates of surface reflectance through physically based atmospheric correction. The analysis deals with mountainous area (Landsat scene of Peruvian Amazon/Andes, 72 E and 13 S), where the atmosphere is highly variable. Data from satellite sensors were used for characterization of the key atmospheric constituents: total water vapor (TWV), aerosol optical depth (AOD), and total ozone. Constituent time series revealed the season-dependent mean state of the atmosphere and its variability. Discrepancies between AOD from the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS) highlighted substantial uncertainty of atmospheric aerosol properties. The distribution of TWV and AOD over a Landsat scene was found to be exponentially related to ground elevation (mean R(sup 2) of 0.82 and 0.29, respectively). In consequence, the atmosphere-induced and seasonally varying bias of the top-of-atmosphere signal was also elevation dependent (e.g., mean Normalized Difference Vegetation Index bias at 500 m was 0.06 and at 4000 m was 0.01). We demonstrate that satellite measurements of key atmospheric constituents can be downscaled and gap filled with the proposed "background + anomalies" approach, to allow for a better compatibility with fine-resolution land surface imagery. Older images (i.e., predating the MODIS/ATSR era), without coincident atmospheric data, can be corrected using climatologies derived from time series of satellite retrievals. Averaging such climatologies over space compromises the quality of correction result to a much greater degree than averaging them over time. We conclude that the quality of both recent and older fine-resolution land surface imagery can be improved with satellite-based atmospheric data acquired to date.

  13. Femtosecond-level timing fluctuation suppression in atmospheric frequency transfer with passive phase conjunction correction.

    PubMed

    Sun, Fuyu; Hou, Dong; Zhang, Danian; Tian, Jie; Hu, Jianguo; Huang, Xianhe; Chen, Shijun

    2017-09-04

    We demonstrate femtosecond-level timing fluctuation suppression in indoor atmospheric comb-based frequency transfer with a passive phase conjunction correction technique. Timing fluctuations and Allan deviations are both measured to characterize the excess frequency instability incurred during the frequency transfer process. By transferring a 2 GHz microwave over a 52-m long free-space link in 5000 s, the total root-mean-square (RMS) timing fluctuation was measured to be about 280 fs with a fractional frequency instability on the order of 3 × 10 -13 at 1 s and 6 × 10 -17 at 1000 s. This atmospheric comb-based frequency transfer with passive phase conjunction correction can be used to build an atomic clock-based free-space frequency transmission link because its instability is less than that of a commercial Cs or H-master clock.

  14. Ground based measurements on reflectance towards validating atmospheric correction algorithms on IRS-P6 AWiFS data

    NASA Astrophysics Data System (ADS)

    Rani Sharma, Anu; Kharol, Shailesh Kumar; Kvs, Badarinath; Roy, P. S.

    In Earth observation, the atmosphere has a non-negligible influence on the visible and infrared radiation which is strong enough to modify the reflected electromagnetic signal and at-target reflectance. Scattering of solar irradiance by atmospheric molecules and aerosol generates path radiance, which increases the apparent surface reflectance over dark surfaces while absorption by aerosols and other molecules in the atmosphere causes loss of brightness to the scene, as recorded by the satellite sensor. In order to derive precise surface reflectance from satellite image data, it is indispensable to apply the atmospheric correction which serves to remove the effects of molecular and aerosol scattering. In the present study, we have implemented a fast atmospheric correction algorithm to IRS-P6 AWiFS satellite data which can effectively retrieve surface reflectance under different atmospheric and surface conditions. The algorithm is based on MODIS climatology products and simplified use of Second Simulation of Satellite Signal in Solar Spectrum (6S) radiative transfer code, which is used to generate look-up-tables (LUTs). The algorithm requires information on aerosol optical depth for correcting the satellite dataset. The proposed method is simple and easy to implement for estimating surface reflectance from the at sensor recorded signal, on a per pixel basis. The atmospheric correction algorithm has been tested for different IRS-P6 AWiFS False color composites (FCC) covering the ICRISAT Farm, Patancheru, Hyderabad, India under varying atmospheric conditions. Ground measurements of surface reflectance representing different land use/land cover, i.e., Red soil, Chick Pea crop, Groundnut crop and Pigeon Pea crop were conducted to validate the algorithm and found a very good match between surface reflectance and atmospherically corrected reflectance for all spectral bands. Further, we aggregated all datasets together and compared the retrieved AWiFS reflectance with aggregated ground measurements which showed a very good correlation of 0.96 in all four spectral bands (i.e. green, red, NIR and SWIR). In order to quantify the accuracy of the proposed method in the estimation of the surface reflectance, the root mean square error (RMSE) associated to the proposed method was evaluated. The analysis of the ground measured versus retrieved AWiFS reflectance yielded smaller RMSE values in case of all four spectral bands. EOS TERRA/AQUA MODIS derived AOD exhibited very good correlation of 0.92 and the data sets provides an effective means for carrying out atmospheric corrections in an operational way. Keywords: Atmospheric correction, 6S code, MODIS, Spectroradiometer, Sun-Photometer

  15. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric TRANsmittance) radiative transport software to separate out the atmospheric component of measured top of atmosphere radiance. Simulated water bodies across a variety of MODTRAN model atmospheres including desert, mid-latitude, tropical and sub-artic conditions provide test bed conditions. Atmospherically corrected radiance and surface temperature results were compared to those obtained using traditional radiosonde balloon data and models. In general, differences between the different techniques were less than 2 percent indicating the potential value satellite derived atmospheric profiles have to atmospherically correct thermal imagery.

  16. A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Lu, Xinghai; Xuan, Li

    2009-09-28

    A simple method for evaluating the wavefront compensation error of diffractive liquid-crystal wavefront correctors (DLCWFCs) for atmospheric turbulence correction is reported. A simple formula which describes the relationship between pixel number, DLCWFC aperture, quantization level, and atmospheric coherence length was derived based on the calculated atmospheric turbulence wavefronts using Kolmogorov atmospheric turbulence theory. It was found that the pixel number across the DLCWFC aperture is a linear function of the telescope aperture and the quantization level, and it is an exponential function of the atmosphere coherence length. These results are useful for people using DLCWFCs in atmospheric turbulence correction for large-aperture telescopes.

  17. Sensitivity of atmospheric correction to loading and model of the aerosol

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Braga, Federica; Bresciani, Mariano; Giardino, Claudia; Adamo, Maria; Ananasso, Cristina; Alberotanza, Luigi

    2013-04-01

    The physically-based atmospheric correction requires knowledge of the atmospheric conditions during the remotely data acquisitions [Guanter et al., 2007; Gao et al., 2009; Kotchenova et al. 2009; Bassani et al., 2010]. The propagation of solar radiation in the atmospheric window of visible and near-infrared spectral domain, depends on the aerosol scattering. The effects of solar beam extinction are related to the aerosol loading, by the aerosol optical thickness @550nm (AOT) parameter [Kaufman et al., 1997; Vermote et al., 1997; Kotchenova et al., 2008; Kokhanovsky et al. 2010], and also to the aerosol model. Recently, the atmospheric correction of hyperspectral data is considered sensitive to the micro-physical and optical characteristics of aerosol, as reported in [Bassani et al., 2012]. Within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) project, funded by Italian Space Agency (ASI), the role of the aerosol model on the accuracy of the atmospheric correction of hyperspectral image acquired over water target is investigated. In this work, the results of the atmospheric correction of HICO (Hyperspectral Imager for the Coastal Ocean) images acquired on Northern Adriatic Sea in the Mediterranean are presented. The atmospheric correction has been performed by an algorithm specifically developed for HICO sensor. The algorithm is based on the equation presented in [Vermote et al., 1997; Bassani et al., 2010] by using the last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2008; Vermote et al., 2009]. The sensitive analysis of the atmospheric correction of HICO data is performed with respect to the aerosol optical and micro-physical properties used to define the aerosol model. In particular, a variable mixture of the four basic components: dust- like, oceanic, water-soluble, and soot, has been considered. The water reflectance, obtained from the atmospheric correction with variable model and fixed loading of the aerosol, has been compared. The results highlight the requirements to define the aerosol characteristics, loading and model, to simulate the radiative field in the atmosphere system for an accurate atmospheric correction of hyperspectral data, improving the accuracy of the results for surface reflectance process over water, a dark-target. As conclusion, the aerosol model plays a crucial role for an accurate physically-based atmospheric correction of hyperspectral data over water. Currently, the PRISMA mission provides valuable opportunities to study aerosol and their radiative effects on the hyperspectral data. Bibliography Guanter, L.; Estellès, V.; Moreno, J. Spectral calibration and atmospheric correction of ultra-fine spectral and spatial resolution remote sensing data. Application to CASI-1500 data. Remote Sens. Environ. 2007, 109, 54-65. Gao, B.-C.; Montes, M.J.; Davis, C.O.; Goetz, A.F.H. Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sens. Environ. 2009, 113, S17-S24. Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2009, 113, D23. Bassani C.; Cavalli, R.M.; Pignatti S. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land. Sens. 2010, 10, 6421-6438. Kaufman, Y. J., Tanrè, D., Gordon H. R., Nakajima T., Lenoble J., Frouin R., Grassl H., Herman B.M., King M., and Teillet P.M.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102(D14), 17051-17067, 1997. Vermote, E.F.; Tanrè , D.; Deuzè´ , J.L.; Herman M.; Morcrette J.J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675-686. Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Optics 2008, 47, 2215-2226. Kokhanovsky A.A., Deuzè J.L., Diner D.J., Dubovik O., Ducos F., Emde C., Garay M.J., Grainger R.G., Heckel A., Herman M., Katsev I.L., Keller J., Levy R., North P.R.J., Prikhach A.S., Rozanov V.V., Sayer A.M., Ota Y., Tanrè D., Thomas G.E., Zege E.P. The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light. Atmos. Meas. Tech., 3, 909-932, 2010. Bassani C.; Cavalli, R.M.; Antonelli, P. Influence of aerosol and surface reflectance variability on hyperspectral observed radiance. Atmos. Meas. Tech. 2012, 5, 1193-1203. Vermote , E.F.; Kotchenova, S. Atmospheric correction for the monitoring of land surfaces. J. Geophys. Res. 2009, 113, D23.

  18. Calibration of AIS Data Using Ground-based Spectral Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Conel, J. E.

    1985-01-01

    Present methods of correcting airborne imaging spectrometer (AIS) data for instrumental and atmospheric effects include the flat- or curved-field correction and a deviation-from-the-average adjustment performed on a line-by-line basis throughout the image. Both methods eliminate the atmospheric absorptions, but remove the possibility of studying the atmosphere for its own sake, or of using the atmospheric information present as a possible basis for theoretical modeling. The method discussed here relies on use of ground-based measurements of the surface spectral reflectance in comparison with scanner data to fix in a least-squares sense parameters in a simplified model of the atmosphere on a wavelength-by-wavelength basis. The model parameters (for optically thin conditions) are interpretable in terms of optical depth and scattering phase function, and thus, in principle, provide an approximate description of the atmosphere as a homogeneous body intervening between the sensor and the ground.

  19. a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images

    NASA Astrophysics Data System (ADS)

    Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei

    2018-04-01

    Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.

  20. Comparison of LANDSAT-2 and field spectrometer reflectance signatures of south Texas rangeland plant communities

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Escobar, D. E.; Gausman, H. W.; Everitt, J. H. (Principal Investigator)

    1982-01-01

    The accuracy was assessed for an atmospheric correction method that depends on clear water bodies to infer solar and atmospheric parameters for radiative transfer equations by measuring the reflectance signature of four prominent south Texas rangeland plants with the LANDSAT satellite multispectral scanner (MSS) and a ground based spectroradiometer. The rangeland plant reflectances produced by the two sensors were correlated with no significant deviation of the slope from unity or of the intercept from zero. These results indicated that the atmospheric correction produced LANDSAT MSS estimates of rangeland plant reflectances that are as accurate as the ground based spectroradiometer.

  1. Applying Tafkaa For Atmospheric Correction of Aviris Over Coral Ecosystems In The Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    Goodman, James A.; Montes, Marcos J.; Ustin, Susan L.

    2004-01-01

    Growing concern over the health of coastal ecosystems, particularly coral reefs, has produced increased interest in remote sensing as a tool for the management and monitoring of these valuable natural resources. Hyperspectral capabilities show promising results in this regard, but as yet remain somewhat hindered by the technical and physical issues concerning the intervening water layer. One such issue is the ability to atmospherically correct images over shallow aquatic areas, where complications arise due to varying effects from specular reflection, wind blown surface waves, and reflectance from the benthic substrate. Tafkaa, an atmospheric correction algorithm under development at the U.S. Naval Research Laboratory, addresses these variables and provides a viable approach to the atmospheric correction issue. Using imagery from the Advanced Visible InfraRed Imaging Spectrometer (AVIRIS) over two shallow coral ecosystems in the Hawai ian Islands, French Frigate Shoals and Kane ohe Bay, we first demonstrate how land-based atmospheric corrections can be limited in such an environment. We then discuss the input requirements and underlying algorithm concepts of Tafkaa and conclude with examples illustrating the improved performance of Tafkaa using the same AVIRIS images.

  2. Ground-Based Correction of Remote-Sensing Spectral Imagery

    NASA Technical Reports Server (NTRS)

    Alder-Golden, Steven M.; Rochford, Peter; Matthew, Michael; Berk, Alexander

    2007-01-01

    Software has been developed for an improved method of correcting for the atmospheric optical effects (primarily, effects of aerosols and water vapor) in spectral images of the surface of the Earth acquired by airborne and spaceborne remote-sensing instruments. In this method, the variables needed for the corrections are extracted from the readings of a radiometer located on the ground in the vicinity of the scene of interest. The software includes algorithms that analyze measurement data acquired from a shadow-band radiometer. These algorithms are based on a prior radiation transport software model, called MODTRAN, that has been developed through several versions up to what are now known as MODTRAN4 and MODTRAN5 . These components have been integrated with a user-friendly Interactive Data Language (IDL) front end and an advanced version of MODTRAN4. Software tools for handling general data formats, performing a Langley-type calibration, and generating an output file of retrieved atmospheric parameters for use in another atmospheric-correction computer program known as FLAASH have also been incorporated into the present soft-ware. Concomitantly with the soft-ware described thus far, there has been developed a version of FLAASH that utilizes the retrieved atmospheric parameters to process spectral image data.

  3. An expert system shell for inferring vegetation characteristics: Atmospheric techniques (Task G)

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann; Harrison, Patrick R.

    1993-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG Subgoals have been reorganized into categories. A new subgoal category 'Atmospheric Techniques' containing two new subgoals has been implemented. The subgoal Atmospheric Passes allows the scientist to take reflectance data measured at ground level and predict what the reflectance values would be if the data were measured at a different atmospheric height. The subgoal Atmospheric Corrections allows atmospheric corrections to be made to data collected from an aircraft or by a satellite to determine what the equivalent reflectance values would be if the data were measured at ground level. The report describes the implementation and testing of the basic framework and interface for the Atmospheric Techniques Subgoals.

  4. Estimation of absolute water surface temperature based on atmospherically corrected thermal infrared multispectral scanner digital data

    NASA Technical Reports Server (NTRS)

    Anderson, James E.

    1986-01-01

    Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.

  5. Impact of Atmospheric Chromatic Effects on Weak Lensing Measurements

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua E.; Burchat, Patricia R.

    2015-07-01

    Current and future imaging surveys will measure cosmic shear with statistical precision that demands a deeper understanding of potential systematic biases in galaxy shape measurements than has been achieved to date. We use analytic and computational techniques to study the impact on shape measurements of two atmospheric chromatic effects for ground-based surveys such as the Dark Energy Survey and the Large Synoptic Survey Telescope (LSST): (1) atmospheric differential chromatic refraction and (2) wavelength dependence of seeing. We investigate the effects of using the point-spread function (PSF) measured with stars to determine the shapes of galaxies that have different spectral energy distributions than the stars. We find that both chromatic effects lead to significant biases in galaxy shape measurements for current and future surveys, if not corrected. Using simulated galaxy images, we find a form of chromatic “model bias” that arises when fitting a galaxy image with a model that has been convolved with a stellar, instead of galactic, PSF. We show that both forms of atmospheric chromatic biases can be predicted (and corrected) with minimal model bias by applying an ordered set of perturbative PSF-level corrections based on machine-learning techniques applied to six-band photometry. Catalog-level corrections do not address the model bias. We conclude that achieving the ultimate precision for weak lensing from current and future ground-based imaging surveys requires a detailed understanding of the wavelength dependence of the PSF from the atmosphere, and from other sources such as optics and sensors. The source code for this analysis is available at https://github.com/DarkEnergyScienceCollaboration/chroma.

  6. Theoretical oscillation frequencies for solar-type dwarfs from stellar models with 〈3D〉-atmospheres

    NASA Astrophysics Data System (ADS)

    Jørgensen, Andreas Christ Sølvsten; Weiss, Achim; Mosumgaard, Jakob Rørsted; Silva Aguirre, Victor; Sahlholdt, Christian Lundsgaard

    2017-12-01

    We present a new method for replacing the outermost layers of stellar models with interpolated atmospheres based on results from 3D simulations, in order to correct for structural inadequacies of these layers. This replacement is known as patching. Tests, based on 3D atmospheres from three different codes and interior models with different input physics, are performed. Using solar models, we investigate how different patching criteria affect the eigenfrequencies. These criteria include the depth, at which the replacement is performed, the quantity, on which the replacement is based, and the mismatch in Teff and log g between the un-patched model and patched 3D atmosphere. We find the eigenfrequencies to be unaltered by the patching depth deep within the adiabatic region, while changing the patching quantity or the employed atmosphere grid leads to frequency shifts that may exceed 1 μHz. Likewise, the eigenfrequencies are sensitive to mismatches in Teff or log g. A thorough investigation of the accuracy of a new scheme, for interpolating mean 3D stratifications within the atmosphere grids, is furthermore performed. Throughout large parts of the atmosphere grids, our interpolation scheme yields sufficiently accurate results for the purpose of asteroseismology. We apply our procedure in asteroseismic analyses of four Kepler stars and draw the same conclusions as in the solar case: Correcting for structural deficiencies lowers the eigenfrequencies, this correction is slightly sensitive to the patching criteria, and the remaining frequency discrepancy between models and observations is less frequency dependent. Our work shows the applicability and relevance of patching in asteroseismology.

  7. Implications of atmospheric conditions for analysis of surface temperature variability derived from landscape-scale thermography.

    PubMed

    Hammerle, Albin; Meier, Fred; Heinl, Michael; Egger, Angelika; Leitinger, Georg

    2017-04-01

    Thermal infrared (TIR) cameras perfectly bridge the gap between (i) on-site measurements of land surface temperature (LST) providing high temporal resolution at the cost of low spatial coverage and (ii) remotely sensed data from satellites that provide high spatial coverage at relatively low spatio-temporal resolution. While LST data from satellite (LST sat ) and airborne platforms are routinely corrected for atmospheric effects, such corrections are barely applied for LST from ground-based TIR imagery (using TIR cameras; LST cam ). We show the consequences of neglecting atmospheric effects on LST cam of different vegetated surfaces at landscape scale. We compare LST measured from different platforms, focusing on the comparison of LST data from on-site radiometry (LST osr ) and LST cam using a commercially available TIR camera in the region of Bozen/Bolzano (Italy). Given a digital elevation model and measured vertical air temperature profiles, we developed a multiple linear regression model to correct LST cam data for atmospheric influences. We could show the distinct effect of atmospheric conditions and related radiative processes along the measurement path on LST cam , proving the necessity to correct LST cam data on landscape scale, despite their relatively low measurement distances compared to remotely sensed data. Corrected LST cam data revealed the dampening effect of the atmosphere, especially at high temperature differences between the atmosphere and the vegetated surface. Not correcting for these effects leads to erroneous LST estimates, in particular to an underestimation of the heterogeneity in LST, both in time and space. In the most pronounced case, we found a temperature range extension of almost 10 K.

  8. A New Method for Atmospheric Correction of MRO/CRISM Data.

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, Eldar Z.; Dressing, C.; Wolff, M. J.

    2009-09-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) aboard the Mars Reconnaissance Orbiter (MRO) collects hyperspectral images from 0.362 to 3.92 μm at 6.55 nanometers/channel, and at a spatial resolution of 20 m/pixel. The 1-2.6 μm spectral range is often used to identify and map the distribution of hydrous minerals using mineralogically diagnostic bands at 1.4 μm, 1.9 μm, and 2 - 2.5 micron region. Atmospheric correction of the 2-μm CO2 band typically employs the same methodology applied to OMEGA data (Mustard et al., Nature 454, 2008): an atmospheric opacity spectrum, obtained from the ratio of spectra from the base to spectra from the peak of Olympus Mons, is rescaled for each spectrum in the observation to fit the 2-μm CO2 band, and is subsequently used to correct the data. Three important aspects are not considered in this correction: 1) absorptions due to water vapor are improperly accounted for, 2) the band-center of each channel shifts slightly with time, and 3) multiple scattering due to atmospheric aerosols is not considered. The second issue results in miss-registration of the sharp CO2 features in the 2-μm triplet, and hence poor atmospheric correction. This leads to the necessity to ratio all spectra using the spectrum of a spectrally "bland” region in each observation in order to distinguish features 1.9 μm. Here, we present an improved atmospheric correction method, which uses emission phase function (EPF) observations to correct for molecular opacity, and a discrete ordinate radiative transfer algorithm (DISORT - Stamnes et al., Appl. Opt. 27, 1988) to correct for the effects of multiple scattering. This method results in a significant improvement in the correction of the 2-μm CO2 band, allowing us to forgo the use of spectral ratios that affect the spectral shape and preclude the derivation of reflectance values in the data.

  9. Comparison of diverse methods for the correction of atmospheric effects on LANDSAT and SKYLAB images. [radiometric correction in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camara, G.; Dias, L. A. V.; Mascarenhas, N. D. D.; Desouza, R. C. M.; Pereira, A. E. C.

    1982-01-01

    Earth's atmosphere reduces a sensors ability in currently discriminating targets. Using radiometric correction to reduce the atmospheric effects may improve considerably the performance of an automatic image interpreter. Several methods for radiometric correction from the open literature are compared leading to the development of an atmospheric correction system.

  10. Evaluation of Shortwave Infrared Atmospheric Correction for Ocean Color Remote Sensing of Chesapeake Bay

    NASA Technical Reports Server (NTRS)

    Werdell, P. Jeremy; Franz, Bryan A.; Bailey, Sean W.

    2010-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer onboard the Aqua platform (MODIS-Aqua) provides a viable data stream for operational water quality monitoring of Chesapeake Bay. Marine geophysical products from MODIS-Aqua depend on the efficacy of the atmospheric correction process, which can be problematic in coastal environments. The operational atmospheric correction algorithm for MODIS-Aqua requires an assumption of negligible near-infrared water-leaving radiance, nL(sub w)(NIR). This assumption progressively degrades with increasing turbidity and, as such, methods exist to account for non-negligible nL(sub w)(NIR) within the atmospheric correction process or to use alternate radiometric bands where the assumption is satisfied, such as those positioned within shortwave infrared (SWIR) region of the spectrum. We evaluated a decade-long time-series of nL(sub w)(lambda) from MODIS-Aqua in Chesapeake Bay derived using NIR and SWIR bands for atmospheric correction. Low signal-to-noise ratios (SNR) for the SWIR bands of MODIS-Aqua added noise errors to the derived radiances, which produced broad, flat frequency distributions of nL(sub w)(lambda) relative to those produced using the NIR bands. The SWIR approach produced an increased number of negative nL(sub w)(lambda) and decreased sample size relative to the NIR approach. Revised vicarious calibration and regional tuning of the scheme to switch between the NIR and SWIR approaches may improve retrievals in Chesapeake Bay, however, poor SNR values for the MODIS-Aqua SWIR bands remain the primary deficiency of the SWIR-based atmospheric correction approach.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick K.

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 550: Smoky Contamination Area, Nevada National Security Site, Nevada. CAU 550 includes 19 corrective action sites (CASs), which consist of one weapons-related atmospheric test (Smoky), three safety experiments (Ceres, Oberon, Titania), and 15 debris sites (Table ES-1). The CASs were sorted into the following study groups based on release potential and technical similarities: • Study Group 1, Atmospheric Test • Study Group 2, Safety Experiments • Study Group 3, Washes • Study Group 4, Debris The purpose of this document is to provide justificationmore » and documentation supporting the conclusion that no further corrective action is needed for CAU 550 based on implementation of the corrective actions listed in Table ES-1. Corrective action investigation (CAI) activities were performed between August 2012 and October 2013 as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area; and in accordance with the Soils Activity Quality Assurance Plan. The approach for the CAI was to investigate and make data quality objective (DQO) decisions based on the types of releases present. The purpose of the CAI was to fulfill data needs as defined during the DQO process. The CAU 550 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs.« less

  12. Development of the atmospheric correction algorithm for the next generation geostationary ocean color sensor data

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Ho; Kim, Wonkook

    2017-04-01

    The geostationary ocean color imager-II (GOCI-II), designed to be focused on the ocean environmental monitoring with better spatial (250m for local and 1km for full disk) and spectral resolution (13 bands) then the current operational mission of the GOCI-I. GOCI-II will be launched in 2018. This study presents currently developing algorithm for atmospheric correction and retrieval of surface reflectance over land to be optimized with the sensor's characteristics. We first derived the top-of-atmosphere radiances as the proxy data derived from the parameterized radiative transfer code in the 13 bands of GOCI-II. Based on the proxy data, the algorithm has been made with cloud masking, gas absorption correction, aerosol inversion, computation of aerosol extinction correction. The retrieved surface reflectances are evaluated by the MODIS level 2 surface reflectance products (MOD09). For the initial test period, the algorithm gave error of within 0.05 compared to MOD09. Further work will be progressed to fully implement the GOCI-II Ground Segment system (G2GS) algorithm development environment. These atmospherically corrected surface reflectance product will be the standard GOCI-II product after launch.

  13. A procedure for testing the quality of LANDSAT atmospheric correction algorithms

    NASA Technical Reports Server (NTRS)

    Dias, L. A. V. (Principal Investigator); Vijaykumar, N. L.; Neto, G. C.

    1982-01-01

    There are two basic methods for testing the quality of an algorithm to minimize atmospheric effects on LANDSAT imagery: (1) test the results a posteriori, using ground truth or control points; (2) use a method based on image data plus estimation of additional ground and/or atmospheric parameters. A procedure based on the second method is described. In order to select the parameters, initially the image contrast is examined for a series of parameter combinations. The contrast improves for better corrections. In addition the correlation coefficient between two subimages, taken at different times, of the same scene is used for parameter's selection. The regions to be correlated should not have changed considerably in time. A few examples using this proposed procedure are presented.

  14. Atmospheric corrections in interferometric synthetic aperture radar surface deformation - a case study of the city of Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Balbarani, S.; Euillades, P. A.; Euillades, L. D.; Casu, F.; Riveros, N. C.

    2013-09-01

    Differential interferometry is a remote sensing technique that allows studying crustal deformation produced by several phenomena like earthquakes, landslides, land subsidence and volcanic eruptions. Advanced techniques, like small baseline subsets (SBAS), exploit series of images acquired by synthetic aperture radar (SAR) sensors during a given time span. Phase propagation delay in the atmosphere is the main systematic error of interferometric SAR measurements. It affects differently images acquired at different days or even at different hours of the same day. So, datasets acquired during the same time span from different sensors (or sensor configuration) often give diverging results. Here we processed two datasets acquired from June 2010 to December 2011 by COSMO-SkyMed satellites. One of them is HH-polarized, and the other one is VV-polarized and acquired on different days. As expected, time series computed from these datasets show differences. We attributed them to non-compensated atmospheric artifacts and tried to correct them by using ERA-Interim global atmospheric model (GAM) data. With this method, we were able to correct less than 50% of the scenes, considering an area where no phase unwrapping errors were detected. We conclude that GAM-based corrections are not enough for explaining differences in computed time series, at least in the processed area of interest. We remark that no direct meteorological data for the GAM-based corrections were employed. Further research is needed in order to understand under what conditions this kind of data can be used.

  15. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  16. Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm

    NASA Astrophysics Data System (ADS)

    Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.

    2014-07-01

    The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.

  17. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks

    PubMed Central

    Li, Yihe; Li, Bofeng; Gao, Yang

    2015-01-01

    With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network. PMID:26633400

  18. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks.

    PubMed

    Li, Yihe; Li, Bofeng; Gao, Yang

    2015-11-30

    With the increased availability of regional reference networks, Precise Point Positioning (PPP) can achieve fast ambiguity resolution (AR) and precise positioning by assimilating the satellite fractional cycle biases (FCBs) and atmospheric corrections derived from these networks. In such processing, the atmospheric corrections are usually treated as deterministic quantities. This is however unrealistic since the estimated atmospheric corrections obtained from the network data are random and furthermore the interpolated corrections diverge from the realistic corrections. This paper is dedicated to the stochastic modelling of atmospheric corrections and analyzing their effects on the PPP AR efficiency. The random errors of the interpolated corrections are processed as two components: one is from the random errors of estimated corrections at reference stations, while the other arises from the atmospheric delay discrepancies between reference stations and users. The interpolated atmospheric corrections are then applied by users as pseudo-observations with the estimated stochastic model. Two data sets are processed to assess the performance of interpolated corrections with the estimated stochastic models. The results show that when the stochastic characteristics of interpolated corrections are properly taken into account, the successful fix rate reaches 93.3% within 5 min for a medium inter-station distance network and 80.6% within 10 min for a long inter-station distance network.

  19. Influence of the micro-physical properties of the aerosol on the atmospheric correction of OLI data acquired over desert area

    NASA Astrophysics Data System (ADS)

    Manzo, Ciro; Bassani, Cristiana

    2016-04-01

    This paper focuses on the evaluation of surface reflectance obtained by different atmospheric correction algorithms of the Landsat 8 OLI data considering or not the micro-physical properties of the aerosol when images are acquired in desert area located in South-West of Nile delta. The atmospheric correction of remote sensing data was shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. In particular, the role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of remote sensing data was investigated [Bassani et al., 2015; Tirelli et al., 2015]. In this work, the OLI surface reflectance was retrieved by the developed OLI@CRI (OLI ATmospherically Corrected Reflectance Imagery) physically-based atmospheric correction which considers the aerosol micro-physical properties available from the two AERONET stations [Holben et al., 1998] close to the study area (El_Farafra and Cairo_EMA_2). The OLI@CRI algorithm is based on 6SV radiative transfer model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997], specifically developed for Landsat 8 OLI data. The OLI reflectance obtained by the OLI@CRI was compared with reflectance obtained by other atmospheric correction algorithms which do not consider micro-physical properties of aerosol (DOS) or take on aerosol standard models (FLAASH, implemented in ENVI software). The accuracy of the surface reflectance retrieved by different algorithms were calculated by comparing the spatially resampled OLI images with the MODIS surface reflectance products. Finally, specific image processing was applied to the OLI reflectance images in order to compare remote sensing products obtained for same scene. The results highlight the influence of the physical characterization of aerosol on the OLI data improving the retrieved atmospherically corrected reflectance. One of the most important outreach of this research is the retrieval of the highest possible accuracy of the OLI reflectance for land surface variables by spectral indices. Consequently if OLI@CRI algorithm is applied to time series data, the uncertainty into the time curve can be reduced. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Bassani et al., 2015. Atmos. Meas. Tech. doi:10.5194/amt-8-1593-2015. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli et al., 2015. Remote Sens. doi:10.3390/rs70708391. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5.

  20. Atmospheric correction of satellite data

    NASA Astrophysics Data System (ADS)

    Shmirko, Konstantin; Bobrikov, Alexey; Pavlov, Andrey

    2015-11-01

    Atmosphere responses for more than 90% of all radiation measured by satellite. Due to this, atmospheric correction plays an important role in separating water leaving radiance from the signal, evaluating concentration of various water pigments (chlorophyll-A, DOM, CDOM, etc). The elimination of atmospheric intrinsic radiance from remote sensing signal referred to as atmospheric correction.

  1. A technique for the correcting ERTS data for solar and atmospheric effects

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Peacock, K.

    1973-01-01

    A technique is described by which an ERTS investigator can obtain absolute target reflectances by correcting spacecraft radiance measurements for variable target irradiance, atmospheric attenuation, and atmospheric backscatter. A simple measuring instrument and the necessary atmospheric measurements are discussed, and examples demonstrate the nature and magnitude of the atmospheric corrections.

  2. Effects of the Earth’s atmosphere and human neural processing of light on the apparent colors of stars

    NASA Astrophysics Data System (ADS)

    Savino, Michael; Comins, Neil Francis

    2015-01-01

    The aim of this study is to develop a mathematical algorithm for quantifying the perceived colors of stars as viewed from the surface of the Earth across a wide range of possible atmospheric conditions. These results are then used to generate color-corrected stellar images. As a first step, optics corrections are calculated to adjust for the CCD bias and the transmission curves of any filters used during image collection. Next, corrections for atmospheric scattering and absorption are determined for the atmospheric conditions during imaging by utilizing the Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS). These two sets of corrections are then applied to a series of reference spectra, which are then weighted against the CIE 1931 XYZ color matching functions before being mapped onto the sRGB color space, in order to determine a series of reference colors against which the original image will be compared. Each pixel of the image is then re-colored based upon its closest corresponding reference spectrum so that the final image output closely matches, in color, what would be seen by the human eye above the Earth's atmosphere. By comparing against the reference spectrum, the stellar classification for each star in the image can also be determined. An observational experiment is underway to test the accuracy of these calculations.

  3. The atmospheric correction algorithm for HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun

    2008-10-01

    China has launched her second ocean color satellite HY-1B on 11 Apr., 2007, which carried two remote sensors. The Chinese Ocean Color and Temperature Scanner (COCTS) is the main sensor on HY-1B, and it has not only eight visible and near-infrared wavelength bands similar to the SeaWiFS, but also two more thermal infrared bands to measure the sea surface temperature. Therefore, COCTS has broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. Atmospheric correction is the key of the quantitative ocean color remote sensing. In this paper, the operational atmospheric correction algorithm of HY-1B/COCTS has been developed. Firstly, based on the vector radiative transfer numerical model of coupled oceanatmosphere system- PCOART, the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT for HY-1B/COCTS have been generated. Secondly, using the generated LUTs, the exactly operational atmospheric correction algorithm for HY-1B/COCTS has been developed. The algorithm has been validated using the simulated spectral data generated by PCOART, and the result shows the error of the water-leaving reflectance retrieved by this algorithm is less than 0.0005, which meets the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the algorithm has been applied to the HY-1B/COCTS remote sensing data, and the retrieved water-leaving radiances are consist with the Aqua/MODIS results, and the corresponding ocean color remote sensing products have been generated including the chlorophyll concentration and total suspended particle matter concentration.

  4. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 •more » 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.« less

  5. Atmospheric icing of structures: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Ágústsson, H.; Elíasson, Á. J.; Thorsteins, E.; Rögnvaldsson, Ó.; Ólafsson, H.

    2012-04-01

    This study compares observed icing in a test span in complex orography at Hallormsstaðaháls (575 m) in East-Iceland with parameterized icing based on an icing model and dynamically downscaled weather at high horizontal resolution. Four icing events have been selected from an extensive dataset of observed atmospheric icing in Iceland. A total of 86 test-spans have been erected since 1972 at 56 locations in complex terrain with more than 1000 icing events documented. The events used here have peak observed ice load between 4 and 36 kg/m. Most of the ice accretion is in-cloud icing but it may partly be mixed with freezing drizzle and wet snow icing. The calculation of atmospheric icing is made in two steps. First the atmospheric data is created by dynamically downscaling the ECMWF-analysis to high resolution using the non-hydrostatic mesoscale Advanced Research WRF-model. The horizontal resolution of 9, 3, 1 and 0.33 km is necessary to allow the atmospheric model to reproduce correctly local weather in the complex terrain of Iceland. Secondly, the Makkonen-model is used to calculate the ice accretion rate on the conductors based on the simulated temperature, wind, cloud and precipitation variables from the atmospheric data. In general, the atmospheric model correctly simulates the atmospheric variables and icing calculations based on the atmospheric variables correctly identify the observed icing events, but underestimate the load due to too slow ice accretion. This is most obvious when the temperature is slightly below 0°C and the observed icing is most intense. The model results improve significantly when additional observations of weather from an upstream weather station are used to nudge the atmospheric model. However, the large variability in the simulated atmospheric variables results in high temporal and spatial variability in the calculated ice accretion. Furthermore, there is high sensitivity of the icing model to the droplet size and the possibility that some of the icing may be due to freezing drizzle or wet snow instead of in-cloud icing of super-cooled droplets. In addition, the icing model (Makkonen) may not be accurate for the highest icing loads observed.

  6. Entropy studies on beam distortion by atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2015-09-01

    When a beam propagates through atmospheric turbulence over a known distance, the target beam profile deviates from the projected profile of the beam on the receiver. Intuitively, the unwanted distortion provides information about the atmospheric turbulence. This information is crucial for guiding adaptive optic systems and improving beam propagation results. In this paper, we propose an entropy study based on the image from a plenoptic sensor to provide a measure of information content of atmospheric turbulence. In general, lower levels of atmospheric turbulence will have a smaller information size while higher levels of atmospheric turbulence will cause significant expansion of the information size, which may exceed the maximum capacity of a sensing system and jeopardize the reliability of an AO system. Therefore, the entropy function can be used to analyze the turbulence distortion and evaluate performance of AO systems. In fact, it serves as a metric that can tell the improvement of beam correction in each iteration step. In addition, it points out the limitation of an AO system at optimized correction as well as the minimum information needed for wavefront sensing to achieve certain levels of correction. In this paper, we will demonstrate the definition of the entropy function and how it is related to evaluating information (randomness) carried by atmospheric turbulence.

  7. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  8. Multi-Angle Implementation of Atmospheric Correction for MODIS (MAIAC). Part 3: Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Hilker, T.; Hall, F.; Sellers, P.; Tucker, J.; Korkin, S.

    2012-01-01

    This paper describes the atmospheric correction (AC) component of the Multi-Angle Implementation of Atmospheric Correction algorithm (MAIAC) which introduces a new way to compute parameters of the Ross-Thick Li-Sparse (RTLS) Bi-directional reflectance distribution function (BRDF), spectral surface albedo and bidirectional reflectance factors (BRF) from satellite measurements obtained by the Moderate Resolution Imaging Spectroradiometer (MODIS). MAIAC uses a time series and spatial analysis for cloud detection, aerosol retrievals and atmospheric correction. It implements a moving window of up to 16 days of MODIS data gridded to 1 km resolution in a selected projection. The RTLS parameters are computed directly by fitting the cloud-free MODIS top of atmosphere (TOA) reflectance data stored in the processing queue. The RTLS retrieval is applied when the land surface is stable or changes slowly. In case of rapid or large magnitude change (as for instance caused by disturbance), MAIAC follows the MODIS operational BRDF/albedo algorithm and uses a scaling approach where the BRDF shape is assumed stable but its magnitude is adjusted based on the latest single measurement. To assess the stability of the surface, MAIAC features a change detection algorithm which analyzes relative change of reflectance in the Red and NIR bands during the accumulation period. To adjust for the reflectance variability with the sun-observer geometry and allow comparison among different days (view geometries), the BRFs are normalized to the fixed view geometry using the RTLS model. An empirical analysis of MODIS data suggests that the RTLS inversion remains robust when the relative change of geometry-normalized reflectance stays below 15%. This first of two papers introduces the algorithm, a second, companion paper illustrates its potential by analyzing MODIS data over a tropical rainforest and assessing errors and uncertainties of MAIAC compared to conventional MODIS products.

  9. Influence of aerosol estimation on coastal water products retrieved from HICO images

    NASA Astrophysics Data System (ADS)

    Patterson, Karen W.; Lamela, Gia

    2011-06-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is a hyperspectral sensor which was launched to the International Space Station in September 2009. The Naval Research Laboratory (NRL) has been developing the Coastal Water Signatures Toolkit (CWST) to estimate water depth, bottom type and water column constituents such as chlorophyll, suspended sediments and chromophoric dissolved organic matter from hyperspectral imagery. The CWST uses a look-up table approach, comparing remote sensing reflectance spectra observed in an image to a database of modeled spectra for pre-determined water column constituents, depth and bottom type. In order to successfully use this approach, the remote sensing reflectances must be accurate which implies accurately correcting for the atmospheric contribution to the HICO top of the atmosphere radiances. One tool the NRL is using to atmospherically correct HICO imagery is Correction of Coastal Ocean Atmospheres (COCOA), which is based on Tafkaa 6S. One of the user input parameters to COCOA is aerosol optical depth or aerosol visibility, which can vary rapidly over short distances in coastal waters. Changes to the aerosol thickness results in changes to the magnitude of the remote sensing reflectances. As such, the CWST retrievals for water constituents, depth and bottom type can be expected to vary in like fashion. This work is an illustration of the variability in CWST retrievals due to inaccurate aerosol thickness estimation during atmospheric correction of HICO images.

  10. Shuttle program: Computing atmospheric scale height for refraction corrections

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Methods for computing the atmospheric scale height to determine radio wave refraction were investigated for different atmospheres, and different angles of elevation. Tables of refractivity versus altitude are included. The equations used to compute the refraction corrections are given. It is concluded that very accurate corrections are determined with the assumption of an exponential atmosphere.

  11. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery

    PubMed Central

    Marcello, Javier; Eugenio, Francisco; Perdomo, Ulises; Medina, Anabella

    2016-01-01

    The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations related to the human activity and climate change. PMID:27706064

  12. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery.

    PubMed

    Marcello, Javier; Eugenio, Francisco; Perdomo, Ulises; Medina, Anabella

    2016-09-30

    The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S) has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas). In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%). Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations related to the human activity and climate change.

  13. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloop, Christy

    2013-04-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): • 03-23-09, T-3 Contamination Area • 03-23-10, T-3A Contamination Area • 03-23-11, T-3B Contamination Area • 03-23-12, T-3S Contamination Area • 03-23-13, T-3T Contamination Area • 03-23-14, T-3V Contamination Area • 03-23-15, S-3G Contamination Area • 03-23-16, S-3H Contamination Area • 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supportingmore » the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.« less

  14. 3D non-LTE corrections for the 6Li/7Li isotopic ratio in solar-type stars

    NASA Astrophysics Data System (ADS)

    Harutyunyan, G.; Steffen, M.; Mott, A.; Caffau, E.; Israelian, G.; González Hernández, J. I.; Strassmeier, K. G.

    Doppler shifts induced by convective motions in stellar atmospheres affect the shape of spectral absorption lines and create slightly asymmetric line profiles. It is important to take this effect into account in modeling the subtle depression created by the 6Li isotope which lies on the red wing of the Li I 670.8 nm resonance doublet line, since convective motions in stellar atmospheres can mimic a presence of 6Li when intrinsically symmetric theoretical line profiles are presumed for the analysis of the 7Li doublet \\citep{cayrel2007}. Based on CO5BOLD hydrodynamical model atmospheres, we compute 3D non-local thermodynamic equilibrium (NLTE) corrections for the 6Li/7Li isotopic ratio by using a grid of 3D NLTE and 1D LTE synthetic spectra. These corrections must be added to the results of the 1D LTE analysis to correct them for the combined 3D non-LTE effects. As one would expect, the resulting corrections are always negative and they range between 0 and -5 %, depending on effective temperature, surface gravity, and metallicity. For each metallicity we derive an analytic expression approximating the 3D NLTE corrections as a function of effective temperature, surface gravity and projected rotational velocity.

  15. Atmospheric Effect on Remote Sensing of the Earth's Surface

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J. (Principal Investigator)

    1985-01-01

    Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for understanding and correcting for the atmospheric effect on remote sensing of surface properties. In the present work the theory is generalized and tested successfully against laboratory and field measurements. There is still a need to generalize the RT approximation for off-nadir directions and to take into account anisotropic reflectance at the surface. The reflectance at the surface. The adjacency effect results in a significant modification of spectral signatures of the surface, and therefore results in modification of classifications, of separability of field classes, and of spatial resolution. For example, the 30 m resolution of the Thematic Mapper is reduced to 100 m by a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in general depends on these parameter, not just adjacency effects, but they are not known well enough for making accurate atmospheric corrections. It is important to establish methods for estimating these parameters in order to develop correction methods for atmospheric effects. Such estimations can be based on climatological data, which are not available yet, correlations between the optical parameters and meteorological data, and the same satellite measurements of radiances that are used for estimating surface properties. Knowledge about the atmospheric parameters important for remote sensing is being enlarged with current measurements of them.

  16. Correction Technique for Raman Water Vapor Lidar Signal-Dependent Bias and Suitability for Water Wapor Trend Monitoring in the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Cadirola, M.; Venable, D.; Calhoun, M.; Miloshevich, L; Vermeesch, K.; Twigg, L.; Dirisu, A.; Hurst, D.; Hall, E.; hide

    2012-01-01

    The MOHAVE-2009 campaign brought together diverse instrumentation for measuring atmospheric water vapor. We report on the participation of the ALVICE (Atmospheric Laboratory for Validation, Interagency Collaboration and Education) mobile laboratory in the MOHAVE-2009 campaign. In appendices we also report on the performance of the corrected Vaisala RS92 radiosonde measurements during the campaign, on a new radiosonde based calibration algorithm that reduces the influence of atmospheric variability on the derived calibration constant, and on other results of the ALVICE deployment. The MOHAVE-2009 campaign permitted the Raman lidar systems participating to discover and address measurement biases in the upper troposphere and lower stratosphere. The ALVICE lidar system was found to possess a wet bias which was attributed to fluorescence of insect material that was deposited on the telescope early in the mission. Other sources of wet biases are discussed and data from other Raman lidar systems are investigated, revealing that wet biases in upper tropospheric (UT) and lower stratospheric (LS) water vapor measurements appear to be quite common in Raman lidar systems. Lower stratospheric climatology of water vapor is investigated both as a means to check for the existence of these wet biases in Raman lidar data and as a source of correction for the bias. A correction technique is derived and applied to the ALVICE lidar water vapor profiles. Good agreement is found between corrected ALVICE lidar measurments and those of RS92, frost point hygrometer and total column water. The correction is offered as a general method to both quality control Raman water vapor lidar data and to correct those data that have signal-dependent bias. The influence of the correction is shown to be small at regions in the upper troposphere where recent work indicates detection of trends in atmospheric water vapor may be most robust. The correction shown here holds promise for permitting useful upper tropospheric water vapor profiles to be consistently measured by Raman lidar within NDACC (Network for the Detection of Atmospheric Composition Change) and elsewhere, despite the prevalence of instrumental and atmospheric effects that can contaminate the very low signal to noise measurements in the UT.

  17. Evaluation of atmospheric correction algorithms for processing SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Ransibrahmanakul, Varis; Stumpf, Richard; Ramachandran, Sathyadev; Hughes, Kent

    2005-08-01

    To enable the production of the best chlorophyll products from SeaWiFS data NOAA (Coastwatch and NOS) evaluated the various atmospheric correction algorithms by comparing the satellite derived water reflectance derived for each algorithm with in situ data. Gordon and Wang (1994) introduced a method to correct for Rayleigh and aerosol scattering in the atmosphere so that water reflectance may be derived from the radiance measured at the top of the atmosphere. However, since the correction assumed near infrared scattering to be negligible in coastal waters an invalid assumption, the method over estimates the atmospheric contribution and consequently under estimates water reflectance for the lower wavelength bands on extrapolation. Several improved methods to estimate near infrared correction exist: Siegel et al. (2000); Ruddick et al. (2000); Stumpf et al. (2002) and Stumpf et al. (2003), where an absorbing aerosol correction is also applied along with an additional 1.01% calibration adjustment for the 412 nm band. The evaluation show that the near infrared correction developed by Stumpf et al. (2003) result in an overall minimum error for U.S. waters. As of July 2004, NASA (SEADAS) has selected this as the default method for the atmospheric correction used to produce chlorophyll products.

  18. Atmospheric Correction Algorithm for Hyperspectral Remote Sensing of Ocean Color from Space

    DTIC Science & Technology

    2000-02-20

    Existing atmospheric correction algorithms for multichannel remote sensing of ocean color from space were designed for retrieving water-leaving...atmospheric correction algorithm for hyperspectral remote sensing of ocean color with the near-future Coastal Ocean Imaging Spectrometer. The algorithm uses

  19. Atmospheric Correction for Satellite Ocean Color Radiometry

    NASA Technical Reports Server (NTRS)

    Mobley, Curtis D.; Werdell, Jeremy; Franz, Bryan; Ahmad, Ziauddin; Bailey, Sean

    2016-01-01

    This tutorial is an introduction to atmospheric correction in general and also documentation of the atmospheric correction algorithms currently implemented by the NASA Ocean Biology Processing Group (OBPG) for processing ocean color data from satellite-borne sensors such as MODIS and VIIRS. The intended audience is graduate students or others who are encountering this topic for the first time. The tutorial is in two parts. Part I discusses the generic atmospheric correction problem. The magnitude and nature of the problem are first illustrated with numerical results generated by a coupled ocean-atmosphere radiative transfer model. That code allow the various contributions (Rayleigh and aerosol path radiance, surface reflectance, water-leaving radiance, etc.) to the topof- the-atmosphere (TOA) radiance to be separated out. Particular attention is then paid to the definition, calculation, and interpretation of the so-called "exact normalized water-leaving radiance" and its equivalent reflectance. Part I ends with chapters on the calculation of direct and diffuse atmospheric transmittances, and on how vicarious calibration is performed. Part II then describes one by one the particular algorithms currently used by the OBPG to effect the various steps of the atmospheric correction process, viz. the corrections for absorption and scattering by gases and aerosols, Sun and sky reflectance by the sea surface and whitecaps, and finally corrections for sensor out-of-band response and polarization effects. One goal of the tutorial-guided by teaching needs- is to distill the results of dozens of papers published over several decades of research in atmospheric correction for ocean color remote sensing.

  20. Solar multi-conjugate adaptive optics based on high order ground layer adaptive optics and low order high altitude correction.

    PubMed

    Zhang, Lanqiang; Guo, Youming; Rao, Changhui

    2017-02-20

    Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.

  1. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    PubMed

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  2. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques.

    PubMed

    Eugenio, Francisco; Marcello, Javier; Martin, Javier; Rodríguez-Esparragón, Dionisio

    2017-11-16

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  3. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    PubMed Central

    Eugenio, Francisco; Marcello, Javier; Martin, Javier

    2017-01-01

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones. PMID:29144444

  4. Atmospheric corrections for TIMS estimated emittance

    NASA Technical Reports Server (NTRS)

    Warner, T. A.; Levandowski, D. W.

    1992-01-01

    The estimated temperature of the average of 500 lines of Thermal Infrared Multispectral Scanner (TIMS) data of the Pacific Ocean, from flight line 94, collected on 30 Sep. 1988, at 1931 GMT is shown. With no atmospheric corrections, estimated temperature decreases away from nadir (the center of the scan line). A LOWTRAN modeled correction, using local radiosonde data and instrument scan angle information, results in reversed limb darkening effects for most bands, and does not adequately correct all bands to the same temperature. The atmosphere tends to re-radiate energy at the wavelengths at which it most absorbs, and thus the overall difference between corrected and uncorrected temperatures is approximately 40 C, despite the average LOWTRAN calculated transmittance of only 60 percent between 8.1 and 11.6 microns. An alternative approach to atmospheric correction is a black body normalization. This is done by calculating a normalization factor for each pixel position and wavelength, which when applied results in a single calculated temperature, as would be expected for a gray body with near uniform emittance. The black body adjustment is based on the atmospheric conditions over the sea. The ground elevation profile along the remaining 3520 scan lines (approximately 10 km) of flight line 94, up the slopes of Kilauea, determined from aircraft pressure and laser altimeter data is shown. This flight line includes a large amount of vegetation that is clearly discernible on the radiance image, being much cooler than the surrounding rocks. For each of the 3520 scan lines, pixels were classified as vegetation or 'other'. A moving average of 51 lines was applied to the composite vegetation emittance for each scan line, to reduce noise. Assuming vegetation to be like water, and to act as gray body with an emittance of 0.986 across the spectrum, it is shown that that the LOWTRAN induced artifacts are severe, and other than for the 0.9.9 micron channel, not significantly different from applying no corrections at all. As expected, with increasing elevation atmospheric effects are slightly reduced, because moisture tends to be concentrated in the lowermost part of the atmosphere. The black body adjustment is highly robust, and even at elevations nearly 600 meters above the sea, remains an alternative procedure for use in calculating emittance.

  5. The importance of atmospheric correction for airborne hyperspectral remote sensing of shallow waters: application to depth estimation

    NASA Astrophysics Data System (ADS)

    Castillo-López, Elena; Dominguez, Jose Antonio; Pereda, Raúl; de Luis, Julio Manuel; Pérez, Ruben; Piña, Felipe

    2017-10-01

    Accurate determination of water depth is indispensable in multiple aspects of civil engineering (dock construction, dikes, submarines outfalls, trench control, etc.). To determine the type of atmospheric correction most appropriate for the depth estimation, different accuracies are required. Accuracy in bathymetric information is highly dependent on the atmospheric correction made to the imagery. The reduction of effects such as glint and cross-track illumination in homogeneous shallow-water areas improves the results of the depth estimations. The aim of this work is to assess the best atmospheric correction method for the estimation of depth in shallow waters, considering that reflectance values cannot be greater than 1.5 % because otherwise the background would not be seen. This paper addresses the use of hyperspectral imagery to quantitative bathymetric mapping and explores one of the most common problems when attempting to extract depth information in conditions of variable water types and bottom reflectances. The current work assesses the accuracy of some classical bathymetric algorithms (Polcyn-Lyzenga, Philpot, Benny-Dawson, Hamilton, principal component analysis) when four different atmospheric correction methods are applied and water depth is derived. No atmospheric correction is valid for all type of coastal waters, but in heterogeneous shallow water the model of atmospheric correction 6S offers good results.

  6. Estimation of surface temperature in remote pollution measurement experiments

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.

  7. DSCOVR EPIC L2 Atmospheric Correction (MAIAC) Data Release Announcement

    Atmospheric Science Data Center

    2018-06-22

    ... several atmospheric quantities including cloud mask and aerosol optical depth (AOD) required for atmospheric correction. The parameters ... is a useful complementary dataset to MODIS and VIIRS global aerosol products.   Information about the DSCOVR EPIC Atmospheric ...

  8. Assessment, Validation, and Refinement of the Atmospheric Correction Algorithm for the Ocean Color Sensors. Chapter 19

    NASA Technical Reports Server (NTRS)

    Wang, Menghua

    2003-01-01

    The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.

  9. [Atmospheric Influences Analysis on the Satellite Passive Microwave Remote Sensing].

    PubMed

    Qiu, Yu-bao; Shi, Li-juan; Shi, Jian-cheng; Zhao, Shao-jie

    2016-02-01

    Passive microwave remote sensing offers its all-weather work capabilities, but atmospheric influences on satellite microwave brightness temperature were different under different atmospheric conditions and environments. In order to clarify atmospheric influences on Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), atmospheric radiation were simulated based on AMSR-E configuration under clear sky and cloudy conditions, by using radiative transfer model and atmospheric conditions data. Results showed that atmospheric water vapor was the major factor for atmospheric radiation under clear sky condition. Atmospheric transmittances were almost above 0.98 at AMSR-E's low frequencies (< 18.7 GHz) and the microwave brightness temperature changes caused by atmosphere can be ignored in clear sky condition. Atmospheric transmittances at 36.5 and 89 GHz were 0.896 and 0.756 respectively. The effects of atmospheric water vapor needed to be corrected when using microwave high-frequency channels to inverse land surface parameters in clear sky condition. But under cloud cover or cloudy conditions, cloud liquid water was the key factor to cause atmospheric radiation. When sky was covered by typical stratus cloud, atmospheric transmittances at 10.7, 18.7 and 36.5 GHz were 0.942, 0.828 and 0.605 respectively. Comparing with the clear sky condition, the down-welling atmospheric radiation caused by cloud liquid water increased up to 75.365 K at 36.5 GHz. It showed that the atmospheric correction under different clouds covered condition was the primary work to improve the accuracy of land surface parameters inversion of passive microwave remote sensing. The results also provided the basis for microwave atmospheric correction algorithm development. Finally, the atmospheric sounding data was utilized to calculate the atmospheric transmittance of Hailaer Region, Inner Mongolia province, in July 2013. The results indicated that atmospheric transmittances were close to 1 at C-band and X-band. 89 GHz was greatly influenced by water vapor and its atmospheric transmittance was not more than 0.7. Atmospheric transmittances in Hailaer Region had a relatively stable value in summer, but had about 0.1 fluctuations with the local water vapor changes.

  10. Comparison of FLAASH and QUAC atmospheric correction methods for Resourcesat-2 LISS-IV data

    NASA Astrophysics Data System (ADS)

    Saini, V.; Tiwari, R. K.; Gupta, R. P.

    2016-05-01

    The LISS-IV sensor aboard Resourcesat-2 is a modern relatively high resolution multispectral sensor having immense potential for generation of good quality land use land cover maps. It generates data in high (10-bit) radiometric resolution and 5.8 m spatial resolution and has three bands in the visible-near infrared region. This is of particular importance to global community as the data are provided at highly competitive prices. However, no literature describing the atmospheric correction of Resourcesat-2-LISS-IV data could be found. Further, without atmospheric correction full radiometric potential of any remote sensing data remains underutilized. The FLAASH and QUAC module of ENVI software are highly used by researchers for atmospheric correction of popular remote sensing data such as Landsat, SPOT, IKONOS, LISS-I, III etc. This article outlines a methodology for atmospheric correction of Resourcesat-2-LISS-IV data. Also, a comparison of reflectance from different atmospheric correction modules (FLAASH and QUAC) with TOA and standard data has been made to determine the best suitable method for reflectance estimation for this sensor.

  11. Martian particle size based on thermal inertia corrected for elevation-dependent atmospheric properties

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.

    1993-01-01

    Thermal inertia is commonly used to derive physical properties of the Martian surface. If the surface is composed of loosely consolidated grains, then the thermal conductivity derived from the inertia can theoretically be used to compute the particle size. However, one persistent difficulty associated with the interpretation of thermal inertia and the derivation of particle size from it has been the degree to which atmospheric properties affect both the radiation balance at the surface and the gas conductivity. These factors vary with atmospheric pressure so that derived thermal inertias and particle sizes are a function of elevation. By utilizing currently available thermal models and laboratory information, a fine component thermal inertia map was convolved with digital topography to produce particle size maps of the Martian surface corrected for these elevation-dependent effects. Such an approach is especially applicable for the highest elevations on Mars, where atmospheric back radiation and gas conductivity are low.

  12. AVIRIS calibration using the cloud-shadow method

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Reinersman, P.; Chen, R. F.

    1993-01-01

    More than 90 percent of the signal at an ocean-viewing, satellite sensor is due to the atmosphere, so a 5 percent sensor-calibration error viewing a target that contributes but 10 percent of the signal received at the sensor may result in a target-reflectance error of more than 50 percent. Since prelaunch calibration accuracies of 5 percent are typical of space-sensor requirements, recalibration of the sensor using ground-base methods is required for low-signal target. Known target reflectance or water-leaving radiance spectra and atmospheric correction parameters are required. In this article we describe an atmospheric-correction method that uses cloud shadowed pixels in combination with pixels in a neighborhood region of similar optical properties to remove atmospheric effects from ocean scenes. These neighboring pixels can then be used as known reflectance targets for validation of the sensor calibration and atmospheric correction. The method uses the difference between water-leaving radiance values for these two regions. This allows nearly identical optical contributions to the two signals (e.g., path radiance and Fresnel-reflected skylight) to be removed, leaving mostly solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by incident solar irradiance reaching the sea surface provides the remote-sensing reflectance of the ocean at the location of the neighbor region.

  13. Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, V.

    2017-09-01

    The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements the Viking Landers and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06)×10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.

  14. Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere

    NASA Astrophysics Data System (ADS)

    Krasnopolsky, Vladimir A.

    2017-09-01

    The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements for the first year of the Viking Landers 1 and 2 and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06) × 10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.

  15. Adaptation of a Hyperspectral Atmospheric Correction Algorithm for Multi-spectral Ocean Color Data in Coastal Waters. Chapter 3

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Montes, Marcos J.; Davis, Curtiss O.

    2003-01-01

    This SIMBIOS contract supports several activities over its three-year time-span. These include certain computational aspects of atmospheric correction, including the modification of our hyperspectral atmospheric correction algorithm Tafkaa for various multi-spectral instruments, such as SeaWiFS, MODIS, and GLI. Additionally, since absorbing aerosols are becoming common in many coastal areas, we are making the model calculations to incorporate various absorbing aerosol models into tables used by our Tafkaa atmospheric correction algorithm. Finally, we have developed the algorithms to use MODIS data to characterize thin cirrus effects on aerosol retrieval.

  16. Atmospheric extinction in solar tower plants: the Absorption and Broadband Correction for MOR measurements

    NASA Astrophysics Data System (ADS)

    Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.

    2015-05-01

    Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrating solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in raytracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested and more than 19 months of measurements were collected at the Plataforma Solar de Almería and compared. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for Concentrating Solar Power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the actual, time-dependent by the collector reflected solar spectrum. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the Absorption and Broadband Correction (ABC) procedure, additional measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from one year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.6%. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8%. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.81%. Therefore, applying this new correction method, both instruments can now be utilized to determine the solar broadband extinction in tower plants sufficiently accurate.

  17. Comparison of observation level versus 24-hour average atmospheric loading corrections in VLBI analysis

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.; van Dam, T. M.

    2009-04-01

    Variations in the horizontal distribution of atmospheric mass induce displacements of the Earth's surface. Theoretical estimates of the amplitude of the surface displacement indicate that the predicted surface displacement is often large enough to be detected by current geodetic techniques. In fact, the effects of atmospheric pressure loading have been detected in Global Positioning System (GPS) coordinate time series [van Dam et al., 1994; Dong et al., 2002; Scherneck et al., 2003; Zerbini et al., 2004] and very long baseline interferometery (VLBI) coordinates [Rabble and Schuh, 1986; Manabe et al., 1991; van Dam and Herring, 1994; Schuh et al., 2003; MacMillan and Gipson, 1994; and Petrov and Boy, 2004]. Some of these studies applied the atmospheric displacement at the observation level and in other studies, the predicted atmospheric and observed geodetic surface displacements have been averaged over 24 hours. A direct comparison of observation level and 24 hour corrections has not been carried out for VLBI to determine if one or the other approach is superior. In this presentation, we address the following questions: 1) Is it better to correct geodetic data at the observation level rather than applying corrections averaged over 24 hours to estimated geodetic coordinates a posteriori? 2) At the sub-daily periods, the atmospheric mass signal is composed of two components: a tidal component and a non-tidal component. If observation level corrections reduce the scatter of VLBI data more than a posteriori correction, is it sufficient to only model the atmospheric tides or must the entire atmospheric load signal be incorporated into the corrections? 3) When solutions from different geodetic techniques (or analysis centers within a technique) are combined (e.g., for ITRF2008), not all solutions may have applied atmospheric loading corrections. Are any systematic effects on the estimated TRF introduced when atmospheric loading is applied?

  18. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.

  19. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronald; Russell, Jeffrey A.; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the basis for many inter-sensor interoperability or change detection techniques. Satellite inter-comparisons and accurate vegetation indices such as the Normalized Difference Vegetation Index, which is used to describe or to imply a wide variety of biophysical parameters and is defined in terms of near-infrared and redband reflectance, require the generation of accurate reflectance maps. This generation relies upon the removal of solar illumination, satellite geometry, and atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance, however, has been widely applied to only a few systems. In this study, we atmospherically corrected commercially available, high spatial resolution IKONOS and QuickBird imagery using several methods to determine the accuracy of the resulting reflectance maps. We used extensive ground measurement datasets for nine IKONOS and QuickBird scenes acquired over a two-year period to establish reflectance map accuracies. A correction approach using atmospheric products derived from Moderate Resolution Imaging Spectrometer data created excellent reflectance maps and demonstrated a reliable, effective method for reflectance map generation.

  20. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Securitymore » Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NFO for closure of CAU 104 · The transfer of CAU 104 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less

  1. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): 05-23-04, Atmospheric Tests (6) - BFa Site; 05-45-03, Atmospheric Test Site - Small Boy. These sites are being investigated because existing information on the nature andmore » extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of contamination at CAU 541 will be evaluated based on information collected from field investigations. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.« less

  2. Analysis of different models for atmospheric correction of meteosat infrared images. A new approach

    NASA Astrophysics Data System (ADS)

    Pérez, A. M.; Illera, P.; Casanova, J. L.

    A comparative study of several atmospheric correction models has been carried out. As primary data, atmospheric profiles of temperature and humidity obtained from radiosoundings on cloud-free days have been used. Special attention has been paid to the model used operationally in the European Space operations Centre (ESOC) for sea temperature calculations. The atmospheric correction results are expressed in terms of the increase in the brightness temperature and the surface temperature. A difference of up to a maximum of 1.4 degrees with respect to the correction obtained in the studied models has been observed. The radiances calculated by models are also compared with those obtained directly from the satellite. The temperature corrections by the latter are greater than the former in practically every case. As a result of this, the operational calibration coefficients should be first recalculated if we wish to apply an atmospheric correction model to the satellite data. Finally, a new simplified calculation scheme which may be introduced into any model is proposed.

  3. Advanced corrections for InSAR using GPS and numerical weather models

    NASA Astrophysics Data System (ADS)

    Foster, J. H.; Cossu, F.; Amelung, F.; Businger, S.; Cherubini, T.

    2016-12-01

    The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting Interferometric Synthetic Aperture Radar's (InSAR) potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We present preliminary results from an investigation into the application of GPS and numerical weather models for generating tropospheric correction fields. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric model covering the Big Island of Hawaii and an even higher, 300 m resolution grid over Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate information on atmospheric heterogeneity from the GPS data into the models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.

  4. Solar multi-conjugate adaptive optics performance improvement

    NASA Astrophysics Data System (ADS)

    Zhang, Zhicheng; Zhang, Xiaofang; Song, Jie

    2015-08-01

    In order to overcome the effect of the atmospheric anisoplanatism, Multi-Conjugate Adaptive Optics (MCAO), which was developed based on turbulence correction by means of several deformable mirrors (DMs) conjugated to different altitude and by which the limit of a small corrected FOV that is achievable with AO is overcome and a wider FOV is able to be corrected, has been widely used to widen the field-of-view (FOV) of a solar telescope. With the assistance of the multi-threaded Adaptive Optics Simulator (MAOS), we can make a 3D reconstruction of the distorted wavefront. The correction is applied by one or more DMs. This technique benefits from information about atmospheric turbulence at different layers, which can be used to reconstruct the wavefront extremely well. In MAOS, the sensors are either simulated as idealized wavefront gradient sensors, tip-tilt sensors based on the best Zernike fit, or a WFS using physical optics and incorporating user specified pixel characteristics and a matched filter pixel processing algorithm. Only considering the atmospheric anisoplanatism, we focus on how the performance of a solar MCAO system is related to the numbers of DMs and their conjugate heights. We theoretically quantify the performance of the tomographic solar MCAO system. The results indicate that the tomographic AO system can improve the average Strehl ratio of a solar telescope by only employing one or two DMs conjugated to the optimum altitude. And the S.R. has a significant increase when more deformable mirrors are used. Furthermore, we discuss the effects of DM conjugate altitude on the correction achievable by the MCAO system, and present the optimum DM conjugate altitudes.

  5. Evaluation of the Vienna APL corrections using reprocessed GNSS series

    NASA Astrophysics Data System (ADS)

    Steigenberger, P.; Dach, R.

    2011-12-01

    The Institute of Geodesy and Geophysics of the Vienna University of Technology recently started an operational service to provide non-tidal atmospheric pressure loading (APL) corrections. As the series is based on European Centre for Medium-Range Weather Forecasts (ECMWF) pressure data, it is fully consistent with the Vienna Mapping Function 1 (VMF1) atmospheric delay correction model for microwave measurements. Whereas VMF1 is widely used for, e.g., observations of Global Navigation Satellite Systems (GNSS), applying APL corrections is not yet a standard nowadays. The Center for Orbit Determination in Europe (CODE) - a joint venture between the Astronomical Institute of the University of Bern (AIUB, Bern, Switzerland), the Federal Office of Topography (swisstopo, Wabern, Switzerland), the Federal Office for Cartography and Geodesy (BKG, Frankfurt am Main, Germany), and the Insitute for Astronomical and Physical Geodesy, TU Muenchen (IAPG, Munich, Germany) - uses a recently generated series of reprocessed multi-GNSS data (considering GPS and GLONASS) to evaluate the APL corrections provided by the Vienna group. The results are also used to investigate the propagation of the APL effect in GNSS-derived results if no corrections are applied.

  6. Coastal Zone Color Scanner atmospheric correction algorithm - Multiple scattering effects

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Castano, Diego J.

    1987-01-01

    Errors due to multiple scattering which are expected to be encountered in application of the current Coastal Zone Color Scanner (CZCS) atmospheric correction algorithm are analyzed. The analysis is based on radiative transfer computations in model atmospheres, in which the aerosols and molecules are distributed vertically in an exponential manner, with most of the aerosol scattering located below the molecular scattering. A unique feature of the analysis is that it is carried out in scan coordinates rather than typical earth-sun coordinates, making it possible to determine the errors along typical CZCS scan lines. Information provided by the analysis makes it possible to judge the efficacy of the current algorithm with the current sensor and to estimate the impact of the algorithm-induced errors on a variety of applications.

  7. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.

    PubMed

    Ko, Jonathan; Davis, Christopher C

    2017-05-01

    Adaptive optics has been successfully used for decades in the field of astronomy to correct for atmospheric turbulence. A well-developed example involves sensing the slightly distorted wavefronts with a Shack-Hartmann sensor and then correcting them with a phase conjugate device. While the Shack-Hartmann sensor has proven effective for astronomical purposes, it has been less successful for use in deep turbulence conditions often found in ground-to-ground-based optical systems. We have studied an alternative way to sense and correct distorted wavefronts using a plenoptic sensor. We review the design of the plenoptic sensor and directly compare it with the well-known Shack-Hartmann sensor. An experimental comparison of the plenoptic sensor and the Shack-Hartmann sensor is performed to highlight their differences in real-world atmospheric turbulence conditions.

  8. Effects of atmospheric aerosols on scattering reflected visible light from earth resource features

    NASA Technical Reports Server (NTRS)

    Noll, K. E.; Tschantz, B. A.; Davis, W. T.

    1972-01-01

    The vertical variations in atmospheric light attenuation under ambient conditions were identified, and a method through which aerial photographs of earth features might be corrected to yield quantitative information about the actual features was provided. A theoretical equation was developed based on the Bouguer-Lambert extinction law and basic photographic theory.

  9. Integrating Landsat-8, Sentinel-2, and nano-satellite data for deriving atmospherically corrected vegetation indices at enhanced spatio-temporal resolution

    NASA Astrophysics Data System (ADS)

    Houborg, Rasmus; McCabe, Matthew F.; Ershadi, Ali

    2017-04-01

    Flocks of nano-satellites are emerging as an economic resource for overcoming spatio-temporal constraints of conventional single-sensor satellite missions. Planet Labs operates an expanding constellation of currently more than 40 CubeSats (30x10x10 cm3), which will facilitate daily capture of broadband RGB and near-infrared (NIR) imagery for every location on earth at a 3-5 m ground sampling distance. However, data acquired by these miniaturized satellites lack rigorous radiometric corrections and radiance conversions and should be used in synergy with high quality imagery required by conventional large satellites such as Landsat-8 (L8) and Sentinel-2 (S2) in order to realize the full potential of this game changing observational resource. This study integrates L8, S2 and Planet data acquired over sites in Saudi Arabia and the state of California for deriving cross-sensor consistent and atmospherically corrected Vegetation Indices (VI) that may serve as important metrics for vegetation growth, health, and productivity. An automated framework, based on 6S and satellite retrieved atmospheric state and aerosol inputs, is first applied to L8 and S2 at-sensor radiances for the production of atmospherically corrected VIs. Scale-consistent Planet RGB and NIR imagery is then related to the corrected VI data using a selective, scene-specific, and computationally fast machine learning approach. The developed technique uses the closest pair of Planet and L8/S2 scenes in the training of the predictive VI models and accounts for changes in cover conditions over the acquisition timespan. Application of the models to full resolution Planet imagery results in cross-sensor consistent VI estimates at the scale and time of the nano-satellite acquisition. The utility of the approach for reproducing spatial features in L8 and S2 based indices based on Planet imagery is evaluated. The technique is generic, computationally efficient, and extendable and serves well for implementation within a cloud computing framework for processing over larger domains and time intervals.

  10. Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, David D.; Lesht, B. M.; Clough, Shepard A.

    2003-01-02

    Thousands of comparisons between total precipitable water vapor (PWV) obtained from radiosonde (Vaisala RS80-H) profiles and PWV retrieved from a collocated microwave radiometer (MWR) were made at the Atmospheric Radiation Measurement (ARM) Program's Southern Great Plains Cloud and Radiation Testbed (SGP/CART) site in northern Oklahoma from 1994 to 2000. These comparisons show that the RS80-H radiosonde has an approximate 5% dry bias compared to the MWR. This observation is consistent with interpretations of Vaisala RS80 radiosonde data obtained during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA/COARE). In addition to the dry bias, analysis of the PWVmore » comparisons as well as of data obtained from dual-sonde soundings done at the SGP show that the calibration of the radiosonde humidity measurements varies considerably both when the radiosondes come from different calibration batches and when the radiosondes come from the same calibration batch. This variability can result in peak-to-peak differences between radiosondes of greater than 25% in PWV. Because accurate representation of the vertical profile of water vapor is critical for ARM's science objectives, we have developed an empirical method for correcting the radiosonde humidity profiles that is based on a constant scaling factor. By using an independent set of observations and radiative transfer models to test the correction, we show that the constant humidity scaling method appears both to improve the accuracy and reduce the uncertainty of the radiosonde data. We also used the ARM data to examine a different, physically-based, correction scheme that was developed recently by scientists from Vaisala and the National Center for Atmospheric Research (NCAR). This scheme, which addresses the dry bias problem as well as other calibration-related problems with the RS80-H sensor, results in excellent agreement between the PWV retrieved from the MWR and integrated from the corrected radiosonde. However, because the physically-based correction scheme does not address the apparently random calibration variations we observe, it does not reduce the variability either between radiosonde calibration batches or within individual calibration batches.« less

  11. Galactic and zodiacal light surface brightness measurements with the Atmosphere Explorer satellites

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Hays, P. B.; Yee, J. H.

    1982-01-01

    Galactic and zodiacal light surface maps based on the Atmosphere Explorer-C, -D, and -E satellite data are presented at 7320, 6300, 5577, 5200, and 4278 A. A procedure used to generate these maps, which involves separation of the individual stars and diffuse starlight from the zodiacal light, is described in detail. The maps can be used in atmospheric emission studies to correct for galactic emissions which contaminate satellite as well as ground-based photometric observations. The zodiacal light maps show enhanced features which are important for understanding the nature of interplanetary dust.

  12. Operational atmospheric correction of AVHRR visible and infrared data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermote, E.; El Saleous, N.; Roger, J.C.

    1995-12-31

    The satellite level radiance is affected by the presence of the atmosphere between the sensor and the target. The ozone and water vapor absorption bands affect the signal recorded by the AVHRR visible and near infrared channels respectively. The Rayleigh scattering mainly affects the visible channel and is more pronounced when dealing with small sun elevations and large view angles. The aerosol scattering affects both channels and is certainly the most challenging term for atmospheric correction because of the spatial and temporal variability of both the type and amount of particles in the atmosphere. This paper presents the equation ofmore » the satellite signal, the scheme to retrieve atmospheric properties and corrections applied to AVHRR observations. The operational process uses TOMS data and a digital elevation model to correct for ozone absorption and rayleigh scattering. The water vapor content is evaluated using the split-window technique that is validated over ocean using 1988 SSM/I data. The aerosol amount retrieval over Ocean is achieved in channels 1 and 2 and compared to sun photometer observations to check consistency of the radiative transfer model and the sensor calibration. Over land, the method developed uses reflectance at 3.75 microns to deduce target reflectance in channel 1 and retrieve aerosol optical thickness that can be extrapolated in channel 2. The method to invert the reflectance at 3.75 microns is based on MODTRAN simulations and is validated by comparison to measurements performed during FIFE 87. Finally, aerosol optical thickness retrieved over Brazil and Eastern US is compared to sun photometer measurements.« less

  13. Advanced Corrections for InSAR Using GPS and Numerical Weather Models

    NASA Astrophysics Data System (ADS)

    Cossu, F.; Foster, J. H.; Amelung, F.; Varugu, B. K.; Businger, S.; Cherubini, T.

    2017-12-01

    We present results from an investigation into the application of numerical weather models for generating tropospheric correction fields for Interferometric Synthetic Aperture Radar (InSAR). We apply the technique to data acquired from a UAVSAR campaign as well as from the CosmoSkyMed satellites. The complex spatial and temporal changes in the atmospheric propagation delay of the radar signal remain the single biggest factor limiting InSAR's potential for hazard monitoring and mitigation. A new generation of InSAR systems is being built and launched, and optimizing the science and hazard applications of these systems requires advanced methodologies to mitigate tropospheric noise. We use the Weather Research and Forecasting (WRF) model to generate a 900 m spatial resolution atmospheric models covering the Big Island of Hawaii and an even higher, 300 m resolution grid over the Mauna Loa and Kilauea volcanoes. By comparing a range of approaches, from the simplest, using reanalyses based on typically available meteorological observations, through to the "kitchen-sink" approach of assimilating all relevant data sets into our custom analyses, we examine the impact of the additional data sets on the atmospheric models and their effectiveness in correcting InSAR data. We focus particularly on the assimilation of information from the more than 60 GPS sites in the island. We ingest zenith tropospheric delay estimates from these sites directly into the WRF analyses, and also perform double-difference tomography using the phase residuals from the GPS processing to robustly incorporate heterogeneous information from the GPS data into the atmospheric models. We assess our performance through comparisons of our atmospheric models with external observations not ingested into the model, and through the effectiveness of the derived phase screens in reducing InSAR variance. Comparison of the InSAR data, our atmospheric analyses, and assessments of the active local and mesoscale meteorological processes allows us to assess under what conditions the technique works most effectively. This work will produce best-practice recommendations for the use of weather models for InSAR correction, and inform efforts to design a global strategy for the NISAR mission, for both low-latency and definitive atmospheric correction products.

  14. Atmospheric extinction in solar tower plants: absorption and broadband correction for MOR measurements

    NASA Astrophysics Data System (ADS)

    Hanrieder, N.; Wilbert, S.; Pitz-Paal, R.; Emde, C.; Gasteiger, J.; Mayer, B.; Polo, J.

    2015-08-01

    Losses of reflected Direct Normal Irradiance due to atmospheric extinction in concentrated solar tower plants can vary significantly with site and time. The losses of the direct normal irradiance between the heliostat field and receiver in a solar tower plant are mainly caused by atmospheric scattering and absorption by aerosol and water vapor concentration in the atmospheric boundary layer. Due to a high aerosol particle number, radiation losses can be significantly larger in desert environments compared to the standard atmospheric conditions which are usually considered in ray-tracing or plant optimization tools. Information about on-site atmospheric extinction is only rarely available. To measure these radiation losses, two different commercially available instruments were tested, and more than 19 months of measurements were collected and compared at the Plataforma Solar de Almería. Both instruments are primarily used to determine the meteorological optical range (MOR). The Vaisala FS11 scatterometer is based on a monochromatic near-infrared light source emission and measures the strength of scattering processes in a small air volume mainly caused by aerosol particles. The Optec LPV4 long-path visibility transmissometer determines the monochromatic attenuation between a light-emitting diode (LED) light source at 532 nm and a receiver and therefore also accounts for absorption processes. As the broadband solar attenuation is of interest for solar resource assessment for concentrated solar power (CSP), a correction procedure for these two instruments is developed and tested. This procedure includes a spectral correction of both instruments from monochromatic to broadband attenuation. That means the attenuation is corrected for the time-dependent solar spectrum which is reflected by the collector. Further, an absorption correction for the Vaisala FS11 scatterometer is implemented. To optimize the absorption and broadband correction (ABC) procedure, additional measurement input of a nearby sun photometer is used to enhance on-site atmospheric assumptions for description of the atmosphere in the algorithm. Comparing both uncorrected and spectral- and absorption-corrected extinction data from 1-year measurements at the Plataforma Solar de Almería, the mean difference between the scatterometer and the transmissometer is reduced from 4.4 to 0.57 %. Applying the ABC procedure without the usage of additional input data from a sun photometer still reduces the difference between both sensors to about 0.8 %. Applying an expert guess assuming a standard aerosol profile for continental regions instead of additional sun photometer input results in a mean difference of 0.8 %. Additionally, a simulation approach which just uses sun photometer and common meteorological data to determine the on-site atmospheric extinction at surface is presented and corrected FS11 and LPV4 measurements are validated with the simulation results. For T1 km equal to 0.9 and a 10 min time resolution, an uncertainty analysis showed that an absolute uncertainty of about 0.038 is expected for the FS11 and about 0.057 for the LPV4. Combining both uncertainties results in an overall absolute uncertainty of 0.068 which justifies quite well the mean RMSE between both corrected data sets. For yearly averages several error influences average out and absolute uncertainties of 0.020 and 0.054 can be expected for the FS11 and the LPV4, respectively. Therefore, applying this new correction method, both instruments can now be utilized to sufficiently accurately determine the solar broadband extinction in tower plants.

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews and Dawn Peterson

    2011-09-01

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20,more » 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting verification samples. Results of verification samples show that remaining soil does not contain contamination exceeding the FALs. Therefore, the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) provides the following recommendations: (1) No further corrective actions are necessary for CAU 106. (2) A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 106. (3) Corrective Action Unit 106 should be moved from Appendix III to Appendix IV of the FFACO.« less

  16. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2016-09-01

    Adaptive optics relies on the accuracy and speed of a wavefront sensor in order to provide quick corrections to distortions in the optical system. In weaker cases of atmospheric turbulence often encountered in astronomical fields, a traditional Shack-Hartmann sensor has proved to be very effective. However, in cases of stronger atmospheric turbulence often encountered near the surface of the Earth, atmospheric turbulence no longer solely causes small tilts in the wavefront. Instead, lasers passing through strong or "deep" atmospheric turbulence encounter beam breakup, which results in interference effects and discontinuities in the incoming wavefront. In these situations, a Shack-Hartmann sensor can no longer effectively determine the shape of the incoming wavefront. We propose a wavefront reconstruction and correction algorithm based around the plenoptic sensor. The plenoptic sensor's design allows it to match and exceed the wavefront sensing capabilities of a Shack-Hartmann sensor for our application. Novel wavefront reconstruction algorithms can take advantage of the plenoptic sensor to provide a rapid wavefront reconstruction necessary for real time turbulence. To test the integrity of the plenoptic sensor and its reconstruction algorithms, we use artificially generated turbulence in a lab scale environment to simulate the structure and speed of outdoor atmospheric turbulence. By analyzing the performance of our system with and without the closed-loop plenoptic sensor adaptive optics system, we can show that the plenoptic sensor is effective in mitigating real time lab generated atmospheric turbulence.

  17. Stray-Light Correction of the Marine Optical Buoy

    NASA Technical Reports Server (NTRS)

    Brown, Steven W.; Johnson, B. Carol; Flora, Stephanie J.; Feinholz, Michael E.; Yarbrough, Mark A.; Barnes, Robert A.; Kim, Yong Sung; Lykke, Keith R.; Clark, Dennis K.

    2003-01-01

    In ocean-color remote sensing, approximately 90% of the flux at the sensor originates from atmospheric scattering, with the water-leaving radiance contributing the remaining 10% of the total flux. Consequently, errors in the measured top-of-the atmosphere radiance are magnified a factor of 10 in the determination of water-leaving radiance. Proper characterization of the atmosphere is thus a critical part of the analysis of ocean-color remote sensing data. It has always been necessary to calibrate the ocean-color satellite sensor vicariously, using in situ, ground-based results, independent of the status of the pre-flight radiometric calibration or the utility of on-board calibration strategies. Because the atmosphere contributes significantly to the measured flux at the instrument sensor, both the instrument and the atmospheric correction algorithm are simultaneously calibrated vicariously. The Marine Optical Buoy (MOBY), deployed in support of the Earth Observing System (EOS) since 1996, serves as the primary calibration station for a variety of ocean-color satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Japanese Ocean Color Temperature Scanner (OCTS) , and the French Polarization and Directionality of the Earth's Reflectances (POLDER). MOBY is located off the coast of Lanai, Hawaii. The site was selected to simplify the application of the atmospheric correction algorithms. Vicarious calibration using MOBY data allows for a thorough comparison and merger of ocean-color data from these multiple sensors.

  18. Atmospheric Correction at AERONET Locations: A New Science and Validation Data Set

    NASA Technical Reports Server (NTRS)

    Wang, Yujie; Lyapustin, Alexei; Privette, Jeffery L.; Morisette, Jeffery T.; Holben, Brent

    2008-01-01

    This paper describes an AERONET-based Surface Reflectance Validation Network (ASRVN) and its dataset of spectral surface bidirectional reflectance and albedo based on MODIS TERRA and AQUA data. The ASRVN is an operational data collection and processing system. It receives 50x50 square kilometer subsets of MODIS L1B data from MODAPS and AERONET aerosol and water vapor information. Then it performs an accurate atmospheric correction for about 100 AERONET sites based on accurate radiative transfer theory with high quality control of the input data. The ASRVN processing software consists of L1B data gridding algorithm, a new cloud mask algorithm based on a time series analysis, and an atmospheric correction algorithm. The atmospheric correction is achieved by fitting the MODIS top of atmosphere measurements, accumulated for 16-day interval, with theoretical reflectance parameterized in terms of coefficients of the LSRT BRF model. The ASRVN takes several steps to ensure high quality of results: 1) cloud mask algorithm filters opaque clouds; 2) an aerosol filter has been developed to filter residual semi-transparent and sub-pixel clouds, as well as cases with high inhomogeneity of aerosols in the processing area; 3) imposing requirement of consistency of the new solution with previously retrieved BRF and albedo; 4) rapid adjustment of the 16-day retrieval to the surface changes using the last day of measurements; and 5) development of seasonal back-up spectral BRF database to increase data coverage. The ASRVN provides a gapless or near-gapless coverage for the processing area. The gaps, caused by clouds, are filled most naturally with the latest solution for a given pixels. The ASRVN products include three parameters of LSRT model (k(sup L), k(sup G), k(sup V)), surface albedo, NBRF (a normalized BRF computed for a standard viewing geometry, VZA=0 deg., SZA=45 deg.), and IBRF (instantaneous, or one angle, BRF value derived from the last day of MODIS measurement for specific viewing geometry) for MODIS 500m bands 1-7. The results are produced daily at resolution of 1 km in gridded format. We also provide cloud mask, quality flag and a browse bitmap image. The new dataset can be used for a wide range of applications including validation analysis and science research.

  19. Experimental Assessment and Enhancement of Planar Laser-Induced Fluorescence Measurements of Nitric Oxide in an Inverse Diffusion Flame

    NASA Technical Reports Server (NTRS)

    Partridge, William P.; Laurendeau, Normand M.

    1997-01-01

    We have experimentally assessed the quantitative nature of planar laser-induced fluorescence (PLIF) measurements of NO concentration in a unique atmospheric pressure, laminar, axial inverse diffusion flame (IDF). The PLIF measurements were assessed relative to a two-dimensional array of separate laser saturated fluorescence (LSF) measurements. We demonstrated and evaluated several experimentally-based procedures for enhancing the quantitative nature of PLIF concentration images. Because these experimentally-based PLIF correction schemes require only the ability to make PLIF and LSF measurements, they produce a more broadly applicable PLIF diagnostic compared to numerically-based correction schemes. We experimentally assessed the influence of interferences on both narrow-band and broad-band fluorescence measurements at atmospheric and high pressures. Optimum excitation and detection schemes were determined for the LSF and PLIF measurements. Single-input and multiple-input, experimentally-based PLIF enhancement procedures were developed for application in test environments with both negligible and significant quench-dependent error gradients. Each experimentally-based procedure provides an enhancement of approximately 50% in the quantitative nature of the PLIF measurements, and results in concentration images nominally as quantitative as LSF point measurements. These correction procedures can be applied to other species, including radicals, for which no experimental data are available from which to implement numerically-based PLIF enhancement procedures.

  20. Atmospheric correction analysis on LANDSAT data over the Amazon region. [Manaus, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dias, L. A. V.; Dossantos, J. R.; Formaggio, A. R.

    1983-01-01

    The Amazon Region natural resources were studied in two ways and compared. A LANDSAT scene and its attributes were selected, and a maximum likelihood classification was made. The scene was atmospherically corrected, taking into account Amazonic peculiarities revealed by (ground truth) of the same area, and the subsequent classification. Comparison shows that the classification improves with the atmospherically corrected images.

  1. Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies

    USGS Publications Warehouse

    Long, E.S.; Sweitzer, R.A.; Diefenbach, D.R.; Ben-David, M.

    2005-01-01

    Increased use of stable isotope analysis to examine food-web dynamics, migration, transfer of nutrients, and behavior will likely result in expansion of stable isotope studies investigating human-induced global changes. Recent elevation of atmospheric CO2 concentration, related primarily to fossil fuel combustion, has reduced atmospheric CO2 ??13C (13C/12C), and this change in isotopic baseline has, in turn, reduced plant and animal tissue ??13C of terrestrial and aquatic organisms. Such depletion in CO2 ??13C and its effects on tissue ??13C may introduce bias into ??13C investigations, and if this variation is not controlled, may confound interpretation of results obtained from tissue samples collected over a temporal span. To control for this source of variation, we used a high-precision record of atmospheric CO2 ??13C from ice cores and direct atmospheric measurements to model modern change in CO2 ??13C. From this model, we estimated a correction factor that controls for atmospheric change; this correction reduces bias associated with changes in atmospheric isotopic baseline and facilitates comparison of tissue ??13C collected over multiple years. To exemplify the importance of accounting for atmospheric CO2 ??13C depletion, we applied the correction to a dataset of collagen ??13C obtained from mountain lion (Puma concolor) bone samples collected in California between 1893 and 1995. Before correction, in three of four ecoregions collagen ??13C decreased significantly concurrent with depletion of atmospheric CO2 ??13C (n ??? 32, P ??? 0.01). Application of the correction to collagen ??13C data removed trends from regions demonstrating significant declines, and measurement error associated with the correction did not add substantial variation to adjusted estimates. Controlling for long-term atmospheric variation and correcting tissue samples for changes in isotopic baseline facilitate analysis of samples that span a large temporal range. ?? Springer-Verlag 2005.

  2. Multispectral Resource Sampler (MPS): Proof of Concept. Literature survey of atmospheric corrections

    NASA Technical Reports Server (NTRS)

    Schowengerdt, R. A.; Slater, P. N.

    1981-01-01

    Work done in combining spectral bands to reduce atmospheric effects on spectral signatures is described. The development of atmospheric models and their use with ground and aerial measurements in correcting spectral signatures is reviewed. An overview of studies of atmospheric effects on the accuracy of scene classification is provided.

  3. Solving for the Surface: An Automated Approach to THEMIS Atmospheric Correction

    NASA Astrophysics Data System (ADS)

    Ryan, A. J.; Salvatore, M. R.; Smith, R.; Edwards, C. S.; Christensen, P. R.

    2013-12-01

    Here we present the initial results of an automated atmospheric correction algorithm for the Thermal Emission Imaging System (THEMIS) instrument, whereby high spectral resolution Thermal Emission Spectrometer (TES) data are queried to generate numerous atmospheric opacity values for each THEMIS infrared image. While the pioneering methods of Bandfield et al. [2004] also used TES spectra to atmospherically correct THEMIS data, the algorithm presented here is a significant improvement because of the reduced dependency on user-defined inputs for individual images. Additionally, this technique is particularly useful for correcting THEMIS images that have captured a range of atmospheric conditions and/or surface elevations, issues that have been difficult to correct for using previous techniques. Thermal infrared observations of the Martian surface can be used to determine the spatial distribution and relative abundance of many common rock-forming minerals. This information is essential to understanding the planet's geologic and climatic history. However, the Martian atmosphere also has absorptions in the thermal infrared which complicate the interpretation of infrared measurements obtained from orbit. TES has sufficient spectral resolution (143 bands at 10 cm-1 sampling) to linearly unmix and remove atmospheric spectral end-members from the acquired spectra. THEMIS has the benefit of higher spatial resolution (~100 m/pixel vs. 3x5 km/TES-pixel) but has lower spectral resolution (8 surface sensitive spectral bands). As such, it is not possible to isolate the surface component by unmixing the atmospheric contribution from the THEMIS spectra, as is done with TES. Bandfield et al. [2004] developed a technique using atmospherically corrected TES spectra as tie-points for constant radiance offset correction and surface emissivity retrieval. This technique is the primary method used to correct THEMIS but is highly susceptible to inconsistent results if great care in the selection of TES spectra is not exercised. Our algorithm implements a newly populated TES database that was created using PostgreSQL/PostGIS geospatial database. TES pixels that meet user-defined quality criteria and that intersect a THEMIS observation of interest may be quickly retrieved using this new database. The THEMIS correction process [Bandfield et al. 2004] is then run using all TES pixels that pass an additional set of TES-THEMIS relational quality checks. The result is a spatially correlated set of atmospheric opacity values, determined from the difference between each atmospherically corrected TES pixel and the overlapping portion of the THEMIS image. The dust and ice contributions to the atmospheric opacity are estimated using known dust and ice spectral dependencies [Smith et al. 2003]. These opacity values may be used to determine atmospheric variation across the scene, from which topography- and temperature-scaled atmospheric contribution may be calculated and removed. References: Bandfield, JL et al. [2004], JGR 109, E10008. Smith, MD et al. [2003], JGR 108, E11, 5115.

  4. Correcting the Errors in the Writing of University Students in the Comfortable Atmosphere

    ERIC Educational Resources Information Center

    Lu, Tuanhua

    2010-01-01

    This paper analyzed the common errors in university students' writing. At the same time, it showed some methods based on activities designed to give students practice in these problem areas. The activities are meant to be carried out in a comfortable, non-threatening atmosphere in which students can make positive steps toward reducing their errors…

  5. A scan-angle correction for thermal infrared multispectral data using side lapping images

    USGS Publications Warehouse

    Watson, K.

    1996-01-01

    Thermal infrared multispectral scanner (TIMS) images, acquired with side lapping flight lines, provide dual angle observations of the same area on the ground and can thus be used to estimate variations in the atmospheric transmission with scan angle. The method was tested using TIMS aircraft data for six flight lines with about 30% sidelap for an area within Joshua Tree National Park, California. Generally the results correspond to predictions for the transmission scan-angle coefficient based on a standard atmospheric model although some differences were observed at the longer wavelength channels. A change was detected for the last pair of lines that may indicate either spatial or temporal atmospheric variation. The results demonstrate that the method provides information for correcting regional survey data (requiring multiple adjacent flight lines) that can be important in detecting subtle changes in lithology.

  6. The influence of the atmosphere on geoid and potential coefficient determinations from gravity data

    NASA Technical Reports Server (NTRS)

    Rummel, R.; Rapp, R. H.

    1976-01-01

    For the precise computation of geoid undulations the effect of the attraction of the atmosphere on the solution of the basic boundary value problem of gravimetric geodesy must be considered. This paper extends the theory of Moritz for deriving an atmospheric correction to the case when the undulations are computed by combining anomalies in a cap surrounding the computation point with information derived from potential coefficients. The correction term is a function of the cap size and the topography within the cap. It reaches a value of 3.0 m for a cap size of 30 deg, variations on the decimeter level being caused by variations in the topography. The effect of the atmospheric correction terms on potential coefficients is found to be small, reaching a maximum of 0.0055 millionths at n = 2, m = 2 when terrestrial gravity data are considered. The magnitude of this correction indicates that in future potential coefficient determination from gravity data the atmospheric correction should be made to such data.

  7. Atmospheric Dynamics on Venus, Jupiter, and Saturn: An Observational and Analytical Study

    NASA Technical Reports Server (NTRS)

    Bridger, Alison; Magalhaes, Julio A.; Young, Richard E.

    2000-01-01

    Determining the static stability of Jupiter's atmosphere below the visible cloud levels is important for understanding the dynamical modes by which energy and momentum are transported through Jupiter's deep troposphere. The Galileo Probe Atmospheric Structure Investigation (ASI) employed pressure and temperature sensors to directly measure these state variables during the parachute-descent phase, which started at a pressure (p) of 0.4 bars and ended at p= 22 bars. The internal temperature of the probe underwent large temperature fluctuations which significantly exceeded design specifications. Corrections for these anomalous interior temperatures have been evaluated based on laboratory data acquired after the mission using the flight spare hardware. The corrections to the pressure sensor readings was particularly large and the uncertainties in the atmospheric pressures derived from the p sensor measurements may still be significant. We have sought to estimate the formal uncertainties in the static stability derived from the p and T sensor measurements directly and to devise means of assessing the static stability of Jupiter's atmosphere which do not rely on the p sensor data.

  8. Ground-based determination of atmospheric radiance for correction of ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1974-01-01

    A technique is described for estimating the atmospheric radiance observed by a downward sensor (ERTS) using ground-based measurements. A formula is obtained for the sky radiance at the time of the ERTS overpass from the radiometric measurement of the sky radiance made at a particular solar zenith angle and air mass. A graph illustrates ground-based sky radiance measurements as a function of the scattering angle for a range of solar air masses. Typical values for sky radiance at a solar zenith angle of 48 degrees are given.

  9. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less

  10. The Ocean Colour Climate Change Initiative: I. A Methodology for Assessing Atmospheric Correction Processors Based on In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Muller, Dagmar; Krasemann, Hajo; Brewin, Robert J. W.; Deschamps, Pierre-Yves; Doerffer, Roland; Fomferra, Norman; Franz, Bryan A.; Grant, Mike G.; Groom, Steve B.; Melin, Frederic; hide

    2015-01-01

    The Ocean Colour Climate Change Initiative intends to provide a long-term time series of ocean colour data and investigate the detectable climate impact. A reliable and stable atmospheric correction procedure is the basis for ocean colour products of the necessary high quality. In order to guarantee an objective selection from a set of four atmospheric correction processors, the common validation strategy of comparisons between in-situ and satellite derived water leaving reflectance spectra, is extended by a ranking system. In principle, the statistical parameters such as root mean square error, bias, etc. and measures of goodness of fit, are transformed into relative scores, which evaluate the relationship of quality dependent on the algorithms under study. The sensitivity of these scores to the selected database has been assessed by a bootstrapping exercise, which allows identification of the uncertainty in the scoring results. Although the presented methodology is intended to be used in an algorithm selection process, this paper focusses on the scope of the methodology rather than the properties of the individual processors.

  11. Upper atmosphere research: Reaction rate and optical measurements

    NASA Technical Reports Server (NTRS)

    Stief, L. J.; Allen, J. E., Jr.; Nava, D. F.; Payne, W. A., Jr.

    1990-01-01

    The objective is to provide photochemical, kinetic, and spectroscopic information necessary for photochemical models of the Earth's upper atmosphere and to examine reactions or reactants not presently in the models to either confirm the correctness of their exclusion or provide evidence to justify future inclusion in the models. New initiatives are being taken in technique development (many of them laser based) and in the application of established techniques to address gaps in the photochemical/kinetic data base, as well as to provide increasingly reliable information.

  12. Coastal Zone Color Scanner atmospheric correction - Influence of El Chichon

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.; Castano, Diego J.

    1988-01-01

    The addition of an El Chichon-like aerosol layer in the stratosphere is shown to have very little effect on the basic CZCS atmospheric correction algorithm. The additional stratospheric aerosol is found to increase the total radiance exiting the atmosphere, thereby increasing the probability that the sensor will saturate. It is suggested that in the absence of saturation the correction algorithm should perform as well as in the absence of the stratospheric layer.

  13. Next Generation MODTRAN for Improved Atmospheric Correction of Spectral Imagery

    DTIC Science & Technology

    2016-01-29

    DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly referred...atmospheric correction process. Given the ever increasing capabilities of spectral sensors to quickly generate enormous quantities of data, combined...many DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly

  14. Titan's Surface Composition from Cassini VIMS Solar Occultation Observations

    NASA Astrophysics Data System (ADS)

    McCord, Thomas; Hayne, Paul; Sotin, Christophe

    2013-04-01

    Titan's surface is obscured by a thick absorbing and scattering atmosphere, allowing direct observation of the surface within only a few spectral win-dows in the near-infrared, complicating efforts to identify and map geologi-cally important materials using remote sensing IR spectroscopy. We there-fore investigate the atmosphere's infrared transmission with direct measure-ments using Titan's occultation of the Sun as well as Titan's reflectance measured at differing illumination and observation angles observed by Cas-sini's Visual and Infrared Mapping Spectrometer (VIMS). We use two im-portant spectral windows: the 2.7-2.8-mm "double window" and the broad 5-mm window. By estimating atmospheric attenuation within these windows, we seek an empirical correction factor that can be applied to VIMS meas-urements to estimate the true surface reflectance and map inferred composi-tional variations. Applying the empirical corrections, we correct the VIMS data for the viewing geometry-dependent atmospheric effects to derive the 5-µm reflectance and 2.8/2.7-µm reflectance ratio. We then compare the cor-rected reflectances to compounds proposed to exist on Titan's surface. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scattering in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. We propose a simple correction to VIMS Titan data to account for atmospheric attenuation and diffuse scatter-ing in the 5-mm and 2.7-2.8 mm windows, generally applicable for airmass < 3.0. The narrow 2.75-mm absorption feature, dividing the window into two sub-windows, present in all on-planet measurements is not present in the occultation data, and its strength is reduced at the cloud tops, suggesting the responsible molecule is concentrated in the lower troposphere or on the sur-face. Our empirical correction to Titan's surface reflectance yields properties shifted closer to water ice for the majority of the low-to-mid latitude area covered by VIMS measurements. Four compositional units are defined and mapped on Titan's surface based on the positions of data clusters in 5-mm vs. 2.8/2.7-mm scatter plots; a simple ternary mixture of H2O, hydrocarbons and CO2 might explain the reflectance properties of these surface units. The vast equatorial "dune seas" are compositionally very homogeneous, perhaps suggesting transport and mixing of particles over very large distances and/or and very consistent formation process and source material. The composi-tional branch characterizing Tui Regio and Hotei Regio is consistent with a mixture of typical Titan hydrocarbons and CO2, or possibly methane/ethane; the concentration mechanism proposed is something similar to a terrestrial playa lake evaporate deposit, based on the fact that river channels are known to feed into at least Hotei Regio.

  15. Understanding the atmospheric measurement and behavior of perfluorooctanoic acid.

    PubMed

    Webster, Eva M; Ellis, David A

    2012-09-01

    The recently reported quantification of the atmospheric sampling artifact for perfluorooctanoic acid (PFOA) was applied to existing gas and particle concentration measurements. Specifically, gas phase concentrations were increased by a factor of 3.5 and particle-bound concentrations by a factor of 0.1. The correlation constants in two particle-gas partition coefficient (K(QA)) estimation equations were determined for multiple studies with and without correcting for the sampling artifact. Correction for the sampling artifact gave correlation constants with improved agreement to those reported for other neutral organic contaminants, thus supporting the application of the suggested correction factors for perfluorinated carboxylic acids. Applying the corrected correlation constant to a recent multimedia modeling study improved model agreement with corrected, reported, atmospheric concentrations. This work confirms that there is sufficient partitioning to the gas phase to support the long-range atmospheric transport of PFOA. Copyright © 2012 SETAC.

  16. Ground temperature measurement by PRT-5 for maps experiment

    NASA Technical Reports Server (NTRS)

    Gupta, S. K.; Tiwari, S. N.

    1978-01-01

    A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.

  17. A preliminary assessment of the Nimbus-7 CZCS atmospheric correction algorithm in a horizontally inhomogeneous atmosphere. [Coastal Zone Color Scanner

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.

    1981-01-01

    For an estimation of the concentration of phytoplankton pigments in the oceans on the basis of Nimbus-7 CZCS imagery, it is necessary to remove the effects of the intervening atmosphere from the satellite imagery. The principle effect of the atmosphere is a loss in contrast caused by the addition of a substantial amount of radiance (path radiance) to that scatttered out of the water. Gordon (1978) has developed a technique which shows considerable promise for removal of these atmospheric effects. Attention is given to the correction algorithm, and its application to CZCS imagery. An alternate method under study for affecting the atmospheric correction requires a knowledge of 'clear water' subsurface upwelled radiance as a function of solar angle and pigment concentration.

  18. Analysis of astronomical data from optical superconducting tunnel junctions

    NASA Astrophysics Data System (ADS)

    de Bruijne, J. H.; Reynolds, A. P.; Perryman, Michael A.; Favata, Fabio; Peacock, Anthony J.

    2002-06-01

    Currently operating optical superconducting tunnel junction (STJ) detectors, developed at the European Space Agency (ESA), can simultaneously measure the wavelength ((Delta) (gamma) equals 50 nm at 500 nm) and arrival time (to within approximately 5 microsecond(s) ) of individual photons in the range 310 to 720 nm with an efficiency of approximately 70%, and with count rates of the order of 5000 photons s-1 per junction. A number of STJs placed in an array format generates 4-D data: photon arrival time, energy, and array element (X,Y). Such STJ cameras are ideally suited for, e.g., high-time-resolution spectrally resolved monitoring of variable sources or low- resolution spectroscopy of faint extragalactic objects. The reduction of STJ data involves detector efficiency correction, atmospheric extinction correction, sky background subtraction, and, unlike that of data from CCD-based systems, a more complex energy calibration, barycentric arrival time correction, energy range selection, and time binning; these steps are, in many respects, analogous to procedures followed in high-energy astrophysics. We discuss these calibration steps in detail using a representative observation of the cataclysmic variable UZ Fornacis; these data were obtained with ESA's S-Cam2 6 X 6-pixel device. We furthermore discuss issues related to telescope pointing and guiding, differential atmospheric refraction, and atmosphere-induced image motion and image smearing (`seeing') in the focal plane. We also present a simple and effective recipe for extracting the evolution of atmospheric seeing with time from any science exposure and discuss a number of caveats in the interpretation of STJ-based time-binned data, such as light curves and hardness ratio plots.

  19. Water vapor retrieval from near-IR measurements of polarized scanning atmospheric corrector

    NASA Astrophysics Data System (ADS)

    Qie, Lili; Ning, Yuanming; Zhang, Yang; Chen, Xingfeng; Ma, Yan; Li, Zhengqiang; Cui, Wenyu

    2018-02-01

    Water vapor and aerosol are two key atmospheric factors effecting the remote sensing image quality. As water vapor is responsible for most of the solar radiation absorption occurring in the cloudless atmosphere, accurate measurement of water content is important to not only atmospheric correction of remote sensing images, but also many other applications such as the study of energy balance and global climate change, land surface temperature retrieval in thermal remote sensing. A multi-spectral, single-angular, polarized radiometer called Polarized Scanning Atmospheric Corrector (PSAC) were developed in China, which are designed to mount on the same satellite platform with the principle payload and provide essential parameters for principle payload image atmospheric correction. PSAC detect water vapor content via measuring atmosphere reflectance at water vapor absorbing channels (i.e. 0.91 μm) and nearby atmospheric window channel (i.e. 0.865μm). A near-IR channel ratio method was implemented to retrieve column water vapor (CWV) amount from PSAC measurements. Field experiments were performed at Yantai, in Shandong province of China, PSAC aircraft observations were acquired. The comparison between PSAC retrievals and ground-based Sun-sky radiometer measurements of CWV during the experimental flights illustrates that this method retrieves CWV with relative deviations ranging from 4% 13%. This method retrieve CWV more accurate over land than over ocean, as the water reflectance is low.

  20. Impact of atmospheric correction and image filtering on hyperspectral classification of tree species using support vector machine

    NASA Astrophysics Data System (ADS)

    Shahriari Nia, Morteza; Wang, Daisy Zhe; Bohlman, Stephanie Ann; Gader, Paul; Graves, Sarah J.; Petrovic, Milenko

    2015-01-01

    Hyperspectral images can be used to identify savannah tree species at the landscape scale, which is a key step in measuring biomass and carbon, and tracking changes in species distributions, including invasive species, in these ecosystems. Before automated species mapping can be performed, image processing and atmospheric correction is often performed, which can potentially affect the performance of classification algorithms. We determine how three processing and correction techniques (atmospheric correction, Gaussian filters, and shade/green vegetation filters) affect the prediction accuracy of classification of tree species at pixel level from airborne visible/infrared imaging spectrometer imagery of longleaf pine savanna in Central Florida, United States. Species classification using fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH) atmospheric correction outperformed ATCOR in the majority of cases. Green vegetation (normalized difference vegetation index) and shade (near-infrared) filters did not increase classification accuracy when applied to large and continuous patches of specific species. Finally, applying a Gaussian filter reduces interband noise and increases species classification accuracy. Using the optimal preprocessing steps, our classification accuracy of six species classes is about 75%.

  1. The Assessment of Atmospheric Correction Processors for MERIS Based on In-Situ Measurements-Updates in OC-CCI Round Robin

    NASA Astrophysics Data System (ADS)

    Muller, Dagmar; Krasemann, Hajo; Zuhilke, Marco; Doerffer, Roland; Brockmann, Carsten; Steinmetz, Francois; Valente, Andre; Brotas, Vanda; Grant, kMicheal G.; Sathyendranath, Shubha; Melin, Frederic; Franz, Bryan A.; Mazeran, Constant; Regner, Peter

    2016-08-01

    The Ocean Colour Climate Change Initiative (OC- CCI) provides a long-term time series of ocean colour data and investigates the detectable climate impact. A reliable and stable atmospheric correction (AC) procedure is the basis for ocean colour products of the necessary high quality.The selection of atmospheric correction processors is repeated regularly based on a round robin exercise, at the latest when a revised production and release of the OC-CCI merged product is scheduled. Most of the AC processors are under constant development and changes are implemented to improve the quality of satellite-derived retrievals of remote sensing reflectances. The changes between versions of the inter-comparison are not restricted to the implementation of AC processors. There are activities to improve the quality flagging for some processors, and the system vicarious calibration for AC algorithms in their sensor specific behaviour are widely studied. Each inter-comparison starts with an updated in-situ database, as more spectra are included in order to broaden the temporal and spatial range of satellite match-ups. While the OC-CCI's focus has laid on case-1 waters in the past, it has expanded to the retrieval of case-2 products now. In light of this goal, new bidirectional correction procedures (normalisation) for the remote sensing spectra have been introduced. As in-situ measurements are not always available at the satellite sensor specific central wave- lengths, a band-shift algorithm has to be applied to the dataset.In order to guarantee an objective selection from a set of four atmospheric correction processors, the common validation strategy of comparisons between in-situ and satellite-derived water leaving reflectance spectra, is aided by a ranking system. In principal, the statistical parameters are transformed into relative scores, which evaluate the relationship of quality dependent on the algorithms under study. The sensitivity of these scores to the selected database has been assessed by a bootstrapping exercise, which allows identification of the uncertainty in the scoring results.A comparison of round robin results for the OC-CCI version 2 and the current version 3 is presented and some major changes are highlighted.

  2. An 8-Year, High-Resolution Reanalysis of Atmospheric CO2 Mixing Ratios Based on OCO-2 and GOSAT-ACOS Retrievals

    NASA Technical Reports Server (NTRS)

    Weir, B.; Chatterjee, A.; Ott, L. E.; Pawson, S.

    2017-01-01

    The NASA GMAO (Global Modeling and Assimilation Office) reanalysis blends OCO-2 (Orbiting Carbon Observatory 2) and GOSAT-ACOS (Greenhouse Gases Observing Satellite-Atmospheric Carbon Observations from Space) retrievals (top) with GEOS (Goddard Earth Observing System) model predictions (bottom) to estimate the full 3D (three-dimensional) state of CO2 every 3 hours (middle). This poster describes monthly atmospheric growth rates derived from the reanalysis and an application to aircraft data with the potential to aid bias correction.

  3. MRS proof-of-concept on atmospheric corrections. Atmospheric corrections using an orbital pointable imaging system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator)

    1980-01-01

    The feasibility of using a pointable imager to determine atmospheric parameters was studied. In particular the determination of the atmospheric extinction coefficient and the path radiance, the two quantities that have to be known in order to correct spectral signatures for atmospheric effects, was simulated. The study included the consideration of the geometry of ground irradiance and observation conditions for a pointable imager in a LANDSAT orbit as a function of time of year. A simulation study was conducted on the sensitivity of scene classification accuracy to changes in atmospheric condition. A two wavelength and a nonlinear regression method for determining the required atmospheric parameters were investigated. The results indicate the feasibility of using a pointable imaging system (1) for the determination of the atmospheric parameters required to improve classification accuracies in urban-rural transition zones and to apply in studies of bi-directional reflectance distribution function data and polarization effects; and (2) for the determination of the spectral reflectances of ground features.

  4. A Big Data Approach for Situation-Aware estimation, correction and prediction of aerosol effects, based on MODIS Joint Atmosphere product (collection 6) time series data

    NASA Astrophysics Data System (ADS)

    Singh, A. K.; Toshniwal, D.

    2017-12-01

    The MODIS Joint Atmosphere product, MODATML2 and MYDATML2 L2/3 provided by LAADS DAAC (Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center) re-sampled from medium resolution MODIS Terra /Aqua Satellites data at 5km scale, contains Cloud Reflectance, Cloud Top Temperature, Water Vapor, Aerosol Optical Depth/Thickness, Humidity data. These re-sampled data, when used for deriving climatic effects of aerosols (particularly in case of cooling effect) still exposes limitations in presence of uncertainty measures in atmospheric artifacts such as aerosol, cloud, cirrus cloud etc. The effect of uncertainty measures in these artifacts imposes an important challenge for estimation of aerosol effects, adequately affecting precise regional weather modeling and predictions: Forecasting and recommendation applications developed largely depend on these short-term local conditions (e.g. City/Locality based recommendations to citizens/farmers based on local weather models). Our approach inculcates artificial intelligence technique for representing heterogeneous data(satellite data along with air quality data from local weather stations (i.e. in situ data)) to learn, correct and predict aerosol effects in the presence of cloud and other atmospheric artifacts, defusing Spatio-temporal correlations and regressions. The Big Data process pipeline consisting correlation and regression techniques developed on Apache Spark platform can easily scale for large data sets including many tiles (scenes) and over widened time-scale. Keywords: Climatic Effects of Aerosols, Situation-Aware, Big Data, Apache Spark, MODIS Terra /Aqua, Time Series

  5. A technique for correcting ERTS data for solar and atmospheric effects

    NASA Technical Reports Server (NTRS)

    Rogers, R. H.; Peacock, K.; Shah, N. J.

    1974-01-01

    A technique is described by which ERTS investigators can obtain and utilize solar and atmospheric parameters to transform spacecraft radiance measurements to absolute target reflectance signatures. A radiant power measuring instrument (RPMI) and its use in determining atmospheric paramaters needed for ground truth are discussed. The procedures used and results achieved in processing ERTS CCTs to correct for atmospheric parameters to obtain imagery are reviewed. Examples are given which demonstrate the nature and magnitude of atmospheric effects on computer classification programs.

  6. Remote sensing of atmospheric aerosol and ocean color for the COMS/GOCI

    NASA Astrophysics Data System (ADS)

    Lee, Kwon-Ho; Kim, Young J.; Kim, Gwan C.; Wong, Man S.; Ahn, Yu H.

    2010-10-01

    The Geostationary Ocean Color Imager (GOCI) on board the Communication Ocean Meteorological Satellite (COMS) requires accurate atmospheric correction for the purpose of qualified ocean remote sensing. Since its eight bands are affected by atmospheric constituents such as gases, molecules and atmospheric aerosols, understanding of aerosolradiation interactions is needed. Aerosol optical properties based on sun-photometer measurements are used to analysis aerosol optical thickness (AOT) under various aerosol type and loadings. It is found that the choice of aerosol type makes little different in AOT retrieval for AOT<0.2. These results will be useful for aerosol retrieval of COMS/GOCI data processing.

  7. The Algorithm Theoretical Basis Document for the Atmospheric Delay Correction to GLAS Laser Altimeter Ranges. Volume 8

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.; Quinn, Katherine J.

    2012-01-01

    NASA s Ice, Cloud, and Land Elevation Satellite (ICESat) mission will be launched late 2001. It s primary instrument is the Geoscience Laser Altimeter System (GLAS) instrument. The main purpose of this instrument is to measure elevation changes of the Greenland and Antarctic icesheets. To accurately measure the ranges it is necessary to correct for the atmospheric delay of the laser pulses. The atmospheric delay depends on the integral of the refractive index along the path that the laser pulse travels through the atmosphere. The refractive index of air at optical wavelengths is a function of density and molecular composition. For ray paths near zenith and closed form equations for the refractivity, the atmospheric delay can be shown to be directly related to surface pressure and total column precipitable water vapor. For ray paths off zenith a mapping function relates the delay to the zenith delay. The closed form equations for refractivity recommended by the International Union of Geodesy and Geophysics (IUGG) are optimized for ground based geodesy techniques and in the next section we will consider whether these equations are suitable for satellite laser altimetry.

  8. Venusian atmospheric and Magellan properties from attitude control data. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Croom, Christopher A.; Tolson, Robert H.

    1994-01-01

    Results are presented of the study of the Venusian atmosphere, Magellan aerodynamic moment coefficients, moments of inertia, and solar moment coefficients. This investigation is based upon the use of attitude control data in the form of reaction wheel speeds from the Magellan spacecraft. As the spacecraft enters the upper atmosphere of Venus, measurable torques are experienced due to aerodynamic effects. Solar and gravity gradient effects also cause additional torques throughout the orbit. In order to maintain an inertially fixed attitude, the control system counteracts these torques by changing the angular rates of three reaction wheels. Model reaction wheel speeds are compared to observed Magellan reaction wheel speeds through a differential correction procedure. This method determines aerodynamic, atmospheric, solar pressure, and mass moment of inertia parameters. Atmospheric measurements include both base densities and scale heights. Atmospheric base density results confirm natural variability as measured by the standard orbital decay method. Potential inconsistencies in free molecular aerodynamic moment coefficients are identified. Moments of inertia are determined with a precision better than 1 percent of the largest principal moment of inertia.

  9. Observation-Corrected Precipitation Estimates in GEOS-5

    NASA Technical Reports Server (NTRS)

    Reichle, Rolf H.; Liu, Qing

    2014-01-01

    Several GEOS-5 applications, including the GEOS-5 seasonal forecasting system and the MERRA-Land data product, rely on global precipitation data that have been corrected with satellite and or gauge-based precipitation observations. This document describes the methodology used to generate the corrected precipitation estimates and their use in GEOS-5 applications. The corrected precipitation estimates are derived by disaggregating publicly available, observationally based, global precipitation products from daily or pentad totals to hourly accumulations using background precipitation estimates from the GEOS-5 atmospheric data assimilation system. Depending on the specific combination of the observational precipitation product and the GEOS-5 background estimates, the observational product may also be downscaled in space. The resulting corrected precipitation data product is at the finer temporal and spatial resolution of the GEOS-5 background and matches the observed precipitation at the coarser scale of the observational product, separately for each day (or pentad) and each grid cell.

  10. Aerosol radiative forcing from GEO satellite data over land surfaces

    NASA Astrophysics Data System (ADS)

    Costa, Maria J.; Silva, Ana M.

    2005-10-01

    Aerosols direct and indirect effects on the Earth's climate are widely recognized but have yet to be adequately quantified. Difficulties arise due to the very high spatial and temporal variability of aerosols, which is a major cause of uncertainties in radiative forcing studies. The effective monitoring of the global aerosol distribution is only made possible by satellite monitoring and this is the reason why the interest in aerosol observations from satellite passive radiometers is steadily increasing. From the point of view of the study of land surfaces, the atmosphere with its constituents represents an obscurant whose effects should be as much as possible eliminated, being this process sometimes referred to as atmospheric correction. In absence of clouds and using spectral intervals where gas absorption can be avoided to a great extent, only the aerosol effect remains to be corrected. The monitoring of the aerosol particles present in the atmosphere is then crucial to succeed in doing an accurate atmospheric correction, otherwise the surface properties may be inadequately characterised. However, the atmospheric correction over land surfaces turns out to be a difficult task since surface reflection competes with the atmospheric component of the signal. On the other hand, a single mean pre-established aerosol characterisation would not be sufficient for this purpose due to very high spatial and temporal variability of aerosols and their unpredictability, especially what concerns particulary intense "events" such as biomass burning and forest fires, desert dust episodes and volcanic eruptions. In this context, an operational methodology has been developed at the University of Evora - Evora Geophysics Centre (CGE), in the framework of the Satellite Application Facility for Land Surface Analysis - Land SAF, to derive an Aerosol Product from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, flying on the Geostationary (GEO) satellite system Meteosat-8. The aerosol characterization obtained is used to calculate the fluxes and estimate the aerosol radiative forcing at the top of the atmosphere. The methodology along with the results of the aerosol properties and radiative forcing using SEVIRI images is presented. The aerosol optical thickness results are compared with ground-based measurements from the Aerosol Robotic NETwork (AERONET), to assess the accuracy of the methodology presented.

  11. Research in geodesy and geophysics based upon radio-interferometric observations of extragalactic radio sources. Final report, December 1984-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, T.A.; Davis, J.L.; Gwinn, C.R.

    1986-10-01

    This report consists of a collection of reprints and preprints. Subjects included: description of Mk-III system for very-long-baseline interferometry (VLBI); geodetic results from the Mk-I and Mk-III systems for VLBI; effects of modeling atmospheric propagation on estimates of baseline length and station height; an improved model for the dry propagation delay; corrections to IAU 1980 nutation series based on VLBI data and geophysical interpretation of those corrections; and a review of the contributions of VLBI to geodynamic studies.

  12. Analysis Of AVIRIS Data From LEO-15 Using Tafkaa Atmospheric Correction

    NASA Technical Reports Server (NTRS)

    Montes, Marcos J.; Gao, Bo-Cai; Davis, Curtiss O.; Moline, Mark

    2004-01-01

    We previously developed an algorithm named Tafkaa for atmospheric correction of remote sensing ocean color data from aircraft and satellite platforms. The algorithm allows quick atmospheric correction of hyperspectral data using lookup tables generated with a modified version of Ahmad & Fraser s vector radiative transfer code. During the past few years we have extended the capabilities of the code. Current modifications include the ability to account for within scene variation in solar geometry (important for very long scenes) and view geometries (important for wide fields of view). Additionally, versions of Tafkaa have been made for a variety of multi-spectral sensors, including SeaWiFS and MODIS. In this proceeding we present some initial results of atmospheric correction of AVIRIS data from the 2001 July Hyperspectral Coastal Ocean Dynamics Experiment (HyCODE) at LEO-15.

  13. Homogenized total ozone data records from the European sensors GOME/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A

    NASA Astrophysics Data System (ADS)

    Lerot, C.; Van Roozendael, M.; Spurr, R.; Loyola, D.; Coldewey-Egbers, M.; Kochenova, S.; van Gent, J.; Koukouli, M.; Balis, D.; Lambert, J.-C.; Granville, J.; Zehner, C.

    2014-02-01

    Within the European Space Agency's Climate Change Initiative, total ozone column records from GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY), and GOME-2 have been reprocessed with GODFIT version 3 (GOME-type Direct FITting). This algorithm is based on the direct fitting of reflectances simulated in the Huggins bands to the observations. We report on new developments in the algorithm from the version implemented in the operational GOME Data Processor v5. The a priori ozone profile database TOMSv8 is now combined with a recently compiled OMI/MLS tropospheric ozone climatology to improve the representativeness of a priori information. The Ring procedure that corrects simulated radiances for the rotational Raman inelastic scattering signature has been improved using a revised semi-empirical expression. Correction factors are also applied to the simulated spectra to account for atmospheric polarization. In addition, the computational performance has been significantly enhanced through the implementation of new radiative transfer tools based on principal component analysis of the optical properties. Furthermore, a soft-calibration scheme for measured reflectances and based on selected Brewer measurements has been developed in order to reduce the impact of level-1 errors. This soft-calibration corrects not only for possible biases in backscattered reflectances, but also for artificial spectral features interfering with the ozone signature. Intersensor comparisons and ground-based validation indicate that these ozone data sets are of unprecedented quality, with stability better than 1% per decade, a precision of 1.7%, and systematic uncertainties less than 3.6% over a wide range of atmospheric states.

  14. Expected Improvements in the Quantitative Remote Sensing of Optically Complex Waters with the Use of an Optically Fast Hyperspectral Spectrometer—A Modeling Study

    PubMed Central

    Moses, Wesley J.; Bowles, Jeffrey H.; Corson, Michael R.

    2015-01-01

    Using simulated data, we investigated the effect of noise in a spaceborne hyperspectral sensor on the accuracy of the atmospheric correction of at-sensor radiances and the consequent uncertainties in retrieved water quality parameters. Specifically, we investigated the improvement expected as the F-number of the sensor is changed from 3.5, which is the smallest among existing operational spaceborne hyperspectral sensors, to 1.0, which is foreseeable in the near future. With the change in F-number, the uncertainties in the atmospherically corrected reflectance decreased by more than 90% across the visible-near-infrared spectrum, the number of pixels with negative reflectance (caused by over-correction) decreased to almost one-third, and the uncertainties in the retrieved water quality parameters decreased by more than 50% and up to 92%. The analysis was based on the sensor model of the Hyperspectral Imager for the Coastal Ocean (HICO) but using a 30-m spatial resolution instead of HICO’s 96 m. Atmospheric correction was performed using Tafkaa. Water quality parameters were retrieved using a numerical method and a semi-analytical algorithm. The results emphasize the effect of sensor noise on water quality parameter retrieval and the need for sensors with high Signal-to-Noise Ratio for quantitative remote sensing of optically complex waters. PMID:25781507

  15. Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Perkins, Timothy; Adler-Golden, Steven; Matthew, Michael W.; Berk, Alexander; Bernstein, Lawrence S.; Lee, Jamine; Fox, Marsha

    2012-11-01

    Remotely sensed spectral imagery of the earth's surface can be used to fullest advantage when the influence of the atmosphere has been removed and the measurements are reduced to units of reflectance. Here, we provide a comprehensive summary of the latest version of the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes atmospheric correction algorithm. We also report some new code improvements for speed and accuracy. These include the re-working of the original algorithm in C-language code parallelized with message passing interface and containing a new radiative transfer look-up table option, which replaces executions of the MODTRAN model. With computation times now as low as ~10 s per image per computer processor, automated, real-time, on-board atmospheric correction of hyper- and multi-spectral imagery is within reach.

  16. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1990-01-01

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by detecting and correcting for atmospherically induced wavefront aberrations. The required control computations during each cycle will take a finite amount of time. Longer time delays result in larger values of residual wavefront error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper presents a study of the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for the adaptive optics application. An optimization of the adaptive optics correction algorithm with respect to an optical processor's degree of accuracy is also briefly discussed.

  17. Correction of the Temperature Effect in 1020 NM Band of Sun-Sky Radiometer

    NASA Astrophysics Data System (ADS)

    Li, K.; Li, Z.; Li, D.; Xie, Y.; Xu, H.

    2018-04-01

    Aerosol is an important part of the earth-atmosphere system. It can directly and indirectly influence solar radiation and then affect the energy balance of earth-atmosphere system. AERONET, as the largest ground-based observation network, provides multi-parameters of aerosol from more than 600 hundred sites using sun-sky radiometer, which contains 9 channels from 340 nm to 1640 nm. Among which, 1020 nm channel is greatly influenced by the temperature. In this paper, a new correction method of 1020 nm band is introduced. The new method transfers the temperature correction coefficient of the master radiometer to the comparative one. The filed calibration experiment shown that the temperature correction coefficient obtained by this method is close to the result from the temperature controlled chamber, and the difference is about 2.1 %. This new method is easy-to-use, and its accuracy is comparable to the standard one. It is more applicable for large-scale instrument calibration. In principle, this method is applicable to all bands of the sun-sky radiometer.

  18. Apparatus for controlling air/fuel ratio for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Mizuno, T.

    1986-07-08

    This patent describes an apparatus for controlling air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine having an intake passage, an exhaust passage, an an exhaust gas recirculation passage for recirculating exhaust gases in the exhaust passage to the intake passage therethrough. The apparatus consists of: (a) means for sensing rotational speed of the engine; (b) means for sensing intake pressure in the intake passage; (c) means for sensing atmospheric pressure; (d) means for enabling and disabling exhaust gas recirculation through the exhaust gas recirculation passage in accordance with operating condition of the engine; (e)more » means for determining required amount of fuel in accordance with the sensed rotational speed and the sensed intake pressure; (f) means for determining, when the exhaust gas recirculation is enabled, a first correction value in accordance with the sensed rotational speed, the sensed intake pressure and the sensed atmospheric pressure, the first correction factor being used for correcting fuel amount so as to compensate for the decrease of fuel due to the performance of exhaust gas recirculation and also to compensate for the change in atmospheric pressure; (g) means for determining, when the exhaust gas recirculation is disabled, a second correction value in accordance with the atmospheric pressure, the second correction factor being used so as to compensate for the change in atmospheric pressure; (h) means for correcting the required amount of fuel by the first correction value and the second correction value when the exhaust gas recirculation is enabled and disabled respectively; and (i) means for supplying the engine with the corrected amount of fuel.« less

  19. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon.

    Treesearch

    Todd A. Schroeder; Warren B. Cohen; Conghe Song; Morton J. Canty; Zhiqiang Yang

    2006-01-01

    Detecting and characterizing continuous changes in early forest succession using multi-temporal satellite imagery requires atmospheric correction procedures that are both operationally reliable, and that result in comparable units (e-g., surface reflectance). This paper presents a comparison of five atmospheric correction methods (2 relative, 3 absolute) used to...

  20. The influence of 14CO2 releases from regional nuclear facilities at the Heidelberg 14CO2 sampling site (1986-2014)

    NASA Astrophysics Data System (ADS)

    Kuderer, Matthias; Hammer, Samuel; Levin, Ingeborg

    2018-06-01

    Atmospheric Δ14CO2 measurements are a well-established tool to estimate the regional fossil-fuel-derived CO2 component. However, emissions from nuclear facilities can significantly alter the regional Δ14CO2 level. In order to accurately quantify the signal originating from fossil CO2 emissions, a correction term for anthropogenic 14CO2 sources has to be determined. In this study, the HYSPLIT atmospheric dispersion model has been applied to calculate this correction for the long-term Δ14CO2 monitoring site in Heidelberg. Wind fields with a spatial resolution of 2.5° × 2.5°, 1° × 1°, and 0.5° × 0.5° show systematic deviations, with coarser resolved wind fields leading to higher mean values for the correction. The finally applied mean Δ14CO2 correction for the period from 1986-2014 is 2.3 ‰ with a standard deviation of 2.1 ‰ and maximum values up to 15.2 ‰. These results are based on the 0.5° × 0.5° wind field simulations in years when these fields were available (2009, 2011-2014), and for the other years they are based on 2.5° × 2.5° wind field simulations, corrected with a factor of 0.43. After operations at the Philippsburg boiling water reactor ceased in 2011, the monthly nuclear correction terms decreased to less than 2 ‰, with a mean value of 0.44 ± 0.32 ‰ from 2012 to 2014.

  1. Application of split window technique to TIMS data

    NASA Technical Reports Server (NTRS)

    Matsunaga, Tsuneo; Rokugawa, Shuichi; Ishii, Yoshinori

    1992-01-01

    Absorptions by the atmosphere in thermal infrared region are mainly due to water vapor, carbon dioxide, and ozone. As the content of water vapor in the atmosphere greatly changes according to weather conditions, it is important to know its amount between the sensor and the ground for atmospheric corrections of thermal Infrared Multispectral Scanner (TIMS) data (i.e. radiosonde). On the other hand, various atmospheric correction techniques were already developed for sea surface temperature estimations from satellites. Among such techniques, Split Window technique, now widely used for AVHRR (Advanced Very High Resolution Radiometer), uses no radiosonde or any kind of supplementary data but a difference between observed brightness temperatures in two channels for estimating atmospheric effects. Applications of Split Window technique to TIMS data are discussed because availability of atmospheric profile data is not clear when ASTER operates. After these theoretical discussions, the technique is experimentally applied to TIMS data at three ground targets and results are compared with atmospherically corrected data using LOWTRAN 7 with radiosonde data.

  2. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empiricalmore » nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number ( RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence for power performance validation purposes.« less

  3. Atmospheric turbulence affects wind turbine nacelle transferfunctions

    DOE PAGES

    St. Martin, Clara M.; Lundquist, Julie K.; Clifton, Andrew; ...

    2017-06-02

    Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP) in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE) 1.5sle model, we calculate empiricalmore » nacelle transfer functions (NTFs) and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number ( RB), the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a more steep NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence for power performance validation purposes.« less

  4. Atmospheric monitoring in MAGIC and data corrections

    NASA Astrophysics Data System (ADS)

    Fruck, Christian; Gaug, Markus

    2015-03-01

    A method for analyzing returns of a custom-made "micro"-LIDAR system, operated alongside the two MAGIC telescopes is presented. This method allows for calculating the transmission through the atmospheric boundary layer as well as thin cloud layers. This is achieved by applying exponential fits to regions of the back-scattering signal that are dominated by Rayleigh scattering. Making this real-time transmission information available for the MAGIC data stream allows to apply atmospheric corrections later on in the analysis. Such corrections allow for extending the effective observation time of MAGIC by including data taken under adverse atmospheric conditions. In the future they will help reducing the systematic uncertainties of energy and flux.

  5. The estimation of rice paddy yield with GRAMI crop model and Geostationary Ocean Color Imager (GOCI) image over South Korea

    NASA Astrophysics Data System (ADS)

    Yeom, J. M.; Kim, H. O.

    2014-12-01

    In this study, we estimated the rice paddy yield with moderate geostationary satellite based vegetation products and GRAMI model over South Korea. Rice is the most popular staple food for Asian people. In addition, the effects of climate change are getting stronger especially in Asian region, where the most of rice are cultivated. Therefore, accurate and timely prediction of rice yield is one of the most important to accomplish food security and to prepare natural disasters such as crop defoliation, drought, and pest infestation. In the present study, GOCI, which is world first Geostationary Ocean Color Image, was used for estimating temporal vegetation indices of the rice paddy by adopting atmospheric correction BRDF modeling. For the atmospheric correction with LUT method based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S), MODIS atmospheric products such as MOD04, MOD05, MOD07 from NASA's Earth Observing System Data and Information System (EOSDIS) were used. In order to correct the surface anisotropy effect, Ross-Thick Li-Sparse Reciprocal (RTLSR) BRDF model was performed at daily basis with 16day composite period. The estimated multi-temporal vegetation images was used for crop classification by using high resolution satellite images such as Rapideye, KOMPSAT-2 and KOMPSAT-3 to extract the proportional rice paddy area in corresponding a pixel of GOCI. In the case of GRAMI crop model, initial conditions are determined by performing every 2 weeks field works at Chonnam National University, Gwangju, Korea. The corrected GOCI vegetation products were incorporated with GRAMI model to predict rice yield estimation. The predicted rice yield was compared with field measurement of rice yield.

  6. Cassini observations of carbon-based anions in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Lewis, Gethyn; Waite, J. Hunter; Kataria, Dhiren; Wellbrock, Anne; Jones, Geraint; Coates, Andrew

    2016-07-01

    Cassini observations of Titan's ionosphere revealed an atmosphere rich in positively and negatively charged ions and organic molecules. The detection of large quantities of negatively charged ions was particularly surprising and adds Titan to the growing list of locations where anion chemistry has been observed to play an important role. In this study we present updated analysis on these negatively charged ions through an enhanced understanding of the Cassini CAPS Electron Spectrometer (CAPS-ELS) instrument response. The ionisation of Titan's dominant atmospheric constituent, N2, by the HeII Solar line, results in an observable photoelectron population at 24.1eV which we use to correct for differential spacecraft charging. Correcting for further energy-angle signatures within this dataset, we use an updated fitting procedure to show how the ELS mass spectrum, previously grouped into broad mass ranges, can be resolved into specific peaks at multiples of carbon-based anion species up to over 100amu/q. These peaks are shown to be ubiquitous within Titan's upper atmosphere and reminiscent of carbon-based anions identified in dense molecular clouds beyond our Solar System. It is thus shown how the moon Titan in the Outer Solar System can be used as an analogue to study these even more remote and exotic astrophysical environments.

  7. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  8. Atmospheric phase characteristics of the ALMA long baseline

    NASA Astrophysics Data System (ADS)

    Matsushita, Satoki; Asaki, Yoshiharu; Fomalont, Edward B.; Barkats, Denis; Corder, Stuartt A.; Hills, Richard E.; Kawabe, Ryohei; Maud, Luke T.; Morita, Koh-Ichiro; Nikolic, Bojan; Tilanus, Remo P. J.; Vlahakis, Catherine

    2016-07-01

    Atacama Large Millimeter/submillimeter Array (ALMA) is the world's largest millimeter/ submillimeter (mm / Submm) interferometer. Along with science observations, ALMA has performed several long baseline campaigns in the last 6 years to characterize and optimize its long baseline capabilities. To achieve full long baseline capability of ALMA, it is important to understand the characteristics of atmospheric phase fluctuation at long baselines, since it is believed to be the main cause of mm/submm image degradation. For the first time, we present detailed properties of atmospheric phase fluctuation at mm/submm wavelength from baselines up to 15 km in length. Atmospheric phase fluctuation increases as a function of baseline length with a power-law slope close to 0.6, and many of the data display a shallower slope (02.-03) at baseline length greater than about 15 km. Some of the data, on the other hand, show a single slope up to the maximum baseline length of around 15 km. The phase correction method based on water vapor radiometers (WVRs) works well, especially for cases with precipitable water vapor (PWV) greater than 1 mm, typically yielding a 50% decrease or more in the degree of phase fluctuation. However, signicant amount of atmospheric phase fluctuation still remains after the WVR phase correction: about 200 micron in rms excess path length (rms phase fluctuation in unit of length) even at PWV less than 1 mm. This result suggests the existence of other non-water-vapor sources of phase fluctuation. and emphasizes the need for additional phase correction methods, such as band-to-band and/or fast switching.

  9. Habitable zones around low mass stars and the search for extraterrestrial life.

    PubMed

    Kasting, J F

    1997-06-01

    Habitable planets are likely to exist around stars not too different from the Sun if current theories about terrestrial climate evolution are correct. Some of these planets may have evolved life, and some of the inhabited planets may have evolved O2-rich atmospheres. Such atmospheres could be detected spectroscopically on planets around nearby stars using a space-based interferometer to search for the 9.6 micron band of O3. Planets with O2-rich atmospheres that lie within the habitable zone around their parent star are, in all probability, inhabited.

  10. Role of oceanic air bubbles in atmospheric correction of ocean color imagery.

    PubMed

    Yan, Banghua; Chen, Bingquan; Stamnes, Knut

    2002-04-20

    Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere--ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.

  11. Role of oceanic air bubbles in atmospheric correction of ocean color imagery

    NASA Astrophysics Data System (ADS)

    Yan, Banghua; Chen, Bingquan; Stamnes, Knut

    2002-04-01

    Ocean color is the radiance that emanates from the ocean because of scattering by chlorophyll pigments and particles of organic and inorganic origin. Air bubbles in the ocean also scatter light and thus contribute to the water-leaving radiance. This additional water-leaving radiance that is due to oceanic air bubbles could violate the black pixel assumption at near-infrared wavelengths and be attributed to chlorophyll in the visible. Hence, the accuracy of the atmospheric correction required for the retrieval of ocean color from satellite measurements is impaired. A comprehensive radiative transfer code for the coupled atmosphere-ocean system is employed to assess the effect of oceanic air bubbles on atmospheric correction of ocean color imagery. This effect is found to depend on the wavelength-dependent optical properties of oceanic air bubbles as well as atmospheric aerosols.

  12. Impact of MODIS SWIR Band Calibration Improvements on Level-3 Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Wald, Andrew; Levy, Robert; Angal, Amit; Geng, Xu; Xiong, Jack; Hoffman, Kurt

    2016-01-01

    The spectral reflectance measured by the MODIS reflective solar bands (RSB) is used for retrieving many atmospheric science products. The accuracy of these products depends on the accuracy of the calibration of the RSB. To this end, the RSB of the MODIS instruments are primarily calibrated on-orbit using regular solar diffuser (SD) observations. For lambda < 0.94 microns the SDs on-orbit bi-directional reflectance factor (BRF) change is tracked using solar diffuser stability monitor (SDSM) observations. For lambda > 0.94 microns, the MODIS Characterization Support Team (MCST) developed, in MODIS Collection 6 (C6), a time-dependent correction using observations from pseudo-invariant earth-scene targets. This correction has been implemented in C6 for the Terra MODIS 1.24 micron band over the entire mission, and for the 1.375 micron band in the forward processing. As the instruments continue to operate beyond their design lifetime of six years, a similar correction is planned for other short-wave infrared (SWIR) bands as well. MODIS SWIR bands are used in deriving atmosphere products, including aerosol optical thickness, atmospheric total column water vapor, cloud fraction and cloud optical depth. The SD degradation correction in Terra bands 5 and 26 impact the spectral radiance and therefore the retrieval of these atmosphere products. Here, we describe the corrections to Bands 5 (1.24 microns) and 26 (1.375 microns), and produce three sets (B5, B26 correction on/on, on/off, and off/off) of Terra-MODIS Level 1B (calibrated radiance product) data. By comparing products derived from these corrected and uncorrected Terra MODIS Level 1B (L1B) calibrations, dozens of L3 atmosphere products are surveyed for changes caused by the corrections, and representative results are presented. Aerosol and water vapor products show only small local changes, while some cloud products can change locally by > 10%, which is a large change.

  13. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the GOCI data. From simulations, the mean errors for bands from 412 to 555 nm were 5.2% for the SRAMS scheme and 11.5% for SSE scheme in case-I waters. From in situ match-ups, 16.5% for the SRAMS scheme and 17.6% scheme for the SSE scheme in both case-I and case-II waters. Although we applied the SRAMS algorithm to the GOCI, it can be applied to other ocean color sensors which have two NIR wavelengths.

  14. 77 FR 29586 - Sea Turtle Conservation; Shrimp Trawling Requirements; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 223 RIN 0648-BC10 Sea Turtle Conservation; Shrimp Trawling Requirements; Correction AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION...

  15. Cavity Enhanced Spectrometer performance assessment for greenhouse gas dry mole fraction measurement in humid air.

    NASA Astrophysics Data System (ADS)

    Laurent, Olivier; Yver Kwok, Camille; Guemri, Ali; Philippon, Carole; Rivier, Leonard; Ramonet, Michel

    2017-04-01

    Due to the high variability of the water vapor content in the atmosphere, the mole fraction of trace gas such as greenhouse gas (GHG) in the atmosphere is usually presented as mole fraction in dry air. In consequence, the first technology used for GHG measurement, gas chromatography or non-dispersive infra-red spectroscopy, required to dry the air sample prior to analysis at a dew point lower than -50°C. The emergence of new GHG analyzers using infrared Enhanced Cavity Spectroscopy which measure the water vapor content in the air sample, allows providing the dry mole fraction of GHG without any drying system upstream by applying appropriate correction of the water vapor effects (dilution, pressure broadening…). In the framework of ICOS, a European research infrastructure aiming to provide harmonized high precision data for advanced research on carbon cycle and GHG budgets over Europe, the Metrology Lab of the Atmosphere Thematic Centre (ATC), located at LSCE in France, is mainly dedicated to elaborating measurement protocols and evaluating performance of GHG analyzers. Among the different tests conducted to characterize the metrological performance, the Metrology Lab focuses on the water vapor correction to apply on the GHG measurement. Most of the analyzers tested at the Metrology Lab are based on Cavity Enhanced Spectroscopy measuring the ICOS mandatory species, CO2, CH4 and CO. This presentation presents the results of the performance assessment of the manufacturer built-in water vapor correction and the possible improvement. Thanks to the large number of instrument tested, the presentation provides a performance overview of the GHG analyzers deployed in the ICOS atmospheric station network. Finally the performance of the water vapor correction will be discussed in regard of the performance obtained by using a drying system.

  16. First faint dual-field off-axis observations in optical long baseline interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woillez, J.; Wizinowich, P.; Ragland, S.

    2014-03-10

    Ground-based long baseline interferometers have long been limited in sensitivity in part by the short integration periods imposed by atmospheric turbulence. The first observation fainter than this limit was performed on 2011 January 22 when the Keck Interferometer observed a K = 11.5 target, about 1 mag fainter than its K = 10.3 atmospherically imposed limit; the currently demonstrated limit is K = 12.5. These observations were made possible by the Dual-Field Phase-Referencing (DFPR) instrument, part of the NSF-funded ASTrometry and phase-Referenced Astronomy project; integration times longer than the turbulence time scale are made possible by its ability to simultaneouslymore » measure the real-time effects of the atmosphere on a nearby bright guide star and correct for it on the faint target. We present the implementation of DFPR on the Keck Interferometer. Then, we detail its on-sky performance focusing on the accuracy of the turbulence correction and the resulting fringe contrast stability.« less

  17. Simulating the Effects of an Extended Source on the Shack-Hartmann Wavefront Sensor Through Turbulence

    DTIC Science & Technology

    2011-03-01

    wavefront distortions in real time. Often, it is used to correct for optical fluctuations due to atmospheric turbulence and improve imaging system...propagation paths, the overall turbulence is relatively weak, with a Rytov number of only 0.045. The atmospheric parameters were then used to program a three...on an adaptive optics (AO) system, it enables further research on the effects of deep turbulence on AO systems and correlation based wavefront sensing

  18. UAV remote sensing atmospheric degradation image restoration based on multiple scattering APSF estimation

    NASA Astrophysics Data System (ADS)

    Qiu, Xiang; Dai, Ming; Yin, Chuan-li

    2017-09-01

    Unmanned aerial vehicle (UAV) remote imaging is affected by the bad weather, and the obtained images have the disadvantages of low contrast, complex texture and blurring. In this paper, we propose a blind deconvolution model based on multiple scattering atmosphere point spread function (APSF) estimation to recovery the remote sensing image. According to Narasimhan analytical theory, a new multiple scattering restoration model is established based on the improved dichromatic model. Then using the L0 norm sparse priors of gradient and dark channel to estimate APSF blur kernel, the fast Fourier transform is used to recover the original clear image by Wiener filtering. By comparing with other state-of-the-art methods, the proposed method can correctly estimate blur kernel, effectively remove the atmospheric degradation phenomena, preserve image detail information and increase the quality evaluation indexes.

  19. Performance of the high-resolution atmospheric model HRRR-AK for correcting geodetic observations from spaceborne radars

    PubMed Central

    Gong, W; Meyer, F J; Webley, P; Morton, D

    2013-01-01

    [1] Atmospheric phase delays are considered to be one of the main performance limitations for high-quality satellite radar techniques, especially when applied to ground deformation monitoring. Numerical weather prediction (NWP) models are widely seen as a promising tool for the mitigation of atmospheric delays as they can provide knowledge of the atmospheric conditions at the time of Synthetic Aperture Radar data acquisition. However, a thorough statistical analysis of the performance of using NWP production in radar signal correction is missing to date. This study provides a quantitative analysis of the accuracy in using operational NWP products for signal delay correction in satellite radar geodetic remote sensing. The study focuses on the temperate, subarctic, and Arctic climate regions due to a prevalence of relevant geophysical signals in these areas. In this study, the operational High Resolution Rapid Refresh over the Alaska region (HRRR-AK) model is used and evaluated. Five test sites were selected over Alaska (AK), USA, covering a wide range of climatic regimes that are commonly encountered in high-latitude regions. The performance of the HRRR-AK NWP model for correcting absolute atmospheric range delays of radar signals is assessed by comparing to radiosonde observations. The average estimation accuracy for the one-way zenith total atmospheric delay from 24 h simulations was calculated to be better than ∼14 mm. This suggests that the HRRR-AK operational products are a good data source for spaceborne geodetic radar observations atmospheric delay correction, if the geophysical signal to be observed is larger than 20 mm. PMID:25973360

  20. Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery

    NASA Technical Reports Server (NTRS)

    Fraser, Robert S.; Kaufman, Yoram J.; Ferrare, Richard A.; Mattoo, Shana

    1989-01-01

    A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 micron. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.

  1. Algorithm for atmospheric corrections of aircraft and satellite imagery

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Ferrare, R. A.; Kaufman, Y. J.; Markham, B. L.; Mattoo, S.

    1992-01-01

    A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 microns. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.

  2. A Useful Tool for Atmospheric Correction and Surface Temperature Estimation of Landsat Infrared Thermal Data

    NASA Astrophysics Data System (ADS)

    Rivalland, Vincent; Tardy, Benjamin; Huc, Mireille; Hagolle, Olivier; Marcq, Sébastien; Boulet, Gilles

    2016-04-01

    Land Surface temperature (LST) is a critical variable for studying the energy and water budgets at the Earth surface, and is a key component of many aspects of climate research and services. The Landsat program jointly carried out by NASA and USGS has been providing thermal infrared data for 40 years, but no associated LST product has been yet routinely proposed to community. To derive LST values, radiances measured at sensor-level need to be corrected for the atmospheric absorption, the atmospheric emission and the surface emissivity effect. Until now, existing LST products have been generated with multi channel methods such as the Temperature/Emissivity Separation (TES) adapted to ASTER data or the generalized split-window algorithm adapted to MODIS multispectral data. Those approaches are ill-adapted to the Landsat mono-window data specificity. The atmospheric correction methodology usually used for Landsat data requires detailed information about the state of the atmosphere. This information may be obtained from radio-sounding or model atmospheric reanalysis and is supplied to a radiative transfer model in order to estimate atmospheric parameters for a given coordinate. In this work, we present a new automatic tool dedicated to Landsat thermal data correction which improves the common atmospheric correction methodology by introducing the spatial dimension in the process. The python tool developed during this study, named LANDARTs for LANDsat Automatic Retrieval of surface Temperature, is fully automatic and provides atmospheric corrections for a whole Landsat tile. Vertical atmospheric conditions are downloaded from the ERA Interim dataset from ECMWF meteorological organization which provides them at 0.125 degrees resolution, at a global scale and with a 6-hour-time step. The atmospheric correction parameters are estimated on the atmospheric grid using the commercial software MODTRAN, then interpolated to 30m resolution. We detail the processing steps implemented in LANDARTs and propose a local and spatial validation of the LST products from Landsat dataset archive over two climatically contrasted zones: south-west France and centre of Tunisia. In both sites, long term datasets of in-situ surface temperature measurements have been compared to LST obtained for Landsat data processed by LANDARTs and filtered from clouds. This temporal comparison presents RMSE between 1.84K and 2.55K. Then, Landsat LST products are compared to ASTER kinetic surface temperature products on two synchronous dates from both zones. This comparison presents satisfactory RMSE about 2.55K with a good correlation coefficient of 0.9. Finally, a sensibility analysis to the spatial variation of parameters presents a variability reaching 2K at the Landsat image scale and confirms the improved accuracy in Landsat LST estimation linked to our spatial approach.

  3. The correction of infrasound signals for upper atmospheric winds

    NASA Technical Reports Server (NTRS)

    Mutschlecner, J. Paul; Whitaker, Rodney W.

    1990-01-01

    Infrasound waves propagate in the atmosphere by a well known mechanism produced by refraction of the waves, return to earth, and reflection at the surface into the atmosphere for subsequent bounces. A figure illustrates this phenomenon with results from a ray trace model. In this instance three rays are returned to earth from a region centered at about 50 kilometers in altitude and two from a region near 110 kilometers in altitude. The control of the wave refraction is largely dominated by the temperature-height profile and inversions; however, a major influence is also produced by the atmospheric wind profile. Another figure illustrates the considerable ray differences for rays moving in the wind direction (to the right) and in the counter direction (to the left). It obviously can be expected that infrasonic signal amplitudes will be greatly influenced by the winds in the atmosphere. The seasonal variation of the high altitude atmospheric winds is well documented. A third figure illustrates this with average statistics on the observed zonal wind in the region of 50 plus or minus 5 kilometers in altitude. The results are based upon a survey by Webb; Webb terms this parameterization the Stratospheric Circulation Index (SCI). The very strong seasonal variation has the ability to exert a major seasonal influence on infrasonic signals. The purpose here is to obtain a method for the correction of this effect.

  4. Modeling of Adaptive Optics-Based Free-Space Communications Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilks, S C; Morris, J R; Brase, J M

    2002-08-06

    We introduce a wave-optics based simulation code written for air-optic laser communications links, that includes a detailed model of an adaptive optics compensation system. We present the results obtained by this model, where the phase of a communications laser beam is corrected, after it propagates through a turbulent atmosphere. The phase of the received laser beam is measured using a Shack-Hartmann wavefront sensor, and the correction method utilizes a MEMS mirror. Strehl improvement and amount of power coupled to the receiving fiber for both 1 km horizontal and 28 km slant paths are presented.

  5. Atmospheric turbulence effects on the performance of the laser wireless power transfer system

    NASA Astrophysics Data System (ADS)

    Kapranov, V. V.; Matsak, I. S.; Tugaenko, V. Yu.; Blank, A. V.; Suhareva, N. A.

    2017-02-01

    Application of adaptive correction is necessary to control wandering of the laser beam in wireless power transfer (WPT) system. In this paper we describe experimental results of using different adaptive correction techniques for both weak and strong turbulence conditions. All experiments were performed over a 1.5 km near-horizontal atmospheric path. Some criteria for choosing parameters of adaptive correction are given.

  6. Chromatic refraction with global ozone monitoring by occultation of stars. I. Description and scintillation correction.

    PubMed

    Dalaudier, F; Kan, V; Gurvich, A S

    2001-02-20

    We describe refractive and chromatic effects, both regular and random, that occur during star occultations by the Earth's atmosphere. The scintillation that results from random density fluctuations, as well as the consequences of regular chromatic refraction, is qualitatively described. The resultant chromatic scintillation will produce random features on the Global Ozone Monitoring by Occultation of Stars (GOMOS) spectrometer, with an amplitude comparable with that of some of the real absorbing features that result from atmospheric constituents. A correction method that is based on the use of fast photometer signals is described, and its efficiency is discussed. We give a qualitative (although accurate) description of the phenomena, including numerical values when needed. Geometrical optics and the phase-screen approximation are used to keep the description simple.

  7. Improved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment

    NASA Astrophysics Data System (ADS)

    Al Shehhi, Maryam R.; Gherboudj, Imen; Zhao, Jun; Ghedira, Hosni

    2017-11-01

    This study presents a comprehensive assessment of the performance of the commonly used atmospheric correction models (NIR, SWIR, NIR-SWIR and FM) and ocean color products (OC3 and OC2) derived from MODIS images over the Arabian Gulf, Sea of Oman, and Arabian Sea. The considered atmospheric correction models have been used to derive MODIS normalized water-leaving radiances (nLw), which are compared to in situ water nLw(λ) data collected at different locations by Masdar Institute, United Arab of Emirates, and from AERONET-OC (the ocean color component of the Aerosol Robotic Network) database. From this comparison, the NIR model has been found to be the best performing model among the considered atmospheric correction models, which in turn shows disparity, especially at short wavelengths (400-500 nm) under high aerosol optical depth conditions (AOT (869) > 0.3) and over turbid waters. To reduce the error induced by these factors, a modified model taking into consideration the atmospheric and water turbidity conditions has been proposed. A turbidity index was used to identify the turbid water and a threshold of AOT (869) = 0.3 was used to identify the dusty atmosphere. Despite improved results in the MODIS nLw(λ) using the proposed approach, Chl-a models (OC3 and OC2) show low performance when compared to the in situ Chl-a measurements collected during several field campaigns organized by local, regional and international organizations. This discrepancy might be caused by the improper parametrization of these models or/and the improper selection of bands. Thus, an adaptive power fit algorithm (R2 = 0.95) has been proposed to improve the estimation of Chl-a concentration from 0.07 to 10 mg/m3 by using a new blue/red MODIS band ratio of (443,488)/645 instead of the default band ratio used for OC3(443,488)/547. The selection of this new band ratio (443,488)/645 has been based on using band 645 nm which has been found to represent both water turbidity and algal absorption.

  8. Atmospheric correction for hyperspectral ocean color sensors

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Ahmad, Z.; Franz, B. A.; Knobelspiesse, K. D.

    2017-12-01

    NASA's heritage Atmospheric Correction (AC) algorithm for multi-spectral ocean color sensors is inadequate for the new generation of spaceborne hyperspectral sensors, such as NASA's first hyperspectral Ocean Color Instrument (OCI) onboard the anticipated Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. The AC process must estimate and remove the atmospheric path radiance contribution due to the Rayleigh scattering by air molecules and by aerosols from the measured top-of-atmosphere (TOA) radiance. Further, it must also compensate for the absorption by atmospheric gases and correct for reflection and refraction of the air-sea interface. We present and evaluate an improved AC for hyperspectral sensors beyond the heritage approach by utilizing the additional spectral information of the hyperspectral sensor. The study encompasses a theoretical radiative transfer sensitivity analysis as well as a practical application of the Hyperspectral Imager for the Coastal Ocean (HICO) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors.

  9. Comparison of Atmospheric Parameters Derived from In-Situ and Hyper-/Multispectral Remote Sensing Data of Beautiful Bavarian Lakes

    NASA Astrophysics Data System (ADS)

    Riedel, S.; Gege, P.; Schneider, M.; Pfug, B.; Oppelt, N.

    2016-08-01

    Atmospheric correction is a critical step and can be a limiting factor in the extraction of aquatic ecosystem parameters from remote sensing data of coastal and lake waters. Atmospheric correction models commonly in use for open ocean water and land surfaces can lead to large errors when applied to hyperspectral images taken from satellite or aircraft. The main problems arise from uncertainties in aerosol parameters and neglecting the adjacency effect, which originates from multiple scattering of upwelling radiance from the surrounding land. To better understand the challenges for developing an atmospheric correction model suitable for lakes, we compare atmospheric parameters derived from Sentinel- 2A and airborne hyperspectral data (HySpex) of two Bavarian lakes (Klostersee, Lake Starnberg) with in-situ measurements performed with RAMSES and Ibsen spectrometer systems and a Microtops sun photometer.

  10. Combining Statistics and Physics to Improve Climate Downscaling

    NASA Astrophysics Data System (ADS)

    Gutmann, E. D.; Eidhammer, T.; Arnold, J.; Nowak, K.; Clark, M. P.

    2017-12-01

    Getting useful information from climate models is an ongoing problem that has plagued climate science and hydrologic prediction for decades. While it is possible to develop statistical corrections for climate models that mimic current climate almost perfectly, this does not necessarily guarantee that future changes are portrayed correctly. In contrast, convection permitting regional climate models (RCMs) have begun to provide an excellent representation of the regional climate system purely from first principles, providing greater confidence in their change signal. However, the computational cost of such RCMs prohibits the generation of ensembles of simulations or long time periods, thus limiting their applicability for hydrologic applications. Here we discuss a new approach combining statistical corrections with physical relationships for a modest computational cost. We have developed the Intermediate Complexity Atmospheric Research model (ICAR) to provide a climate and weather downscaling option that is based primarily on physics for a fraction of the computational requirements of a traditional regional climate model. ICAR also enables the incorporation of statistical adjustments directly within the model. We demonstrate that applying even simple corrections to precipitation while the model is running can improve the simulation of land atmosphere feedbacks in ICAR. For example, by incorporating statistical corrections earlier in the modeling chain, we permit the model physics to better represent the effect of mountain snowpack on air temperature changes.

  11. An airborne sunphotometer for use with helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walthall, C.L.; Halthore, R.N.; Elman, G.C.

    1996-04-01

    One solution for atmospheric correction and calibration of remotely sensed data from airborne platforms is the use of radiometrically calibrated instruments, sunphotometers and an atmospheric radiative transfer model. Sunphotometers are used to measure the direct solar irradiance at the level at which they are operating and the data are used in the computation of atmospheric optical depth. Atmospheric optical depth is an input to atmospheric correction algorithms that convert at-sensor radiance to required surface properties such as reflectance and temperature. Airborne sun photometry has thus far seen limited use and has not been used with a helicopter platform. The hardware,more » software, calibration and deployment of an automatic sun-tracking sunphotometer specifically designed for use on a helicopter are described. Sample data sets taken with the system during the 1994 Boreal Ecosystem and Atmosphere Study (BOREAS) are presented. The addition of the sun photometer to the helicopter system adds another tool for monitoring the environment and makes the helicopter remote sensing system capable of collecting calibrated, atmospherically corrected data independent of the need for measurements from other systems.« less

  12. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance

    USGS Publications Warehouse

    Huang, Chengquan; Wylie, Bruce K.; Yang, Limin; Homer, Collin G.; Zylstra, G.

    2002-01-01

    A new tasselled cap transformation based on Landsat 7 at-satellite reflectance was developed. This transformation is most appropriate for regional applications where atmospheric correction is not feasible. The brightness, greenness and wetness of the derived transformation collectively explained over 97% of the spectral variance of the individual scenes used in this study.

  13. 78 FR 21911 - Proposed Information Collection; Comment Request; Fish and Seafood Promotion; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Proposed Information Collection; Comment Request; Fish and Seafood Promotion; Correction AGENCY: National Oceanic and Atmospheric... Federal Register (78 FR 20092) on the proposed information collection, Fish and Seafood Promotion. The...

  14. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Read, Peter; Lewis, Stephen; Steele, Liam; Holmes, James; Valeanu, Alexandru

    2016-07-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office. The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") at the following URL: http://macdap.physics.ox.ac.uk/ MACDA is an ongoing collaborative project, and work is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust and water ice.

  15. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patrick Matthews

    2011-07-01

    Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: • 05-20-02, Evaporation Pond • 05-23-05, Atmospheric Test Site - Able • 05-45-04, 306 GZ Rad Contaminated Area • 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viablemore » CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 106 includes the following activities: • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine internal dose rates and the presence of contaminants of concern. • If contaminants of concern are present, collect additional samples to define the extent of the contamination and determine the area where the total effective dose at the site exceeds final action levels (i.e., corrective action boundary). • Collect samples of investigation-derived waste, as needed, for waste management purposes.« less

  16. Retrievals of atmospheric columnar carbon dioxide and methane from GOSAT observations with photon path-length probability density function (PPDF) method

    NASA Astrophysics Data System (ADS)

    Bril, A.; Oshchepkov, S.; Yokota, T.; Yoshida, Y.; Morino, I.; Uchino, O.; Belikov, D. A.; Maksyutov, S. S.

    2014-12-01

    We retrieved the column-averaged dry air mole fraction of atmospheric carbon dioxide (XCO2) and methane (XCH4) from the radiance spectra measured by Greenhouse gases Observing SATellite (GOSAT) for 48 months of the satellite operation from June 2009. Recent version of the Photon path-length Probability Density Function (PPDF)-based algorithm was used to estimate XCO2 and optical path modifications in terms of PPDF parameters. We also present results of numerical simulations for over-land observations and "sharp edge" tests for sun-glint mode to discuss the algorithm accuracy under conditions of strong optical path modification. For the methane abundance retrieved from 1.67-µm-absorption band we applied optical path correction based on PPDF parameters from 1.6-µm carbon dioxide (CO2) absorption band. Similarly to CO2-proxy technique, this correction assumes identical light path modifications in 1.67-µm and 1.6-µm bands. However, proxy approach needs pre-defined XCO2 values to compute XCH4, whilst the PPDF-based approach does not use prior assumptions on CO2 concentrations.Post-processing data correction for XCO2 and XCH4 over land observations was performed using regression matrix based on multivariate analysis of variance (MANOVA). The MANOVA statistics was applied to the GOSAT retrievals using reference collocated measurements of Total Carbon Column Observing Network (TCCON). The regression matrix was constructed using the parameters that were found to correlate with GOSAT-TCCON discrepancies: PPDF parameters α and ρ, that are mainly responsible for shortening and lengthening of the optical path due to atmospheric light scattering; solar and satellite zenith angles; surface pressure; surface albedo in three GOSAT short wave infrared (SWIR) bands. Application of the post-correction generally improves statistical characteristics of the GOSAT-TCCON correlation diagrams for individual stations as well as for aggregated data.In addition to the analysis of the observations over 12 TCCON stations we estimated temporal and spatial trends (interannual XCO2 and XCH4 variations, seasonal cycles, latitudinal gradients) and compared them with modeled results as well as with similar estimates from other GOSAT retrievals.

  17. In-Situ Cameras for Radiometric Correction of Remotely Sensed Data

    NASA Astrophysics Data System (ADS)

    Kautz, Jess S.

    The atmosphere distorts the spectrum of remotely sensed data, negatively affecting all forms of investigating Earth's surface. To gather reliable data, it is vital that atmospheric corrections are accurate. The current state of the field of atmospheric correction does not account well for the benefits and costs of different correction algorithms. Ground spectral data are required to evaluate these algorithms better. This dissertation explores using cameras as radiometers as a means of gathering ground spectral data. I introduce techniques to implement a camera systems for atmospheric correction using off the shelf parts. To aid the design of future camera systems for radiometric correction, methods for estimating the system error prior to construction, calibration and testing of the resulting camera system are explored. Simulations are used to investigate the relationship between the reflectance accuracy of the camera system and the quality of atmospheric correction. In the design phase, read noise and filter choice are found to be the strongest sources of system error. I explain the calibration methods for the camera system, showing the problems of pixel to angle calibration, and adapting the web camera for scientific work. The camera system is tested in the field to estimate its ability to recover directional reflectance from BRF data. I estimate the error in the system due to the experimental set up, then explore how the system error changes with different cameras, environmental set-ups and inversions. With these experiments, I learn about the importance of the dynamic range of the camera, and the input ranges used for the PROSAIL inversion. Evidence that the camera can perform within the specification set for ELM correction in this dissertation is evaluated. The analysis is concluded by simulating an ELM correction of a scene using various numbers of calibration targets, and levels of system error, to find the number of cameras needed for a full-scale implementation.

  18. A technique for correcting ERTS data for solar and atmospheric effects. [Michigan test site

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Peacock, K.; Shah, N. J.

    1974-01-01

    The author has identified the following significant results. Based on processing ERTS CCTs and ground truth measurements collected on Michigan test site for January through June 1973 the following results are reported: (1) atmospheric transmittance varies from: 70 to 85% in band 4, 77 to 90% in band 5, 80 to 94% in band 6, and 84 to 97% in band 7 for one air mass; (2) a simple technique was established to determine atmospheric scattering seen by ERTS-1 from ground-based measurements of sky radiance. For March this scattering was found to be equivalent to that produced by a target having a reflectance of 11% in band 4, 5% in band 5, 3% in band 6, and 1% in band 7; (3) computer ability to classify targets under various atmospheric conditions was determined. Classification accuracy on some targets (i.e. bare soil, tended grass, etc.) hold up even under the most severe atmospheres encountered, while performance on other targets (trees, urban, rangeland, etc.) degrades rapidly when atmospheric conditions change by the smallest amount.

  19. 78 FR 6298 - Endangered and Threatened Species; Take of Anadromous Fish; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC424 Endangered and Threatened Species; Take of Anadromous Fish; Correction AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of receipt of a...

  20. Atmospheric correction over coastal waters using multilayer neural networks

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Li, W.; Charles, G.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. H.

    2017-12-01

    Standard atmospheric correction (AC) algorithms work well in open ocean areas where the water inherent optical properties (IOPs) are correlated with pigmented particles. However, the IOPs of turbid coastal waters may independently vary with pigmented particles, suspended inorganic particles, and colored dissolved organic matter (CDOM). In turbid coastal waters standard AC algorithms often exhibit large inaccuracies that may lead to negative water-leaving radiances (Lw) or remote sensing reflectance (Rrs). We introduce a new atmospheric correction algorithm for coastal waters based on a multilayer neural network (MLNN) machine learning method. We use a coupled atmosphere-ocean radiative transfer model to simulate the Rayleigh-corrected radiance (Lrc) at the top of the atmosphere (TOA) and the Rrs just above the surface simultaneously, and train a MLNN to derive the aerosol optical depth (AOD) and Rrs directly from the TOA Lrc. The SeaDAS NIR algorithm, the SeaDAS NIR/SWIR algorithm, and the MODIS version of the Case 2 regional water - CoastColour (C2RCC) algorithm are included in the comparison with AERONET-OC measurements. The results show that the MLNN algorithm significantly improves retrieval of normalized Lw in blue bands (412 nm and 443 nm) and yields minor improvements in green and red bands. These results indicate that the MLNN algorithm is suitable for application in turbid coastal waters. Application of the MLNN algorithm to MODIS Aqua images in several coastal areas also shows that it is robust and resilient to contamination due to sunglint or adjacency effects of land and cloud edges. The MLNN algorithm is very fast once the neural network has been properly trained and is therefore suitable for operational use. A significant advantage of the MLNN algorithm is that it does not need SWIR bands, which implies significant cost reduction for dedicated OC missions. A recent effort has been made to extend the MLNN AC algorithm to extreme atmospheric conditions (i.e. heavy polluted continental aerosols) over coastal areas by including additional aerosol and ocean models to generate the training dataset. Preliminary tests show very good results. Results of applying the extended MLNN algorithm to VIIRS images over the Yellow Sea and East China Sea areas with extreme atmospheric and marine conditions will be provided.

  1. Evaluation of GLI Reflectance and Vegetation Indices With MODIS Products

    DTIC Science & Technology

    2005-07-25

    collective picture of a warming world and other changes in the climate system . Vegetation over land surfaces contains carbon that is re- leased to atmosphere...irradiance based on Thuiller 2002 (Thuiller et al., 2003), Lsat[W/m2/str/µm] is GLI observed radiance, and θs[rad] is solor zenith angle. The GLI Project...longer wavelength than 2500nm, MODTRAN4.0 IR solor irradiance is used. GLI atmospheric correction for land is conducted for Rayleigh scattering and

  2. E-Collaboration for Earth Observation (E-CEO) with the example of Contest #3 that focuses on the Atmospheric Correction of Ocean Colour data

    NASA Astrophysics Data System (ADS)

    Lavender, Samantha; Brito, Fabrice; Aas, Christina; Casu, Francesco; Ribeiro, Rita; Farres, Jordi

    2014-05-01

    Data challenges are becoming the new method to promote innovation within data-intensive applications; building or evolving user communities and potentially developing sustainable commercial services. These can utilise the vast amount of information (both in scope and volume) that's available online, and profits from reduced processing costs. Data Challenges are also closely related to the recent paradigm shift towards e-Science, also referred to as "data-intensive science'. The E-CEO project aims to deliver a collaborative platform that, through Data Challenge Contests, will improve the adoption and outreach of new applications and methods to processes Earth Observation (EO) data. Underneath, the backbone must be a common environment where the applications can be developed, deployed and executed. Then, the results need to be easily published in a common visualization platform for their effective validation, evaluation and transparent peer comparisons. Contest #3 is based around the atmospheric correction (AC) of ocean colour data with a particular focus on the use of auxiliary data files for processing Level 1 (Top of Atmosphere, TOA, calibrated radiances/reflectances) to Level 2 products (Bottom of Atmosphere, BOA, calibrated radiances/reflectance and derived products). Scientific researchers commonly accept the auxiliary inputs that they've been provided with and/or use the climatological data that accompanies the processing software; often because it can be difficult to obtain multiple data sources and convert them into a format the software accepts. Therefore, it's proposed to compare various ocean colour AC approaches and in the process study the uncertainties associated with using different meteorological auxiliary products for the processing of Medium Resolution Imaging Spectrometer (MERIS) i.e. the sensitivity of different atmospheric correction input assumptions.

  3. An End-to-End simulator for the development of atmospheric corrections and temperature - emissivity separation algorithms in the TIR spectral domain

    NASA Astrophysics Data System (ADS)

    Rock, Gilles; Fischer, Kim; Schlerf, Martin; Gerhards, Max; Udelhoven, Thomas

    2017-04-01

    The development and optimization of image processing algorithms requires the availability of datasets depicting every step from earth surface to the sensor's detector. The lack of ground truth data obliges to develop algorithms on simulated data. The simulation of hyperspectral remote sensing data is a useful tool for a variety of tasks such as the design of systems, the understanding of the image formation process, and the development and validation of data processing algorithms. An end-to-end simulator has been set up consisting of a forward simulator, a backward simulator and a validation module. The forward simulator derives radiance datasets based on laboratory sample spectra, applies atmospheric contributions using radiative transfer equations, and simulates the instrument response using configurable sensor models. This is followed by the backward simulation branch, consisting of an atmospheric correction (AC), a temperature and emissivity separation (TES) or a hybrid AC and TES algorithm. An independent validation module allows the comparison between input and output dataset and the benchmarking of different processing algorithms. In this study, hyperspectral thermal infrared scenes of a variety of surfaces have been simulated to analyze existing AC and TES algorithms. The ARTEMISS algorithm was optimized and benchmarked against the original implementations. The errors in TES were found to be related to incorrect water vapor retrieval. The atmospheric characterization could be optimized resulting in increasing accuracies in temperature and emissivity retrieval. Airborne datasets of different spectral resolutions were simulated from terrestrial HyperCam-LW measurements. The simulated airborne radiance spectra were subjected to atmospheric correction and TES and further used for a plant species classification study analyzing effects related to noise and mixed pixels.

  4. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Yu, Yunyue; Wick, Gary A.; Schluessel, Peter; Reynolds, Richard W.

    1994-01-01

    A new satellite sea surface temperature (SST) algorithm is developed that uses nearly coincident measurements from the microwave special sensor microwave imager (SSM/I) to correct for atmospheric moisture attenuation of the infrared signal from the advanced very high resolution radiometer (AVHRR). This new SST algorithm is applied to AVHRR imagery from the South Pacific and Norwegian seas, which are then compared with simultaneous in situ (ship based) measurements of both skin and bulk SST. In addition, an SST algorithm using a quadratic product of the difference between the two AVHRR thermal infrared channels is compared with the in situ measurements. While the quadratic formulation provides a considerable improvement over the older cross product (CPSST) and multichannel (MCSST) algorithms, the SSM/I corrected SST (called the water vapor or WVSST) shows overall smaller errors when compared to both the skin and bulk in situ SST observations. Applied to individual AVHRR images, the WVSST reveals an SST difference pattern (CPSST-WVSST) similar in shape to the water vapor structure while the CPSST-quadratic SST difference appears unrelated in pattern to the nearly coincident water vapor pattern. An application of the WVSST to week-long composites of global area coverage (GAC) AVHRR data demonstrates again the manner in which the WVSST corrects the AVHRR for atmospheric moisture attenuation. By comparison the quadratic SST method underestimates the SST corrections in the lower latitudes and overestimates the SST in th e higher latitudes. Correlations between the AVHRR thermal channel differences and the SSM/I water vapor demonstrate the inability of the channel difference to represent water vapor in the midlatitude and high latitudes during summer. Compared against drifting buoy data the WVSST and the quadratic SST both exhibit the same general behavior with the relatively small differences with the buoy temperatures.

  5. A new version of Stochastic-parallel-gradient-descent algorithm (SPGD) for phase correction of a distorted orbital angular momentum (OAM) beam

    NASA Astrophysics Data System (ADS)

    Jiao Ling, LIn; Xiaoli, Yin; Huan, Chang; Xiaozhou, Cui; Yi-Lin, Guo; Huan-Yu, Liao; Chun-YU, Gao; Guohua, Wu; Guang-Yao, Liu; Jin-KUn, Jiang; Qing-Hua, Tian

    2018-02-01

    Atmospheric turbulence limits the performance of orbital angular momentum-based free-space optical communication (FSO-OAM) system. In order to compensate phase distortion induced by atmospheric turbulence, wavefront sensorless adaptive optics (WSAO) has been proposed and studied in recent years. In this paper a new version of SPGD called MZ-SPGD, which combines the Z-SPGD based on the deformable mirror influence function and the M-SPGD based on the Zernike polynomials, is proposed. Numerical simulations show that the hybrid method decreases convergence times markedly but can achieve the same compensated effect compared to Z-SPGD and M-SPGD.

  6. Correcting Satellite Image Derived Surface Model for Atmospheric Effects

    NASA Technical Reports Server (NTRS)

    Emery, William; Baldwin, Daniel

    1998-01-01

    This project was a continuation of the project entitled "Resolution Earth Surface Features from Repeat Moderate Resolution Satellite Imagery". In the previous study, a Bayesian Maximum Posterior Estimate (BMPE) algorithm was used to obtain a composite series of repeat imagery from the Advanced Very High Resolution Radiometer (AVHRR). The spatial resolution of the resulting composite was significantly greater than the 1 km resolution of the individual AVHRR images. The BMPE algorithm utilized a simple, no-atmosphere geometrical model for the short-wave radiation budget at the Earth's surface. A necessary assumption of the algorithm is that all non geometrical parameters remain static over the compositing period. This assumption is of course violated by temporal variations in both the surface albedo and the atmospheric medium. The effect of the albedo variations is expected to be minimal since the variations are on a fairly long time scale compared to the compositing period, however, the atmospheric variability occurs on a relatively short time scale and can be expected to cause significant errors in the surface reconstruction. The current project proposed to incorporate an atmospheric correction into the BMPE algorithm for the purpose of investigating the effects of a variable atmosphere on the surface reconstructions. Once the atmospheric effects were determined, the investigation could be extended to include corrections various cloud effects, including short wave radiation through thin cirrus clouds. The original proposal was written for a three year project, funded one year at a time. The first year of the project focused on developing an understanding of atmospheric corrections and choosing an appropriate correction model. Several models were considered and the list was narrowed to the two best suited. These were the 5S and 6S shortwave radiation models developed at NASA/GODDARD and tested extensively with data from the AVHRR instrument. Although the 6S model was a successor to the 5S and slightly more advanced, the 5S was selected because outputs from the individual components comprising the short-wave radiation budget were more easily separated. The separation was necessary since both the 5S and 6S did not include geometrical corrections for terrain, a fundamental constituent of the BMPE algorithm. The 5S correction code was incorporated into the BMPE algorithm and many sensitivity studies were performed.

  7. 77 FR 48106 - Sea Turtle Conservation; Shrimp and Summer Flounder Trawling Requirements; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-13

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration 50 CFR Part 223 [Docket No. 120427423-2423-02] RIN 0648-AW93 Sea Turtle Conservation; Shrimp and Summer Flounder Trawling Requirements; Correction AGENCY: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration...

  8. Simulation results for a finite element-based cumulative reconstructor

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny

    2017-10-01

    Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.

  9. Numerical analysis of wavefront aberration correction using multielectrode electrowetting-based devices.

    PubMed

    Zohrabi, Mo; Cormack, Robert H; Mccullough, Connor; Supekar, Omkar D; Gibson, Emily A; Bright, Victor M; Gopinath, Juliet T

    2017-12-11

    We present numerical simulations of multielectrode electrowetting devices used in a novel optical design to correct wavefront aberration. Our optical system consists of two multielectrode devices, preceded by a single fixed lens. The multielectrode elements function as adaptive optical devices that can be used to correct aberrations inherent in many imaging setups, biological samples, and the atmosphere. We are able to accurately simulate the liquid-liquid interface shape using computational fluid dynamics. Ray tracing analysis of these surfaces shows clear evidence of aberration correction. To demonstrate the strength of our design, we studied three different input aberrations mixtures that include astigmatism, coma, trefoil, and additional higher order aberration terms, with amplitudes as large as one wave at 633 nm.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  11. Inter-model Diversity of ENSO simulation and its relation to basic states

    NASA Astrophysics Data System (ADS)

    Kug, J. S.; Ham, Y. G.

    2016-12-01

    In this study, a new methodology is developed to improve the climate simulation of state-of-the-art coupledglobal climate models (GCMs), by a postprocessing based on the intermodel diversity. Based on the closeconnection between the interannual variability and climatological states, the distinctive relation between theintermodel diversity of the interannual variability and that of the basic state is found. Based on this relation,the simulated interannual variabilities can be improved, by correcting their climatological bias. To test thismethodology, the dominant intermodel difference in precipitation responses during El Niño-SouthernOscillation (ENSO) is investigated, and its relationship with climatological state. It is found that the dominantintermodel diversity of the ENSO precipitation in phase 5 of the Coupled Model Intercomparison Project(CMIP5) is associated with the zonal shift of the positive precipitation center during El Niño. This dominantintermodel difference is significantly correlated with the basic states. The models with wetter (dryer) climatologythan the climatology of the multimodel ensemble (MME) over the central Pacific tend to shift positiveENSO precipitation anomalies to the east (west). Based on the model's systematic errors in atmosphericENSO response and bias, the models with better climatological state tend to simulate more realistic atmosphericENSO responses.Therefore, the statistical method to correct the ENSO response mostly improves the ENSO response. Afterthe statistical correction, simulating quality of theMMEENSO precipitation is distinctively improved. Theseresults provide a possibility that the present methodology can be also applied to improving climate projectionand seasonal climate prediction.

  12. The Airborne Ocean Color Imager - System description and image processing

    NASA Technical Reports Server (NTRS)

    Wrigley, Robert C.; Slye, Robert E.; Klooster, Steven A.; Freedman, Richard S.; Carle, Mark; Mcgregor, Lloyd F.

    1992-01-01

    The Airborne Ocean Color Imager was developed as an aircraft instrument to simulate the spectral and radiometric characteristics of the next generation of satellite ocean color instrumentation. Data processing programs have been developed as extensions of the Coastal Zone Color Scanner algorithms for atmospheric correction and bio-optical output products. The latter include several bio-optical algorithms for estimating phytoplankton pigment concentration, as well as one for the diffuse attenuation coefficient of the water. Additional programs have been developed to geolocate these products and remap them into a georeferenced data base, using data from the aircraft's inertial navigation system. Examples illustrate the sequential data products generated by the processing system, using data from flightlines near the mouth of the Mississippi River: from raw data to atmospherically corrected data, to bio-optical data, to geolocated data, and, finally, to georeferenced data.

  13. High Resolution Imaging Using Phase Retrieval. Volume 2

    DTIC Science & Technology

    1991-10-01

    aberrations of the telescope. It will also correct aberrations due to atmospheric turbulence for a ground- based telescope, and can be used with several other...retrieval algorithm, based on the Ayers/Dainty blind deconvolution algorithm, was also developed. A new methodology for exploring the uniqueness of phase...Simulation Experiments ..................... 42 3.3.1 Initial Simulations with Noisy Modulus Data ..... 45 3.3.2 Simulations of a Space- Based Amplitude

  14. FORTRAN program for analyzing ground-based radar data: Usage and derivations, version 6.2

    NASA Technical Reports Server (NTRS)

    Haering, Edward A., Jr.; Whitmore, Stephen A.

    1995-01-01

    A postflight FORTRAN program called 'radar' reads and analyzes ground-based radar data. The output includes position, velocity, and acceleration parameters. Air data parameters are also provided if atmospheric characteristics are input. This program can read data from any radar in three formats. Geocentric Cartesian position can also be used as input, which may be from an inertial navigation or Global Positioning System. Options include spike removal, data filtering, and atmospheric refraction corrections. Atmospheric refraction can be corrected using the quick White Sands method or the gradient refraction method, which allows accurate analysis of very low elevation angle and long-range data. Refraction properties are extrapolated from surface conditions, or a measured profile may be input. Velocity is determined by differentiating position. Accelerations are determined by differentiating velocity. This paper describes the algorithms used, gives the operational details, and discusses the limitations and errors of the program. Appendices A through E contain the derivations for these algorithms. These derivations include an improvement in speed to the exact solution for geodetic altitude, an improved algorithm over earlier versions for determining scale height, a truncation algorithm for speeding up the gradient refraction method, and a refinement of the coefficients used in the White Sands method for Edwards AFB, California. Appendix G contains the nomenclature.

  15. An evaluation of atmospheric corrections to advanced very high resolution radiometer data

    USGS Publications Warehouse

    Meyer, David; Hood, Joy J.

    1993-01-01

    A data set compiled to analyze vegetation indices is used to evaluate the effect of atmospheric correction to AVHRR measurement in the solar spectrum. Such corrections include cloud screening and "clear sky" corrections. We used the "clouds from AVHRR" (CLAVR) method for cloud detection and evaluated its performance over vegetated targets. Clear sky corrections, designed to reduce the effects of molecular scattering and absorption due to ozone, water vapor, carbon dioxide, and molecular oxygen, were applied to data values determine to be cloud free. Generally, it was found that the screening and correction of the AVHRR data did not affect the maximum NDVI compositing process adversely, while at the same time improving estimates of the land-surface radiances over a compositing period.

  16. Studies of atmospheric refraction effects on laser data

    NASA Technical Reports Server (NTRS)

    Dunn, P. J.; Pearce, W. A.; Johnson, T. S.

    1982-01-01

    The refraction effect from three perspectives was considered. An analysis of the axioms on which the accepted correction algorithms were based was the first priority. The integrity of the meteorological measurements on which the correction model is based was also considered and a large quantity of laser observations was processed in an effort to detect any serious anomalies in them. The effect of refraction errors on geodetic parameters estimated from laser data using the most recent analysis procedures was the focus of the third element of study. The results concentrate on refraction errors which were found to be critical in the eventual use of the data for measurements of crustal dynamics.

  17. Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States

    USGS Publications Warehouse

    Hay, L.E.; Clark, M.P.

    2003-01-01

    This paper examines the hydrologic model performance in three snowmelt-dominated basins in the western United States to dynamically- and statistically downscaled output from the National Centers for Environmental Prediction/National Center for Atmospheric Research Reanalysis (NCEP). Runoff produced using a distributed hydrologic model is compared using daily precipitation and maximum and minimum temperature timeseries derived from the following sources: (1) NCEP output (horizontal grid spacing of approximately 210 km); (2) dynamically downscaled (DDS) NCEP output using a Regional Climate Model (RegCM2, horizontal grid spacing of approximately 52 km); (3) statistically downscaled (SDS) NCEP output; (4) spatially averaged measured data used to calibrate the hydrologic model (Best-Sta) and (5) spatially averaged measured data derived from stations located within the area of the RegCM2 model output used for each basin, but excluding Best-Sta set (All-Sta). In all three basins the SDS-based simulations of daily runoff were as good as runoff produced using the Best-Sta timeseries. The NCEP, DDS, and All-Sta timeseries were able to capture the gross aspects of the seasonal cycles of precipitation and temperature. However, in all three basins, the NCEP-, DDS-, and All-Sta-based simulations of runoff showed little skill on a daily basis. When the precipitation and temperature biases were corrected in the NCEP, DDS, and All-Sta timeseries, the accuracy of the daily runoff simulations improved dramatically, but, with the exception of the bias-corrected All-Sta data set, these simulations were never as accurate as the SDS-based simulations. This need for a bias correction may be somewhat troubling, but in the case of the large station-timeseries (All-Sta), the bias correction did indeed 'correct' for the change in scale. It is unknown if bias corrections to model output will be valid in a future climate. Future work is warranted to identify the causes for (and removal of) systematic biases in DDS simulations, and improve DDS simulations of daily variability in local climate. Until then, SDS based simulations of runoff appear to be the safer downscaling choice.

  18. Precision in ground-based solar polarimetry: simulating the role of adaptive optics.

    PubMed

    Krishnappa, Nagaraju; Feller, Alex

    2012-11-20

    Accurate measurement of polarization in spectral lines is important for the reliable inference of magnetic fields on the Sun. For ground-based observations, polarimetric precision is severely limited by the presence of Earth's atmosphere. Atmospheric turbulence (seeing) produces signal fluctuations, which combined with the nonsimultaneous nature of the measurement process cause intermixing of the Stokes parameters known as seeing-induced polarization cross talk. Previous analysis of this effect [Appl. Opt. 43, 3817 (2004)] suggests that cross talk is reduced not only with increase in modulation frequency but also by compensating the seeing-induced image aberrations by an adaptive optics (AO) system. However, in those studies the effect of higher-order image aberrations than those corrected by the AO system was not taken into account. We present in this paper an analysis of seeing-induced cross talk in the presence of higher-order image aberrations through numerical simulation. In this analysis we find that the amount of cross talk among Stokes parameters is practically independent of the degree of image aberration corrected by an AO system. However, higher-order AO corrections increase the signal-to-noise ratio by reducing the seeing caused image smearing. Further we find, in agreement with the earlier results, that cross talk is reduced considerably by increasing the modulation frequency.

  19. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  20. A potential new proxy for paleo-atmospheric pO2 from soil carbonate-hosted fluid inclusions applied to pristine Chinle soils from the Petrified Forest 1A core

    NASA Astrophysics Data System (ADS)

    Schaller, M. F.; Pettitt, E.; Knobbe, T.

    2017-12-01

    Proxies for the concentration of O2 in the ancient atmosphere are scarce. We have developed a potential new proxy for ancient atmospheric O2 content based on soil carbonate-hosted fluid inclusions. Soils are in continuous atmospheric communication, and relatively static equilibration between soil gas and atmospheric gas during formation, such that a predictable amount of atmosphere infiltrates a soil. This atmosphere is trapped by inclusions during carbonate precipitation. Here we show that carbonate hosted fluid inclusions are faithful recorders of soil gas concentrations and isotope ratios, and specifically that soil O2 partial pressures can be derived from the total gas contents of these inclusions. Using carbonate nodules from a span of depths in a modern vertisol near Dallas, TX, as a test case, we employ an online crushing technique to liberate gases from soil carbonates into a small custom-built quadrupole mass spectrometer where all gases are measured in real time. We quantify the total oxygen content of the gas using a matrix-matched calibration, and define each species as a partial pressure of the total gas released from the nodule. Atmospheric pO2 is very simply derived from the soil-nodule partial pressures by accounting for the static productivity of the soil (using a small correction based on the CO2 concentration). When corrected for aqueous solubility using Henry's Law, these soil-carbonate hosted gas results reveal soil O2 concentrations that are comparable to modern-day dry atmosphere. Armed with this achievement in modern soils, and as a test on the applicability of the approach to ancient samples, we successfully apply the new proxy to nodules from the Late Triassic Chinle formation from the Petrified Forest National Park Core, taken as part of the Colorado Plateau Coring Project. Analysis of soil O2 from soil gas monitoring wells paired with measurements from contemporaneous soil carbonate nodules is needed to precisely calibrate the new proxy.

  1. A Dynamical Downscaling Approach with GCM Bias Corrections and Spectral Nudging

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Yang, Z.

    2013-12-01

    To reduce the biases in the regional climate downscaling simulations, a dynamical downscaling approach with GCM bias corrections and spectral nudging is developed and assessed over North America. Regional climate simulations are performed with the Weather Research and Forecasting (WRF) model embedded in the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). To reduce the GCM biases, the GCM climatological means and the variances of interannual variations are adjusted based on the National Centers for Environmental Prediction-NCAR global reanalysis products (NNRP) before using them to drive WRF which is the same as our previous method. In this study, we further introduce spectral nudging to reduce the RCM-based biases. Two sets of WRF experiments are performed with and without spectral nudging. All WRF experiments are identical except that the initial and lateral boundary conditions are derived from the NNRP, the original GCM output, and the bias corrected GCM output, respectively. The GCM-driven RCM simulations with bias corrections and spectral nudging (IDDng) are compared with those without spectral nudging (IDD) and North American Regional Reanalysis (NARR) data to assess the additional reduction in RCM biases relative to the IDD approach. The results show that the spectral nudging introduces the effect of GCM bias correction into the RCM domain, thereby minimizing the climate drift resulting from the RCM biases. The GCM bias corrections and spectral nudging significantly improve the downscaled mean climate and extreme temperature simulations. Our results suggest that both GCM bias corrections or spectral nudging are necessary to reduce the error of downscaled climate. Only one of them does not guarantee better downscaling simulation. The new dynamical downscaling method can be applied to regional projection of future climate or downscaling of GCM sensitivity simulations. Annual mean RMSEs. The RMSEs are computed over the verification region by monthly mean data over 1981-2010. Experimental design

  2. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the PRISMA mission, are an opportunity to study the aerosol radiative effects. IPCC, 2007. Climate Change 2007: the Physical Science Basis. ISBN 978 0521 88009-1 Hardback; 978 0521 70596-7 Paperback. Kotchenova and Vermote, 2007. Appl. Opt. doi:10.1364/AO.46.004455. Vermote et al., 1997. IEEE Trans. Geosci. Remote Sens. doi:10.1109/36.581987. Vermote and Kotchenova, 2009. J. Geophys. Res. doi:10.1029/2007JD009662. Bassani et al., 2010. Sensors. doi:10.3390/s100706421. Bassani et al., 2012. Atmos. Meas. Tech. doi:10.5194/amt-5-1193-2012. Tirelli,C. et al., 2014. AGU2014, 15-19 September 2014. Holben et al., 1998. Rem. Sens. Environ. doi:10.1016/S0034-4257(98)00031-5 Curci et al., 2014. Atmos. Environ. doi:10.1016/j.atmosenv.2014.09.009

  3. Remote Sensing of Tropical Ecosystems: Atmospheric Correction and Cloud Masking Matter

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Lyapustin, Alexei I.; Tucker, Compton J.; Sellers, Piers J.; Hall, Forrest G.; Wang, Yujie

    2012-01-01

    Tropical rainforests are significant contributors to the global cycles of energy, water and carbon. As a result, monitoring of the vegetation status over regions such as Amazonia has been a long standing interest of Earth scientists trying to determine the effect of climate change and anthropogenic disturbance on the tropical ecosystems and its feedback on the Earth's climate. Satellite-based remote sensing is the only practical approach for observing the vegetation dynamics of regions like the Amazon over useful spatial and temporal scales, but recent years have seen much controversy over satellite-derived vegetation states in Amazônia, with studies predicting opposite feedbacks depending on data processing technique and interpretation. Recent results suggest that some of this uncertainty could stem from a lack of quality in atmospheric correction and cloud screening. In this paper, we assess these uncertainties by comparing the current standard surface reflectance products (MYD09, MYD09GA) and derived composites (MYD09A1, MCD43A4 and MYD13A2 - Vegetation Index) from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite to results obtained from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. MAIAC uses a new cloud screening technique, and novel aerosol retrieval and atmospheric correction procedures which are based on time-series and spatial analyses. Our results show considerable improvements of MAIAC processed surface reflectance compared to MYD09/MYD13 with noise levels reduced by a factor of up to 10. Uncertainties in the current MODIS surface reflectance product were mainly due to residual cloud and aerosol contamination which affected the Normalized Difference Vegetation Index (NDVI): During the wet season, with cloud cover ranging between 90 percent and 99 percent, conventionally processed NDVI was significantly depressed due to undetected clouds. A smaller reduction in NDVI due to increased aerosol levels was observed during the dry season, with an inverse dependence of NDVI on aerosol optical thickness (AOT). NDVI observations processed with MAIAC showed highly reproducible and stable inter-annual patterns with little or no dependence on cloud cover, and no significant dependence on AOT (p less than 0.05). In addition to a better detection of cloudy pixels, MAIAC obtained about 20-80 percent more cloud free pixels, depending on season, a considerable amount for land analysis given the very high cloud cover (75-99 percent) observed at any given time in the area. We conclude that a new generation of atmospheric correction algorithms, such as MAIAC, can help to dramatically improve vegetation estimates over tropical rain forest, ultimately leading to reduced uncertainties in satellite-derived vegetation products globally.

  4. Psychology Feud: When the Correct Answer Isn't the Most Valued

    ERIC Educational Resources Information Center

    Wozniak, William; Mandernach, B. Jean; Wadkins, Theresa A.

    2012-01-01

    Psychology Feud, a classroom-based adaptation of the popular American television game show, provides an innovative, engaging opportunity for students to examine popular beliefs and misconceptions concerning general psychological information in a nonthreatening atmosphere. The game can be integrated into introductory psychology courses to (a)…

  5. Calculating Remote Sensing Reflectance Uncertainties Using an Instrument Model Propagated Through Atmospheric Correction via Monte Carlo Simulations

    NASA Technical Reports Server (NTRS)

    Karakoylu, E.; Franz, B.

    2016-01-01

    First attempt at quantifying uncertainties in ocean remote sensing reflectance satellite measurements. Based on 1000 iterations of Monte Carlo. Data source is a SeaWiFS 4-day composite, 2003. The uncertainty is for remote sensing reflectance (Rrs) at 443 nm.

  6. Modulation of Soil Initial State on WRF Model Performance Over China

    NASA Astrophysics Data System (ADS)

    Xue, Haile; Jin, Qinjian; Yi, Bingqi; Mullendore, Gretchen L.; Zheng, Xiaohui; Jin, Hongchun

    2017-11-01

    The soil state (e.g., temperature and moisture) in a mesoscale numerical prediction model is typically initialized by reanalysis or analysis data that may be subject to large bias. Such bias may lead to unrealistic land-atmosphere interactions. This study shows that the Climate Forecast System Reanalysis (CFSR) dramatically underestimates soil temperature and overestimates soil moisture over most parts of China in the first (0-10 cm) and second (10-25 cm) soil layers compared to in situ observations in July 2013. A correction based on the global optimal dual kriging is employed to correct CFSR bias in soil temperature and moisture using in situ observations. To investigate the impacts of the corrected soil state on model forecasts, two numerical model simulations—a control run with CFSR soil state and a disturbed run with the corrected soil state—were conducted using the Weather Research and Forecasting model. All the simulations are initiated 4 times per day and run 48 h. Model results show that the corrected soil state, for example, warmer and drier surface over the most parts of China, can enhance evaporation over wet regions, which changes the overlying atmospheric temperature and moisture. The changes of the lifting condensation level, level of free convection, and water transport due to corrected soil state favor precipitation over wet regions, while prohibiting precipitation over dry regions. Moreover, diagnoses indicate that the remote moisture flux convergence plays a dominant role in the precipitation changes over the wet regions.

  7. Ground-based hyperspectral imaging and analysis of Jupiter’s atmosphere during the Juno era

    NASA Astrophysics Data System (ADS)

    Dahl, Emma; Chanover, Nancy J.; Voelz, David; Kuehn, David M.; Wijerathna, Erandi; Hull, Robert; Strycker, Paul D.; Baines, Kevin H.

    2017-10-01

    The Juno mission to Jupiter has presented ground-based observers with a unique opportunity to collect data while the spacecraft is simultaneously measuring the planet and its atmosphere. Data collected in conjunction with Juno measurements have the capability to complement and enhance wavelength regimes already covered by Juno instruments.In order to enrich Juno’s scientific returns in the visible regime, we use the New Mexico State University Acousto-optic Imaging Camera (NAIC) to obtain hyperspectral image cubes of Jupiter from 470-950 nm with an average spectral resolution (λ/dλ) of 242. We use NAIC with the Apache Point Observatory 3.5-m telescope to image Jupiter’s atmosphere during Juno’s perijove flybys. With these timely, high spectral resolution measurements, we can derive the properties of cloud and haze particulates and estimate cloud heights. We present geometrically and photometrically calibrated spectra of representative regions of Jupiter’s atmosphere to be compared with previous work and laboratory measurements of candidate chromophore materials. The data we present are from the night of March 26th, 2017, captured during Juno’s 5th perijove flyby. We discuss preliminary analyses of these spectra, including implications for future work regarding atmospheric modeling.For the aforementioned observations, NAIC was equipped with a thinned, back-illuminated CCD. Because of the narrow bandwidths NAIC’s spectral tuning element produces, this chip design resulted in etaloning, or “fringing,” in images at wavelengths longer than ~720 nm. We discuss our methodology for correcting the fringing and the progress of a general-use model for correcting fringing in CCDs. Such a model requires the extraction of chip characteristics from monochromatic flats, which can be then be used to model exactly how the interference of light inside the chip results in the fringing pattern. This artificial fringing image can then be removed from images, thereby correcting the effect.This work is supported by Research Support Agreement 1569980 from the Jet Propulsion Laboratory, as a subaward of a NASA/Solar System Observations grant.

  8. Bringing the Visible Universe into Focus with Robo-AO

    PubMed Central

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Ramaprakash, A.N.; Tendulkar, Shriharsh P.; Bui, Khanh; Burse, Mahesh P.; Chordia, Pravin; Das, Hillol K.; Davis, Jack T.C.; Dekany, Richard G.; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Morton, Timothy D.; Ofek, Eran O.; Punnadi, Sujit

    2013-01-01

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes - even telescopes with four times the diameter of HST - appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled1. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system2,3 employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope. PMID:23426078

  9. Bringing the visible universe into focus with Robo-AO.

    PubMed

    Baranec, Christoph; Riddle, Reed; Law, Nicholas M; Ramaprakash, A N; Tendulkar, Shriharsh P; Bui, Khanh; Burse, Mahesh P; Chordia, Pravin; Das, Hillol K; Davis, Jack T C; Dekany, Richard G; Kasliwal, Mansi M; Kulkarni, Shrinivas R; Morton, Timothy D; Ofek, Eran O; Punnadi, Sujit

    2013-02-12

    The angular resolution of ground-based optical telescopes is limited by the degrading effects of the turbulent atmosphere. In the absence of an atmosphere, the angular resolution of a typical telescope is limited only by diffraction, i.e., the wavelength of interest, λ, divided by the size of its primary mirror's aperture, D. For example, the Hubble Space Telescope (HST), with a 2.4-m primary mirror, has an angular resolution at visible wavelengths of ~0.04 arc seconds. The atmosphere is composed of air at slightly different temperatures, and therefore different indices of refraction, constantly mixing. Light waves are bent as they pass through the inhomogeneous atmosphere. When a telescope on the ground focuses these light waves, instantaneous images appear fragmented, changing as a function of time. As a result, long-exposure images acquired using ground-based telescopes--even telescopes with four times the diameter of HST--appear blurry and have an angular resolution of roughly 0.5 to 1.5 arc seconds at best. Astronomical adaptive-optics systems compensate for the effects of atmospheric turbulence. First, the shape of the incoming non-planar wave is determined using measurements of a nearby bright star by a wavefront sensor. Next, an element in the optical system, such as a deformable mirror, is commanded to correct the shape of the incoming light wave. Additional corrections are made at a rate sufficient to keep up with the dynamically changing atmosphere through which the telescope looks, ultimately producing diffraction-limited images. The fidelity of the wavefront sensor measurement is based upon how well the incoming light is spatially and temporally sampled. Finer sampling requires brighter reference objects. While the brightest stars can serve as reference objects for imaging targets from several to tens of arc seconds away in the best conditions, most interesting astronomical targets do not have sufficiently bright stars nearby. One solution is to focus a high-power laser beam in the direction of the astronomical target to create an artificial reference of known shape, also known as a 'laser guide star'. The Robo-AO laser adaptive optics system, employs a 10-W ultraviolet laser focused at a distance of 10 km to generate a laser guide star. Wavefront sensor measurements of the laser guide star drive the adaptive optics correction resulting in diffraction-limited images that have an angular resolution of ~0.1 arc seconds on a 1.5-m telescope.

  10. Research on the Application of Fast-steering Mirror in Stellar Interferometer

    NASA Astrophysics Data System (ADS)

    Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.

    2017-07-01

    For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.

  11. Atmospheric correction of the ocean color observations of the medium resolution imaging spectrometer (MERIS)

    NASA Astrophysics Data System (ADS)

    Antoine, David; Morel, Andre

    1997-02-01

    An algorithm is proposed for the atmospheric correction of the ocean color observations by the MERIS instrument. The principle of the algorithm, which accounts for all multiple scattering effects, is presented. The algorithm is then teste, and its accuracy assessed in terms of errors in the retrieved marine reflectances.

  12. Laboratory calibration of pyrgeometers with known spectral responsivities.

    PubMed

    Gröbner, Julian; Los, Alexander

    2007-10-20

    A methodology is presented to calibrate pyrgeometers measuring atmospheric long-wave radiation, if their spectral dome transmission is known. The new calibration procedure is based on a black-body cavity to retrieve the sensitivity of the pyrgeometer, combined with calculated atmospheric long-wave spectra to determine a correction function in dependence of the integrated atmospheric water vapor to convert Planck radiation spectra to atmospheric long-wave spectra. The methodology was validated with two custom CG4 pyrgeometers with known dome transmissions by a comparison to the World Infrared Standard Group of Pyrgeometers at the World Radiation Center-Infrared Radiometry Section. The responses retrieved using the new laboratory calibration agree to within 1% with the responses determined by a comparison to the WISG, which is well within the uncertainties of both methodologies.

  13. SeaWiFS Postlaunch Calibration and Validation Analyses

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine (Editor); McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Hsu, N. Christina; Patt, Frederick S.; Pietras, Christophe M.; Robinson, Wayne D.

    2000-01-01

    The effort to resolve data quality issues and improve on the initial data evaluation methodologies of the SeaWiFS Project was an extensive one. These evaluations have resulted, to date, in three major reprocessings of the entire data set where each reprocessing addressed the data quality issues that could be identified up to the time of the reprocessing. Three volumes of the SeaWiFS Postlaunch Technical Report Series (Volumes 9, 10, and 11) are needed to document the improvements implemented since launch. Volume 10 continues the sequential presentation of postlaunch data analysis and algorithm descriptions begun in Volume 9. Chapter 1 of Volume 10 describes an absorbing aerosol index, similar to that produced by the Total Ozone Mapping Spectrometer (TOMS) Project, which is used to flag pixels contaminated by absorbing aerosols, such as, dust and smoke. Chapter 2 discusses the algorithm being used to remove SeaWiFS out-of-band radiance from the water-leaving radiances. Chapter 3 provides an itemization of all significant changes in the processing algorithms for each of the first three reprocessings. Chapter 4 shows the time series of global clear water and deep-water (depths greater than 1,000m) bio-optical and atmospheric properties (normalized water-leaving radiances, chlorophyll, atmospheric optical depth, etc.) based on the eight-day composites as a check on the sensor calibration stability. Chapter 5 examines the variation in the derived products with scan angle using high resolution data around Hawaii to test for residual scan modulation effects and atmospheric correction biases. Chapter 6 provides a methodology for evaluating the atmospheric correction algorithm and atmospheric derived products using ground-based observations. Similarly, Chapter 7 presents match-up comparisons of coincident satellite and in situ data to determine the accuracy of the water-leaving radiances, chlorophyll a, and K(490) products.

  14. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 573: Alpha Contaminated Sites Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    CAU 573 comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These two CASs include the release at the Hamilton weapons-related tower test and a series of 29 atmospheric experiments conducted at GMX. The two CASs are located in two distinctly separate areas within Area 5. To facilitate site investigation and data quality objective (DQO) decisions, all identified releases (i.e., CAS components) were organized into study groups. The reporting of investigation results and the evaluation of DQO decisions are at the release level. The corrective action alternatives (CAAs) weremore » evaluated at the FFACO CAS level. The purpose of this CADD/CAP is to evaluate potential CAAs, provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 573. Corrective action investigation (CAI) activities were performed from January 2015 through November 2015, as set forth in the CAU 573 Corrective Action Investigation Plan (CAIP). Analytes detected during the CAI were evaluated against appropriate final action levels (FALs) to identify the contaminants of concern. Assessment of the data generated from investigation activities conducted at CAU 573 revealed the following: • Radiological contamination within CAU 573 does not exceed the FALs (based on the Occasional Use Area exposure scenario). • Chemical contamination within CAU 573 does not exceed the FALs. • Potential source material—including lead plates, lead bricks, and lead-shielded cables—was removed during the investigation and requires no additional corrective action.« less

  15. The variability of atmospheric equivalent temperature for radar altimeter range correction

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Mock, Donald

    1990-01-01

    Two sets of data were used to test the validity of the presently used approximation for radar altimeter range correction due to atmospheric water vapor. The approximation includes an assumption of constant atmospheric equivalent temperature. The first data set includes monthly, three-dimensional, gridded temperature and humidity fields over global oceans for a 10-year period, and the second is comprised of daily or semidaily rawinsonde data at 17 island stations for a 7-year period. It is found that the standard method underestimates the variability of the equivalent temperature, and the approximation could introduce errors of 2 cm for monthly means. The equivalent temperature is found to have a strong meridional gradient, and the highest temporal variabilities are found over western boundary currents. The study affirms that the atmospheric water vapor is a good predictor for both the equivalent temperature and the range correction. A relation is proposed to reduce the error.

  16. Preliminary Analysis of the Performance of the Landsat 8/OLI Land Surface Reflectance Product

    NASA Technical Reports Server (NTRS)

    Vermote, Eric; Justice, Chris; Claverie, Martin; Franch, Belen

    2016-01-01

    The surface reflectance, i.e., satellite derived top of atmosphere (TOA) reflectance corrected for the temporally, spatially and spectrally varying scattering and absorbing effects of atmospheric gases and aerosols, is needed to monitor the land surface reliably. For this reason, the surface reflectance, and not TOA reflectance, is used to generate the greater majority of global land products, for example, from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors. Even if atmospheric effects are minimized by sensor design, atmospheric effects are still challenging to correct. In particular, the strong impact of aerosols in the visible and near infrared spectral range can be difficult to correct, because they can be highly discrete in space and time (e.g., smoke plumes) and because of the complex scattering and absorbing properties of aerosols that vary spectrally and with aerosol size, shape, chemistry and density.

  17. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.

    PubMed

    Wang, Menghua

    2007-03-20

    In the remote sensing of the ocean near-surface properties, it is essential to derive accurate water-leaving radiance spectra through the process of the atmospheric correction. The atmospheric correction algorithm for Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) uses two near-infrared (NIR) bands at 765 and 865 nm (748 and 869 nm for MODIS) for retrieval of aerosol properties with assumption of the black ocean at the NIR wavelengths. Modifications are implemented to account for some of the NIR ocean contributions for the productive but not very turbid waters. For turbid waters in the coastal regions, however, the ocean could have significant contributions in the NIR, leading to significant errors in the satellite-derived ocean water-leaving radiances. For the shortwave infrared (SWIR) wavelengths (approximately > 1000 nm), water has significantly larger absorption than those for the NIR bands. Thus the black ocean assumption at the SWIR bands is generally valid for turbid waters. In addition, for future sensors, it is also useful to include the UV bands to better quantify the ocean organic and inorganic materials, as well as for help in atmospheric correction. Simulations are carried out to evaluate the performance of atmospheric correction for nonabsorbing and weakly absorbing aerosols using the NIR bands and various combinations of the SWIR bands for deriving the water-leaving radiances at the UV (340 nm) and visible wavelengths. Simulations show that atmospheric correction using the SWIR bands can generally produce results comparable to atmospheric correction using the NIR bands. In particular, the water-leaving radiance at the UV band (340 nm) can also be derived accurately. The results from a sensitivity study for the required sensor noise equivalent reflectance, (NE Delta rho), [or the signal-to-noise ratio (SNR)] for the NIR and SWIR bands are provided and discussed.

  18. Effects of the gaseous and liquid water content of the atmosphere on range delay and Doppler frequency

    NASA Technical Reports Server (NTRS)

    Flock, W. L.

    1981-01-01

    When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.

  19. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    PubMed

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Atmospheric correction of AVIRIS data in ocean waters

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Arnone, Robert

    1992-01-01

    Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal Zone Color Scanner (CZCS) data to AVIRIS data. Quantitative measures of L(sub W) from AVIRIS are compared with ship ground truth data and input into bio-optical models.

  1. Coherent free space optics communications over the maritime atmosphere with use of adaptive optics for beam wavefront correction.

    PubMed

    Li, Ming; Cvijetic, Milorad

    2015-02-20

    We evaluate the performance of the coherent free space optics (FSO) employing quadrature array phase-shift keying (QPSK) modulation over the maritime atmosphere with atmospheric turbulence compensated by use of adaptive optics (AO). We have established a comprehensive FSO channel model for maritime conditions and also made a comprehensive comparison of performance between the maritime and terrestrial atmospheric links. The FSO links are modeled based on the intensity attenuation resulting from scattering and absorption effects, the log-amplitude fluctuations, and the phase distortions induced by turbulence. The obtained results show that the FSO system performance measured by the bit-error-rate (BER) can be significantly improved when the optimization of the AO system is achieved. Also, we find that the higher BER is observed in the maritime FSO channel with atmospheric turbulence, as compared to the terrestrial FSO systems if they experience the same turbulence strength.

  2. Cloud and aerosol optical depths

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Russell, P. B.; Ackerman, Thomas P.; Colburn, D. C.; Wrigley, R. C.; Spanner, M. A.; Livingston, J. M.

    1988-01-01

    An airborne Sun photometer was used to measure optical depths in clear atmospheres between the appearances of broken stratus clouds, and the optical depths in the vicinity of smokes. Results show that (human) activities can alter the chemical and optical properties of background atmospheres to affect their spectral optical depths. Effects of water vapor adsorption on aerosol optical depths are apparent, based on data of the water vapor absorption band centered around 940 nm. Smoke optical depths show increases above the background atmosphere by up to two orders of magnitude. When the total optical depths measured through clouds were corrected for molecular scattering and gaseous absorption by subtracting the total optical depths measured through the background atmosphere, the resultant values are lower than those of the background aerosol at short wavelengths. The spectral dependence of these cloud optical depths is neutral, however, in contrast to that of the background aerosol or the molecular atmosphere.

  3. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.

    PubMed

    He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut

    2016-12-26

    There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

  4. Clear water radiances for atmospheric correction of coastal zone color scanner imagery

    NASA Technical Reports Server (NTRS)

    Gordon, H. R.; Clark, D. K.

    1981-01-01

    The possibility of computing the inherent sea surface radiance for regions of clear water from coastal zone color scanner (CZCS) imagery given only a knowledge of the local solar zenith angle is examined. The inherent sea surface radiance is related to the upwelling and downwelling irradiances just beneath the sea surface, and an expression is obtained for a normalized inherent sea surface radiance which is nearly independent of solar zenith angle for low phytoplankton pigment concentrations. An analysis of a data base consisting of vertical profiles of upwelled spectral radiance and pigment concentration, which was used in the development of the CZCS program, confirms the virtual constancy of the normalized inherent sea surface radiance at wavelengths of 520 and 550 nm for cases when the pigment concentration is less than 0.25 mg/cu m. A strategy is then developed for using the normalized inherent sea surface radiance in the atmospheric correction of CZCS imagery.

  5. Diffusion scrubber-ion chromatography for the measurement of trace levels of atmospheric HCl

    NASA Astrophysics Data System (ADS)

    Lindgren, Per F.

    A diffusion scrubber-ion chromatographic (DS-IC) instrument has been characterized and employed for the measurement of trace levels of gaseous HCl in the atmosphere. The instrument operates with a temporal resolution of 5 min and the detection limit is estimated to be 5 pptv. Collection efficiencies for HCl with two identical diffusion scrubbers were 28±2% and 20±2%, respectively, at a sampling flow rate of 2 SLPM. Instrument response decreases with increased relative humidity. An equation, correction factor=2.45 × 10 -7 × %r.h 3 + 1.00, is used to correct for the relative humidity dependency. The instrument was tested in ambient air studies by measuring background mixing ratios between 0.02 and 0.5 ppbv at a suburban sampling site. Calibration of the instrument was carried out with a novel source of gaseous HCl based on sublimation of ammonium chloride.

  6. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates.

    PubMed

    Surawski, N C; Sullivan, A L; Roxburgh, S H; Meyer, C P Mick; Polglase, P J

    2016-05-05

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on 'consumed biomass', which is an approximation to the biogeochemically correct 'burnt carbon' approach. Here we show that applying the 'consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the 'burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the 'burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon.

  7. Exact first order scattering correction for vector radiative transfer in coupled atmosphere and ocean systems

    NASA Astrophysics Data System (ADS)

    Zhai, Peng-Wang; Hu, Yongxiang; Josset, Damien B.; Trepte, Charles R.; Lucker, Patricia L.; Lin, Bing

    2012-06-01

    We have developed a Vector Radiative Transfer (VRT) code for coupled atmosphere and ocean systems based on the successive order of scattering (SOS) method. In order to achieve efficiency and maintain accuracy, the scattering matrix is expanded in terms of the Wigner d functions and the delta fit or delta-M technique is used to truncate the commonly-present large forward scattering peak. To further improve the accuracy of the SOS code, we have implemented the analytical first order scattering treatment using the exact scattering matrix of the medium in the SOS code. The expansion and truncation techniques are kept for higher order scattering. The exact first order scattering correction was originally published by Nakajima and Takana.1 A new contribution of this work is to account for the exact secondary light scattering caused by the light reflected by and transmitted through the rough air-sea interface.

  8. A Correction for IUE UV Flux Distributions from Comparisons with CALSPEC

    NASA Astrophysics Data System (ADS)

    Bohlin, Ralph C.; Bianchi, Luciana

    2018-04-01

    A collection of spectral energy distributions (SEDs) is available in the Hubble Space Telescope (HST) CALSPEC database that is based on calculated model atmospheres for pure hydrogen white dwarfs (WDs). A much larger set (∼100,000) of UV SEDs covering the range (1150–3350 Å) with somewhat lower quality are available in the IUE database. IUE low-dispersion flux distributions are compared with CALSPEC to provide a correction that places IUE fluxes on the CALSPEC scale. While IUE observations are repeatable to only 4%–10% in regions of good sensitivity, the average flux corrections have a precision of 2%–3%. Our re-calibration places the IUE flux scale on the current UV reference standard and is relevant for any project based on IUE archival data, including our planned comparison of GALEX to the corrected IUE fluxes. IUE SEDs may be used to plan observations and cross-calibrate data from future missions, so the IUE flux calibration must be consistent with HST instrumental calibrations to the best possible precision.

  9. Global Clear-Sky Surface Skin Temperature from Multiple Satellites Using a Single-Channel Algorithm with Angular Anisotropy Corrections

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin R.; Minnis, Patrick; Chee, Thad; Bedka, Kristopher M.; Yost, Christopher R.; Palikonda, Rabindra

    2017-01-01

    Surface skin temperature (T(sub s)) is an important parameter for characterizing the energy exchange at the ground/water-atmosphere interface. The Satellite ClOud and Radiation Property retrieval System (SatCORPS) employs a single-channel thermal-infrared (TIR) method to retrieve T(sub s) over clear-sky land and ocean surfaces from data taken by geostationary Earth orbit (GEO) and low Earth orbit (LEO) satellite imagers. GEO satellites can provide somewhat continuous estimates of T(sub s) over the diurnal cycle in non-polar regions, while polar T(sub s) retrievals from LEO imagers, such as the Advanced Very High Resolution Radiometer (AVHRR), can complement the GEO measurements. The combined global coverage of remotely sensed T(sub s), along with accompanying cloud and surface radiation parameters, produced in near-realtime and from historical satellite data, should be beneficial for both weather and climate applications. For example, near-realtime hourly T(sub s) observations can be assimilated in high-temporal-resolution numerical weather prediction models and historical observations can be used for validation or assimilation of climate models. Key drawbacks to the utility of TIR-derived T(sub s) data include the limitation to clear-sky conditions, the reliance on a particular set of analyses/reanalyses necessary for atmospheric corrections, and the dependence on viewing and illumination angles. Therefore, T(sub s) validation with established references is essential, as is proper evaluation of T(sub s) sensitivity to atmospheric correction source. This article presents improvements on the NASA Langley GEO satellite and AVHRR TIR-based T(sub s) product that is derived using a single-channel technique. The resulting clear-sky skin temperature values are validated with surface references and independent satellite products. Furthermore, an empirically adjusted theoretical model of satellite land surface temperature (LST) angular anisotropy is tested to improve satellite LST retrievals. Application of the anisotropic correction yields reduced mean bias and improved precision of GOES-13 LST relative to independent Moderate-resolution Imaging Spectroradiometer (MYD11_L2) LST and Atmospheric Radiation Measurement Program ground station measurements. It also significantly reduces inter-satellite differences between LSTs retrieved simultaneously from two different imagers. The implementation of these universal corrections into the SatCORPS product can yield significant improvement in near-global-scale, near-realtime, satellite-based LST measurements. The immediate availability and broad coverage of these skin temperature observations should prove valuable to modelers and climate researchers looking for improved forecasts and better understanding of the global climate model.

  10. Atmospheric correction of ocean color sensors: analysis of the effects of residual instrument polarization sensitivity.

    PubMed

    Gordon, H R; Du, T; Zhang, T

    1997-09-20

    We provide an analysis of the influence of instrument polarization sensitivity on the radiance measured by spaceborne ocean color sensors. Simulated examples demonstrate the influence of polarization sensitivity on the retrieval of the water-leaving reflectance rho(w). A simple method for partially correcting for polarization sensitivity--replacing the linear polarization properties of the top-of-atmosphere reflectance with those from a Rayleigh-scattering atmosphere--is provided and its efficacy is evaluated. It is shown that this scheme improves rho(w) retrievals as long as the polarization sensitivity of the instrument does not vary strongly from band to band. Of course, a complete polarization-sensitivity characterization of the ocean color sensor is required to implement the correction.

  11. Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Li, Dayu; Peng, Zenghui; Liu, Yonggang; Xuan, Li

    2009-02-16

    A nematic liquid crystal adaptive optics system (NLC AOS) was assembled for a 2.16-m telescope to correct for atmospheric turbulence. LC AOS was designed and optimized with Zemax optical software. Second, an adaptive correction experiment was performed in the laboratory to test the performance of the NLC AOS. After the correction, the peak to valley (PV) and root mean square (RMS) of the wavefront were down to 0.2 lambda (lambda=633 nm) and 0.05 lambda, respectively. Finally, the star of Pollux (beta Gem) was tracked using the 2.16-m Reflecting Telescope, and real time correction of the atmospheric turbulence was performed with the NLC AOS. After the adaptive correction, the average PV and RMS of the wavefront were reduced from 11 lambda and 2.5 lambda to 2.3 lambda and 0.6 lambda, respectively. Although the intensity distribution of the beta Gem was converged and its peak was sharp, a halo still existed around the peak. These results indicated that the NLC AOS only partially corrected the vertical atmospheric turbulence. The limitations of our NLC AOS are discussed and some proposals are made.

  12. CASPER: Concordia Atmospheric SPectroscopy of Emitted Radiation

    NASA Astrophysics Data System (ADS)

    de Petris, M.; Catalano, A.; de Gregori, S.; Lamagna, L.; Lattanzi, V.; Luzzi, G.; Maoli, R.; Melchiorri, A.; Melchiorri, F.; Savini, G.; Vetrani, G. G.; Battistelli, E. S.; Valenziano, L.; Mandolesi, N.; Villa, F.; Cuttaia, F.; Ade, P. A. R.; Mauskopf, P.; Orlando, A.; Encrenaz, P.; Pardo, J. R.; Cernicharo, J.

    CASPER (Concordia Atmospheric SPectroscopy of Emitted Radiation) is a spectrometer proposed for installation at Dome C, devoted to measurements of atmospheric emission in the spectral region between 180 μm and 3 mm (3 55 cm-1). This instrument will be able to perform continuous spectral sampling at different altitudes at angular scales of 1°. From the recorded data it is possible to extract atmospheric transmittance within 1% in the whole wide operating band, together with water vapour content and O{2} and O{3} concentrations. CASPER will allow us to characterize the site for future FIR/mm telescopes. Atmospheric data recorded by CASPER will allow for correction of astrophysical and cosmological observations without the need for telescope-specific procedures and further loss of observation time with more precision in the observations themselves. Calibration of ground-based telescopes on known sky sources is strongly affected by atmospheric absorption. CASPER has this as its primary goal. The spectrometer is based on a Martin-Puplett interferometer. Two data sampling solutions will be performed: phase modulation & fast scan strategy. Sky radiation is collected towards the interferometer by an optical setup that allows the field of view, to explore the full 0° div 90° range of elevation angles. With a low spurious polarization instrument, monitoring of polarized atmospheric contribution will be possible.

  13. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; hide

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.

  14. Assessing the impact of non-tidal atmospheric loading on a Kalman filter-based terrestrial reference frame

    NASA Astrophysics Data System (ADS)

    Abbondanza, Claudio; Altamimi, Zuheir; Chin, Toshio; Collilieux, Xavier; Dach, Rolf; Gross, Richard; Heflin, Michael; König, Rolf; Lemoine, Frank; Macmillan, Dan; Parker, Jay; van Dam, Tonie; Wu, Xiaoping

    2014-05-01

    The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, we assess the impact of non-tidal atmospheric loading (NTAL) corrections on the TRF computation. Focusing on the a-posteriori approach, (i) the NTAL model derived from the National Centre for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations; (ii) adopting a Kalman-filter based approach, two distinct linear TRFs are estimated combining the 4 SG solutions with (corrected TRF solution) and without the NTAL displacements (standard TRF solution). Linear fits (offset and atmospheric velocity) of the NTAL displacements removed during step (i) are estimated accounting for the station position discontinuities introduced in the SG solutions and adopting different weighting strategies. The NTAL-derived (atmospheric) velocity fields are compared to those obtained from the TRF reductions during step (ii). The consistency between the atmospheric and the TRF-derived velocity fields is examined. We show how the presence of station position discontinuities in SG solutions degrades the agreement between the velocity fields and compare the effect of different weighting structure adopted while estimating the linear fits to the NTAL displacements. Finally, we evaluate the effect of restoring the atmospheric velocities determined through the linear fits of the NTAL displacements to the single-technique linear reference frames obtained by stacking the standard SG SINEX files. Differences between the velocity fields obtained restoring the NTAL displacements and the standard stacked linear reference frames are discussed.

  15. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research grade lower tropospheric measurement missions.

  16. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.

  17. Adaptive optics images restoration based on frame selection and multi-framd blind deconvolution

    NASA Astrophysics Data System (ADS)

    Tian, Y.; Rao, C. H.; Wei, K.

    2008-10-01

    The adaptive optics can only partially compensate the image blurred by atmospheric turbulent due to the observing condition and hardware restriction. A post-processing method based on frame selection and multi-frame blind deconvolution to improve images partially corrected by adaptive optics is proposed. The appropriate frames which are picked out by frame selection technique is deconvolved. There is no priori knowledge except the positive constraint. The method has been applied in the image restoration of celestial bodies which were observed by 1.2m telescope equipped with 61-element adaptive optical system in Yunnan Observatory. The results showed that the method can effectively improve the images partially corrected by adaptive optics.

  18. A stochastic atmospheric model for remote sensing applications

    NASA Technical Reports Server (NTRS)

    Turner, R. E.

    1983-01-01

    There are many factors which reduce the accuracy of classification of objects in the satellite remote sensing of Earth's surface. One important factor is the variability in the scattering and absorptive properties of the atmospheric components such as particulates and the variable gases. For multispectral remote sensing of the Earth's surface in the visible and infrared parts of the spectrum the atmospheric particulates are a major source of variability in the received signal. It is difficult to design a sensor which will determine the unknown atmospheric components by remote sensing methods, at least to the accuracy needed for multispectral classification. The problem of spatial and temporal variations in the atmospheric quantities which can affect the measured radiances are examined. A method based upon the stochastic nature of the atmospheric components was developed, and, using actual data the statistical parameters needed for inclusion into a radiometric model was generated. Methods are then described for an improved correction of radiances. These algorithms will then result in a more accurate and consistent classification procedure.

  19. Assessment of MFLL column CO2 measurements obtained during the ACT-America field campaigns

    NASA Astrophysics Data System (ADS)

    Lin, B.; Browell, E. V.; Kooi, S. A.; Dobler, J. T.; Campbell, J.; Fan, T. F.; Pal, S.; O'Dell, C. W.; Obland, M. D.; Erxleben, W. H.; McGregor, D.; Kochanov, R. V.; DiGangi, J. P.; Davis, K. J.; Choi, Y.

    2017-12-01

    Accurate observations of atmospheric CO2 with airborne and space-based lidar systems such as those used during the Atmospheric Carbon and Transport - America (ACT-America) field campaigns and proposed for the NASA ASCENDS mission would improve our knowledge of CO2 distributions and variations on both regional and global scales, reduce the uncertainties in atmospheric CO2 transport and fluxes, and increase confidence in predictions of future climate changes. To reach these scientific goals, atmospheric column CO2 (XCO2) measurements of the Harris Corporation's Multifunctional Fiber Laser Lidar (MFLL) obtained during the first two ACT-America flight campaigns have been thoroughly investigated by the ACT-America lidar measurement group. MFLL is an intensity-modulated continuous-wave lidar operating in the 1.57-mm CO2 absorption band. Atmospheric XCO2 amounts are retrieved based on the integrated path differential absorption of the lidar signals at online and offline wavelengths between the aircraft and the ground. NASA Langley Research Center and Harris have been collaborating in the development and evaluation of this CO2 lidar approach for a number of years. To gain insights into the lidar performance, the measurement group has collected all possible lidar measurements with corresponding in-situ atmospheric profile information from the first two ACT-America field campaigns, including the data from several flight legs dedicated to lidar calibration. Initially large differences (-1 to 2 %) were found between lidar measured CO2 optical depths and those derived from in-situ observations and spectroscopy from HITRAN2008. When an improved spectroscopic model (Pre-HITRAN2016) was applied, the large systematic errors were much more consistent leading to the development of an empirical linear correction of measured optical depth based on the calibration flight data. This correction accounts for remaining uncertainties in spectroscopic models, environmental conditions, such as temperature, pressure, and water vapor, and possible instrumental issues like optical cross-talk between wavelengths introduced in the power amplifier. Results from a flight of Gulf of Mexico with a very homogenous environment showed that the precision of lidar XCO2 measurements was as high as about 0.5ppm for 10-s averages.

  20. Earth GRAM-99 and Trace Constituents

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2004-01-01

    Global Reference Atmospheric Model (GRAM-99) is an engineering-level model of Earth's atmosphere. It provides both mean values and perturbations for density, temperature, pressure, and winds, as well as monthly- and geographically-varying trace constituent concentrations. From 0-27 km, GRAM thermodynamics and winds are based on National Oceanic and Atmospheric Administration Global Upper Air Climatic Atlas (GUACA) climatology. Above 120 km, GRAM is based on the NASA Marshall Engineering Thermosphere (MET) model. In the intervening altitude region, GRAM is based on Middle Atmosphere Program (MAP) climatology that also forms the basis of the 1986 COSPAR International Reference Atmosphere (CIRA). Atmospheric composition is represented in GRAM by concentrations of both major and minor species. Above 120 km, MET provides concentration values for N2, O2, Ar, O, He, and H. Below 120 km, species represented also include H2O, O3, N2O, CO, CH4, and CO2. At COSPAR 2002 a comparison was made between GRAM constituents below 120 km and those provided by Naval Research Laboratory (NRL) climatology. No current need to update GRAM constituent climatology in that height range was identified. This report examines GRAM (MET) constituents between 100 and 1000 km altitudes. Discrepancies are noted between GRAM (MET) constituent number densities and mass density or molecular weight. Near 110 km altitude, there is up to about 25% discrepancy between MET number density and mass density (with mass density being valid and number densities requiring adjustment). Near 700 km altitude there is also up to about 25% discrepancy between MET number density and mean molecular weight (with molecular weight requiring adjustment). In neither case are MET mass density estimates invalidated. These discrepancies have been traced to MET subroutines SLV (which affects 90-170 km height range) and SLVH (which affects helium above 440 km altitude). With these discrepancies corrected, results are presented to illustrate GRAM (MET) constituent mole fractions in terms of height-latitude cross sections from 100 to 1000 km altitude, and latitude-longitude 'maps' at 450 km (approximate height of International Space Station). Plans are discussed for an update of MET (and GRAM) to correct these constituent inconsistencies and to incorporate several new thermospheric model features.

  1. Analysis of entry accelerometer data: A case study of Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Withers, Paul; Towner, M. C.; Hathi, B.; Zarnecki, J. C.

    2003-08-01

    Accelerometers are regularly flown on atmosphere-entering spacecraft. Using their measurements, the spacecraft trajectory and the vertical structure of density, pressure, and temperature in the atmosphere through which it descends can be calculated. We review the general procedures for trajectory and atmospheric structure reconstruction and outline them here in detail. We discuss which physical properties are important in atmospheric entry, instead of working exclusively with the dimensionless numbers of fluid dynamics. Integration of the equations of motion governing the spacecraft trajectory is carried out in a novel and general formulation. This does not require an axisymmetric gravitational field or many of the other assumptions that are present in the literature. We discuss four techniques - head-on, drag-only, acceleration ratios, and gyroscopes - for constraining spacecraft attitude, which is the critical issue in the trajectory reconstruction. The head-on technique uses an approximate magnitude and direction for the aerodynamic acceleration, whereas the drag-only technique uses the correct magnitude and an approximate direction. The acceleration ratios technique uses the correct magnitude and an indirect way of finding the correct direction and the gyroscopes technique uses the correct magnitude and a direct way of finding the correct direction. The head-on and drag-only techniques are easy to implement and require little additional information. The acceleration ratios technique requires extensive and expensive aerodynamic modelling. The gyroscopes technique requires additional onboard instrumentation. The effects of errors are briefly addressed. Our implementations of these trajectory reconstruction procedures have been verified on the Mars Pathfinder dataset. We find inconsistencies within the published work of the Pathfinder science team, and in the PDS archive itself, relating to the entry state of the spacecraft. Our atmospheric structure reconstruction, which uses only a simple aerodynamic database, is consistent with the PDS archive to about 4%. Surprisingly accurate profiles of atmospheric temperatures can be derived with no information about the spacecraft aerodynamics. Using no aerodynamic information whatsoever about Pathfinder, our profile of atmospheric temperature is still consistent with the PDS archive to about 8%. As a service to the community, we have placed simplified versions of our trajectory and atmospheric structure computer programmes online for public use.

  2. Water Quality Monitoring for Lake Constance with a Physically Based Algorithm for MERIS Data.

    PubMed

    Odermatt, Daniel; Heege, Thomas; Nieke, Jens; Kneubühler, Mathias; Itten, Klaus

    2008-08-05

    A physically based algorithm is used for automatic processing of MERIS level 1B full resolution data. The algorithm is originally used with input variables for optimization with different sensors (i.e. channel recalibration and weighting), aquatic regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol models). For operational use, however, a lake-specific parameterization is required, representing an approximation of the spatio-temporal variation in atmospheric and hydrooptic conditions, and accounting for sensor properties. The algorithm performs atmospheric correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm and y from subsurface irradiance reflectance. These outputs are enhanced by a selective filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by the Lake's protection authority coinciding with MERIS acquisitions were used for parameterization, training and validation.

  3. Improving Lidar Turbulence Estimates for Wind Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.

    2016-10-06

    Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less

  4. Tropospheric Correction for InSAR Using Interpolated ECMWF Data and GPS Zenith Total Delay

    NASA Technical Reports Server (NTRS)

    Webb, Frank H.; Fishbein, Evan F.; Moore, Angelyn W.; Owen, Susan E.; Fielding, Eric J.; Granger, Stephanie L.; Bjorndahl, Fredrik; Lofgren Johan

    2011-01-01

    To mitigate atmospheric errors caused by the troposphere, which is a limiting error source for spaceborne interferometric synthetic aperture radar (InSAR) imaging, a tropospheric correction method has been developed using data from the European Centre for Medium- Range Weather Forecasts (ECMWF) and the Global Positioning System (GPS). The ECMWF data was interpolated using a Stretched Boundary Layer Model (SBLM), and ground-based GPS estimates of the tropospheric delay from the Southern California Integrated GPS Network were interpolated using modified Gaussian and inverse distance weighted interpolations. The resulting Zenith Total Delay (ZTD) correction maps have been evaluated, both separately and using a combination of the two data sets, for three short-interval InSAR pairs from Envisat during 2006 on an area stretching from northeast from the Los Angeles basin towards Death Valley. Results show that the root mean square (rms) in the InSAR images was greatly reduced, meaning a significant reduction in the atmospheric noise of up to 32 percent. However, for some of the images, the rms increased and large errors remained after applying the tropospheric correction. The residuals showed a constant gradient over the area, suggesting that a remaining orbit error from Envisat was present. The orbit reprocessing in ROI_pac and the plane fitting both require that the only remaining error in the InSAR image be the orbit error. If this is not fulfilled, the correction can be made anyway, but it will be done using all remaining errors assuming them to be orbit errors. By correcting for tropospheric noise, the biggest error source is removed, and the orbit error becomes apparent and can be corrected for

  5. Study on the influence of stochastic properties of correction terms on the reliability of instantaneous network RTK

    NASA Astrophysics Data System (ADS)

    Próchniewicz, Dominik

    2014-03-01

    The reliability of precision GNSS positioning primarily depends on correct carrier-phase ambiguity resolution. An optimal estimation and correct validation of ambiguities necessitates a proper definition of mathematical positioning model. Of particular importance in the model definition is the taking into account of the atmospheric errors (ionospheric and tropospheric refraction) as well as orbital errors. The use of the network of reference stations in kinematic positioning, known as Network-based Real-Time Kinematic (Network RTK) solution, facilitates the modeling of such errors and their incorporation, in the form of correction terms, into the functional description of positioning model. Lowered accuracy of corrections, especially during atmospheric disturbances, results in the occurrence of unaccounted biases, the so-called residual errors. The taking into account of such errors in Network RTK positioning model is possible by incorporating the accuracy characteristics of the correction terms into the stochastic model of observations. In this paper we investigate the impact of the expansion of the stochastic model to include correction term variances on the reliability of the model solution. In particular the results of instantaneous solution that only utilizes a single epoch of GPS observations, is analyzed. Such a solution mode due to the low number of degrees of freedom is very sensitive to an inappropriate mathematical model definition. Thus the high level of the solution reliability is very difficult to achieve. Numerical tests performed for a test network located in mountain area during ionospheric disturbances allows to verify the described method for the poor measurement conditions. The results of the ambiguity resolution as well as the rover positioning accuracy shows that the proposed method of stochastic modeling can increase the reliability of instantaneous Network RTK performance.

  6. Horizontal atmospheric turbulence, beam propagation, and modeling

    NASA Astrophysics Data System (ADS)

    Wilcox, Christopher C.; Santiago, Freddie; Martinez, Ty; Judd, K. Peter; Restaino, Sergio R.

    2017-05-01

    The turbulent effect from the Earth's atmosphere degrades the performance of an optical imaging system. Many studies have been conducted in the study of beam propagation in a turbulent medium. Horizontal beam propagation and correction presents many challenges when compared to vertical due to the far harsher turbulent conditions and increased complexity it induces. We investigate the collection of beam propagation data, analysis, and use for building a mathematical model of the horizontal turbulent path and the plans for an adaptive optical system to use this information to correct for horizontal path atmospheric turbulence.

  7. Wave optics-based LEO-LEO radio occultation retrieval

    NASA Astrophysics Data System (ADS)

    Benzon, Hans-Henrik; Høeg, Per

    2016-06-01

    This paper describes the theory for performing retrieval of radio occultations that use probing frequencies in the XK and KM band. Normally, radio occultations use frequencies in the L band, and GPS satellites are used as the transmitting source, and the occultation signals are received by a GPS receiver on board a Low Earth Orbit (LEO) satellite. The technique is based on the Doppler shift imposed, by the atmosphere, on the signal emitted from the GPS satellite. Two LEO satellites are assumed in the occultations discussed in this paper, and the retrieval is also dependent on the decrease in the signal amplitude caused by atmospheric absorption. The radio wave transmitter is placed on one of these satellites, while the receiver is placed on the other LEO satellite. One of the drawbacks of normal GPS-based radio occultations is that external information is needed to calculate some of the atmospheric products such as the correct water vapor content in the atmosphere. These limitations can be overcome when a proper selected range of high-frequency waves are used to probe the atmosphere. Probing frequencies close to the absorption line of water vapor have been included, thus allowing the retrieval of the water vapor content. Selecting the correct probing frequencies would make it possible to retrieve other information such as the content of ozone. The retrieval is performed through a number of processing steps which are based on the Full Spectrum Inversion (FSI) technique. The retrieval chain is therefore a wave optics-based retrieval chain, and it is therefore possible to process measurements that include multipath. In this paper simulated LEO to LEO radio occultations based on five different frequencies are used. The five frequencies are placed in the XK or KM frequency band. This new wave optics-based retrieval chain is used on a number of examples, and the retrieved atmospheric parameters are compared to the parameters from a global European Centre for Medium-Range Weather Forecasts analysis model. This model is used in a forward propagator that simulates the electromagnetic field amplitudes and phases at the receiver on board the LEO satellite. LEO-LEO cross-link radio occultations using high frequencies are a relatively new technique, and the possibilities and advantages of the technique still need to be investigated. The retrieval of this type of radio occultations is considerably more complicated than standard GPS to LEO radio occultations, because the attenuation of the probing radio waves is used in the retrieval and the atmospheric parameters are found using a least squares solver. The best algorithms and the number of probing frequencies that is economically viable must also be determined. This paper intends to answer some of these questions using end-to-end simulations.

  8. Assessing the Application of Cloud-Shadow Atmospheric Correction Algorithm on HICO

    DTIC Science & Technology

    2014-05-01

    multiple times and intercompare the results to assess variability in the retrieved reflectance spectra. Retrieved chlorophyll values from this...intercomparison are similar and also agree well with the In situ chlorophyll measurements. 15. SUBJECT TERMS Atmospheric correction, cloud-shadow...reflectance spectra. Re- trieved chlorophyll values from this intercomparison are similar and also agree well with the in situ chlorophyll measurements

  9. Atmospheric correction of HJ-1 CCD imagery over turbid lake waters.

    PubMed

    Zhang, Minwei; Tang, Junwu; Dong, Qing; Duan, Hongtao; Shen, Qian

    2014-04-07

    We have presented an atmospheric correction algorithm for HJ-1 CCD imagery over Lakes Taihu and Chaohu with highly turbid waters. The Rayleigh scattering radiance (Lr) is calculated using the hyperspectral Lr with a wavelength interval 1nm. The hyperspectral Lr is interpolated from Lr in the central wavelengths of MODIS bands, which are converted from the band response-averaged Lr calculated using the Rayleigh look up tables (LUTs) in SeaDAS6.1. The scattering radiance due to aerosol (La) is interpolated from La at MODIS band 869nm, which is derived from MODIS imagery using a shortwave infrared atmospheric correction scheme. The accuracy of the atmospheric correction algorithm is firstly evaluated by comparing the CCD measured remote sensing reflectance (Rrs) with MODIS measurements, which are validated by the in situ data. The CCD measured Rrs is further validated by the in situ data for a total of 30 observation stations within ± 1h time window of satellite overpass and field measurements. The validation shows the mean relative errors about 0.341, 0.259, 0.293 and 0.803 at blue, green, red and near infrared bands.

  10. Ocean Observations with EOS/MODIS: Algorithm Development and Post Launch Studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1997-01-01

    Significant accomplishments made during the present reporting period are as follows: (1) We developed a new method for identifying the presence of absorbing aerosols and, simultaneously, performing atmospheric correction. The algorithm consists of optimizing the match between the top-of-atmosphere radiance spectrum and the result of models of both the ocean and aerosol optical properties; (2) We developed an algorithm for providing an accurate computation of the diffuse transmittance of the atmosphere given an aerosol model. A module for inclusion into the MODIS atmospheric-correction algorithm was completed; (3) We acquired reflectance data for oceanic whitecaps during a cruise on the RV Ka'imimoana in the Tropical Pacific (Manzanillo, Mexico to Honolulu, Hawaii). The reflectance spectrum of whitecaps was found to be similar to that for breaking waves in the surf zone measured by Frouin, Schwindling and Deschamps, however, the drop in augmented reflectance from 670 to 860 nm was not as great, and the magnitude of the augmented reflectance was significantly less than expected; and (4) We developed a method for the approximate correction for the effects of the MODIS polarization sensitivity. The correction, however, requires adequate characterization of the polarization sensitivity of MODIS prior to launch.

  11. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. S.

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is stable in time and uniform over the sky to 1% precision or better. Past surveys have achieved photometric precision of 1-2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmissionmore » and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors using photometry from the Dark Energy Survey (DES) as an example. We define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes, when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the systematic chromatic errors caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane, can be up to 2% in some bandpasses. We compare the calculated systematic chromatic errors with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput. The residual after correction is less than 0.3%. We also find that the errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  12. Minimizing systematic errors from atmospheric multiple scattering and satellite viewing geometry in coastal zone color scanner level IIA imagery

    NASA Technical Reports Server (NTRS)

    Martin, D. L.; Perry, M. J.

    1994-01-01

    Water-leaving radiances and phytoplankton pigment concentrations are calculated from coastal zone color scanner (CZCS) radiance measurements by removing atmospheric Rayleigh and aerosol radiances from the total radiance signal measured at the satellite. The single greatest source of error in CZCS atmospheric correction algorithms in the assumption that these Rayleigh and aerosol radiances are separable. Multiple-scattering interactions between Rayleigh and aerosol components cause systematic errors in calculated aerosol radiances, and the magnitude of these errors is dependent on aerosol type and optical depth and on satellite viewing geometry. A technique was developed which extends the results of previous radiative transfer modeling by Gordon and Castano to predict the magnitude of these systematic errors for simulated CZCS orbital passes in which the ocean is viewed through a modeled, physically realistic atmosphere. The simulated image mathematically duplicates the exact satellite, Sun, and pixel locations of an actual CZCS image. Errors in the aerosol radiance at 443 nm are calculated for a range of aerosol optical depths. When pixels in the simulated image exceed an error threshhold, the corresponding pixels in the actual CZCS image are flagged and excluded from further analysis or from use in image compositing or compilation of pigment concentration databases. Studies based on time series analyses or compositing of CZCS imagery which do not address Rayleigh-aerosol multiple scattering should be interpreted cautiously, since the fundamental assumption used in their atmospheric correction algorithm is flawed.

  13. IDC Re-Engineering Phase 2 Iteration E2 Use Case Realizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, James M.; Burns, John F.; Hamlet, Benjamin R.

    2016-06-01

    This architecturally significant use case describes how the System acquires meteorological data to build atmospheric models used in automatic and interactive processing of infrasound data. The System requests the latest available high-resolution global meteorological data from external data centers and puts it into the correct formats for generation of infrasound propagation models. The system moves the meteorological data from Data Acquisition Partition to the Data Processing Partition and stores the meteorological data. The System builds a new atmospheric model based on the meteorological data. This use case is architecturally significant because it describes acquiring meteorological data from various sources andmore » creating dynamic atmospheric transmission model to support the prediction of infrasonic signal detection« less

  14. Adaptive optics compensation of orbital angular momentum beams with a modified Gerchberg-Saxton-based phase retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Chang, Huan; Yin, Xiao-li; Cui, Xiao-zhou; Zhang, Zhi-chao; Ma, Jian-xin; Wu, Guo-hua; Zhang, Li-jia; Xin, Xiang-jun

    2017-12-01

    Practical orbital angular momentum (OAM)-based free-space optical (FSO) communications commonly experience serious performance degradation and crosstalk due to atmospheric turbulence. In this paper, we propose a wave-front sensorless adaptive optics (WSAO) system with a modified Gerchberg-Saxton (GS)-based phase retrieval algorithm to correct distorted OAM beams. We use the spatial phase perturbation (SPP) GS algorithm with a distorted probe Gaussian beam as the only input. The principle and parameter selections of the algorithm are analyzed, and the performance of the algorithm is discussed. The simulation results show that the proposed adaptive optics (AO) system can significantly compensate for distorted OAM beams in single-channel or multiplexed OAM systems, which provides new insights into adaptive correction systems using OAM beams.

  15. Optimal Estimation Retrieval of Mid-Tropospheric Carbon Dioxide and Methane Using the Atmospheric Infrared Sounder (AIRS) Radiances.

    NASA Astrophysics Data System (ADS)

    Imbiriba, B.

    2017-12-01

    Carbon dioxide and methane are the most important anthropogenic greenhouse contributions to climate change. Space-based remote sensing measurements of carbon dioxide and methane would help to understand the generation, absorption and transport mechanisms and characterization of such gases. Space-based hyperspectral thermal infrared remote sensing measurements using NASA's Atmospheric Infrared Sounder (AIRS) instrument can provide 14 years of observations of radiances at the top of the atmosphere.Here we present a Optimal Estimation based retrieval system for surface temperature, water vapor, carbon dioxide, methane, and other trace gases, based on selected AIRS channels that allow for CO2 sensitivity down to the lower part of the middle troposphere. We use the SARTA fast forward model developed at University of Maryland Baltimore County, and use the ERA product for prior state atmospheric profiles.We retrieve CO2 and CH4 column concentrations across 14 years of AIRS measurements, for clear only field-of-views, using the AIRS L1B Calibration Subset. We then compare these to the standard AIRS L2 CO2 retrievals, as well TES, and OCO2 data, and the GlobalView/CarbonTracker CO2/CH4 model data from NOAA. We evaluate the hemispheric seasonal cycles, growth rates, and possible interhemispheric transport. We also evaluate the use of atmospheric nitrous oxide concentration to correct for the errors in the temperature profile.

  16. Atmospheric effects on the NDVI - Strategies for its removal. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Holben, B. N.; Markham, B.; Gitelson, A.

    1992-01-01

    The compositing technique used to derive global vegetation index (NDVI) from the NOAA AVHRR radiances reduces the residual effect of water vapor and aerosol on the NDVI. The reduction in the atmospheric effect is shown using a comprehensive measured data set for desert conditions, and a simulation for grass with continental aerosol. A statistical analaysis of the probability of occurrence of aerosol optical thickness and precipitable water vapor measured in different climatic regimes is used for this simulation. It is concluded that for a long compositing period (e.g., 27 days), the residual aerosol optical thickness and precipitable water vapor are usually too small to be corrected. For a 9-day compositing, the residual average aerosol effect may be about twice the correction uncertainty. For Landsat TM or Earth Observing System Moderate Resolution Imaging Spectrometer (EOS-MODIS) data, the newly defined atmospherically resistant vegetation index (ARVI) is more promising than possible direct atmospheric correction schemes, except for heavy desert dust conditions.

  17. VizieR Online Data Catalog: 3D correction in 5 photometric systems (Bonifacio+, 2018)

    NASA Astrophysics Data System (ADS)

    Bonifacio, P.; Caffau, E.; Ludwig, H.-G.; Steffen, M.; Castelli, F.; Gallagher, A. J.; Kucinskas, A.; Prakapavicius, D.; Cayrel, R.; Freytag, B.; Plez, B.; Homeier, D.

    2018-01-01

    We have used the CIFIST grid of CO5BOLD models to investigate the effects of granulation on fluxes and colours of stars of spectral type F, G, and K. We publish tables with 3D corrections that can be applied to colours computed from any 1D model atmosphere. For Teff>=5000K, the corrections are smooth enough, as a function of atmospheric parameters, that it is possible to interpolate the corrections between grid points; thus the coarseness of the CIFIST grid should not be a major limitation. However at the cool end there are still far too few models to allow a reliable interpolation. (20 data files).

  18. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters.

    PubMed

    Ruddick, K G; Ovidio, F; Rijkeboer, M

    2000-02-20

    The standard SeaWiFS atmospheric correction algorithm, designed for open ocean water, has been extended for use over turbid coastal and inland waters. Failure of the standard algorithm over turbid waters can be attributed to invalid assumptions of zero water-leaving radiance for the near-infrared bands at 765 and 865 nm. In the present study these assumptions are replaced by the assumptions of spatial homogeneity of the 765:865-nm ratios for aerosol reflectance and for water-leaving reflectance. These two ratios are imposed as calibration parameters after inspection of the Rayleigh-corrected reflectance scatterplot. The performance of the new algorithm is demonstrated for imagery of Belgian coastal waters and yields physically realistic water-leaving radiance spectra. A preliminary comparison with in situ radiance spectra for the Dutch Lake Markermeer shows significant improvement over the standard atmospheric correction algorithm. An analysis is made of the sensitivity of results to the choice of calibration parameters, and perspectives for application of the method to other sensors are briefly discussed.

  19. Using GPS RO L1 data for calibration of the atmospheric path delay model for data reduction of the satellite altimetery observations.

    NASA Astrophysics Data System (ADS)

    Petrov, L.

    2017-12-01

    Processing satellite altimetry data requires the computation of path delayin the neutral atmosphere that is used for correcting ranges. The path delayis computed using numerical weather models and the accuracy of its computationdepends on the accuracy of numerical weather models. Accuracy of numerical modelsof numerical weather models over Antarctica and Greenland where there is a very sparse network of ground stations, is not well known. I used the dataset of GPS RO L1 data, computed predicted path delay for ROobservations using the numerical whether model GEOS-FPIT, formed the differences with observed path delay and used these differences for computationof the corrections to the a priori refractivity profile. These profiles wereused for computing corrections to the a priori zenith path delay. The systematic patter of these corrections are used for de-biasing of the the satellite altimetry results and for characterization of the systematic errorscaused by mismodeling atmosphere.

  20. Open-path FTIR data reduction algorithm with atmospheric absorption corrections: the NONLIN code

    NASA Astrophysics Data System (ADS)

    Phillips, William; Russwurm, George M.

    1999-02-01

    This paper describes the progress made to date in developing, testing, and refining a data reduction computer code, NONLIN, that alleviates many of the difficulties experienced in the analysis of open path FTIR data. Among the problems that currently effect FTIR open path data quality are: the inability to obtain a true I degree or background, spectral interferences of atmospheric gases such as water vapor and carbon dioxide, and matching the spectral resolution and shift of the reference spectra to a particular field instrument. This algorithm is based on a non-linear fitting scheme and is therefore not constrained by many of the assumptions required for the application of linear methods such as classical least squares (CLS). As a result, a more realistic mathematical model of the spectral absorption measurement process can be employed in the curve fitting process. Applications of the algorithm have proven successful in circumventing open path data reduction problems. However, recent studies, by one of the authors, of the temperature and pressure effects on atmospheric absorption indicate there exist temperature and water partial pressure effects that should be incorporated into the NONLIN algorithm for accurate quantification of gas concentrations. This paper investigates the sources of these phenomena. As a result of this study a partial pressure correction has been employed in NONLIN computer code. Two typical field spectra are examined to determine what effect the partial pressure correction has on gas quantification.

  1. Towards PACE Atmospheric Correction, Aerosol and Cloud Products: Making Use of Expanded Spectral, Angular and Polarimetric Information.

    NASA Astrophysics Data System (ADS)

    Remer, L. A.; Boss, E.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Coddington, O.; Davis, A. B.; Dierssen, H. M.; Diner, D. J.; Franz, B. A.; Frouin, R.; Gao, B. C.; Garay, M. J.; Heidinger, A.; Ibrahim, A.; Kalashnikova, O. V.; Knobelspiesse, K. D.; Levy, R. C.; Omar, A. H.; Meyer, K.; Platnick, S. E.; Seidel, F. C.; van Diedenhoven, B.; Werdell, J.; Xu, F.; Zhai, P.; Zhang, Z.

    2017-12-01

    NASA's Science Team for the Plankton, Aerosol, Clouds, ocean Ecosystem (PACE) mission is concluding three years of study exploring the science potential of expanded spectral, angular and polarization capability for space-based retrievals of water leaving radiance, aerosols and clouds. The work anticipates future development of retrievals to be applied to the PACE Ocean Color Instrument (OCI) and/or possibly a PACE Multi-Angle Polarimeter (MAP). In this presentation we will report on the Science Team's accomplishments associated with the atmosphere (significant efforts are also directed by the ST towards the ocean). Included in the presentation will be sensitivity studies that explore new OCI capabilities for aerosol and cloud layer height, aerosol absorption characterization, cloud property retrievals, and how we intend to move from heritage atmospheric correction algorithms to make use of and adjust to OCI's hyperspectral and UV wavelengths. We will then address how capabilities will improve with the PACE MAP, how these capabilities from both OCI and MAP correspond to specific societal benefits from the PACE mission, and what is still needed to close the gaps in our understanding before the PACE mission can realize its full potential.

  2. Detecting chlorophyll, Secchi disk depth and surface temperature in a sub-alpine lake using Landsat imagery.

    PubMed

    Giardino, C; Pepe, M; Brivio, P A; Ghezzi, P; Zilioli, E

    2001-03-14

    Some bio-physical parameters, such as chlorophyll a concentration, Secchi disk depth and water surface temperature were mapped in the sub-alpine Lake Iseo (Italy) using Landsat Thematic Mapper (TM) data acquired on the 7 March 1997. In order to adequately investigate the water-leaving radiance, TM data were atmospherically corrected using a partially image-based method, and the atmospheric transmittance was measured in synchrony with the satellite passage. An empirical approach of relating atmospherically corrected TM spectral reflectance values to in situ measurements, collected during the satellite data acquisition, was used. The models developed were used to map the chlorophyll concentration and Secchi disk depth throughout the lake. Both models gave high determination coefficients (R2 = 0.99 for chlorophyll and R2 = 0.85 for the Secchi disk) and the spatial distribution of chlorophyll concentration and Secchi disk depth was mapped with contour intervals of 1 mg/m3 and 1 m, respectively. A scene-independent procedure was used to derive the surface temperature of the lake from the TM data with a root mean square error of 0.3 degrees C.

  3. Absorption and scattering of light by nonspherical particles. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Bohren, C. F.

    1986-01-01

    Using the example of the polarization of scattered light, it is shown that the scattering matrices for identical, randomly ordered particles and for spherical particles are unequal. The spherical assumptions of Mie theory are therefore inconsistent with the random shapes and sizes of atmospheric particulates. The implications for corrections made to extinction measurements of forward scattering light are discussed. Several analytical methods are examined as potential bases for developing more accurate models, including Rayleigh theory, Fraunhoffer Diffraction theory, anomalous diffraction theory, Rayleigh-Gans theory, the separation of variables technique, the Purcell-Pennypacker method, the T-matrix method, and finite difference calculations.

  4. Accuracy requirements of optical linear algebra processors in adaptive optics imaging systems.

    PubMed

    Downie, J D; Goodman, J W

    1989-10-15

    A ground-based adaptive optics imaging telescope system attempts to improve image quality by measuring and correcting for atmospherically induced wavefront aberrations. The necessary control computations during each cycle will take a finite amount of time, which adds to the residual error variance since the atmosphere continues to change during that time. Thus an optical processor may be well-suited for this task. This paper investigates this possibility by studying the accuracy requirements in a general optical processor that will make it competitive with, or superior to, a conventional digital computer for adaptive optics use.

  5. Improved Correction of Atmospheric Pressure Data Obtained by Smartphones through Machine Learning

    PubMed Central

    Kim, Yong-Hyuk; Ha, Ji-Hun; Kim, Na-Young; Im, Hyo-Hyuc; Sim, Sangjin; Choi, Reno K. Y.

    2016-01-01

    A correction method using machine learning aims to improve the conventional linear regression (LR) based method for correction of atmospheric pressure data obtained by smartphones. The method proposed in this study conducts clustering and regression analysis with time domain classification. Data obtained in Gyeonggi-do, one of the most populous provinces in South Korea surrounding Seoul with the size of 10,000 km2, from July 2014 through December 2014, using smartphones were classified with respect to time of day (daytime or nighttime) as well as day of the week (weekday or weekend) and the user's mobility, prior to the expectation-maximization (EM) clustering. Subsequently, the results were analyzed for comparison by applying machine learning methods such as multilayer perceptron (MLP) and support vector regression (SVR). The results showed a mean absolute error (MAE) 26% lower on average when regression analysis was performed through EM clustering compared to that obtained without EM clustering. For machine learning methods, the MAE for SVR was around 31% lower for LR and about 19% lower for MLP. It is concluded that pressure data from smartphones are as good as the ones from national automatic weather station (AWS) network. PMID:27524999

  6. SeaWiFS technical report series. Volume 13: Case studies for SeaWiFS calibration and validation, part 1

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Mcclain, Charles R.; Comiso, Josefino C.; Fraser, Robert S.; Firestone, James K.; Schieber, Brian D.; Yeh, Eueng-Nan; Arrigo, Kevin R.; Sullivan, Cornelius W.

    1994-01-01

    Although the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Calibration and Validation Program relies on the scientific community for the collection of bio-optical and atmospheric correction data as well as for algorithm development, it does have the responsibility for evaluating and comparing the algorithms and for ensuring that the algorithms are properly implemented within the SeaWiFS Data Processing System. This report consists of a series of sensitivity and algorithm (bio-optical, atmospheric correction, and quality control) studies based on Coastal Zone Color Scanner (CZCS) and historical ancillary data undertaken to assist in the development of SeaWiFS specific applications needed for the proper execution of that responsibility. The topics presented are as follows: (1) CZCS bio-optical algorithm comparison, (2) SeaWiFS ozone data analysis study, (3) SeaWiFS pressure and oxygen absorption study, (4) pixel-by-pixel pressure and ozone correction study for ocean color imagery, (5) CZCS overlapping scenes study, (6) a comparison of CZCS and in situ pigment concentrations in the Southern Ocean, (7) the generation of ancillary data climatologies, (8) CZCS sensor ringing mask comparison, and (9) sun glint flag sensitivity study.

  7. Atmosphere behavior in gas-closed mouse-algal systems: An experimental and modelling study

    NASA Astrophysics Data System (ADS)

    Averner, Maurice M.; Moore, Berrien; Bartholomew, Irene; Wharton, Robert

    Concepts of biologically-based regenerative life support systems anticipate the use of photosynthetic organisms for air revitalization. However, mismatches in the rates of production and uptake of oxygen or carbon dioxide between the crew and the plants will lead to an accumulation or depletion of these gases beyond tolerable limits. One method for correcting these atmospheric changes is to use physicochemical devices. This would conflict with the constraint of minimal size and weight imposed upon the successful development of a competitive bioregenerative system. An alternate control strategy is based upon reducing the gas exchange mismatch by manipulation of those environmental parameters known to affect plant or algae gas exchange ratios. We have initiated a research program using a dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere. Our goal is to develop control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels. A mathematical model simulating the atmospheric behavior in these systems has been developed and an experimental gas-closed system has been constructed. These will be described and preliminary results will be presented.

  8. All-optical dynamic correction of distorted communication signals using a photorefractive polymeric hologram

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Eralp, Muhsin; Thomas, Jayan; Tay, Savaş; Schülzgen, Axel; Norwood, Robert A.; Peyghambarian, N.

    2005-04-01

    All-optical real-time dynamic correction of wave front aberrations for image transmission is demonstrated using a photorefractive polymeric hologram. The material shows video rate response time with a low power laser. High-fidelity, high-contrast images can be reconstructed when the oil-filled phase plate generating atmospheric-like wave front aberrations is moved at 0.3mm/s. The architecture based on four-wave mixing has potential application in free-space optical communication, remote sensing, and dynamic tracking. The system offers a cost-effective alternative to closed-loop adaptive optics systems.

  9. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    PubMed

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  10. Methods of InSAR atmosphere correction for volcano activity monitoring

    USGS Publications Warehouse

    Gong, W.; Meyer, F.; Webley, P.W.; Lu, Z.

    2011-01-01

    When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.

  11. An adaptive optics approach for laser beam correction in turbulence utilizing a modified plenoptic camera

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2015-09-01

    Adaptive optics has been widely used in the field of astronomy to correct for atmospheric turbulence while viewing images of celestial bodies. The slightly distorted incoming wavefronts are typically sensed with a Shack-Hartmann sensor and then corrected with a deformable mirror. Although this approach has proven to be effective for astronomical purposes, a new approach must be developed when correcting for the deep turbulence experienced in ground to ground based optical systems. We propose the use of a modified plenoptic camera as a wavefront sensor capable of accurately representing an incoming wavefront that has been significantly distorted by strong turbulence conditions (C2n <10-13 m- 2/3). An intelligent correction algorithm can then be developed to reconstruct the perturbed wavefront and use this information to drive a deformable mirror capable of correcting the major distortions. After the large distortions have been corrected, a secondary mode utilizing more traditional adaptive optics algorithms can take over to fine tune the wavefront correction. This two-stage algorithm can find use in free space optical communication systems, in directed energy applications, as well as for image correction purposes.

  12. In-Scene-Based Atmospheric Correction of Uncalibrated VISible-SWIR (VIS-SWIR) Hyper- and Multispectral Imagery

    DTIC Science & Technology

    2008-01-01

    resolution , it is very likely that near-zero reflectance values exist in each spectral channel, corresponding to the minimum data values in the scene...radiometrically uncalibrated data. Quite good agreement was previously demonstrated for the retrieved pixel spectral reflectances between QUAC and the physics...precluding the use of physics-based codes to retrieve surface reflectance. The ability to retrieve absolute spectral reflectances from such sensors

  13. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  14. Climatology analysis of cirrus cloud in ARM site: South Great Plain

    NASA Astrophysics Data System (ADS)

    Olayinka, K.

    2017-12-01

    Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)

  15. NASA COAST and OCEANIA Airborne Missions in Support of Ecosystem and Water Quality Research in the Coastal Zone

    NASA Technical Reports Server (NTRS)

    Guild, Liane S.; Hooker, Stanford B.; Kudela, Raphael; Morrow, John; Russell, Philip; Myers, Jeffrey; Dunagan, Stephen; Palacios, Sherry; Livingston, John; Negrey, Kendra; hide

    2015-01-01

    Worldwide, coastal marine ecosystems are exposed to land-based sources of pollution and sedimentation from anthropogenic activities including agriculture and coastal development. Ocean color products from satellite sensors provide information on chlorophyll (phytoplankton pigment), sediments, and colored dissolved organic material. Further, ship-based in-water measurements and emerging airborne measurements provide in situ data for the vicarious calibration of current and next generation satellite ocean color sensors and to validate the algorithms that use the remotely sensed observations. Recent NASA airborne missions over Monterey Bay, CA, have demonstrated novel above- and in-water measurement capabilities supporting a combined airborne sensor approach (imaging spectrometer, microradiometers, and a sun photometer). The results characterize coastal atmospheric and aquatic properties through an end-to-end assessment of image acquisition, atmospheric correction, algorithm application, plus sea-truth observations from state-of-the-art instrument systems. The primary goal of the airborne missions was to demonstrate the following in support of calibration and validation exercises for satellite coastal ocean color products: 1) the utility of a multi-sensor airborne instrument suite to assess the bio-optical properties of coastal California, including water quality; and 2) the importance of contemporaneous atmospheric measurements to improve atmospheric correction in the coastal zone. Utilizing an imaging spectrometer optimized in the blue to green spectral domain enables higher signal for detection of the relatively dark radiance measurements from marine and freshwater ecosystem features. The novel airborne instrument, Coastal Airborne In-situ Radiometers (C-AIR) provides measurements of apparent optical properties with high dynamic range and fidelity for deriving exact water leaving radiances at the land-ocean boundary, including radiometrically shallow aquatic ecosystems. Simultaneous measurements supporting empirical atmospheric correction of image data were accomplished using the Ames Airborne Tracking Sunphotometer (AATS-14). Flight operations are presented for the instrument payloads using the CIRPAS Twin Otter flown over Monterey Bay during the seasonal fall algal bloom in 2011 (COAST) and 2013 (OCEANIA) to support bio-optical measurements of phytoplankton for coastal zone research. Further, this airborne capability can be responsive to first flush rain events that deliver higher concentrations of sediments and pollution to coastal waters via watersheds and overland flow.

  16. A temperature correction method for expanding atmospheres

    NASA Astrophysics Data System (ADS)

    Hamann, W.-R.; Gräfener, G.

    2003-11-01

    Model atmospheres form the basis for the interpretation of stellar spectra. A major problem in those model calculations is to establish the temperature stratification from the condition of radiative equilibrium. Dealing with non-LTE models for spherically expanding atmospheres of Wolf-Rayet stars, we developed a new temperature correction method. Its basic idea dates back to 1955 when it was proposed by Unsöld for grey, static and plane-parallel atmospheres in LTE. The equations were later generalized to the non-grey case by Lucy. In the present paper we furthermore drop the Eddington approximation, proceed to spherical geometry and allow for expansion of the atmosphere. Finally the concept of an ``approximate lambda operator'' is employed to speed up the convergence. Tests for Wolf-Rayet type models demonstrate that the method works fine even in situations of strong non-LTE.

  17. Computed atmospheric corrections for satellite data. [in visible and near IR spectra

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.

    1975-01-01

    The corrections are presented for the visible and near infrared spectrum. The specifications of earth-atmosphere models are given. Herman's and Dave's methods of computing the four Stokes parameters are presented. The relative differences between the two sets of values are one percent. The absolute accuracy of the computations can be established only by comparisons with measured data. Suitable observations do not yet exist. Nevertheless, comparisons are made between computed and aircraft and satellite measured radiances. Particulates are the principal atmospheric variable in the window bands. They have a large effect on the radiances when the surface reflectivity is low. When the surface reflectivity exceeds 0.1, only absorbing particulates have a large effect on the reflectivity, unless the atmospheric turbidity is high. The ranges of the Multispectral Scanner responses to atmospheric effects are computed.

  18. Net thermal radiation in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Revercomb, H. E.; Sromovsky, L. A.; Suomi, V. E.; Boese, R. W.

    1985-01-01

    Estimates of the true atmospheric net fluxes at the four Pioneer Venus entry sites are presently obtained through corrections of measured values that are relatively small for the case of the clouds, but generally large deeper in the atmosphere. The correction procedure for both the small and large probe fluxes used model results near 14 km to establish the size of the correction. The thermal net fluxes obtained imply that the contribution of mode 3 particles to the IR opacity of the middle and lower clouds is smaller than indicated by the Pioneer Venus cloud particle spectrometer measurements, and the day probe results favor a reduction of only about 50 percent. The fluxes at all sites imply that a yet-undetermined source of considerable opacity is present in the upper cloud. Beneath the clouds, the thermal net fluxes generally increase with increasing latitude.

  19. Study of the atmospheric effects on the radiation detected by the sensor aboard orbiting platforms (ERTS/LANDSAT). M.S. Thesis - October 1978; [Ribeirao Preto and Brasilia, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Morimoto, T.

    1980-01-01

    The author has identified the following significant results. Multispectral scanner data for Brasilia was corrected for atmospheric interference using the LOWTRAN-3 computer program and the analytical solution of the radiative transfer equation. This improved the contrast between two natural targets and the corrected images of two different dates were more similar than the original ones. Corrected images of MSS data for Ribeirao Preto gave a classification accuracy for sugar cane about 10% higher as compared to the original images.

  20. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  1. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1994-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube wave energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  2. On the physics of waves in the solar atmosphere: Wave heating and wind acceleration

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1993-01-01

    This paper presents work performed on the generation and physics of acoustic waves in the solar atmosphere. The investigators have incorporated spatial and temporal turbulent energy spectra in a newly corrected version of the Lighthill-Stein theory of acoustic wave generation in order to calculate the acoustic wave energy fluxes generated in the solar convective zone. The investigators have also revised and improved the treatment of the generation of magnetic flux tube waves, which can carry energy along the tubes far away from the region of their origin, and have calculated the tube energy fluxes for the sun. They also examine the transfer of the wave energy originated in the solar convective zone to the outer atmospheric layers through computation of wave propagation and dissipation in highly nonhomogeneous solar atmosphere. These waves may efficiently heat the solar atmosphere and the heating will be especially significant in the chromospheric network. It is also shown that the role played by Alfven waves in solar wind acceleration and coronal hole heating is dominant. The second part of the project concerned investigation of wave propagation in highly inhomogeneous stellar atmospheres using an approach based on an analytic tool developed by Musielak, Fontenla, and Moore. In addition, a new technique based on Dirac equations has been developed to investigate coupling between different MHD waves propagating in stratified stellar atmospheres.

  3. GEO-LEO reflectance band inter-comparison with BRDF and atmospheric scattering corrections

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Xiong, Xiaoxiong Jack; Keller, Graziela; Wu, Xiangqian

    2017-09-01

    The inter-comparison of the reflective solar bands between the instruments onboard a geostationary orbit satellite and onboard a low Earth orbit satellite is very helpful to assess their calibration consistency. GOES-R was launched on November 19, 2016 and Himawari 8 was launched October 7, 2014. Unlike the previous GOES instruments, the Advanced Baseline Imager on GOES-16 (GOES-R became GOES-16 after November 29 when it reached orbit) and the Advanced Himawari Imager (AHI) on Himawari 8 have onboard calibrators for the reflective solar bands. The assessment of calibration is important for their product quality enhancement. MODIS and VIIRS, with their stringent calibration requirements and excellent on-orbit calibration performance, provide good references. The simultaneous nadir overpass (SNO) and ray-matching are widely used inter-comparison methods for reflective solar bands. In this work, the inter-comparisons are performed over a pseudo-invariant target. The use of stable and uniform calibration sites provides comparison with appropriate reflectance level, accurate adjustment for band spectral coverage difference, reduction of impact from pixel mismatching, and consistency of BRDF and atmospheric correction. The site in this work is a desert site in Australia (latitude -29.0 South; longitude 139.8 East). Due to the difference in solar and view angles, two corrections are applied to have comparable measurements. The first is the atmospheric scattering correction. The satellite sensor measurements are top of atmosphere reflectance. The scattering, especially Rayleigh scattering, should be removed allowing the ground reflectance to be derived. Secondly, the angle differences magnify the BRDF effect. The ground reflectance should be corrected to have comparable measurements. The atmospheric correction is performed using a vector version of the Second Simulation of a Satellite Signal in the Solar Spectrum modeling and BRDF correction is performed using a semi-empirical model. AHI band 1 (0.47μm) shows good matching with VIIRS band M3 with difference of 0.15%. AHI band 5 (1.69μm) shows largest difference in comparison with VIIRS M10.

  4. Separating volcanic deformation and atmospheric signals at Mount St. Helens using Persistent Scatterer InSAR

    NASA Astrophysics Data System (ADS)

    Welch, Mark D.; Schmidt, David A.

    2017-09-01

    Over the past two decades, GPS and leveling surveys have recorded cycles of inflation and deflation associated with dome building eruptions at Mount St. Helens. Due to spatial and temporal limitations of the data, it remains unknown whether any deformation occurred prior to the most recent eruption of 2004, information which could help anticipate future eruptions. Interferometric Synthetic Aperture Radar (InSAR), which boasts fine spatial resolution over large areas, has the potential to resolve pre-eruptive deformation that may have occurred, but eluded detection by campaign GPS surveys because it was localized to the edifice or crater. Traditional InSAR methods are challenging to apply in the Cascades volcanic arc because of a combination of environmental factors, and past attempts to observe deformation at Mount St. Helens were unable to make reliable observations in the crater or on much of the edifice. In this study, Persistent Scatterer InSAR, known to mitigate issues of decorrelation caused by environmental factors, is applied to four SAR data sets in an attempt to resolve localized sources of deformation on the volcano between 1995 and 2010. Many interferograms are strongly influenced by phase delay from atmospheric water vapor and require correction, evidenced by a correlation between phase and topography. To assess the bias imposed by the atmosphere, we perform sensitivity tests on a suite of atmospheric correction techniques, including several that rely on the correlation of phase delay to elevation, and explore approaches that directly estimate phase delay using the ERA-Interim and NARR climate reanalysis data sets. We find that different correction methods produce velocities on the edifice of Mount St. Helens that differ by up to 1 cm/yr due to variability in how atmospheric artifacts are treated in individual interferograms. Additionally, simple phase-based techniques run the risk of minimizing any surface deformation signals that may themselves be correlated with elevation. The atmospherically corrected PS InSAR results for data sets overlapping in time are inconsistent with one another, and do not provide conclusive evidence for any pre-eruptive deformation at a broad scale or localized to the crater or edifice leading up to the 2004 eruption. However, we cannot rule out the possibility of deformation less than 1 cm/yr, or discern whether deformation rates increased in the months preceding the eruption. The results do significantly improve the spatial density of observations and our ability to resolve or rule out models for a potential deformation source for the pre-eruptive period.

  5. Spectral analysis of extinguished sunlight

    NASA Astrophysics Data System (ADS)

    Zagury, Frédéric; Goutail, Florence

    2003-08-01

    SAOZ (Système d'Analyse par Observation Zénitale) is a balloon-borne experiment which determines the column density of several molecular species from the visible spectrum of sunlight. We will use sequence of spectra collected during a sunset to discuss atmospheric extinction, and the nature of the radiation field in the atmosphere. The radiation field in the atmosphere is, from daylight to sunset, and with a clear sky, dominated by light coming from the direction of the sun. This light is composed of direct sunlight (extinguished by the gas), and of sunlight forward-scattered by aerosols. As the sun sets, aerosol scattering is first perceived towards the UV. It progressively replaces direct sunlight over all of the spectrum. Our analysis permits fixing the main parameters of each component of the radiation field at any time. The fits we find for the extinction of sunlight in the atmosphere must also apply to starlight. Thus, the present work can be used in astronomy to correct ground-based spectral observations for extinction in the atmosphere.

  6. Aerosol scattering and absorption modulation transfer function

    NASA Astrophysics Data System (ADS)

    Sadot, Dan; Kopeika, Norman S.

    1993-08-01

    Recent experimental measurements of overall atmospheric modulation transfer function (MTF) indicate significant difference between the turbulence and overall atmospheric MTFs, except often at midday when turbulence is strong. We suggest here a physical explanation for those results which essentially relates to what we call a practical instrumentation-based atmospheric aerosol MTF which is a modification of the classical aerosol MTF theory. It is shown that system field-of-view and dynamic range affect strongly aerosol and overall atmospheric MTFs. It is often necessary to choose between MTF and SNR depending upon dynamic range requirements. Also, a new approach regarding aerosol absorption is presented. It is shown that aerosol-absorbed irradiance is spatial frequency dependent and enhances the degradation in image quality arising from received scattered light. This is most relevant for thermal imaging. An analytically corrected model for the aerosol MTF is presented which is relevant for imaging. An important conclusion is that the aerosol MTF is often the dominant part in the actual overall atmospheric MTF all across the optical spectral region.

  7. The effect of finite field size on classification and atmospheric correction

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Fraser, R. S.

    1981-01-01

    The atmospheric effect on the upward radiance of sunlight scattered from the Earth-atmosphere system is strongly influenced by the contrasts between fields and their sizes. For a given atmospheric turbidity, the atmospheric effect on classification of surface features is much stronger for nonuniform surfaces than for uniform surfaces. Therefore, the classification accuracy of agricultural fields and urban areas is dependent not only on the optical characteristics of the atmosphere, but also on the size of the surface do not account for the nonuniformity of the surface have only a slight effect on the classification accuracy; in other cases the classification accuracy descreases. The radiances above finite fields were computed to simulate radiances measured by a satellite. A simulation case including 11 agricultural fields and four natural fields (water, soil, savanah, and forest) was used to test the effect of the size of the background reflectance and the optical thickness of the atmosphere on classification accuracy. It is concluded that new atmospheric correction methods, which take into account the finite size of the fields, have to be developed to improve significantly the classification accuracy.

  8. An Empirical Study of Atmospheric Correction Procedures for Regional Infrasound Amplitudes with Ground Truth.

    NASA Astrophysics Data System (ADS)

    Howard, J. E.

    2014-12-01

    This study focusses on improving methods of accounting for atmospheric effects on infrasound amplitudes observed on arrays at regional distances in the southwestern United States. Recordings at ranges of 150 to nearly 300 km from a repeating ground truth source of small HE explosions are used. The explosions range in actual weight from approximately 2000-4000 lbs. and are detonated year-round which provides signals for a wide range of atmospheric conditions. Three methods of correcting the observed amplitudes for atmospheric effects are investigated with the data set. The first corrects amplitudes for upper stratospheric wind as developed by Mutschlecner and Whitaker (1999) and uses the average wind speed between 45-55 km altitudes in the direction of propagation to derive an empirical correction formula. This approach was developed using large chemical and nuclear explosions and is tested with the smaller explosions for which shorter wavelengths cause the energy to be scattered by the smaller scale structure of the atmosphere. The second approach isa semi-empirical method using ray tracing to determine wind speed at ray turning heights where the wind estimates replace the wind values in the existing formula. Finally, parabolic equation (PE) modeling is used to predict the amplitudes at the arrays at 1 Hz. The PE amplitudes are compared to the observed amplitudes with a narrow band filter centered at 1 Hz. An analysis is performed of the conditions under which the empirical and semi-empirical methods fail and full wave methods must be used.

  9. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data

    PubMed Central

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-01-01

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363

  10. Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.

    PubMed

    Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter

    2016-06-15

    With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.

  11. Correction of laser range tracking data for atmospheric refraction at elevations above 10 degrees

    NASA Technical Reports Server (NTRS)

    Marini, J. W.; Murray, C. W., Jr.

    1973-01-01

    A formula for correcting laser measurements of satellite range for the effect of atmospheric refraction is given. The corrections apply above 10 deg elevation to satellites whose heights exceed 70 km. The meteorological measurements required are the temperature, pressure, and relative humidity of the air at the laser site at the time of satellite pass. The accuracy of the formula was tested by comparison with corrections obtained by ray-tracing radiosonde profiles. The standard deviation of the difference between the refractive retardation given by the formula and that calculated by ray-tracing was less than about 0.04% of the retardation or about 0.5 cm at 10 deg elevation, decreasing to 0.04 cm near zenith.

  12. First Retrieval of Surface Lambert Albedos From Mars Reconnaissance Orbiter CRISM Data

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Arvidson, R. E.; Murchie, S. L.; Wolff, M. J.; Smith, M. D.; Martin, T. Z.; Milliken, R. E.; Mustard, J. F.; Pelkey, S. M.; Lichtenberg, K. A.; Cavender, P. J.; Humm, D. C.; Titus, T. N.; Malaret, E. R.

    2006-12-01

    We have developed a pipeline-processing software system to convert radiance-on-sensor for each of 72 out of 544 CRISM spectral bands used in global mapping to the corresponding surface Lambert albedo, accounting for atmospheric, thermal, and photoclinometric effects. We will present and interpret first results from this software system for the retrieval of Lambert albedos from CRISM data. For the multispectral mapping modes, these pipeline-processed 72 spectral bands constitute all of the available bands, for wavelengths from 0.362-3.920 μm, at 100-200 m/pixel spatial resolution, and ~ 0.006\\spaceμm spectral resolution. For the hyperspectral targeted modes, these pipeline-processed 72 spectral bands are only a selection of all of the 544 spectral bands, but at a resolution of 15-38 m/pixel. The pipeline processing for both types of observing modes (multispectral and hyperspectral) will use climatology, based on data from MGS/TES, in order to estimate ice- and dust-aerosol optical depths, prior to the atmospheric correction with lookup tables based upon radiative-transport calculations via DISORT. There is one DISORT atmospheric-correction lookup table for converting radiance-on-sensor to Lambert albedo for each of the 72 spectral bands. The measurements of the Emission Phase Function (EPF) during targeting will not be employed in this pipeline processing system. We are developing a separate system for extracting more accurate aerosol optical depths and surface scattering properties. This separate system will use direct calls (instead of lookup tables) to the DISORT code for all 544 bands, and it will use the EPF data directly, bootstrapping from the climatology data for the aerosol optical depths. The pipeline processing will thermally correct the albedos for the spectral bands above ~ 2.6 μm, by a choice between 4 different techniques for determining surface temperature: 1) climatology, 2) empirical estimation of the albedo at 3.9 μm from the measured albedo at 2.5 μm, 3) a physical thermal model (PTM) based upon maps of thermal inertia from TES and coarse-resolution surface slopes (SS) from MOLA, and 4) a photoclinometric extension to the PTM that uses CRISM albedos at 0.41 μm to compute the SS at CRISM spatial resolution. For the thermal correction, we expect that each of these 4 different techniques will be valuable for some fraction of the observations.

  13. Analysis and modeling of atmospheric turbulence on the high-resolution space optical systems

    NASA Astrophysics Data System (ADS)

    Lili, Jiang; Chen, Xiaomei; Ni, Guoqiang

    2016-09-01

    Modeling and simulation of optical remote sensing system plays an unslightable role in remote sensing mission predictions, imaging system design, image quality assessment. It has already become a hot research topic at home and abroad. Atmospheric turbulence influence on optical systems is attached more and more importance to as technologies of remote sensing are developed. In order to study the influence of atmospheric turbulence on earth observation system, the atmospheric structure parameter was calculated by using the weak atmospheric turbulence model; and the relationship of the atmospheric coherence length and high resolution remote sensing optical system was established; then the influence of atmospheric turbulence on the coefficient r0h of optical remote sensing system of ground resolution was derived; finally different orbit height of high resolution optical system imaging quality affected by atmospheric turbulence was analyzed. Results show that the influence of atmospheric turbulence on the high resolution remote sensing optical system, the resolution of which has reached sub meter level meter or even the 0.5m, 0.35m and even 0.15m ultra in recent years, image quality will be quite serious. In the above situation, the influence of the atmospheric turbulence must be corrected. Simulation algorithms of PSF are presented based on the above results. Experiment and analytical results are posted.

  14. On-sky performance of the tip-tilt correction system for GLAS using an EMCCD camera

    NASA Astrophysics Data System (ADS)

    Skvarč, Jure; Tulloch, Simon

    2008-07-01

    Adaptive optics systems based on laser guide stars still need a natural guide star (NGS) to correct for the image motion caused by the atmosphere and by imperfect telescope tracking. The ability to properly compensate for this motion using a faint NGS is critical to achieve large sky coverage. For the laser guide system (GLAS) on the 4.2 m William Herschel Telescope we designed and tested in the laboratory and on-sky a tip-tilt correction system based on a PC running Linux and an EMCCD technology camera. The control software allows selection of different centroiding algorithms and loop control methods as well as the control parameters. Parameter analysis has been performed using tip-tilt only correction before the laser commissioning and the selected sets of parameters were then used during commissioning of the laser guide star system. We have established the SNR of the guide star as a function of magnitude, depending on the image sampling frequency and on the dichroic used in the optical system; achieving a measurable improvement using full AO correction with NGSes down to magnitude range R=16.5 to R=18. A minimum SNR of about 10 was established to be necessary for a useful correction. The system was used to produce 0.16 arcsecond images in H band using bright NGS and laser correction during GLAS commissioning runs.

  15. Water-level and wave measurements in the Chandeleur Islands, Louisiana, 2012 and 2013

    USGS Publications Warehouse

    Dickhudt, Patrick J.; Sherwood, Christopher R.; DeWitt, Nancy T.

    2015-01-01

    This report documents measurements of atmospheric pressure, water levels, and waves made by the U.S. Geological Survey in the Chandeleur Islands, Louisiana, during 2012 and 2013 as part of the Barrier Island Evolution Research project. Simple, inexpensive pressure sensors mounted in shallow wells were buried in the beach and left for one hurricane season and one winter-storm season. Gauges with rapid-sampling pressure sensors that provided nondirectional wave data and water-level data were mounted on rugged mounts on the Chandeleur Sound side and at the base of a tower at the northern end of the island chain. Additionally, an atmospheric pressure sensor was mounted on the tower to provide a local atmospheric pressure measurement for correcting the submerged pressure records.

  16. Airborne laser ranging system for monitoring regional crustal deformation

    NASA Technical Reports Server (NTRS)

    Degnan, J. J.

    1981-01-01

    Alternate approaches for making the atmospheric correction without benefit of a ground-based meteorological network are discussed. These include (1) a two-color channel that determines the atmospheric correction by measuring the time delay induced by dispersion between pulses at two optical frequencies; (2) single-color range measurements supported by an onboard temperature sounder, pressure altimeter readings, and surface measurements by a few existing meteorological facilities; and (3) inclusion of the quadratic polynomial coefficients as variables to be solved for along with target coordinates in the reduction of the single-color range data. It is anticipated that the initial Airborne Laser Ranging System (ALRS) experiments will be carried out in Southern California in a region bounded by Santa Barbara on the norht and the Mexican border on the south. The target area will be bounded by the Pacific Ocean to the west and will extend eastward for approximately 400 km. The unique ability of the ALRS to provide a geodetic 'snapshot' of such a large area will make it a valuable geophysical tool.

  17. Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

    PubMed Central

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, C.P. Mick; Polglase, P. J.

    2016-01-01

    Vegetation fires are a complex phenomenon in the Earth system with many global impacts, including influences on global climate. Estimating carbon emissions from vegetation fires relies on a carbon mass balance technique that has evolved with two different interpretations. Databases of global vegetation fire emissions use an approach based on ‘consumed biomass', which is an approximation to the biogeochemically correct ‘burnt carbon' approach. Here we show that applying the ‘consumed biomass' approach to global emissions from vegetation fires leads to annual overestimates of carbon emitted to the atmosphere by 4.0% or 100 Tg compared with the ‘burnt carbon' approach. The required correction is significant and represents ∼9% of the net global forest carbon sink estimated annually. Vegetation fire emission studies should use the ‘burnt carbon' approach to quantify and understand the role of this burnt carbon, which is not emitted to the atmosphere, as a sink enriched in carbon. PMID:27146785

  18. Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units

    PubMed Central

    Keckhut, P; Funatsu, B M; Claud, C; Hauchecorne, A

    2015-01-01

    Stratospheric temperature series derived from the Advanced Microwave Sounding Unit (AMSU) on board successive NOAA satellites reveal, during periods of overlap, some bias and drifts. Part of the reason for these discrepancies could be atmospheric tides as the orbits of these satellites drifted, inducing large changes in the actual times of measurement. NOAA 15 and 16, which exhibit a long period of overlap, allow deriving diurnal tides that can correct such temperature drifts. The characteristics of the derived diurnal tides during summer periods is in good agreement with those calculated with the Global Scale Wave Model, indicating that most of the observed drifts are likely due to the atmospheric tides. Cooling can be biased by a factor of 2, if times of measurement are not considered. When diurnal tides are considered, trends derived from temperature lidar series are in good agreement with AMSU series. Future adjustments of temperature time series based on successive AMSU instruments will require considering corrections associated with the local times of measurement. PMID:26300563

  19. Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units.

    PubMed

    Keckhut, P; Funatsu, B M; Claud, C; Hauchecorne, A

    2015-01-01

    Stratospheric temperature series derived from the Advanced Microwave Sounding Unit (AMSU) on board successive NOAA satellites reveal, during periods of overlap, some bias and drifts. Part of the reason for these discrepancies could be atmospheric tides as the orbits of these satellites drifted, inducing large changes in the actual times of measurement. NOAA 15 and 16, which exhibit a long period of overlap, allow deriving diurnal tides that can correct such temperature drifts. The characteristics of the derived diurnal tides during summer periods is in good agreement with those calculated with the Global Scale Wave Model, indicating that most of the observed drifts are likely due to the atmospheric tides. Cooling can be biased by a factor of 2, if times of measurement are not considered. When diurnal tides are considered, trends derived from temperature lidar series are in good agreement with AMSU series. Future adjustments of temperature time series based on successive AMSU instruments will require considering corrections associated with the local times of measurement.

  20. Seasonal and Inter-Annual Patterns of Chlorophyll and Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2016-02-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, track energy flow through ecosystems, and identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable the use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. Consequently, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. The coastal marine environment has special atmospheric correction needs due to error introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals to estimate chlorophyll (OC3) and phytoplankton functional type (PHYDOTax) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons in 2013 and 2014. These two periods are dominated by either diatom blooms or red tides. Results to be presented include chlorophyll and phytoplankton community structure and in-water validation data for these dates during the two seasons.

  1. Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Liu, Lin; Miao, Manqian

    Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.

  2. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-12-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  3. Sensitivity Studies for Space-based Measurements of Atmospheric Total Column Carbon Dioxide Using Reflected Sunlight

    NASA Technical Reports Server (NTRS)

    Mao, Jianping; Kawa, S. Randolph

    2003-01-01

    A series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 micron. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the effects of other interfering constituents, such as water vapor, aerosols and cirrus clouds, on the radiance are significant but the overall effects of the modification of light path length on total back-to-space radiance sensitivity to CO2 change are minor for general cases, which means that generally the total column CO2 can be derived in high precision from the ratio of the on-line center to off-line radiances; (c) together with CO2 gas absorption aerosol/cirrus cloud layer has differential scattering which may result in the modification of on-line to off-line radiance ratio which could lead a large bias in the total column CO2 retrieval. Approaches to correct such bias need further investigation. (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature, which is achievable from new atmospheric sounders in the near future; (e) the atmospheric path length, over which the CO2 absorption occurs, should be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.

  4. Atmospheric Sciences Meet Astronomy: Mutual Benefits from two Different Approaches

    NASA Astrophysics Data System (ADS)

    Kausch, Wolfgang; Noll, Stefan; Kimeswenger, Stefan; Kondrak, Matthias; Unterguggenberger, Stefanie; Przybilla, Norbert; Lakićević, Maša; Zeilinger, Werner

    2016-04-01

    Light from astronomical targets has to pass the Earth's atmosphere when being observed by ground-based telescope facilities. The signal detected by modern astronomical spectrographs is significantly influenced by molecular absorption and airglow emission. The first mainly arises from various species in the lower, thus denser atmosphere, whereas the latter is caused by chemiluminescence in the mesopause region and above. As ground-based astronomical spectrographs are optimised from the near-UV to the mid-infrared regime (0.3....25μm), a number of absorption features from numerous species are directly visible (e.g. H2O, CO2, CH4, O2, O3,...). The same is true for the airglow emission arising e.g. from the hydroxyl radical and oxygen. The high resolution provided by some spectrographs and their frequent usage allows a detailed investigation of atmospheric lines. Usually being a source of noise for astronomers, which needs to be corrected for, this influence can be used to precisely analyse the composition and the state of the Earth's atmosphere above an observatory. On the other hand, a good knowledge of this allows astronomers to better correct for this influence. Thus, both, atmospheric and astronomical sciences highly benefit from a good understanding of the atmospheric state above an observatory. During the past years we conducted several studies to link astronomical and atmospheric data. For this purpose we use data taken with the Very Large Telescope (VLT) operated by the European Southern Observatory, and the Cerro Armazones Observatory (OCA, University of Bochum, Germany; Universidad Católica del Norte, Chile), both located in the Chilean Atacama desert. The three spectrographs used in our studies are X-Shooter@VLT (resolving power R˜3300...18000, wavelength range λ=0.3...2.5μm), UVES@VLT (R˜20.000....110.000, λ=0.3....1.1μm), and BESO@OCA (R=50000@Hα=0.656μm, λ=0.38 - 0.84μm). In addition, we use atmospheric data obtained with the satellites ENVISAT (MIPAS instrument), Aura (MLS), and TIMED (SABER), and modelled data from the Global Data Assimilation System (GDAS), and the ERA/MACC reanalysis from the European Centre for Medium-Range Weather Forecasts (ECMWF). In this presentation we give an overview on our methods to link these various data, the impact/application of these data on atmospheric sciences and observations with classical and future astro-particle Cherenkov telescopes, and present recent results.

  5. Mitigation of Atmospheric Delay in SAR Absolute Ranging Using Global Numerical Weather Prediction Data: Corner Reflector Experiments at 3 Different Test Sites

    NASA Astrophysics Data System (ADS)

    Cong, Xiaoying; Balss, Ulrich; Eineder, Michael

    2015-04-01

    The atmospheric delay due to vertical stratification, the so-called stratified atmospheric delay, has a great impact on both interferometric and absolute range measurements. In our current researches [1][2][3], centimeter-range accuracy has been proven based on Corner Reflector (CR) based measurements by applying atmospheric delay correction using the Zenith Path Delay (ZPD) corrections derived from nearby Global Positioning System (GPS) stations. For a global usage, an effective method has been introduced to estimate the stratified delay based on global 4-dimensional Numerical Weather Prediction (NWP) products: the direct integration method [4][5]. Two products, ERA-Interim and operational data, provided by European Centre for Medium-Range Weather Forecast (ECMWF) are used to integrate the stratified delay. In order to access the integration accuracy, a validation approach is investigated based on ZPD derived from six permanent GPS stations located in different meteorological conditions. Range accuracy at centimeter level is demonstrated using both ECMWF products. Further experiments have been carried out in order to determine the best interpolation method by analyzing the temporal and spatial correlation of atmospheric delay using both ECMWF and GPS ZPD. Finally, the integrated atmospheric delays in slant direction (Slant Path Delay, SPD) have been applied instead of the GPS ZPD for CR experiments at three different test sites with more than 200 TerraSAR-X High Resolution SpotLight (HRSL) images. The delay accuracy is around 1-3 cm depending on the location of test site due to the local water vapor variation and the acquisition time/date. [1] Eineder M., Minet C., Steigenberger P., et al. Imaging geodesy - Toward centimeter-level ranging accuracy with TerraSAR-X. Geoscience and Remote Sensing, IEEE Transactions on, 2011, 49(2): 661-671. [2] Balss U., Gisinger C., Cong X. Y., et al. Precise Measurements on the Absolute Localization Accuracy of TerraSAR-X on the Base of Far-Distributed Test Sites; EUSAR 2014; 10th European Conference on Synthetic Aperture Radar; Proceedings of. VDE, 2014: 1-4. [3] Eineder M., Balss U., Gisinger C., et al. TerraSAR-X pixel localization accuracy: Approaching the centimeter level, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014: 2669-2670. [4] Cong X., Balss U., Eineder M., et al. Imaging Geodesy -- Centimeter-Level Ranging Accuracy With TerraSAR-X: An Update. Geoscience and Remote Sensing Letters, IEEE, 2012, 9(5): 948-952. [5] Cong X. SAR Interferometry for Volcano Monitoring: 3D-PSI Analysis and Mitigation of Atmospheric Refractivity. München, Technische Universität München, Dissertation, 2014.

  6. Neural network method to correct bidirectional effects in water-leaving radiance.

    PubMed

    Fan, Yongzhen; Li, Wei; Voss, Kenneth J; Gatebe, Charles K; Stamnes, Knut

    2016-01-01

    Ocean color algorithms that rely on "atmospherically corrected" nadir water-leaving radiances to infer information about marine constituents such as the chlorophyll concentration depend on a reliable method to convert the angle-dependent measured radiances from the observation direction to the nadir direction. It is also important to convert the measured radiances to the nadir direction when comparing and merging products from different satellite missions. The standard correction method developed by Morel and coworkers requires knowledge of the chlorophyll concentration. Also, the standard method was developed based on the Case 1 (open ocean) assumption, which makes it unsuitable for Case 2 situations such as turbid coastal waters. We introduce a neural network method to convert the angle-dependent water-leaving radiance (or the corresponding remote sensing reflectance) from the observation direction to the nadir direction. This method relies on neither an "atmospheric correction" nor prior knowledge of the water constituents or the inherent optical properties. It directly converts the remote sensing reflectance from an arbitrary slanted viewing direction to the nadir direction by using a trained neural network. This method is fast and accurate, and it can be easily adapted to different remote sensing instruments. Validation using NuRADS measurements in different types of water shows that this method is suitable for both Case 1 and Case 2 waters. In Case 1 or chlorophyll-dominated waters, our neural network method produces corrections similar to those of the standard method. In Case 2 waters, especially sediment-dominated waters, a significant improvement was obtained compared to the standard method.

  7. A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars

    NASA Astrophysics Data System (ADS)

    Zou, Hong; Ye, Yu Guang; Wang, Jin Song; Nielsen, Erling; Cui, Jun; Wang, Xiao Dong

    2016-04-01

    A method to estimate the neutral atmospheric density near the ionospheric main peak of Mars is introduced in this study. The neutral densities at 130 km can be derived from the ionospheric and atmospheric measurements of the Radio Science experiment on board Mars Global Surveyor (MGS). The derived neutral densities cover a large longitude range in northern high latitudes from summer to late autumn during 3 Martian years, which fills the gap of the previous observations for the upper atmosphere of Mars. The simulations of the Laboratoire de Météorologie Dynamique Mars global circulation model can be corrected with a simple linear equation to fit the neutral densities derived from the first MGS/RS (Radio Science) data sets (EDS1). The corrected simulations with the same correction parameters as for EDS1 match the derived neutral densities from two other MGS/RS data sets (EDS2 and EDS3) very well. The derived neutral density from EDS3 shows a dust storm effect, which is in accord with the Mars Express (MEX) Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars measurement. The neutral density derived from the MGS/RS measurements can be used to validate the Martian atmospheric models. The method presented in this study can be applied to other radio occultation measurements, such as the result of the Radio Science experiment on board MEX.

  8. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1995-01-01

    An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm was carried out. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. The development of a multi-layer Monte Carlo radiative transfer code that includes polarization by molecular and aerosol scattering and wind-induced sea surface roughness has been completed. Comparison tests with an existing two-layer successive order of scattering code suggests that both codes are capable of producing top-of-atmosphere radiances with errors usually less than 0.1 percent. An initial set of simulations to study the effects of ignoring the polarization of the the ocean-atmosphere light field, in both the development of the atmospheric correction algorithm and the generation of the lookup tables used for operation of the algorithm, have been completed. An algorithm was developed that can be used to invert the radiance exiting the top and bottom of the atmosphere to yield the columnar optical properties of the atmospheric aerosol under clear sky conditions over the ocean, for aerosol optical thicknesses as large as 2. The algorithm is capable of retrievals with such large optical thicknesses because all significant orders of multiple scattering are included.

  9. Specificity of Atmospheric Correction of Satellite Data on Ocean Color in the Far East

    NASA Astrophysics Data System (ADS)

    Aleksanin, A. I.; Kachur, V. A.

    2017-12-01

    Calculation errors in ocean-brightness coefficients in the Far Eastern are analyzed for two atmospheric correction algorithms (NIR and MUMM). The daylight measurements in different water types show that the main error component is systematic and has a simple dependence on the magnitudes of the coefficients. The causes of the error behavior are considered. The most probable explanation for the large errors in ocean-color parameters in the Far East is a high concentration of continental aerosol absorbing light. A comparison between satellite and in situ measurements at AERONET stations in the United States and South Korea has been made. It is shown the errors in these two regions differ by up to 10 times upon close water turbidity and relatively high aerosol optical-depth computation precision in the case of using the NIR correction of the atmospheric effect.

  10. A radiation model for calculating atmospheric corrections to remotely sensed infrared measurements, version 2

    NASA Technical Reports Server (NTRS)

    Boudreau, R. D.

    1973-01-01

    A numerical model is developed which calculates the atmospheric corrections to infrared radiometric measurements due to absorption and emission by water vapor, carbon dioxide, and ozone. The corrections due to aerosols are not accounted for. The transmissions functions for water vapor, carbon dioxide, and water are given. The model requires as input the vertical distribution of temperature and water vapor as determined by a standard radiosonde. The vertical distribution of carbon dioxide is assumed to be constant. The vertical distribution of ozone is an average of observed values. The model also requires as input the spectral response function of the radiometer and the nadir angle at which the measurements were made. A listing of the FORTRAN program is given with details for its use and examples of input and output listings. Calculations for four model atmospheres are presented.

  11. Solar adaptive optics with the DKIST: status report

    NASA Astrophysics Data System (ADS)

    Johnson, Luke C.; Cummings, Keith; Drobilek, Mark; Gregory, Scott; Hegwer, Steve; Johansson, Erik; Marino, Jose; Richards, Kit; Rimmele, Thomas; Sekulic, Predrag; Wöger, Friedrich

    2014-08-01

    The DKIST wavefront correction system will be an integral part of the telescope, providing active alignment control, wavefront correction, and jitter compensation to all DKIST instruments. The wavefront correction system will operate in four observing modes, diffraction-limited, seeing-limited on-disk, seeing-limited coronal, and limb occulting with image stabilization. Wavefront correction for DKIST includes two major components: active optics to correct low-order wavefront and alignment errors, and adaptive optics to correct wavefront errors and high-frequency jitter caused by atmospheric turbulence. The adaptive optics system is built around a fast tip-tilt mirror and a 1600 actuator deformable mirror, both of which are controlled by an FPGA-based real-time system running at 2 kHz. It is designed to achieve on-axis Strehl of 0.3 at 500 nm in median seeing (r0 = 7 cm) and Strehl of 0.6 at 630 nm in excellent seeing (r0 = 20 cm). We present the current status of the DKIST high-order adaptive optics, focusing on system design, hardware procurements, and error budget management.

  12. An integrated toolbox for processing and analysis of remote sensing data of inland and coastal waters - atmospheric correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haan, J.F. de; Kokke, J.M.M.; Hoogenboom, H.J.

    1997-06-01

    Deriving thematic maps of water quality parameters from a remote sensing image requires a number of processing steps, such as calibration, atmospheric correction, air-water interface correction, and application of water quality algorithms. A prototype version of an integrated software environment has recently been developed that enables the user to perform and control these processing steps. Major parts of this environment are: (i) access to the MODTRAN 3 radiative transfer code, (ii) a database of water quality algorithms, and (iii) a spectral library of Dutch coastal and inland waters, containing subsurface irradiance reflectance spectra and associated water quality parameters. The atmosphericmore » correction part of this environment is discussed here. It is shown that this part can be used to accurately retrieve spectral signatures of inland water for wavelengths between 450 and 750 nm, provided in situ measurements are used to determine atmospheric model parameters. Assessment of the usefulness of the completely integrated software system in an operational environment requires a revised version that is presently being developed.« less

  13. Limb Correction of Polar-Orbiting Imagery for the Improved Interpretation of RGB Composites

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Elmer, Nicholas

    2016-01-01

    Red-Green-Blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical path length of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This paper reviews a newly developed technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical path length in order to produce limb-corrected RGB composites. The improved utility of a limb-corrected Air Mass RGB composite from the application of this approach is demonstrated using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.

  14. Improved Atmospheric Correction Over the Indian Subcontinent Using Fast Radiative Transfer and Optimal Estimation

    NASA Astrophysics Data System (ADS)

    Natraj, V.; Thompson, D. R.; Mathur, A. K.; Babu, K. N.; Kindel, B. C.; Massie, S. T.; Green, R. O.; Bhattacharya, B. K.

    2017-12-01

    Remote Visible / ShortWave InfraRed (VSWIR) spectroscopy, typified by the Next-Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG), is a powerful tool to map the composition, health, and biodiversity of Earth's terrestrial and aquatic ecosystems. These studies must first estimate surface reflectance, removing the atmospheric effects of absorption and scattering by water vapor and aerosols. Since atmospheric state varies spatiotemporally, and is insufficiently constrained by climatological models, it is important to estimate it directly from the VSWIR data. However, water vapor and aerosol estimation is a significant ongoing challenge for existing atmospheric correction models. Conventional VSWIR atmospheric correction methods evolved from multi-band approaches and do not fully utilize the rich spectroscopic data available. We use spectrally resolved (line-by-line) radiative transfer calculations, coupled with optimal estimation theory, to demonstrate improved accuracy of surface retrievals. These spectroscopic techniques are already pervasive in atmospheric remote sounding disciplines but have not yet been applied to imaging spectroscopy. Our analysis employs a variety of scenes from the recent AVIRIS-NG India campaign, which spans various climes, elevation changes, a wide range of biomes and diverse aerosol scenarios. A key aspect of our approach is joint estimation of surface and aerosol parameters, which allows assessment of aerosol distortion effects using spectral shapes across the entire measured interval from 380-2500 nm. We expect that this method would outperform band ratio approaches, and enable evaluation of subtle aerosol parameters where in situ reference data is not available, or for extreme aerosol loadings, as is observed in the India scenarios. The results are validated using existing in-situ reference spectra, reflectance measurements from assigned partners in India, and objective spectral quality metrics for scenes without any ground reference data. We also quantify the true information content of VSWIR spectroscopy for improving retrieval efficiency. We anticipate that our work will significantly improve the state of the art for VSWIR atmospheric correction, reducing regional biases in global ecosystem studies. 2017. All rights reserved.

  15. Classification, prevention and management of entero-atmospheric fistula: a state-of-the-art review.

    PubMed

    Di Saverio, Salomone; Tarasconi, Antonio; Walczak, Dominik A; Cirocchi, Roberto; Mandrioli, Matteo; Birindelli, Arianna; Tugnoli, Gregorio

    2016-02-01

    Entero-atmospheric fistula (EAF) is an enteric fistula occurring in the setting of an open abdomen, thus creating a communication between the GI tract and the external atmosphere. Management and nursing of patients suffering EAF carries several challenges, and prevention of EAF should be the first and best treatment option. Here, we present a novel modified classification of EAF and review the current state of the art in its prevention and management including nutritional issues and feeding strategies. We also provide an overview on surgical management principles, highlighting several surgical techniques for dealing with EAF that have been reported in the literature throughout the years. The treatment strategy for EAF should be multidisciplinary and multifaceted. Surgical treatment is most often multistep and should be tailored to the single patient, based on the type and characteristics of the EAF, following its correct identification and classification. The specific experience of surgeons and nursing staff in the management of EAF could be enhanced, applying distinct simulation-based ex vivo training models.

  16. Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly

    2006-01-01

    Objectives: a) To determine the magnitude of radiometric tarp BRDF; b) To determine whether an ASD FieldSpec Pro spectroradiometer can be used to perform the experiment. Radiometric tarps with nominal reflectance values of 52%, 35%, and 3.5%, deployed for IKONOS. QuickBird, and OrbView-3 overpasses Ground-based spectroradiometric measurements of tarp and Spectralon@ panel taken during overpass using ASD FieldSpec Pro spectroradiometer, and tarp reflectance calculated. Reflectance data used in atmospheric radiative transfer model (MODTRAN) to predict satellite at-sensor radiance for radiometric calibration. Reflectance data also used to validate atmospheric correction of high-spatial-resolution multispectral image products

  17. An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Bréon, F. M.; Broquet, G.; Puygrenier, V.; Chevallier, F.; Xueref-Remy, I.; Ramonet, M.; Dieudonné, E.; Lopez, M.; Schmidt, M.; Perrussel, O.; Ciais, P.

    2015-02-01

    Atmospheric concentration measurements are used to adjust the daily to monthly budget of fossil fuel CO2 emissions of the Paris urban area from the prior estimates established by the Airparif local air quality agency. Five atmospheric monitoring sites are available, including one at the top of the Eiffel Tower. The atmospheric inversion is based on a Bayesian approach, and relies on an atmospheric transport model with a spatial resolution of 2 km with boundary conditions from a global coarse grid transport model. The inversion adjusts prior knowledge about the anthropogenic and biogenic CO2 fluxes from the Airparif inventory and an ecosystem model, respectively, with corrections at a temporal resolution of 6 h, while keeping the spatial distribution from the emission inventory. These corrections are based on assumptions regarding the temporal autocorrelation of prior emissions uncertainties within the daily cycle, and from day to day. The comparison of the measurements against the atmospheric transport simulation driven by the a priori CO2 surface fluxes shows significant differences upwind of the Paris urban area, which suggests a large and uncertain contribution from distant sources and sinks to the CO2 concentration variability. This contribution advocates that the inversion should aim at minimising model-data misfits in upwind-downwind gradients rather than misfits in mole fractions at individual sites. Another conclusion of the direct model-measurement comparison is that the CO2 variability at the top of the Eiffel Tower is large and poorly represented by the model for most wind speeds and directions. The model's inability to reproduce the CO2 variability at the heart of the city makes such measurements ill-suited for the inversion. This and the need to constrain the budgets for the whole city suggests the assimilation of upwind-downwind mole fraction gradients between sites at the edge of the urban area only. The inversion significantly improves the agreement between measured and modelled concentration gradients. Realistic emissions are retrieved for two 30-day periods and suggest a significant overestimate by the AirParif inventory. Similar inversions over longer periods are necessary for a proper evaluation of the optimised CO2 emissions against independent data.

  18. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.« less

  19. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Palo, Scott; Argrow, Brian

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.« less

  20. Very high resolution surface mass balance over Greenland modeled by the regional climate model MAR with a downscaling technique

    NASA Astrophysics Data System (ADS)

    Kittel, Christoph; Lang, Charlotte; Agosta, Cécile; Prignon, Maxime; Fettweis, Xavier; Erpicum, Michel

    2016-04-01

    This study presents surface mass balance (SMB) results at 5 km resolution with the regional climate MAR model over the Greenland ice sheet. Here, we use the last MAR version (v3.6) where the land-ice module (SISVAT) using a high resolution grid (5km) for surface variables is fully coupled while the MAR atmospheric module running at a lower resolution of 10km. This online downscaling technique enables to correct near-surface temperature and humidity from MAR by a gradient based on elevation before forcing SISVAT. The 10 km precipitation is not corrected. Corrections are stronger over the ablation zone where topography presents more variations. The model has been force by ERA-Interim between 1979 and 2014. We will show the advantages of using an online SMB downscaling technique in respect to an offline downscaling extrapolation based on local SMB vertical gradients. Results at 5 km show a better agreement with the PROMICE surface mass balance data base than the extrapolated 10 km MAR SMB results.

  1. Remote sensing of suspended sediment water research: principles, methods, and progress

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Zhang, Jing

    2011-12-01

    In this paper, we reviewed the principle, data, methods and steps in suspended sediment research by using remote sensing, summed up some representative models and methods, and analyzes the deficiencies of existing methods. Combined with the recent progress of remote sensing theory and application in water suspended sediment research, we introduced in some data processing methods such as atmospheric correction method, adjacent effect correction, and some intelligence algorithms such as neural networks, genetic algorithms, support vector machines into the suspended sediment inversion research, combined with other geographic information, based on Bayesian theory, we improved the suspended sediment inversion precision, and aim to give references to the related researchers.

  2. Radiometric and spectral stray light correction for the portable remote imaging spectrometer (PRISM) coastal ocean sensor

    NASA Astrophysics Data System (ADS)

    Haag, Justin M.; Van Gorp, Byron E.; Mouroulis, Pantazis; Thompson, David R.

    2017-09-01

    The airborne Portable Remote Imaging Spectrometer (PRISM) instrument is based on a fast (F/1.8) Dyson spectrometer operating at 350-1050 nm and a two-mirror telescope combined with a Teledyne HyViSI 6604A detector array. Raw PRISM data contain electronic and optical artifacts that must be removed prior to radiometric calibration. We provide an overview of the process transforming raw digital numbers to calibrated radiance values. Electronic panel artifacts are first corrected using empirical relationships developed from laboratory data. The instrument spectral response functions (SRF) are reconstructed using a measurement-based optimization technique. Removal of SRF effects from the data improves retrieval of true spectra, particularly in the typically low-signal near-ultraviolet and near-infrared regions. As a final step, radiometric calibration is performed using corrected measurements of an object of known radiance. Implementation of the complete calibration procedure maximizes data quality in preparation for subsequent processing steps, such as atmospheric removal and spectral signature classification.

  3. MEDOKADS - A 20 Year's Daily AVHRR Data Series for Analysis of Land Surface Properties

    NASA Astrophysics Data System (ADS)

    Koslowsky, D.; Billing, H.; Bolle, H.-J.

    2009-04-01

    To derive primary data products from raw AVHRR data, like spectral reflectances or temperatures, it is necessary to correct for sensor degradation and changing hardware specifications, to re-sample the data into a grid of equal pixel size, to perform geographical registration, cloud-screening and normalization for illumination and observation geometry. A data set which resulted from the application of these corrections is the top of the atmosphere Mediterranean Extended One-Km AVHRR Data Set (MEDOKADS) which now covers a period of 20 years. To study land surface processes, the obtained spectral data have to be combined, radiometric corrections for atmospheric effects, emissivity corrections in the case of temperature measurements have to be applied, and the variable over-flight times have to be accounted for. By application of complex evaluation schemes then higher level products are generated, like vegetation indices, surface albedo, and surface energy fluxes. The ultimate goal is to provide the users community with problem-related information. This includes the quantification of changes and the determination of trends. Methods and tools to reach this goal as well as their limitations are discussed. To validate the data, extended field measurements have been performed in which the scaling between local ground measurements and large scale satellite data play a major role. A major problem remains the application of atmospheric corrections because of the not well known variable aerosol content. The supervision of the quality of the derived information leads to the concept of anchor stations at which surface and atmospheric properties should permanently be measured.

  4. Tidal atmospheric and ocean loading in VLBI analysis

    NASA Astrophysics Data System (ADS)

    Girdiuk, Anastasiia; Schindelegger, Michael; Böhm, Johannes

    2016-04-01

    In VLBI (Very Long Baseline Interferometry) analysis, reductions for tidal atmospheric and ocean loading are commonly used according to the IERS Conventions. In this presentation we examine such loading corrections from contemporary geophysical models within routine VLBI processing and discuss the internal consistency of the applied corrections for various effects. In detail, two gravitational ocean tide models, FES2004 and the recent FES2012 atlas with a much finer horizontal resolution and an improved description of hydrodynamic processes, are employed. Moreover, the contribution of atmospheric tidal loading is also re-considered based on data taken from two providers of station displacements, Goddard Space Flight Center and the TU Wien group. Those two models differ in terms of the underlying meteorological data, which can be a reason for inconsistency of VLBI reductions and may lead to systematics in the VLBI products at tidal frequencies. We validate this assumption in terms of Earth rotation parameters, by a tidal analysis of diurnal and semi-diurnal universal time and semi-diurnal polar motion variations as determined with the Vienna VLBI Software. Applying the loading models in a consistent way still leads to unexplained residuals at about 4-5 μas in the diurnal polar motion band, thus limiting the possibility of assessing geophysical models at this particular frequency.

  5. Directivity of a Sparse Array in the Presence of Atmospheric-Induced Phase Fluctuations for Deep Space Communications

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Acosta, Robert J.

    2010-01-01

    Widely distributed (sparse) ground-based arrays have been utilized for decades in the radio science community for imaging celestial objects, but have only recently become an option for deep space communications applications with the advent of the proposed Next Generation Deep Space Network (DSN) array. But whereas in astronomical imaging, observations (receive-mode only) are made on the order of minutes to hours and atmospheric-induced aberrations can be mostly corrected for in post-processing, communications applications require transmit capabilities and real-time corrections over time scales as short as fractions of a second. This presents an unavoidable problem with the use of sparse arrays for deep space communications at Ka-band which has yet to be successfully resolved, particularly for uplink arraying. In this paper, an analysis of the performance of a sparse antenna array, in terms of its directivity, is performed to derive a closed form solution to the expected array loss in the presence of atmospheric-induced phase fluctuations. The theoretical derivation for array directivity degradation is validated with interferometric measurements for a two-element array taken at Goldstone, California. With the validity of the model established, an arbitrary 27-element array geometry is defined at Goldstone, California, to ascertain its performance in the presence of phase fluctuations. It is concluded that a combination of compact array geometry and atmospheric compensation is necessary to ensure high levels of availability.

  6. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature.

    PubMed

    Torres-Rua, Alfonso

    2017-06-26

    In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called "AggieAir", developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon") and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m²/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m²/sr/um) for all sUAS flights. Differences in estimated temperatures between original thermal image and the vicarious calibration procedure reported here were estimated from -5 °C to 10 °C for early morning, and from 0 to 20 °C for Landsat overpass and mid-afternoon times.

  7. Vicarious Calibration of sUAS Microbolometer Temperature Imagery for Estimation of Radiometric Land Surface Temperature

    PubMed Central

    2017-01-01

    In recent years, the availability of lightweight microbolometer thermal cameras compatible with small unmanned aerial systems (sUAS) has allowed their use in diverse scientific and management activities that require sub-meter pixel resolution. Nevertheless, as with sensors already used in temperature remote sensing (e.g., Landsat satellites), a radiance atmospheric correction is necessary to estimate land surface temperature. This is because atmospheric conditions at any sUAS flight elevation will have an adverse impact on the image accuracy, derived calculations, and study replicability using the microbolometer technology. This study presents a vicarious calibration methodology (sUAS-specific, time-specific, flight-specific, and sensor-specific) for sUAS temperature imagery traceable back to NIST-standards and current atmospheric correction methods. For this methodology, a three-year data collection campaign with a sUAS called “AggieAir”, developed at Utah State University, was performed for vineyards near Lodi, California, for flights conducted at different times (early morning, Landsat overpass, and mid-afternoon”) and seasonal conditions. From the results of this study, it was found that, despite the spectral response of microbolometer cameras (7.0 to 14.0 μm), it was possible to account for the effects of atmospheric and sUAS operational conditions, regardless of time and weather, to acquire accurate surface temperature data. In addition, it was found that the main atmospheric correction parameters (transmissivity and atmospheric radiance) significantly varied over the course of a day. These parameters fluctuated the most in early morning and partially stabilized in Landsat overpass and in mid-afternoon times. In terms of accuracy, estimated atmospheric correction parameters presented adequate statistics (confidence bounds under ±0.1 for transmissivity and ±1.2 W/m2/sr/um for atmospheric radiance, with a range of RMSE below 1.0 W/m2/sr/um) for all sUAS flights. Differences in estimated temperatures between original thermal image and the vicarious calibration procedure reported here were estimated from −5 °C to 10 °C for early morning, and from 0 to 20 °C for Landsat overpass and mid-afternoon times. PMID:28672864

  8. A Harmonized Landsat-Sentinel-2 Surface Reflectance product: a resource for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Masek, J. G.; Claverie, M.; Ju, J.; Vermote, E.; Justice, C. O.

    2015-12-01

    The combination of Landsat and Sentinel-2 data offers a unique opportunity to observe globally the land every 2-3 days at medium (<30m) spatial resolution. The Harmonized Landsat-Sentinel-2 (HLS) project is a NASA initiative aiming to produce surface reflectance data from Landsat and Sentinel-2 missions and to deliver them to the community in a combined, seamless form. The HLS will be beneficial for global agricultural monitoring applications that require medium spatial resolution and weekly or more frequent observations. In particular, the provided opportunity to track crop phenology at the scale of individual fields will support detailed mapping of crop type and type-specific vegetation conditions. To create a compatible set of radiometric measurements, the HLS product relies on rigorous pre- and post-launch cross-calibration (Landsat-8 OLI and Sentinel-2 MSI) activities. The processing chain includes the following components: atmospheric correction, cloud/shadow masking, nadir BRDF-adjustment, spectral-adjustment, regridding, and temporal composite. The atmospheric correction and cloud masking is based on the OLI atmospheric correction developed at NASA-GSFC and has been adapted to the MSI data. The BRDF-adjustment is based on a disaggregation technique using MODIS-based BRDF coefficients. The technique has been evaluated using the multi-angular acquisition from the SPOT 4 and 5 (Take5) experiments. The spectral-adjustment relies on a linear regression that has been calibrated and evaluated using synthetic data and surface reflectance processed from a large number of hyperspectral EO-1 Hyperion scenes. Finally, significant effort is placed on product validation and evaluation. The delivered data set will include surface reflectance products at different levels: Using the native gridding, i.e. UTM, 30m for Landsat-8, and UTM, 10-20m for Sentinel-2 Using a common global gridding (Sinusoidal, 30m) Temporal composite (Sinusoidal, 30m, 5-day) During the first year of operation of Sentinel-2A, the HLS will be prototyped over a selection of 30 sites that includes some of the JECAM sites, Aeronet sites and Cal/Val sites. Then, the HLS spatial coverage will be increased as more Sentinel-2A data become available.

  9. Acid–base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer

    PubMed Central

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L.; Eisele, Fred L.; Siepmann, J. Ilja; Hanson, David R.; Zhao, Jun; McMurry, Peter H.

    2012-01-01

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid–base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta. PMID:23091030

  10. Acid-base chemical reaction model for nucleation rates in the polluted atmospheric boundary layer.

    PubMed

    Chen, Modi; Titcombe, Mari; Jiang, Jingkun; Jen, Coty; Kuang, Chongai; Fischer, Marc L; Eisele, Fred L; Siepmann, J Ilja; Hanson, David R; Zhao, Jun; McMurry, Peter H

    2012-11-13

    Climate models show that particles formed by nucleation can affect cloud cover and, therefore, the earth's radiation budget. Measurements worldwide show that nucleation rates in the atmospheric boundary layer are positively correlated with concentrations of sulfuric acid vapor. However, current nucleation theories do not correctly predict either the observed nucleation rates or their functional dependence on sulfuric acid concentrations. This paper develops an alternative approach for modeling nucleation rates, based on a sequence of acid-base reactions. The model uses empirical estimates of sulfuric acid evaporation rates obtained from new measurements of neutral molecular clusters. The model predicts that nucleation rates equal the sulfuric acid vapor collision rate times a prefactor that is less than unity and that depends on the concentrations of basic gaseous compounds and preexisting particles. Predicted nucleation rates and their dependence on sulfuric acid vapor concentrations are in reasonable agreement with measurements from Mexico City and Atlanta.

  11. Chlorophyll-a Algorithms for Oligotrophic Oceans: A Novel Approach Based on Three-Band Reflectance Difference

    NASA Technical Reports Server (NTRS)

    Hu, Chuanmin; Lee, Zhongping; Franz, Bryan

    2011-01-01

    A new empirical algorithm is proposed to estimate surface chlorophyll-a concentrations (Chl) in the global ocean for Chl less than or equal to 0.25 milligrams per cubic meters (approximately 77% of the global ocean area). The algorithm is based on a color index (CI), defined as the difference between remote sensing reflectance (R(sub rs), sr(sup -1) in the green and a reference formed linearly between R(sub rs) in the blue and red. For low Chl waters, in situ data showed a tighter (and therefore better) relationship between CI and Chl than between traditional band-ratios and Chl, which was further validated using global data collected concurrently by ship-borne and SeaWiFS satellite instruments. Model simulations showed that for low Chl waters, compared with the band-ratio algorithm, the CI-based algorithm (CIA) was more tolerant to changes in chlorophyll-specific backscattering coefficient, and performed similarly for different relative contributions of non-phytoplankton absorption. Simulations using existing atmospheric correction approaches further demonstrated that the CIA was much less sensitive than band-ratio algorithms to various errors induced by instrument noise and imperfect atmospheric correction (including sun glint and whitecap corrections). Image and time-series analyses of SeaWiFS and MODIS/Aqua data also showed improved performance in terms of reduced image noise, more coherent spatial and temporal patterns, and consistency between the two sensors. The reduction in noise and other errors is particularly useful to improve the detection of various ocean features such as eddies. Preliminary tests over MERIS and CZCS data indicate that the new approach should be generally applicable to all existing and future ocean color instruments.

  12. DSCOVR_EPIC_L2_MAIAC_01

    Atmospheric Science Data Center

    2018-06-25

    ... several atmospheric quantities including cloud mask and aerosol optical depth (AOD) required for atmospheric correction. The parameters ... Project Title:  DSCOVR Discipline:  Aerosol Clouds Version:  V1 Level:  L2 ...

  13. Thermospheric density and satellite drag modeling

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush Mukesh

    The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and GRACE satellites. Moving toward accurate atmospheric models and absolute densities requires physics based models for CD. Closed-form solutions of CD have been developed and exist for a handful of simple geometries (flat plate, sphere, and cylinder). However, for complex geometries, the Direct Simulation Monte Carlo (DSMC) method is an important tool for developing CD models. DSMC is computationally intensive and real-time simulations for CD are not feasible. Therefore, parameterized models for CD are required. Modeling CD for an RSO requires knowledge of the gas-surface interaction (GSI) that defines the manner in which the atmospheric particles exchange momentum and energy with the surface. The momentum and energy exchange is further influenced by likely adsorption of atomic oxygen that may partially or completely cover the surface. An important parameter that characterizes the GSI is the energy accommodation coefficient, α. An innovative and state-of-the-art technique of developing parameterized drag coefficient models is presented and validated using the GRACE satellite. The effect of gas-surface interactions on physical drag coefficients is examined. An attempt to reveal the nature of gas-surface interactions at altitudes above 500 km is made using the STELLA satellite. A model that can accurately estimate CD has the potential to: (i) reduce the sources of uncertainty in the drag model, (ii) improve density estimates by resolving time-varying biases and moving toward absolute densities, and (iii) increase data sources for density estimation by allowing for the use of a wide range of RSOs as information sources. Results from this work have the potential to significantly improve the accuracy of conjunction analysis and SSA.

  14. Is there another major constituent in the atmosphere of Mars?. [radiogenic argon

    NASA Technical Reports Server (NTRS)

    Wood, G. P.

    1974-01-01

    In view of the possible finding of several tens percent of inert gas in the atmosphere of Mars by an instrument on the descent module of the USSR's Mars 6 spacecraft, the likelihood of the correctness of this result was examined. The basis for the well-known fact that the most likely candidate is radiogenic argon is described. It is shown that, for the two important methods of investigating the atmosphere, earth-based CO2 is infrared absorption spectroscopy and S-band occultation, within the estimated 1 standard deviation uncertainties of these methods about 20% argon can be accommodated. Within the estimated 3 standard deviation uncertainties, more than 35% is possible. It is also stated that even with 35% argon the maximum value of heat transfer rate on the Viking 75 entry vehicle does not exceed the design value.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. S.; DePoy, D. L.; Marshall, J. L.

    Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T. S.; DePoy, D. L.; Marshall, J. L.

    Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence ofmore » the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  17. Assessment of Systematic Chromatic Errors that Impact Sub-1% Photometric Precision in Large-Area Sky Surveys

    DOE PAGES

    Li, T. S.; DePoy, D. L.; Marshall, J. L.; ...

    2016-06-01

    Here, we report that meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey's stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations inmore » the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. In conclusion, the residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.« less

  18. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire management can now be accounted for in the land use and forestry sector.

  19. Evaluation of factors affecting accurate measurements of atmospheric CO2 and CH4 by wavelength-scanned cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    Nara, H.; Tanimoto, H.; Tohjima, Y.; Mukai, H.; Nojiri, Y.; Katsumata, K.; Rella, C.

    2012-07-01

    We examined potential interferences from water vapor and atmospheric background gases (N2, O2, and Ar), and biases by isotopologues of target species, on accurate measurement of atmospheric CO2 and CH4 by means of wavelength-scanned cavity ring-down spectroscopy (WS-CRDS). Variations in the composition of the background gas substantially impacted the CO2 and CH4 measurements: the measured amounts of CO2 and CH4 decreased with increasing N2 mole fraction, but increased with increasing O2 and Ar, suggesting that the pressure-broadening effects (PBEs) increased as Ar < O2 < N2. Using these experimental results, we inferred PBEs for the measurement of synthetic standard gases. The PBEs were negligible (up to 0.05 ppm for CO2 and 0.01 ppb for CH4) for gas standards balanced with purified air, although the PBEs were substantial (up to 0.87 ppm for CO2 and 1.4 ppb for CH4) for standards balanced with synthetic air. For isotopic biases on CO2 measurements, we compared experimental results and theoretical calculations, which showed excellent agreement within their uncertainty. We derived empirical correction functions for water vapor for three WS-CRDS instruments (Picarro EnviroSense 3000i, G-1301, and G-2301). Although the transferability of the functions was not clear, no significant difference was found in the water vapor correction values among these instruments within the typical analytical precision at sufficiently low water concentrations (< 0.3%V for CO2 and < 0.4%V for CH4). For accurate measurements of CO2 and CH4 in ambient air, we concluded that WS-CRDS measurements should be performed under complete dehumidification of air samples, or moderate dehumidification followed by application of a water vapor correction function, along with calibration by natural air-based standard gases or purified air-balanced synthetic standard gases with isotopic correction.

  20. Correcting the spectroscopic surface gravity using transits and asteroseismology. No significant effect on temperatures or metallicities with ARES and MOOG in local thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Sousa, S. G.; Adibekyan, V. Zh.; Brandão, I. M.; Santos, N. C.

    2014-12-01

    Context. Precise stellar parameters (effective temperature, surface gravity, metallicity, stellar mass, and radius) are crucial for several reasons, amongst which are the precise characterization of orbiting exoplanets and the correct determination of galactic chemical evolution. The atmospheric parameters are extremely important because all the other stellar parameters depend on them. Using our standard equivalent-width method on high-resolution spectroscopy, good precision can be obtained for the derived effective temperature and metallicity. The surface gravity, however, is usually not well constrained with spectroscopy. Aims: We use two different samples of FGK dwarfs to study the effect of the stellar surface gravity on the precise spectroscopic determination of the other atmospheric parameters. Furthermore, we present a straightforward formula for correcting the spectroscopic surface gravities derived by our method and with our linelists. Methods: Our spectroscopic analysis is based on Kurucz models in local thermodynamic equilibrium, performed with the MOOG code to derive the atmospheric parameters. The surface gravity was either left free or fixed to a predetermined value. The latter is either obtained through a photometric transit light curve or derived using asteroseismology. Results: We find first that, despite some minor trends, the effective temperatures and metallicities for FGK dwarfs derived with the described method and linelists are, in most cases, only affected within the errorbars by using different values for the surface gravity, even for very large differences in surface gravity, so they can be trusted. The temperatures derived with a fixed surface gravity continue to be compatible within 1 sigma with the accurate results of the infrared flux method (IRFM), as is the case for the unconstrained temperatures. Secondly, we find that the spectroscopic surface gravity can easily be corrected to a more accurate value using a linear function with the effective temperature. Tables 1 and 2 are available in electronic form at http://www.aanda.org

  1. Is the atmosphere of the extremely irradiated exoplanet WASP-43b in a blow-off state?

    NASA Astrophysics Data System (ADS)

    Pino, Lorenzo

    2016-10-01

    In the past months we have obtained evidence that an unusual phenomenon is happening in the atmosphere of one of the Hot Jupiters with shortest period. High-resolution spectroscopy from the ground reveals a transit spectrum where the sodium absorption signal from the planet peaks at 2-3%, which is larger than the planet transit depth in white light and 100 times larger than the well HST-established detection of sodium in HD 209458b (Charbonneau et al. 2002). Only in the UV have such large signatures been observed, for lighter hydrogen, carbon and oxygen atoms being blown-off by hydrodynamical atmospheric escape. So far, sodium atoms have never been observed higher than the thermosphere, where they should get promptly ionized.Analysis of ground-based data is challenging because the spectroscopic signatures can be mimicked by the Earth atmosphere, and a sophisticated removal of telluric contamination is necessary. Our observations show that an efficient telluric correction for this target, particularly faint in the sodium region, is impossible, making a space-based confirmation necessary. In a single transit, HST/STIS could obtain a 5-sigma confirmation of the signal. This detection would unambiguously show that the planetary atmosphere is in a state of extreme blow-off, with large exospheric densities allowing for a high recombination rate able to maintain sodium in a neutral state even high up in the atmosphere. This would represent the first constraint on atmospheric evaporation obtained in the optical, and would thus open a new, UV-independent path to the characterization of evaporating atmospheres, crucial in the post-HST era.

  2. The Mars Analysis Correction Data Assimilation (MACDA): A reference atmospheric reanalysis

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Lewis, Stephen R.; Steele, Liam J.; Holmes, James; Read, Peter L.; Valeanu, Alexandru; Smith, Michael D.; Kass, David; Kleinboehl, Armin; LMD Team, MGS/TES Team, MRO/MCS Team

    2016-10-01

    The Mars Analysis Correction Data Assimilation (MACDA) dataset version 1.0 contains the reanalysis of fundamental atmospheric and surface variables for the planet Mars covering a period of about three Martian years (late MY 24 to early MY 27). This four-dimensional dataset has been produced by data assimilation of retrieved thermal profiles and column dust optical depths from NASA's Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES), which have been assimilated into a Mars global climate model (MGCM) using the Analysis Correction scheme developed at the UK Meteorological Office.The MACDA v1.0 reanalysis is publicly available, and the NetCDF files can be downloaded from the archive at the Centre for Environmental Data Analysis/British Atmospheric Data Centre (CEDA/BADC). The variables included in the dataset can be visualised using an ad-hoc graphical user interface (the "MACDA Plotter") located at the following URL: http://macdap.physics.ox.ac.uk/The first paper about MACDA reanalysis of TES retrievals appeared in 2006, although the acronym MACDA was not yet used at that time. Ten years later, MACDA v1.0 has been used by several researchers worldwide and has contributed to the advancement of the knowledge about the martian atmosphere in critical areas such as the radiative impact of water ice clouds, the solsticial pause in baroclinic wave activity, and the climatology and dynamics of polar vortices, to cite only a few. It is therefore timely to review the scientific results obtained by using such Mars reference atmospheric reanalysis, in order to understand what priorities the user community should focus on in the next decade.MACDA is an ongoing collaborative project, and work funded by NASA MDAP Programme is currently undertaken to produce version 2.0 of the Mars atmospheric reanalysis. One of the key improvements is the extension of the reanalysis period to nine martian years (MY 24 through MY 32), with the assimilation of NASA's Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) retrievals of thermal and dust opacity profiles. MACDA 2.0 is also going to be based on an improved version of the underlying MGCM and an updated scheme to fully assimilate (radiative active) tracers, such as dust.

  3. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using ``split window'' IR data from GOES and AVHRR

    NASA Astrophysics Data System (ADS)

    Yu, Tianxu; Rose, William I.; Prata, A. J.

    2002-08-01

    Volcanic ash in volcanic clouds can be mapped in two dimensions using two-band thermal infrared data available from meteorological satellites. Wen and Rose [1994] developed an algorithm that allows retrieval of the effective particle size, the optical depth of the volcanic cloud, and the mass of fine ash in the cloud. Both the mapping and the retrieval scheme are less accurate in the humid tropical atmosphere. In this study we devised and tested a scheme for atmospheric correction of volcanic ash mapping and retrievals. The scheme utilizes infrared (IR) brightness temperature (BT) information in two infrared channels (both between 10 and 12.5 μm) and the brightness temperature differences (BTD) to estimate the amount of BTD shift caused by lower tropospheric water vapor. It is supported by the moderate resolution transmission (MODTRAN) analysis. The discrimination of volcanic clouds in the new scheme also uses both BT and BTD data but corrects for the effects of the water vapor. The new scheme is demonstrated and compared with the old scheme using two well-documented examples: (1) the 18 August 1992 volcanic cloud of Crater Peak, Mount Spurr, Alaska, and (2) the 26 December 1997 volcanic cloud from Soufriere Hills, Montserrat. The Spurr example represents a relatively ``dry'' subarctic atmospheric condition. The new scheme sees a volcanic cloud that is about 50% larger than the old. The mean optical depth and effective radii of cloud particles are lower by 22% and 9%, and the fine ash mass in the cloud is 14% higher. The Montserrat cloud is much smaller than Spurr and is more sensitive to atmospheric moisture. It also was located in a moist tropical atmosphere. For the Montserrat example the new scheme shows larger differences, with the area of the volcanic cloud being about 5.5 times larger, the optical depth and effective radii of particles lower by 56% and 28%, and the total fine particle mass in the cloud increased by 53%. The new scheme can be automated and can contribute to more accurate remote volcanic ash detection. More tests are needed to find the best way to estimate the water vapor effects in real time.

  4. Verification of mesoscale objective analyses of VAS and rawinsode data using the March 1982 AVE/VAS special network data. [Atmospheric Variability Experiment/Visible-infrared spin-scan radiometer Atmospheric Sounder

    NASA Technical Reports Server (NTRS)

    Doyle, James D.; Warner, Thomas T.

    1988-01-01

    Various combinations of VAS (Visible and Infrared Spin Scan Radiometer Atmospheric Sounder) data, conventional rawinsonde data, and gridded data from the National Weather Service's (NWS) global analysis, were used in successive-correction and variational objective-analysis procedures. Analyses are produced for 0000 GMT 7 March 1982, when the VAS sounding distribution was not greatly limited by the existence of cloud cover. The successive-correction (SC) Procedure was used with VAS data alone, rawinsonde data alone, and both VAS and rawinsonde data. Variational techniques were applied in three ways. Each of these techniques was discussed.

  5. Publisher Correction: Aerodynamic generation of electric fields in turbulence laden with charged inertial particles.

    PubMed

    Di Renzo, M; Urzay, J

    2018-05-21

    The original version of this Article contained an error in the last sentence of the second paragraph of the 'Atmospheric rarefaction effects' section of the Results, which incorrectly read 'The other one emulates the rarefied, CO 2 -rich Martian atmosphere (μ ♂ = 1.3 × 10 -5 N s m -2 ) at 6.9 mbar and 210 K, which gives ρ ♂ = 1.6 × 10 -12 kg m -3 .' The correct version states 'ρ ♂ = 1.6 × 10 -2 kg m -3 ' in place of 'ρ ♂ = 1.6 × 10 -12 kg m -3 '. This has been corrected in both the PDF and HTML versions of the Article.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, F.; Zhao, G.; Fosbury, R. A. E.

    Due to stellar rotation, the observed radial velocity of a star varies during the transit of a planet across its surface, a phenomenon known as the Rossiter–McLaughlin (RM) effect. The amplitude of the RM effect is related to the radius of the planet which, because of differential absorption in the planetary atmosphere, depends on wavelength. Therefore, the wavelength-dependent RM effect can be used to probe the planetary atmosphere. We measure for the first time the RM effect of the Earth transiting the Sun using a lunar eclipse observed with the ESO High Accuracy Radial velocity Planet Searcher spectrograph. We analyzemore » the observed RM effect at different wavelengths to obtain the transmission spectrum of the Earth’s atmosphere after the correction of the solar limb-darkening and the convective blueshift. The ozone Chappuis band absorption as well as the Rayleigh scattering features are clearly detectable with this technique. Our observation demonstrates that the RM effect can be an effective technique for exoplanet atmosphere characterization. Its particular asset is that photometric reference stars are not required, circumventing the principal challenge for transmission spectroscopy studies of exoplanet atmospheres using large ground-based telescopes.« less

  7. Whole Atmosphere Modeling and Data Analysis: Success Stories, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Yudin, V. A.; Akmaev, R. A.; Goncharenko, L. P.; Fuller-Rowell, T. J.; Matsuo, T.; Ortland, D. A.; Maute, A. I.; Solomon, S. C.; Smith, A. K.; Liu, H.; Wu, Q.

    2015-12-01

    At the end of the 20-th century Raymond Roble suggested an ambitious target of developing an atmospheric general circulation model (GCM) that spans from the surface to the thermosphere for modeling the coupled atmosphere-ionosphere with drivers from terrestrial meteorology and solar-geomagnetic inputs. He pointed out several areas of research and applications that would benefit highly from the development and improvement of whole atmosphere modeling. At present several research groups using middle and whole atmosphere models have attempted to perform coupled ionosphere-thermosphere predictions to interpret the "unexpected" anomalies in the electron content, ions and plasma drifts observed during recent stratospheric warming events. The recent whole atmosphere inter-comparison case studies also displayed striking differences in simulations of prevailing flows, planetary waves and dominant tidal modes even when the lower atmosphere domain of those models were constrained by similar meteorological analyses. We will present the possible reasons of such differences between data-constrained whole atmosphere simulations when analyses with 6-hour time resolution are used and discuss the potential model-data and model-model differences above the stratopause. The possible shortcomings of the whole atmosphere simulations associated with model physics, dynamical cores and resolutions will be discussed. With the increased confidence in the space-borne temperature, winds and ozone observations and extensive collections of ground-based upper atmosphere observational facilities, the whole atmosphere modelers will be able to quantify annual and year-to-variability of the zonal mean flows, planetary wave and tides. We will demonstrate the value of tidal and planetary wave variability deduced from the space-borne data and ground-based systems for evaluation and tune-up of whole atmosphere simulations including corrections of systematic model errors. Several success stories on the middle and whole atmosphere simulations coupled with the ionosphere models will be highlighted, and future perspectives for links of the space and terrestrial weather predictions constrained by current and scheduled ionosphere-thermosphere-mesosphere satellite missions will be presented

  8. Changing carbon isotope ratio of atmospheric carbon dioxide: implications for food authentication.

    PubMed

    Peck, William H; Tubman, Stephanie C

    2010-02-24

    Carbon isotopes are often used to detect the addition of foreign sugars to foods. This technique takes advantage of the natural difference in carbon isotope ratio between C(3) and C(4) plants. Many foods are derived from C(3) plants, but the low-cost sweeteners corn and sugar cane are C(4) plants. Most adulteration studies do not take into account the secular shift of the carbon isotope ratio of atmospheric carbon dioxide caused by fossil fuel burning, a shift also seen in plant tissues. As a result statistical tests and threshold values that evaluate authenticity of foods based on carbon isotope ratios may need to be corrected for changing atmospheric isotope values. Literature and new data show that the atmospheric trend in carbon isotopes is seen in a 36-year data set of maple syrup analyses (n = 246), demonstrating that published thresholds for cane or corn sugar adulteration in maple syrup (and other foods) have become progressively more lenient over time.

  9. Multidimensional Modeling of Atmospheric Effects and Surface Heterogeneities on Remote Sensing

    NASA Technical Reports Server (NTRS)

    Gerstl, S. A. W.; Simmer, C.; Zardecki, A. (Principal Investigator)

    1985-01-01

    The overall goal of this project is to establish a modeling capability that allows a quantitative determination of atmospheric effects on remote sensing including the effects of surface heterogeneities. This includes an improved understanding of aerosol and haze effects in connection with structural, angular, and spatial surface heterogeneities. One important objective of the research is the possible identification of intrinsic surface or canopy characteristics that might be invariant to atmospheric perturbations so that they could be used for scene identification. Conversely, an equally important objective is to find a correction algorithm for atmospheric effects in satellite-sensed surface reflectances. The technical approach is centered around a systematic model and code development effort based on existing, highly advanced computer codes that were originally developed for nuclear radiation shielding applications. Computational techniques for the numerical solution of the radiative transfer equation are adapted on the basis of the discrete-ordinates finite-element method which proved highly successful for one and two-dimensional radiative transfer problems with fully resolved angular representation of the radiation field.

  10. Inversion Schemes to Retrieve Atmospheric and Oceanic Parameters from SeaWiFS Data

    NASA Technical Reports Server (NTRS)

    Frouin, Robert; Deschamps, Pierre-Yves

    1997-01-01

    Firstly, we have analyzed atmospheric transmittance and sky radiance data connected at the Scripps Institution of Oceanography pier, La Jolla during the winters of 1993 and 1994. Aerosol optical thickness at 870 nm was generally low in La Jolla, with most values below 0.1 after correction for stratospheric aerosols. For such low optical thickness, variability in aerosol scattering properties cannot be determined, and a mean background model, specified regionally under stable stratospheric component, may be sufficient for ocean color remote sensing, from space. For optical thicknesses above 0. 1, two modes of variability characterized by Angstrom exponents of 1.2 and 0.5 and corresponding, to Tropospheric and Maritime models, respectively, were identified in the measurements. The aerosol models selected for ocean color remote sensing, allowed one to fit, within measurement inaccuracies, the derived values of Angstrom exponent and 'pseudo' phase function (the product of single scattering albedo and phase function), key atmospheric correction parameters. Importantly, the 'pseudo' phase function can be derived from measurements of the Angstrom exponent. Shipborne sun photometer measurements at the time of satellite overpass are usually sufficient to verify atmospheric correction for ocean color.

  11. Variability of the atmospheric turbulence in the region lake of Baykal

    NASA Astrophysics Data System (ADS)

    Botygina, N. N.; Kopylov, E. A.; Lukin, V. P.; Kovadlo, P. G.; Shihovcev, A. Yu.

    2015-11-01

    The estimations of the fried parameter according to micrometeorological and optical measurements in the atmospheric surface layer in the area of lake Baikal, Baikal astrophysical Observatory. According to the archive of NCEP/NCAR Reanalysis data obtained vertical distribution of temperature pulsations, and revealed the most pronounced atmospheric layers with high turbulence. A comparison of astronomical conditions vision in winter and in summer. By the registration of optical radiation of the Sun with telescopes, ground-based there is a need to compensate for the effects of atmospheric turbulence. Atmospheric turbulence reduces the angular resolution of the observed objects and distorts the structure of the obtained images. To improve image quality, and ideally closer to angular resolution, limited only by diffraction, it is necessary to implement and use adaptive optics system. The specificity of image correction using adaptive optics is that it is necessary not only to compensate for the random jitter of the image as a whole, but also adjust the geometry of the individual parts of the image. Evaluation of atmospheric radius of coherence (Fried parameter) are of interest not only for site-testing research space, but also are the basis for the efficient operation of adaptive optical systems 1 .

  12. Effects of Cloud on Goddard Lidar Observatory for Wind (GLOW) Performance and Analysis of Associated Errors

    NASA Astrophysics Data System (ADS)

    Bacha, Tulu

    The Goddard Lidar Observatory for Wind (GLOW), a mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the troposphere and lower stratosphere region of atmosphere is operated and its errors characterized. It was operated at Howard University Beltsville Center for Climate Observation System (BCCOS) side by side with other operating instruments: the NASA/Langely Research Center Validation Lidar (VALIDAR), Leosphere WLS70, and other standard wind sensing instruments. The performance of Goddard Lidar Observatory for Wind (GLOW) is presented for various optical thicknesses of cloud conditions. It was also compared to VALIDAR under various conditions. These conditions include clear and cloudy sky regions. The performance degradation due to the presence of cirrus clouds is quantified by comparing the wind speed error to cloud thickness. The cloud thickness is quantified in terms of aerosol backscatter ratio (ASR) and cloud optical depth (COD). ASR and COD are determined from Howard University Raman Lidar (HURL) operating at the same station as GLOW. The wind speed error of GLOW was correlated with COD and aerosol backscatter ratio (ASR) which are determined from HURL data. The correlation related in a weak linear relationship. Finally, the wind speed measurements of GLOW were corrected using the quantitative relation from the correlation relations. Using ASR reduced the GLOW wind error from 19% to 8% in a thin cirrus cloud and from 58% to 28% in a relatively thick cloud. After correcting for cloud induced error, the remaining error is due to shot noise and atmospheric variability. Shot-noise error is the statistical random error of backscattered photons detected by photon multiplier tube (PMT) can only be minimized by averaging large number of data recorded. The atmospheric backscatter measured by GLOW along its line-of-sight direction is also used to analyze error due to atmospheric variability within the volume of measurement. GLOW scans in five different directions (vertical and at elevation angles of 45° in north, south, east, and west) to generate wind profiles. The non-uniformity of the atmosphere in all scanning directions is a factor contributing to the measurement error of GLOW. The atmospheric variability in the scanning region leads to difference in the intensity of backscattered signals for scanning directions. Taking the ratio of the north (east) to south (west) and comparing the statistical differences lead to a weak linear relation between atmospheric variability and line-of-sights wind speed differences. This relation was used to make correction which reduced by about 50%.

  13. High-resolution CO2 and CH4 flux inverse modeling combining GOSAT, OCO-2 and ground-based observations

    NASA Astrophysics Data System (ADS)

    Maksyutov, S. S.; Oda, T.; Saito, M.; Ito, A.; Janardanan Achari, R.; Sasakawa, M.; Machida, T.; Kaiser, J. W.; Belikov, D.; Valsala, V.; O'Dell, C.; Yoshida, Y.; Matsunaga, T.

    2017-12-01

    We develop a high-resolution CO2 and CH4 flux inversion system that is based on the Lagrangian-Eulerian coupled tracer transport model, and is designed to estimate surface fluxes from atmospheric CO2 and CH4 data observed by the GOSAT and OCO-2 satellites and by global in-situ networks, including observation in Siberia. We use the Lagrangian particle dispersion model (LPDM) FLEXPART to estimate the surface flux footprints for each observation at 0.1-degree spatial resolution for three days of transport. The LPDM is coupled to a global atmospheric tracer transport model (NIES-TM). The adjoint of the coupled transport model is used in an iterative optimization procedure based on either quasi-Newtonian algorithm or singular value decomposition. Combining surface and satellite data for use in inversion requires correcting for biases present in satellite observation data, that is done in a two-step procedure. As a first step, bi-weekly corrections to prior flux fields are estimated for the period of 2009 to 2015 from in-situ CO2 and CH4 data from global observation network, included in Obspack-GVP (for CO2), WDCGG (CH4) and JR-STATION datasets. High-resolution prior fluxes were prepared for anthropogenic emissions (ODIAC and EDGAR), biomass burning (GFAS), and the terrestrial biosphere. The terrestrial biosphere flux was constructed using a vegetation mosaic map and separate simulations of CO2 fluxes by the VISIT model for each vegetation type present in a grid. The prior flux uncertainty for land is scaled proportionally to monthly mean GPP by the MODIS product for CO2 and EDGAR emissions for CH4. Use of the high-resolution transport leads to improved representation of the anthropogenic plumes, often observed at continental continuous observation sites. OCO-2 observations are aggregated to 1 second averages, to match the 0.1 degree resolution of the transport model. Before including satellite observations in the inversion, the monthly varying latitude-dependent bias is estimated by comparing satellite observations with column abundance simulated with surface fluxes optimized by surface inversion. The bias-corrected GOSAT and OCO-2 data are then used in the inversion together with ground-based observations. Application of the bias correction to satellite data reduces the difference between the flux estimates based on ground-based and satellite observations.

  14. Correcting a fundamental error in greenhouse gas accounting related to bioenergy.

    PubMed

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-06-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of 'additional biomass' - biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy - can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy.

  15. Comprehensive renormalization group analysis of the littlest seesaw model

    NASA Astrophysics Data System (ADS)

    Geib, Tanja; King, Stephen F.

    2018-04-01

    We present a comprehensive renormalization group analysis of the littlest seesaw model involving two right-handed neutrinos and a very constrained Dirac neutrino Yukawa coupling matrix. We perform the first χ2 analysis of the low energy masses and mixing angles, in the presence of renormalization group corrections, for various right-handed neutrino masses and mass orderings, both with and without supersymmetry. We find that the atmospheric angle, which is predicted to be near maximal in the absence of renormalization group corrections, may receive significant corrections for some nonsupersymmetric cases, bringing it into close agreement with the current best fit value in the first octant. By contrast, in the presence of supersymmetry, the renormalization group corrections are relatively small, and the prediction of a near maximal atmospheric mixing angle is maintained, for the studied cases. Forthcoming results from T2K and NO ν A will decisively test these models at a precision comparable to the renormalization group corrections we have calculated.

  16. Phase 2 development of Great Lakes algorithms for Nimbus-7 coastal zone color scanner

    NASA Technical Reports Server (NTRS)

    Tanis, Fred J.

    1984-01-01

    A series of experiments have been conducted in the Great Lakes designed to evaluate the application of the NIMBUS-7 Coastal Zone Color Scanner (CZCS). Atmospheric and water optical models were used to relate surface and subsurface measurements to satellite measured radiances. Absorption and scattering measurements were reduced to obtain a preliminary optical model for the Great Lakes. Algorithms were developed for geometric correction, correction for Rayleigh and aerosol path radiance, and prediction of chlorophyll-a pigment and suspended mineral concentrations. The atmospheric algorithm developed compared favorably with existing algorithms and was the only algorithm found to adequately predict the radiance variations in the 670 nm band. The atmospheric correction algorithm developed was designed to extract needed algorithm parameters from the CZCS radiance values. The Gordon/NOAA ocean algorithms could not be demonstrated to work for Great Lakes waters. Predicted values of chlorophyll-a concentration compared favorably with expected and measured data for several areas of the Great Lakes.

  17. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    NASA Astrophysics Data System (ADS)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  18. Ocean observations with EOS/MODIS: Algorithm development and post launch studies

    NASA Technical Reports Server (NTRS)

    Gordon, Howard R.

    1996-01-01

    An investigation of the influence of stratospheric aerosol on the performance of the atmospheric correction algorithm is nearly complete. The results indicate how the performance of the algorithm is degraded if the stratospheric aerosol is ignored. Use of the MODIS 1380 nm band to effect a correction for stratospheric aerosols was also studied. Simple algorithms such as subtracting the reflectance at 1380 nm from the visible and near infrared bands can significantly reduce the error; however, only if the diffuse transmittance of the aerosol layer is taken into account. The atmospheric correction code has been modified for use with absorbing aerosols. Tests of the code showed that, in contrast to non absorbing aerosols, the retrievals were strongly influenced by the vertical structure of the aerosol, even when the candidate aerosol set was restricted to a set appropriate to the absorbing aerosol. This will further complicate the problem of atmospheric correction in an atmosphere with strongly absorbing aerosols. Our whitecap radiometer system and solar aureole camera were both tested at sea and performed well. Investigation of a technique to remove the effects of residual instrument polarization sensitivity were initiated and applied to an instrument possessing (approx.) 3-4 times the polarization sensitivity expected for MODIS. Preliminary results suggest that for such an instrument, elimination of the polarization effect is possible at the required level of accuracy by estimating the polarization of the top-of-atmosphere radiance to be that expected for a pure Rayleigh scattering atmosphere. This may be of significance for design of a follow-on MODIS instrument. W.M. Balch participated on two month-long cruises to the Arabian sea, measuring coccolithophore abundance, production, and optical properties. A thorough understanding of the relationship between calcite abundance and light scatter, in situ, will provide the basis for a generic suspended calcite algorithm.

  19. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data

    USGS Publications Warehouse

    Chavez, P.S.

    1988-01-01

    Digital analysis of remotely sensed data has become an important component of many earth-science studies. These data are often processed through a set of preprocessing or "clean-up" routines that includes a correction for atmospheric scattering, often called haze. Various methods to correct or remove the additive haze component have been developed, including the widely used dark-object subtraction technique. A problem with most of these methods is that the haze values for each spectral band are selected independently. This can create problems because atmospheric scattering is highly wavelength-dependent in the visible part of the electromagnetic spectrum and the scattering values are correlated with each other. Therefore, multispectral data such as from the Landsat Thematic Mapper and Multispectral Scanner must be corrected with haze values that are spectral band dependent. An improved dark-object subtraction technique is demonstrated that allows the user to select a relative atmospheric scattering model to predict the haze values for all the spectral bands from a selected starting band haze value. The improved method normalizes the predicted haze values for the different gain and offset parameters used by the imaging system. Examples of haze value differences between the old and improved methods for Thematic Mapper Bands 1, 2, 3, 4, 5, and 7 are 40.0, 13.0, 12.0, 8.0, 5.0, and 2.0 vs. 40.0, 13.2, 8.9, 4.9, 16.7, and 3.3, respectively, using a relative scattering model of a clear atmosphere. In one Landsat multispectral scanner image the haze value differences for Bands 4, 5, 6, and 7 were 30.0, 50.0, 50.0, and 40.0 for the old method vs. 30.0, 34.4, 43.6, and 6.4 for the new method using a relative scattering model of a hazy atmosphere. ?? 1988.

  20. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOEpatents

    Veligdan, James T.

    1993-01-01

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  1. The effect of precipitation on measuring sea surface salinity from space

    NASA Astrophysics Data System (ADS)

    Jin, Xuchen; Pan, Delu; He, Xianqiang; Wang, Difeng; Zhu, Qiankun; Gong, Fang

    2017-10-01

    The sea surface salinity (SSS) can be measured from space by using L-band (1.4 GHz) microwave radiometers. The L-band has been chosen for its sensitivity of brightness temperature to the change of salinity. However, SSS remote sensing is still challenging due to the low sensitivity of brightness temperature to SSS variation: for the vertical polarization, the sensitivity is about 0.4 to 0.8 K/psu with different incident angles and sea surface temperature; for horizontal polarization, the sensitivity is about 0.2 to 0.6 K/psu. It means that we have to make radiometric measurements with accuracy better than 1K even for the best sensitivity of brightness temperature to SSS. Therefore, in order to retrieve SSS, the measured brightness temperature at the top of atmosphere (TOA) needs to be corrected for many sources of error. One main geophysical source of error comes from atmosphere. Currently, the atmospheric effect at L-band is usually corrected by absorption and emission model, which estimate the radiation absorbed and emitted by atmosphere. However, the radiation scattered by precipitation is neglected in absorption and emission models, which might be significant under heavy precipitation. In this paper, a vector radiative transfer model for coupled atmosphere and ocean systems with a rough surface is developed to simulate the brightness temperature at the TOA under different precipitations. The model is based on the adding-doubling method, which includes oceanic emission and reflection, atmospheric absorption and scattering. For the ocean system with a rough surface, an empirical emission model established by Gabarro and the isotropic Cox-Munk wave model considering shadowing effect are used to simulate the emission and reflection of sea surface. For the atmospheric attenuation, it is divided into two parts: For the rain layer, a Marshall-Palmer distribution is used and the scattering properties of the hydrometeors are calculated by Mie theory (the scattering hydrometeors are assumed to be spherical). For the other atmosphere layers, which are assumed to be clear sky, Liebe's millimeter wave propagation model (MPM93) is used to calculate the absorption coefficients of oxygen, water vapor, and cloud droplets. To simulate the change of brightness temperature caused by different rain rate (0-50 mm/h), we assume a 26-layer precipitation structure corresponding to NCEP FNL data. Our radiative transfer simulations showed that the brightness temperature at TOA can be influenced significantly by the heavy precipitation, the results indicate that the atmospheric attenuation of L-band at incidence angle of 42.5° should be a positive bias, and when rain rate rise up to 50 mm/h, the brightness temperature increases are close to 0.6 K and 0.8 K for horizontally and vertically polarized brightness temperature, respectively. Thus, in the case of heavy precipitation, the current absorption and emission model is not accurate enough to correct atmospheric effect, and a radiative transfer model which considers the effect of radiation scattering should be used.

  2. How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

    NASA Astrophysics Data System (ADS)

    Schlögl, Sebastian; Lehning, Michael; Nishimura, Kouichi; Huwald, Hendrik; Cullen, Nicolas J.; Mott, Rebecca

    2017-10-01

    We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin-Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin-Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of 6 W m^{-2} (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and 5 W m^{-2}, with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin-Obukhov bulk formulation.

  3. Seasonal and Inter-Annual Patterns of Phytoplankton Community Structure in Monterey Bay, CA Derived from AVIRIS Data During the 2013-2015 HyspIRI Airborne Campaign

    NASA Astrophysics Data System (ADS)

    Palacios, S. L.; Thompson, D. R.; Kudela, R. M.; Negrey, K.; Guild, L. S.; Gao, B. C.; Green, R. O.; Torres-Perez, J. L.

    2015-12-01

    There is a need in the ocean color community to discriminate among phytoplankton groups within the bulk chlorophyll pool to understand ocean biodiversity, to track energy flow through ecosystems, and to identify and monitor for harmful algal blooms. Imaging spectrometer measurements enable use of sophisticated spectroscopic algorithms for applications such as differentiating among coral species, evaluating iron stress of phytoplankton, and discriminating phytoplankton taxa. These advanced algorithms rely on the fine scale, subtle spectral shape of the atmospherically corrected remote sensing reflectance (Rrs) spectrum of the ocean surface. As a consequence, these algorithms are sensitive to inaccuracies in the retrieved Rrs spectrum that may be related to the presence of nearby clouds, inadequate sensor calibration, low sensor signal-to-noise ratio, glint correction, and atmospheric correction. For the HyspIRI Airborne Campaign, flight planning considered optimal weather conditions to avoid flights with significant cloud/fog cover. Although best suited for terrestrial targets, the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has enough signal for some coastal chlorophyll algorithms and meets sufficient calibration requirements for most channels. However, the coastal marine environment has special atmospheric correction needs due to error that may be introduced by aerosols and terrestrially sourced atmospheric dust and riverine sediment plumes. For this HyspIRI campaign, careful attention has been given to the correction of AVIRIS imagery of the Monterey Bay to optimize ocean Rrs retrievals for use in estimating chlorophyll (OC3 algorithm) and phytoplankton functional type (PHYDOTax algorithm) data products. This new correction method has been applied to several image collection dates during two oceanographic seasons - upwelling and the warm, stratified oceanic period for 2013 and 2014. These two periods are dominated by either diatom blooms (occasionally toxic) or red tides. Results presented include chlorophyll and phytoplankton community structure and in-water validation data for these dates during these two seasons.

  4. Optimal wavefront control for adaptive segmented mirrors

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.

  5. Corrective Action Decision Document for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada, Rev. No. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Boehlecke

    2004-04-01

    The six bunkers included in CAU 204 were primarily used to monitor atmospheric testing or store munitions. The ''Corrective Action Investigation Plan (CAIP) for Corrective Action Unit 204: Storage Bunkers, Nevada Test Site, Nevada'' (NNSA/NV, 2002a) provides information relating to the history, planning, and scope of the investigation; therefore, it will not be repeated in this CADD. This CADD identifies potential corrective action alternatives and provides a rationale for the selection of a recommended corrective action alternative for each CAS within CAU 204. The evaluation of corrective action alternatives is based on process knowledge and the results of investigative activitiesmore » conducted in accordance with the CAIP (NNSA/NV, 2002a) that was approved prior to the start of the Corrective Action Investigation (CAI). Record of Technical Change (ROTC) No. 1 to the CAIP (approval pending) documents changes to the preliminary action levels (PALs) agreed to by the Nevada Division of Environmental Protection (NDEP) and DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This ROTC specifically discusses the radiological PALs and their application to the findings of the CAU 204 corrective action investigation. The scope of this CADD consists of the following: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and (5) Recommend and justify a preferred corrective action alternative for each CAS within CAU 204.« less

  6. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-08-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications particularly from space (LEO, GEO orbits) and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.

  7. Are We Correctly Measuring Star-Formation Rates?

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen B.; Skillman, Evan D.; Dolphin, Andrew E.; Mitchell, Noah P.

    2017-01-01

    Integrating our knowledge of star formation (SF) traced by observations at different wavelengths is essential for correctly interpreting and comparing SF activity in a variety of systems and environments. This study compares extinction-corrected, integrated ultraviolet (UV) emission from resolved galaxies with color-magnitude diagram (CMD) based star-formation rates (SFRs) derived from resolved stellar populations and CMD fitting techniques in 19 nearby starburst and post-starburst dwarf galaxies. The data sets are from the panchromatic Starburst Irregular Dwarf Survey (STARBIRDS) and include deep legacy GALEX UV imaging, Hubble Space Telescope optical imaging, and Spitzer MIPS imaging. For the majority of the sample, the integrated near-UV fluxes predicted from the CMD-based SFRs—using four different models—agree with the measured, extinction corrected, integrated near-UV fluxes from GALEX images, but the far-UV (FUV) predicted fluxes do not. Furthermore, we find a systematic deviation between the SFRs based on integrated FUV luminosities and existing scaling relations, and the SFRs based on the resolved stellar populations. This offset is not driven by different SF timescales, variations in SFRs, UV attenuation, nor stochastic effects. This first comparison between CMD-based SFRs and an integrated FUV emission SFR indicator suggests that the most likely cause of the discrepancy is the theoretical FUV-SFR calibration from stellar evolutionary libraries and/or stellar atmospheric models. We present an empirical calibration of the FUV-based SFR relation for dwarf galaxies, with uncertainties, which is ˜53% larger than previous relations. These results have signficant implications for measuring FUV-based SFRs of high-redshift galaxies.

  8. Evaluating atmospheric blocking in the global climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    Hartung, Kerstin; Hense, Andreas; Kjellström, Erik

    2013-04-01

    Atmospheric blocking is a phenomenon of the midlatitudal troposphere, which plays an important role in climate variability. Therefore a correct representation of blocking in climate models is necessary, especially for evaluating the results of climate projections. In my master's thesis a validation of blocking in the coupled climate model EC-Earth is performed. Blocking events are detected based on the Tibaldi-Molteni Index. At first, a comparison with the reanalysis dataset ERA-Interim is conducted. The blocking frequency depending on longitude shows a small general underestimation of blocking in the model - a well known problem. Scaife et al. (2011) proposed the correction of model bias as a way to solve this problem. However, applying the correction to the higher resolution EC-Earth model does not yield any improvement. Composite maps show a link between blocking events and surface variables. One example is the formation of a positive surface temperature anomaly north and a negative anomaly south of the blocking anticyclone. In winter the surface temperature in EC-Earth can be reproduced quite well, but in summer a cold bias over the inner-European ocean is present. Using generalized linear models (GLMs) I want to study the connection between regional blocking and global atmospheric variables further. GLMs have the advantage of being applicable to non-Gaussian variables. Therefore the blocking index at each longitude, which is Bernoulli distributed, can be analysed statistically with GLMs. I applied a logistic regression between the blocking index and the geopotential height at 500 hPa to study the teleconnection of blocking events at midlatitudes with global geopotential height. GLMs also offer the possibility of quantifying the connections shown in composite maps. The implementation of the logistic regression can even be expanded to a search for trends in blocking frequency, for example in the scenario simulations.

  9. The radiometric characteristics of KOMPSAT-3A by using reference radiometric tarps and ground measurement

    NASA Astrophysics Data System (ADS)

    Yeom, Jong-Min

    2016-09-01

    In this study, we performed the vicarious radiometric calibration of KOMPSAT-3A multispectral bands by using 6S radiative transfer model, radiometric tarps, MFRSR measurements. Furthermore, to prepare the accurate input parameter, we also did experiment work to measure the BRDF of radiometric tarps based on hyperspectral gonioradiometer to compensate the observation geometry difference between satellite and ASD Fieldspec 3. Also, we measured point spread function (PSF) by using the bright star and corrected multispectral bands based on the Wiener filter. For accurate atmospheric constituent effects such as aerosol optical depth, column water, and total ozone, we used MFRSR instrument and estimated related optical depth of each gases. Based on input parameters for 6S radiative transfer model, we simulated top of atmosphere (TOA) radiance by observed by KOMPSAT-3A and matched-up the digital number. Consequently, DN to radiance coefficients was determined based on aforementioned methods and showed reasonable statistics results.

  10. O2 A Band Studies for Cloud Detection and Algorithm Improvement

    NASA Technical Reports Server (NTRS)

    Chance, K. V.

    1996-01-01

    Detection of cloud parameters from space-based spectrometers can employ the vibrational bands of O2 in the (sup b1)Sigma(sub +)(sub g) yields X(sub 3) Sigma(sup -)(sub g) spin-forbidden electronic transition manifold, particularly the Delta nu = 0 A band. The GOME instrument uses the A band in the Initial Cloud Fitting Algorithm (ICFA). The work reported here consists of making substantial improvements in the line-by-line spectral database for the A band, testing whether an additional correction to the line shape function is necessary in order to correctly model the atmospheric transmission in this band, and calculating prototype cloud and ground template spectra for comparison with satellite measurements.

  11. Computing the electric field from extensive air showers using a realistic description of the atmosphere

    NASA Astrophysics Data System (ADS)

    Gaté, F.; Revenu, B.; García-Fernández, D.; Marin, V.; Dallier, R.; Escudié, A.; Martin, L.

    2018-03-01

    The composition of ultra-high energy cosmic rays is still poorly known and constitutes a very important topic in the field of high-energy astrophysics. Detection of ultra-high energy cosmic rays is carried out via the extensive air showers they create after interacting with the atmosphere constituents. The secondary electrons and positrons within the showers emit a detectable electric field in the kHz-GHz range. It is possible to use this radio signal for the estimation of the atmospheric depth of maximal development of the showers Xmax , with a good accuracy and a duty cycle close to 100%. This value of Xmax is strongly correlated to the nature of the primary cosmic ray that initiated the shower. We show in this paper the importance of using a realistic atmospheric model in order to correct for systematic errors that can prevent a correct and unbiased estimation of Xmax.

  12. Computer image processing: Geologic applications

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1978-01-01

    Computer image processing of digital data was performed to support several geological studies. The specific goals were to: (1) relate the mineral content to the spectral reflectance of certain geologic materials, (2) determine the influence of environmental factors, such as atmosphere and vegetation, and (3) improve image processing techniques. For detection of spectral differences related to mineralogy, the technique of band ratioing was found to be the most useful. The influence of atmospheric scattering and methods to correct for the scattering were also studied. Two techniques were used to correct for atmospheric effects: (1) dark object subtraction, (2) normalization of use of ground spectral measurements. Of the two, the first technique proved to be the most successful for removing the effects of atmospheric scattering. A digital mosaic was produced from two side-lapping LANDSAT frames. The advantages were that the same enhancement algorithm can be applied to both frames, and there is no seam where the two images are joined.

  13. Temporal and spatial mapping of atmospheric dust opacity and surface albedo on Mars

    NASA Technical Reports Server (NTRS)

    Lee, S. W.; Clancy, R. T.; Gladstone, G. R.; Martin, T. Z.

    1993-01-01

    The Mariner 9 and Viking missions provided abundant evidence that eolian processes are active over much of the surface of Mars. Past studies have demonstrated that variations in regional albedo and wind streak patterns are indicative of sediment transport through a region, while thermal inertia data (derived from the Viking Infrared Thermal Mapper (IRTM) datasets) are indicative of the degree of surface mantling by dust deposits. We are making use of the method developed by T. Z. Martin to determine dust opacity from IRTM thermal observations. We have developed a radiative transfer model that allows corrections for the effects of atmospheric dust loading on observations of surface albedo to be made. This approach to determining 'dust-corrected surface albedo' incorporates the atmospheric dust opacity, the single-scattering albedo and particle phase function of atmospheric dust, the bidirectional reflectance of the surface, and accounts for variable lighting and viewing geometry.

  14. Estimating the formation age distribution of continental crust by unmixing zircon ages

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2018-01-01

    Continental crust provides first-order control on Earth's surface environment, enabling the presence of stable dry landmasses surrounded by deep oceans. The evolution of continental crust is important for atmospheric evolution, because continental crust is an essential component of deep carbon cycle and is likely to have played a critical role in the oxygenation of the atmosphere. Geochemical information stored in the mineral zircon, known for its resilience to diagenesis and metamorphism, has been central to ongoing debates on the genesis and evolution of continental crust. However, correction for crustal reworking, which is the most critical step when estimating original formation ages, has been incorrectly formulated, undermining the significance of previous estimates. Here I suggest a simple yet promising approach for reworking correction using the global compilation of zircon data. The present-day distribution of crustal formation age estimated by the new "unmixing" method serves as the lower bound to the true crustal growth, and large deviations from growth models based on mantle depletion imply the important role of crustal recycling through the Earth history.

  15. Evaluation of geophysical parameters measured by the Nimbus-7 microwave radiometer for the TOGA Heat Exchange Project

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Mock, Donald R.

    1986-01-01

    The data distributed by the National Space Science Data Center on the Geophysical parameters of precipitable water, sea surface temperature, and surface-level wind speed, measured by the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7, are evaluated with in situ measurements between Jan. 1980 and Oct. 1983 over the tropical oceans. In tracking annual cycles and the 1982-83 E1 Nino/Southern Oscillation episode, the radiometer measurements are coherent with sea surface temperatures and surface-level wind speeds measured at equatorial buoys and with precipitable water derived from radiosonde soundings at tropical island stations. However, there are differences between SMMR and in situ measurements. Corrections based on radiosonde and ship data were derived supplementing correction formulae suggested in the databook. This study is the initial evaluation of the data for quantitative description of the 1982-83 E1 Nino/Southern Oscillation episode. It paves the way for determination of the ocean-atmosphere moisture and latent heat exchanges, a priority of the Tropical Ocean and Global Atmosphere (TOGA) Heat Exchange Program.

  16. Processing Sentinel-2 data with ATCOR

    NASA Astrophysics Data System (ADS)

    Pflug, Bringfried; Makarau, Aliaksei; Richter, Rudolf

    2016-04-01

    Atmospheric correction of satellite images is necessary for many applications of remote sensing. Among them are applications for agriculture, forestry, land cover and land cover change, urban mapping, emergency and inland water. ATCOR is a widely used atmospheric correction tool which can process data of many optical satellite sensors, for instance Landsat, Sentinel-2, SPOT and RapidEye. ATCOR includes a terrain and adjacency correction of satellite images and several special algorithms like haze detection, haze correction, cirrus correction, de-shadowing and empirical methods for BRDF correction. The atmospheric correction tool ATCOR starts with an estimation of the vertical column Aerosol Optical Thickness (AOT550) at 550 nm. The mean uncertainty of the ATCOR-AOT550-estimation was estimated using Landsat and RapidEye data by direct comparison with sunphotometer data as a reference. For Landsat and RapidEye the uncertainty is ΔAOT550nm ≈ 0.03±0.02 for cloudless conditions with a cloud+haze fraction below 1%. Inclusion of cloudy and hazy satellite images into the analysis results in mean ΔAOT550nm ≈ 0.04±0.03 for both RapidEye and Landsat imagery. About 1/3 of the samples perform with the AOT uncertainty better than 0.02 and about 2/3 perform with AOT uncertainty better than 0.05. An accuracy of the retrieved surface reflectance of ±2% (for reflectance <10%) and ±4% reflectance units (for reflectance > 40%) can be achieved for flat terrain, and avoiding the specular and backscattering regions. ATCOR also supports the processing of Sentinel-2 data. First results of processing S2 data and a comparison with AERONET AOT values will be presented.

  17. Adaptive optics system performance approximations for atmospheric turbulence correction

    NASA Astrophysics Data System (ADS)

    Tyson, Robert K.

    1990-10-01

    Analysis of adaptive optics system behavior often can be reduced to a few approximations and scaling laws. For atmospheric turbulence correction, the deformable mirror (DM) fitting error is most often used to determine a priori the interactuator spacing and the total number of correction zones required. This paper examines the mirror fitting error in terms of its most commonly used exponential form. The explicit constant in the error term is dependent on deformable mirror influence function shape and actuator geometry. The method of least squares fitting of discrete influence functions to the turbulent wavefront is compared to the linear spatial filtering approximation of system performance. It is found that the spatial filtering method overstimates the correctability of the adaptive optics system by a small amount. By evaluating fitting error for a number of DM configurations, actuator geometries, and influence functions, fitting error constants verify some earlier investigations.

  18. Wavefront Reconstruction and Mirror Surface Optimizationfor Adaptive Optics

    DTIC Science & Technology

    2014-06-01

    TERMS Wavefront reconstruction, Adaptive optics , Wavelets, Atmospheric turbulence , Branch points, Mirror surface optimization, Space telescope, Segmented...contribution adapts the proposed algorithm to work when branch points are present from significant atmospheric turbulence . An analysis of vector spaces...estimate the distortion of the collected light caused by the atmosphere and corrected by adaptive optics . A generalized orthogonal wavelet wavefront

  19. On the methane opacity for Uranus and Neptune.

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1972-01-01

    The contribution of methane to the thermal opacity in the atmospheres of Uranus and Neptune is shown to be negligible. The relevance of this finding lies in the importance of knowing all the sources of thermal opacity to include in models of these atmospheres, for only then may it be possible to deduce their atmospheric structure and composition correctly.

  20. A method to account for the temperature sensitivity of TCCON total column measurements

    NASA Astrophysics Data System (ADS)

    Niebling, Sabrina G.; Wunch, Debra; Toon, Geoffrey C.; Wennberg, Paul O.; Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) consists of ground-based Fourier Transform Spectrometer (FTS) systems all around the world. It achieves better than 0.25% precision and accuracy for total column measurements of CO2 [Wunch et al. (2011)]. In recent years, the TCCON data processing and retrieval software (GGG) has been improved to achieve better and better results (e. g. ghost correction, improved a priori profiles, more accurate spectroscopy). However, a small error is also introduced by the insufficent knowledge of the true temperature profile in the atmosphere above the individual instruments. This knowledge is crucial to retrieve highly precise gas concentrations. In the current version of the retrieval software, we use six-hourly NCEP reanalysis data to produce one temperature profile at local noon for each measurement day. For sites in the mid latitudes which can have a large diurnal variation of the temperature in the lowermost kilometers of the atmosphere, this approach can lead to small errors in the final gas concentration of the total column. Here, we present and describe a method to account for the temperature sensitivity of the total column measurements. We exploit the fact that H2O is most abundant in the lowermost kilometers of the atmosphere where the largest diurnal temperature variations occur. We use single H2O absorption lines with different temperature sensitivities to gain information about the temperature variations over the course of the day. This information is used to apply a posteriori correction of the retrieved gas concentration of total column. In addition, we show that the a posteriori temperature correction is effective by applying it to data from Lamont, Oklahoma, USA (36,6°N and 97,5°W). We chose this site because regular radiosonde launches with a time resolution of six hours provide detailed information of the real temperature in the atmosphere and allow us to test the effectiveness of our correction. References: Wunch, D., Toon, G. C., Blavier, J.-F. L., Washenfelder, R. A., Notholt, J., Connor, B. J., Griffith, D. W. T., Sherlock, V., and Wennberg, P. O.: The Total Carbon Column Observing Network, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369, 2087-2112, 2011.

  1. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Astrophysics Data System (ADS)

    Justus, C. G.; James, B. F.

    1999-05-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  2. Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8: Users Guide

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; James, B. F.

    1999-01-01

    Mars Global Reference Atmospheric Model (Mars-GRAM) Version 3.8 is presented and its new features are discussed. Mars-GRAM uses new values of planetary reference ellipsoid radii, gravity term, and rotation rate (consistent with current JPL values) and includes centrifugal effects on gravity. The model now uses NASA Ames Global Circulation Model low resolution topography. Curvature corrections are applied to winds and limits based on speed of sound are applied. Altitude of the F1 ionization peak and density scale height, including effects of change of molecular weight with altitude are computed. A check is performed to disallow temperatures below CO2 sublimination. This memorandum includes instructions on obtaining Mars-GRAM source code and data files and running the program. Sample input and output are provided. An example of incorporating Mars-GRAM as an atmospheric subroutine in a trajectory code is also given.

  3. LANDSAT data preprocessing

    NASA Technical Reports Server (NTRS)

    Austin, W. W.

    1983-01-01

    The effect on LANDSAT data of a Sun angle correction, an intersatellite LANDSAT-2 and LANDSAT-3 data range adjustment, and the atmospheric correction algorithm was evaluated. Fourteen 1978 crop year LACIE sites were used as the site data set. The preprocessing techniques were applied to multispectral scanner channel data and transformed data were plotted and used to analyze the effectiveness of the preprocessing techniques. Ratio transformations effectively reduce the need for preprocessing techniques to be applied directly to the data. Subtractive transformations are more sensitive to Sun angle and atmospheric corrections than ratios. Preprocessing techniques, other than those applied at the Goddard Space Flight Center, should only be applied as an option of the user. While performed on LANDSAT data the study results are also applicable to meteorological satellite data.

  4. Very narrow band model calculations of atmospheric fluxes and cooling rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, L.S.; Berk, A.; Acharya, P.K.

    1996-10-15

    A new very narrow band model (VNBM) approach has been developed and incorporated into the MODTRAN atmospheric transmittance-radiance code. The VNBM includes a computational spectral resolution of 1 cm{sup {minus}1}, a single-line Voigt equivalent width formalism that is based on the Rodgers-Williams approximation and accounts for the finite spectral width of the interval, explicit consideration of line tails, a statistical line overlap correction, a new sublayer integration approach that treats the effect of the sublayer temperature gradient on the path radiance, and the Curtis-Godson (CG) approximation for inhomogeneous paths. A modified procedure for determining the line density parameter 1/d ismore » introduced, which reduces its magnitude. This results in a partial correction of the VNBM tendency to overestimate the interval equivalent widths. The standard two parameter CG approximation is used for H{sub 2}O and CO{sub 2}, while the Goody three parameter CG approximation is used for O{sub 3}. Atmospheric flux and cooling rate predictions using a research version of MODTRAN, MODR, are presented for H{sub 2}O (with and without the continuum), CO{sub 2}, and O{sub 3} for several model atmospheres. The effect of doubling the CO{sub 2} concentration is also considered. These calculations are compared to line-by-line (LBL) model calculations using the AER, GLA, GFDL, and GISS codes. The MODR predictions fall within the spread of the LBL results. The effects of decreasing the band model spectral resolution are illustrated using CO{sub 2} cooling rate and flux calculations. 36 refs., 18 figs., 1 tab.« less

  5. Photometric Lambert Correction for Global Mosaicking of HRSC Data

    NASA Astrophysics Data System (ADS)

    Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas

    2015-04-01

    The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.

  6. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    NASA Astrophysics Data System (ADS)

    Amarsi, A. M.; Lind, K.; Asplund, M.; Barklem, P. S.; Collet, R.

    2016-12-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D hydrodynamic STAGGER model atmospheres, and employ a new model atom that includes new quantum-mechanical neutral hydrogen collisional rate coefficients. With the exception of the red giant HD122563, we find that the 3D non-LTE models achieve Fe I/Fe II excitation and ionization balance as well as not having any trends with equivalent width to within modelling uncertainties of 0.05 dex, all without having to invoke any microturbulent broadening; for HD122563 we predict that the current best parallax-based surface gravity is overestimated by 0.5 dex. Using a 3D non-LTE analysis, we infer iron abundances from the 3D model atmospheres that are roughly 0.1 dex higher than corresponding abundances from 1D MARCS model atmospheres; these differences go in the same direction as the non-LTE effects themselves. We make available grids of departure coefficients, equivalent widths and abundance corrections, calculated on 1D MARCS model atmospheres and horizontally and temporally averaged 3D STAGGER model atmospheres.

  7. 4SM: A Novel Self-Calibrated Algebraic Ratio Method for Satellite-Derived Bathymetry and Water Column Correction

    PubMed Central

    Morel, Yann G.; Favoretto, Fabio

    2017-01-01

    All empirical water column correction methods have consistently been reported to require existing depth sounding data for the purpose of calibrating a simple depth retrieval model; they yield poor results over very bright or very dark bottoms. In contrast, we set out to (i) use only the relative radiance data in the image along with published data, and several new assumptions; (ii) in order to specify and operate the simplified radiative transfer equation (RTE); (iii) for the purpose of retrieving both the satellite derived bathymetry (SDB) and the water column corrected spectral reflectance over shallow seabeds. Sea truth regressions show that SDB depths retrieved by the method only need tide correction. Therefore it shall be demonstrated that, under such new assumptions, there is no need for (i) formal atmospheric correction; (ii) conversion of relative radiance into calibrated reflectance; or (iii) existing depth sounding data, to specify the simplified RTE and produce both SDB and spectral water column corrected radiance ready for bottom typing. Moreover, the use of the panchromatic band for that purpose is introduced. Altogether, we named this process the Self-Calibrated Supervised Spectral Shallow-sea Modeler (4SM). This approach requires a trained practitioner, though, to produce its results within hours of downloading the raw image. The ideal raw image should be a “near-nadir” view, exhibit homogeneous atmosphere and water column, include some coverage of optically deep waters and bare land, and lend itself to quality removal of haze, atmospheric adjacency effect, and sun/sky glint. PMID:28754028

  8. 4SM: A Novel Self-Calibrated Algebraic Ratio Method for Satellite-Derived Bathymetry and Water Column Correction.

    PubMed

    Morel, Yann G; Favoretto, Fabio

    2017-07-21

    All empirical water column correction methods have consistently been reported to require existing depth sounding data for the purpose of calibrating a simple depth retrieval model; they yield poor results over very bright or very dark bottoms. In contrast, we set out to (i) use only the relative radiance data in the image along with published data, and several new assumptions; (ii) in order to specify and operate the simplified radiative transfer equation (RTE); (iii) for the purpose of retrieving both the satellite derived bathymetry (SDB) and the water column corrected spectral reflectance over shallow seabeds. Sea truth regressions show that SDB depths retrieved by the method only need tide correction. Therefore it shall be demonstrated that, under such new assumptions, there is no need for (i) formal atmospheric correction; (ii) conversion of relative radiance into calibrated reflectance; or (iii) existing depth sounding data, to specify the simplified RTE and produce both SDB and spectral water column corrected radiance ready for bottom typing. Moreover, the use of the panchromatic band for that purpose is introduced. Altogether, we named this process the Self-Calibrated Supervised Spectral Shallow-sea Modeler (4SM). This approach requires a trained practitioner, though, to produce its results within hours of downloading the raw image. The ideal raw image should be a "near-nadir" view, exhibit homogeneous atmosphere and water column, include some coverage of optically deep waters and bare land, and lend itself to quality removal of haze, atmospheric adjacency effect, and sun/sky glint.

  9. Respective roles of direct GHG radiative forcing and induced Arctic sea ice loss on the Northern Hemisphere atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Oudar, Thomas; Sanchez-Gomez, Emilia; Chauvin, Fabrice; Cattiaux, Julien; Terray, Laurent; Cassou, Christophe

    2017-12-01

    The large-scale and synoptic-scale Northern Hemisphere atmospheric circulation responses to projected late twenty-first century Arctic sea ice decline induced by increasing Greenhouse Gases (GHGs) concentrations are investigated using the CNRM-CM5 coupled model. An original protocol, based on a flux correction technique, allows isolating the respective roles of GHG direct radiative effect and induced Arctic sea ice loss under RCP8.5 scenario. In winter, the surface atmospheric response clearly exhibits opposing effects between GHGs increase and Arctic sea ice loss, leading to no significant pattern in the total response (particularly in the North Atlantic region). An analysis based on Eady growth rate shows that Arctic sea ice loss drives the weakening in the low-level meridional temperature gradient, causing a general decrease of the baroclinicity in the mid and high latitudes, whereas the direct impact of GHGs increase is more located in the mid-to-high troposphere. Changes in the flow waviness, evaluated from sinuosity and blocking frequency metrics, are found to be small relative to inter-annual variability.

  10. Coupling of an aeroacoustic model and a parabolic equation code for long range wind turbine noise propagation

    NASA Astrophysics Data System (ADS)

    Cotté, B.

    2018-05-01

    This study proposes to couple a source model based on Amiet's theory and a parabolic equation code in order to model wind turbine noise emission and propagation in an inhomogeneous atmosphere. Two broadband noise generation mechanisms are considered, namely trailing edge noise and turbulent inflow noise. The effects of wind shear and atmospheric turbulence are taken into account using the Monin-Obukhov similarity theory. The coupling approach, based on the backpropagation method to preserve the directivity of the aeroacoustic sources, is validated by comparison with an analytical solution for the propagation over a finite impedance ground in a homogeneous atmosphere. The influence of refraction effects is then analyzed for different directions of propagation. The spectrum modification related to the ground effect and the presence of a shadow zone for upwind receivers are emphasized. The validity of the point source approximation that is often used in wind turbine noise propagation models is finally assessed. This approximation exaggerates the interference dips in the spectra, and is not able to correctly predict the amplitude modulation.

  11. Suppression of Speckles at High Adaptive Correction Using Speckle Symmetry

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2006-01-01

    Focal-plane speckles set important sensitivity limits on ground- or space-based imagers and coronagraphs that may be used to search for faint companions, perhaps ultimately including exoplanets, around stars. As speckles vary with atmospheric fluctuations or with drifting beamtrain aberrations, they contribute speckle noise proportional to their full amplitude. Schemes to suppress speckles are thus of great interest. At high adaptive correction, speckles organize into species, represented by algebraic terms in the expansion of the phase exponential, that have distinct spatial symmetry, even or odd, under spatial inversion. Filtering speckle patterns by symmetry may eliminate a disproportionate fraction of the speckle noise while blocking (only) half of the image signal from the off-axis companion being sought. The fraction of speckle power and hence of speckle noise in each term will vary with degree of correction, and so also will the net symmetry in the speckle pattern.

  12. ARGOS wavefront sensing: from detection to correction

    NASA Astrophysics Data System (ADS)

    Orban de Xivry, Gilles; Bonaglia, M.; Borelli, J.; Busoni, L.; Connot, C.; Esposito, S.; Gaessler, W.; Kulas, M.; Mazzoni, T.; Puglisi, A.; Rabien, S.; Storm, J.; Ziegleder, J.

    2014-08-01

    Argos is the ground-layer adaptive optics system for the Large Binocular Telescope. In order to perform its wide-field correction, Argos uses three laser guide stars which sample the atmospheric turbulence. To perform the correction, Argos has at disposal three different wavefront sensing measurements : its three laser guide stars, a NGS tip-tilt, and a third wavefront sensor. We present the wavefront sensing architecture and its individual components, in particular: the finalized Argos pnCCD camera detecting the 3 laser guide stars at 1kHz, high quantum efficiency and 4e- noise; the Argos tip-tilt sensor based on a quad-cell avalanche photo-diodes; and the Argos wavefront computer. Being in the middle of the commissioning, we present the first wavefront sensing configurations and operations performed at LBT, and discuss further improvements in the measurements of the 3 laser guide star slopes as detected by the pnCCD.

  13. Input/output models for general aviation piston-prop aircraft fuel economy

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.

    1982-01-01

    A fuel efficient cruise performance model for general aviation piston engine airplane was tested. The following equations were made: (1) for the standard atmosphere; (2) airframe-propeller-atmosphere cruise performance; and (3) naturally aspirated engine cruise performance. Adjustments are made to the compact cruise performance model as follows: corrected quantities, corrected performance plots, algebraic equations, maximize R with or without constraints, and appears suitable for airborne microprocessor implementation. The following hardwares are recommended: ignition timing regulator, fuel-air mass ration controller, microprocessor, sensors and displays.

  14. Fast adaptive optical system for the high-power laser beam correction in atmosphere

    NASA Astrophysics Data System (ADS)

    Kudryashov, Alexis; Lylova, Anna; Samarkin, Vadim; Sheldakova, Julia; Alexandrov, Alexander

    2017-09-01

    Key elements of the fast adaptive optical system (AOS), having correction frequency of 1400 Hz, for atmospheric turbulence compensation, are described in this paper. A water-cooled bimorph deformable mirror with 46 electrodes, as well as stacked actuator deformable mirror with 81 piezoactuators and 2000 Hz Shack-Hartmann wavefront sensor were considered to be used to control the light beam. The parameters of the turbulence at the 1.2 km path of the light propagation were measured and analyzed. The key parameters for such an adaptive system were worked out.

  15. Sentinel-2 Level 2A Prototype Processor: Architecture, Algorithms And First Results

    NASA Astrophysics Data System (ADS)

    Muller-Wilm, Uwe; Louis, Jerome; Richter, Rudolf; Gascon, Ferran; Niezette, Marc

    2013-12-01

    Sen2Core is a prototype processor for Sentinel-2 Level 2A product processing and formatting. The processor is developed for and with ESA and performs the tasks of Atmospheric Correction and Scene Classification of Level 1C input data. Level 2A outputs are: Bottom-Of- Atmosphere (BOA) corrected reflectance images, Aerosol Optical Thickness-, Water Vapour-, Scene Classification maps and Quality indicators, including cloud and snow probabilities. The Level 2A Product Formatting performed by the processor follows the specification of the Level 1C User Product.

  16. Synergies Between Grace and Regional Atmospheric Modeling Efforts

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Springer, A.; Ohlwein, C.; Hartung, K.; Longuevergne, L.; Kollet, S. J.; Keune, J.; Dobslaw, H.; Forootan, E.; Eicker, A.

    2014-12-01

    In the meteorological community, efforts converge towards implementation of high-resolution (< 12km) data-assimilating regional climate modelling/monitoring systems based on numerical weather prediction (NWP) cores. This is driven by requirements of improving process understanding, better representation of land surface interactions, atmospheric convection, orographic effects, and better forecasting on shorter timescales. This is relevant for the GRACE community since (1) these models may provide improved atmospheric mass separation / de-aliasing and smaller topography-induced errors, compared to global (ECMWF-Op, ERA-Interim) data, (2) they inherit high temporal resolution from NWP models, (3) parallel efforts towards improving the land surface component and coupling groundwater models; this may provide realistic hydrological mass estimates with sub-diurnal resolution, (4) parallel efforts towards re-analyses, with the aim of providing consistent time series. (5) On the other hand, GRACE can help validating models and aids in the identification of processes needing improvement. A coupled atmosphere - land surface - groundwater modelling system is currently being implemented for the European CORDEX region at 12.5 km resolution, based on the TerrSysMP platform (COSMO-EU NWP, CLM land surface and ParFlow groundwater models). We report results from Springer et al. (J. Hydromet., accept.) on validating the water cycle in COSMO-EU using GRACE and precipitation, evapotranspiration and runoff data; confirming that the model does favorably at representing observations. We show that after GRACE-derived bias correction, basin-average hydrological conditions prior to 2002 can be reconstructed better than before. Next, comparing GRACE with CLM forced by EURO-CORDEX simulations allows identifying processes needing improvement in the model. Finally, we compare COSMO-EU atmospheric pressure, a proxy for mass corrections in satellite gravimetry, with ERA-Interim over Europe at timescales shorter/longer than 1 month, and spatial scales below/above ERA resolution. We find differences between regional and global model more pronounced at high frequencies, with magnitude at sub-grid scale and larger scale corresponding to 1-3 hPa (1-3 cm EWH); relevant for the assessment of post-GRACE concepts.

  17. Corrective Action Investigation Plan for Corrective Action Unit 414: Clean Slate III Plutonium Dispersion (TTR) Tonopah Test Range, Nevada, Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Patrick

    Corrective Action Unit (CAU) 414 is located on the Tonopah Test Range, which is approximately 130 miles northwest of Las Vegas, Nevada, and approximately 40 miles southeast of Tonopah, Nevada. The CAU 414 site consists of the release of radionuclides to the surface and shallow subsurface from the conduct of the Clean Slate III (CSIII) storage–transportation test conducted on June 9, 1963. CAU 414 includes one corrective action site (CAS), TA-23-03CS (Pu Contaminated Soil). The known releases at CAU 414 are the result of the atmospheric dispersal of contamination from the 1963 CSIII test. The CSIII test was a nonnuclearmore » detonation of a nuclear device located inside a reinforced concrete bunker covered with 8 feet of soil. This test dispersed radionuclides, primarily uranium and plutonium, on the ground surface. The presence and nature of contamination at CAU 414 will be evaluated based on information collected from a corrective action investigation (CAI). The investigation is based on the data quality objectives (DQOs) developed on June 7, 2016, by representatives of the Nevada Division of Environmental Protection; the U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective action alternatives for CAU 414.« less

  18. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE PAGES

    Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.

    2016-04-12

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the cause of this statistical significance is likely explained by the fact the WANG correction also accounts for cloud cover – a condition not accounted for in the radiance closure experiments.« less

  19. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the cause of this statistical significance is likely explained by the fact the WANG correction also accounts for cloud cover – a condition not accounted for in the radiance closure experiments.« less

  20. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications.

    PubMed

    Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin

    2012-08-01

    Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.

  1. Optical Sensors for Planetary Radiant Energy (OSPREy): Calibration and Validation of Current and Next-Generation NASA Missions

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B.; Bernhard, Germar; Morrow, John H.; Booth, Charles R.; Comer, Thomas; Lind, Randall N.; Quang, Vi

    2012-01-01

    A principal objective of the Optical Sensors for Planetary Radiance Energy (OSPREy) activity is to establish an above-water radiometer system as a lower-cost alternative to existing in-water systems for the collection of ground-truth observations. The goal is to be able to make high-quality measurements satisfying the accuracy requirements for the vicarious calibration and algorithm validation of next-generation satellites that make ocean color and atmospheric measurements. This means the measurements will have a documented uncertainty satisfying the established performance metrics for producing climate-quality data records. The OSPREy approach is based on enhancing commercial-off-the-shelf fixed-wavelength and hyperspectral sensors to create hybridspectral instruments with an improved accuracy and spectral resolution, as well as a dynamic range permitting sea, Sun, sky, and Moon observations. Greater spectral diversity in the ultraviolet (UV) will be exploited to separate the living and nonliving components of marine ecosystems; UV bands will also be used to flag and improve atmospheric correction algorithms in the presence of absorbing aerosols. The short-wave infrared (SWIR) is expected to improve atmospheric correction, because the ocean is radiometrically blacker at these wavelengths. This report describes the development of the sensors, including unique capabilities like three-axis polarimetry; the documented uncertainty will be presented in a subsequent report.

  2. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence.

    PubMed

    Wang, Yukun; Xu, Huanyu; Li, Dayu; Wang, Rui; Jin, Chengbin; Yin, Xianghui; Gao, Shijie; Mu, Quanquan; Xuan, Li; Cao, Zhaoliang

    2018-01-18

    The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0  = 10, f G  = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB  = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.

  3. Iterative atmospheric correction scheme and the polarization color of alpine snow

    NASA Astrophysics Data System (ADS)

    Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond

    2012-07-01

    Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories.In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction.In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment and a likely high water content due to melting. The analysis benefits from ancillary information provided by the NASA Langley High Spectral Resolution Lidar deployed on the same aircraft.The results obtained from the iterative scheme are contrasted against the surface polarized reflectance obtained ignoring multiple reflections, via the simplistic subtraction of the atmospheric scattering contribution. Finally, the retrieved reflectance is modeled after the scattering properties of a dense collection of ice crystals at the surface. Confirming that the polarized reflectance of snow is spectrally flat would allow to extend the techniques already in use for polarimetric retrievals of aerosol properties over land to the large portion of snow-covered pixels plaguing orbital and suborbital observations.

  4. Iterative Atmospheric Correction Scheme and the Polarization Color of Alpine Snow

    NASA Technical Reports Server (NTRS)

    Ottaviani, Matteo; Cairns, Brian; Ferrare, Rich; Rogers, Raymond

    2012-01-01

    Characterization of the Earth's surface is crucial to remote sensing, both to map geomorphological features and because subtracting this signal is essential during retrievals of the atmospheric constituents located between the surface and the sensor. Current operational algorithms model the surface total reflectance through a weighted linear combination of a few geometry-dependent kernels, each devised to describe a particular scattering mechanism. The information content of these measurements is overwhelmed by that of instruments with polarization capabilities: proposed models in this case are based on the Fresnel reflectance of an isotropic distribution of facets. Because of its remarkable lack of spectral contrast, the polarized reflectance of land surfaces in the shortwave infrared spectral region, where atmospheric scattering is minimal, can be used to model the surface also at shorter wavelengths, where aerosol retrievals are attempted based on well-established scattering theories. In radiative transfer simulations, straightforward separation of the surface and atmospheric contributions is not possible without approximations because of the coupling introduced by multiple reflections. Within a general inversion framework, the problem can be eliminated by linearizing the radiative transfer calculation, and making the Jacobian (i.e., the derivative expressing the sensitivity of the reflectance with respect to model parameters) available at output. We present a general methodology based on a Gauss-Newton iterative search, which automates this procedure and eliminates de facto the need of an ad hoc atmospheric correction. In this case study we analyze the color variations in the polarized reflectance measured by the NASA Goddard Institute of Space Studies Research Scanning Polarimeter during a survey of late-season snowfields in the High Sierra. This insofar unique dataset presents challenges linked to the rugged topography associated with the alpine environment and a likely high water content due to melting. The analysis benefits from ancillary information provided by the NASA Langley High Spectral Resolution Lidar deployed on the same aircraft. The results obtained from the iterative scheme are contrasted against the surface polarized reflectance obtained ignoring multiple reflections, via the simplistic subtraction of the atmospheric scattering contribution. Finally, the retrieved reflectance is modeled after the scattering properties of a dense collection of ice crystals at the surface. Confirming that the polarized reflectance of snow is spectrally flat would allow to extend the techniques already in use for polarimetric retrievals of aerosol properties over land to the large portion of snow-covered pixels plaguing orbital and suborbital observations.

  5. Reliable Quantitative Mineral Abundances of the Martian Surface using THEMIS

    NASA Astrophysics Data System (ADS)

    Smith, R. J.; Huang, J.; Ryan, A. J.; Christensen, P. R.

    2013-12-01

    The following presents a proof of concept that given quality data, Thermal Emission Imaging System (THEMIS) data can be used to derive reliable quantitative mineral abundances of the Martian surface using a limited mineral library. The THEMIS instrument aboard the Mars Odyssey spacecraft is a multispectral thermal infrared imager with a spatial resolution of 100 m/pixel. The relatively high spatial resolution along with global coverage makes THEMIS datasets powerful tools for comprehensive fine scale petrologic analyses. However, the spectral resolution of THEMIS is limited to 8 surface sensitive bands between 6.8 and 14.0 μm with an average bandwidth of ~ 1 μm, which complicates atmosphere-surface separation and spectral analysis. This study utilizes the atmospheric correction methods of both Bandfield et al. [2004] and Ryan et al. [2013] joined with the iterative linear deconvolution technique pioneered by Huang et al. [in review] in order to derive fine-scale quantitative mineral abundances of the Martian surface. In general, it can be assumed that surface emissivity combines in a linear fashion in the thermal infrared (TIR) wavelengths such that the emitted energy is proportional to the areal percentage of the minerals present. TIR spectra are unmixed using a set of linear equations involving an endmember library of lab measured mineral spectra. The number of endmembers allowed in a spectral library are restricted to a quantity of n-1 (where n = the number of spectral bands of an instrument), preserving one band for blackbody. Spectral analysis of THEMIS data is thus allowed only seven endmembers. This study attempts to prove that this limitation does not prohibit the derivation of meaningful spectral analyses from THEMIS data. Our study selects THEMIS stamps from a region of Mars that is well characterized in the TIR by the higher spectral resolution, lower spatial resolution Thermal Emission Spectrometer (TES) instrument (143 bands at 10 cm-1 sampling and 3x5 km pixel). Multiple atmospheric corrections are performed for one image using the methods of Bandfield et al. [2004] and Ryan et al. [2013]. 7x7 pixel areas were selected, averaged, and compared using each atmospherically corrected image to ensure consistency. Corrections that provided reliable data were then used for spectral analyses. Linear deconvolution is performed using an iterative spectral analysis method [Huang et al. in review] that takes an endmember spectral library, and creates mineral combinations based on prescribed mineral group selections. The script then performs a spectral mixture analysis on each surface spectrum using all possible mineral combinations, and reports the best modeled fit to the measured spectrum. Here we present initial results from Syrtis Planum where multiple atmospherically corrected THEMIS images were deconvolved to produce similar spectral analysis results, within the detection limit of the instrument. THEMIS mineral abundances are comparable to TES-derived abundances. References: Bandfield, JL et al. [2004], JGR 109, E10008 Huang, J et al., JGR, in review Ryan, AJ et al. [2013], AGU Fall Meeting

  6. Hi-speed compact deformable mirror: status, applications, and perspectives

    NASA Astrophysics Data System (ADS)

    Rooms, F.; Camet, S.; Curis, J.-F.

    2010-02-01

    Membrane deformable mirrors based on magnetic actuators have been known for years. State-of-the-art deformable mirrors usually have large strokes but low bandwidth. Furthermore, this bandwidth decreases with the diameter. In this paper, we present the results of a new actuator principle based on magnetic forces allowing high bandwidth (up to a few kHz), very large stroke (>30μm) with a record pitch of 1.5mm. The benefits of this technology will be presented for three applications: astronomy, vision science and microscopy. The parameters of the mirrors have been tuned such that the inter-actuator stroke of the deformable (more than 2.0μm) in order to fit the atmosphere turbulence characteristics. In vision science, efforts have been made to correct both simultaneously the low and high order aberrations (more than 45μm of wavefront correction on astigmatism and focus). Finally, we will demonstrate how we have developed a deformable mirror able to correct spherical aberrations (microscopy). The last part of the article is devoted to give some perspectives about this technology.

  7. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking volume mixing ratios are under investigation.

  8. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  9. Some Experience Using SEN2COR

    NASA Astrophysics Data System (ADS)

    Pflug, Bringfried; Bieniarz, Jakub; Debaecker, Vincent; Louis, Jérôme; Müller-Wilms, Uwe

    2016-04-01

    ESA has developed and launched the Sentinel-2A optical imaging mission that delivers optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. Many of these applications require accurate correction of satellite images for atmospheric effects to ensure the highest quality of scientific exploitation of Sentinel-2 data. Therefore the atmospheric correction processor Sen2Cor was developed by TPZ V on behalf of ESA. TPZ F and DLR have teamed up in order to provide the calibration and validation of the Level-2A processor Sen2Cor. Level-2A processing is applied to Top-Of-Atmosphere (TOA) Level-1C ortho-image reflectance products. Level-2A main output is the Bottom-Of-Atmosphere (BOA) corrected reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SC) map with Quality Indicators for cloud and snow probabilities. The poster will present some processing examples of Sen2Cor applied to Sentinel-2A data together with first performance investigations. Different situations will be covered like processing with and without DEM (Digital Elevation Model). Sen2Cor processing is controlled by several configuration parameters. Some examples will be presented demonstrating the influence of different settings of some parameters.

  10. Water surface temperature profiles for the Rhine River derived from Landsat ETM+ data

    NASA Astrophysics Data System (ADS)

    Fricke, Katharina; Baschek, Björn

    2013-10-01

    Water temperature influences physical and chemical parameters of rivers and streams and is an important parameter for water quality. It is a crucial factor for the existence and the growth of animal and plant species in the river ecosystem. The aim of the research project "Remote sensing of water surface temperature" at the Federal Institute of Hydrology (BfG), Germany, is to supplement point measurements of water temperature with remote sensing methodology. The research area investigated here is the Upper and Middle Rhine River, where continuous measurements of water temperature are already available for several water quality monitoring stations. Satellite imagery is used to complement these point measurements and to generate longitudinal temperature profiles for a better systematic understanding of the changes in river temperature along its course. Several products for sea surface temperature derived from radiances in the thermal infrared are available, but for water temperature from rivers less research has been carried out. Problems arise from the characteristics of the river valley and morphology and the proximity to the riverbank. Depending on the river width, a certain spatial resolution of the satellite images is necessary to allow for an accurate identification of the river surface and the calculation of water temperature. The bands from the Landsat ETM+ sensor in the thermal infrared region offer a possibility to extract the river surface temperatures (RST) of a sufficiently wide river such as the Rhine. Additionally, problems such as cloud cover, shadowing effects, georeferencing errors, different emissivity of water and land, scattering of thermal radiation, adjacency and mixed pixel effects had to be accounted for and their effects on the radiance temperatures will be discussed. For this purpose, several temperature data sets derived from radiance and in situ measurements were com- pared. The observed radiance temperatures are strongly influenced by the atmosphere. Without atmospheric correction, the absolute mean difference between RST and in situ measurements was 1.1°C with a standard devi- ation of 1.3°C. Thus, a correction of atmospheric influences on radiances measured at the top of the atmosphere was necessary and two different methods for atmospheric correction (ATCOR2 and the Atmospheric Correction Parameter Calculator) were applied. The correction results showed that for both methods, the correct choice of atmospheric profiles is very important. With the calculator, an absolute mean difference of 0.8 +/- 1.0°C and with the selected overall best scenes, an absolute mean difference of 0.5 ± 0.7°C was achieved. The selected corrected RST can be used to interpolate between in situ measurements available only for a limited number of points along the river course and longitudinal example profiles of the surface water temperature in the Upper and Middle Rhine could be calculated for different seasons. On the basis of these profiles, the increasing temperature gradient along the Upper Rhine could be identified and the possibility to detect heat or cooling discharge from tributaries and other sources is evaluated.

  11. Algorithm Updates for the Fourth SeaWiFS Data Reprocessing

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford, B. (Editor); Firestone, Elaine R. (Editor); Patt, Frederick S.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Robinson, Wayne D.; Feldman, Gene Carl; Bailey, Sean W.

    2003-01-01

    The efforts to improve the data quality for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data products have continued, following the third reprocessing of the global data set in May 2000. Analyses have been ongoing to address all aspects of the processing algorithms, particularly the calibration methodologies, atmospheric correction, and data flagging and masking. All proposed changes were subjected to rigorous testing, evaluation and validation. The results of these activities culminated in the fourth reprocessing, which was completed in July 2002. The algorithm changes, which were implemented for this reprocessing, are described in the chapters of this volume. Chapter 1 presents an overview of the activities leading up to the fourth reprocessing, and summarizes the effects of the changes. Chapter 2 describes the modifications to the on-orbit calibration, specifically the focal plane temperature correction and the temporal dependence. Chapter 3 describes the changes to the vicarious calibration, including the stray light correction to the Marine Optical Buoy (MOBY) data and improved data screening procedures. Chapter 4 describes improvements to the near-infrared (NIR) band correction algorithm. Chapter 5 describes changes to the atmospheric correction and the oceanic property retrieval algorithms, including out-of-band corrections, NIR noise reduction, and handling of unusual conditions. Chapter 6 describes various changes to the flags and masks, to increase the number of valid retrievals, improve the detection of the flag conditions, and add new flags. Chapter 7 describes modifications to the level-la and level-3 algorithms, to improve the navigation accuracy, correct certain types of spacecraft time anomalies, and correct a binning logic error. Chapter 8 describes the algorithm used to generate the SeaWiFS photosynthetically available radiation (PAR) product. Chapter 9 describes a coupled ocean-atmosphere model, which is used in one of the changes described in Chapter 4. Finally, Chapter 10 describes a comparison of results from the third and fourth reprocessings along the US. Northeast coast.

  12. 75 FR 62503 - Correction: Proposed Information Collection; Comment Request; Comprehensive Data Collection on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Correction: Proposed Information Collection; Comment Request; Comprehensive Data Collection on Fishing Dependence of Alaska... collection, Comprehensive Data Collection on Fishing Dependence of Alaska Communities. Under the heading FOR...

  13. Very large ground-based telescopes for optical and IR astronomy

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1982-01-01

    Methods for improving the light grasp by an order of magnitude for earth-based observations of astrophysical objects are reviewed. Noting that the atmosphere is opaque below 0.3 micron and that techniques have been developed to make corrections for the atmospheric distortion, fully diffraction limited IR performance at 10 microns is asserted to be practicable. The use of mirror-seeing with metal mirrors with thin faceplates and air cooling is outlined as a means to achieve subarcsec resolution. Designs are considered which involve multiple sections to gain effective large aperture viewing for spectroscopy, using Si CCD detectors, and heterodyne IR interferometry, but not for direct interferometry or certain IR measurements. The Multiple Mirror Telescope is described, including designs for four 7.5 m honeycomb glass primaries co-aligned in a single mount. Further discussion is devoted to the fabrication of mirror elements and electronic image stabilization.

  14. Equations for solar tracking.

    PubMed

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research.

  15. Equations for Solar Tracking

    PubMed Central

    Merlaud, Alexis; De Mazière, Martine; Hermans, Christian; Cornet, Alain

    2012-01-01

    Direct sunlight absorption by trace gases can be used to quantify them and investigate atmospheric chemistry. In such experiments, the main optical apparatus is often a grating or a Fourier transform spectrometer. A solar tracker based on motorized rotating mirrors is commonly used to direct the light along the spectrometer axis, correcting for the apparent rotation of the Sun. Calculating the Sun azimuth and altitude for a given time and location can be achieved with high accuracy but different sources of angular offsets appear in practice when positioning the mirrors. A feedback on the motors, using a light position sensor close to the spectrometer, is almost always needed. This paper aims to gather the main geometrical formulas necessary for the use of a widely used kind of solar tracker, based on two 45° mirrors in altazimuthal set-up with a light sensor on the spectrometer, and to illustrate them with a tracker developed by our group for atmospheric research. PMID:22666019

  16. Analysis and design of a high power laser adaptive phased array transmitter

    NASA Technical Reports Server (NTRS)

    Mevers, G. E.; Soohoo, J. F.; Winocur, J.; Massie, N. A.; Southwell, W. H.; Brandewie, R. A.; Hayes, C. L.

    1977-01-01

    The feasibility of delivering substantial quantities of optical power to a satellite in low earth orbit from a ground based high energy laser (HEL) coupled to an adaptive antenna was investigated. Diffraction effects, atmospheric transmission efficiency, adaptive compensation for atmospheric turbulence effects, including the servo bandwidth requirements for this correction, and the adaptive compensation for thermal blooming were examined. To evaluate possible HEL sources, atmospheric investigations were performed for the CO2, (C-12)(O-18)2 isotope, CO and DF wavelengths using output antenna locations of both sea level and mountain top. Results indicate that both excellent atmospheric and adaption efficiency can be obtained for mountain top operation with a micron isotope laser operating at 9.1 um, or a CO laser operating single line (P10) at about 5.0 (C-12)(O-18)2um, which was a close second in the evaluation. Four adaptive power transmitter system concepts were generated and evaluated, based on overall system efficiency, reliability, size and weight, advanced technology requirements and potential cost. A multiple source phased array was selected for detailed conceptual design. The system uses a unique adaption technique of phase locking independent laser oscillators which allows it to be both relatively inexpensive and most reliable with a predicted overall power transfer efficiency of 53%.

  17. On-Sky Demonstration of a Fluid Atmospheric Dispersion Corrector

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Saunders, W.; Lawrence, J. S.; Richards, S.

    2013-02-01

    The first on-sky demonstration of a fluid atmospheric dispersion corrector (FADC) is presented using the Anglo-Australian Telescope at Siding Spring Observatory. The atmospheric dispersion correction was observed with a three-colour CCD camera at the telescope’s Cassegrain focus. The FADC contains a pair of immiscible fluids in a small glass container placed very close to the telescope focal plane. A pair of fluid prisms is formed and the apex of the two prisms varies with telescope zenith angle because of gravity. Three chemicals were identified and tested for this purpose. We experimentally measured the FADC dispersion properties versus zenith angle and it is shown that its dispersion follows the tan(Z) law. We have been able to observe 6 stars at different zenith angles and show that the FADC can correct atmospheric dispersion up to 1‧‧ at a zenith angle of 52° across the visible spectral range of 400-700 nm. It is demonstrated that an FADC can function as a passive atmospheric dispersion corrector without any moving parts. Our on-sky measurement results show excellent agreement with the optical ray-tracing model.

  18. ALT space shuttle barometric altimeter altitude analysis

    NASA Technical Reports Server (NTRS)

    Killen, R.

    1978-01-01

    The accuracy was analyzed of the barometric altimeters onboard the space shuttle orbiter. Altitude estimates from the air data systems including the operational instrumentation and the developmental flight instrumentation were obtained for each of the approach and landing test flights. By comparing the barometric altitude estimates to altitudes derived from radar tracking data filtered through a Kalman filter and fully corrected for atmospheric refraction, the errors in the barometric altitudes were shown to be 4 to 5 percent of the Kalman altitudes. By comparing the altitude determined from the true atmosphere derived from weather balloon data to the altitude determined from the U.S. Standard Atmosphere of 1962, it was determined that the assumption of the Standard Atmosphere equations contributes roughly 75 percent of the total error in the baro estimates. After correcting the barometric altitude estimates using an average summer model atmosphere computed for the average latitude of the space shuttle landing sites, the residual error in the altitude estimates was reduced to less than 373 feet. This corresponds to an error of less than 1.5 percent for altitudes above 4000 feet for all flights.

  19. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance

    NASA Astrophysics Data System (ADS)

    Kotchenova, Svetlana Y.; Vermote, Eric F.; Matarrese, Raffaella; Klemm, Frank J., Jr.

    2006-09-01

    A vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), which enables accounting for radiation polarization, has been developed and validated against a Monte Carlo code, Coulson's tabulated values, and MOBY (Marine Optical Buoy System) water-leaving reflectance measurements. The developed code was also tested against the scalar codes SHARM, DISORT, and MODTRAN to evaluate its performance in scalar mode and the influence of polarization. The obtained results have shown a good agreement of 0.7% in comparison with the Monte Carlo code, 0.2% for Coulson's tabulated values, and 0.001-0.002 for the 400-550 nm region for the MOBY reflectances. Ignoring the effects of polarization led to large errors in calculated top-of-atmosphere reflectances: more than 10% for a molecular atmosphere and up to 5% for an aerosol atmosphere. This new version of 6S is intended to replace the previous scalar version used for calculation of lookup tables in the MODIS (Moderate Resolution Imaging Spectroradiometer) atmospheric correction algorithm.

  20. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance.

    PubMed

    Kotchenova, Svetlana Y; Vermote, Eric F; Matarrese, Raffaella; Klemm, Frank J

    2006-09-10

    A vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), which enables accounting for radiation polarization, has been developed and validated against a Monte Carlo code, Coulson's tabulated values, and MOBY (Marine Optical Buoy System) water-leaving reflectance measurements. The developed code was also tested against the scalar codes SHARM, DISORT, and MODTRAN to evaluate its performance in scalar mode and the influence of polarization. The obtained results have shown a good agreement of 0.7% in comparison with the Monte Carlo code, 0.2% for Coulson's tabulated values, and 0.001-0.002 for the 400-550 nm region for the MOBY reflectances. Ignoring the effects of polarization led to large errors in calculated top-of-atmosphere reflectances: more than 10% for a molecular atmosphere and up to 5% for an aerosol atmosphere. This new version of 6S is intended to replace the previous scalar version used for calculation of lookup tables in the MODIS (Moderate Resolution Imaging Spectroradiometer) atmospheric correction algorithm.

  1. Agricultural resources investigations in northern Italy and southern France, Agreste project. Part 1: Activity performed on the Italian test sites

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The author has identified the following significant results. It was found that the standard atmospheric correction procedure cannot be successfully applied to water targets if a better correlation of MSS data with radiance input to LANDSAT sensors was not reached. It was confirmed that the six line effect must be avoided unless more sophisticated data handling techniques allow subtraction of various amounts of path radiance for the six satellite detectors. The COPTRAN program for atmospheric corrections of scan angle influence on atmospheric path was modified and completed. Six rice varieties were discriminated in proportions ranging from 65 percent to more than 80 percent. The same techniques were applied to poplar groves with a 70 percent precision.

  2. A simplified model for the gravitational potential of the atmosphere and its effect on the geoid

    NASA Technical Reports Server (NTRS)

    Madden, S. J., Jr.

    1972-01-01

    The earth's atmosphere is considered as made up of oblate spheroidal layers of variable density lying over an oblate spheroidal earth. The gravitational attraction of the atmosphere at exterior points is computed and its contribution to the usual spherical harmonic gravitational expansion is assessed. The potential is also found for points at the bottom of the model atmosphere. This latter result is of interest for determination of the potential at the surface of the geoid. The atmospheric correction to the geoid determination from satellite coefficients is given.

  3. Atmospheric Pressure Corrections in Geodesy and Oceanography: a Strategy for Handling Air Tides

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.; Ray, Richard D.

    2003-01-01

    Global pressure data are often needed for processing or interpreting modern geodetic and oceanographic measurements. The most common source of these data is the analysis or reanalysis products of various meteorological centers. Tidal signals in these products can be problematic for several reasons, including potentially aliased sampling of the semidiurnal solar tide as well as the presence of various modeling or timing errors. Building on the work of Van den Dool and colleagues, we lay out a strategy for handling atmospheric tides in (re)analysis data. The procedure also offers a method to account for ocean loading corrections in satellite altimeter data that are consistent with standard ocean-tide corrections. The proposed strategy has immediate application to the on-going Jason-1 and GRACE satellite missions.

  4. Atmospheric scattering corrections to solar radiometry

    NASA Technical Reports Server (NTRS)

    Box, M. A.; Deepak, A.

    1979-01-01

    Whenever a solar radiometer is used to measure direct solar radiation, some diffuse sky radiation invariably enters the detector's field of view along with the direct beam. Therefore, the atmospheric optical depth obtained by the use of Bouguer's transmission law (also called Beer-Lambert's law), that is valid only for direct radiation, needs to be corrected by taking account of the scattered radiation. This paper discusses the correction factors needed to account for the diffuse (i,e., singly and multiply scattered) radiation and the algorithms developed for retrieving aerosol size distribution from such measurements. For a radiometer with a small field of view (half-cone angle of less than 5 deg) and relatively clear skies (optical depths less than 0.4), it is shown that the total diffuse contribution represents approximately 1% of the total intensity.

  5. Solar radiance models for determination of ERBE scanner filter factor

    NASA Technical Reports Server (NTRS)

    Arduini, R. F.

    1985-01-01

    Shortwave spectral radiance models for use in the spectral correction algorithms for the ERBE Scanner Instrument are provided. The required data base was delivered to the ERBe Data Reduction Group in October 1984. It consisted of two sets of data files: (1) the spectral bidirectional angular models and (2) the spectral flux modes. The bidirectional models employ the angular characteristics of reflection by the Earth-atmosphere system and were derived from detailed radiance calculations using a finite difference model of the radiative transfer process. The spectral flux models were created through the use of a delta-Eddington model to economically simulate the effects of atmospheric variability. By combining these data sets, a wide range of radiances may be approximated for a number of scene types.

  6. Multispectral Resource Sampler (MRS): Proof of concept. Study on bidirectional reflectance. A simulation analysis of bidirectional reflectance properties and their effects on scene radiance. Implications for the MRS

    NASA Technical Reports Server (NTRS)

    Smith, J. A.

    1980-01-01

    A study was performed to evaluate the geometrical implication of a Multispectral Resource Sampler; a pointable sensor. Several vegetative targets representative of natural and agricultural canopies were considered in two wavelength bands. All combinations of Sun and view angles between 5 and 85 degrees zenith for a range of azimuths were simulated to examine geometrical dependance arising from seasonal as well as latitudinal variation. The effects of three different atmospheres corresponding to clear, medium and heavy haze conditions are included. An extensive model data base was generated to provide investigators with means for possible further study of atmospheric correction procedures and sensor design questions.

  7. Fast Coherent Differential Imaging for Exoplanet Imaging

    NASA Astrophysics Data System (ADS)

    Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.

    2018-06-01

    Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.

  8. Radiometric correction of atmospheric path length fluctuations in interferometric experiments. [in radio astronomy

    NASA Technical Reports Server (NTRS)

    Resch, G. M.; Hogg, D. E.; Napier, P. J.

    1984-01-01

    To support very long baseline interferometric experiments, a system has been developed for estimating atmospheric water vapor path delay. The system consists of dual microwave radiometers, one operating at 20.7 GHz and the other at 31.4 GHz. The measured atmospheric brightness temperatures at these two frequencies yield the estimate of the precipitable water present in both vapor and droplets. To determine the accuracy of the system, a series of observations were undertaken, comparing the outputs of two water vapor radiometers with the phase variation observed with two connected elements of the very large array (VLA). The results show that: (1) water vapor fluctuations dominate the residual VLA phase and (2) the microwave radiometers can measure and correct these effects. The rms phase error after correction is typically 15 deg at a wavelength of 6 cm, corresponding to an uncertainty in the path delay of 0.25 cm. The residual uncertainty is consistent with the stability of the microwave radiometer but is still considerably larger than the stability of the VLA. The technique is less successful under conditions of heavy cloud.

  9. Atmospheric correction over case 2 waters with an iterative fitting algorithm: relative humidity effects.

    PubMed

    Land, P E; Haigh, J D

    1997-12-20

    In algorithms for the atmospheric correction of visible and near-IR satellite observations of the Earth's surface, it is generally assumed that the spectral variation of aerosol optical depth is characterized by an Angström power law or similar dependence. In an iterative fitting algorithm for atmospheric correction of ocean color imagery over case 2 waters, this assumption leads to an inability to retrieve the aerosol type and to the attribution to aerosol spectral variations of spectral effects actually caused by the water contents. An improvement to this algorithm is described in which the spectral variation of optical depth is calculated as a function of aerosol type and relative humidity, and an attempt is made to retrieve the relative humidity in addition to aerosol type. The aerosol is treated as a mixture of aerosol components (e.g., soot), rather than of aerosol types (e.g., urban). We demonstrate the improvement over the previous method by using simulated case 1 and case 2 sea-viewing wide field-of-view sensor data, although the retrieval of relative humidity was not successful.

  10. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers

    NASA Astrophysics Data System (ADS)

    Kotthaus, Simone; O'Connor, Ewan; Münkel, Christoph; Charlton-Perez, Cristina; Haeffelin, Martial; Gabey, Andrew M.; Grimmond, C. Sue B.

    2016-08-01

    Ceilometer lidars are used for cloud base height detection, to probe aerosol layers in the atmosphere (e.g. detection of elevated layers of Saharan dust or volcanic ash), and to examine boundary layer dynamics. Sensor optics and acquisition algorithms can strongly influence the observed attenuated backscatter profiles; therefore, physical interpretation of the profiles requires careful application of corrections. This study addresses the widely deployed Vaisala CL31 ceilometer. Attenuated backscatter profiles are studied to evaluate the impact of both the hardware generation and firmware version. In response to this work and discussion within the CL31/TOPROF user community (TOPROF, European COST Action aiming to harmonise ground-based remote sensing networks across Europe), Vaisala released new firmware (versions 1.72 and 2.03) for the CL31 sensors. These firmware versions are tested against previous versions, showing that several artificial features introduced by the data processing have been removed. Hence, it is recommended to use this recent firmware for analysing attenuated backscatter profiles. To allow for consistent processing of historic data, correction procedures have been developed that account for artefacts detected in data collected with older firmware. Furthermore, a procedure is proposed to determine and account for the instrument-related background signal from electronic and optical components. This is necessary for using attenuated backscatter observations from any CL31 ceilometer. Recommendations are made for the processing of attenuated backscatter observed with Vaisala CL31 sensors, including the estimation of noise which is not provided in the standard CL31 output. After taking these aspects into account, attenuated backscatter profiles from Vaisala CL31 ceilometers are considered capable of providing valuable information for a range of applications including atmospheric boundary layer studies, detection of elevated aerosol layers, and model verification.

  11. Mitigation Atmospheric Effects in Interferogram with Using Integrated Meris/modis Data and a Case Study Over Southern California

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhang, P.; Sun, Z.

    2018-04-01

    Interferometric synthetic aperture radar(InSAR), as a space geodetictechnology, had been testified a high potential means of earth observation providing a method fordigital elevation model (DEM) and surface deformation monitoring of high precision. However, the accuracy of the interferometric synthetic aperture radar is mainly limited by the effects of atmospheric water vapor. In order to effectively measure topography or surface deformations by synthetic aperture radar interferometry (InSAR), it is necessary to mitigate the effects of atmospheric water vapor on the interferometric signals. This paper analyzed the atmospheric effects on the interferogram quantitatively, and described a result of estimating Precipitable Water Vapor (PWV) from the the Medium Resolution Imaging Spectrometer (MERIS), Moderate Resolution Imaging Spectroradiometer (MODIS) and the ground-based GPS, compared the MERIS/MODIS PWV with the GPS PWV. Finally, a case study for mitigating atmospheric effects in interferogramusing with using the integration of MERIS and MODIS PWV overSouthern California is given. The result showed that such integration approach benefits removing or reducing the atmospheric phase contribution from the corresponding interferogram, the integrated Zenith Path Delay Difference Maps (ZPDDM) of MERIS and MODIS helps reduce the water vapor effects efficiently, the standard deviation (STD) of interferogram is improved by 23 % after the water vapor correction than the original interferogram.

  12. Distributed Two-Dimensional Fourier Transforms on DSPs with an Application for Phase Retrieval

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey Scott

    2006-01-01

    Many applications of two-dimensional Fourier Transforms require fixed timing as defined by system specifications. One example is image-based wavefront sensing. The image-based approach has many benefits, yet it is a computational intensive solution for adaptive optic correction, where optical adjustments are made in real-time to correct for external (atmospheric turbulence) and internal (stability) aberrations, which cause image degradation. For phase retrieval, a type of image-based wavefront sensing, numerous two-dimensional Fast Fourier Transforms (FFTs) are used. To meet the required real-time specifications, a distributed system is needed, and thus, the 2-D FFT necessitates an all-to-all communication among the computational nodes. The 1-D floating point FFT is very efficient on a digital signal processor (DSP). For this study, several architectures and analysis of such are presented which address the all-to-all communication with DSPs. Emphasis of this research is on a 64-node cluster of Analog Devices TigerSharc TS-101 DSPs.

  13. An empirical method to correct for temperature-dependent variations in the overlap function of CHM15k ceilometers

    NASA Astrophysics Data System (ADS)

    Hervo, Maxime; Poltera, Yann; Haefele, Alexander

    2016-07-01

    Imperfections in a lidar's overlap function lead to artefacts in the background, range and overlap-corrected lidar signals. These artefacts can erroneously be interpreted as an aerosol gradient or, in extreme cases, as a cloud base leading to false cloud detection. A correct specification of the overlap function is hence crucial in the use of automatic elastic lidars (ceilometers) for the detection of the planetary boundary layer or of low cloud. In this study, an algorithm is presented to correct such artefacts. It is based on the assumption of a homogeneous boundary layer and a correct specification of the overlap function down to a minimum range, which must be situated within the boundary layer. The strength of the algorithm lies in a sophisticated quality-check scheme which allows the reliable identification of favourable atmospheric conditions. The algorithm was applied to 2 years of data from a CHM15k ceilometer from the company Lufft. Backscatter signals corrected for background, range and overlap were compared using the overlap function provided by the manufacturer and the one corrected with the presented algorithm. Differences between corrected and uncorrected signals reached up to 45 % in the first 300 m above ground. The amplitude of the correction turned out to be temperature dependent and was larger for higher temperatures. A linear model of the correction as a function of the instrument's internal temperature was derived from the experimental data. Case studies and a statistical analysis of the strongest gradient derived from corrected signals reveal that the temperature model is capable of a high-quality correction of overlap artefacts, in particular those due to diurnal variations. The presented correction method has the potential to significantly improve the detection of the boundary layer with gradient-based methods because it removes false candidates and hence simplifies the attribution of the detected gradients to the planetary boundary layer. A particularly significant benefit can be expected for the detection of shallow stable layers typical of night-time situations. The algorithm is completely automatic and does not require any on-site intervention but requires the definition of an adequate instrument-specific configuration. It is therefore suited for use in large ceilometer networks.

  14. Bias assessment of lower and middle tropospheric CO2 concentrations of GOSAT/TANSO-FTS TIR version 1 product

    NASA Astrophysics Data System (ADS)

    Saitoh, Naoko; Kimoto, Shuhei; Sugimura, Ryo; Imasu, Ryoichi; Shiomi, Kei; Kuze, Akihiko; Niwa, Yosuke; Machida, Toshinobu; Sawa, Yousuke; Matsueda, Hidekazu

    2017-10-01

    CO2 observations in the free troposphere can be useful for constraining CO2 source and sink estimates at the surface since they represent CO2 concentrations away from point source emissions. The thermal infrared (TIR) band of the Thermal and Near Infrared Sensor for Carbon Observation (TANSO) Fourier transform spectrometer (FTS) on board the Greenhouse Gases Observing Satellite (GOSAT) has been observing global CO2 concentrations in the free troposphere for about 8 years and thus could provide a dataset with which to evaluate the vertical transport of CO2 from the surface to the upper atmosphere. This study evaluated biases in the TIR version 1 (V1) CO2 product in the lower troposphere (LT) and the middle troposphere (MT) (736-287 hPa), on the basis of comparisons with CO2 profiles obtained over airports using Continuous CO2 Measuring Equipment (CME) in the Comprehensive Observation Network for Trace gases by AIrLiner (CONTRAIL) project. Bias-correction values are presented for TIR CO2 data for each pressure layer in the LT and MT regions during each season and in each latitude band: 40-20° S, 20° S-20° N, 20-40° N, and 40-60° N. TIR V1 CO2 data had consistent negative biases of 1-1.5 % compared with CME CO2 data in the LT and MT regions, with the largest negative biases at 541-398 hPa, partly due to the use of 10 µm CO2 absorption band in conjunction with 15 and 9 µm absorption bands in the V1 retrieval algorithm. Global comparisons between TIR CO2 data to which the bias-correction values were applied and CO2 data simulated by a transport model based on the Nonhydrostatic ICosahedral Atmospheric Model (NICAM-TM) confirmed the validity of the bias-correction values evaluated over airports in limited areas. In low latitudes in the upper MT region (398-287 hPa), however, TIR CO2 data in northern summer were overcorrected by these bias-correction values; this is because the bias-correction values were determined using comparisons mainly over airports in Southeast Asia, where CO2 concentrations in the upper atmosphere display relatively large variations due to strong updrafts.

  15. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  16. The Residence Time of Water in the Atmosphere Revisited

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud; Tuinenburg, Obbe

    2017-04-01

    This paper revisits the knowledge on the residence time of water in the atmosphere. Based on state-of-the-art data of the hydrological cycle we derive a global average residence time of 8.9±0.4 days (uncertainty given as one standard deviation). We use two different atmospheric moisture tracking models (WAM-2layers and 3D-Trajectories) to obtain atmospheric residence time characteristics in time and space. The tracking models estimate the global average residence time to be around 8.5 days based on ERA-Interim data. We conclude that the statement of a recent study that the global average residence time of water in the atmosphere is 4-5 days, is not correct. We derive spatial maps of residence time, attributed to evaporation and precipitation, and age of atmospheric water, showing that there are different ways of looking at temporal characteristics of atmospheric water. Longer evaporation residence times often indicate larger distances towards areas of high precipitation. From our analysis we find that the residence time over the ocean is about 2 days lower than over land. It can be seen that in winter, the age of atmospheric moisture tends to be much lower than in summer. On the Northern Hemisphere, due to the contrast in ocean-to-land temperature and associated evaporation rates, the age of atmospheric moisture increases following atmospheric moisture flow inland in winter, and decreases in summer. Looking at the probability density functions of atmospheric residence time for precipitation and evaporation we find long-tailed distributions with the median around 5 days. Overall, our research confirms the 8-10 days traditional estimate for the global mean residence time of atmospheric water, and our research contributes to a more complete view on the characteristics of the turnover of water in the atmosphere in time and space. In the light of this session, our results show that the turnover of water is relatively fast, but water travels quite far, which explains why it is so hard to make both weather and hydrological predictions on time spans longer than a week.

  17. Meteoric Magnesium Ions in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean; Grebowsky, Joseph

    1999-01-01

    From a thorough modeling of the altitude profile of meteoritic ionization in the Martian atmosphere we deduce that a persistent layer of magnesium ions should exist around an altitude of 70 km. Based on current estimates of the meteoroid mass flux density, a peak ion density of about 10(exp 4) ions/cm is predicted. Allowing for the uncertainties in all of the model parameters, this value is probably within an order of magnitude of the correct density. Of these parameters, the peak density is most sensitive to the meteoroid mass flux density which directly determines the ablated line density into a source function for Mg. Unlike the terrestrial case, where the metallic ion production is dominated by charge-exchange of the deposited neutral Mg with the ambient ions, Mg+ in the Martian atmosphere is produced predominantly by photoionization. The low ultraviolet absorption of the Martian atmosphere makes Mars an excellent laboratory in which to study meteoric ablation. Resonance lines not seen in the spectra of terrestrial meteors may be visible to a surface observatory in the Martian highlands.

  18. Central role of carbonyl compounds in atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Lary, D. J.; Shallcross, D. E.

    2000-08-01

    With the exception of acetone it is not generally recognized how important atmospheric carbonyls and alkyl radicals are in the lower stratosphere and upper troposphere. Carbonyl compounds are the crucial intermediate species for the autocatalytic production of OH. For example, in the upper troposphere and lower stratosphere it is calculated based on data assimilation analysis of Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) data that CH3 production due to the degradation of carbonyls contributes around 40% to the overall production of CH3, a key initiation step for HOx production, with the contribution due to the photolysis of CH3CHO being comparable to that of acetone. So correctly modeling the alkyl radical concentrations is of central importance and has not be given the attention it deserves to date. The reactions of carbonyls with Br and Cl are also major sources of HBr and HCl. In short, carbonyl compounds play a central role in atmospheric chemistry close to the tropopause, and this is directly relevant to issues such as the assessment of the impact of air traffic, and ozone depletion.

  19. Modeling Self-Referencing Interferometers with Extended Beacons and Strong Turbulence

    DTIC Science & Technology

    2011-09-01

    identified then typically compensated. These results not only serve to address problems when using adaptive optics to correct for strong turbulence ...compensat- ing for distortions due to atmospheric turbulence with adaptive optics (AO) [70, 84]. AO typically compensates for atmospheric distortions... used in Chapter VII to discuss how strong atmospheric turbulence and extended beacons affect the performance of an SRI. Additionally, it enumerates the

  20. The vector radiative transfer numerical model of coupled ocean-atmosphere system using the matrix-operator method

    NASA Astrophysics Data System (ADS)

    Xianqiang, He; Delu, Pan; Yan, Bai; Qiankun, Zhu

    2005-10-01

    The numerical model of the vector radiative transfer of the coupled ocean-atmosphere system is developed based on the matrix-operator method, which is named PCOART. In PCOART, using the Fourier analysis, the vector radiative transfer equation (VRTE) splits up into a set of independent equations with zenith angle as only angular coordinate. Using the Gaussian-Quadrature method, VRTE is finally transferred into the matrix equation, which is calculated by using the adding-doubling method. According to the reflective and refractive properties of the ocean-atmosphere interface, the vector radiative transfer numerical model of ocean and atmosphere is coupled in PCOART. By comparing with the exact Rayleigh scattering look-up-table of MODIS(Moderate-resolution Imaging Spectroradiometer), it is shown that PCOART is an exact numerical calculation model, and the processing methods of the multi-scattering and polarization are correct in PCOART. Also, by validating with the standard problems of the radiative transfer in water, it is shown that PCOART could be used to calculate the underwater radiative transfer problems. Therefore, PCOART is a useful tool to exactly calculate the vector radiative transfer of the coupled ocean-atmosphere system, which can be used to study the polarization properties of the radiance in the whole ocean-atmosphere system and the remote sensing of the atmosphere and ocean.

  1. The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie

    2008-01-01

    Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.

  2. Tactical missile turbulence problems

    NASA Technical Reports Server (NTRS)

    Dickson, Richard E.

    1987-01-01

    Of particular interest is atmospheric turbulence in the atmospheric boundary layer, since this affects both the launch and terminal phase of flight, and the total flight for direct fire systems. Brief discussions are presented on rocket artillery boost wind problems, mean wind correction, turbulent boost wind correction, the Dynamically Aimed Free Flight Rocket (DAFFR) wind filter, the DAFFR test, and rocket wake turbulence problems. It is concluded that many of the turbulence problems of rockets and missiles are common to those of aircraft, such as structural loading and control system design. However, these problems have not been solved at this time.

  3. A high-resolution near-infrared extraterrestrial solar spectrum derived from ground-based Fourier transform spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Menang, Kaah P.; Coleman, Marc D.; Gardiner, Tom D.; Ptashnik, Igor V.; Shine, Keith P.

    2013-06-01

    A detailed spectrally resolved extraterrestrial solar spectrum (ESS) is important for line-by-line radiative transfer modeling in the near-IR. Very few observationally based high-resolution ESS are available in this spectral region. Consequently, the theoretically calculated ESS by Kurucz has been widely adopted. We present the CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) ESS, which is derived using the Langley technique applied to calibrated observations using a ground-based high-resolution Fourier transform spectrometer (FTS) in atmospheric windows from 2000 to 10,000 cm-1 (1-5 µm). There is good agreement between the strengths and positions of solar lines between the CAVIAR and the satellite-based Atmospheric Chemistry Experiment-FTS ESS, in the spectral region where they overlap, and good agreement with other ground-based FTS measurements in two near-IR windows. However, there are significant differences in the structure between the CAVIAR ESS and spectra from semiempirical models. In addition, we found a difference of up to 8% in the absolute (and hence the wavelength-integrated) irradiance between the CAVIAR ESS and that of Thuillier et al., which was based on measurements from the Atmospheric Laboratory for Applications and Science satellite and other sources. In many spectral regions, this difference is significant, because the coverage factor k = 2 (or 95% confidence limit) uncertainties in the two sets of observations do not overlap. Because the total solar irradiance is relatively well constrained, if the CAVIAR ESS is correct, then this would indicate an integrated "loss" of solar irradiance of about 30 W m-2 in the near-IR that would have to be compensated by an increase at other wavelengths.

  4. 14 CFR 29.1043 - Cooling tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...

  5. 14 CFR 29.1043 - Cooling tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...

  6. Using Graphical Processing Units to Accelerate Orthorectification, Atmospheric Correction and Transformations for Big Data

    NASA Astrophysics Data System (ADS)

    O'Connor, A. S.; Justice, B.; Harris, A. T.

    2013-12-01

    Graphics Processing Units (GPUs) are high-performance multiple-core processors capable of very high computational speeds and large data throughput. Modern GPUs are inexpensive and widely available commercially. These are general-purpose parallel processors with support for a variety of programming interfaces, including industry standard languages such as C. GPU implementations of algorithms that are well suited for parallel processing can often achieve speedups of several orders of magnitude over optimized CPU codes. Significant improvements in speeds for imagery orthorectification, atmospheric correction, target detection and image transformations like Independent Components Analsyis (ICA) have been achieved using GPU-based implementations. Additional optimizations, when factored in with GPU processing capabilities, can provide 50x - 100x reduction in the time required to process large imagery. Exelis Visual Information Solutions (VIS) has implemented a CUDA based GPU processing frame work for accelerating ENVI and IDL processes that can best take advantage of parallelization. Testing Exelis VIS has performed shows that orthorectification can take as long as two hours with a WorldView1 35,0000 x 35,000 pixel image. With GPU orthorecification, the same orthorectification process takes three minutes. By speeding up image processing, imagery can successfully be used by first responders, scientists making rapid discoveries with near real time data, and provides an operational component to data centers needing to quickly process and disseminate data.

  7. Accounting for Chromatic Atmospheric Effects on Barycentric Corrections

    NASA Astrophysics Data System (ADS)

    Blackman, Ryan T.; Szymkowiak, Andrew E.; Fischer, Debra A.; Jurgenson, Colby A.

    2017-03-01

    Atmospheric effects on stellar radial velocity measurements for exoplanet discovery and characterization have not yet been fully investigated for extreme precision levels. We carry out calculations to determine the wavelength dependence of barycentric corrections across optical wavelengths, due to the ubiquitous variations in air mass during observations. We demonstrate that radial velocity errors of at least several cm s-1 can be incurred if the wavelength dependence is not included in the photon-weighted barycentric corrections. A minimum of four wavelength channels across optical spectra (380-680 nm) are required to account for this effect at the 10 cm s-1 level, with polynomial fits of the barycentric corrections applied to cover all wavelengths. Additional channels may be required in poor observing conditions or to avoid strong telluric absorption features. Furthermore, consistent flux sampling on the order of seconds throughout the observation is necessary to ensure that accurate photon weights are obtained. Finally, we describe how a multiple-channel exposure meter will be implemented in the EXtreme PREcision Spectrograph (EXPRES).

  8. Energy considerations in the Community Atmosphere Model (CAM)

    DOE PAGES

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; ...

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less

  9. Correcting a fundamental error in greenhouse gas accounting related to bioenergy

    PubMed Central

    Haberl, Helmut; Sprinz, Detlef; Bonazountas, Marc; Cocco, Pierluigi; Desaubies, Yves; Henze, Mogens; Hertel, Ole; Johnson, Richard K.; Kastrup, Ulrike; Laconte, Pierre; Lange, Eckart; Novak, Peter; Paavola, Jouni; Reenberg, Anette; van den Hove, Sybille; Vermeire, Theo; Wadhams, Peter; Searchinger, Timothy

    2012-01-01

    Many international policies encourage a switch from fossil fuels to bioenergy based on the premise that its use would not result in carbon accumulation in the atmosphere. Frequently cited bioenergy goals would at least double the present global human use of plant material, the production of which already requires the dedication of roughly 75% of vegetated lands and more than 70% of water withdrawals. However, burning biomass for energy provision increases the amount of carbon in the air just like burning coal, oil or gas if harvesting the biomass decreases the amount of carbon stored in plants and soils, or reduces carbon sequestration. Neglecting this fact results in an accounting error that could be corrected by considering that only the use of ‘additional biomass’ – biomass from additional plant growth or biomass that would decompose rapidly if not used for bioenergy – can reduce carbon emissions. Failure to correct this accounting flaw will likely have substantial adverse consequences. The article presents recommendations for correcting greenhouse gas accounts related to bioenergy. PMID:23576835

  10. Assessment of radar altimetry correction slopes for marine gravity recovery: A case study of Jason-1 GM data

    NASA Astrophysics Data System (ADS)

    Zhang, Shengjun; Li, Jiancheng; Jin, Taoyong; Che, Defu

    2018-04-01

    Marine gravity anomaly derived from satellite altimetry can be computed using either sea surface height or sea surface slope measurements. Here we consider the slope method and evaluate the errors in the slope of the corrections supplied with the Jason-1 geodetic mission data. The slope corrections are divided into three groups based on whether they are small, comparable, or large with respect to the 1 microradian error in the current sea surface slope models. (1) The small and thus negligible corrections include dry tropospheric correction, inverted barometer correction, solid earth tide and geocentric pole tide. (2) The moderately important corrections include wet tropospheric correction, dual-frequency ionospheric correction and sea state bias. The radiometer measurements are more preferred than model values in the geophysical data records for constraining wet tropospheric effect owing to the highly variable water-vapor structure in atmosphere. The items of dual-frequency ionospheric correction and sea state bias should better not be directly added to range observations for obtaining sea surface slopes since their inherent errors may cause abnormal sea surface slopes and along-track smoothing with uniform distribution weight in certain width is an effective strategy for avoiding introducing extra noises. The slopes calculated from radiometer wet tropospheric corrections, and along-track smoothed dual-frequency ionospheric corrections, sea state bias are generally within ±0.5 microradians and no larger than 1 microradians. (3) Ocean tide has the largest influence on obtaining sea surface slopes while most of ocean tide slopes distribute within ±3 microradians. Larger ocean tide slopes mostly occur over marginal and island-surrounding seas, and extra tidal models with better precision or with extending process (e.g. Got-e) are strongly recommended for updating corrections in geophysical data records.

  11. Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart

    2009-01-01

    The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.

  12. One-way coupling of an atmospheric and a hydrologic model in Colorado

    USGS Publications Warehouse

    Hay, L.E.; Clark, M.P.; Pagowski, M.; Leavesley, G.H.; Gutowski, W.J.

    2006-01-01

    This paper examines the accuracy of high-resolution nested mesoscale model simulations of surface climate. The nesting capabilities of the atmospheric fifth-generation Pennsylvania State University (PSU)-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) were used to create high-resolution, 5-yr climate simulations (from 1 October 1994 through 30 September 1999), starting with a coarse nest of 20 km for the western United States. During this 5-yr period, two finer-resolution nests (5 and 1.7 km) were run over the Yampa River basin in northwestern Colorado. Raw and bias-corrected daily precipitation and maximum and minimum temperature time series from the three MM5 nests were used as input to the U.S. Geological Survey's distributed hydrologic model [the Precipitation Runoff Modeling System (PRMS)] and were compared with PRMS results using measured climate station data. The distributed capabilities of PRMS were provided by partitioning the Yampa River basin into hydrologic response units (HRUs). In addition to the classic polygon method of HRU definition, HRUs for PRMS were defined based on the three MM5 nests. This resulted in 16 datasets being tested using PRMS. The input datasets were derived using measured station data and raw and bias-corrected MM5 20-, 5-, and 1.7-km output distributed to 1) polygon HRUs and 2) 20-, 5-, and 1.7-km-gridded HRUs, respectively. Each dataset was calibrated independently, using a multiobjective, stepwise automated procedure. Final results showed a general increase in the accuracy of simulated runoff with an increase in HRU resolution. In all steps of the calibration procedure, the station-based simulations of runoff showed higher accuracy than the MM5-based simulations, although the accuracy of MM5 simulations was close to station data for the high-resolution nests. Further work is warranted in identifying the causes of the biases in MM5 local climate simulations and developing methods to remove them. ?? 2006 American Meteorological Society.

  13. Retrieval of the Land Surface Reflectance for Landsat-8 and Sentinel-2 and its validation.

    NASA Astrophysics Data System (ADS)

    Roger, J. C.; Vermote, E.; Skakun, S.; Franch, B.; Holben, B. N.; Justice, C. O.

    2017-12-01

    The land surface reflectance is a fundamental climate data record at the basis of the derivation of other climate data records (Albedo, LAI/Fpar, Vegetation indices) and a key parameter in the understanding of the land-surface-climate processes. For 25 years, Vermote and al. develop atmospheric corrections methods to define a land surface reflectance product for various satellites (AVHRR, MODIS, VIIRS…). This presentation highlights the algorithms developed both for Landsant-8 and Sentinel-2. We also emphasize the validation of the "Land surface reflectance" satellite products, which is a very important step to be done. For that purpose, we compared the surface reflectance products to a reference determined by using the accurate radiative transfer code 6S and very detailed measurements of the atmosphere obtained over the AERONET network (which allows to test for a large range of aerosol characteristics); formers being important inputs for atmospheric corrections. However, the application of this method necessitates the definition of a very detailed protocol for the use of AERONET data especially as far as size distribution and absorption are concerned, so that alternative validation methods or protocols could be compared. We describe here the protocol we have been working on based on our experience with the AERONET data and its application to Landsat-8 and Sentinel-2). We also derive a detailed error budget in relation to this approach. For a mean loaded atmosphere, t550 less than 0.25, the maximum uncertainty is 0.0025 corresponding to a relative uncertainty (in the RED channels): U < 1% for rsurf > 0.10, and 1% < U <2% for 0.10 >rsurf > 0.04.

  14. Reconciling Land-Ocean Moisture Transport Variability in Reanalyses with P-ET in Observationally-Driven Land Surface Models

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.

    2016-01-01

    Vertically integrated atmospheric moisture transport from ocean to land [vertically integrated atmospheric moisture flux convergence (VMFC)] is a dynamic component of the global climate system but remains problematic in atmospheric reanalyses, with current estimates having significant multidecadal global trends differing even in sign. Continual evolution of the global observing system, particularly stepwise improvements in satellite observations, has introduced discrete changes in the ability of data assimilation to correct systematic model biases, manifesting as nonphysical variability. Land surface models (LSMs) forced with observed precipitation P and near-surface meteorology and radiation provide estimates of evapotranspiration (ET). Since variability of atmospheric moisture storage is small on interannual and longer time scales, VMFC equals P minus ET is a good approximation and LSMs can provide an alternative estimate. However, heterogeneous density of rain gauge coverage, especially the sparse coverage over tropical continents, remains a serious concern. Rotated principal component analysis (RPCA) with prefiltering of VMFC to isolate the artificial variability is used to investigate artifacts in five reanalysis systems. This procedure, although ad hoc, enables useful VMFC corrections over global land. The P minus ET estimates from seven different LSMs are evaluated and subsequently used to confirm the efficacy of the RPCA-based adjustments. Global VMFC trends over the period 1979-2012 ranging from 0.07 to minus 0.03 millimeters per day per decade are reduced by the adjustments to 0.016 millimeters per day per decade, much closer to the LSM P minus ET estimate (0.007 millimeters per day per decade). Neither is significant at the 90 percent level. ENSO (El Nino-Southern Oscillation)-related modulation of VMFC and P minus ET remains the largest global interannual signal, with mean LSM and adjusted reanalysis time series correlating at 0.86.

  15. The Sensitivity of SeaWiFS Ocean Color Retrievals to Aerosol Amount and Type

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Sayer, Andrew M.; Ahmad, Ziauddin; Franz, Bryan A.

    2016-01-01

    As atmospheric reflectance dominates top-of-the-atmosphere radiance over ocean, atmospheric correction is a critical component of ocean color retrievals. This paper explores the operational Sea-viewing Wide Field-of-View Sensor (SeaWiFS) algorithm atmospheric correction with approximately 13 000 coincident surface-based aerosol measurements. Aerosol optical depth at 440 nm (AOD(sub 440)) is overestimated for AOD below approximately 0.1-0.15 and is increasingly underestimated at higher AOD; also, single-scattering albedo (SSA) appears overestimated when the actual value less than approximately 0.96.AOD(sub 440) and its spectral slope tend to be overestimated preferentially for coarse-mode particles. Sensitivity analysis shows that changes in these factors lead to systematic differences in derived ocean water-leaving reflectance (Rrs) at 440 nm. The standard SeaWiFS algorithm compensates for AOD anomalies in the presence of nonabsorbing, medium-size-dominated aerosols. However, at low AOD and with absorbing aerosols, in situ observations and previous case studies demonstrate that retrieved Rrs is sensitive to spectral AOD and possibly also SSA anomalies. Stratifying the dataset by aerosol-type proxies shows the dependence of the AOD anomaly and resulting Rrs patterns on aerosol type, though the correlation with the SSA anomaly is too subtle to be quantified with these data. Retrieved chlorophyll-a concentrations (Chl) are affected in a complex way by Rrs differences, and these effects occur preferentially at high and low Chl values. Absorbing aerosol effects are likely to be most important over biologically productive waters near coasts and along major aerosol transport pathways. These results suggest that future ocean color spacecraft missions aiming to cover the range of naturally occurring and anthropogenic aerosols, especially at wavelengths shorter than 440 nm, will require better aerosol amount and type constraints.

  16. Comparing the cloud vertical structure derived from several methods based on radiosonde profiles and ground-based remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Costa-Surós, M.; Calbó, J.; González, J. A.; Long, C. N.

    2014-08-01

    The cloud vertical distribution and especially the cloud base height, which is linked to cloud type, are important characteristics in order to describe the impact of clouds on climate. In this work, several methods for estimating the cloud vertical structure (CVS) based on atmospheric sounding profiles are compared, considering the number and position of cloud layers, with a ground-based system that is taken as a reference: the Active Remote Sensing of Clouds (ARSCL). All methods establish some conditions on the relative humidity, and differ in the use of other variables, the thresholds applied, or the vertical resolution of the profile. In this study, these methods are applied to 193 radiosonde profiles acquired at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site during all seasons of the year 2009 and endorsed by Geostationary Operational Environmental Satellite (GOES) images, to confirm that the cloudiness conditions are homogeneous enough across their trajectory. The perfect agreement (i.e., when the whole CVS is estimated correctly) for the methods ranges between 26 and 64%; the methods show additional approximate agreement (i.e., when at least one cloud layer is assessed correctly) from 15 to 41%. Further tests and improvements are applied to one of these methods. In addition, we attempt to make this method suitable for low-resolution vertical profiles, like those from the outputs of reanalysis methods or from the World Meteorological Organization's (WMO) Global Telecommunication System. The perfect agreement, even when using low-resolution profiles, can be improved by up to 67% (plus 25% of the approximate agreement) if the thresholds for a moist layer to become a cloud layer are modified to minimize false negatives with the current data set, thus improving overall agreement.

  17. ALTIMETER ERRORS,

    DTIC Science & Technology

    CIVIL AVIATION, *ALTIMETERS, FLIGHT INSTRUMENTS, RELIABILITY, ERRORS , PERFORMANCE(ENGINEERING), BAROMETERS, BAROMETRIC PRESSURE, ATMOSPHERIC TEMPERATURE, ALTITUDE, CORRECTIONS, AVIATION SAFETY, USSR.

  18. Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements

    NASA Astrophysics Data System (ADS)

    Hagen, D. E.; Whitefield, P. D.; Lobo, P.

    2015-12-01

    International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.

  19. Satellite propulsion spectral signature detection and analysis through Hall effect thruster plume and atmospheric modeling

    NASA Astrophysics Data System (ADS)

    Wheeler, Pamela; Cobb, Richard; Hartsfield, Carl; Prince, Benjamin

    2016-09-01

    Space Situational Awareness (SSA) is of utmost importance in today's congested and contested space environment. Satellites must perform orbital corrections for station keeping, devices like high efficiency electric propulsion systems such as a Hall effect thrusters (HETs) to accomplish this are on the rise. The health of this system is extremely important to ensure the satellite can maintain proper position and perform its intended mission. Electron temperature is a commonly used diagnostic to determine the efficiency of a hall thruster. Recent papers have coordinated near infrared (NIR) spectral measurements of emission lines in xenon and krypton to electron temperature measurements. Ground based observations of these spectral lines could allow the health of the thruster to be determined while the satellite is in operation. Another issue worth considering is the availability of SSA assets for ground-based observations. The current SSA architecture is limited and task saturated. If smaller telescopes, like those at universities, could successfully detect these signatures they could augment data collection for the SSA network. To facilitate this, precise atmospheric modeling must be used to pull out the signature. Within the atmosphere, the NIR has a higher transmission ratio and typical HET propellants are approximately 3x the intensity in the NIR versus the visible spectrum making it ideal for ground based observations. The proposed research will focus on developing a model to determine xenon and krypton signatures through the atmosphere and estimate the efficacy through ground-based observations. The model will take power modes, orbit geometries, and satellite altitudes into consideration and be correlated with lab and field observations.

  20. Primary analysis of the ocean color remote sensing data of the HY-1B/COCTS

    NASA Astrophysics Data System (ADS)

    He, Xianqiang; Bai, Yan; Pan, Delu; Zhu, Qiankun; Gong, Fang

    2009-01-01

    China had successfully launched her second ocean color satellite HY-1B on 11 Apr., 2007, which was the successor of the HY-1A satellite launched on 15 May, 2002. There were two sensors onboard HY-1B, named the Chinese Ocean Color and Temperature Scanner (COCTS) and the Coastal Zone Imager (CZI) respectively, and COCTS was the main sensor. COCTS had not only eight visible and near-infrared wave bands similar to the SeaWiFS, but also two more thermal infrared wave bands to measure the sea surface temperature. Therefore, COCTS had broad application potentiality, such as fishery resource protection and development, coastal monitoring and management and marine pollution monitoring. In this paper, the main characteristics of COCTS were described firstly. Then, using the crosscalibration method, the vicarious calibration of COCTS was carried out by the synchronous remote sensing data of SeaWiFS, and the results showed that COCTS had well linear responses for the visible light bands with the correlation coefficients more than 0.98, however, the performances of the near infrared wavelength bands were not good as visible light bands. Using the vicarious calibration result, the operational atmospheric correction (AC) algorithm of COCTS was developed based on the exact Rayleigh scattering look-up table (LUT), aerosol scattering LUT and atmosphere diffuse transmission LUT generated by the coupled ocean-atmospheric vector radiative transfer numerical model named PCOART. The AC algorithm had been validated by the simulated radiance data at the top-of-atmosphere, and the results showed the errors of the water-leaving reflectance retrieved by the AC algorithm were less than 0.0005, which met the requirement of the exactly atmospheric correction of ocean color remote sensing. Finally, the AC algorithm was applied to the HY-1B/COCTS remote sensing data, and the corresponding ocean color remote sensing products have been generated.

  1. Stable carbon isotope ratios in atmospheric methane and some of its sources

    NASA Technical Reports Server (NTRS)

    Tyler, Stanley C.

    1986-01-01

    Ratios of C-13/C-12 have been measured in atmospheric methane and in methane collected from sites and biota that represent potentially large sources of atmospheric methane. These include temperate marshes (about -48 percent to about -54 percent), landfills (about -51 percent to about -55 percent), and the first reported values for any species of termite (-72.8 + or - 3.1 percent for Reticulitermes tibialis and -57.3 + or - 1.6 percent for Zootermopsis angusticollis). Numbers in parentheses are delta C-13 values with respect to PDB (Peedee belemnite) carbonate. Most methane sources reported thus far are depleted in C-13 with respect to atmospheric methane (-47.0 + or - 0.3 percent). Individual sources of methane should have C-13/C-12 ratios characteristic of mechanisms of CH4 formation and consumption prior to release to the atmosphere. The mass-weighted average isotopic composition of all sources should equal the mean C-13 of atmospheric methane, corrected for a kinetic isotope effect in the OH attack of CH4. Assuming the kinetic isotope effect to be small (about -3.0 percent correction to -47.0), as in the literature, the new values given here for termite methane do not help to explain the apparent discrepancy between C-13/C-12 ratios of the known CH4 sources and that of atmospheric CH4.

  2. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  3. Clouds and ocean-atmosphere interactions. Final report, September 15, 1992--September 14, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randall, D.A.; Jensen, T.G.

    1995-10-01

    Predictions of global change based on climate models are influencing both national and international policies on energy and the environment. Existing climate models show some skill in simulating the present climate, but suffer from many widely acknowledged deficiencies. Among the most serious problems is the need to apply ``flux corrections`` to prevent the models from drifting away from the observed climate in control runs that do not include external perturbing influences such as increased carbon dioxide (CO{sub 2}) concentrations. The flux corrections required to prevent climate drift are typically comparable in magnitude to the observed fluxes themselves. Although there canmore » be many contributing reasons for the climate drift problem, clouds and their effects on the surface energy budget are among the prime suspects. The authors have conducted a research program designed to investigate global air-sea interaction as it relates to the global warming problem, with special emphasis on the role of clouds. Their research includes model development efforts; application of models to simulation of present and future climates, with comparison to observations wherever possible; and vigorous participation in ongoing efforts to intercompare the present generation of atmospheric general circulation models.« less

  4. Evaluation of Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) for Water Quality Monitoring: A Case Study for the Estimation of Salinity

    NASA Astrophysics Data System (ADS)

    Nazeer, Majid; Bilal, Muhammad

    2018-04-01

    Landsat-5 Thematic Mapper (TM) dataset have been used to estimate salinity in the coastal area of Hong Kong. Four adjacent Landsat TM images were used in this study, which was atmospherically corrected using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative transfer code. The atmospherically corrected images were further used to develop models for salinity using Ordinary Least Square (OLS) regression and Geographically Weighted Regression (GWR) based on in situ data of October 2009. Results show that the coefficient of determination ( R 2) of 0.42 between the OLS estimated and in situ measured salinity is much lower than that of the GWR model, which is two times higher ( R 2 = 0.86). It indicates that the GWR model has more ability than the OLS regression model to predict salinity and show its spatial heterogeneity better. It was observed that the salinity was high in Deep Bay (north-western part of Hong Kong) which might be due to the industrial waste disposal, whereas the salinity was estimated to be constant (32 practical salinity units) towards the open sea.

  5. Failure of Taylor's hypothesis in the atmospheric surface layer and its correction for eddy-covariance measurements

    DOE PAGES

    Cheng, Yu; Sayde, Chadi; Li, Qi; ...

    2017-04-18

    Taylors’ frozen turbulence hypothesis suggests that all turbulent eddies are advected by the mean streamwise velocity, without changes in their properties. This hypothesis has been widely invoked to compute Reynolds’ averaging using temporal turbulence data measured at a single point in space. However, in the atmospheric surface layer, the exact relationship between convection velocity and wavenumber k has not been fully revealed since previous observations were limited by either their spatial resolution or by the sampling length. Using Distributed Temperature Sensing (DTS), acquiring turbulent temperature fluctuations at high temporal and spatial frequencies, we computed convection velocities across wavenumbers using amore » phase spectrum method. We found that convection velocity decreases as k –1/3 at the higher wavenumbers of the inertial subrange instead of being independent of wavenumber as suggested by Taylor's hypothesis. We further corroborated this result using large eddy simulations. Applying Taylor's hypothesis thus systematically underestimates turbulent spectrum in the inertial subrange. As a result, a correction is proposed for point-based eddy-covariance measurements, which can improve surface energy budget closure and estimates of CO 2 fluxes.« less

  6. Multiconjugate adaptive optics for the Swedish ELT

    NASA Astrophysics Data System (ADS)

    Gontcharov, Alexander; Owner-Petersen, Mette

    2000-08-01

    The Swedish ELT is intended to be a 50 m telescope with multiconjugate adaptive optics integrated directly as a crucial part of the optical design. In this paper we discuss the effects of the distributed atmospheric turbulence with regard to the choice of optimal geometry of the telescope. Originally the basic system was foreseen to be a Gregorian with an adaptive secondary correcting adequately for nearby turbulences in both the infrared and visual regions, but if the performance degradation expected from changing the basic system to a Cassegrain keeping the adaptive secondary could be accepted, the constructional costs would be significantly reduced. In order to clarify this question, a simple analytical model describing the performance employing a single deformable mirror for adaptive correction has been developed and used for analysis. The quantitative results shown here relates to a wavelength of 2.2 micrometers and are based on the seven layer atmospheric model for the Cerro Pachon site, which is believed to be a good representative of most good astronomical sites. As a consequence of the analysis no performance degradation is expected from changing the core telescope to a Cassegrain (Ritchey- Chretien). The paper presents the layout and optical performance of the new design.

  7. 75 FR 60720 - National Estuarine Research Reserve System

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Estuarine Research Reserve System Correction In notice document 2010-24341 appearing on page 59696 in the issue of Tuesday, September 28, 2010 make the following corrections: 1. In the second column, in lines five and eight of the...

  8. Political Correctness and American Academe.

    ERIC Educational Resources Information Center

    Drucker, Peter F.

    1994-01-01

    Argues that today's political correctness atmosphere is a throwback to attempts made by the Nazis and Stalinists to force society into conformity. Academia, it is claimed, is being forced to conform to gain control of the institution of higher education. It is predicted that this effort will fail. (GR)

  9. Estimating surface reflectance from Himawari-8/AHI reflectance channels Using 6SV

    NASA Astrophysics Data System (ADS)

    Lee, Kyeong-sang; Choi, Sungwon; Seo, Minji; Seong, Noh-hun; Han, Kyung-soo

    2017-04-01

    TOA (Top Of Atmospheric) reflectance observed by satellite is modified by the influence of atmosphere such as absorbing and scattering by molecular and gasses. Removing TOA reflectance attenuation which is caused by the atmospheric is essential. surface reflectance with compensated atmospheric effects used as important input data for land product such as Normalized Difference Vegetation Index (NDVI), Land Surface Albedo (LSA) and etc. In this study, we Second Simulation of a Satellite Signal in the Solar Spectrum Vector (6SV) Radiative Transfer Model (RTM) for atmospheric correction and estimating surface reflectance from Himawari-8/Advanced Himawari Imager (AHI) reflectance channels. 6SV has the advantage that it has high accuracy by performing the atmospheric correction by dividing the width of the satellite channel by 2.5 nm, but it is slow to use in the operation. So, we use LUT approach to reduce the computation time and avoid the intensive calculation required for retrieving surface reflectance. Estimated surface reflectance data were compared with PROBA-V S1 data to evaluate the accuracy. As a result Root Mean Square Error (RMSE) and bias were about 0.05 and -0.02. It is considered that this error is due to the difference of angle component and Spectral Response Function (SRF) of each channel.

  10. Assessment of Terra MODIS On-Orbit Polarization Sensitivity Using Pseudoinvariant Desert Sites

    NASA Technical Reports Server (NTRS)

    Wu, Aisheng; Geng, Xu; Wald, Andrew; Angal, Amit; Xiong, Xiaoxiong

    2017-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is currently flying on NASA's Earth Observing System Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS reflective solar bands in the visible wavelength range are known to be sensitive to polarized light based on prelaunch polarization sensitivity tests. After about five years of on-orbit operations, it was discovered that the polarization sensitivity at short wavelengths had shown a noticeable increase. In this paper, we examine the impact of polarization on measured top-of-atmosphere (TOA) reflectance based on MODIS Collection-6 L1B over pseudo invariant desert sites. The standard polarization correction equation is used in combination with simulated at-sensor radiances using the second simulation of a satellite signal in the Solar Spectrum, Vector Radiative Transfer Code (6SV). We ignore the polarization contribution from the surface and a ratio approach is used for both 6SV-derived in put parameters and observed TOA reflectance. Results indicate that significant gain corrections up to 25% are required near the end of scan for the 412 and 443 nm bands. The polarization correction reduces the seasonal fluctuations in reflectance trends and mirror side ratios from 30% and 12% to 10% and 5%, respectively, for the two bands. Comparison of the effectiveness of the polarization correction with the results from the NASA Ocean Biology Processing Group shows a good agreement in the corrected reflectance trending results and their seasonal fluctuations.

  11. A theoretical study on the bottlenecks of GPS phase ambiguity resolution in a CORS RTK Network

    NASA Astrophysics Data System (ADS)

    Odijk, D.; Teunissen, P.

    2011-01-01

    Crucial to the performance of GPS Network RTK positioning is that a user receives and applies correction information from a CORS Network. These corrections are necessary for the user to account for the atmospheric (ionospheric and tropospheric) delays and possibly orbit errors between his approximate location and the locations of the CORS Network stations. In order to provide the most precise corrections to users, the CORS Network processing should be based on integer resolution of the carrier phase ambiguities between the network's CORS stations. One of the main challenges is to reduce the convergence time, thus being able to quickly resolve the integer carrier phase ambiguities between the network's reference stations. Ideally, the network ambiguity resolution should be conducted within one single observation epoch, thus truly in real time. Unfortunately, single-epoch CORS Network RTK ambiguity resolution is currently not feasible and in the present contribution we study the bottlenecks preventing this. For current dual-frequency GPS the primary cause of these CORS Network integer ambiguity initialization times is the lack of a sufficiently large number of visible satellites. Although an increase in satellite number shortens the ambiguity convergence times, instantaneous CORS Network RTK ambiguity resolution is not feasible even with 14 satellites. It is further shown that increasing the number of stations within the CORS Network itself does not help ambiguity resolution much, since every new station introduces new ambiguities. The problem with CORS Network RTK ambiguity resolution is the presence of the atmospheric (mainly ionospheric) delays themselves and the fact that there are no external corrections that are sufficiently precise. We also show that external satellite clock corrections hardly contribute to CORS Network RTK ambiguity resolution, despite their quality, since the network satellite clock parameters and the ambiguities are almost completely uncorrelated. One positive is that the foreseen modernized GPS will have a very beneficial effect on CORS ambiguity resolution, because of an additional frequency with improved code precision.

  12. Land Surface Precipitation and Hydrology in MERRA-2

    NASA Technical Reports Server (NTRS)

    Reichle, R.; Koster, R.; Draper, C.; Liu, Q.; Girotto, M.; Mahanama, S.; De Lannoy, G.; Partyka, G.

    2017-01-01

    The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2), provides global, 1-hourly estimates of land surface conditions for 1980-present at 50-km resolution. Outside of the high latitudes, MERRA-2 uses observations-based precipitation data products to correct the precipitation falling on the land surface. This paper describes the precipitation correction method and evaluates the MERRA-2 land surface precipitation and hydrology. Compared to monthly GPCPv2.2 observations, the corrected MERRA-2 precipitation (M2CORR) is better than the precipitation generated by the atmospheric models within the cyclingMERRA-2 system and the earlier MERRA reanalysis. Compared to 3-hourlyTRMM observations, the M2CORR diurnal cycle has better amplitude but less realistic phasing than MERRA-2 model-generated precipitation. Because correcting the precipitation within the coupled atmosphere-land modeling system allows the MERRA-2 near-surface air temperature and humidity to respond to the improved precipitation forcing, MERRA-2 provides more self-consistent surface meteorological data than were available from the earlier, offline MERRA-Land reanalysis. Overall, MERRA-2 land hydrology estimates are better than those of MERRA-Land and MERRA. A comparison against GRACE satellite observations of terrestrial water storage demonstrates clear improvements in MERRA-2 over MERRA in South America and Africa but also reflects known errors in the observations used to correct the MERRA-2 precipitation. The MERRA-2 and MERRA-Land surface and root zone soil moisture skill vs. in situ measurements is slightly higher than that of ERA-Interim Land and higher than that of MERRA (significantly for surface soil moisture). Snow amounts from MERRA-2 have lower bias and correlate better against reference data than do those of MERRA-Land and MERRA, with MERRA-2 skill roughly matching that of ERA-Interim Land. Seasonal anomaly R values against naturalized stream flow measurements in the United States are, on balance, highest for MERRA-2 and ERA-Interim Land, somewhat lower for MERRA-Land, and lower still for MERRA.

  13. Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion

    PubMed Central

    2009-01-01

    Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051

  14. Method of wavefront tilt correction for optical heterodyne detection systems under strong turbulence

    NASA Astrophysics Data System (ADS)

    Xiang, Jing-song; Tian, Xin; Pan, Le-chun

    2014-07-01

    Atmospheric turbulence decreases the heterodyne mixing efficiency of the optical heterodyne detection systems. Wavefront tilt correction is often used to improve the optical heterodyne mixing efficiency. But the performance of traditional centroid tracking tilt correction is poor under strong turbulence conditions. In this paper, a tilt correction method which tracking the peak value of laser spot on focal plane is proposed. Simulation results show that, under strong turbulence conditions, the performance of peak value tracking tilt correction is distinctly better than that of traditional centroid tracking tilt correction method, and the phenomenon of large antenna's performance inferior to small antenna's performance which may be occurred in centroid tracking tilt correction method can also be avoid in peak value tracking tilt correction method.

  15. The iodine-plutonium-xenon age of the Moon-Earth system revisited.

    PubMed

    Avice, G; Marty, B

    2014-09-13

    Iodine-plutonium-xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides ((129)I, T1/2=15.6 Ma and (244)Pu, T1/2=80 Ma) have produced radiogenic (129)Xe and fissiogenic (131-136)Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth-atmosphere system is [Formula: see text] Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. The iodine–plutonium–xenon age of the Moon–Earth system revisited

    PubMed Central

    Avice, G.; Marty, B

    2014-01-01

    Iodine–plutonium–xenon isotope systematics have been used to re-evaluate time constraints on the early evolution of the Earth–atmosphere system and, by inference, on the Moon-forming event. Two extinct radionuclides (129I, T1/2=15.6 Ma and 244Pu, T1/2=80 Ma) have produced radiogenic 129Xe and fissiogenic 131−136Xe, respectively, within the Earth, the related isotope fingerprints of which are seen in the compositions of mantle and atmospheric Xe. Recent studies of Archaean rocks suggest that xenon atoms have been lost from the Earth's atmosphere and isotopically fractionated during long periods of geological time, until at least the end of the Archaean eon. Here, we build a model that takes into account these results. Correction for Xe loss permits the computation of new closure ages for the Earth's atmosphere that are in agreement with those computed for mantle Xe. The corrected Xe formation interval for the Earth–atmosphere system is  Ma after the beginning of Solar System formation. This time interval may represent a lower limit for the age of the Moon-forming impact. PMID:25114317

  17. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces.

    PubMed

    Kotchenova, Svetlana Y; Vermote, Eric F

    2007-07-10

    This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.

  18. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces

    NASA Astrophysics Data System (ADS)

    Kotchenova, Svetlana Y.; Vermote, Eric F.

    2007-07-01

    This is the second part of the validation effort of the recently developed vector version of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum) radiative transfer code (6SV1), primarily used for the calculation of look-up tables in the Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric correction algorithm. The 6SV1 code was tested against a Monte Carlo code and Coulson's tabulated values for molecular and aerosol atmospheres bounded by different Lambertian and anisotropic surfaces. The code was also tested in scalar mode against the scalar code SHARM to resolve the previous 6S accuracy issues in the case of an anisotropic surface. All test cases were characterized by good agreement between the 6SV1 and the other codes: The overall relative error did not exceed 0.8%. The study also showed that ignoring the effects of radiation polarization in the atmosphere led to large errors in the simulated top-of-atmosphere reflectances: The maximum observed error was approximately 7.2% for both Lambertian and anisotropic surfaces.

  19. 77 FR 58097 - Aquatic Nuisance Species Task Force Strategic Plan 2013-2017

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration RIN 0648-XC120 Aquatic Nuisance Species Task Force Strategic Plan 2013--2017 Correction In notice document 2012-19161, appearing on pages 46730-46732 in the issue of Monday, August 6, 2012, make the following correction: On page...

  20. Theoretical studies on atmospheric chemistry of HFE-245mc and perfluoro-ethyl formate: Reaction with OH radicals, atmospheric fate of alkoxy radical and global warming potential

    NASA Astrophysics Data System (ADS)

    Lily, Makroni; Baidya, Bidisha; Chandra, Asit K.

    2017-02-01

    Theoretical studies have been performed on the kinetics, mechanism and thermochemistry of the hydrogen abstraction reactions of CF3CF2OCH3 (HFE-245mc) and CF3CF2OCHO with OH radical using DFT based M06-2X method. IRC calculation shows that both hydrogen abstraction reactions proceed via weakly bound hydrogen-bonded complex preceding to the formation of transition state. The rate coefficients calculated by canonical transition state theory along with Eckart's tunnelling correction at 298 K: k1(CF3CF2OCH3 + OH) = 1.09 × 10-14 and k2(CF3CF2OCHO + OH) = 1.03 × 10-14 cm3 molecule-1 s-1 are in very good agreement with the experimental values. The atmospheric implications of CF3CF2OCH3 and CF3CF2OCHO are also discussed.

Top