Science.gov

Sample records for atmospheric deposition resuspension

  1. In Vitro Exposures in Diesel Exhaust Atmospheres: Resuspension of PM from Filters Verses Direct Deposition of PM from Air

    PubMed Central

    Lichtveld, Kim M.; Ebersviller, Seth M.; Sexton, Kenneth G.; Vizuete, William; Jaspers, Ilona; Jeffries, Harvey E.

    2012-01-01

    One of the most widely used in vitro particulate matter (PM) exposures methods is the collection of PM on filters, followed by resuspension in a liquid medium, with subsequent addition onto a cell culture. To avoid disruption of equilibria between gases and PM, we have developed a direct in vitro sampling and exposure method (DSEM) capable of PM-only exposures. We hypothesize that the separation of phases and post-treatment of filter-collected PM significantly modifies the toxicity of the PM compared to direct deposition, resulting in a distorted view of the potential PM health effects. Controlled test environments were created in a chamber that combined diesel exhaust with an urban-like mixture. The complex mixture was analyzed using both the DSEM and concurrently-collected filter samples. The DSEM showed that PM from test atmospheres produced significant inflammatory response, while the resuspension exposures at the same exposure concentration did not. Increasing the concentration of resuspended PM sixteen times was required to yield measurable IL-8 expression. Chemical analysis of the resuspended PM indicated a total absence of carbonyl compounds compared to the test atmosphere during the direct-exposures. Therefore, collection and resuspension of PM into liquid modifies its toxicity and likely leads to underestimating toxicity. PMID:22834915

  2. Atmospheric deposition, resuspension, and root uptake of Pu in corn and other grain-producing agroecosystems near a nuclear fuel facility.

    PubMed

    Pinder, J E; McLeod, K W; Adriano, D C; Corey, J C; Boni, A L

    1990-12-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the U.S. Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site were used to estimate parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension, and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining greater than resuspension of soil to grain surfaces greater than root uptake. Approximately 3.9 X 10(-5) of a year's atmospheric deposition is transferred to grain. Approximately 6.2 X 10(-9) of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 X 10(-10) of the soil Pu inventory is absorbed and translocated to grains.

  3. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L.

    1989-12-31

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy`s H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 {times} 10{sup {minus}5} of a year`s atmospheric deposition is transferred to grain. Approximately 6.2 {times} 10{sup {minus}9} of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 {times} 10{sup {minus}10} of the soil inventory is absorbed by roots and translocated to grains.

  4. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    SciTech Connect

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C. ); Corey, J.C.; Boni, A.L. )

    1989-01-01

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 {times} 10{sup {minus}5} of a year's atmospheric deposition is transferred to grain. Approximately 6.2 {times} 10{sup {minus}9} of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 {times} 10{sup {minus}10} of the soil inventory is absorbed by roots and translocated to grains.

  5. A Lightweight Particle Deposition System for Particle Resuspension Studies

    NASA Astrophysics Data System (ADS)

    Degraw, Jason; Cimbala, John

    2007-11-01

    Experimental studies of particle resuspension often require that particles be deposited in a localized area in a repeatable manner. A system has been designed for this purpose that is lightweight in both mass and complexity -- attributes which are both highly desirable. The low mass of the system allows for accurate determination of the mass of particulate matter placed inside the system (via tare weighing), and the low complexity of the system makes it easy to use. The device is a piston-cylinder apparatus made of plastic, and is therefore inexpensive to build, easy to clean, and readily disposable. Rapid upward movement of the piston draws air into the cylinder through small ports placed around the perimeter of the cylinder. The injected air aerosolizes particulate matter placed in the ports, and then the particles are allowed to settle onto the substrate. The device enables the localized deposition of particles without much lost material, allowing for more frugal and careful use of allergen- containing particulate matter (some of which require a great deal of time and effort to produce). Our previous system would deposit about 15-20% of the particles in the desired location (typically a small region of a flooring sample), while the new system is able to deposit more than 25-30% of the particles in the desired location with considerably less waste.

  6. Atmospheric radioactivity of Cs-134/137 observed at Namie, Fukushima: seasonal variation and contribution of biological re-suspension.

    NASA Astrophysics Data System (ADS)

    Kita, K.

    2015-12-01

    Radionuclides emitted by the accident in Fukushima dai-ichi nuclear power plant (FNDPP) have been deposited on the soil, ocean and vegetation. Even after about 4 years since the FNDPP accident significant activities of the radionuclides have been observed over severely contaminated areas. Re-suspension of radioactive cesium from the soil and vegetation to the atmosphere has been one of significant paths for its diffusion after the accident. Although the quantitative understanding of the re-suspensions is important for the prediction of future transition of radionuclides, its mechanism, identification of aerosol species which bring radioactive cesium, and the resuspension flux have not been understood in Fukushima.  We are continuously measuring atmospheric concentration of Cs-134/137 radioactivity at Tsushima, Namie-town, located about 30km northwest from FNDPP with high-volume air samplers. It showed clear seasonal variation: it increase from April to June, and decreased from September to December. In winter and spring, it was weakly but positively correlated with the surface wind speed. On the contrary, it did not depend on the wind speed in summer and autumn. It also has different diurnal variation: higher activities were observed in daytime in winter/spring, while the activities were obviously higher in nighttime in summer/autumn. The size distribution of aerosols contributing to the Cs-134/137 re-suspension has been measured using cascade impactors attached with high-volume air samplers, and it also shows different features in winter/spring and summer/autumn. These results indicate that the mechanism of the Cs-134/137 re-suspension is different with the season in Fukushima. Scanning electron microscope observation showed that most of suspended coarse particles were soil particles in spring and biogenic particles in autumn. Details on the Cs-134/137 re-suspension mechanisms revealed by our observations and contribution of biogenic emission will be presented

  7. Benthic biofilm structure controls the deposition-resuspension dynamics of fine clay particles

    NASA Astrophysics Data System (ADS)

    Hunter, W. R.; Roche, K. R.; Drummond, J. D.; Boano, F.; Packman, A. I.; Battin, T. J.

    2015-12-01

    In fluvial ecosystems the alternation of deposition and resuspension of particles represents an important pathway for the downstream translocation of microbes and organic matter. Such particles can originate from algae and microbes, the spontaneous auto-aggregation of organic macromolecules (e.g., "river sown"), terrestrial detritus (traditionally classified as "particulate organic matter"), and erosive mineral and organo-mineral particles. The transport and retention of particles in headwater streams is associated with biofilms, which are surface-attached microbial communities. Whilst biofilm-particle interactions have been studied in bulk, a mechanistic understanding of these processes is lacking. Parallel macroscale/microscale observations are required to unravel the complex feedbacks between biofilm structure, coverage and the dynamics of deposition and resuspension. We used recirculating flume mesocosms to test how changes in biofilm structure affected the deposition and resuspension of clay-sized (< 10 μm) particles. Biofilms were grown in replicate 3-m-long recirculating flumes over variable lengths of time (0, 14, 21, 28, and 35) days. Fixed doses of fluorescent clay-sized particles were introduced to each flume and their deposition was traced over 30 minutes. A flood event was then simulated via a step increase in flowrate to quantify particle resuspension. 3D Optical Coherence Tomography was used to determine roughness, areal coverage and height of biofilms in each flume. From these measurements we characterised particle deposition and resuspension rates, using continuous time random walk modelling techniques, which we then tested as responses to changes in biofilm coverage and structure under both base-flow and flood-flow scenarios. Our results suggest that biofilm structural complexity is a primary control upon the retention and downstream transport of fine particles in stream mesocosms.

  8. Resuspension of deposited radioactive material from the Fukushima Daiichi NPP site

    NASA Astrophysics Data System (ADS)

    Steinhauser, Georg; Niisoe, Tamon; Harada, Kouji H.; Shozugawa, Katsumi; Schneider, Stephanie; Synal, Hans-Arno; Walther, Clemens; Christl, Marcus; Nanba, Kenji; Ishikawa, Hirohiko; Koizumi, Akio

    2016-04-01

    Releases of radionuclides from the Fukushima nuclear accident are typically associated with the atmospheric discharges in the early phase of the accident in spring 2011. Analysis of weekly air filters, however, has revealed sporadic releases of radionuclides long after the Fukushima Daiichi reactors were stabilized. One major discharge was observed in August 2013 in monitoring stations in the Minamisoma area north of the Fukushima Daiichi nuclear power plant (FDNPP). During this event, an air monitoring station in this previously scarcely contaminated area suddenly reported 137Cs activity levels that were 30-fold above the background. Together with atmospheric dispersion and deposition simulation, radionuclide analysis in soil indicated that debris removal operations conducted on the FDNPP site on August 19, 2013 are likely to be responsible for this late release of radionuclides. One soil sample in the center of the simulated plume exhibited a high 90Sr contamination (78 ± 8 Bq kg-1) as well as a high 90Sr/137Cs ratio (0.04); both phenomena have usually been observed only in very close vicinity around the FDNPP. We estimate that through the resuspension of highly contaminated particles in the course of these earthmoving operations, gross 137Cs activity of ca. 2.8 × 1011 Bq has been released.

  9. 3D modelling of transport, deposition and resuspension of highway deposited sediments in wet detention ponds.

    PubMed

    Bentzen, T R

    2010-01-01

    The paper presents results from an experimental and numerical study of flows and transport of primarily particle bound pollutants in highway wet detention ponds. The study presented here is part of a general investigation on road runoff and pollution in respect to wet detention ponds. The objective is to evaluate the quality of long term simulation based on historical rains series of the pollutant discharges from roads and highways. A three-dimensional hydrodynamic and mud transport model is used for the investigation. The transport model has been calibrated and validated on e.g. experiments in a 30 m long concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account.

  10. Hydrodynamics of Nutrients and E. coli Deposit and Resuspension in Surface Water

    NASA Astrophysics Data System (ADS)

    Liu, L.; Wang, C.; Wang, J.; Jiang, W.; Xia, Z.

    2015-12-01

    A significant part of nutrients (such as N, P) and Pathogens (E. coli as indicator) attached to sediment or biofilm deposit to bed when they transport in streams to form the secondary contaminant source with much longer lifetime. The deposited contaminants may resuspend and the biofilm where pathogens live may detach from the bed to water body. The deposition and resuspension substantially increase the complexity of the transport process, and make it more difficult and uncertain to accurately simulate and predict the fate and transport of contaminants in surface waters. In this research, a three-dimensional hydrodynamic-water quality model coupled with flume experiments are planned to be utilized to quantify the influence of flow conditions on nitrogen, phosphorous and E. coli deposition and resuspension, and to investigate the impact of shear stress caused by flow on the biostability of biofilm. This research will facilitate to better understand the fate and transport of pathogens in surface waters and provide a theoretical base for pathogen prediction and forecasting.

  11. Effect of recurrent sediment resuspension-deposition events on bioavailability of polycyclic aromatic hydrocarbons in aquatic environments

    NASA Astrophysics Data System (ADS)

    Dong, Jianwei; Xia, Xinghui; Wang, Minghu; Xie, Hui; Wen, Jiaojiao; Bao, Yimeng

    2016-09-01

    To investigate the effect of recurrent sediment resuspension-deposition events (RSRDEs) on bioavailability of polycyclic aromatic hydrocarbons (PAHs) in aquatic environments, a modified device was used to simulate three resuspension-deposition events with the sediment collected from the Yellow River. The results showed that the dissolved organic carbon (DOC)-water distribution coefficients of PAHs decreased with time during the first resuspension-deposition period. It indicates that some PAHs associated with organic carbon (OC) in suspended sediment (SPS) desorbed with the release of OC and became DOC-associated PAHs in the overlying water, then the PAHs desorbed from the DOC and became freely dissolved. After first 2-h suspension, only 1.90% of phenanthrene, 2.98% of pyrene, and 0.33% of chrysene in the overlying water came from pore-water; at least 61.6%, 89.6%, and 95.3% came from DOC-associated PAHs in SPS and the rests were released from the insoluble OC in SPS. The maximum desorption ratios in the original sediment were 20%, 12%, and 14% for phenanthrene, pyrene, and chrysene, respectively during the first resuspension-deposition event. The SPS concentration followed the sequence of the third > second > first resuspension event. This was because RSRDEs changed the SPS particle size and enhanced floc formation. There was no significant difference in the total dissolved PAH concentrations among the three resuspension events, while their freely dissolved concentrations followed the sequence of the third > second > first resuspension event. During deposition periods, more than half of the total/freely dissolved PAHs released during suspension still existed in the overlying water after 70-h deposition. This study suggests that the RSRDEs will increase the bioavailability of PAHs in aquatic environments, especially near the sediment-water interface, and the potential effects of PAHs during RSRDEs on fish/human in rivers and lakes should be considered in future

  12. Derivation of Effective Resuspension Factors in Scenarios for Inhalation Exposure Involving Resuspension of Previously Deposited Fallout by Nuclear Detonations at Nevada Test Site

    DTIC Science & Technology

    2009-11-30

    ground zero where the thermal pulse that was produced in a detonation was an important cause of resuspension and 10−4 m−1 in the region farther from...ground zero where resuspension was caused only by the blast wave. These effective resuspension factors were determined mainly by the assumed...ground zero where thermal pulse was important cause of resuspension of surface soil and blast-wave region extending beyond region impacted by

  13. Beryllium-7 as a tracer of short-term sediment deposition and resuspension in the Fox River Wisconsin

    USGS Publications Warehouse

    Fitzgerald, S.A.; Klump, J.V.; Swarzenski, P.W.; Mackenzie, R.A.; Richards, K.D.

    2001-01-01

    Short-term (???monthly) sediment deposition and resuspension rates of surficial bed sediments in two PCB-laden impoundments on the Fox River, WI, were determined in the summer and fall of 1998 using 7Be, a naturally occurring radioisotope produced in the atmosphere. Decay-corrected activities and inventories of 7Be were measured in bed sediment and in suspended particles. Beryilium-7 activities generally decreased with depth in the top 5-10 cm of sediments and ranged from undetectable to ???0.9 pCi cm-3. Inventories of 7Be, calculated from the sum of activities from all depths, ranged from 0.87 to 3.74 pCi cm-2, and the values covaried between sites likely reflecting a common atmospheric input signal. Activities of 7Be did not correlate directly with rainfall. Partitioning the 7Be flux into "new" and "residual" components indicated that net deposition was occurring most of the time during the summer. Net erosion, however, was observed at the upstream site from the final collection in the fall. This erosion event was estimated to have removed 0.10 g (cm of sediment)-2, corresponding to ???0.5 cm of sediment depth, and ???6-10 kg of polychlorinated biphenyls (PCBs) over the whole deposit. Short-term accumulation rates were up to ???130 times higher than the long-term rates calculated from 137Cs profiles, suggesting an extremely dynamic sediment transport environment, even within an impounded river system.Short-term (approximately monthly) sediment deposition and resuspension rates of surficial bed sediments in two PCB-laden impoundments on the Fox River, WI, were determined in the summer and fall of 1998 using 7Be, a naturally occurring radioisotope produced in the atmosphere. Decay-corrected activities and inventories of 7Be were measured in bed sediment and in suspended particles. Beryllium-7 activities generally decreased with depth in the top 5-10 cm of sediments and ranged from undetectable to approximately 0.9 pCi cm-3. Inventories of 7Be, calculated from the

  14. Model testing using Chernobyl data: III. Atmospheric resuspension of radionuclides in Ukrainian regions impacted by Chernobyl fallout

    SciTech Connect

    Garger, E.K.; Hoffman, F.O.; Miller, C.W.

    1996-01-01

    The {open_quotes}Resuspension{close_quotes} scenario is designed to test models for atmospheric resuspension of radionuclides from contaminated soils. Resuspension can be a secondary source of contamination after a release has stopped, as well as a source of contamination for people and areas not exposed to the original release. The test scenario describes three exposure situations: (1) locations within the highly contaminated 30-km zone at Chernobyl, where exposures to resuspended material are probably dominated by local processes; (2) an urban area (Kiev) outside the 30-km zone, where local processes include extensive vehicular traffic; and (3) a location 40 to 60 km west of the Chernobyl reactor, where upwind sources of contamination are important. Input data include characteristics of the {sup 137}Cs ground contamination around specific sites, climatological data for the sites, characteristics of the terrain and topography, and locations of the sampling sites. Predictions are requested for average air concentrations of {sup 137}Cs at specified locations due to resuspension of Chernobyl fallout and for specified resuspension factors and rates. Test data (field measurements) are available for all endpoints. 9 refs., 4 figs., 11 tabs.

  15. A "TEST OF CONCEPT" COMPARISON OF AERODYNAMIC AND MECHANICAL RESUSPENSION MECHANISMS FOR PARTICLES DEPOSITED ON FIELD RYE GRASS (SECALE CERCELE). PART I. RELATIVE PARTICLE FLUX RATES

    EPA Science Inventory

    Resuspension of uniform latex micro spheres deposited on a single seed pod of field rye grass stalk and head was investigated experimentally in a wind tunnel. The experiment was designed to distinguish aerodynamic (viscous and turbulent) mechanisms from mechanical resuspension re...

  16. Measurement of resuspended aerosol in the Chernobyl area. Part III. Size distribution and dry deposition velocity of radioactive particles during anthropogenic enhanced resuspension.

    PubMed

    Garger, E K; Paretzke, H G; Tschiersch, J

    1998-10-01

    During anthropogenic activities, such as agricultural soil management and traffic on unpaved roads, size distribution measurements were performed of atmospheric particulate radionuclides at a site in the Chernobyl 30-km exclusion zone. Analysis of cascade impactor measurements showed an increase of the total atmospheric radioactivity. In the cases of harrowing by a tractor and traffic on unpaved roads, a common shape of the size distribution was found with two maxima, the first in the 2-4 microm range, the second in the 12-20 microm range. The size distributions were compared to measurements during wind-driven resuspension. Particle number concentration measurements with an Aerodynamic Particle Sizer showed a dynamic dependence of the particle concentration in different size ranges on anthropogenic action. The increase of the mean concentration was for the large particles more than one order of magnitude higher than for fine particles during anthropogenic enhanced resuspension. From the measurement of the mass concentration, the radioactive loading could be estimated. An enrichment of radionuclides on resuspended particles (compared to soil particles) was found, with the highest enrichment for large particles. Micrometeorological considerations showed that large particles may frequently be subject to medium range transport. The dry deposition velocity was measured; the mean value of 0.026 m s(-1) +/- 0.016 m s(-1) is typical for 6-9 microm diameter particles.

  17. A "TEST OF CONCEPT" COMPARISON OF AERODYNAMIC AND MECHANICAL RESUSPENSION MECHANISMS FOR PARTICLES DEPOSITED ON FIELD RYE GRASS (SECALS CERCELE). PART 2. THRESHOLD MECHANICAL ENERGIES FOR RESUSPENSION PARTICLE FLUXES

    EPA Science Inventory

    Kinetic energy from the oscillatory impacts of the grass stalk against a stationary object was measured with a kinetic energy measuring device. These energy inputs were measured as part of a resuspension experiment of uniform latex microspheres deposited on a single rye grass see...

  18. Glacial atmospheric phosphorus deposition

    NASA Astrophysics Data System (ADS)

    Kjær, Helle Astrid; Dallmayr, Remi; Gabrieli, Jacopo; Goto-Azuma, Kumiko; Hirabayashi, Motohiro; Svensson, Anders; Vallelonga, Paul

    2016-04-01

    Phosphorus in the atmosphere is poorly studied and thus not much is known about atmospheric phosphorus and phosphate transport and deposition changes over time, though it is well known that phosphorus can be a source of long-range nutrient transport, e.g. Saharan dust transported to the tropical forests of Brazil. In glacial times it has been speculated that transport of phosphorus from exposed shelves would increase the ocean productivity by wash out. However whether the exposed shelf would also increase the atmospheric load to more remote places has not been investigated. Polar ice cores offer a unique opportunity to study the atmospheric transport of aerosols on various timescales, from glacial-interglacial periods to recent anthropogenic influences. We have for the first time determined the atmospheric transport of phosphorus to the Arctic by means of ice core analysis. Both total and dissolved reactive phosphorus were measured to investigate current and past atmospheric transport of phosphorus to the Arctic. Results show that glacial cold stadials had increased atmospheric total phosphorus mass loads of 70 times higher than in the past century, while DRP was only increased by a factor of 14. In the recent period we find evidence of a phosphorus increase over the past 50 yrs in ice cores close to human occupation likely correlated to forest fires. References: Kjær, Helle Astrid, et al. "Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores." Environmental science & technology 47.21 (2013): 12325-12332. Kjær, Helle Astrid, et al. "Greenland ice cores constrain glacial atmospheric fluxes of phosphorus." Journal of Geophysical Research: Atmospheres120.20 (2015).

  19. ATMOSPHERIC MERCURY TRANSPORT AND DEPOSITION

    EPA Science Inventory

    The current state of our scientific understanding the mercury cycle tells us that most of the mercury getting into fish comes from atmospheric deposition, but methylation of that mercury in aquatic systems is required for the concentrations in fish to reach harmful levels. We st...

  20. Analysis of the 50-year records of the atmospheric deposition of long-lived radionuclides in Japan.

    PubMed

    Hirose, K; Igarashi, Y; Aoyama, M

    2008-11-01

    Long-lived anthropogenic radionuclides ((137)Cs, (90)Sr, and Pu isotopes) have been determined in monthly atmospheric deposition samples collected in Japan since 1956. The maximum annual deposition occurred in 1963 after the large-scale atmospheric nuclear weapons testing of 1961-1962. In the 1980s, the fallout from the Chinese nuclear weapons tests was observed and the released radionuclides from the Chernobyl accident affected radioactive deposition in Japan until the early 1990s. Recently, the deposition rates have been boosted by the resuspension of radionuclides in deposited particles, the (239,240)Pu content of which may originate from dusts from the East Asian continent deserts and arid areas.

  1. A coupled model of the airborne and surface concentration of radionuclides considering the resuspension-deposition process

    NASA Astrophysics Data System (ADS)

    Ichige, Hiroyuki; Hatano, Yuko; Onda, Yuichi

    2014-05-01

    We propose a new model of estimating the long-term behavior of both the airborne and the surface concentrations of radionuclides in the vicinity of 30 km of Fukushima plant. Our model consists of the following simultaneous equations: δC- = viδC-+ ΛupS - ΛdownC - ΛdecC (1) δt δxi δS- = - Λ S + Λ C - Λ S, (2) δt up down env where C is the airborne concentration of a specific nuclide, S the surface concentration, the suffix i is 1 or 2 (2 dimensional), v the effective wind velocity which migrates the radionuclides in the air, Λup the rate constant of resuspension process, Λdown of deposition process, Λdec the decay constant, and Λenv is the rate constant of the surface concentration decrease due to environmental factors such as runoff, washoff, infiltrations, and the vegetation effects. These equations are based on our former study (Hatano and Hatano, 1997; Hatano et al., 1998) which successfully reproduce the long-term decrease of airborne concentration of the Chernobyl data such as Cs-137, Cs-134, Ce-144, and Ru-106 over nearly a decade. The first equation of the present study is essentially the same as our previous studies, besides that we added a new term for deposition. The second equation is newly added in the present study which describes the behavior of the surface concentration. In Fukushima case, we found that the radiation risk is much higher than the airborne concentration. That is why we add the second equation. Since the new model requires parameter values of Λs we need to estimate these values from actual data. In order to do so, we apply the method of inverse problem and thereby estimate the values. We also do the spectral analysis of the dose rate (mainly from Cs-137, -134) and study if it is possible to estimate the resuspended amount from the ground surface.

  2. Methodology and significance of studies of atmospheric deposition in highway runoff

    USGS Publications Warehouse

    Colman, John A.; Rice, Karen C.; Willoughby, Timothy C.

    2001-01-01

    Atmospheric deposition and the processes that are involved in causing and altering atmospheric deposition in relation to highway surfaces and runoff were evaluated nationwide. Wet deposition is more easily monitored than dry deposition, and data on wet deposition are available for major elements and water properties (constituents affecting acid deposition) from the inter-agency National Atmospheric Deposition Program/ National Trends Network (NADP/NTN). Many trace constituents (metals and organic compounds) of interest in highway runoff loads, however, are not included in the NADP/NTN. Dry deposition, which constitutes a large part of total atmospheric deposition for many constituents in highway runoff loads, is difficult to monitor accurately. Dry-deposition rates are not widely available.Many of the highway-runoff investigations that have addressed atmospheric-deposition sources have had flawed investigative designs or problems with methodology. Some results may be incorrect because of reliance on time-aggregated data collected during a period of changing atmospheric emissions. None of the investigations used methods that could accurately quantify the part of highway runoff load that can be attributed to ambient atmospheric deposition. Lack of information about accurate ambient deposition rates and runoff loads was part of the problem. Samples collected to compute the rates and loads were collected without clean-sampling methods or sampler protocols, and without quality-assurance procedures that could validate the data. Massbudget calculations comparing deposition and runoff did not consider loss of deposited material during on-highway processing. Loss of deposited particles from highway travel lanes could be large, as has been determined in labeled particle studies, because of resuspension caused by turbulence from passing traffic. Although a cause of resuspension of large particles, traffic turbulence may increase the rate of deposition for small particles and

  3. ATMOSPHERIC DEPOSITION MODELING AND MONITORING OF NUTRIENTS

    EPA Science Inventory

    This talk presents an overview of the capabilities and roles that regional atmospheric deposition models can play with respect to multi-media environmental problems. The focus is on nutrient deposition (nitrogen). Atmospheric deposition of nitrogen is an important contributor to...

  4. High levels of particulate matter in Iceland due to direct ash emissions by the Eyjafjallajökull eruption and resuspension of deposited ash

    NASA Astrophysics Data System (ADS)

    Thorsteinsson, Throstur; Jóhannsson, Thorsteinn; Stohl, Andreas; Kristiansen, Nina I.

    2012-09-01

    The dangers to people living near a volcano due to lava and pyroclastic flows, and, on glacier- or snow-covered volcanoes, jökulhlaups, are well known. The level of risk to human health due to high concentrations of ash from direct emission and resuspension from the ground is, however, not as well known. The eruption at Eyjafjallajökull, 14 April to 20 May 2010, produced abundant particulate matter due to its explosive eruption style. Even after the volcanic activity ceased, high particulate matter (PM) concentrations were still measured on several occasions, due to resuspended ash. The 24 hour mean concentration of PM10 in the small town of Vík, 38 km SE of the volcano, reached 1230 μg m-3, which is about 25 times the health limit, on 7 May 2010, with 10 min average values over 13,000 μg m-3. Even after the eruption ceased, values as high as 8000 μg m-3 (10 min), and 900 μg m-3 (24 h), were measured because of resuspension of freshly deposited fine ash. In Reykjavík, 125 km WNW of the volcano, the PM10 concentration reached over 2000 μg m-3 (10 min) during an ash storm on 4 June 2010, which should have warranted airport closure. Summarizing, our study reveals the importance of ash resuspension compared to direct volcanic ash emissions. This likely has implications for air quality but could also have detrimental effects on the quality of ash dispersion model predictions, which so far generally do not include this secondary source of volcanic ash.

  5. Dust resuspension without saltation

    PubMed Central

    Loosmore, Gwen A.; Hunt, James R.

    2010-01-01

    Wind resuspension (or entrainment) provides a source of dust and contaminants for the atmosphere. Conventional wind erosion models parameterize dust resuspension flux with a threshold velocity or with a horizontal abrasion flux; in the absence of abrasion the models assume dust flux is transient only. Our experiments with an uncrusted, fine material at relative humidities exceeding 40% show a long-term steady dust flux in the absence of abrasion, which fits the approximate form: Fd = 3.6(u*)3, where Fd is the dust flux (in μg/m2 s), and u* is the friction velocity (in m/s). These fluxes are generally too small to be significant sources of dust in most models of dust emission. However, they provide a potential route to transport contaminants into the atmosphere. In addition, dust release is substantial during the initial transient phase. Comparison with field data suggests that the particle friction Reynolds number may prove a better parameter than u* for correlating fluxes and understanding the potential for abrasion. PMID:20336175

  6. Atmospheric deposition to high-elevation forests

    SciTech Connect

    Lovett, G.M.; Weathers, K.C.; Lindberg, S.E. Oak Ridge National Lab., TN )

    1994-06-01

    Three important phenomena characterize atmospheric deposition to high-elevation forests: (1) multiple deposition mechanisms (wet, dry, and cloud deposition), (2) high rates of deposition, and (3) high spatial variability. The high rates of deposition are caused by changes in meteorological conditions with elevation, especially increasing wind speed and cloud immersion frequency. The high spatial variability of deposition is a result of the regulation of cloud and dry deposition rates by microclimatic and canopy structure conditions, which can be extremely heterogeneous in mountain landscapes. Spruce-fir forests are often [open quotes]hot spots[close quotes] of deposition when viewed in a landscape or regional context because of their elevation, exposure, and evergreen canopy. In this talk we will consider atmospheric depositions to high-elevation forests in both the northeastern and southeastern U.S., using field data and geographic information systems to illustrate deposition patterns.

  7. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    PubMed Central

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-01-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y−1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray. PMID:27184191

  8. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment.

    PubMed

    Evangeliou, N; Zibtsev, S; Myroniuk, V; Zhurba, M; Hamburger, T; Stohl, A; Balkanski, Y; Paugam, R; Mousseau, T A; Møller, A P; Kireev, S I

    2016-05-17

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of (137)Cs, 1.5 TBq of (90)Sr, 7.8 GBq of (238)Pu, 6.3 GBq of (239)Pu, 9.4 GBq of (240)Pu and 29.7 GBq of (241)Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y(-1) in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  9. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y‑1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  10. Atmospheric deposition maps for the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.

    2003-01-01

    Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.

  11. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill--Part III: Atmospheric deposition rates (pilot test).

    PubMed

    Thomas, P A

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated 226Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m2) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, 226Ra, and 210Pb than rainfall, while more 210Po was deposited with rainfall.

  12. Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)

    SciTech Connect

    Thomas, P.A.

    2000-06-01

    Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

  13. Study of dust re-suspension at low pressure in a dedicated wind-tunnel

    NASA Astrophysics Data System (ADS)

    Rondeau, Anthony; Sabroux, Jean-Christophe; Chassefière, Eric

    2015-04-01

    The atmosphere of several telluric planets or satellites are dusty. Such is the case of Earth, Venus, Mars and Titan, each bearing different aeolian processes linked principally to the kinematic viscosity of the near-surface atmosphere. Studies of the Martian atmosphere are particularly relevant for the understanding of the dust re-suspension phenomena at low pressure (7 mbar). It turns out that operation of fusion reactors of the tokamak design produces significant amount of dust through the erosion of plasma-facing components. Such dust is a key issue, both regarding the performance and the safety of a fusion reactor such as ITER, under construction in Cadarache, France. Indeed, to evaluate the explosion risk in the ITER fusion reactor, it is essential to quantify the re-suspended dust fraction as a function of the dust inventory that can be potentially mobilized during a loss of vacuum accident (LOVA), with air or water vapour ingress. A complete accident sequence will encompass dust re-suspension from near-vacuum up to atmospheric pressure. Here, we present experimental results of particles re-suspension fractions measured at 1000, 600 and 300 mbar in the IRSN BISE (BlowIng facility for airborne releaSE) wind tunnel. Both dust monolayer deposits and multilayer deposits were investigated. In order to obtain experimental re-suspension data of dust monolayer deposits, we used an optical microscope allowing to measure the re-suspended particles fraction by size intervals of 1 µm. The deposits were made up of tungsten particles on a tungsten surface (an ubiquitous plasma facing component) and alumina particles on a glass plate, as a surrogate. A comparison of the results with the so-called Rock'nRoll dust re-suspension model (Reeks and Hall, 2001) is presented and discussed. The multilayer deposits were made in a vacuum sedimentation chamber allowing to obtain uniform deposits in terms of thickness. The re-suspension experimental data of such deposits were obtained

  14. Removal of atmospheric ethanol by wet deposition

    NASA Astrophysics Data System (ADS)

    Felix, J. David; Willey, Joan D.; Thomas, Rachel K.; Mullaugh, Katherine M.; Avery, G. Brooks; Kieber, Robert J.; Mead, Ralph N.; Helms, John; Giubbina, Fernanda F.; Campos, M. Lucia A. M.; Cala, John

    2017-02-01

    The global wet deposition flux of ethanol is estimated to be 2.4 ± 1.6 Tg/yr with a conservative range of 0.2-4.6 Tg/yr based upon analyses of 219 wet deposition samples collected at 12 locations globally. This estimate calculated by using observed wet deposition ethanol concentrations is in agreement with previous models (1.4-5 Tg/yr) predicting the wet deposition sink using Henry's law coefficients and atmospheric ethanol concentrations. Wet deposition is estimated to remove between 6 and 17% of the total ethanol emitted to the atmosphere on an annual basis. The concentration of ethanol in marine rain (25 ± 6 nM) is an order of magnitude less than in the majority of terrestrial rains (345 ± 280 nM). Terrestrial rain samples collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to rain collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources. Results of this study are important because they suggest that as biofuel production and usage increase, the concentration of ethanol in the atmosphere will increase as well the wet deposition flux. Additional research constraining the sources, sinks, and atmospheric impacts of ethanol is necessary to better assist in the debate as whether or not to increase consumption of the alcohol as a biofuel.

  15. Pacific Northwest Laboratory annual report for 1982 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect

    Elderkin, C.E.

    1983-02-01

    This report is organized in terms of generic studies: theoretical studies of atmospheric processes; pollutant characterizations and transformation; boundary layer meteorology; and dispersion, deposition and resuspension of atmospheric pollutants.

  16. Hard Carbon Films Deposited under Various Atmospheres

    NASA Astrophysics Data System (ADS)

    Wei, M.-K.; Chen, S.-C.; Wu, T. C.; Lee, Sanboh

    1998-03-01

    Using a carbon target ablated with an XeCl-excimer laser under various gas atmospheres at different pressures, hard carbon was deposited on silicon, iron and tungsten carbide substrates. The hardness, friction coefficient, and wear rate of the film against steel are better than pure substrate material, respectively, so that it has potential to be used as a protective coating for micromechanical elements. The influences of gas pressure, gas atmosphere, and power density of laser irradiation on the thermal stability of film were analyzed by means of Raman-spectroscope, time-of-flight method, and optical emission spectrum. It was found that the film deposited under higher pressure has less diamond-like character. The film deposited under rest gas or argon atmosphere was very unstable and looked like a little graphite-like character. The film deposited at high vacuum (10-5 mbar rest gas) was the most stable and looked like the most diamond-like character. The film deposited at higher power density was more diamond-like than that at lower power density.

  17. Atmospheric deposition of organic carbon via precipitation

    NASA Astrophysics Data System (ADS)

    Iavorivska, Lidiia; Boyer, Elizabeth W.; DeWalle, David R.

    2016-12-01

    Atmospheric deposition is the major pathway for removal of organic carbon (OC) from the atmosphere, affecting both atmospheric and landscape processes. Transfers of OC from the atmosphere to land occur as wet deposition (via precipitation) and as dry deposition (via surface settling of particles and gases). Despite current understanding of the significance of organic carbon inputs with precipitation to carbon budgets, transfers of organic matter between the atmosphere and land are not explicitly included in most carbon cycle models due to limited data, highlighting the need for further information. Studies regarding the abundance of OC in precipitation are relatively sparse, in part due to the fact that concentrations of organics in precipitation and their associated rates of atmospheric deposition are not routinely measured as a part of major deposition monitoring networks. Here, we provide a new data synthesis from 83 contemporary studies published in the peer reviewed literature where organic matter in precipitation was measured around the world. We compiled data regarding the concentrations of organic carbon in precipitation and associated rates of atmospheric deposition of organic carbon. We calculated summary statistics in a common set of units, providing insights into the magnitude and regional variability of OC in precipitation. A land to ocean gradient is evident in OC concentrations, with marine sites generally showing lower values than continental sites. Our synthesis highlights gaps in the data and challenges for data intercomparison. There is a need to concentrate sampling efforts in areas where anthropogenic OC emissions are on the rise (Asia, South America), as well as in remote sites suggesting background conditions, especially in Southern Hemisphere. It is also important to acquire more data for marine rainwater at various distances from the coast in order to assess a magnitude of carbon transfer between the land and the ocean. Our integration of

  18. Forecasting volcanic ash dispersal and coeval resuspension during the April-May 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Reckziegel, F.; Bustos, E.; Mingari, L.; Báez, W.; Villarosa, G.; Folch, A.; Collini, E.; Viramonte, J.; Romero, J.; Osores, S.

    2016-07-01

    Atmospheric dispersion of volcanic ash from explosive eruptions or from subsequent fallout deposit resuspension causes a range of impacts and disruptions on human activities and ecosystems. The April-May 2015 Calbuco eruption in Chile involved eruption and resuspension activities. We overview the chronology, effects, and products resulting from these events, in order to validate an operational forecast strategy for tephra dispersal. The modelling strategy builds on coupling the meteorological Weather Research and Forecasting (WRF/ARW) model with the FALL3D dispersal model for eruptive and resuspension processes. The eruption modelling considers two distinct particle granulometries, a preliminary first guess distribution used operationally when no field data was available yet, and a refined distribution based on field measurements. Volcanological inputs were inferred from eruption reports and results from an Argentina-Chilean ash sample data network, which performed in-situ sampling during the eruption. In order to validate the modelling strategy, results were compared with satellite retrievals and ground deposit measurements. Results indicate that the WRF-FALL3D modelling system can provide reasonable forecasts in both eruption and resuspension modes, particularly when the adjusted granulometry is considered. The study also highlights the importance of having dedicated datasets of active volcanoes furnishing first-guess model inputs during the early stages of an eruption.

  19. Atmospheric deposition fluxes to Monetary Bay

    NASA Astrophysics Data System (ADS)

    Gray, E.; Paytan, A.; Ryan, J.

    2008-12-01

    Atmospheric deposition has been widely recognized as a source of pollutants and nutrients to coastal ecosystems. Specifically, deposition includes nitrogen compounds, sulfur compounds, mercury, pesticides, phosphate, trace metals and other toxic compounds that can travel great distances. Sources of these components include both natural (volcanoes, mineral dust, forest fires) and anthropogenic (fossil fuels, chemical byproducts, incineration of waste) sources, which may contribute to harmful health and environmental impacts such as eutrophication, contaminated fish and harmful algal blooms. This study looks at the flux of aerosol deposition (TSP - total suspended particle load) to Monterey Bay, California. Samples are collected on a cascade impactor aerosol sampler (size fractions PM 2.5 and PM 10) every 48 hours continuously. Preliminary results indicate that the TSP for PM 10 ranged from 0.026 to 0.104 mg m-3 of air and for PM 2.5 from 0.014 to 0.046 mg m-3 of air. Using a deposition velocity of 2 cm s-1 for the large fraction (PM10 - PM 2.5) and a deposition velocity of 0.7 cm s-1 for the fine fraction (PM 2.5) deposition rates are 13 and 86 mg m-2 d-1 respectively.

  20. Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds

    EPA Science Inventory

    Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...

  1. Activities and geochronology of (137)Cs in lake sediments resulting from sediment resuspension.

    PubMed

    Matisoff, Gerald

    2017-02-01

    In lakes with a large surface area to watershed ratio (137)Cs delivery is primarily by direct atmospheric fallout to the lake surface, where its activity in the sediments has been used to estimate the exposure to organisms and sediment mass deposition rates. Comparison of (137)Cs in the historical atmospheric fallout record with (137)Cs activity profiles in sediment cores reveals that although the general features of a maxima in the fallout deposition can be matched to activity peaks in the core, the general shape of the (137)Cs profile is not an exact replica of the fallout history. Instead, the sediment reflects post-depositional processes such as resuspension, bioturbation, partitioning of (137)Cs between the sediment solids and the pore fluids, and molecular diffusion of (137)Cs through the pore fluids. Presented here is a model that couples these processes to a system time averaging (STA) model that accounts for the time history of (137)Cs fallout and the particle residence time in the water column or in the 'active' surface sediment subject to resuspension. Sediment profiles are examined by comparing reasonable ranges of each of the coefficients of each of these major processes and by applying the model to cores collected from two large, shallow lakes, Lake Erie (USA/Canada) and Lake Winnipeg (Canada). The results indicate that the STA model with molecular diffusion and sediment resuspension best describes the data from these large, shallow lakes.

  2. Atmospheric Transport and Deposition of Agricultural Chemicals

    NASA Astrophysics Data System (ADS)

    Majewski, M. S.; Vogel, J. R.; Capel, P. D.

    2006-05-01

    Concentrations of more than 80 pesticides and select transformation products were measured in atmospheric deposition during two growing seasons in five agricultural areas across the United States. Rainfall samples were collected at study areas in California, Indiana, Maryland, and Nebraska. In the arid Yakima Valley of Washington, dry deposition for the same compounds was estimated using air concentration measurements and depositional models. In the predominantly corn, soybean, and alfalfa growing region of Nebraska, Indiana, and Maryland, the herbicides acetochlor, alachlor, atrazine, and metolachlor where the predominant pesticides detected, and the highest concentrations ranged from 0.64 microgram per liter (ug/L) for metolachlor in a small, predominantly dairy use dominated watershed in Maryland to 6.6 ug/L and 19 ug/L for atrazine in Indiana and Nebraska, respectively. California showed a different seasonal occurrence pattern and suite of detected pesticides because the rainy season occurs during the winter months and a wide variety of crops are grown throughout the year. With the exception of metolachlor (0.23 ug/L, max.), the corn and soybean herbicides were not used to any great extent in the California study area and were not detected. The insecticides diazinon (1.21 ug/L, max.) and chlorpyrifos (0.12 ug/L, max.) were detected in nearly every sample taken in California. The Washington study area was similar to California in terms of the variety of crops grown and the pesticides use, but it receives very little rainfall. Dry deposition was estimated at this site from air concentrations and particle settling velocities. The results of these studies show the importance of the atmosphere as an additional source of pesticide loading to agricultural watersheds.

  3. Simple estimates of vehicle-induced resuspension rates.

    PubMed

    Escrig, A; Amato, F; Pandolfi, M; Monfort, E; Querol, X; Celades, I; Sanfélix, V; Alastuey, A; Orza, J A G

    2011-10-01

    Road dust emissions are considered to be a major source of airborne particulate matter (PM). This is particularly true for industrial environments, where there are high resuspension rates of deposited dust. The calculation of roads as PM emission sources has mostly focused on the consequences of this emission, viz. the increase in PM concentrations. That approach addresses the atmospheric transport of the emitted dust, and not its primary origin. In contrast, this paper examines the causes of the emission. The study is based on mass conservation of the dust deposited on the road surface. On the basis of this premise, estimates of emission rates were calculated from experimental data obtained in a road in a ceramic industrial area.

  4. Energy Deposition Processes in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Bertucci, Cesar; Coates, Andrew; Cravens, Tom; Dandouras, Iannis; Shemansky, Don

    2008-01-01

    Most of Titan's atmospheric organic and nitrogen chemistry, aerosol formation, and atmospheric loss are driven from external energy sources such as Solar UV, Saturn's magnetosphere, solar wind and galactic cosmic rays. The Solar UV tends to dominate the energy input at lower altitudes of approximately 1100 km but which can extend down to approximately 400 km, while the plasma interaction from Saturn's magnetosphere, Saturn's magnetosheath or solar wind are more important at higher altitudes of approximately 1400 km, but the heavy ion plasma [O(+)] of approximately 2 keV and energetic ions [H(+)] of approximately 30 keV or higher from Saturn's magnetosphere can penetrate below 950km. Cosmic rays with energies of greater than 1 GeV can penetrate much deeper into Titan's atmosphere with most of its energy deposited at approximately 100 km altitude. The haze layer tends to dominate between 100 km and 300 km. The induced magnetic field from Titan's interaction with the external plasma can be very complex and will tend to channel the flow of energy into Titan's upper atmosphere. Cassini observations combined with advanced hybrid simulations of the plasma interaction with Titan's upper atmosphere show significant changes in the character of the interaction with Saturn local time at Titan's orbit where the magnetosphere displays large and systematic changes with local time. The external solar wind can also drive sub-storms within the magnetosphere which can then modify the magnetospheric interaction with Titan. Another important parameter is solar zenith angle (SZA) with respect to the co-rotation direction of the magnetospheric flow. Titan's interaction can contribute to atmospheric loss via pickup ion loss, scavenging of Titan's ionospheric plasma, loss of ionospheric plasma down its induced magnetotail via an ionospheric wind, and non-thermal loss of the atmosphere via heating and sputtering induced by the bombardment of magnetospheric keV ions and electrons. This

  5. Atmospheric mass deposition by captured planetesimals

    NASA Astrophysics Data System (ADS)

    Iaroslavitz, Eyal; Podolak, Morris

    2007-04-01

    We examine the deposition of heavy elements in the envelope of a protoplanet growing according to the core accretion scenario of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62-85]. We use their atmospheric models and the deposition rates that they computed, and we calculate the amount of heavy elements that can be dissolved in the envelope. For planetesimals composed of a mixture of water, CHON, and rock, we find that almost all of the water is dissolved in the atmosphere. A substantial amount of CHON is also dissolved but it remains sequestered at high temperatures near the core. Some fraction of the rock is also dissolved in the very high temperature region near the core envelope boundary. If this dissolved material can be mixed upward later in the planet's evolution, the resulting structure would be much closer to that determined by matching the moments of Jupiter's gravitational field.

  6. CFD Modeling of Particle Resuspension

    NASA Astrophysics Data System (ADS)

    Degraw, Jason; Cimbala, John; Freihaut, James

    2006-11-01

    The phenomenon of resuspension plays a role in everyday life and is an important factor in indoor air quality. There are several models available for particle detachment, but the mechanisms by which particles are induced to lift off of a surface are not well explained in the literature. The lifting forces on a particle are generally too small to resuspend it, especially in the air flows generated by human activity (e.g., walking). We model the interaction of the aerodynamic disturbances and a thin layer of particles deposited on the surface. A standard CFD solver is used to compute the flow, and the particle transport model is one-way-coupled with the flow solution. Several time-dependent flows are considered, including an idealized footstep. The foot is represented using an immersed boundary technique, and is modeled as a disk that moves up and down with a trajectory patterned after experimental gait data. A jet and a radially moving vortex are generated as the foot approaches the floor. The strength of the jet is determined by the details of the foot movement near the surface. If the foot is slowed as it nears the floor, we find maximum velocities around 3 m/s, while the maximum velocity is more than doubled by a sudden stop. We have also computed a ``vacuum cleaner'' case to model the airflow generated by cleaning activities. In either case, the wall shear along the floor and the near-wall flow structure are used to examine the resuspension of particles.

  7. Time dependence of the {sup 137}Cs resuspension factor on the Romanian territory after the Chernobyl accident

    SciTech Connect

    Mihaila, B.; Cuculeanu, V.

    1994-08-01

    On the basis of the radioactivity levels in aerosol and atmospheric deposition samples due to the Chernobyl accident, the resuspension factor of {sup 137}Cs as a four-parameter function has been inferred. The standard procedure to derive the dependence of resuspension on time assumes that the initial deposit is instantaneous. A simple method assuming a constant deposition rate over a fixed period has been proposed. Also, based on existing experimental data, an attempt was made to consider a realistic time dependence of the deposition rate to cope with the particular case of the Chernobyl accident. The differences between the two models are outlined. The Chernobyl direct deposit has been assumed to be the deposit measured between 30 April and 30 June 1986. The calculated values of the resuspension factor are consistent with the IAEA`s recommended model and depend on the rainfall that occurred in June 1986 and the site-specific disturbance conditions during the first 100 d following 1 July 1986 and only on artificial disturbance by humans and vehicles after that. 16 refs., 5 figs., 3 tabs.

  8. Organic thin film deposition in atmospheric pressure glow discharge

    SciTech Connect

    Okazaki, S.; Kogoma, M.; Yokoyama, T.; Kodama, M.; Nomiyama, H.; Ichinohe, K.

    1996-01-01

    The stabilization of a homogeneous glow discharge at atmospheric pressure has been studied since 1987. On flat surfaces, various plasma surface treatments and film depositions at atmospheric pressure have been examined. A practical application of the atmospheric pressure glow plasma on inner surfaces of flexible polyvinyl chloride tubes was tested for thin film deposition of polytetrafluoroethylene. Deposited film surfaces were characterized by ESCA and FT-IR/ATR measurements. Also SEM observation was done for platelet adhesion on the plasma treated polyvinyl chloride surface. These results showed remarkable enhancement in the inhibition to platelet adhesion on the inner surface of PVC tube, and homogeneous organic film deposition was confirmed. The deposition mechanism of polytetrafluoroethylene film in atmospheric pressure glow plasma is the same as the mechanism of film formation in the low pressure glow plasma, except for radical formation source. {copyright} {ital 1996 American Institute of Physics.}

  9. Sampling of Atmospheric Precipitation and Deposits for Analysis of Atmospheric Pollution

    PubMed Central

    Skarżyńska, K.; Polkowska, Ż; Namieśnik, J.

    2006-01-01

    This paper reviews techniques and equipment for collecting precipitation samples from the atmosphere (fog and cloud water) and from atmospheric deposits (dew, hoarfrost, and rime) that are suitable for the evaluation of atmospheric pollution. It discusses the storage and preparation of samples for analysis and also presents bibliographic information on the concentration ranges of inorganic and organic compounds in the precipitation and atmospheric deposit samples. PMID:17671615

  10. Atmospheric transport and deposition of acidic air pollutants

    SciTech Connect

    Murphy, C.E. Jr.

    1981-01-01

    Although general principles which govern atmospheric chemistry of sulfur are understood, a purely theoretical estimation of the magnitude of the processes is not likely to be useful. Furthermore, the data base necessary to make empirical estimates does not yet exist. The sulfur budget of the atmosphere appears to be dominated by man-associated sulfur. The important processes in deposition of man-associated sulfur are wet deposition of sulfate and dry deposition of SO/sub 2/. The relative importance of sulfate and SO/sub 2/ to sulfur deposition (input to watersheds) depends on the air concentrations, and either compound may be the greater contributor depending on conditions. (PSB)

  11. Trends in atmospheric nitrogen and sulphur deposition in northern Belgium

    NASA Astrophysics Data System (ADS)

    Staelens, Jeroen; Wuyts, Karen; Adriaenssens, Sandy; Van Avermaet, Philip; Buysse, Hilde; Van den Bril, Bo; Roekens, Edward; Ottoy, Jean-Pierre; Verheyen, Kris; Thas, Olivier; Deschepper, Ellen

    2012-03-01

    Temporal trends (2002-2009) in air concentrations and wet and dry atmospheric deposition of inorganic nitrogen (N) and sulphur (S) were determined for nine stations in northern Belgium (Flanders). Wet deposition of NH4+, NO3- and SO42- was measured with wet-only precipitation collectors and air concentrations of NH3, NO2 and SO2 with passive samplers. Dry deposition was calculated from the air concentrations and literature-based deposition velocities. Generalized additive models were used to assess seasonal and long-term trends of biweekly measurements. Kendall tests on annual data were also applied but found to be less powerful. There was no trend in wet N deposition, while wet deposition of SO42- and air concentrations of NH3 and SO2 decreased significantly (P < 0.05) at seven of the nine stations. For NO2, no significant long-term trend was detected, but opposite to the other compounds, the NO2 concentration tended to increase at all stations. Overall, inorganic N deposition and potentially acidifying deposition (N + S) to grassland decreased significantly at seven stations. The N and N + S deposition to grassland in 2009 was generally below deposition targets for 2010, but the difference was not significant when accounting for data uncertainty using a bootstrap resampling procedure. For most stations, atmospheric deposition to heathland and deciduous forest insignificantly exceeded the targets, while deposition to coniferous forest was significantly too high. Consequently, additional policy measures are needed to reach deposition targets in order to prevent further eutrophication and acidification of (semi)natural ecosystems and to protect groundwater layers in Flanders.

  12. Atmospheric corrosion and chloride deposition on metal surfaces

    SciTech Connect

    Matthes, Steven A.; Holcomb, Gordon R.; Cramer, Stephen D.; Covino, Bernard S., Jr.; Bullard, Sophie J.

    2004-01-01

    Atmospheric corrosion and chloride deposition on metal surfaces was studied at an unpolluted coastal (marine) site, an unpolluted rural inland site, and a polluted urban site. Chloride deposition by both wet (precipitation) and dry deposition processes over a multi-year period was measured using ion chromatography analysis of incident precipitation and precipitation runoff from the surface of metal samples. Chloride deposition was measured on zinc, copper, lead, mild steel, and non-reactive blank panels, as well as two panels coated with thermal-sprayed zinc alloys. Chloride deposition measured by runoff chemistry was compared with chloride deposition measurements made by the ASTM wet candle technique. Corrosion mass loss as a function of distance from the ocean is presented for copper and mild steel in bold exposures on the west coast.

  13. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    NASA Astrophysics Data System (ADS)

    Dowling, D. P.; Maher, S.; Law, V. J.; Ardhaoui, M.; Stallard, C.; Keenan, A.

    2016-09-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV-VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer.

  14. An automatic collector to monitor insoluble atmospheric deposition: an application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-03-01

    Deposition is one of the key processes controlling the mass budget of the atmospheric mineral dust concentration. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims at presenting an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programed sampling time step (1 day and 2 weeks sampling time steps, respectively). This collector is used to sample atmospheric deposition on Frioul Island which is located in the Gulf of Lions in the Western Mediterranean Basin over which Saharan dust can be transported and deposited. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Two years of continuous deposition measurements performed on a weekly time step sampling on Frioul Island are presented and discussed with in-situ measurements, air mass trajectories and satellite observations of dust.

  15. An automatic collector to monitor insoluble atmospheric deposition: application for mineral dust deposition

    NASA Astrophysics Data System (ADS)

    Laurent, B.; Losno, R.; Chevaillier, S.; Vincent, J.; Roullet, P.; Bon Nguyen, E.; Ouboulmane, N.; Triquet, S.; Fornier, M.; Raimbault, P.; Bergametti, G.

    2015-07-01

    Deposition is one of the key terms of the mineral dust cycle. However, dust deposition remains poorly constrained in transport models simulating the atmospheric dust cycle. This is mainly due to the limited number of relevant deposition measurements. This paper aims to present an automatic collector (CARAGA), specially developed to sample the total (dry and wet) atmospheric deposition of insoluble dust in remote areas. The autonomy of the CARAGA can range from 25 days to almost 1 year depending on the programmed sampling frequency (from 1 day to 2 weeks respectively). This collector is used to sample atmospheric deposition of Saharan dust on the Frioul islands in the Gulf of Lions in the Western Mediterranean. To quantify the mineral dust mass in deposition samples, a weighing and ignition protocol is applied. Almost 2 years of continuous deposition measurements performed on a weekly sampling basis on Frioul Island are presented and discussed with air mass trajectories and satellite observations of dust. Insoluble mineral deposition measured on Frioul Island was 2.45 g m-2 for February to December 2011 and 3.16 g m-2 for January to October 2012. Nine major mineral deposition events, measured during periods with significant MODIS aerosol optical depths, were associated with air masses coming from the southern Mediterranean Basin and North Africa.

  16. Total atmospheric mercury deposition in forested areas in South Korea

    NASA Astrophysics Data System (ADS)

    Han, Jin-Su; Seo, Yong-Seok; Kim, Moon-Kyung; Holsen, Thomas M.; Yi, Seung-Muk

    2016-06-01

    In this study, mercury (Hg) was sampled weekly in dry and wet deposition and throughfall and monthly in litterfall, and as it was volatilized from soil from August 2008 to February 2010 to identify the factors influencing the amount of atmospheric Hg deposited to forested areas in a temperate deciduous forest in South Korea. For this location there was no significant correlation between the estimated monthly dry deposition flux (litterfall + throughfall - wet deposition) (6.7 µg m-2 yr-1) and directly measured dry deposition (9.9 µg m-2 yr-1) likely due primarily to Hg losses from the litterfall collector. Dry deposition fluxes in cold seasons (fall and winter) were lower than in warmer seasons (spring and summer). The volume-weighted mean (VWM) Hg concentrations in both precipitation and throughfall were highest in winter, likely due to increased scavenging by snow events. Since South Korea experiences abundant rainfall in summer, VWM Hg concentrations in summer were lower than in other seasons. Litterfall fluxes were highest in the late fall to early winter, when leaves were dropped from the trees (September to November). The cumulative annual Hg emission flux from soil was 6.8 µg m-2 yr-1. Based on these data, the yearly deposition fluxes of Hg calculated using two input approaches (wet deposition + dry deposition or throughfall + litterfall) were 6.8 and 3.6 µg m-2 yr-1, respectively. This is the first reported study which measured the amount of atmospheric Hg deposited to forested areas in South Korea, and thus our results provide useful information to compare against data related to Hg fate and transport in this part of the world.

  17. ANALYSIS OF ATMOSPHERE DEPOSITION SAMPLES FROM EASTON, PA

    EPA Science Inventory

    The report gives results of an analysis of samples of tenacious atmospheric deposits on exposed surfaces (e.g., automobiles and houses) in an industrial area near Easton, PA. The analysis was made at the request of the State of Pennsylvania. The Pennsylvania Department of Environ...

  18. A summary of the Lake Tahoe Atmospheric Deposition Study (LTADS)

    NASA Astrophysics Data System (ADS)

    Dolislager, Leon J.; VanCuren, Richard; Pederson, James R.; Lashgari, Ash; McCauley, Eileen

    2012-01-01

    The Lake Tahoe Atmospheric Deposition Study (LTADS) was conducted by the California Air Resources Board (CARB) primarily to generate refined estimates of the atmospheric deposition of nitrogen (N), phosphorous (P), and particulate matter (PM) directly to Lake Tahoe, which straddles the boundary between the states of California and Nevada in the United States of America. LTADS estimated that approximately 185, 3, and 755 metric tons respectively of N, P, and PM being directly deposited to the lake from the atmosphere. Various measurements of emissions, meteorology, and air quality were made within and west (typically upwind) of the Lake Tahoe Air Basin to better understand the pollutant sources contributing to the atmospheric deposition. The data indicate that ammonia (NH 3) contributes the bulk of the N loading. Aerosols with diameters greater than 2.5 μm contribute the bulk of the P and PM mass loadings. The emission sources of P and PM appear to be primarily local and associated with motor vehicles. However, construction, fires, and natural sources also contribute to the pollutant loadings. LTADS was part of a much larger research program to guide efforts to restore the remarkable water clarity of Lake Tahoe.

  19. REGIONAL MODELING OF THE ATMOSPHERIC TRANSPORT AND DEPOSITION OF ATRAZINE

    EPA Science Inventory

    A version of the Community Multiscale Air Quality (CMAQ) model has been developed by the U.S. EPA that is capable of addressing the atmospheric fate, transport and deposition of some common trace toxics. An initial, 36-km rectangular grid-cell application for atrazine has been...

  20. Atmospheric deposition of phthalate esters in a subtropical city

    NASA Astrophysics Data System (ADS)

    Zeng, Feng; Lin, Yujun; Cui, Kunyan; Wen, Jiaxin; Ma, Yongqin; Chen, Hongli; Zhu, Fang; Ma, Zhiling; Zeng, Zunxiang

    2010-02-01

    In Chinese cities, air pollution has become a serious and aggravating environmental problem undermining the sustainability of urban ecosystems and the quality of urban life. Bulk atmospheric deposition samples were collected two-weekly, from February 2007 to January 2008, at three representative areas, one suburban and two urbanized, in the subtropical city, Guangzhou, China, to assess the deposition fluxes and seasonal variations of phthalate esters (PAEs). Sixteen PAE congeners in bulk deposition samples were measured and the depositional fluxes of ∑ 16PAEs ranged from 3.41 to 190 μg m -2 day -1, and were highly affected by local anthropogenic activities. The significant relationship between PAEs and particulate depositional fluxes (correlation coefficient R2 = 0.72, P < 0.001) showed PAEs are associated primarily with particles. Temporal flux variations of PAEs were influenced by seasonal changes in meteorological parameters, and the deposition fluxes of PAEs were obviously higher in wet season than in dry season. Diisobutyl phthalate (D iBP), Di- n-butyl phthalate (D nBP), and Di(2-ethylhexyl) phthalate (DEHP) dominated the PAE pattern in bulk depositions, which is consistent with a high consumption of the plasticizer market in China. PAE profiles in bulk deposition showed similarities exhibited in both time and space, and a weak increase of high molecular weight PAE (HMW PAE) contribution in the wet season compared to those in the dry season. Average atmospheric deposition fluxes of PAEs in the present study were significantly higher than those from other studies, reflecting strong anthropogenic inputs as a consequence of rapid industrial and urban development in the region.

  1. Atmospheric deposition of toxic pollutants to the Great Lakes as measured by the integrated atmospheric deposition network

    SciTech Connect

    Hillery, B.R.; Simcik, M.F.; Basu, I.

    1998-08-01

    To determine atmospheric deposition of anthropogenic contaminants to the Great Lakes, the US and Canada established the Integrated Atmospheric Deposition Network (IADN), designed to collect regional data representative of the air over the lakes. In this paper, the authors present an update of atmospheric loadings to the Great Lakes for seven organochlorine pesticides, four polychlorinated biphenyl (PCB) congeners and total-PCBs, four polycyclic aromatic hydrocarbons (PAHs), and four trace metals. Calculations are based on gas, particle, and precipitation samples obtained in 1993 and 1994 at the five master IADN sampling stations. Air-water exchange is the dominant process for most organochlorines and lower molecular weight PAHs. Within the uncertainty in the data given here, current atmospheric loadings are indistinguishable from air-water equilibrium having been achieved over the lakes. In other words, the deposition of most organochlorine compounds into the Great Lakes is about balanced by the evaporation of these compounds from the lakes. Uncertainties in gas-transfer loadings are due to the inexact knowledge of physiochemical parameters, averaging of data over long time scales, and insufficient data for nonatmospheric sources.

  2. Atmospheric deposition of fluoride in the lower Tamar Valley, Tasmania

    NASA Astrophysics Data System (ADS)

    Low, P. S.; Bloom, H.

    Soluble fluoride (F -), measured using an ion-selective electrode, was monitored during 1982-1983 in monthly bulk (wet and dry) atmospheric deposition samples collected at 17 locations in the lower Tamar Valley, Tasmania, where an aluminium (Al) smelter is located. Glass samplers (funnel-bottle type) were used, with duplications by plastic samplers at five locations later. The spatial and temporal variations in F - deposition in relation to wind flow and rainfall are discussed, and its impact on the environment is highlighted. The mean deposition rates of F -, as measured from September 1982 to August 1983, ranged from about 90 μg m -2 day -1 at the intended 'background' location to 12,568 μg m -2day -1 at a location about 1 km east-southeast from the smelter. The depositional fluxes of F - and insoluble Al (another elemental tracer of the smelter) are significantly correlated ( P < 0.001). They were much higher within 3 km of the smelter, where vegetation damage by fluoride contamination was most evident. However, air emissions from the smelter could travel at least 10 km up the valley. Wet deposition was the predominant removal process for F - during autumn and winter, while dry deposition appeared to be more significant in summer. The plastic samplers collected about 8 and 17% more F - and Al, respectively, but with higher standard deviations. Thus the variations observed could be largely due to sampling fluctuations.

  3. Asteroid fragmentation approaches for modeling atmospheric energy deposition

    NASA Astrophysics Data System (ADS)

    Register, Paul J.; Mathias, Donovan L.; Wheeler, Lorien F.

    2017-03-01

    During asteroid entry, energy is deposited in the atmosphere through thermal ablation and momentum-loss due to aerodynamic drag. Analytic models of asteroid entry and breakup physics are used to compute the energy deposition, which can then be compared against measured light curves and used to estimate ground damage due to airburst events. This work assesses and compares energy deposition results from four existing approaches to asteroid breakup modeling, and presents a new model that combines key elements of those approaches. The existing approaches considered include a liquid drop or "pancake" model where the object is treated as a single deforming body, and a set of discrete fragment models where the object breaks progressively into individual fragments. The new model incorporates both independent fragments and aggregate debris clouds to represent a broader range of fragmentation behaviors and reproduce more detailed light curve features. All five models are used to estimate the energy deposition rate versus altitude for the Chelyabinsk meteor impact, and results are compared with an observationally derived energy deposition curve. Comparisons show that four of the five approaches are able to match the overall observed energy deposition profile, but the features of the combined model are needed to better replicate both the primary and secondary peaks of the Chelyabinsk curve.

  4. Atmospheric deposition exposes Qinling pandas to toxic pollutants.

    PubMed

    Chen, Yi-Ping; Zheng, Ying-Juan; Liu, Qiang; Song, Yi; An, Zhi-Sheng; Ma, Qing-Yi; Ellison, Aaron M

    2016-12-31

    The giant panda (Ailuropoda melanoleuca) is one of the most endangered animals in the world, and it is recognized worldwide as a symbol for conservation. A previous study showed that wild and captive pandas, especially those of the Qinling subspecies, were exposed to toxicants in their diet of bamboo; the ultimate origin of these toxicants is unknown. Here we show that atmospheric deposition is the most likely origin of heavy metals and persistent organic pollutants (POPs) in the diets of captive and wild Qinling pandas. Average atmospheric deposition was 199, 115 and 49 g∙m(-2) ∙yr(-1) in the center of Xi'an city, at China's Shaanxi Wild Animal Research Center (SWARC), and at Foping National Nature Reserve (FNNR), respectively. Atmospheric deposition of heavy metals (As, Cd, Cr, Pb, Hg, Co, Cu, Zn, Mn and Ni) and POPs was highest at Xi'an city, intermediate at SWARC, and lowest at FNNR. Soil concentrations of the aforementioned heavy metals other than As and Zn also were significantly higher at SWARC than at FNNR. Efforts to conserve Qinling pandas may be compromised by air pollution attendant to China's economic development. Improvement of air quality and reductions of toxic emissions are urgently required to protect China's iconic species. This article is protected by copyright. All rights reserved.

  5. Oceanic Emissions and Atmospheric Depositions of Volatile Organic Compounds

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Beale, R.; Nightingale, P. D.; Liss, P. S.

    2015-12-01

    Atmospheric volatile organic compounds (VOCs) affect the tropospheric oxidative capacity due to their ubiquitous abundance and relatively high reactivity towards the hydroxyal radical. Over the ocean and away from terrestrial emission sources, oxygenated volatile organic compounds (OVOCs) make up a large fraction of VOCs as airmasses age and become more oxidized. In addition to being produced or destroyed in the marine atmosphere, OVOCs can also be emitted from or deposited to the surface ocean. Here we first present direct air-sea flux measurements of three of the most abundant OVOCs - methanol, acetone, and acetaldehyde, by the eddy covariance technique from two cruises in the Atlantic: the Atlantic Meridional Transect in 2012 and the High Wind Gas Exchange Study in 2013. The OVOC mixing ratios were quantified by a high resolution proton-reaction-transfer mass spectrometer with isotopically labeled standards and their air-sea (net) fluxes were derived from the eddy covariance technique. Net methanol flux was consistently from the atmosphere to the surface ocean, while acetone varied from supersaturation (emission) in the subtropics to undersaturation (deposition) in the higher latitudes of the North Atlantic. The net air-sea flux of acetaldehyde is near zero through out the Atlantic despite the apparent supersaturation of this compound in the surface ocean. Knowing the dissolved concentrations and in situ production rates of these compounds in seawater, we then estimate their bulk atmospheric depositions and oceanic emissions. Lastly, we summarize the state of knowledge on the air-sea transport of a number of organic gasses, and postulate the magnitude and environmental impact of total organic carbon transfer between the ocean and the atmosphere.

  6. Plasma reactor for deposition of carbon nanowalls at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Dimitrov, Zh; Mitev, D.; Kiss'ovski, Zh

    2016-10-01

    In this study a novel plasma reactor for deposition of carbon nanowalls at atmospheric pressure is constructed and characterized. A low power microwave discharge is used as a plasma source and working gas of Ar/H2/CH4 gas mixture. The substrate is heated by plasma flame and its temperature is in the range 600-700 C. The chemical composition of the plasma and the gas mixture effect on the concentration of the various particles in the plasma is investigated by optical emission spectroscopy. The emission spectrum of the plasma jet in Ar/H2/CH4 mixture shows the presence of carbon (Swan band) and an intensive line of CH (388 nm), which are necessary species for deposition of carbon nanostructures. Additional voltage in the range from -20 V to -100 V is applied in order to ensure the vertical growth of graphene walls. Results of deposited carbon nanostructures on metal substrate are shown.

  7. Atmospheric sulfur deposition and streamwater quality in Finland

    NASA Astrophysics Data System (ADS)

    Lahermo, P. W.; Tarvainen, T.; Tuovinen, J.-P.

    1994-10-01

    The correlation between sulfate concentrations in Finnish headwater streams and atmospheric sulfate deposition has been studied by using data from the streamwater chemistry in August September 1990 and computed S deposition from the anthropogenic emissions. The sulfate concentrations and acidity in water are interpolated and smoothed into a deposition model grid. These data are compared with geological and pedogeochemical (glacial till) background information. The areas where the streamwater SO4 concentrations are mainly controlled by either anthropogenic S deposition or sulfur in till is estimated by applying the fuzzy Gustafsson-Kessel algorithm, which provides a soft clustering suitable for overlapping control factors. Residual areas can be well explained by the SO4-rich Littorina clay deposits. The higher overall background SO4 concentrations in streams in south Finland compared with central and northern Finland are an indisputable consequence of the heavier S deposition load in the south. However, anthropogenic sulfur deposition has a clear correlation with the sulfates in streamwaters only in northeastern Lapland impacted by the large industrial emissions in the Kola Peninsula. The secondary sulfide and sulfate minerals of marine Littorina sediments are dominating sources in the broad coastal belts, as are the primary sulfide minerals locally in the Pori-Vammala area, at the eastern end of the main sulfide ore belt between Lake Ladoga and the Gulf of Bothnia, in the Outokumpu area, and in the Peräpohja and central Lapland schist belts. Consequently, in addition to the anthropogenic deposition, there are natural sources of sulfur which cause acidity of streamwaters.

  8. Gas permeation barriers deposited by atmospheric pressure plasma enhanced atomic layer deposition

    SciTech Connect

    Hoffmann, Lukas Theirich, Detlef; Hasselmann, Tim; Räupke, André; Schlamm, Daniel; Riedl, Thomas

    2016-01-15

    This paper reports on aluminum oxide (Al{sub 2}O{sub 3}) thin film gas permeation barriers fabricated by atmospheric pressure atomic layer deposition (APPALD) using trimethylaluminum and an Ar/O{sub 2} plasma at moderate temperatures of 80 °C in a flow reactor. The authors demonstrate the ALD growth characteristics of Al{sub 2}O{sub 3} films on silicon and indium tin oxide coated polyethylene terephthalate. The properties of the APPALD-grown layers (refractive index, density, etc.) are compared to that deposited by conventional thermal ALD at low pressures. The films films deposited at atmospheric pressure show water vapor transmission rates as low as 5 × 10{sup −5} gm{sup −2}d{sup −1}.

  9. Modeling Planetary Atmospheric Energy Deposition By Energetic Ions

    NASA Astrophysics Data System (ADS)

    Parkinson, Christopher; Bougher, Stephen; Gronoff, Guillaume; Barthelemy, Mathieu

    2016-07-01

    The structure, dynamics, chemistry, and evolution of planetary upper atmospheres are in large part determined by the available sources of energy. In addition to the solar EUV flux, the solar wind and solar energetic particle (SEP) events are also important sources. Both of these particle populations can significantly affect an atmosphere, causing atmospheric loss and driving chemical reactions. Attention has been paid to these sources from the standpoint of the radiation environment for humans and electronics, but little work has been done to evaluate their impact on planetary atmospheres. At unmagnetized planets or those with crustal field anomalies, in particular, the solar wind and SEPs of all energies have direct access to the atmosphere and so provide a more substantial energy source than at planets having protective global magnetic fields. Additionally, solar wind and energetic particle fluxes should be more significant for planets orbiting more active stars, such as is the case in the early history of the solar system for paleo-Venus and Mars. Therefore quantification of the atmospheric energy input from the solar wind and SEP events is an important component of our understanding of the processes that control their state and evolution. We have applied a full Lorentz motion particle transport model to study the effects of particle precipitation in the upper atmospheres of Mars and Venus. Such modeling has been previously done for Earth and Mars using a guiding center precipitation model. Currently, this code is only valid for particles with small gyroradii in strong uniform magnetic fields. There is a clear necessity for a Lorentz formulation, hence, a systematic study of the ionization, excitation, and energy deposition has been conducted, including a comparison of the influence relative to other energy sources (namely EUV photons). The result is a robust examination of the influence of energetic ion transport on the Venus and Mars upper atmosphere which

  10. Mechanisms controlling soil carbon sequestration under atmospheric nitrogen deposition

    SciTech Connect

    R.L. Sinsabaugh; D.R. Zak; D.L. Moorhead

    2008-02-19

    Increased atmospheric nitrogen (N) deposition can alter the processing and storage of organic carbon in soils. In 2000, we began studying the effects of simulated atmospheric N deposition on soil carbon dynamics in three types of northern temperate forest that occur across a wide geographic range in the Upper Great Lakes region. These ecosystems range from 100% oak in the overstory (black oak-white oak ecosystem; BOWO) to 0% overstory oak (sugar maple-basswood; SMBW) and include the sugar maple-red oak ecosystem (SMRO) that has intermediate oak abundance. The leaf litter biochemistry of these ecosystems range from highly lignified litter (BOWO) to litter of low lignin content (SMBW). We selected three replicate stands of each ecosystem type and established three plots in each stand. Each plot was randomly assigned one of three levels of N deposition (0, 30 & 80 kg N ha-1 y-1) imposed by adding NaNO3 in six equal increments applied over the growing season. Through experiments ranging from the molecular to the ecosystem scales, we produced a conceptual framework that describes the biogeochemistry of soil carbon storage in N-saturated ecosystems as the product of interactions between the composition of plant litter, the composition of the soil microbial community and the expression of extracellular enzyme activities. A key finding is that atmospheric N deposition can increase or decrease the soil C storage by modifying the expression of extracellular enzymes by soil microbial communities. The critical interactions within this conceptual framework have been incorporated into a new class of simulations called guild decomposition models.

  11. Atmospheric Deposition of Soluble Organic Nitrogen due to Biomass Burning

    NASA Astrophysics Data System (ADS)

    Ito, A.; Lin, G.; Penner, J. E.

    2014-12-01

    Atmospheric deposition of reactive nitrogen (N) species from large fires may contribute to enrichment of nutrients in aquatic ecosystems. Here we use an atmospheric chemistry transport model to investigate the supply of soluble organic nitrogen (ON) from open biomass burning to the ocean. The model results show that the annual deposition rate of soluble ON to the oceans is increased globally by 13% with the increase being particularly notable over the coastal water downwind from the source regions. The estimated deposition of soluble ON due to haze events from the secondary formation is more than half of that from the primary sources. We examine the secondary formation of particulate C-N compounds (e.g., imidazole) from the reactions of glyoxal and methylglyoxal with atmospheric ammonium in wet aerosols and upon cloud evaporation. These ON sources result in a significant contribution to the open ocean, suggesting that atmospheric processing in aqueous phase may have a large effect. We compare the soluble ON concentration in aerosols with and without open biomass burning as a case study in Singapore. The model results demonstrate that the soluble ON concentration in aerosols is episodically enriched during the fire events, compared to the without smoke simulations. However, the model results show that the daily soluble ON concentration can be also enhanced in the without smoke simulations during the same period, compared to the monthly averages. This indicates that care should be taken when using in-situ observations to constrain the soluble ON source strength from biomass burning. More accurate quantification of the soluble ON burdens with no smoke sources is therefore needed to assess the effect of biomass burning on bioavailable ON input to the oceans.

  12. Resuspension patterns in the Baltic proper

    NASA Astrophysics Data System (ADS)

    Danielsson, Å.; Jönsson, A.; Rahm, L.

    2007-05-01

    Waves induce resuspension of surface sediments and contribute to the long-term mobilisation of particulate matter from erosion to accumulation bottoms. This has a major impact on the nutrient cycle in shallow seas by enhancing degradation, microbial production and recycling. The Baltic Sea represents such an area. The aim of this work is to analyse the spatial and temporal resuspension patterns in the Baltic Sea. To estimate the bottom friction velocity, modelled wave data are used in combination with data on grain size. This new data set is compared to a resuspension threshold of friction velocity to estimate the events of resuspension. The variation in bottom friction velocity, resuspension frequency and duration are related to wind climate, fetch, water depth and sediment type. Substantial resuspension can be found down to 40-60 m, with durations from one day to as much as two weeks. The highest winds in the area are highly anisotropic with a dominance of S-SW-W winds and the highest resuspension frequencies are found along the shallow eastern coasts. A seasonal pattern is observed with relatively high friction velocities and high resuspension frequencies during winter. There is also a variation depending on grain size, where sediments with fine and medium sand have a considerably higher percentage of resuspension events than bottoms with other dominant grain sizes. Five sub-areas are identified, characterised by different sediment types, resuspension and wind characteristics. If, in the future, wind speed increases as predicted, resuspension of sediments will also increase with effects on the nutrient cycle.

  13. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies.

    PubMed

    Behera, Sailesh N; Sharma, Mukesh; Aneja, Viney P; Balasubramanian, Rajasekhar

    2013-11-01

    Gaseous ammonia (NH3) is the most abundant alkaline gas in the atmosphere. In addition, it is a major component of total reactive nitrogen. The largest source of NH3 emissions is agriculture, including animal husbandry and NH3-based fertilizer applications. Other sources of NH3 include industrial processes, vehicular emissions and volatilization from soils and oceans. Recent studies have indicated that NH3 emissions have been increasing over the last few decades on a global scale. This is a concern because NH3 plays a significant role in the formation of atmospheric particulate matter, visibility degradation and atmospheric deposition of nitrogen to sensitive ecosystems. Thus, the increase in NH3 emissions negatively influences environmental and public health as well as climate change. For these reasons, it is important to have a clear understanding of the sources, deposition and atmospheric behaviour of NH3. Over the last two decades, a number of research papers have addressed pertinent issues related to NH3 emissions into the atmosphere at global, regional and local scales. This review article integrates the knowledge available on atmospheric NH3 from the literature in a systematic manner, describes the environmental implications of unabated NH3 emissions and provides a scientific basis for developing effective control strategies for NH3.

  14. Microbial release of sulphur ions from atmospheric pollution deposits

    SciTech Connect

    Killhan, K.; Wainwright, M.

    1981-12-01

    The surfaces of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electron microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for the in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sup 2 -//sub 3/; S/sub 4/O/sup 2 -//sub 6/ and SO/sup 2 -//sub 4/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred in fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We concluded that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  15. Microbial release of sulphur ions from atmospheric pollution deposits

    SciTech Connect

    Killham, K.; Wainwright, M.

    1981-12-01

    The surface of leaves of Acer pseudoplatanus growing in areas exposed to heavy atmospheric pollution are covered with atmospheric pollution deposits (APD). Using scanning electric microscopy, micro-organisms were seen to be growing in intimate association with these deposits. The deposits contained sufficient carbon and nitrogen to support growth of the fungus Fusarium solani in culture and in autoclaved and non-sterilized soils; and sufficient reduced sulphur for in vitro growth of Thiobacillus thioparus. When T. thioparus and F. solani were grown in medium supplemented with APD as sole carbon and nitrogen sources, increases in the concentrations of soluble S/sub 2/O/sub 3//sup 2/ btw/sup -/ and; S/sub 4/O/sub 6//sup 2 -/ and SO/sub 4//sup 2 -/ resulted. Similar increases also occurred when APD was added to complete fungal growth medium. Increases in LiCl/sub 2/-extractable sulphur-ions also occurred is fresh soil amended with APD, and in autoclaved soils containing APD, and inoculated with spores of F. solani. Arylsulphatase activity increased in fresh soils and in soils autoclaved and inoculated with F. solani when APD was added; suggesting sulphur mineralization, as well as sulphur oxidation, in the release of sulphur ions from APD. We conclude that APD can support microbial growth in vitro and in soils when provided as sole carbon and sulphur source; and that micro-organisms can release sulphur ions from this complex substrate. Microbial release of sulphur ions from APD can account in part for the increased concentrations of sulphur ions in heavy atmospheric-polluted soils.

  16. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    USGS Publications Warehouse

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  17. Stable isotopes in alpine precipitation as tracers of atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Lafreniere, M. J.; Kyser, T. K.; Norman, A. L.; Mayer, B.; Wieser, M.

    2010-12-01

    Alpine ecosystems, which are generally nutrient poor and exist under extreme climatic conditions, are particularly sensitive to environmental and climatic stressors. Studies in the USA Rocky Mountains and European Alps have shown that alpine terrestrial and aquatic ecosystems are particularly sensitive to enhanced deposition of reactive nitrogen and can show ecologically destructive responses at relatively low levels of nitrogen deposition. However, there is no base line for atmospheric deposition of natural and anthropogenic contaminants in the Canadian alpine. Preliminary results of isotopic and chemical analyses of precipitation from an elevational transect on a glaciated alpine site in the Canadian Rockies are presented. Precipitation accumulating from early autumn through to spring (2008/2009 and 2009/2010) was sampled by means of seasonal snow cover on alpine glaciers. Summer precipitation was sampled through July and August 2010 using bulk collectors installed at the sites of winter sampling. The isotope ratios of dissolved sulphate (δ34S, δ18O), nitrogen (δ15N, δ18O), as well as precipitation (δ2H, δ18O) are utilized in addition to major ion concentrations and trace metal concentrations. Results from 2008/2009 snowpack samples indicate a strong seasonal trend in sulphate (SO42-) and nitrogen (NO3-) deposition which is consistent across the altitudinal transect. Snow horizons representing early autumn and spring precipitation show higher SO42- and NO3- concentrations in contrast to lower concentrations in winter horizons. The aforementioned suite of isotopic and chemical analyses are used to investigate the variability in dominant geographic source regions for atmospheric SO42- and NO3- (local, regional, or long range transported contaminants), as well as to identify contributions from the major biogeochemical source types (e.g. hydrocarbon combustion, lithogenic dust, agricultural emissions).

  18. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  19. Energy deposition rates by charged particles. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Urban, A.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Smith, L. G.; Dumbs, A.; Grandal, B.; Ulwick, J. C.; Vancour, R. P.

    1985-01-01

    A summary of measurements of the precipitation of electrons and positive ions (in the keV-MeV range) detected aboard eight rockets launched within the Energy Budget Campaign from Northern Scandinavia is given, together with corresponding satellite data. In some cases strong temporal variations of the downgoing integral fluxes were observed. The fluxes provide the background for the calculated ion production rates and altitude profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance and cosmic noise absorption. The derived ion production rates by eneretic particles are compared to other night-time ionisation sources.

  20. Atmospheric Plasma Deposition of Diamond-like Carbon Coatings

    SciTech Connect

    Ladwig, Angela

    2008-01-23

    material that may be treated. The deposition of DLC at atmospheric pressure has been demonstrated by several researchers. Izake, et al [53] and Novikov and Dymont [54] have demonstrated an electrochemical process that is carried out with organic compounds such as methanol and acetylene dissolved in ammonia. This process requires that the substrates be immersed in the liquid [53-54]. The atmospheric pressure deposition of DLC was also demonstrated by Kulik, et al. utilizing a plasma torch. However, this process requires operating temperatures in excess of 800 oC [55]. In this report, we investigate the deposition of diamond-like carbon films using a low temperature, atmospheric pressure plasma-enhanced chemical vapor deposition (PECVD) process. The films were characterized by solid-state carbon-13 nuclear magnetic resonance (13C NMR) and found to have a ratio of sp2 to sp3 carbon of 43 to 57%. The films were also tested for adhesion, coefficient of friction, and dielectric strength.

  1. Reconstruction of atmospheric concentrations and deposition of uranium and decay products released from the former uranium mill at Uravan, Colorado.

    PubMed

    Rood, Arthur S; Voillequé, Paul G; Rope, Susan K; Grogan, Helen A; Till, John E

    2008-08-01

    Radionuclide concentrations in air from uranium milling emissions were estimated for the town of Uravan, Colorado, USA and the surrounding area for a 49-yr period of mill operations beginning in 1936 and ending in 1984. Milling processes with the potential to emit radionuclides to the air included crushing and grinding of ores; conveyance of ore; ore roasting, drying, and packaging of the product (U(3)O(8)); and fugitive dust releases from ore piles, tailings' piles, and roads. The town of Uravan is located in a narrow canyon formed by the San Miguel River in western Colorado. Atmospheric transport modeling required a complex terrain model. Because historical meteorological data necessary for a complex terrain model were lacking, meteorological instruments were installed, and relevant data were collected for 1 yr. Monthly average dispersion and deposition factors were calculated using the complex terrain model, CALPUFF. Radionuclide concentrations in air and deposition on ground were calculated by multiplying the estimated source-specific release rate by the dispersion or deposition factor. Time-dependent resuspension was also included in the model. Predicted concentrations in air and soil were compared to measurements from continuous air samplers from 1979 to 1986 and to soil profile sampling performed in 2006. The geometric mean predicted-to-observed ratio for annual average air concentrations was 1.25 with a geometric standard deviation of 1.8. Predicted-to-observed ratios for uranium concentrations in undisturbed soil ranged from 0.67 to 1.22. Average air concentrations from 1936 to 1984 in housing blocks ranged from about 2.5 to 6 mBq m(-3) for (238)U and 1.5 to 3.5 mBq m(-3) for (230)Th, (226)Ra, and (210)Pb.

  2. Atmospheric lead deposition to Okefenokee Swamp, Georgia, USA

    USGS Publications Warehouse

    Jackson, B.P.; Winger, P.V.; Lasier, P.J.

    2004-01-01

    'Capsule:' Coal combustion emissions appear to be a major source of Pb in the Okefenokee wetland. Contamination of the environment from atmospheric deposition during the twentieth century is pervasive even in areas ostensibly considered pristine or remote from point sources. In this study, Pb concentrations in a Pb-210-dated peat core collected from the Okefenokee Swamp, GA were used to assess historical contaminant input via atmospheric deposition. Lead isotope ratios were determined by dynamic reaction cell ICP-MS (DRC-ICP-MS). Increases in Pb concentration occurred in the late nineteenth century and a marked rise in Pb concentrations pre-dated the widespread use of leaded gasoline within the US. The Pb-206/Pb-207 ratios of 1.19 during this period were consistent with coal combustion emissions. A later increase in Pb concentration, concurrent with a trend toward more radiogenic Pb-206/Pb-207 ratios in gasoline is consistent with an increased input of Pb from leaded gasoline emissions. However, it appears that coal combustion emissions remain a major source of Pb to the Okefenokee.

  3. Atmospheric nutrient deposition to the west coast of South Africa

    NASA Astrophysics Data System (ADS)

    Nyaga, Justine M.; Cramer, Michael D.; Neff, Jason C.

    2013-12-01

    Atmospheric deposition is an important source of nutrients to many ecosystems, but is of particular importance to plant nutrition in areas where nutrients are scarce. Nutrient containing aerosols enter the atmosphere through industrial and agricultural activities, wildfires, and the production of terrigenous and marine aerosols. In this study, we collected bulk rain precipitation along the Atlantic coast of South Africa in a coastal “strandveld” vegetation region. This region is relatively remote from significant anthropogenic influences and is downwind of a highly productive and stormy portion of the Atlantic. Samples were collected over 12 months at sites along a 17 km downwind transect from the shoreline and analyzed for N, P, Na, Ca, Mg and K. Annual total N and total P fluxes of 4.8 kg ha-1 yr-1 and 0.16 kg ha-1 yr-1 are low compared to global averages. In contrast, fluxes of Na were 88.7 kg ha-1 yr-1, 16.2 kg ha-1 yr-1 for Ca, 12.1 kg ha-1 yr-1 for Mg and 5.2 kg ha-1 yr-1 for K; rates that are higher than most other measurements elsewhere in the world. Dissolved organic N represented ca. 71% of the N flux while 43% of the P flux was in the form of soluble reactive P (SRP). These results combined with the high fluxes of Na and Mg strongly suggest that marine aerosols are important contributors to nutrient deposition at this site.

  4. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  5. Microplasma deposition of challenging thin films at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hopwood, Jeffrey; Thejaswini, H. C.; Plasma Engineering Laboratory Team

    2015-09-01

    Non-equilibrium microplasmas produce fluxes of ions and excited species to a surface while maintaining the surface near room temperature. At atmospheric pressure, however, it is very difficult to accelerate the highly collisional ions. While many applications do not benefit from energetic interactions between plasma and surface, conventional plasma deposition of thin films often requires either ion bombardment or substrate heating. For example, diamondlike carbon (DLC) is known to require ~ 100 eV ion bombardment and transparent conducting oxides (TCO) typically require substrate temperatures on the order of 400-500 K. A microwave-induced microplasma is used to dissociate dilute precursor molecules within flowing helium. The precursor and plasma species result in rapid deposition of thin films (>1 μm/min). This plasma produces a steady-state ion flux of 6×1017 cm-2s-1, which is more than two orders of magnitude greater than a low pressure capacitively coupled plasma. Likewise, the metastable density is roughly two orders greater. These and other microplasma diagnostics are correlated with the measured film properties of microplasma-deposited DLC and TCO. This study shows that high ion flux, even at low energy (~ 1 eV), can provide the needed surface interactions to produce these materials at room temperature.

  6. Estimated variability of National Atmospheric Deposition Program/Mercury Deposition Network measurements using collocated samplers

    USGS Publications Warehouse

    Wetherbee, G.A.; Gay, D.A.; Brunette, R.C.; Sweet, C.W.

    2007-01-01

    The National Atmospheric Deposition Program/Mercury Deposition Network (MDN) provides long-term, quality-assured records of mercury in wet deposition in the USA and Canada. Interpretation of spatial and temporal trends in the MDN data requires quantification of the variability of the MDN measurements. Variability is quantified for MDN data from collocated samplers at MDN sites in two states, one in Illinois and one in Washington. Median absolute differences in the collocated sampler data for total mercury concentration are approximately 11% of the median mercury concentration for all valid 1999-2004 MDN data. Median absolute differences are between 3.0% and 14% of the median MDN value for collector catch (sample volume) and between 6.0% and 15% of the median MDN value for mercury wet deposition. The overall measurement errors are sufficiently low to resolve between NADP/MDN measurements by ??2 ng??l-1 and ??2 ????m-2?? year-1, which are the contour intervals used to display the data on NADP isopleths maps for concentration and deposition, respectively. ?? Springer Science+Business Media B.V. 2007.

  7. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

    PubMed Central

    Chun, Man Young

    2014-01-01

    Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Methods Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks (R2=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data. PMID:25116365

  8. MEASURING CONTAMINANT RESUSPENSION RESULTING FROM SEDIMENT CAPPING

    EPA Science Inventory

    This Sediment Issue summarizes two studies undertaken at marine sites by the National Risk Management Research Laboratory of U.S. EPA to evaluate the resuspension of surface materials contaminated with polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) b...

  9. Atmospheric deposition of methanol over the Atlantic Ocean.

    PubMed

    Yang, Mingxi; Nightingale, Philip D; Beale, Rachael; Liss, Peter S; Blomquist, Byron; Fairall, Christopher

    2013-12-10

    In the troposphere, methanol (CH3OH) is present ubiquitously and second in abundance among organic gases after methane. In the surface ocean, methanol represents a supply of energy and carbon for marine microbes. Here we report direct measurements of air-sea methanol transfer along a ∼10,000-km north-south transect of the Atlantic. The flux of methanol was consistently from the atmosphere to the ocean. Constrained by the aerodynamic limit and measured rate of air-sea sensible heat exchange, methanol transfer resembles a one-way depositional process, which suggests dissolved methanol concentrations near the water surface that are lower than what were measured at ∼5 m depth, for reasons currently unknown. We estimate the global oceanic uptake of methanol and examine the lifetimes of this compound in the lower atmosphere and upper ocean with respect to gas exchange. We also constrain the molecular diffusional resistance above the ocean surface-an important term for improving air-sea gas exchange models.

  10. Patterns of Soil and Streamwater Chemistry Relative to Atmospheric Deposition in Acadia National Park, Maine, USA

    NASA Astrophysics Data System (ADS)

    Ewing, H. A.; Weathers, K. C.; Hollister, C. C.; Steele, B.

    2006-12-01

    Atmospheric deposition is the source of many nutrients and pollutants to ecosystems, yet estimates of total deposition to complex landscapes are rare, thus limiting our understanding of the linkages between atmospheric deposition and ecosystem processes. Using a new model of atmospheric deposition to Acadia National Park, we have quantified deposition across elevational gradients and on a watershed basis, and here relate deposition to soil and streamwater chemistry. Soil samples collected across two elevational gradients varied three-fold in modeled deposition and four-fold in percent base saturation. Despite large variations in base saturation across sites and between surface and subsurface soil horizons, the relationship between deposition and Ca:Al ratios was weak. In the surface soil organic horizon, some trace metal concentrations (e.g., Pb) were strongly correlated with modeled deposition, but concentrations of other metals such as Cu and Zn were either unrelated or negatively correlated with modeled deposition. In general, the more biologically mobile trace metals were less well correlated with modeled deposition than those elements with lesser biological activity. At the watershed scale, deposition varied by a factor of two. Sulfate in streamwater was strongly correlated with modeled sulfur deposition to the watershed, suggesting that sulfur export may be strongly influenced by atmospheric inputs. Streamwater pH and ANC were variable among watersheds, however their patterns were weakly predicted by both deposition and landscape variables, suggesting that chemical and biological processing in the watershed may be more important than deposition in controlling these aspects of streamwater chemistry.

  11. Walking-induced particle resuspension in indoor environments

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Peccia, Jordan; Ferro, Andrea R.

    2014-06-01

    Resuspension of particles indoors increases the risk of consequent exposure through inhalation and non-dietary ingestion. Studies have been conducted to characterize indoor particle resuspension but results do not always agree, and there are still many open questions in this field. This paper reviews the recent research of indoor resuspension and summarizes findings to answer six critical questions: 1) How does the resuspension sources compared to other indoor sources; 2) How is resuspension determined and how does the resuspension measure change as a function of particle size; 3) What are the primary resuspension mechanisms; 4) What are the factors affecting resuspension; 5) What are the knowledge gaps and future research directions in this area; and 6) How can what we know about resuspension guide better exposure mitigation strategies? From synthesized results, we conclude that resuspension is an important source for indoor particulate matter, compared with other indoor sources. Among all existing quantification terms of resuspension, resuspension fraction has the least variation in its estimates by explicitly defining surface loading and walking frequency, and thus is recommended to be adopted in future research over other terms. Resuspension increases with particle size in the range of 0.7-10 μm, although differences exist in resuspension estimates by orders of magnitude. The primary mechanism of particle resuspension involves rolling detachment, and the adhesive forces can be greatly reduced by microscopic surface roughness. Particle resuspension is by nature complicated, affected by various factors and their interactions. There are still many open questions to be answered to achieve an understanding of resuspension fundamentals. Given the complex and multidisciplinary nature of resuspension, understanding indoor particle resuspension behavior requires cross-disciplinary participation from experts in aerosol science, textile science, surface chemistry

  12. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-03-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and their deposition over oceans are not accounted for in current biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.1 Tg yr-1 (90% confidence of 2.2 to 11.5). Of these emissions, 2, 33 and 65% were emitted in particles <1 μm (PM1), 1-10 μm (PM1-10), and >10 μm (PM>10), respectively, compared to total Fe emissions from mineral sources of 41.0 Tg yr-1. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 and PM1-10 since 2000 due to a rapid increase from motor vehicles. These emissions have been introduced in a global 3-D transport model run at a spatial resolution of of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations were compared to measurements at 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the surface was within a factor of two at most sampling stations, and the deviation was within a factor of 1.5 at sampling stations dominated by combustion sources. We analyzed the relative contribution of combustion sources to total Fe concentrations over different regions of the

  13. Sources, transport and deposition of iron in the global atmosphere

    NASA Astrophysics Data System (ADS)

    Wang, R.; Balkanski, Y.; Boucher, O.; Bopp, L.; Chappell, A.; Ciais, P.; Hauglustaine, D.; Peñuelas, J.; Tao, S.

    2015-06-01

    Atmospheric deposition of iron (Fe) plays an important role in controlling oceanic primary productivity. However, the sources of Fe in the atmosphere are not well understood. In particular, the combustion sources of Fe and the subsequent deposition to the oceans have been accounted for in only few ocean biogeochemical models of the carbon cycle. Here we used a mass-balance method to estimate the emissions of Fe from the combustion of fossil fuels and biomass by accounting for the Fe contents in fuel and the partitioning of Fe during combustion. The emissions of Fe attached to aerosols from combustion sources were estimated by particle size, and their uncertainties were quantified by a Monte Carlo simulation. The emissions of Fe from mineral sources were estimated using the latest soil mineralogical database to date. As a result, the total Fe emissions from combustion averaged for 1960-2007 were estimated to be 5.3 Tg yr-1 (90% confidence of 2.3 to 12.1). Of these emissions, 1, 27 and 72% were emitted in particles < 1 μm (PM1), 1-10 μm (PM1-10), and > 10 μm (PM> 10), respectively, compared to a total Fe emission from mineral dust of 41.0 Tg yr-1 in a log-normal distribution with a mass median diameter of 2.5 μm and a geometric standard deviation of 2. For combustion sources, different temporal trends were found in fine and medium-to-coarse particles, with a notable increase in Fe emissions in PM1 since 2000 due to an increase in Fe emission from motor vehicles (from 0.008 to 0.0103 Tg yr-1 in 2000 and 2007, respectively). These emissions have been introduced in a global 3-D transport model run at a spatial resolution of 0.94° latitude by 1.28° longitude to evaluate our estimation of Fe emissions. The modelled Fe concentrations as monthly means were compared with the monthly (57 sites) or daily (768 sites) measured concentrations at a total of 825 sampling stations. The deviation between modelled and observed Fe concentrations attached to aerosols at the

  14. Atmospheric mercury deposition to Lake Michigan during the Lake Michigan Mass Balance Study.

    PubMed

    Landis, Matthew S; Keeler, Gerald J

    2002-11-01

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Studytogether with high-resolution over-water meteorological date provided by the National Oceanic and Atmospheric Administration (July, 1994-October, 1995). Atmospheric deposition was determined to be the primary pathway for mercury inputto Lake Michigan, contributing approximately 84% of the estimated 1403 kg total annual input (atmospheric deposition + tributary input). Wet (10.6 microg m(-2)) and dry deposition (9.7 microg m(-2)) contributed almost equally to the annual atmospheric Hg deposition of 20.3 microg m(-2) (1173 kg). Re-emission of dissolved gaseous Hg from the lake was also significant (7.8 microg m(-2)), reducing the net atmospheric deposition to 12.5 microg m(-2) (720 kg). A strong urban influence was observed in the over-water mercury deposition estimates in the southern portion of the lake. The Chicago/Gary urban area was estimated to contribute approximately 20% (127 kg) of the annual atmospheric mercury deposition to Lake Michigan. The magnitude of local anthropogenic mercury sources in the Chicago/Gary urban area suggests that emission reductions could significantly reduce atmospheric mercury deposition into Lake Michigan.

  15. Observational constraints of Polar Ice Deposits on Mars Atmospheric GCMs

    NASA Astrophysics Data System (ADS)

    Teodoro, L. F. A.; Elphic, R. C.; Hollingsworth, J. L.; Haberle, R. M.; Kahre, M. A.; Eke, V. R.; Roush, T. L.; Marzo, G. A.; Brown, A. J.; Feldman, W. C.; Maurice, S.

    2012-04-01

    Much of our current knowledge about Mars' climate and atmospheric global circulation stems from measurements taken by landers and orbiters. Thus for many years the details of the atmospheric circulation were studied using numerical global circulation models (GCMs) that have been successful in reproducing most of the available observations [1]. More than ever, GCMs will play a central role in analyzing the existing data and in planning and execution of upcoming missions. The Mars Odyssey Neutron Spectrometer (MONS) has enabled a comprehensive study of the overall distribution of hydrogen in the surface of Mars [2]. Deposits ranging between 20% and 100% Water-Equivalent Hydrogen (WEH) by mass are found pole-ward of 55 deg. latitude, while less H-rich deposits are found at lower latitudes. These results assume that the H distribution is uniform in the top meter of the martian soil. The Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) has identified numerous locations on Mars where hydrous minerals occur [3]. The information collected by MRO-CRISM samples the top few mm's to cm's of the surface. This independent information can impose additional constrains on the 3-D H distribution inferred from the MONS data. For instance, the absence of a correlation between WEH wt% drawn from the MONS and CRISM data at a location where the neutron data indicate high WEH implies the presence of a 3-D structure that is characterized by a top layer with a low abundance of water, either ice or hydrated minerals, and some buried layers where the concentration of H is higher than that expected in a uniformly mixed layer. However, the spatial resolution of MONS and MRO-CRISM are ~550 km and ~20-200m, respectively. Hence, one must assure the MRO-CRISM and MONS data are on the same scales. The MRO-CRISM data can be re-binned to lower resolution, but additionally the MONS instrumental smearing must be properly understood and removed. Usually, in the

  16. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-01-01

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class I Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge interior was sectioned, aged, and analyzed for mercury. Rainfall was acidic (pH 4.7-4.9), with average total and methyl mercury concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 3.8-4.1), dilute (specific conductance 35-60 pS), and highly organic (dissolved organic carbon 35-50 mg/L). Total mercury was 1-3.5 ng/L in surface and pore water, and methyl mercury was 0.02-0.20 ng/L. Total mercury in sediments and floc was 100-200 ng/g dry weight, and methyl mercury was 4-16 ng/g. Lead was 0-1.7 pg/L in rainfall, not detectable in surface water, 3.4-5.4 pg/L in pore water, and 3.9-4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  17. Influence of atmospheric deposition on Okefenokee National Wildlife Refuge

    SciTech Connect

    Winger, P.V.; Lasier, P.J.; Jackson, B.P.

    1995-12-31

    Designation of Okefenokee National Wildlife Refuge (Georgia) as a Class 1 Air Quality Area affords mandatory protection of the airshed through permit-review processes for planned developments. Rainfall is the major source of water to the swamp, and potential impacts from developments in the airshed are high. To meet management needs for baseline information, chemical contributions from atmospheric deposition and partitioning of anions and cations in various matrices of the swamp, with emphasis on mercury and lead, were determined during this study. Chemistry of rainfall was measured on an event basis from one site and quarterly on surface water, pore water, floc, and sediment from four locations. A sediment core collected from the Refuge concentrations of 9 ng/L and 0.1 ng/L, respectively. Surface waters were acidic (pH 4.7--4.9), with average total and methyl mercury highly organic (dissolved organic carbon 35--50 mg/L). Total mercury was 1--3.5 ng/L in surface and pore water, and methyl mercury was 0.02--0.20 ng/L. Total mercury in sediments and floc was 100--200 ng/g dry weight, and methyl mercury was 4--16ng/g. Lead was 0--1.7 {micro}g/L in rainfall, not detectable in surface water, 3.4--5.4 {micro}g/L in pore water, and 3.9--4.9 mg/kg in floc and sediment. Historical patterns of mercury deposition showed an increase in total mercury from pre-1800 concentrations of 250 ng/g to 500 ng/g in 1950, with concentrations declining thereafter to present.

  18. Imbalanced atmospheric nitrogen and phosphorus depositions in China: Implications for nutrient limitation

    NASA Astrophysics Data System (ADS)

    Zhu, Jianxing; Wang, Qiufeng; He, Nianpeng; Smith, Melinda D.; Elser, James J.; Du, Jiaqiang; Yuan, Guofu; Yu, Guirui; Yu, Qiang

    2016-06-01

    Atmospheric wet nitrogen (N) and phosphorus (P) depositions are important sources of bioavailable N and P, and the input of N and P and their ratios significantly influences nutrient availability and balance in terrestrial as well as aquatic ecosystems. Here we monitored atmospheric P depositions by measuring monthly dissolved P concentration in rainfall at 41 field stations in China. Average deposition fluxes of N and P were 13.69 ± 8.69 kg N ha-1 a-1 (our previous study) and 0.21 ± 0.17 kg P ha-1 a-1, respectively. Central and southern China had higher N and P deposition rates than northwest China, northeast China, Inner Mongolia, or Qinghai-Tibet. Atmospheric N and P depositions showed strong seasonal patterns and were dependent upon seasonal precipitation. Fertilizer and energy consumption were significantly correlated with N deposition but less correlated with P deposition. The N:P ratios of atmospheric wet deposition (with the average of 77 ± 40, by mass) were negatively correlated with current soil N:P ratios in different ecological regions, suggesting that the imbalanced atmospheric N and P deposition will alter nutrient availability and strengthen P limitation, which may further influence the structure and function of terrestrial ecosystems. The findings provide the assessments of both wet N and P deposition and their N:P ratio across China and indicate potential for strong impacts of atmospheric deposition on broad range of terrestrial ecosystems.

  19. The investigation of atmospheric deposition distribution of organochlorine pesticides (OCPs) in Turkey

    NASA Astrophysics Data System (ADS)

    Cindoruk, S. Sıddık; Tasdemir, Yücel

    2014-04-01

    Atmospheric deposition is a significant pollution source leading to contamination of remote and clean sites, surface waters and soils. Since persistent organic pollutants (POPs) stay in atmosphere without any degradation, they can be transported and deposited to clean surfaces. Organochlorine pesticides are an important group of POPs which have toxic and harmful effects to living organisms and environment. Therefore, atmospheric deposition levels and characteristics are of importance to determine the pollution quantity of water and soil surfaces in terms of POPs. This study reports the distribution quantities of atmospheric deposition including bulk, dry, wet and air-water exchange of particle and gas phase OCPs as a result of 1-year sampling campaign. Atmospheric deposition distribution showed that the main mechanism for OCPs deposition is wet processes with percentage of 69 of total deposition. OCP compounds' deposition varied according to atmospheric concentration and deposition mechanism. HCH compounds were dominant pesticide species for all deposition mechanisms. HCH deposition constituted the 65% of Σ10OCPs.

  20. The Measurement of Atmospheric Concentrations and Deposition of Semi-Volatile Organic Compounds.

    ERIC Educational Resources Information Center

    Lee, David S.; Nicholson, Ken W.

    1994-01-01

    Provides a physical description of semivolatile organic compounds (SVOCs), both in terms of their characteristic nature in the atmosphere and the processes which control their deposition. Contains a summary of the requirements for a full assessment of atmospheric SVOCs and their deposition. (LZ)

  1. Arsenic in atmospheric deposition at the Czech-Polish border: two sampling campaigns 20 years apart.

    PubMed

    Dousová, Barbora; Erbanová, Lucie; Novák, Martin

    2007-11-15

    Arsenic (As) occurs in atmospheric deposition both in soluble and insoluble forms, mainly bound to fine aerosol particles (less than 2.5 microm). Interception deposition (i.e. fog, dew and ice accretion) represents a specific type of atmospheric deposition, which has been much more contaminated with As than bulk deposition. This study compares the As amount and its binding forms in bulk and interception deposition in the winters of 1984-1986 and 2003-2005 in the Orlické hory mountains (Adlergebirge) near the Czech-Polish border; sampled and analysed by the same methodology. The As concentrations in ice accretions decreased 16 times over the twenty year period (from 50 microg L(-1) to 3 microg L(-1)), while the pH values increased by 0.8 units. As concentrations in snow decreased from 15 microg L(-1) in 1984-1986 to <2 microg L(-1) in 2003-2005. This decline mirrored the considerable decrease in industrial emissions in Central Europe. Higher acidity of interception deposition (about 1 pH unit) in comparison with the bulk deposition was observed in both sampling periods. The quantity of bulk deposition (snowfall) also influenced the As concentration in interception deposition. Dry periods resulted in higher As-amounts in interception deposition due to limited washing of atmospheric aerosol particles by wet deposition. The As concentration and stability in atmospheric deposition are important for the study of subsequent As-migration and/or accumulation in soil -- groundwater -- surface water.

  2. Atmospherically deposited trace metals from bulk mineral concentrate port operations.

    PubMed

    Taylor, Mark Patrick

    2015-05-15

    Although metal exposures in the environment have declined over the last two decades, certain activities and locations still present a risk of harm to human health. This study examines environmental dust metal and metalloid hazards (arsenic, cadmium, lead and nickel) associated with bulk mineral transport, loading and unloading port operations in public locations and children's playgrounds in the inner city of Townsville, northern Queensland. The mean increase in lead on post-play hand wipes (965 μg/m(2)/day) across all sites was more than 10-times the mean pre-play loadings (95 μg/m(2)/day). Maximum loading values after a 10-minute play period were 3012 μg/m(2), more than seven times the goal of 400 μg/m(2) used by the Government of Western Australia (2011). Maximum daily nickel post-play hand loadings (404 μg/m(2)) were more than 26 times above the German Federal Immission Control Act 2002 annual benchmark of 15 μg/m(2)/day. Repeat sampling over the 5-day study period showed that hands and surfaces were re-contaminated daily from the deposition of metal-rich atmospheric dusts. Lead isotopic composition analysis of dust wipes ((208)Pb/(207)Pb and (206)Pb/(207)Pb) showed that surface dust lead was similar to Mount Isa type ores, which are exported through the Port of Townsville. While dust metal contaminant loadings are lower than other mining and smelting towns in Australia, they exceeded national and international benchmarks for environmental quality. The lessons from this study are clear - even where operations are considered acceptable by managing authorities, targeted assessment and monitoring can be used to evaluate whether current management practices are truly best practice. Reassessment can identify opportunities for improvement and maximum environmental and human health protection.

  3. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Roelle, Paul A.; Murray, George C.; Southerland, James; Erisman, Jan Willem; Fowler, David; Asman, Willem A. H.; Patni, Naveen

    The Atmospheric Nitrogen Compounds II: Emissions, Transport, Transformation, Deposition and Assessment workshop was held in Chapel Hill, NC from 7 to 9 June 1999. This international conference, which served as a follow-up to the workshop held in March 1997, was sponsored by: North Carolina Department of Environment and Natural Resources; North Carolina Department of Health and Human Services, North Carolina Office of the State Health Director; Mid-Atlantic Regional Air Management Association; North Carolina Water Resources Research Institute; Air and Waste Management Association, RTP Chapter; the US Environmental Protection Agency and the North Carolina State University (College of Physical and Mathematical Sciences, and North Carolina Agricultural Research Service). The workshop was structured as an open forum at which scientists, policy makers, industry representatives and others could freely share current knowledge and ideas, and included international perspectives. The workshop commenced with international perspectives from the United States, Canada, United Kingdom, the Netherlands, and Denmark. This article summarizes the findings of the workshop and articulates future research needs and ways to address nitrogen/ammonia from intensively managed animal agriculture. The need for developing sustainable solutions for managing the animal waste problem is vital for shaping the future of North Carolina. As part of that process, all aspects of environmental issues (air, water, soil) must be addressed as part of a comprehensive and long-term strategy. There is an urgent need for North Carolina policy makers to create a new, independent organization that will build consensus and mobilize resources to find technologically and economically feasible solutions to this aspect of the animal waste problem.

  4. Integrated Assessment of Ecosystem Effects of Atmospheric Deposition

    EPA Science Inventory

    Ecosystems obtain a portion of their nutrients from the atmosphere. Following the Industrial Revolution, however, human activities have accelerated biogeochemical cycles, greatly enhancing the transport of substances among the atmosphere, water, soil, and living things. The atmos...

  5. CHEMICAL DYNAMICS OF HYDROPHOBIC ORGANIC CONTAMINANTS DURING RESUSPENSION

    EPA Science Inventory

    Laboratory experiments were designed to study the chemical-particle dynamics of toxic hydrophobic organics during resuspension episodes using a particle entrainment simulator (PES). The purpose was to obtain insight into chemical transport mechanisms during resuspension. Informat...

  6. 210Po and 210Pb as Tracers of Particle Cycling and Resuspension in a Dynamic Freshwater System: Case Study from the Clinton River, Southeast Michigan

    NASA Astrophysics Data System (ADS)

    Mudbidre, R.; Baskaran, M. M.; Schweitzer, L.

    2013-12-01

    Polonium-210 and 210Pb are constantly delivered to the surface waters through atmospheric deposition with a 210Po/210Pb activity ratio (AR) of < 0.10. Freshly produced suspended particles in surface waters are ';tagged' with this ratio which tends to grow towards the secular equilibrium value of 1.0. This disequilibrium between 210Po and 210Pb in freshwater system with a relatively short hydrological residence time can be utilized to quantify sediment resuspension rates and to investigate the extent of recycling of sedimentary particulate matter. From the measurements of 210Po and 210Pb in particulate matter collected in sediment traps and surficial bottom sediments at 5 different sites in the Clinton River in southeast Michigan over a period of 6 months (April - September, 2005) and subsequent modeling of these data, we report the following: i) The direct atmospheric deposition of 210Po and 210Pb collected in the sediment trap materials accounted for 1% and 0.1%, respectively, of the total deposited in the sediment trap; ii) The ranges and mean values of the 210Po and 210Pb in the sediment trap material and bottom sediments are comparable, with near identical 210Po/210Pb ratios, indicating that most of the trapped 210Po and 210Pb were delivered by the resuspension of bottom sediments; iii) The particle residence times varied from 0.3 to 4 days for 210Pb and 0.9 to 13.4 days for 210Po; and iv) The sediment resuspension rates calculated via single box model approach yielded resuspension rates ranging from 0.2 to 14.2 g cm-2 yr-1 using 210Pb and 0.1 to 1.0 g cm-2 yr-1 using 210Po. We propose that the distribution of 210Bi (and 210Bi/210Pb) would provide better insight on particle cycling in short-time scales and a brief discussion will be presented on the utility of 210Bi/210Pb ratio as a powerful tool for short-term particle cycling and as tracers of POC, PON export studies in deeper freshwater lakes.

  7. Acid deposition and atmospheric chemistry at Allegheny Mountain

    SciTech Connect

    Pierson, W.R.; Brachaczek, W.W.; Gorse, R.A. Jr.; Japar, S.M.; Norbeck, J.M.; Keeler, G.J.

    1986-04-01

    In August, 1983 members of the Research Staff of Ford Motor Company carried out a field experiment at two rural sites in southwestern Pennsylvania involving various aspects of the acid deposition phenomenon. This presentation focuses on the wet (rain) deposition during the experiment, as well as the relative importance of wet and dry deposition processes for nitrate and sulfate at the sites. Other aspects of the experiment have been discussed elsewhere: the chemistry of dew and its role in acid deposition (1), the dry deposition of HNO/sub 3/ and SO/sub 2/ to surrogate surfaces (2), and the role of elemental carbon in light absorption and of light absorption in degradation of visibility (3).

  8. Can sulfate fluxes in forest canopy throughfall be used to estimate atmospheric sulfur deposition

    SciTech Connect

    Lindberg, S.E.; Garten, C.T. Jr. ); Cape, J.N. ); Ivens, W. )

    1991-01-01

    The flux of sulfate is forest throughfall and stemflow (the sum of which is designated here as TF) may be an indicator of the atmospheric deposition of S, particularly if foliar leaching of internal plant S is small relative to washoff of deposition. Extensive data from 13 forests indicate that annual sulfate fluxes in TF and in atmospheric deposition are very similar, and recent studies with {sup 35}S tracers indicate that leaching is only a few percent of total TF. However, some short-term deposition/TF comparisons show large differences, and there remain questions about interpretation of tracer results. Considering the data, we conclude that TF may be used under some conditions to estimate deposition within acceptable uncertainty limits, but that some assumptions need further testing. If TF does reflect deposition, these data suggest that commonly used methods and models seriously underestimate total S deposition at some sites. 39 refs. ,4 figs., 1 tab.

  9. Direct measurements of atmospheric iron, cobalt, and aluminum-derived dust deposition at Kerguelen Islands

    NASA Astrophysics Data System (ADS)

    Heimburger, A.; Losno, R.; Triquet, S.; Dulac, F.; Mahowald, N.

    2012-12-01

    Atmospheric deposition is one of the major sources of nutrients bringing trace metals to remote marine biota. In this study, total atmospheric deposition and crustal aerosol concentrations were monitored at Kerguelen Islands (49°18'S; 70°07'E) in the Southern Ocean during a short campaign in early 2005 and then continuously for about 2 years (2009-2010). Results show very low levels of atmospheric dust and trace metals concentrations but higher deposition fluxes than expected. The averaged total dust deposition flux as derived from Al deposition measurements is 659 μg m-2 d-1. Simultaneously measured Fe and Co deposition fluxes are respectively 29 μg m-2 d-1 (520 nmol m-2 d-1) and 0.014 μg m-2 d-1 (0.24 nmol m-2 d-1), giving typically crustal elemental ratios to Al of 0.54 and 2.6 10-4. Measured dust deposition is in relatively good agreement with those simulated by current atmospheric models, but suggest that previous indirect calculations from field experiments are too low by a factor of 20. Observations and model results show that dust is transported above the marine atmospheric boundary layer to Kerguelen Islands, and thus that surface concentrations are not representative of the total dust column. Indeed, using surface concentrations leads to very large computed wet scavenging ratios, and to the conclusion that it is not appropriate to derive deposition fluxes from surface concentrations at remote ocean sites.

  10. Storms, polar deposits and the methane cycle in Titan's atmosphere.

    PubMed

    Griffith, Caitlin Ann

    2009-02-28

    In Titan's atmosphere, the second most abundant constituent, methane, exists as a gas, liquid and solid, and cycles between the atmosphere and the surface. Similar to the Earth's hydrological cycle, Titan sports clouds, rain and lakes. Yet, Titan's cycle differs dramatically from its terrestrial counterpart, and reveals the workings of weather in an atmosphere that is 10 times thicker than the Earth's atmosphere, that is two orders of magnitude less illuminated, and that involves a different condensable. While ongoing measurements by the Cassini-Huygens mission are revealing the intricacies of the moon's weather, circulation, lake coverage and geology, knowledge is still limited by the paucity of observations. This review of Titan's methane cycle therefore focuses on measured characteristics of the lower atmosphere and surface that appear particularly perplexing or alien.

  11. Atmospheric wet and dry deposition of trace elements at ten sites in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y. P.; Wang, Y. S.

    2014-08-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil and water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatio-temporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at ten sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites. In contrast, the wet deposition exhibited less spatial variation. The seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for K, Ni, As, Pb, Zn, Cd, Se, Ag and Tl, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution and solubility of the particles. We found that atmospheric inputs of Cu, Pb, Zn, Cd, As and Se were of the same magnitude as their increases in

  12. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y. P.; Wang, Y. S.

    2015-01-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and

  13. ANN application for prediction of atmospheric nitrogen deposition to aquatic ecosystems.

    PubMed

    Palani, Sundarambal; Tkalich, Pavel; Balasubramanian, Rajasekhar; Palanichamy, Jegathambal

    2011-06-01

    The occurrences of increased atmospheric nitrogen deposition (ADN) in Southeast Asia during smoke haze episodes have undesired consequences on receiving aquatic ecosystems. A successful prediction of episodic ADN will allow a quantitative understanding of its possible impacts. In this study, an artificial neural network (ANN) model is used to estimate atmospheric deposition of total nitrogen (TN) and organic nitrogen (ON) concentrations to coastal aquatic ecosystems. The selected model input variables were nitrogen species from atmospheric deposition, Total Suspended Particulates, Pollutant Standards Index and meteorological parameters. ANN models predictions were also compared with multiple linear regression model having the same inputs and output. ANN model performance was found relatively more accurate in its predictions and adequate even for high-concentration events with acceptable minimum error. The developed ANN model can be used as a forecasting tool to complement the current TN and ON analysis within the atmospheric deposition-monitoring program in the region.

  14. Human health risk assessment of lead pollution in atmospheric deposition in Baoshan District, Shanghai.

    PubMed

    Chen, Yuanyuan; Wang, Jun; Shi, Guitao; Sun, Xiaojing; Chen, Zhenlou; Xu, Shiyuan

    2011-12-01

    The lead (Pb) content in atmospheric deposition was determined at 42 sampling sites in Baoshan District of Shanghai, China. Based on exposure and dose-response assessments, the health risk caused by Pb exposure in atmospheric deposition was investigated. The results indicated that Pb was significantly accumulated in atmospheric deposition. The spatial distribution of Pb was mapped by geostatistical analysis, and the results showed that pollution hotspots were present at traffic and industrial zones. Ingestion was the main route of Pb exposure in both adults and children. For children the risk value was above 1, whereas it was below 1 for the adult group. Therefore, children belong to the high-risk group for Pb exposure from atmospheric deposition in the observed area of Shanghai, China.

  15. ATMOSPHERIC MERCURY SIMULATION USING THE CMAQ MODEL: FORMULATION DESCRIPTION AND ANALYSIS OF WET DEPOSITION RESULTS

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) modeling system has recently been adapted to simulate the emission, transport, transformation and deposition of atmospheric mercury in three distinct forms; elemental mercury gas, reactive gaseous mercury, and particulate mercury. Emis...

  16. ESTIMATING GASEOUS EXCHANGES BETWEEN THE ATMOSPHERE AND PLANTS USING A COUPLED BIOCHEMICAL DRY DEPOSITION MODEL

    EPA Science Inventory

    To study gaseous exchanges between the soil, biosphere and atmosphere, a biochemical model was coupled with the latest version of Meyers Multi-Layer Deposition Model. The biochemical model describes photosynthesis and respiration and their coupling with stomatal resistance for...

  17. Atmospheric nitrogen in the Mississippi River Basin - Amissions, deposition and transport

    USGS Publications Warehouse

    Lawrence, G.B.; Goolsby, D.A.; Battaglin, W.A.; Stensland, G.J.

    2000-01-01

    Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NO(x) Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward

  18. Modeling atmospheric deposition using a stochastic transport model

    SciTech Connect

    Buckley, R.L.

    1999-12-17

    An advanced stochastic transport model has been modified to include the removal mechanisms of dry and wet deposition. Time-dependent wind and turbulence fields are generated with a prognostic mesoscale numerical model and are used to advect and disperse individually released particles that are each assigned a mass. These particles are subjected to mass reduction in two ways depending on their physical location. Particles near the surface experience a decrease in mass using the concept of a dry deposition velocity, while the mass of particles located within areas of precipitation are depleted using a scavenging coefficient. Two levels of complexity are incorporated into the particle model. The simple case assumes constant values of dry deposition velocity and scavenging coefficient, while the more complex case varies the values according to meteorology, surface conditions, release material, and precipitation intensity. Instantaneous and cumulative dry and wet deposition are determined from the mass loss due to these physical mechanisms. A useful means of validating the model results is with data available from a recent accidental release of Cesium-137 from a steel-processing furnace in Algeciras, Spain in May, 1998. This paper describes the deposition modeling technique, as well as a comparison of simulated concentration and deposition with measurements taken for the Algeciras release.

  19. Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption

    NASA Astrophysics Data System (ADS)

    Graciela Ulke, Ana; Torres Brizuela, Marcela M.; Raga, Graciela B.; Baumgardner, Darrel

    2016-09-01

    The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex in Chile impacted air traffic around the Southern Hemisphere for several months after the initial ash emissions. The ash deposited in vast areas of the Patagonian Steppe was subjected to the strong wind conditions prevalent during the austral winter and spring experiencing resuspension over various regions of Argentina. In this study we analyze the meteorological conditions that led to the episode of volcanic ash resuspension which impacted the city of Buenos Aires and resulted in the closure of the two main airports in Buenos Aires area (Ezeiza and Aeroparque) on 16 October 2011. A relevant result is that resuspended material (volcanic ash plus dust) imprints a distinguishable feature within the atmospheric thermodynamic vertical profiles. The thermodynamic soundings show the signature of "pulses of drying" in layers associated with the presence of hygroscopic ash in the atmosphere that has already been reported in similar episodes after volcanic eruptions in other parts of the world. This particular footprint can be used to detect the probable existence of volcanic ash layers. This study also illustrates the utility of ceilometers to detect not only cloud base at airports but also volcanic ash plumes at the boundary layer and up to 7 km altitude. Aerosol properties measured in the city during the resuspension episode indicate the presence of enhanced concentrations of aerosol particles in the boundary layer along with spectral signatures in the measurements at the Buenos Aires AERONET site typical of ash plus dust advected towards the city. The mandatory aviation reports from the National Weather Service about airborne and deposited volcanic ash at the airport near the measurement site (Aeroparque) correlate in time with the enhanced concentrations. The presence of the resuspended material was detected by the CALIOP lidar overpassing the region. Since the dynamics of ash resuspension and

  20. Atmospheric deposition of sup 7 Be and sup 10 Be

    SciTech Connect

    Brown, L. ); Stensland, G.J. ); Klein, J.; Middleton, R. )

    1989-01-01

    Measurements of {sup 10}Be in precipitation taken in Hawaii, Illinois and New Jersey over a period of five years are reported. The problem of contamination by the isotope being resuspended on wind blown soil that is also collected is addressed. Rain collected at Mauna Loa, Hawaii has such low values of dust contamination that it has been taken as clean, and the data from Illinois and New Jersey are evaluated on that assumption. The conclusion is that the deposition in a given amount of rain for the non-resuspended component is the same for all three stations, and the authors propose that the annual rate for mid-latitude locations have moderate rainfall is proportional to the local rainfall. {sup 7}Be, which is probably negligibly contributed to the measurements by soil contamination was measured for individual rains in Illinois and found to have a deposition of 1.4 {times} 10{sup 4} atom/cm{sup 3}. The authors have found that concentration variations between precipitation events greater than a factor of 20 exist for both isotopes and that relatively rare, high concentration events dominate deposition, thereby requiring long periods of observation to avoid significant error. Based on their own and other data they conclude that the best value for {sup 10}Be deposition is 1.5 {times} 10{sup 4} atom/cm{sup 3}, uncertain by 20%, and for {sup 7}Be is 1.2 {times} 10{sup 4} atom/cm{sup 3}, uncertain by 25%. A global average deposition rate cannot be inferred directly for either isotope from these kinds of data; however, the theoretical global deposition rate for {sup 10}Be is shown to be consistent with the deposition reported here, if the concentration in equatorial rain is about 3300 atom/g.

  1. The contribution of ice cover to sediment resuspension in a shallow temperate lake: possible effects of climate change on internal nutrient loading.

    PubMed

    Niemistö, Juha P; Horppila, Jukka

    2007-01-01

    The effect of ice cover on sediment resuspension and internal total P (Tot-P) loading was studied in the northern temperate Kirkkojärvi basin in Finland. The gross sedimentation and resuspension rates were estimated with sediment traps during ice-cover and ice-free periods. After ice break, the average gross sedimentation rate increased from 1.4 to 30.0 g dw m(-2) d(-1). Resuspension calculations showed clearly higher values after ice break as well. Under ice cover, resuspension ranged from 50 to 78% of the gross sedimentation while during the ice-free period it constituted from 87 to 97% of the gross sedimentation. Consequently, the average resuspension rate increased from 1.0 g dw m(-2) d(-1) under ice-cover to 27.0 g dw m(-2) d(-1) after thaw, indicating the strong effect of ice cover on sediment resuspension. To estimate the potential effect of climate change on internal P loading caused by resuspension we compared the Tot-P loading calculations between the present climate and the climate with doubled atmospheric CO2 concentration relative to the present day values (ice cover reduced from current 165 to 105 d). The annual load increased from 7.4 to 9.4 g m(-2). In conclusion, the annual internal Tot-P loading caused by resuspension will increase by 28% in the Kirkkojärvi basin if the 2xCO2 climate scenario comes true.

  2. Effect of the resuspension technique on distribution of the heavy metals in sediment and suspended particulate matter.

    PubMed

    Pourabadehei, Mehdi; Mulligan, Catherine N

    2016-06-01

    Harbour areas play important roles in the economy worldwide. Human activities, however, in those areas, generate contamination, which mostly accumulates in sediments. On the other hand, harbour areas have been facing deposition of significant amounts of sediment each year. As a consequence, shallowness and accumulation of contaminants in sediment become challenging issues in harbours. Among the various management options for remediation of contaminated sediments in harbours, resuspension technique was introduced as a new approach to address those issues. The concept of the resuspension method is that finer sediments have a greater tendency to adsorb the contamination. Therefore, removing the finer sediments instead of dredging the whole contaminated area is the main goal of the resuspension technique. The objective of this paper was to evaluate the effect of the resuspension method on reducing the concentration of contamination and distribution of heavy metals in sediment and suspended particulate matter. The resuspension method was successful in reducing the concentration of seven selected heavy metals (Cr, Ni, Cu, Zn, As, Cd and Pb) by removing just 4% of the contaminated sediment. The contamination intensity in the sediment, presented by geoaccumulation index, was reduced for Cd and Pb as the main contaminants by 26 and 28 percent and the rest of the selected heavy metals returned to the natural level. The results of the sequential extraction tests and enrichment factor implied that the resuspension technique is capable of decreasing the risk of remobilization of heavy metals in the aquatic ecosystem.

  3. Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas.

    PubMed

    Fernández, Pilar; Carrera, Guillem; Grimalt, Joan O; Ventura, Marc; Camarero, Lluís; Catalan, Jordi; Nickus, Ulrike; Thies, Hansjörg; Psenner, Roland

    2003-08-01

    Polycyclic aromatic hydrocarbons (PAH) were measured in bulk atmospheric deposition collected in three remote areas of Europe during 1997-1998. Mean total PAH fluxes over a period of 18 months were 1560 +/- 750 and 1150 +/- 630 ng m(-2) mo(-1) in the Pyrenees and the Alps, respectively. In the Caledonian mountains (Scandinavia) the observed mean fluxes were 1900 +/- 940 ng m(-2) mo(-1) (6 month collection). Similar qualitative PAH compositions (p values <0.05) in the bulk atmospheric deposition have been observed between sites, which are dominated by the more volatile parent compounds. The main differences between lakes are related to the high molecular weight compounds. Atmospheric deposition of PAH to these remote sites appears to be independent of their concentrations in the atmosphere, which are similar between sites (in the range of 1.8-3.0 ng x m(-3)), being controlled mainly by particle deposition, followed by precipitation and air temperature. A multilevel regression model including these three variables accounted for 74% of the total variability in total PAH bulk deposition; however, the contribution of each variable in the model is compound and site-dependent. The deposition of high molecular weight PAH depends more on particle deposition and precipitation, whereas air temperature is the main factor controlling the deposition fluxes of the low molecular weight PAH.

  4. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  5. Energy deposition in the earth's atmosphere due to impact of solar activity-generated disturbances

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Kan, L. C.; Tandberg-Hanssen, E.; Dryer, M.

    1979-01-01

    Energy deposition in and dynamic responses of the terrestrial atmosphere to solar flare-generated shocks and other physical processes - such as particle precipitation and local heating - are investigated self-consistently in the context of hydrodynamics, the problem being treated as an initial boundary-value problem. It is extremely difficult to construct a general model for the line solar activity-magnetosphere-atmosphere; however, a limited model for this link is possible. The paper describes such a model, and presents some results on energy deposition into the earth's atmosphere due to solar activity-generated disturbances. Results from the present calculations are presented and discussed.

  6. Wet and Dry Atmospheric Mercury Deposition Accumulates in Watersheds of the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.

    2013-12-01

    Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.

  7. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets

    USGS Publications Warehouse

    Latysh, Natalie E.; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  8. Improved mapping of National Atmospheric Deposition Program wet-deposition in complex terrain using PRISM-gridded data sets.

    PubMed

    Latysh, Natalie E; Wetherbee, Gregory Alan

    2012-01-01

    High-elevation regions in the United States lack detailed atmospheric wet-deposition data. The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) measures and reports precipitation amounts and chemical constituent concentration and deposition data for the United States on annual isopleth maps using inverse distance weighted (IDW) interpolation methods. This interpolation for unsampled areas does not account for topographic influences. Therefore, NADP/NTN isopleth maps lack detail and potentially underestimate wet deposition in high-elevation regions. The NADP/NTN wet-deposition maps may be improved using precipitation grids generated by other networks. The Parameter-elevation Regressions on Independent Slopes Model (PRISM) produces digital grids of precipitation estimates from many precipitation-monitoring networks and incorporates influences of topographical and geographical features. Because NADP/NTN ion concentrations do not vary with elevation as much as precipitation depths, PRISM is used with unadjusted NADP/NTN data in this paper to calculate ion wet deposition in complex terrain to yield more accurate and detailed isopleth deposition maps in complex terrain. PRISM precipitation estimates generally exceed NADP/NTN precipitation estimates for coastal and mountainous regions in the western United States. NADP/NTN precipitation estimates generally exceed PRISM precipitation estimates for leeward mountainous regions in Washington, Oregon, and Nevada, where abrupt changes in precipitation depths induced by topography are not depicted by IDW interpolation. PRISM-based deposition estimates for nitrate can exceed NADP/NTN estimates by more than 100% for mountainous regions in the western United States.

  9. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes

    NASA Astrophysics Data System (ADS)

    Baron, J.; Driscoll, C. T.; Stoddard, J. L.; Richer, E. E.

    2011-12-01

    Ecological effects of elevated atmospheric N deposition for high elevation lakes of the western and northeastern US include nutrient enrichment and acidification. These effects are most evident in high elevation lakes, which are sensitive to atmospheric deposition and have been minimally impacted by land disturbance. Nitrogen-limited lakes will exhibit increases in productivity and shifts in the composition of phytoplankton in response to increases in atmospheric N deposition. Wet N deposition reported by NADP/NTN does not accurately depict total N deposition including dry species, and national NADP maps can misrepresent total deposition amounts in regions of complex terrain, so we calculated N deposition three different ways in order to explore critical loads. The nutrient enrichment critical load for Western lakes ranged 1.0-3.0 kg N per ha per yr, reflecting near-lack of watershed vegetation in complex, snow-melt dominated terrain. The nutrient enrichment critical load for Northeastern lakes ranged 3.5-6.0 kg N per ha per yr. The N acidification critical loads associated with episodic N pulses in waters with low values of acid neutralizing capacity were 4.0 kg N per ha per yr (western) and 8.0 kg N per ha per yr (northeastern). Empirical critical loads for N-caused acidification were difficult to determine due to lack of observations in the West, and because of the additive effects of decades of atmospheric sulfur deposition in the Northeast. For both nutrient enrichment and acidification, the N critical load was a function of how atmospheric N deposition was determined.

  10. Impact of atmospheric nitrogen deposition on phytoplankton productivity in the South China Sea

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Wook; Lee, Kitack; Duce, Robert; Liss, Peter

    2014-05-01

    The impacts of anthropogenic nitrogen (N) deposition on the marine N cycle are only now being revealed, but the magnitudes of those impacts are largely unknown in time and space. The South China Sea (SCS) is particularly subject to high anthropogenic N deposition, because the adjacent countries are highly populated and have rapidly growing economies. Analysis of data sets for atmospheric N deposition, satellite chlorophyll-a (Chl-a), and air mass back trajectories reveals that the transport of N originating from the populated east coasts of China and Indonesia, and its deposition to the ocean, has been responsible for the enhancements of Chl-a in the SCS. We found that atmospheric N deposition contributed approximately 20% of the annual biological new production in the SCS. The airborne contribution of N to new production in the SCS is expected to grow considerably in the coming decades.

  11. Atmospheric inorganic nitrogen deposition to a typical red soil forestland in southeastern China.

    PubMed

    Fan, Jian-Ling; Hu, Zheng-Yi; Wang, Ti-Jian; Zhou, Jing; Wu, Cong-Yang-Hui; Xia, Xu

    2009-12-01

    A 2-year monitoring study was conducted to estimate nitrogen deposition to a typical red soil forestland in southeastern China. The dry deposition velocities (V(d)) were estimated using big leaf resistance analogy model. Atmospheric nitrogen dry deposition was estimated by combing V(d) and nitrogen compounds concentrations, and the wet deposition was calculated via rainfall and nitrogen concentrations in rainwater. The total inorganic nitrogen deposition was 83.7 kg ha(-1) a(-1) in 2004 and 81.3 kg ha(-1) a(-1) in 2005, respectively. The dry deposition contributed 78.6% to total nitrogen deposition, in which ammonia was the predominant contributor that accounted for 86.1%. Reduced nitrogen compounds were the predominant contributors, accounting for 78.3% of total nitrogen deposition. The results suggested that atmospheric inorganic nitrogen could be attributed to intensive agricultural practices such as excessive nitrogen fertilization and livestock production. Therefore, impacts of atmospheric nitrogen originated from agriculture practices on nearby forest ecosystems should be evaluated.

  12. Properties of TCO anodes deposited by atmospheric pressure chemical vapor deposition and their application to OLED lighting

    NASA Astrophysics Data System (ADS)

    Korotkov, R. Y.

    2012-02-01

    Doped ZnO is one of the materials currently being considered in commercial optoelectronic applications as a potential indium tin oxide (ITO) replacement for the transparent conducting oxide (TCO). The properties of doped ZnO anodes prepared at Arkema Inc. are analyzed using spectroscopic ellipsometer (230 to 1700 nm) and Hall-effect. The modeling of the refractive indexes is conducted using a double oscillator model. The model parameters are tested on a double layer: undoped and doped structure deposited by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates. Excellent correlation between calculated and experimental parameters was obtained.

  13. The precision of wet atmospheric deposition data from national atmospheric deposition program/national trends network sites determined with collocated samplers

    USGS Publications Warehouse

    Nilles, M.A.; Gordon, J.D.; Schroder, L.J.

    1994-01-01

    A collocated, wet-deposition sampler program has been operated since October 1988 by the U.S. Geological Survey to estimate the overall sampling precision of wet atmospheric deposition data collected at selected sites in the National Atmospheric Deposition Program and National Trends Network (NADP/NTN). A duplicate set of wet-deposition sampling instruments was installed adjacent to existing sampling instruments at four different NADP/NTN sites for each year of the study. Wet-deposition samples from collocated sites were collected and analysed using standard NADP/NTN procedures. Laboratory analyses included determinations of pH, specific conductance, and concentrations of major cations and anions. The estimates of precision included all variability in the data-collection system, from the point of sample collection through storage in the NADP/NTN database. Sampling precision was determined from the absolute value of differences in the analytical results for the paired samples in terms of median relative and absolute difference. The median relative difference for Mg2+, Na+, K+ and NH4+ concentration and deposition was quite variable between sites and exceeded 10% at most sites. Relative error for analytes whose concentrations typically approached laboratory method detection limits were greater than for analytes that did not typically approach detection limits. The median relative difference for SO42- and NO3- concentration, specific conductance, and sample volume at all sites was less than 7%. Precision for H+ concentration and deposition ranged from less than 10% at sites with typically high levels of H+ concentration to greater than 30% at sites with low H+ concentration. Median difference for analyte concentration and deposition was typically 1.5-2-times greater for samples collected during the winter than during other seasons at two northern sites. Likewise, the median relative difference in sample volume for winter samples was more than double the annual median

  14. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO42− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3−–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3−–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3−–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  15. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  16. Atmospheric deposition of dissolved nitrogen and phosphorus in the North Western, East Mediterranean and Black Sea

    NASA Astrophysics Data System (ADS)

    Violaki, Kalliopi; Moncheva, Snejana; Loÿe-Pilot, Marie-Dominique; Bourrin, François; Nikolaou, Panayiota; Delsaut, Nicole; Kanakidou, Maria; Mihalopoulos, Nikos

    2014-05-01

    With humans having an increasing impact on Earth, the perturbation of biogeochemical cycles of nutrients (phosphorus, nitrogen and carbon) was inevitable. The interactions between nutrients and climate are expected to become an important determinant of the Earth biogeochemical cycles, while atmosphere is considered as an important nutrient path, especially for Mediterranean Sea. Since P & N is the limiting factor for many oligotrophic marine environments, valuable information could be arisen by studying the role of organic and inorganic forms in atmospheric deposition samples This study aims to investigate the sources, forms and the biogeochemical significance of soluble atmospheric P & N over the North Western and East Mediterranean & Black Sea. Bulk deposition samples have been collected at Cape Bear (Perpignan, France), Crete (Finokalia station) and Black Sea (Varna) and analyzed for P and N speciation. In NW Mediterranean important contribution of Dissolved Inorganic Nitrogen (DIN:NO3-,NH4+) to Total Dissolved N was observed during the seven year period, while the average percentage contribution of NO3-, NH4+ and DON to TDN was estimated 53%, 28% and 19%, respectively. Accordingly, was observed important contribution of Dissolved organically bound phosphorus (DOP) to Total Dissolved Phosphorus. Inorganic Nutrients are much higher in NW Mediterranean comparing with the East part, especially in NH4+ deposition, mainly due to local sources. Additionally preliminary results show that the atmospheric deposition of inorganic nutrients is much higher over Black Sea, comparing with Mediterranean Sea, suggesting that atmospheric deposition is an important nutrients path for that marine ecosystem.

  17. Human - driven atmospheric deposition of N & P controls on the East Mediterranean marine ecosystem

    NASA Astrophysics Data System (ADS)

    Christodoulaki, Sylvia; Petihakis, George; Mihalopoulos, Nikolaos; Tsiaras, Konstantinos; Triantafyllou, George; Kanakidou, Maria

    2016-04-01

    The historical and future impacts of atmospheric deposition of inorganic nitrogen (N) and phosphorus (P) on the marine ecosystem in the East Mediterranean Sea are investigated by using a 1-D coupled physical- biogeochemical model, set-up for the Cretan Sea as a representative area of the basin. For the present-day simulation (2010), the model is forced by observations of atmospheric deposition fluxes at Crete, while for the hindcast (1860) and forecast (2030) simulations, the changes in atmospheric deposition calculated by global chemistry- transport models are applied to the present-day observed fluxes. The impact of the atmospheric deposition on the fluxes of carbon in the food chain is calculated together with the contribution of human activities to these impacts. The results show that total phytoplanktonic biomass increased by 16% over the past 1.5 century. Small fractional changes in carbon fluxes and planktonic biomasses are predicted for the near future. Simulations show that atmospheric deposition of N and P may be the main mechanism responsible for the anomalous N to P ratio observed in the Mediterranean Sea.

  18. Evaluating the Contributions of Atmospheric Deposition of Carbon and Other Nutrients to Nitrification in Alpine Environments

    NASA Astrophysics Data System (ADS)

    Oldani, K. M.; Mladenov, N.; Williams, M. W.

    2013-12-01

    The Colorado Front Range of the Rocky Mountains contains undeveloped, barren soils, yet in this environment there is strong evidence for a microbial role in increased nitrogen (N) export. Barren soils in alpine environments are severely carbon-limited, which is the main energy source for microbial activity and sustenance of life. It has been shown that atmospheric deposition can contain high amounts of organic carbon (C). Atmospheric pollutants, dust events, and biological aerosols, such as bacteria, may be important contributors to the atmospheric organic C load. In this stage of the research we evaluated seasonal trends in the chemical composition and optical spectroscopic (fluorescence and UV-vis absorbance) signatures of snow, wet deposition, and dry deposition in an alpine environment at Niwot Ridge in the Rocky Mountains of Colorado to obtain a better understanding of the sources and chemical character of atmospheric deposition. Our results reveal a positive trend between dissolved organic carbon concentrations and calcium, nitrate and sulfate concentrations in wet and dry deposition, which may be derived from such sources as dust and urban air pollution. We also observed the presence of seasonally-variable fluorescent components that may be attributed to fluorescent pigments in bacteria. These results are relevant because atmospheric inputs of carbon and other nutrients may influence nitrification in barren, alpine soils and, ultimately, the export of nitrate to alpine watersheds.

  19. Global Simulation of Atmospheric Mercury Concentrations and Deposition Fluxes. Appendix Q

    NASA Technical Reports Server (NTRS)

    Shia, Run-Lie; Seigneur, Christian; Pai, Prasad; Ko, Malcolm; Sze, Nien Dak

    1999-01-01

    Results from a numerical model of the global emissions, transport, chemistry, and deposition of mercury (Hg) in the atmosphere are presented. Hg (in the form of Hg(O) and Hg(II)) is emitted into the atmosphere from natural and anthropogenic sources (estimated to be 4000 and 2100 Mg/ yr, respectively). It is distributed between gaseous, aqueous and particulate phases. Removal of Hg from the atmosphere occurs via dry deposition and wet deposition, which are calculated by the model to be 3300 and 2800 Mg/ yr, respectively. Deposition on land surfaces accounts for 47% of total global deposition. The simulated Hg ambient surface concentrations and deposition fluxes to the Earth's surface are consistent with available observations. Observed spatial and seasonal trends are reproduced by the model, although larger spatial variations are observed in Hg(O) surface concentrations than are predicted by the model. The calculated atmospheric residence time of Hg is -1.7 years. Chemical transformations between Hg(O) and HG(II) have a strong influence on Hg deposition patterns because HG(II) is removed faster than Hg(O). Oxidation of Hg(O) to HG(II) occurs primarily in the gas phase, whereas HG(II) reduction to Hg(O) occurs solely in the aqueous phase. Our model results indicated that in the absence of the aqueous reactions the atmospheric residence time of Hg is reduced to 1.2 from 1.7 years and the Hg surface concentration is -25% lower because of the absence of the HG(II) reduction pathway. This result suggests that aqueous chemistry is an essential component of the atmospheric cycling of Hg.

  20. Spatial and seasonal atmospheric PAH deposition patterns and sources in Rhode Island

    NASA Astrophysics Data System (ADS)

    Schifman, Laura A.; Boving, Thomas B.

    2015-11-01

    Polycyclic aromatic hydrocarbons (PAH) enter the environment through various combustion processes and can travel long distances via atmospheric transport. Here, atmospheric PAH deposition was measured in six locations throughout Rhode Island using passive atmospheric bulk-deposition samplers for three years. The measurements were evaluated using two source-specific PAH isomer signatures, a multivariate receptor model, and an innovative contamination index that is weighted based on PAH contamination, number of detected compounds, and toxicity. Urban areas had significantly higher deposition rates (up to 2261 μg m-2 yr-1 ∑PAH) compared to peri-urban, coastal, and rural areas (as low as 73.6 μg m-2 yr-1 ∑PAH). In fall and winter, PAH deposition was up to 10 times higher compared to summer/spring. On an annual basis a total of 3.64 t yr-1 ∑PAH (2256.9 μg yr-1 m-2 ∑PAH) are estimated to be deposited atmospherically onto Rhode Island. Both, the analysis using isomer ratios and the statistical analysis using positive matrix factorization agreed on source identification. Overall gasoline, petrodiesel, and oil combustion sources were identified in all samples year-round while wood combustion associated PAH deposition was only detected during the cold season.

  1. Wet atmospheric deposition of pesticides in Minnesota, 1989-94

    USGS Publications Warehouse

    Capel, Paul D.; Lin, Ma; Wotzka, Paul J.

    1998-01-01

    The pesticide fluxes in the streams out of the small three watersheds was compared to the pesticide flux into the watersheds in rain. The data indicate that flux into the watersheds from the rain is generally much greater than the flux from the watersheds in the streams. Therefore, a large fraction of the pesticides deposited in rain is retained within the watersheds. For the urban area, this is on the order of 98 percent for the four most commonly observed herbicides in rain and runoff.

  2. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-05-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have being roughly identified in only a few lowland tropical forests. Even scarcer are these type of studies in tropical mountain forests, many of them megadiversity hotspots and especially vulnerable to acidic deposition. Here, the topographic complexity and related streamflow condition the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass-burning, no source-emission data has been used for determining the contribution of each of them to the deposition. The main goal of the current study is to evaluate sulfate (SO4-) deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state of the art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain-pass El Tiro meteorological station.

  3. Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, S.; Rollenbeck, R.; Trachte, K.; Bendix, J.

    2014-10-01

    Atmospheric sulfur deposition above certain limits can represent a threat to tropical forests, causing nutrient imbalances and mobilizing toxic elements that impact biodiversity and forest productivity. Atmospheric sources of sulfur deposited by precipitation have been roughly identified in only a few lowland tropical forests. Even scarcer are studies of this type in tropical mountain forests, many of them mega-diversity hotspots and especially vulnerable to acidic deposition. In these places, the topographic complexity and related streamflow conditions affect the origin, type, and intensity of deposition. Furthermore, in regions with a variety of natural and anthropogenic sulfur sources, like active volcanoes and biomass burning, no source emission data has been used for determining the contribution of each source to the deposition. The main goal of the current study is to evaluate sulfate (SO4- deposition by rain and occult precipitation at two topographic locations in a tropical mountain forest of southern Ecuador, and to trace back the deposition to possible emission sources applying back-trajectory modeling. To link upwind natural (volcanic) and anthropogenic (urban/industrial and biomass-burning) sulfur emissions and observed sulfate deposition, we employed state-of-the-art inventory and satellite data, including volcanic passive degassing as well. We conclude that biomass-burning sources generally dominate sulfate deposition at the evaluated sites. Minor sulfate transport occurs during the shifting of the predominant winds to the north and west. Occult precipitation sulfate deposition and likely rain sulfate deposition are mainly linked to biomass-burning emissions from the Amazon lowlands. Volcanic and anthropogenic emissions from the north and west contribute to occult precipitation sulfate deposition at the mountain crest Cerro del Consuelo meteorological station and to rain-deposited sulfate at the upriver mountain pass El Tiro meteorological station.

  4. AIRSHED DOMAINS FOR MODELING ATMOSPHERIC DEPOSITION OF OXIDIZED AND REDUCED NITROGEN TO THE NEUSE/PAMLICO SYSTEM OF NORTH CAROLINA

    EPA Science Inventory

    Atmospheric deposition is important to nutrient loadings to coastal estuaries. Atmospheric emissions of nitrogen travel hundreds of kilometers as they are removed via atmospheric deposition. Long-range transport from outside the Neuse/Pamlico system in North Carolina is an impo...

  5. Atmospheric Mercury Transfer to Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition.

    PubMed

    Enrico, Maxime; Roux, Gaël Le; Marusczak, Nicolas; Heimbürger, Lars-Eric; Claustres, Adrien; Fu, Xuewu; Sun, Ruoyu; Sonke, Jeroen E

    2016-03-01

    Gaseous elemental mercury (GEM) is the dominant form of mercury in the atmosphere. Its conversion into oxidized gaseous and particulate forms is thought to drive atmospheric mercury wet deposition to terrestrial and aquatic ecosystems, where it can be subsequently transformed into toxic methylmercury. The contribution of mercury dry deposition is however largely unconstrained. Here we examine mercury mass balance and mercury stable isotope composition in a peat bog ecosystem. We find that isotope signatures of living sphagnum moss (Δ(199)Hg = -0.11 ± 0.09‰, Δ(200)Hg = 0.03 ± 0.02‰, 1σ) and recently accumulated peat (Δ(199)Hg = -0.22 ± 0.06‰, Δ(200)Hg = 0.00 ± 0.04‰, 1σ) are characteristic of GEM (Δ(199)Hg = -0.17 ± 0.07‰, Δ(200)Hg = -0.05 ± 0.02‰, 1σ), and differs from wet deposition (Δ(199)Hg = 0.73 ± 0.15‰, Δ(200)Hg = 0.21 ± 0.04‰, 1σ). Sphagnum covered during three years by transparent and opaque surfaces, which eliminate wet deposition, continue to accumulate Hg. Sphagnum Hg isotope signatures indicate accumulation to take place by GEM dry deposition, and indicate little photochemical re-emission. We estimate that atmospheric mercury deposition to the peat bog surface is dominated by GEM dry deposition (79%) rather than wet deposition (21%). Consequently, peat deposits are potential records of past atmospheric GEM concentrations and isotopic composition.

  6. Modelling the resuspension of volcanic ash from the Valley of Ten Thousand Smokes

    NASA Astrophysics Data System (ADS)

    Schwaiger, H. F.; Wallace, K.

    2015-12-01

    The 1912 eruption of Novarupta-Katmai was the world's most voluminous eruption since the 1815 eruption of Tombora. The eruption produced 17 km3 of ashfall and 11 km3 of pyroclastic flow deposits that filled nearby valleys, creating what is today known as the Valley of Ten Thousand Smokes. These voluminous pyroclastic deposits continue to pose hazards when strong winds in the valley resuspend ash in times of low snow cover. These resuspension events may be confined to the valley and only recorded when there are local observations (web camera images, field crew). Occasionally, however, these events can loft ash up to altitudes of several kilometers and extend up to 250 km downwind, where it becomes an aviation hazard. A compilation of satellite observations and pilot reports indicate that such significant events occurred on at least 19 occasions since 2003. The longest duration events occurred in the autumn months of September and October. Predicting the resuspension of ash requires estimates of when the ash is exposed (low snow cover), the magnitude of surface wind gusts, and the threshold friction velocity (u*). Models of u* require a characterization of the source ash (density, grain-size distribution) as well as soil moisture. We have sampled source deposits and have installed instruments in the Katmai region to record the relevant meteorological parameters in order to better predict these resuspension events. Using real-time measurements coupled with high-resolution (6 km, 1 hour) meteorological forecast products and a reanalysis of conditions that produced historic events, we constrain the parameters applicable the resuspension of Novarupta ash thus improving our ability to forecast this potential ash hazard. The volcanic ash dispersion and deposition model, Ash3d, will be used to forecast the transport of the resuspended ash.

  7. Modeling of atmospheric iron processing carried by mineral dust and its deposition to ocean

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan; Vukovic, Ana; Vujadinovic, Mirjam

    2014-05-01

    Relatively insoluble iron in dust originating from desert soils increases its solubility after Fe carried by mineral dust is chemically processed by the atmosphere. After dust is deposited deposition to the ocean, soluble Fe as a nutrient could enhance the marine primary production. The atmospheric dust cycle is driven by the atmospheric processes often of smaller, meso-scales. The soil mineralogy of dust emitted from sources determines also how much Fe in the aerosol will be finding. Once Fe is exposed to the atmospheric processes, the atmospheric radiation, clouds and polluted air will chemically affect the iron in dust. Global dust-iron models, having typical horizontal resolutions of 100-300 km which are mostly used to numerically simulate the fate of iron in the atmosphere can provide rather global picture of the dust and iron transport, but not details. Such models often introduce simplistic approximation on the Fe content in dust-productive soils. To simulate the Fe processing we instead implemented a high resolution regional atmospheric dust-iron model with detailed 1km global map for the geographic distribution of Fe content in soil. We also introduced a parameterization of the Fe processing caused by dust mineralogy, cloud processes and solar radiation. We will present results from simulation experiments in order to explore the model capability to reproduce major observed patterns of deposited Fe into the Atlantic cruises.

  8. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using delta17O.

    PubMed

    Michalski, Greg; Meixner, Thomas; Fenn, Mark; Hernandez, Larry; Sirulnik, Abby; Allen, Edith; Thiemens, Mark

    2004-04-01

    The isotopic composition of nitrate collected from aerosols, fog, and precipitation was measured and found to have a large 17O anomaly with delta17O values ranging from 20 percent per thousand to 30% percent per thousand (delta17O = delta17O - 0.52(delta18O)). This 17O anomaly was used to trace atmospheric deposition of nitrate to a semiarid ecosystem in southern California. We demonstrate that the delta17O signal is a conserved tracer of atmospheric nitrate deposition and is a more robust indicator of N deposition relative to standard delta18O techniques. The data indicate that a substantial portion of nitrate found in the local soil, stream, and groundwater is of atmospheric origin and does not undergo biologic processing before being exported from the system.

  9. Environmental consequences of uranium atmospheric releases from fuel cycle facility: II. The atmospheric deposition of uranium and thorium on plants.

    PubMed

    Pourcelot, L; Masson, O; Renaud, P; Cagnat, X; Boulet, B; Cariou, N; De Vismes-Ott, A

    2015-03-01

    Uranium and thorium isotopes were measured in cypress leaves, wheat grains and lettuce taken in the surroundings of the uranium conversion facility of Malvési (South of France). The comparison of activity levels and activity ratios (namely (238)U/(232)Th and (230)Th/(232)Th) in plants with those in aerosols taken at this site and plants taken far from it shows that aerosols emitted by the nuclear site (uranium releases in the atmosphere by stacks and (230)Th-rich particles emitted from artificial ponds collecting radioactive waste mud) accounts for the high activities recorded in the plant samples close to the site. The atmospheric deposition process onto the plants appears to be the dominant process in plant contamination. Dry deposition velocities of airborne uranium and thorium were measured as 4.6 × 10(-3) and 5.0 × 10(-3) m s(-1), respectively.

  10. Atmospheric Nitrate Deposition: a Large Nutrient Source in North Florida Watersheds

    NASA Astrophysics Data System (ADS)

    Fu, Jimeng

    Dry deposition of nitrate, estimated from a box model based on NO_{x} emissions and rain chemistry monitoring data over the contiguous 48 states, accounts for about half of the total US NO_{x} emissions, a deposition flux twice that of measured wet deposition. Thus, total atmospheric nitrate deposition is roughly three times wet only deposition. Ten subregions of wet only nitrate depositions were delineated by EOF analysis from the entire U.S.A., in which each has a narrow range of annual deposition flux and exhibits unique seasonal variation. The study was based on statistical analysis of chemical concentrations measured for more than 10 years in weekly rainfall samples of the National Atmospheric Deposition Program, NADP, and more than 20 years of river water samples of the U.S. Geological Survey, USGS. NO _{x} emissions appear to regulate the annual average total deposition fluxes while in the subregions rainfall characterizes the seasonal and shorter term variations in wet only depositions. Atmospheric wet and dry deposition ("acid rain") appears to be the principal source of nitrogen in twelve northern Florida watersheds that range from Pensacola to Gainesville (Escambia to Alachua Counties). River fluxes of total dissolved nitrogen average close to the atmospheric deposition fluxes of nitrate and ammonium ions. Factor analysis was applied to the data sets to resolve principal components: (1) in atmospheric data, that distinguish air pollution nitrate and sulfate from sea salt sodium and chloride, and (2) in surface water data, that distinguish ground water calcium, magnesium, and silica from meteoric water nitrate and sulfate. River concentration ratios N/P in the watersheds are high, averaging twice the Redfield mole ratio N/P = 16 for aquatic plant nutrients. The results indicate that excess dissolved nitrogen could be temporarily recycled in the watersheds but not retained, so that it could eventually flow to the coastal zone where N may be a limiting

  11. Characteristics of atmospheric depositions of ionic and carbonaceous components at remote sites in Japan

    NASA Astrophysics Data System (ADS)

    Sato, K.; Inomata, Y.; Kajino, M.; Tang, N.; Hayakawa, K.; Hakamata, M.; Morisaki, H.

    2015-12-01

    Atmospheric deposition process is important to evaluate lifetimes and budget of atmospheric components. Deposition amounts of sulfur and nitrogen compounds have been evaluated not only in East Asian region but also worldwide. On the other hand, atmospheric deposition of carbonaceous components including organic carbon (OC), elementary carbon (EC) and Polycyclic Aromatic Hydrocarbons (PAHs) were monitored only at a few sites in Europe, North America and Africa, which will obscure removal process and atmospheric concentration distribution of those components. In this study, ionic and carbonaceous components in precipitation and aerosol are monitored at remote sites in Japan, and the characteristics of atmospheric deposition amounts were evaluated.Field observations have been implemented at the Noto station since November 2013 and the Sado station since May 2011. Wet deposition samples were collected by rain samplers, and dry deposition samples were collected by high volume or low volume aerosol samplers. Concentrations of Cl-, NO3-, SO42-, NH4+, Na+, K+, Mg2+, Ca2+ were measured by ion chromatography, EC and OC by the IMPROVE protocol, and PAHs by HPLC with a fluorescence detector. Wet deposition amounts were calculated as the products of aqueous concentration and precipitation amounts, and dry deposition amounts were as the products of aerosol concentrations and deposition velocity estimated by the Inferential Method.Total (wet and dry) annual deposition amounts of carbonaceous components of NO3-, SO42-, EC, water insoluble OC, Fluoranthene at Noto (Nov. 2013 to Oct. 2014) were 4353.81 mg/m2, 7020.50 mg/m2, 149.84 mg/m2, 1191.09 mg/m2, 28.6 μg/m2, respectively. These amounts are comparable total annual deposition amounts of OC and EC at Sado (May 2011 to Feb. 2012), which were 166.04 mg/m2 and 834.0 mg/m2. Higher deposition amounts of ionic and carbonaceous components were observed, which would be attributable to long range transportation of the East Asian

  12. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Andersen, T.; Baron, J.S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

  13. Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment.

    PubMed

    Bergknut, Magnus; Laudon, Hjalmar; Jansson, Stina; Larsson, Anna; Gocht, Tilman; Wiberg, Karin

    2011-06-01

    The mass-balance between diffuse atmospheric deposition of organic pollutants, amount of pollutants retained by the terrestrial environment, and levels of pollutants released to surface stream waters was studied in a pristine northern boreal catchment. This was done by comparing the input of atmospheric deposition of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and PCBs with the amounts exported to surface waters. Two types of deposition samplers were used, equipped with a glass fibre thimble and an Amberlite sampler respectively. The measured fluxes showed clear seasonality, with most of the input and export occurring during winter and spring flood, respectively. The mass balance calculations indicates that the boreal landscape is an effective sink for PCDD/Fs and PCBs, as 96.0-99.9 % of received bulk deposition was retained, suggesting that organic pollutants will continue to impact stream water in the region for an extended period of time.

  14. Atmospheric Mercury Deposition Inferred from Glacial Records in the Tibetan Plateau: Modern Process and History

    NASA Astrophysics Data System (ADS)

    Zhang, Qianggong; Kang, Shichang; Zhang, Yulan

    2015-04-01

    Mercury (Hg) has been recognized as a global contaminant due to its intrinsic toxicity, biomagnifications in ecosystems, and long-range transport via the atmosphere. Atmospheric Hg deposition was evaluated using snowpits and an ice core retrieved from glaciers over the Tibetan Plateau (TP). Results revealed a wide range of total Hg (THg) concentrations (<1 to 43.6 ng L-1) in glacier snow and a clear seasonal variations with higher values in winter than those in summer. Estimated atmospheric Hg depositional fluxes ranged from 0.74 to 7.89 μg m-2 yr-1. Consecutive snowpit sampling at Zhadang glacier in the southern TP during summer season revealed that Hg in glaciers is mainly preserved in the form of particulate-bound Hg, Hg tends to accumulate in dust-enriched stratums during its percolation down to lower snow stratums. The presence of dust layers, usually formed yearly in winter/spring seasons, likely act as effective "adsorbers" enhancing the preservation and seasonality of the atmospheric Hg deposition records in glaciers over the TP. A high-resolution Hg record reconstructed by the Mt.Geladiandong ice core provided insight into historical atmospheric Hg deposition during the past 500 years. Notable elevated THg concentrations and fluxes were observed since 1940s, which coincides the increase of global Hg production, especially the Asian Hg production history. Ice core reconstructed Hg depositional flux for post-1940s era is over 6 times of that for pre-20th centuries, which clearly indicated anthropogenic influences on the regional, and perhaps even the global atmospheric Hg background and deposition rate.

  15. Atmospheric deposition in coniferous and deciduous tree stands in Poland

    NASA Astrophysics Data System (ADS)

    Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta

    2016-05-01

    The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and

  16. The biogeochemistry of an ombrotrophic bog: Evaluation of use as an archive of atmospheric mercury deposition

    SciTech Connect

    Benoit, J.M.; Fitzgerald, W.F.; Damman, A.W.H.

    1998-08-01

    The utility of ombrotrophic bogs as archives of atmospheric mercury deposition was assessed with an investigation in Arlberg Bog, Minnesota, US. Since the use of ombrotrophic bogs as archives depends on the immobility of deposited trace metals, the authors examined the postdepositional transport processes revealed by the solid-phase distributions of mercury and ancillary metals in this bog. They modeled metal speciation in bog pore-waters as a function of pe in order to understand metal behavior in ombrotrophic peat. Specifically, they considered the effect of water movement and resultant shifts in redox potential gradients on metal retention. The results indicate that Hg and Pb are immobile in ombrotrophic peat, so their distribution can be used to determine temporal changes in deposition. To substantiate the deposition estimates determined in this study, they emphasized the importance of confirming the validity of the dating scheme, assessing the degree of horizontal homogeneity in the accumulation record, and providing evidence for retention of Hg based on geochemical modeling. As recorded in Arlberg Bog, historic atmospheric Hg deposition increased gradually after the mid-1800s, peaked between 1950 and 1960, and may have declined thereafter. Preindustrial deposition was about 4 {micro}g/m{sup 2} year and recent deposition about 19 {micro}g/m{sup 2} year. The results of this study indicate that deposition at Arlberg Bog has been influenced by a regional and/or local-scale source.

  17. Atmospheric wet and litterfall mercury deposition at urban and rural sites in China

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Yang, Xu; Lang, Xiaofang; Zhou, Jun; Zhang, Hui; Yu, Ben; Yan, Haiyu; Lin, Che-Jen; Feng, Xinbin

    2016-09-01

    Mercury (Hg) concentrations and deposition fluxes in precipitation and litterfall were measured at multiple sites (six rural sites and an urban site) across a broad geographic area in China. The annual deposition fluxes of Hg in precipitation at rural sites and an urban site were 2.0 to 7.2 and 12.6 ± 6.5 µg m-2 yr-1, respectively. Wet deposition fluxes of Hg at rural sites showed a clear regional difference with elevated deposition fluxes in the subtropical zone, followed by the temporal zone and arid/semi-arid zone. Precipitation depth is the primary influencing factor causing the variation of wet deposition. Hg fluxes through litterfall ranged from 22.8 to 62.8 µg m-2 yr-1, higher than the wet deposition fluxes by a factor of 3.9 to 8.7 and representing approximately 75 % of the total Hg deposition at the forest sites in China. This suggests that uptake of atmospheric Hg by foliage is the dominant pathway to remove atmospheric Hg in forest ecosystems in China. Wet deposition fluxes of Hg at rural sites of China were generally lower compared to those in North America and Europe, possibly due to a combination of lower precipitation depth, lower GOM concentrations in the troposphere and the generally lower cloud base heights at most sites that wash out a smaller amount of GOM and PBM during precipitation events.

  18. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Kyle, M.; Steuer, L.; Nydick, K.R.; Baron, J.S.

    2009-01-01

    Atmospheric nitrogen (N) deposition to lakes and watersheds has been increasing steadily due to various anthropogenic activities. Because such anthropogenic N is widely distributed, even lakes relatively removed from direct human disturbance are potentially impacted. However, the effects of increased atmospheric N deposition on lakes are not well documented, We examined phytoplankton biomass, the absolute and relative abundance of limiting nutrients (N and phosphorus [P]), and phytoplankton nutrient limitation in alpine lakes of the Rocky Mountains of Colorado (USA) receiving elevated (>6 kg N??ha-1??yr-1) or low (<2 kg N??ha-1??yr-1) levels of atmospheric N deposition. Highdeposition lakes had higher NO3-N and total N concentrations and higher total N : total P ratios. Concentrations of chlorophyll and seston carbon (C) were 2-2.5 times higher in highdeposition relative to low-deposition lakes, while high-deposition lakes also had higher seston C:N and C:P (but not N:P) ratios. Short-term enrichment bioassays indicated a qualitative shift in the nature of phytoplankton nutrient limitation due to N deposition, as highdeposition lakes had an increased frequency of primary P limitation and a decreased frequency and magnitude of response to N and to combined N and P enrichment. Thus elevated atmospheric N deposition appears to have shifted nutrient supply from a relatively balanced but predominantly N-deficient regime to a more consistently P-limited regime in Colorado alpine lakes. This adds to accumulating evidence that sustained N deposition may have important effects on lake phytoplankton communities and plankton-based food webs by shifting the quantitative and qualitative nature of nutrient limitation. ?? 2009 by the Ecological Society of America.

  19. Atmospheric Deposition of Indium in the Northeastern United States: Flux and Historical Trends.

    PubMed

    White, Sarah Jane O; Keach, Carrie; Hemond, Harold F

    2015-11-03

    The metal indium is an example of an increasingly important material used in electronics and new energy technologies, whose environmental behavior and toxicity are poorly understood despite increasing evidence of detrimental health impacts and human-induced releases to the environment. In the present work, the history of indium deposition from the atmosphere is reconstructed from its depositional record in an ombrotrophic bog in Massachusetts. A novel freeze-coring technique is used to overcome coring difficulties posed by woody roots and peat compressibility, enabling retrieval of relatively undisturbed peat cores dating back more than a century. Results indicate that long-range atmospheric transport is a significant pathway for the transport of indium, with peak concentrations of 69 ppb and peak fluxes of 1.9 ng/cm2/yr. Atmospheric deposition to the bog began increasing in the late 1800s/early 1900s, and peaked in the early 1970s. A comparison of deposition data with industrial production and emissions estimates suggests that both coal combustion and the smelting of lead, zinc, copper, and tin sulfides are sources of indium to the atmosphere in this region. Deposition appears to have decreased considerably since the 1970s, potentially a visible effect of particulate emissions controls instated in North America during that decade.

  20. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  1. Atmospheric CO and hydrogen uptake and CO oxidizer phylogeny for miyake-jima, Japan volcanic deposits.

    PubMed

    King, Gary M; Weber, Carolyn F; Nanba, Kenji; Sato, Yoshinori; Ohta, Hiroyuki

    2008-01-01

    We have assayed rates of atmospheric CO and hydrogen uptake, maximum potential CO uptake and the major phylogenetic composition of CO-oxidizing bacterial communities for a variety of volcanic deposits on Miyake-jima, Japan. These deposits represented different ages and stages of plant succession, ranging from unvegetated scoria deposited in 1983 to forest soils on deposits >800 yr old. Atmospheric CO and hydrogen uptake rates varied from -2.0±1.8-6.3±0.1 mg CO m(-2) d(-1) and 0.0±0.4-2.0±0.2 mg H(2) m(-2) d(-1), respectively, and were similar to or greater than values reported for sites on Kilauea volcano, Hawaii, USA. At one of the forested sites, CO was emitted to the atmosphere, while two vegetated sites did not consume atmospheric hydrogen, an unusual observation. Although maximum potential CO uptake rates were also comparable to values for Kilauea, the relationship between these rates and organic carbon contents of scoria or soil indicated that CO oxidizers were relatively more abundant in Miyake-jima deposits. Phylogenetic analyses based on the large sub-unit gene for carbon monoxide dehydrogenase (coxL) indicated that many novel lineages were present on Miyake-jima, that CO-oxidizing Proteobacteria were prevalent in vegetated sites and that community structure appeared to vary more than composition among sites.

  2. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    NASA Astrophysics Data System (ADS)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  3. Direct atmospheric deposition of water-soluble nitrogen to the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Talbot, R. W.

    2000-12-01

    Measurements were made at New Castle, New Hampshire, on the shore of the Gulf of Maine from 1994 to 1997 to assess direct atmospheric deposition of water-soluble nitrogen to the surface waters of the gulf. Daily dry deposition was highly variable and ranged from ˜ 1 to 144 μmol N m-2 d-1 (median 16 μmol N m-2 d-1). Wet deposition dominated dry deposition, contributing 80-90% of the total flux annually. Wet deposition was also highly variable and ranged from 3 to 4264 μmol N m-2 d-1 (median 214 μmol N m-2 d-1). Fog water nitrogen deposition could contribute as much as large precipitation nitrogen deposition events, in excess of 500 μmol N m-2d-1. Dissolved organic nitrogen (DON) in precipitation constituted only a small fraction (3%) of the total precipitation nitrogen flux most of the year, except in spring where it comprised 14%, on average, of the total. The total atmospheric direct nitrogen (ADN) deposition numbers reported here do not include the contributions of fog and DON as they were not sampled regularly over the course of this study. The total ADN flux ranged from 1 to 4262 μmol N m-2 d-1 (median 23 μmol N m-2 d-1), depositing 52 mmol N m-2 yr-1 to the surface waters of the Gulf of Maine, 3% of the total N input to those waters annually. However, this deposition was highly episodic with events over 500 μmol N m-2 d-1 occurring in 8% of the days sampled but contributing 56% of the total measured flux and events in excess of 1000 μmol N m-2 d-1 occurring in 2% of the samples and contributing 22% of the total measured flux. It is these large events that may influence biological productivity of the Gulf of Maine. The annual wet deposition of inorganic N measured at New Castle exceeded that reported by two National Atmospheric Deposition Program (NADP) sites by 42% on average of that reported from Cape Cod, Massachusetts, and by 69% ofthat at Mt. Dessert Island, Maine. Estimates of the episodic atmospheric nitrogen flux to the surface waters of the

  4. Contributions of atmospheric nitrogen deposition to U.S. estuaries: Summary and conclusions: Chapter 8

    USGS Publications Warehouse

    Stacey, Paul E.; Greening, Holly; Kremer, James N.; Peterson, David; Tomasko, David A.; Valigura, Richard A.; Alexander, Richard B.; Castro, Mark S.; Meyers, Tilden P.; Paerl, Hans W.; Stacey, Paul E.; Turner, R. Eugene

    2001-01-01

    A NOAA project was initiated in 1998, with support from the U.S. EPA, to develop state-of-the-art estimates of atmospheric N deposition to estuarine watersheds and water surfaces and its delivery to the estuaries. Work groups were formed to address N deposition rates, indirect (from the watershed) yields from atmospheric and other anthropogenic sources, and direct deposition on the estuarine waterbodies, and to evaluate the levels of uncertainty within the estimates. Watershed N yields were estimated using both a land-use based process approach and a national (SPARROW) model, compared to each other, and compared to estimates of N yield from the literature. The total N yields predicted by the national model were similar to values found in the literature and the land-use derived estimates were consistently higher. Atmospheric N yield estimates were within a similar range for the two approaches, but tended to be higher in the land-use based estimates and were not wellcorrelated. Median atmospheric N yields were around 15% of the total N yield for both groups, but ranged as high as 60% when both direct and indirect deposition were considered. Although not the dominant source of anthropogenic N, atmospheric N is, and will undoubtedly continue to be, an important factor in culturally eutrophied estuarine systems, warranting additional research and management attention.

  5. Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity

    NASA Astrophysics Data System (ADS)

    Martino, M.; Hamilton, D.; Baker, A. R.; Jickells, T. D.; Bromley, T.; Nojiri, Y.; Quack, B.; Boyd, P. W.

    2014-07-01

    The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from ~25°N to 20°S and compare the results with those from Atlantic meridional transects (~50°N to 50°S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 µmol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain ~10% of primary production in both the western tropical Pacific.

  6. Mosses Indicating Atmospheric Nitrogen Deposition and Sources in the Yangtze River Drainage Basin, China

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-07-01

    Characterizing the level and sources of atmospheric N deposition in a large-scale area is not easy when using physical monitoring. In this study, we attempted to use epilithic mosses (Haplocladium microphyllum (Hedw.)) as a bioindicator. A gradient of atmospheric N deposition from 13.8 kg N ha-1 yr-1 to 47.7 kg N ha-1 yr-1 was estimated on the basis of moss tissue N concentrations and the linear equation between them. The estimated results are reliable because the highest atmospheric N deposition occurred in the middle parts of the Yangtze River, where the highest TN concentrations were also observed. Moss δ15N values in cities and forests were found in distinctly different ranges of approximately -10‰ to -6‰ and approximately -2‰ to 2‰, respectively, indicating that the main N sources in most of these cities were excretory wastes and those in forests were soil emissions. A negative correlation between moss δ15N values and the ratios of NH4-N/NO3-N in deposition (y = -1.53 x + 1.78) has been established when the ratio increased from 1.6 to 6.5. On the basis of the source information, the negative moss δ15N values in this study strongly indicate that NHy-N is the dominant N form in N deposition in the whole drainage basin. These findings are supported by the existing data of chemical composition of local N deposition.

  7. Internationally harmonized approach to biomonitoring trace element atmospheric deposition.

    PubMed

    Smodis, Borut; Bleise, Andreas

    2002-01-01

    The International Atomic Energy Agency (IAEA) has been systematically supporting work on biomonitoring air pollution using plants since 1997. Such studies are presently being supported by the IAEA in 14 countries within a co-ordinated research project. The main emphasis of this project is on (1) identification of suitable biomonitors of atmospheric pollution for local and/or regional application, and (2) their validation for general environmental monitoring, whenever possible. Although the participants are using different plants as biomonitors in their research in geographically and climatically diverse parts of the world, they are harmonising sampling approaches and analytical procedures. In this paper, an overview of these activities is given, along with the details, where possible. In all of these activities, proficiency testing and analytical quality assurance are important issues, which merit special attention. Within the scope of an intercomparison exercise, two lichen materials were distributed among the participating laboratories and a proficiency test was organised. The results obtained proved satisfactory performance for most participating laboratories.

  8. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil

    NASA Astrophysics Data System (ADS)

    de P. Pereira, Pedro A.; Lopes, Wilson A.; Carvalho, Luiz S.; da Rocha, Gisele O.; de Carvalho Bahia, Nei; Loyola, Josiane; Quiterio, Simone L.; Escaleira, Viviane; Arbilla, Graciela; de Andrade, Jailson B.

    Respiratory system is the major route of entry for airborne particulates, being the effect on the human organism dependent on chemical composition of the particles, exposure time and individual susceptibility. Airborne particulate trace metals are considered to represent a health hazard since they may be absorbed into human lung tissues during breathing. Fossil fuel and wood combustion, as well as waste incineration and industrial processes, are the main anthropic sources of metals to the atmosphere. In urban areas, vehicular emissions—and dust resuspension associated to road traffic—become the most important manmade source. This work investigated the atmospheric concentrations of TSP, PM 10 and elements such as iron, manganese, copper and zinc, from three different sites around Salvador Region (Bahia, Brazil), namely: (i) Lapa Bus Station, strongly impacted by heavy-duty diesel vehicles; (ii) Aratu harbor, impacted by an intense movement of goods, including metal ores and concentrates and near industrial centers and; (iii) Bananeira Village located on Maré Island, a non-vehicle-influenced site, with activities such as handcraft work and fishery, although placed near the port. Results have pointed out that TSP concentrations ranged between 16.9 (Bananeira) and 354.0 μg m -3 (Aratu#1), while for PM 10 they ranged between 30.9 and 393.0 μg m -3, both in the Lapa Bus Station. Iron was the major element in both Lapa Station and Aratu (#1 and #2), with average concentrations in the PM 10 samples of 148.9, 79.6 and 205.0 ng m -3, respectively. Zinc, on the other hand, was predominant in samples from Bananeira, with an average concentration of 145.0 ng m -3 in TSP samples, since no PM 10 sample was taken from this site. The main sources of iron in the Lapa Station and Aratu harbor were, respectively, soil resuspension by buses and discharge of solid granaries, as fertilizers and metal ores. On the other hand, zinc and copper in the bus station were mainly from

  9. Deuterium Retention in the Co-Deposition Carbon Layers Deposited by Radio-Frequency Magnetron Sputtering in D2 Atmosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Yuan; Shi, Li-Qun; Zhang, Bin; Hu, Jian-Sheng

    2014-05-01

    Carbon is deposited on C and Si substrates by rf magnetron plasma sputtering in a D2 atmosphere. The deposited layers are examined with ion beam analysis and thermal desorption spectroscopy (TDS). The growth rates of the layers deposited on Si decrease with increasing substrate temperature, while increase significantly with the increase of D2 pressure. Meanwhile, the deuterium concentrations in the layers deposited on the Si substrates decrease from 30% to 2% and from 31% to 1% on the C substrates, respectively, when the substrate temperature varies from 350K to 900 K. Similarly, the D concentration in the layer on the Si substrates increases from 3.4% to 47%, and from 8% to 35% on the C substrates when the D2 pressure increases from 0.3Pa to 8.0Pa. D desorption characterized by TDS is mainly in the forms of D2, HD, HDO, CD4, and C2D4, and a similar release peak occurs at 645 K. The release peak of D2 molecules at 960K can be attributed to the escaped gas from the thin co-deposited deuterium-rich carbon layer in the form of C-D bonding.

  10. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    USGS Publications Warehouse

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  11. Atmospheric deposition of nitrogen over Czech forests: refinement of estimation of dry deposition for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hunova, Iva; Stoklasova, Petra; Kurfurst, Pavel; Vlcek, Ondrej; Schovankova, Jana

    2014-05-01

    The accurate quantification of atmospheric deposition is very important for assessment of ambient air pollution impacts on ecosystems. Our contribution presents an advanced approach to improved quantification of atmospheric deposition of nitrogen over Czech forests, merging available measured data and model results. The ambient air quality monitoring in the Czech Republic is paid an appreciable attention (Hůnová, 2001) due to the fact, that in the recent past its territory belonged to the most polluted parts of Europe (Moldan and Schnoor, 1992). The time trends and spatial patterns of atmospheric deposition were published (Hůnová et al. 2004, Hůnová et al. 2014). Nevertheless, it appears that the atmospheric deposition of nitrogen, particularly the dry deposition, is likely to be underestimated due to unavailability of data of certain nitrogen species as HNO3(g) and NH3. It is known that HNO3(g) may contribute significantly to the dry deposition of nitrogen even in regions with relatively low concentrations (Flechard et al., 2011). We attempted to substitute unmeasured nitrogen species using an Eulerian photochemical dispersion model CAMx, the Comprehensive Air Quality Model with extensions (ESSS, 2011), coupled with a high resolution regional numeric weather prediction model Aladin (Vlček, Corbet, 2011). Preliminary results for 2008 indicate that dry deposition of nitrogen, so far based on detailed monitoring of ambient NOx levels, is underestimated substantially. The dry deposition of N/NOx in 2008 reported by Ostatnická (2009) was about 0.5 g.m-2.year-1 over 99.5 % of the nation-wide area, while the contribution of unmeasured nitrogen species estimated by CAMx model were much higher. To be specific, the dry deposition of N/HNO3(g) accounted for 1.0 g.m-2.year-1, and N/NH3 for 1.6 g.m-2.year-1. In contrast, the deposition of N/HONO (g) with 0.001 g.m-2.year-1, N/PAN with 0.007 g.m-2.year-1, particulate N/NO3- with 0.002 g.m-2.year-1, and particulate N/NH4

  12. Assessment of toxicity in waters due to heavy metals derived from atmospheric deposition using Vibrio fischeri.

    PubMed

    Cukurluoglu, Sibel; Muezzinoglu, Aysen

    2013-01-01

    Water toxicity originating from the atmospheric deposition of six heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) was investigated on Vibrio fischeri activity in Izmir, Turkey. A LUMIStox® test was applied to dry and wet deposition samples and metal solutions. The inhibition levels and effective toxicity concentrations of these samples and solutions were determined. Interactive toxicity effects among the metals were investigated. When the impacts of the synthetic single heavy metal solutions were compared with each other, a toxicity ranking of Cr>Cd>Pb>Cu>Zn>Ni was obtained in order of decreasing severity. The total effective concentrations of these six metals were in the ranges of 0.074-0.221 mg/L and 0.071-0.225 mg/L for receiving aqueous solutions of dry and wet atmospheric depositions, respectively. The toxicity data showed that the wet deposition samples were 15% more toxic than the dry deposition samples. The interactive toxicity effects of the heavy metals in both dry and wet deposition samples were classified as antagonistic. High levels of heavy metals deposited in dissolved form may constitute an important input in the biochemical cycle and may have significant impacts.

  13. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States

    PubMed Central

    Simkin, Samuel M.; Allen, Edith B.; Bowman, William D.; Clark, Christopher M.; Belnap, Jayne; Brooks, Matthew L.; Cade, Brian S.; Geiser, Linda H.; Gilliam, Frank S.; Jovan, Sarah E.; Pardo, Linda H.; Schulz, Bethany K.; Stevens, Carly J.; Suding, Katharine N.; Throop, Heather L.; Waller, Donald M.

    2016-01-01

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha−1⋅y−1, we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha−1⋅y−1 in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States. PMID:27035943

  14. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States

    USGS Publications Warehouse

    Simkin, Samuel M.; Allen, Edith B.; Bowman, William D.; Clark, Christopher M.; Belnap, Jayne; Brooks, Matthew L.; Cade, Brian S.; Collins, Scott L.; Geiser, Linda H.; Gilliam, Frank S.; Jovan, Sarah E.; Pardo, Linda H.; Schulz, Bethany K.; Stevens, Carly J.; Suding, Katharine N.; Throop, Heather L.; Waller, Donald M.

    2016-01-01

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these environmental factors. We assessed the effect of N deposition on herbaceous richness for 15,136 forest, woodland, shrubland, and grassland sites across the continental United States, to address how edaphic and climatic conditions altered vulnerability to this stressor. In our dataset, with N deposition ranging from 1 to 19 kg N⋅ha−1⋅y−1, we found a unimodal relationship; richness increased at low deposition levels and decreased above 8.7 and 13.4 kg N⋅ha−1⋅y−1 in open and closed-canopy vegetation, respectively. N deposition exceeded critical loads for loss of plant species richness in 24% of 15,136 sites examined nationwide. There were negative relationships between species richness and N deposition in 36% of 44 community gradients. Vulnerability to N deposition was consistently higher in more acidic soils whereas the moderating roles of temperature and precipitation varied across scales. We demonstrate here that negative relationships between N deposition and species richness are common, albeit not universal, and that fine-scale processes can moderate vegetation responses to N deposition. Our results highlight the importance of contingent factors when estimating ecosystem vulnerability to N deposition and suggest that N deposition is affecting species richness in forested and nonforested systems across much of the continental United States.

  15. Response of stable carbon isotope in epilithic mosses to atmospheric nitrogen deposition.

    PubMed

    Liu, Xue-Yan; Xiao, Hua-Yun; Liu, Cong-Qiang; Li, You-Yi; Xiao, Hong-Wei; Wang, Yan-Li

    2010-06-01

    Epilithic mosses are characterized by insulation from substratum N and hence meet their N demand only by deposited N. This study investigated tissue C, total Chl and delta13C of epilithic mosses along 2 transects across Guiyang urban (SW China), aiming at testing their responses to N deposition. Tissue C and total Chl decreased from the urban to rural, but delta13C(moss) became less negative. With measurements of atmospheric CO2 and delta13CO2, elevated N deposition was inferred as a primary factor for changes in moss C and isotopic signatures. Correlations between total Chl, tissue C and N signals indicated a nutritional effect on C fixation of epilithic mosses, but the response of delta13C(moss) to N deposition could not be clearly differentiated from effects of other factors. Collective evidences suggest that C signals of epilithic mosses are useful proxies for N deposition but further works on physiological mechanisms are still needed.

  16. Is it possible to estimate atmospheric deposition of heavy metals by analysis of terrestrial mosses?

    PubMed

    Aboal, J R; Fernández, J A; Boquete, T; Carballeira, A

    2010-11-15

    Here we present a critical review of diverse research studies involving estimation of atmospheric deposition of heavy metals from the concentrations of the contaminants in terrestrial moss. The findings can be summarized as follows: i) significant correlations between the concentrations of contaminants in moss and bulk deposition were observed in only 40.1% of the cases in which the relationship was studied and in only 14.1% of the cases, the coefficient of correlation was >0.7; ii) some method-related problems were identified (i.e. small sample sizes, elimination of some data from the regression analyses, large distances between the moss sampling sites and the bulk precipitation collectors, differences in times of exposure of the moss samples and collection times for the bulk precipitation), so that the results of the studies may not be completely valid, and iii) evidence was found in the relevant literature that moss does not actually integrate the atmospheric deposition received. We also discuss the reason why, in accordance with the published data, bulk deposition cannot be correctly estimated by determination of the final concentrations of contaminants in the organism, such as the existence of different sources of contamination, the physicochemical characteristics of the sources of deposition, physicochemical processes to which the organism is subjected and the biological processes that take place in the moss. Taking into account the above findings, it was concluded that, except for certain elements and specific cases (i.e. Pb and Cd), atmospheric deposition of elements cannot be accurately estimated from the concentrations of metals and metalloids in moss tissues. However, the analysis of moss does provide information about the presence of contaminants in the atmosphere, their spatial and temporal patterns of distribution and how they are taken up by live organisms. Use of mosses is therefore recommended as a complementary (rather than an alternative

  17. Complementary Pu Resuspension Study at Palomares, Spain

    SciTech Connect

    Shinn, J

    2002-10-01

    Soil in an area near Palomares, Spain, was contaminated with plutonium as a result of a mid-air collision of U.S. military aircraft in January 1966. The assessment for potential inhalation dose can be found in Iranzo et al., (1987). Long-term monitoring has been used to evaluate remedial actions (Iranzo et al., 1988) and there are many supporting studies of the Pu contamination at Palomares that have been carried out by the Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) in Madrid. The purpose of this study is to evaluate the resuspension of Pu from the soil in terms of Pu-concentrations in air and resuspension rates in a complementary investigation to those of CIEMAT but in an intensive short-term field effort. This study complements the resuspension studies of CIEMAT at Palomares with additional information, and with confirmation of their previous studies. Observed mass loadings (M) were an average of 70 mg/m{sup 3} with peaks in the daytime of 130 mg/m{sup 3} and low values at night below 30 {micro}g/m{sup 3}. The Pu-activity of aerosols (A) downwind of plot 2-1 was 0.12 Bq/g and the enhancement factor (E{sub f}) had a value of 0.3, which is low but similar to a typical value of 0.7 for other undisturbed sites. This E{sub f} value may increase further away from ground zero. The particle size distribution of the Pu in air measured by cascade impactors was approximately lognormal with a median aerodynamic diameter of 3.7 {micro}m and a geometric standard deviation of 3.5 in the respirable range. This peak midway between 1 ? m and 10 {micro}m in the respirable range is commonly observed. Daily fluctuations in the Pu concentration in air (C) detected by the UHV were lognormally distributed with a geometric standard deviation of 4.9 indicating that the 98th percentile would be 24 times as high as the median. Downwind of plot 2-1 the mean Pu concentration in air, C, was 8.5 {micro}Bq/m{sup 3}. The resuspension factor (Sf) was 2.4 x 10

  18. [Atmospheric dry and wet nitrogen deposition in typical agricultural areas of North Shaanxi].

    PubMed

    Wei, Yang; Tong, Yan-An; Duan, Min; Qiao, Li; Tian, Hong-Wei; Lei, Xiao-Ying; Ma, Wen-Juan

    2010-01-01

    To investigate the farmland soil nitrogen input from atmospheric dry and wet deposition, a 1-year observation was conducted in the Yulin and Luochuan areas of North Shaanxi Province from June 2007 to May 2008. The total inorganic nitrogen (TIN) deposition in Yulin and Luochuan was 22.17 and 16.95 kg x hm(-2) x a(-1), among which, wet deposition accounted for 95.1% and 90.4%, while dry deposition accounted for 4.9% and 9.6%, respectively, illustrating that the nitrogen deposition in both Yulin and Luochuan was mainly come from wet deposition. In the TIN deposition, the amount of nitrate in Yulin and Luochuan was 12.22 and 9.24 kg x hm(-2) xa(-1), accounting for 55.1% and 54.5%, respectively. The amount of wet deposition and the percentage of nitrate in TIN deposition were higher in Yulin than in Luochuan, because of the differences in pollution level, weather condition, and underlying surface characteristics.

  19. Very narrow SiGe/Si quantum wells deposited by low-temperature atmospheric pressure chemical vapor deposition

    SciTech Connect

    Gruetzmacher, D.A.; Sedgwick, T.O.; Northrop, G.A.

    1993-05-01

    The optical, structural, and electrical properties of very narrow SiGe quantum wells grown by {open_quotes}ultra-clean{close_quotes} atmospheric pressure chemical vapor deposition (APCVD) are investigated. X-ray reflectivity data reveal abrupt interfaces with a root-mean-square roughness of not more than 0.2 nm. For the first time narrow (4.3 meV) excitonic photoluminescence (PL) spectra were obtained from APCVD grown samples containing SiGe wells with 12.5% to 32.5% Ge. For the narrowest wells PL doublets are observed which are attributed to atomic steps at the SiGe/Si interfaces. The Pl and x-ray diffractometry data show that process deposition control for well and barrier width is within the monolayer range. Resonant tunneling diodes fabricated with 2.5-mm-wide Si{sub 0.75}Ge{sub 0.25} wells show world record peak to valley ratios of 4.2. Magneto-transport measurements performed at high magnetic fields of two-dimensional hole gases exhibit pronounced Hall plateaus and well-defined Shubnikov de Hass oscillations, indicating high material quality. The results give evidence that atmospheric pressure chemical vapor deposition, which relies on gas switching sequences of the reactive gases in a hydrogen ambience, is able to produce interface abruptness comparable if not better than reported by any other technique. 22 refs., 7 figs.

  20. ATMOSPHERIC MERCURY DEPOSITION TO LAKE MICHIGAN DURING THE LAKE MICHIGAN MASS BALANCE STUDY

    EPA Science Inventory

    Wet and dry mercury (Hg) deposition were calculated to Lake Michigan using a hybrid receptor modeling framework. The model utilized mercury monitoring data collected during the Lake Michigan Mass Balance Study and the Atmospheric Exchange Over Lakes and Oceans Study together w...

  1. Studies of Plutonium Aerosol Resuspension at the Time of the Maralinga Cleanup

    SciTech Connect

    Shinn, J

    2003-08-01

    At the former nuclear test site at Maralinga, South Australia, soil cleanup began in October 1996 with the objective to remove the potential for residual plutonium (Pu) exposures to the public. In this case the cleanup was to restore access to the closed test site. The proposed long-term land use was primarily to be a hunting area for Pitjantjatjara (Aboriginal) people, but also presumably to be available to the public who might have an interest in the history of the site. The long-term management objective for the site was to allow casual use, but to prohibit habitation. The goal of this study is to provide an evaluation of the Maralinga soil cleanup in terms of potential long-term public inhalation exposures to particulate Pu, and in terms of a contribution to planning and conducting any such soil Pu-cleanup. Such cleanups might be carried out for example, on the Nevada Test Site in the United States. For Pu that has been deposited on the soil by atmospheric sources of finely divided particles, the dominant exposure pathway to humans is by inhalation. Other exposure pathways are less important because the Pu particles become oxidized into a nearly insoluble form, do not easily enter into the food chain, nor are they significantly transferred through the intestine to the bloodstream should Pu become ingested. The purpose of this report is to provide results of the Pu resuspension measurements made before, during, and after the Pu cleanup at Maralinga, to compare these against similar measurements made elsewhere, and to interpret the results as they relate to potential long-term public exposures. (Exposures to Pu in dust plumes produced by mechanical disturbance during cleanup are considered short-term, unlikely to be significant for purposes of this report, and are not included). A considerable amount of research had been conducted at Maralinga by the Australian Radiation Laboratory, now the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA

  2. Linking pulses of atmospheric deposition to DOC release in an upland peat-covered catchment

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Burt, T. P.; Adamson, J. K.

    2008-12-01

    Changes in atmospheric deposition have been proposed as one possible explanation of the widespread increase in DOC concentration observed in many Northern Hemisphere catchments. This study uses detailed, long-term, monthly monitoring records of pH, conductivity SO4, and DOC in precipitation, soil water, and runoff chemistry from an upland peat-covered catchment in northern England. By deriving impulse transfer functions this study explores whether changes in deposition lead to significant changes in the occurrence of each component in the soil and runoff water; especially significant changes in DOC. The study shows that (1) impulses in the deposition of acidity have no significant effect upon pH or DOC in soil water or runoff. (2) DOC in soil water and runoff is responsive to impulses in SO4 and conductivity, but only when those impulses are changes in soil water chemistry and not when they are in atmospheric deposition. (3) The effects of changes in SO4 and/or conductivity can easily be overemphasized if memory effects are not accounted for, and their effect is limited to only 1 or 2 months after a severe drought. This study can support the view that changes in ionic strength can result in changes in DOC concentration in soil water or runoff, but the system studied is unresponsive to changes in atmospheric deposition. Impulses in soil water SO4 do not lead to increases in DOC concentrations, and so this mechanism does not provide an explanation for DOC increases.

  3. Estimation of atmospheric sea salt dry deposition: Wind speed and particle size dependence

    NASA Astrophysics Data System (ADS)

    McDonald, R. L.; Unni, C. K.; Duce, R. A.

    1982-02-01

    Cascade impactor and bulk filter samples of atmospheric sea salt were collected at wind speeds from 3.4 to 10 m/s at coastal tower sites in the Florida Keys and Enewetak Atoll as part of the SEAREX (Sea Air Exchange) Program. Simultaneous dry deposition measurements were made to polyethylene plates. The samples were analyzed for Na as an indicator of sea salt. If the observed atmospheric sea salt particle mass distributions are corrected for the reduced collection efficiency of large particles, the observed dry deposition rates agree well with rates estimated from atmospheric sea salt particle concentrations and theoretical particle deposition velocities derived from gravitational settling velocities or from the equations of Slinn and Slinn (1980, 1981) for deposition to smooth, solid surfaces as well as natural water surfaces. The results emphasize the fact that even though large particles may represent only a small fraction of the total mass of sea salt over the ocean, they can dominate the dry deposition rates of the sea salt aerosol.

  4. The contribution of atmospheric deposition and forest harvesting to forest soil acidification in China since 1980

    NASA Astrophysics Data System (ADS)

    Zhu, Qichao; De Vries, Wim; Liu, Xuejun; Zeng, Mufan; Hao, Tianxiang; Du, Enzai; Zhang, Fusuo; Shen, Jianbo

    2016-12-01

    Soils below croplands and grasslands have acidified significantly in China since the 1980s in terms of pH decline in response to acid inputs caused by intensified fertilizer application and/or acid deposition. However, it is unclear what the rate is of pH decline of forest soils in China in response to enhanced acid deposition and wood production over the same period. We therefore gathered soil pH data from the Second National Soil Inventory of China and publications from the China National Knowledge Infrastructure (CNKI) database in 1981-1985 and 2006-2010, respectively, to evaluate the long-term change of pH values in forest soils. We found that soil pH decreased on average by 0.36 units in the period 1981-1985 to 2006-2010., with most serious pH decline occurring in southwest China (0.63 pH units). The soil type with the strongest pH decline was the semi-Luvisol (0.44 pH units). The decrease in pH was significantly correlated with the acid input induced by atmospheric deposition and forest harvesting. On average, the contribution of atmospheric deposition to the total acid input was estimated at 84% whereas element uptake (due to forest wood growth and harvest) contributed 16% only. Atmospheric deposition is thus the major driver for the significant forest soil acidification across China.

  5. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    PubMed

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  6. Atmospheric trace elements at Enewetak Atoll: 2. Transport to the ocean by wet and dry deposition

    NASA Astrophysics Data System (ADS)

    Arimoto, R.; Duce, R. A.; Ray, B. J.; Unni, C. K.

    1985-02-01

    The concentrations of trace elements in precipitation and dry deposition are presented for samples collected at Enewetak Atoll (11°N, 162° E) during SEAREX experiments in 1979. The concentrations of Al, Sc, Mn, Fe, Co, and Th in rain are dominated by crustal material, and for these elements, wet deposition evidently exceeds dry deposition. For most of these elements the present rates of atmospheric deposition at Enewetak are similar to their mean rate of accumulation in sediments over the past 5-10,000 years, suggesting that the air-to-sea exchange of particles is closely tied to the sedimentary cycle of the mid-Pacific. Noncrustal sources govern the concentrations of Pb, Zn, Cu, Se, and Cd in wet and dry deposition samples. Analyses of dry deposition collected from a flat plastic plate indicate that the amount of material recycled from the sea surface varies markedly between samples, and even though these estimates do not necessarily reflect the dry deposition to the ocean surface, the results suggest that recycled sea spray often amounts to more than 50% of the total dry deposition of the enriched elements. Recycled sea spray also makes up a significant fraction of the total wet deposition of the enriched elements. The net deposition rates of elements such as Cu and Zn are greater than or equal to their inputs from vertical mixing, but the net deposition of Pb clearly exceeds the input from upwelling. The current net deposition rates of the enriched elements are also similar to their rates of removal to sediments. These results indicate that air-sea exchange processes may significantly affect the chemistry of trace metals in the open ocean.

  7. Comparison of Mercury Mass Loading in Streams to Wet and Dry Atmospheric Deposition in Watersheds of the Western US: Evidence for Non-Atmospheric Mercury Sources

    NASA Astrophysics Data System (ADS)

    Domagalski, J. L.; Majewski, M. S.; Alpers, C. N.; Eckley, C.

    2015-12-01

    Many streams in the western United States (US) are listed as impaired by mercury (Hg), and it is important to understand the magnitudes of the various sources in order to implement management strategies. Atmospheric deposition of Hg and can be a major source of aquatic contamination, along with mine wastes, and other sources. Prior studies in the eastern US have shown that streams deliver less than 50% of the atmospherically deposited Hg on an annual basis. In this study, we compared annual stream Hg loads for 20 watersheds in the western US to measured wet and modeled dry deposition. Land use varies from undisturbed to mixed (agricultural, urban, forested, mining). Data from the Mercury Deposition Network was used to estimate Hg input from precipitation. Dry deposition was not directly measured, but can be modeled using the Community Multi-scale Air Quality model. At an undeveloped watershed in the Rocky Mountains, the ratio of stream Hg load to atmospheric deposition was 0.2 during a year of average precipitation. In contrast, at the Carson River in Nevada, with known Hg contamination from historical silver mining with Hg amalgamation, stream export exceeded atmospheric deposition by a factor of 60, and at a small Sierran watershed with gold mining, the ratio was 70. Larger watersheds with mixed land uses, tend to have lower ratios of stream export relative to atmospheric deposition suggesting storage of Hg. The Sacramento River was the largest watershed for which Hg riverine loads were available with an average ratio of stream Hg export to atmospheric deposition of 0.10. Although Hg was used in upstream historical mining operations, the downstream river Hg load is partially mitigated by reservoirs, which trap sediment. This study represents the first compilation of riverine Hg loads in comparison to atmospheric deposition on a regional scale; the approach may be useful in assessing the relative importance of atmospheric and non-atmospheric Hg sources.

  8. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    NASA Astrophysics Data System (ADS)

    Baker, Alex; Altieri, Katye; Okin, Greg; Dentener, Frank; Uematsu, Mitsuo; Kanakidou, Maria; Sarin, Manmohan; Duce, Robert; Galloway, Jim; Keene, Bill; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh

    2014-05-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the industrial revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) recently completed a multi-model analysis of global N deposition, including comparisons to wet deposition observations from three regional networks in North America, Europe and Southeast Asia (Lamarque et al., Atmos. Chem. Phys., 13, 7977-8018, 2013). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is very difficult. In this work we attempt instead to use ~2600 observations of aerosol nitrate and ammonium concentrations, acquired chiefly from sampling aboard ships in the period 1995 - 2012, to assess the ACCMIP N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected four ocean regions (the eastern North Atlantic, the South Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Two of these regions are adjacent to the land networks used in the ACCMIP

  9. Particle size effect for metal pollution analysis of atmospherically deposited dust

    NASA Astrophysics Data System (ADS)

    Al-Rajhi, M. A.; Al-Shayeb, S. M.; Seaward, M. R. D.; Edwards, H. G. M.

    The metallic compositions of 231 atmospherically deposited dust samples obtained from widely-differing environments in Riyadh city, Saudi Arabia, have been investigated in relation to the particle size distributions. Sample data are presented which show that particle size classification is very important when analysing dust samples for atmospheric metal pollution studies. By cross-correlation and comparison, it was found that the best way to express the results of the metal concentration trend was as an average of particle ratios. Correlations between the six metals studied, namely Pb, Cr, Ni, Cu, Zn and Li, were found for every particle size (eight categories) and reveal that the metal concentrations increased as the particle size decreased. On the basis of this work, it is strongly recommended that future international standards for metal pollutants in atmospherically deposited dusts should be based on particle size fractions.

  10. Gaseous dry deposition of atmospheric mercury: A comparison of two surface resistance models for deposition to semiarid vegetation

    SciTech Connect

    Heather A. Holmes; Eric R. Pardyjak; Kevin D. Perry; Michael L. Abbott

    2011-07-01

    In the United States, atmospheric mercury (Hg) deposition, from regional and international sources, is the largest contributor to increased Hg concentrations in bodies of water leading to bioaccumulation of methyl mercury in fish. In this work, modeled dry deposition velocities (vd) for gaseous Hg are calculated using two surface resistance parameterizations found in the literature. The flux is then estimated as the product of the species concentration and modeled vd. The calculations utilize speciated atmospheric mercury concentrations measured during an annual monitoring campaign in southern Idaho. Gaseous elemental mercury (GEM) and reactive gaseous mercury (RGM) were monitored with Tekran models 2537A and 1130, respectively. Two anemometers collected meteorological data, including one fast-response three-dimensional sonic anemometer to measure turbulence parameters. For the flux calculation, three resistances are required to model the mechanisms that transport gaseous Hg from the atmosphere to the surface, with the surface resistance being the largest source of error. Results from two surface resistance models are presented. In particular, the downward flux is sensitive to the choice of model and input parameters such as seasonal category and mesophyll resistance. A comparison of annual GEM and RGM fluxes calculated using the two models shows good agreement for RGM (3.2% difference for annual deposition); however, for the low-solubility species of GEM, the models show a 64% difference in annual fluxes, with a range of 32% to 200% in seasonal fluxes. Results indicate the importance of understanding the diurnal variation of the physical processes modeled in the surface resistance parameterization for vd.

  11. Assessment of dry and wet atmospheric deposits of radioactive aerosols: application to Fukushima radiocaesium fallout.

    PubMed

    Gonze, Marc-André; Renaud, Philippe; Korsakissok, Irène; Kato, Hiroaki; Hinton, Thomas G; Mourlon, Christophe; Simon-Cornu, Marie

    2014-10-07

    The Fukushima Dai-ichi nuclear accident led to massive atmospheric deposition of radioactive substances onto the land surfaces. The spatial distribution of deposits has been estimated by Japanese authorities for gamma-emitting radionuclides through either airborne monitoring surveys (since April 2011) or in situ gamma-ray spectrometry of bare soil areas (since summer 2011). We demonstrate that significant differences exist between the two surveys for radiocaesium isotopes and that these differences can be related to dry deposits through the use of physically based relationships involving aerosol deposition velocities. The methodology, which has been applied to cesium-134 and cesium-137 deposits within 80-km of the nuclear site, provides reasonable spatial estimations of dry and wet deposits that are discussed and compared to atmospheric numerical simulations from the Japanese Atomic Energy Agency and the French Institute of Radioprotection and Nuclear Safety. As a complementary approach to numerical simulations, this field-based analysis has the possibility to contribute information that can be applied to the understanding and assessment of dose impacts to human populations and the environment around Fukushima.

  12. Paleolimnological evidence of variations in deposition of atmosphere-borne Polycyclic Aromatic Hydrocarbons (PAHs) in Ireland.

    PubMed

    O'Dwyer, B; Taylor, D

    2009-11-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous in the environment and are produced by both natural and anthropogenic processes, principally from the incomplete combustion of organic matter. Levels of emissions of PAHs from the combustion of fossil fuels have increased rapidly over the last ca. 200 years. As PAHs have detrimental environmental and human health impacts, assessing spatial and temporal variations in environmental loadings has become a pressing issue in many industrialised and industrializing countries. The current paper reports spatial and temporal variations in levels of atmospheric deposition of PAHs recorded in sediment cores from three lakes in Ireland, the locations of which were selected on the basis of known geographic differences in the deposition of atmospheric pollutants. Thirteen PAH compounds were analysed for in samples of lake sediment that were assumed to represent contemporary/recent and historical (possibly reference) levels of deposition. A third sample was selected from each core on the basis of measured levels of spheroidal carbonaceous particles, which are regarded as a direct indicator of depositions from the industrial-level combustion of fossil fuels. Chronological control was provided by the (210)Pb dating technique which also allowed for the calculation of PAH flux. For the most part, and when compared with the limited published data, measured levels of PAH depositions were relatively low. However, levels of deposition of PAHs in the west of Ireland are higher now than previously, which is in contrast to a general trend of decreasing levels in Europe.

  13. Development and Implementation of Critical Loads for Atmospheric Deposition: Federal Land Management Implications

    NASA Astrophysics Data System (ADS)

    Porter, E. M.

    2004-12-01

    Critical loads for atmospheric deposition have been widely developed and used in Europe, Canada, and other countries. Critical loads are used to influence air pollution emissions reductions, thereby protecting and restoring aquatic and terrestrial ecosystems. In the United States, federal land management agencies are adopting the critical load concept as a potentially valuable resource management tool. Certain parks and wilderness areas are currently being affected by anthropogenic nitrogen and sulfur deposition. Effects of excess deposition include acidification, nitrogen enrichment, toxicity, and changes in biotic communities. Streams in both Shenandoah and Great Smoky Mountains National Parks are experiencing chronic and episodic acidification and brook trout fisheries in Shenandoah have been affected. High elevation ecosystems in Rocky Mountain National Park are undergoing subtle changes in aquatic and terrestrial ecosystems attributable to atmospheric deposition. Natural resources in many other federal areas have been affected or are at risk from deposition. Federal land managers are refining strategies for critical loads that include working with scientists to identify resources sensitive to deposition, defining resource protection criteria that will meet management objectives, and estimating and implementing critical loads. Critical loads will be used in resource management decisions and federal land management planning. They will be used to evaluate management actions and assess progress towards meeting management goals. Federal land managers will also communicate critical loads information to air pollution regulatory agencies to inform emissions management strategies for clean air.

  14. Atmospheric Deposition and Fate of Mercury in High-altitude Watersheds of the Rocky Mountains.

    NASA Astrophysics Data System (ADS)

    Campbell, D. H.; Mast, M. A.; Ingersoll, G. P.; Manthorne, D. J.; Krabbenhoft, D. P.; Taylor, H. E.; Aiken, G. R.; Schuster, P. F.; Reddy, M. M.

    2003-12-01

    Despite the potential for cold high-altitude ecosystems to act as sinks in the global mercury cycle, atmospheric deposition and fate of mercury have not been measured extensively at mountain sites in the Western United States. At Buffalo Pass in northwestern Colorado (the highest site in the national Mercury Deposition Network at 3234 m elevation), mercury in wet deposition was 9 μ gm-2 in 2000, comparable to many sites in the upper Midwestern United States where fish consumption advisories are widespread because of elevated levels of mercury from atmospheric deposition. Similar levels of mercury deposition were measured about 90 km east of Buffalo Pass at Loch Vale in Rocky Mountain National Park (RMNP) during 2002. Concentrations of total mercury in headwater streams in RMNP averaged 2-4 ngL-1 during spring and summer of 2001-2002. Higher concentrations were observed during snowmelt and rainfall events. Dissolved mercury was generally greater than particulate mercury in these clear mountain streams. Mercury and dissolved organic carbon peaked as soils were flushed during early snowmelt and rainy summer periods. Overall, mercury deposition was greater than mercury export, indicating accumulation in alpine/subalpine ecosystems; however, the mercury exported in streamflow may contribute substantially to mercury loading in downstream lakes and reservoirs where fish consumption advisories have increased. Methyl mercury concentrations measured in the streams in 2002 were generally near or less than detection limits, however, extreme drought conditions limited hydrologic flushing of soils and wetlands that may be sources of methyl mercury. In 2003, surface and ground water from various alpine and subalpine landscapes were sampled to determine sources and transport of total and methyl mercury. The elevated levels of mercury in atmospheric deposition indicate a need for better understanding of mercury cycling and transport in high-altitude ecosystems of Western North

  15. Estimating Chemical Exchange between Atmospheric Deposition and Forest Canopy in Guizhou, China.

    PubMed

    Li, Wei; Gao, Fang; Liao, Xueqin

    2013-01-01

    To evaluate the effects of atmospheric deposition on forest ecosystems, wet-only precipitation and throughfall samples were collected in two forest types (Masson pine [ Lamb.] forests and mixed conifer and broadleaf forests) in the Longli forest in the Guizhou province of southwestern China for a period of 21 successive months from April 2007 to December 2008. The pH and chemical components of precipitation and throughfall were analyzed. In addition, the canopy budget model was applied to distinguish between in-canopy and atmospheric sources of chemical compounds. Canopy leaching and total potentially acidifying deposition fluxes were calculated. The results showed that the average pH and the concentration of ions in throughfall were higher than those in precipitation, with the exception of the NH concentration. Dry deposition of S and N accumulated more in Masson pine forests than in mixed conifer and broadleaf forests. Canopy leaching was the most significant source of base cations in forest throughfall, which was higher in the mixed forests than in the coniferous forests. Anions in throughfall deposition in Masson pine forests exceeded those in the mixed forests. Higher total potentially acidifying deposition fluxes reflected the more effective amounts of acid delivered to Masson pine forests compared with mixed conifer and broadleaf forests. In addition, acid deposition induced the leaching and loss of nutrient ions such as Mg, K, and Ca. Although the trees of the studied areas have not shown any symptoms of cation loss, a potentially harmful influence was engendered by atmospheric deposition in the two forest types in the Longli area.

  16. Climate-change signals in national atmospheric deposition program precipitation data

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-01-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979–2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°–48.782° north latitude and 124°–68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4–6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10–21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2–35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  17. Tracking Biological Organic Compounds In Atmospheric Deposition In Alpine Environments With Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mladenov, N.; Oldani, K. M.; Williams, M. W.; Schmidt, S. K.; Darcy, J.; Lemons, S.; Reche, I.

    2013-12-01

    Alpine environments, such as those of the Colorado Rocky Mountains, USA and the Sierra Nevada Mountains, Spain, contain undeveloped, barren soils that are carbon-limited. Atmospheric wet and dry deposition of organic carbon (OC) represents a substantial fraction of the OC load available to alpine soils, and includes contributions from atmospheric pollutants, dust, and biological aerosols, such as bacteria, algae, fungi, and plant debris. To evaluate the seasonal variability and sources of atmospheric deposition at these alpine sites, we measured the chemical characteristics of weekly wet and dry deposition and snowpack samples, including characterization of dissolved organic matter (DOM) and water soluble organic matter (WSOM) with fluorescence spectroscopy. The excitation-emission matrix (EEM) spectra we acquired show the presence of recurring peaks at low excitation and emission wavelengths typically associated with highly biodegradable organic carbon, presumably derived from the aromatic amino acids, tyrosine and tryptophan. Solar simulation experiments demonstrated that amino acid-like fluorescent components were more resistant to photo-degradation than humic- and fulvic-like fluorescent components. Our results also reveal the presence of a unique fluorophore, not previously described, that is found in both Rocky Mountains and the Sierra Nevada snowpack, wet deposition, and dry deposition and may be attributed to fluorescent pigments in bacteria. Biological aerosols may represent a labile source of carbon for alpine soil microbes, and consequently their deposition has important consequences for biogeochemical processes occurring in barren, alpine soils. Excitation emission matrix image of 24 Aug 2010 wet deposition sample from the Soddie site at Niwot Ridge, Colorado showing a unique fluorescent component with dual excitation peaks (285 nm and 340 nm) at 410 nm emission.

  18. Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China.

    PubMed

    Qiao, Xue; Xiao, Weiyang; Jaffe, Daniel; Kota, Sri Harsha; Ying, Qi; Tang, Ya

    2015-04-01

    In the last two decades, remarkable ecological changes have been observed in Jiuzhaigou National Nature Reserve (JNNR). Some of these changes might be related to excessive deposition of sulfur (S) and nitrogen (N), but the relationship has not been quantified due to lack of monitoring data, particularly S and N deposition data. In this study, we investigated the concentrations, fluxes, and sources of S and N wet deposition in JNNR from April 2010 to May 2011. The results show that SO4(2-), NO3-, and NH4+ concentrations in the wet deposition were 39.4-170.5, 6.2-34.8, and 0.2-61.2 μeq L(-1), with annual Volume-Weighted Mean (VWM) concentrations of 70.5, 12.7, and 13.4 μeq L(-1), respectively. Annual wet deposition fluxes of SO4(2-), NO3-, and NH4+ were 8.06, 1.29, and 1.39 kg S(N)ha(-1), respectively, accounting for about 90% of annual atmospheric inputs of these species at the monitoring site. The results of Positive Matrix Factorization (PMF) analysis show that fossil fuel combustion, agriculture, and aged sea salt contributed to 99% and 83% of annual wet deposition fluxes of SO4(2-) and NO3-, respectively. Agriculture alone contributed to 89% of annual wet deposition flux of NH4+. Although wet deposition in JNNR was polluted by anthropogenic acids, the acidity was largely neutralized by the Ca2+ from crust and 81% of wet deposition samples had a pH higher than 6.00. However, acid rain mainly caused by SO4(2-) continued to occur in the wet season, when ambient alkaline dust concentration was lower. Since anthropogenic emissions have elevated S and N deposition and caused acid rain in JNNR, further studies are needed to better quantify the regional sources and ecological effects of S and N deposition for JNNR.

  19. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Pan, Y.; Wang, Y.; Paulot, F.; Henze, D. K.

    2015-09-01

    Rapid Asian industrialization has led to increased downwind atmospheric nitrogen deposition threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the high-NH3 emissions reflect its intensive agricultural activities. We find Asian NH3 emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind of the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7 % over the South China Sea, and become important (greater than 30 %) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92 % contribution) and the Korean peninsula (7 %), and by sectors from fertilizer use (24 %), power plants (22 %), and transportation (18

  20. Estimating Atmospheric Fe Deposition to the Remote Ocean: the Problems Posed by Solubility Control

    NASA Astrophysics Data System (ADS)

    Measures, C. I.

    2001-12-01

    John Edmond's scientific career was dedicated to exploiting the tracer properties of chemical distributions in the ocean and using these to further our understanding of Earth and ocean processes. He realised that since chemical distributions result from geological, physical and biological processes, their interpretation is a powerful tool that can be used to explain many disparate elements of Earth sciences. In addition, the natural integrating power of chemical distributions over long time scales provides a unique opportunity to temporally average high frequency processes. The ability to apply these tools to current problems requires development and application of methodology that can be used over large temporal and spatial scales. John helped foster the development of real time trace element determinations at sea. A particularly good example of the results that this work has produced is using surface water trace element distributions to develop an understanding of the role that atmospheric deposition processes play in biogeochemical cycles. The partial dissolution of atmospheric dust in surface waters leaves a chemical wake that can be used to determine the magnitude and locus of atmospheric deposition events. In particular, dissolved aluminium concentrations in surface waters appear to be largely driven by atmospheric processes. Thus, modeling of the distribution of this element is being used to develop an understanding of atmospheric deposition processes in oceanic regions that are not suitable for direct sampling. When used in conjunction with surface water distributions of iron, the role of atmospheric deposition for this biologically important element can also be studied. However, the few existing data sets indicate that current models of iron deposition to the surface ocean, which simply apply a fixed fractional solubility of iron in dust, are unlikely to succeed, since the absolute solubility of iron limits the addition of this element to the surface ocean

  1. The effect of atmospheric nitrogen deposition on marine nitrogen cycling throughout the global ocean

    NASA Astrophysics Data System (ADS)

    Somes, Christopher; Oschlies, Andreas

    2014-05-01

    The rapidly increasing rate of anthropogenic nitrogen deposition has the potential to perturb marine ecosystems and biogeochemical cycles because nitrogen is one of the major limiting nutrients in the ocean. We use an Earth System Climate Model that includes ocean biogeochemistry to assess the impact of atmospheric nitrogen deposition. Experiments are conducted where we artificially add nitrogen to nearly all locations individually throughout the global surface ocean using a nitrogen deposition rate of 700 mg N m-2 yr-1, which is consistent with modern estimates near industrial areas. We identify oceanic "biomes" that respond differently to atmospheric nitrogen deposition. (1) When nitrogen is deposited near oxygen minimum zones where water column denitrification occurs, locally increased primary production stimulates additional denitrification. Since water column denitrification removes 7 mol N for every mol N of newly formed organic matter respired, the global oceanic nitrogen inventory declines in response to nitrogen deposition in these areas. This slow, but steady decline persists for at least 1,000 years. (2) When nitrogen is deposited above shallow continental shelves where benthic denitrification occurs, our benthic denitrification model predicts an increase that is nearly equal to the nitrogen deposited and thus no net change in the global nitrogen inventory. (3) When nitrogen is deposited into the high latitude open ocean far removed from nitrogen fixation and denitrification, all of this deposited nitrogen initially accumulates in the ocean. This nitrogen eventually circulates into the tropical oxygen minimum zones where it fuels additional primary production and denitrification, which removes nitrogen at a rate equal to the deposition after 1,000 years and leads to a stable, but increased nitrogen inventory in our model. (4) When nitrogen is deposited into the open ocean where nitrogen fixation occurs, nitrogen fixation decreases due to less nitrogen

  2. Sediment resuspension characteristics in Baltimore Harbor, Maryland

    USGS Publications Warehouse

    Maa, J.P.-Y.; Sanford, L.; Halka, J.P.

    1998-01-01

    Critical bed shear stress for sediment resuspension and sediment erosion rate were measured in-situ at sites from inner to outer Baltimore Harbor using the VIMS Sea Carousel. Clay mineral contents and biological conditions were almost the same at the four study sites. The experimental results indicated that the erosion rate increased from the outer harbor toward the inner harbor with a maximum difference of about 10 times at an excess bed shear stress of 0.1 Pa. The measured critical bed shear stress strongly depended on the existence of a fluff layer. It was approximately 0.05 Pa if a fluff layer existed, and increases to about 0.1 Pa in the absence of a fluff layer.

  3. Atmospheric deposition of nutrients, pesticides, and mercury in Rocky Mountain National Park, Colorado, 2002

    USGS Publications Warehouse

    Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.; Foreman, William T.; Krabbenhoft, David P.

    2003-01-01

    Nutrients, current-use pesticides, and mercury were measured in atmospheric deposition during summer in Rocky Mountain National Park in Colorado to improve understanding of the type and magnitude of atmospheric contaminants being deposited in the park. Two deposition sites were established on the east side of the park: one at an elevation of 2,902 meters near Bear Lake for nutrients and pesticides, and one at an elevation of 3,159 meters in the Loch Vale watershed for mercury. Concentrations of nutrients in summer precipitation at Bear Lake ranged from less than 0.007 to 1.29 mg N/L (milligrams of nitrogen per liter) for ammonium and 0.17 to 4.59 mg N/L for nitrate and were similar to those measured at the Loch Vale National Atmospheric Deposition Network station, where nitrogen concentrations in precipitation are among the highest in the Rocky Mountains. Atrazine, dacthal, and carbaryl were the most frequently detected pesticides at Bear Lake, with carbaryl present at the highest concentrations (0.0079 to 0.0952 ?g/L (micrograms per liter), followed by atrazine (less than 0.0070 to 0.0604 ?g/L), and dacthal (0.0030 to 0.0093 ?g/L). Mercury was detected in weekly bulk deposition samples from Loch Vale in concentrations ranging from 2.6 to 36.2 ng/L (nanograms per liter). Concentrations in summer precipitation were combined with snowpack data from a separate study to estimate annual deposition rates of these contaminants in 2002. Annual bulk nitrogen deposition in 2002 was 2.28 kg N/ha (kilograms of nitrogen per hectare) at Bear Lake and 3.35 kg N/ha at Loch Vale. Comparison of wet and bulk deposition indicated that dry deposition may account for as much as 28 percent of annual nitrogen deposition, most of which was deposited during the summer months. Annual deposition rates for three pesticides were estimated as 45.8 mg/ha (milligrams per hectare) of atrazine, 14.2 mg/ha of dacthal, and 54.8 mg/ha of carbaryl. Because of much higher pesticide concentrations in

  4. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  5. Fractionation of trace elements in total atmospheric deposition by filtrating-bulk passive sampling.

    PubMed

    Rueda-Holgado, F; Palomo-Marín, M R; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2014-07-01

    We have developed and validated a new simple and effective methodology for fractionation of soluble and insoluble forms of trace elements in total atmospheric deposition. The proposed methodology is based on the modification of a standard total deposition passive sampler by integrating a quartz fiber filter that retains the insoluble material, allowing the soluble fraction to pass through and flow to a receiving bottle. The quartz filter containing the insoluble fraction and the liquid containing the soluble fraction are then separately assayed by standardized ICP-MS protocols. The proposed atmospheric elemental fractionation sampler (AEFS) was validated by analyzing a Coal Fly Ash reference material with proper recoveries, and tested for field fractionation of a set of 10 key trace elements in total atmospheric deposition at the industrial area of Puchuncaví-Ventanas, Chile. The AEFS was proven useful for pollution assessment and also to identify variability of the soluble and insoluble fractions of the selected elements within the study area, improving the analytical information attainable by standard passive samplers for total deposition without the need of using sophisticated and high cost wet-only/dry only collectors.

  6. The impact of atmospheric deposition of cadmium on dominant algal species in the East China Sea

    NASA Astrophysics Data System (ADS)

    Quan, Qiwei; Chen, Ying; Ma, Qingwei; Wang, Fujiang; Meng, Xi; Wang, Bo

    2016-04-01

    Cadmium (Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem, affecting the phytoplankton community and primary productivity. In this study, we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea (ECS) through both laboratory and in situ mesocosm incubation experiments. The mesocosm experiment showed that Cd in low concentration (0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity. In high concentration (0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity. The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate, as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth. We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region. In our laboratory experiments, adding Cd, similar to aerosol deposition, stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu (dinoflagellate) and Skeletonema costatum (diatom). Adding Cd on a higher level inhibited the growth of both the species, but Skeletonema costatum seemed obviously more sensitive to toxicity. This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.

  7. Decreased atmospheric sulfur deposition across the southeastern U.S.: When will watersheds release stored sulfate?

    USGS Publications Warehouse

    Rice, Karen C.; Scanlon, Todd M.; Lynch, Jason A.; Cosby, Bernard J.

    2014-01-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States (U.S.). Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in stream-water SO42- concentrations have been observed in unglaciated watersheds. We calculated SO42- mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO42-, unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO42- over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO42- correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO42- retention to release anticipates more widespread reductions in stream-water SO42- concentrations in this region.

  8. Characterization of atmospheric deposition and runoff water in a small suburban catchment.

    PubMed

    Lamprea, Katerine; Ruban, Véronique

    2011-07-01

    A study has been carried out as part of the mission assigned to IRSTV (Research Institute of Urban Sciences and Techniques), a federative research network supported by the Loire Valley Region, with the objective of characterizing atmospheric deposition, roof runoff and street runoff in a small (31 ha) suburban catchment in Nantes equipped with a separate sewer system. Trace metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides were investigated. The characterization of atmospheric deposition reveals a high variability of trace metal concentrations, which could not be explained by rainfall characteristics. The relative abundance order of the metals was as follows: Zn > Cu > Cr approximately Ni > Cd. Organic pollutants, i.e., PAHs and pesticides, were only rarely detected in the atmospheric deposition. Zn and Pb appear to be the major contaminants in runoff water, whereas the concentrations of Ni, Cu, Cr, Cd, PAHs and pesticides tend to remain low. On the whole, concentrations were similar to the lowest range reported in the literature. According to statutory thresholds, runoff water quality is poor because of the high Pb and Zn concentrations. Based on scanning electron microscopy observations, atmospheric particles do not apparently differ from runoff particles, with a predominance of pollen, bacteria and particles resulting from soil erosion. Spherical organic particles produced during fuel combustion have also been observed.

  9. Decreased Atmospheric Sulfur Deposition Across the Southeastern U.S.: When Will Watersheds Release Stored Sulfate?

    NASA Astrophysics Data System (ADS)

    Rice, K. C.; Scanlon, T. M.; Lynch, J. A.; Cosby, B. J., Jr.

    2014-12-01

    Emissions of sulfur dioxide (SO2) to the atmosphere lead to atmospheric deposition of sulfate (SO42-), which is the dominant strong acid anion causing acidification of surface waters and soils in the eastern United States (U.S.). Since passage of the Clean Air Act and its Amendments, atmospheric deposition of SO2 in this region has declined by over 80%, but few corresponding decreases in stream-water SO42- concentrations have been observed in unglaciated watersheds. We calculated SO42- mass balances for 27 forested, unglaciated watersheds from Pennsylvania to Georgia, by using total atmospheric deposition (wet plus dry) as input. Many of these watersheds still retain SO42-, unlike their counterparts in the northeastern U.S. and southern Canada. Our analysis showed that many of these watersheds should convert from retaining to releasing SO42- over the next two decades. The specific years when the watersheds crossover from retaining to releasing SO42- correspond to a general geographical pattern of later net watershed release from north to south. The single most important variable that explained the crossover year was the runoff ratio, defined as the ratio of annual mean stream discharge to precipitation. Percent clay content and mean soil depth were secondary factors in predicting crossover year. The conversion of watersheds from net SO42- retention to release anticipates more widespread reductions in stream-water SO42- concentrations in this region.

  10. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    PubMed

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  11. Atmospheric deposition and watershed nitrogen export along an elevational gradient in the Catskill Mountains, New York

    USGS Publications Warehouse

    Lawrence, G.B.; Lovett, Gary M.; Baevsky, Y.H.

    2000-01-01

    Cumulative effects of atmospheric N deposition may increase N export from watersheds and contribute to the acidification of surface waters, but natural factors (such as forest productivity and soil drainage) that affect forest N cycling can also control watershed N export. To identify factors that are related to stream-water export of N, elevational gradients in atmospheric deposition and natural processes were evaluated in a steep, first-order watershed in the Catskill Mountains of New York, from 1991 to 1994. Atmospheric deposition of SO4/2-, and probably N, increased with increasing elevation within this watershed. Stream-water concentrations of SO4/2- increased with increasing elevation throughout the year, whereas stream-water concentrations of NO3/- decreased with increasing elevation during the winter and spring snowmelt period, and showed no relation with elevation during the growing season or the fall. Annual export of N in stream water for the overall watershed equaled 12% to 17% of the total atmospheric input on the basis of two methods of estimation. This percentage decreased with increasing elevation, from about 25% in the lowest subwatershed to 7% in the highest subwatershed; a probable result of an upslope increase in the thickness of the surface organic horizon, attributable to an elevational gradient in temperature that slows decomposition rates at upper elevations. Balsam fir stands, more prevalent at upper elevations than lower elevations, may also affect the gradient of subwatershed N export by altering nitrification rates in the soil. Variations in climate and vegetation must be considered to determine how future trends in atmospheric deposition will effect watershed export of nitrogen.

  12. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Pan, Yuepeng; Wang, Yuesi; Paulot, Fabien; Henze, Daven

    2016-04-01

    Rapid Asian industrialization has lead to increased atmospheric nitrogen deposition downwind threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2°× 2/3° horizontal resolution over the East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the much higher NH3 emissions reflect its intensive agricultural activities. We improve the seasonality of Asian NH3 emissions; emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7% over the South China Sea, and become important (greater than 30%) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian Monsoon and in nitrogen emissions. The model adjoint further points out that nitrogen deposition to the Yellow Sea originates from sources over China (92% contribution) and the Korean peninsula (7%), and by sectors from fertilizer use (24%), power plants

  13. Status and trends in atmospheric deposition and emissions near Atlanta, Georgia, 1986-99

    USGS Publications Warehouse

    Peters, N.E.; Meyers, T.P.; Aulenbach, Brent T.

    2002-01-01

    Wet and dry atmospheric deposition were investigated from weekly data, 1986-99 (1986-97 for dry deposition) at the Panola Mountain Research Watershed (PMRW), a forested research site 25 km, southeast of Atlanta, Georgia. Furthermore, the wet deposition was compared to that at three adjacent National Atmospheric Deposition Program's National Trends Network (NTN) sites (GA41, 50 km south of PMRW; AL99, 175 km northwest; NC25, 175 km north-northeast) and dry deposition was compared to that at adjacent Clean Air Status and Trends Network (CASTNET) sites, co-located at the NTN sites. The pH of precipitation is acidic and the dominant acid anion is SO4; the pH (derived from the volume-weighted mean H concentration) averages 4.44 for 1986-99, and varies seasonally with average lowest values in summer (4.19) and highest in winter (4.63). From 1986-99, the annual wet deposition of sulfur (S) and nitrogen (N) averaged 400 and 300 eq ha-1 (6.4 and 4.2 kg ha-1), respectively. Inferential model estimates of annual dry S and N deposition from 1986-97 averaged 130 and 150 eq ha-1 (2.1 and 2.1 kg ha-1), respectively. From 1993-99, net S deposition (dry deposition plus canopy interactions) for coniferous and deciduous throughfall (throughfall minus wet-only deposition) averaged 400 and 150 eq ha-1 (6.4 and 2.1 kg ha-1), respectively. The annual wet deposition of S and N species at PMRW was comparable to that at NTN sites, with the exception of higher N species deposition at AL99 and relatively lower H, SO4 and NO3 deposition at GA41. Dry S deposition at PMRW differed markedly from the CASTNET sites despite similarity in S concentrations for all but NC25; the differences are attributed to differences in model parameters associated with the landscape and vegetation characteristics at the sites. At PMRW, atmospheric deposition trends were not detected for the entire sampling period, but were detected for shorter periods (4-5yr). Annual S and N deposition increased from 1986 to 1991

  14. Wind Induced Sediment Resuspension in a Microtidal Estuary

    NASA Technical Reports Server (NTRS)

    Booth, J. G.; Miller, R. L.; McKee, B. A.; Leathers, R. A.

    1999-01-01

    Bottom sediment resuspension frequency, duration and extent (% of bottom sediments affected) were characterized for the fifteen month period from September 1995 to January 1997 for the Barataria Basin, LA. An empirical model of sediment resuspension as a function of wind speed, direction, fetch and water depth was derived from wave theory. Water column turbidity was examined by processing remotely sensed radiance information from visible and near-IR AVHRR imagery. Based on model predictions, wind induced resuspension occurred during all seasons of this study. Seasonal characteristics for resuspension reveal that late fall, winter and early spring are the periods of most frequent and intense resuspension. Model predictions of the critical wind speed required to induce resuspension indicate that winds of 4 m/s (averaged over all wind directions resuspend approximately 50% of bottom sediments in the water bodies examined. Winds of this magnitude (4 m/s) occurred for 80% of the time during the late fall, winter and early spring and for approximately 30% of the time during the summer. More than 50% of the bottom sedimets are resuspended throughout the year, indicating the importance of resuspension as a process affecting sediment and biogeochemical fluxes in the Barataria Basin.

  15. Evidence for Open-Ocean Atmospheric Deposition of Lignin as a Significant Source of Chromophoric Dissolved Organic Matter in the North Atlantic Subtropical Gyre

    NASA Astrophysics Data System (ADS)

    Bocarsly, J. D.; McDonald, N.; Peters, A.; Nelson, N. B.

    2012-12-01

    Chromophoric dissolved organic matter (CDOM) has been studied extensively for its role in shaping the oceanic underwater light field. While much is understood about the chemical composition and properties of coastal CDOM, its source, composition, fate and transport in the open ocean remain relatively unknown. Notably, data from the last decade suggest that water mass movement and resuspension and horizontal transport of sediments alone are not enough to account for the presence of terrestrial-source CDOM in the open ocean. In this study, we investigated atmospheric deposition as a potential source of terrestrial CDOM in the open ocean. Lignin, a polymer found only in vascular plants, served as a tracer for terrestrially derived CDOM. Selected individual lignin phenols were quantified in aerosol and seawater samples using GC-MS analysis. In addition to quantitative data, ratios of the concentrations of these methoxy phenols give qualitative information about the source and degree of photodegradation of the source lignin. A high volume air sampler (2.88m3/min) was used to sample aerosol particles <10 μm in diameter at the Bermuda Atlantic Time Series site (31 40.00 N, 64 10.00 W), in the Sargasso Sea. Concurrently, water samples were collected from the ocean surface, local bacterial maximum, and deep chlorophyll maximum. In addition, samples of Sargassum macroalgae as well as particulate organic matter were collected to study potential additional sources of open ocean surface CDOM. Consistently, lignin phenols were present in the aerosol samples and their relative concentrations resembled those of the lignin phenols detected in surface water. The aerosol lignin phenol composition did not, on the other hand, resemble that found in deeper ocean water. Low levels of sodium ion quantified via ion chromatography in the aerosol samples demonstrate that seawater from sea spray is not a significant source of the sampled aerosol. These results suggest that atmospheric

  16. Atmospheric occurrence, transport and deposition of polychlorinated biphenyls and hexachlorobenzene in the Mediterranean and Black seas

    NASA Astrophysics Data System (ADS)

    Berrojalbiz, N.; Castro-Jiménez, J.; Mariani, G.; Wollgast, J.; Hanke, G.; Dachs, J.

    2014-09-01

    The Mediterranean and Black seas are unique marine environments subject to important anthropogenic pressures due to direct and indirect loads of atmospheric inputs of organochlorine compounds (OCls) from primary and secondary sources. Here we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where gas-phase and aerosol-phase samples were collected. Both matrices were analyzed for 41 polychlorinated biphenyls (PCBs), including dioxin-like congeners, and hexachlorobenzene (HCB). The values reported in this study for gas-phase HCB and ∑41PCB limit of detection (LOD) to 418.3 pg m-3 and from 81.99 to 931.6 pg m-3 respectively) are in the same range of those reported in former studies, possibly suggesting a limited decline in their atmospheric concentrations during the last decade for the Mediterranean region due to land-based OCl sources. There is a clear influence of the direction of the air mass on the atmospheric concentrations of PCBs, with higher concentrations when the air mass was from southern Europe, and the lowest concentrations for air masses coming from the SW Mediterranean and Atlantic Ocean. PCBs and HCB are close to air-water equilibrium for most sampling periods, thus resulting in low atmospheric deposition fluxes at open sea. This is consistent with the oligotrophic character of the Mediterranean Sea with a small influence of the biological pump capturing atmospheric PCBs. Therefore, degradation of gas-phase PCBs by OH radicals is estimated to be the main loss process of atmospheric PCBs during their transport over the Mediterranean Sea. Conversely, atmospheric residence times of HCB are predicted to be very long due to a lack of atmospheric degradation and low depositional fluxes due to concentrations at air-water equilibrium.

  17. Atmospheric occurrence, transport and deposition of polychlorinated biphenyls and hexachlorobenzene in the Mediterranean and Black Seas

    NASA Astrophysics Data System (ADS)

    Berrojalbiz, N.; Castro-Jiménez, J.; Mariani, G.; Wollgast, J.; Hanke, G.; Dachs, J.

    2014-04-01

    The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to direct and indirect loads of atmospheric inputs of organochlorine compounds (OCl) from primary and secondary sources. Here we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where gas phase and aerosol samples were collected. Both matrices were analyzed for 41 polychlorinated biphenyls (PCBs), including dioxin-like congeners, and hexachlorobencene (HCB). The values reported in this study for gas phase HCB and ∑41PCB (LOD to 418.3 pg m-3 and from 81.99 to 931.6 pg m-3 respectively) are in the same range of those reported in former studies, possibly suggesting a limited decline in their atmospheric concentrations during the last decade for the Mediterranean region due to land base OCl sources. There is a clear influence of the direction of the air-mass on the atmospheric concentrations of PCBs, with higher concentrations when the air mass was from southern Europe, and the lowest concentrations for air masses coming from the SW Mediterranean and Atlantic Ocean. PCBs and HCB are close to air-water equilibrium for most sampling periods, thus resulting in low atmospheric deposition fluxes at open sea. This is consistent with the oligotrophic character of the Mediterranean Sea with a small influence of the biological pump capturing atmospheric PCBs. Therefore, degradation of gas-phase PCBs by OH radicals is estimated to be the main loss process of atmospheric PCBs during their transport over the Mediterranean Sea. Conversely, atmospheric residence times of HCB are predicted to be very long due to a lack of atmospheric degradation and low depositional fluxes due to concentrations at air-water equilibrium.

  18. [Atmospheric deposition fluxes and seasonal variations of elements in northeast of Sichuan, central China].

    PubMed

    Tong, Xiao-Ning; Zhou, Hou-Yun; You, Chen-Feng; Tang, Jing; Liu, Hou-Chun; Huang, Ying; He, Hai-Bo

    2014-01-01

    Monthly atmospheric deposition was collected in Northeast of Sichuan Province from August 2011 to July 2012. Contents of Na, Mg, Ca, K, Si, Sr, Ba and Zn in weak-acid leachable fraction (with pH values of ca. 2) of the deposition were determined using ICP-MS. The results indicated that the deposition fluxes of all these elements exhibited notable seasonal variations. For example, the deposition flux of Na increased with precipitation, suggesting a dominant derivation from wet deposition; whereas the fluxes of Ca, Ba, Si, Sr and Mg displayed higher values during winter or spring season, suggesting that these elements may be closely associated with atmospheric dust activity. The annual fluxes of these elements were remarkably different in value. Na had the highest flux of 30 497 microg x (10(2) cm2 x a)(-1), more than three orders of magnitude higher than the lowest flux of Ba of 27.4 microg x (10(2) cm2 x a)(-1).

  19. Spatial distribution and seasonal variations of atmospheric sulfur deposition over Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y. P.; Wang, Y. S.; Tang, G. Q.; Wu, D.

    2012-09-01

    The increasing anthropogenic emissions of acidic compounds have induced acid deposition accompanied by acidification in the aquatic and terrestrial ecosystems worldwide. However, comprehensive assessment of spatial patterns and long-term trends of acid deposition in China remains a challenge due to a paucity of field-based measurement data, in particular for dry deposition. Here we quantify the sulfur (S) deposition on a regional scale via precipitation, particles and gases during a 3-yr observation campaign at ten selected sites in Northern China. Results show that the total S deposition flux in the target area ranged from 35.0 to 100.7 kg S ha-1 yr-1, categorized as high levels compared to those documented in Europe, North America, and East Asia. The ten-site, 3-yr average total S deposition was 64.8 kg S ha-1 yr-1, with 32% attributed to wet deposition, and the rest attributed to dry deposition. Compared with particulate sulfate, gaseous SO2 was the major contributor of dry-deposited S, contributing approximately 49% to the total flux. Wet deposition of sulfate showed pronounced seasonal variations with maximum in summer and minimum in winter, corresponding to precipitation patterns in Northern China. However, the spatial and inter-annual differences in the wet deposition were not significant, which were influenced by the precipitation amount, scavenging ratio and the concentrations of atmospheric S compounds. In contrast, the relatively large dry deposition of SO2 and sulfate during cold season, especially at industrial areas, was reasonably related to the local emissions from home heating. Although seasonal fluctuations were constant, clear spatial differences were observed in the total S deposition flux and higher values were also found in industrial areas with huge emissions of SO2. These findings indicate that human activity has dramatically altered the atmospheric S deposition and thus regional S cycles. To systematically illustrate the potential effects

  20. Analysis of Atmospheric Nitrate Deposition in Lake Tahoe Using Multiple Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    McCabe, J. R.; Michalski, G. M.; Hernandez, L. P.; Thiemens, M. H.; Taylor, K.; Kendall, C.; Wankel, S. D.

    2002-12-01

    Lake Tahoe in the Sierra Nevada Mountain Range is world renown for its depth and water clarity bringing 2.2 million visitors per year resulting in annual revenue of \\1.6 billion from tourism. In past decades the lake has suffered from decreased water clarity (from 32 m plate depth to less than 20), which is believed to be largely the result of algae growth initiated by increased nutrient loading. Lake nutrients have also seen a shift from a nitrogen limited to a phosphorous limited system indicating a large increase in the flux of fixed nitrogen. Several sources of fixed nitrogen of have been suggested including surface runoff, septic tank seepage from ground water and deposition from the atmosphere. Bio-available nitrogen in the form of nitrate (NO_{3}$-) is a main component of this system. Recent studies have estimated that approximately 50% of the nitrogen input into the lake is of atmospheric origin (Allison et al. 2000). However, the impact and magnitude of atmospheric deposition is still one of the least understood aspects of the relationship between air and water quality in the Basin (TRPA Threshold Assessment 2002). The utility of stable isotopes as tracers of nitrate reservoirs has been shown in several studies (Bohlke et al. 1997, Kendall and McDonnell 1998, Durka et al. 1994). Stable nitrogen (δ15N) and oxygen (δ18O) isotopes have been implemented in a dual isotope approach to characterize the various nitrate sources to an ecosystem. While δ18O distinguishes between atmospheric and soil sources of nitrate, processes such as denitrification can enrich the residual nitrate in δ18O leaving a misleading atmospheric signature. The benefit of δ15N as a tracer for NO3- sources is the ability to differentiate natural soil, fertilizer, and animal or septic waste, which contain equivalent δ18O values. The recent implementation of multiple oxygen isotopes to measure Δ17O in nitrate has proven to be a more sensitive tracer of atmospheric deposition. The

  1. Atmospheric Deposition And MediterraneAN sea water productiviTy (Thales - ADAMANT) An overview

    NASA Astrophysics Data System (ADS)

    Christodoulaki, Sylvia; Petihakis, George; Triantafyllou, George; Pitta, Paraskevi; Papadimitriou, Vassileios; Tsiaras, Konstantinos; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2015-04-01

    In the marine environment the salinity and biological pumps sequester atmospheric carbon dioxide. The biological pump is directly related to marine primary production which is controlled by nutrient availability mainly of iron, nitrogen and phosphorus. The Mediterranean Sea, especially the eastern basin is one of the most oligotrophic seas. The nitrogen (N) to phosphorus (P) ratio is unusually high, especially in the eastern basin (28:1) and primary production is limited by phosphorus availability. ADAMANT project contributes to new knowledge into how nutrients enter the marine environment through atmospheric deposition, how they are assimilated by organisms and how this influences carbon and nutrient fluxes. Experimental work has been combined with atmospheric and marine models. Important knowledge is obtained on nutrients deposition through mesocosm experiments on their uptake by the marine systems and their effects on the marine carbon cycle and food chain. Kinetic parameters of adsorption of acidic and organic volatile compounds in atmospheric samples of dust and marine salts are estimated in conjunction with solubility of N and P in mixtures contained in dust. Atmospheric and oceanographic models are coupled to create a system that is able to holistically simulate the effects of atmospheric deposition on the marine environment over time, beginning from the pre-industrial era until the future years (hind cast, present and forecast simulations). This research has been co-financed by the European Union (European Social Fund) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework - Research Funding Program: THALES, Investing in knowledge society through European Social Fund.

  2. Predicting wetland contamination from atmospheric deposition measurements of pesticides in the Canadian Prairie Pothole region

    NASA Astrophysics Data System (ADS)

    Messing, Paul G.; Farenhorst, Annemieke; Waite, Don T.; McQueen, D. A. Ross; Sproull, James F.; Humphries, David A.; Thompson, Laura L.

    2011-12-01

    Although it has been suggested that atmospheric deposition alone can result in detectable levels of pesticides in wetlands of the Pairie Pothole Region of Canada, this is the first field study to compare the masses of pesticides entering wetlands by atmospheric deposition with those concentrations of pesticides detected in the water-column of prairie wetlands. Weekly air and bulk deposition samples were collected from May 26th to Sept. 15th, 2008 at the Manitoba Zero Tillage Research Association (MZTRA) Farm, Brandon, Manitoba, with four on-site wetlands (approximate sizes 0.15-0.45 ha) monitored every second week. Twelve pesticides were detected in the air, with MCPA (one of the three pesticides applied on the farm in 2008 in addition to clopyralid and glyphosate), triallate, and γ-HCH being detected every week. Calculations were performed to predict wetland pesticide concentrations based on bulk deposits alone for those pesticides that had detectable concentrations in the bulk deposition samples (in order of the highest total seasonal deposition mass to the lowest): MCPA, glyphosate, 2,4-D, clopyralid, bromoxynil, atrazine, dicamba, metolachlor, and mecoprop. The estimated concentrations were closest to actual concentrations for MCPA (Pearson correlation coefficient's = 0.91 to 0.98; p-values < 0.001) and predictions were also reasonable for a range of other herbicides, but a source other than atmospheric deposition was clearly relevant to detections of clopyralid in the wetland water-column. Although the types and levels of pesticides detected in the wetlands of the current study suggest that regional pesticide applications can contribute to pesticide surface water contamination following atmospheric transport and deposition, the greater frequency and concentrations of clopyralid, MCPA, and glyphosate detections in wetlands confirm that on-farm pesticide applications have a greater impact on on-site water quality. Beneficial management practices that reduce

  3. Long-term atmospheric deposition of nitrogen, phosphorus and sulfate in a large oligotrophic lake

    PubMed Central

    Craft, James A.; Stanford, Jack A.

    2015-01-01

    We documented significantly increasing trends in atmospheric loading of ammonium (NH4) and nitrate/nitrite (NO2/3) and decreasing trends in total phosphorus (P) and sulfate (SO4) to Flathead Lake, Montana, from 1985 to 2004. Atmospheric loading of NO2/3 and NH4 increased by 48 and 198% and total P and SO4 decreased by 135 and 39%. The molar ratio of TN:TP also increased significantly. Severe air inversions occurred periodically year-round and increased the potential for substantial nutrient loading from even small local sources. Correlations between our loading data and various measures of air quality in the basin (e.g., particulate matter <10 µm in size, aerosol fine soil mass, aerosol nutrient species, aerosol index, hectares burned) suggest that dust and smoke are important sources. Ammonium was the primary form of N in atmospheric deposition, whereas NO3 was the primary N form in tributary inputs. Atmospheric loading of NH4 to Flathead Lake averaged 44% of the total load and on some years exceeded tributary loading. Primary productivity in the lake is colimited by both N and P most of the year; and in years of high atmospheric loading of inorganic N, deposition may account for up to 6.9% of carbon converted to biomass. PMID:25802810

  4. Characteristics Of Atmospheric Dry Deposition Of Metals To The Region Of Lake Asan And Sapgyo, Korea

    NASA Astrophysics Data System (ADS)

    Han, J.; Shin, H.; Lee, M.; Lim, Y.; Seo, M.; Jung, I.

    2008-12-01

    Environment includes a multi-media such as air, surface water, soil, underground water and ecosystem. Some pollutants transfer among a multi-media, posing serious threat to humans, animals and plants. Pollutants released into the environment remain for long times and transport long distances while going through physical and chemical interactions such as transports between multi-media ; air, water and soil, deposition, and absorption and release from organisms. This study assessed the amount of heavy metals transferred from air to water and soil using dry deposition plate and water surface sampler during spring (June 13 ~ 21, 2007) and winter (October 23 ~ 30 in 2007) at 9 locations including Dangjin, Pyeongtaek and Asan. Micro-Orifice Uniform Deposit Impactor, MOUDI was used to confirm the size distribution. The measured heavy metal deposition flux was compared with the expectation obtained with deposition model. In addition, amount of heavy metal deposition at Asan and Sapgyo lakes were evaluated to verify the water pollution state driven by atmospheric deposition. Atmospheric dry deposition flux of metals are 133.92 microgram m-2 day-1, 44.01 microgram m-2 day-1, 0.915 microgram m-2 day-1, and 0.175 microgram m-2 day-1 during spring, and 72.86 microgram m-2 day- 1, 88.14 microgram m-2 day-1, 0.991 microgram m-2 day-1, and 0.189 microgram m-2 day-1 during fall, for lead, nickel, arsenic, and cadmium, respectively. It is required to re- calculation the dry deposition flux by land use type due to possibility of underestimating the flux in case of using grease surrogate surface having low surface roughness. The cadmium, lead, and arsenic size distribution was mono-modal with the peaks in the 0.65 ~ 1.1 micrometer size range in the fine mode showing sharp peak in the condensation submode especially for cadmium and lead because of effect of primary emission. The nickel size distribution was bimodal, a typical size distribution for an urban atmosphere, showing sharp

  5. Nitrogen Accumulation and Partitioning in High Arctic Tundra from Extreme Atmospheric N Deposition Events

    NASA Astrophysics Data System (ADS)

    Phoenix, G. K.; Osborn, A.; Blaud, A.; Press, M. C.; Choudhary, S.

    2013-12-01

    Arctic ecosystems are threatened by pollution from extreme atmospheric nitrogen (N) deposition events. These events occur from the long-range transport of reactive N from pollution sources at lower latitudes and can deposit up to 80% of the annual N deposition in just a few days. To date, the fate and impacts of these extreme pollutant events has remained unknown. Using a field simulation study, we undertook the first assessment of the fate of acutely deposited N on arctic tundra. Extreme N deposition events were simulated on field plots at Ny-Ålesund, Svalbard (79oN) at rates of 0, 0.04, 0.4 and 1.2 g N m-2 yr-1 applied as NH4NO3 solution over 4 days, with 15N tracers used in the second year to quantify the fate of the deposited N in the plant, soil, microbial and leachate pools. Separate applications of 15NO3- and 15NH4+ were also made to determine the importance of N form in the fate of N. Recovery of the 15N tracer at the end of the first growing season approached 100% of the 15N applied irrespective of treatment level, demonstrating the considerable capacity of High Arctic tundra to capture pollutant N from extreme deposition events. Most incorporation of the 15N was found in bryophytes, followed by the dominant vascular plant (Salix polaris) and the microbial biomass of the soil organic layer. Total recovery remained high in the second growing season (average of 90%), indicating highly conservative N retention. Between the two N forms, recovery of 15NO3- and 15NH4+ were equal in the non-vascular plants, whereas in the vascular plants (particularly Salix polaris) recovery of 15NO3- was four times higher than of 15NH4+. Overall, these findings show that High Arctic tundra has considerable capacity to capture and retain the pollutant N deposited in acute extreme deposition events. Given they can represent much of the annual N deposition, extreme deposition events may be more important than increased chronic N deposition as a pollution source. Furthermore

  6. Observation of sediment resuspension in Old Tampa Bay, Florida

    USGS Publications Warehouse

    Schoellhamer, David H.; ,

    1990-01-01

    Equipment and methodology have been developed to monitor sediment resuspension at two sites in Old Tampa Bay. Velocities are measured with electromagnetic current meters and suspended solids and turbidity are monitored with optical backscatterance sensors. In late November 1989, a vertical array of instrument pairs was deployed from a permanent platform at a deep-water site, and a submersible instrument package with a single pair of instruments was deployed at a shallow-water site. Wind waves caused resuspension at the shallow-water site, but not at the deeper platform site, and spring tidal currents did not cause resuspension at either site.

  7. Subalpine grassland carbon balance during 7 years of increased atmospheric N deposition

    NASA Astrophysics Data System (ADS)

    Volk, Matthias; Enderle, Jan; Bassin, Seraina

    2016-07-01

    Air pollution agents interact when affecting biological sinks for atmospheric CO2, e.g., the soil organic carbon (SOC) content of grassland ecosystems. Factors favoring plant productivity, like atmospheric N deposition, are usually considered to favor SOC storage. In a 7-year experiment in subalpine grassland under N- and O3-deposition treatment, we examined C fluxes and pools. Total N deposition was 4, 9, 14, 29 and 54 kg N ha-1 yr-1 (N4, N9, etc.); annual mean phytotoxic O3 dose was 49, 65 and 89 mmol m-2 projected leaf area. We hypothesized that between years SOC of this mature ecosystem would not change in control treatments and that effects of air pollutants are similar for plant yield, net ecosystem productivity (NEP) and SOC content, leading to SOC content increasing with N deposition. Cumulative plant yield showed a significant N and N × N effect (+38 % in N54) but no O3 effect. In the control treatment SOC increased significantly by 9 % in 7 years. Cumulative NEP did show a strong, hump-shaped response pattern to N deposition with a +62 % increase in N14 and only +39 % increase in N54 (N effect statistically not significant, N × N interaction not testable). SOC had a similar but not significant response to N, with highest C gains at intermediate N deposition rates, suggesting a unimodal response with a marginal (P = 0.09) N × N interaction. We assume the strong, pollutant-independent soil C sink developed as a consequence of the management change from grazing to cutting. The non-parallel response of SOC and NEP compared to plant yield under N deposition is likely the result of increased respiratory SOC losses, following mitigated microbial N-limitation or priming effects, and a shift in plant C allocation leading to smaller C input from roots.

  8. Negative effects of temperature and atmospheric depositions on the seed viability of common juniper (Juniperus communis)

    PubMed Central

    Gruwez, R.; De Frenne, P.; De Schrijver, A.; Leroux, O.; Vangansbeke, P.; Verheyen, K.

    2014-01-01

    Background and Aims Environmental change is increasingly impacting ecosystems worldwide. However, our knowledge about the interacting effects of various drivers of global change on sexual reproduction of plants, one of their key mechanisms to cope with change, is limited. This study examines populations of poorly regenerating and threatened common juniper (Juniperus communis) to determine the influence of four drivers of global change (rising temperatures, nitrogen deposition, potentially acidifying deposition and altering precipitation patterns) on two key developmental phases during sexual reproduction, gametogenesis and fertilization (seed phase two, SP2) and embryo development (seed phase three, SP3), and on the ripening time of seeds. Methods In 42 populations throughout the distribution range of common juniper in Europe, 11 943 seeds of two developmental phases were sampled. Seed viability was determined using seed dissection and related to accumulated temperature (expressed as growing degree-days), nitrogen and potentially acidifying deposition (nitrogen plus sulfur), and precipitation data. Key Results Precipitation had no influence on the viability of the seeds or on the ripening time. Increasing temperatures had a negative impact on the viability of SP2 and SP3 seeds and decreased the ripening time. Potentially acidifying depositions negatively influenced SP3 seed viability, while enhanced nitrogen deposition led to lower ripening times. Conclusions Higher temperatures and atmospheric deposition affected SP3 seeds more than SP2 seeds. However, this is possibly a delayed effect as juniper seeds develop practically independently, due to the absence of vascular communication with the parent plant from shortly after fertilization. It is proposed that the failure of natural regeneration in many European juniper populations might be attributed to climate warming as well as enhanced atmospheric deposition of nitrogen and sulfur. PMID:24284814

  9. Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe

    NASA Astrophysics Data System (ADS)

    Waldner, Peter; Marchetto, Aldo; Thimonier, Anne; Schmitt, Maria; Rogora, Michela; Granke, Oliver; Mues, Volker; Hansen, Karin; Pihl Karlsson, Gunilla; Žlindra, Daniel; Clarke, Nicholas; Verstraeten, Arne; Lazdins, Andis; Schimming, Claus; Iacoban, Carmen; Lindroos, Antti-Jussi; Vanguelova, Elena; Benham, Sue; Meesenburg, Henning; Nicolas, Manuel; Kowalska, Anna; Apuhtin, Vladislav; Napa, Ulle; Lachmanová, Zora; Kristoefel, Ferdinand; Bleeker, Albert; Ingerslev, Morten; Vesterdal, Lars; Molina, Juan; Fischer, Uwe; Seidling, Walter; Jonard, Mathieu; O'Dea, Philip; Johnson, James; Fischer, Richard; Lorenz, Martin

    2014-10-01

    Atmospheric deposition to forests has been monitored within the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) with sampling and analyses of bulk precipitation and throughfall at several hundred forested plots for more than 15 years. The current deposition of inorganic nitrogen (nitrate and ammonium) and sulphate is highest in central Europe as well as in some southern regions. We compared linear regression and Mann-Kendall trend analysis techniques often used to detect temporal trends in atmospheric deposition. The choice of method influenced the number of significant trends. Detection of trends was more powerful using monthly data compared to annual data. The slope of a trend needed to exceed a certain minimum in order to be detected despite the short-term variability of deposition. This variability could to a large extent be explained by meteorological processes, and the minimum slope of detectable trends was thus similar across sites and many ions. The overall decreasing trends for inorganic nitrogen and sulphate in the decade to 2010 were about 2% and 6%, respectively. Time series of about 10 and 6 years were required to detect significant trends in inorganic nitrogen and sulphate on a single plot. The strongest decreasing trends were observed in western central Europe in regions with relatively high deposition fluxes, whereas stable or slightly increasing deposition during the last 5 years was found east of the Alpine region as well as in northern Europe. Past reductions in anthropogenic emissions of both acidifying and eutrophying compounds can be confirmed due to the availability of long-term data series but further reductions are required to reduce deposition to European forests to levels below which significant harmful effects do not occur according to present knowledge.

  10. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events.

    PubMed

    Choudhary, Sonal; Blaud, Aimeric; Osborn, A Mark; Press, Malcolm C; Phoenix, Gareth K

    2016-06-01

    Arctic ecosystems are threatened by pollution from recently detected extreme atmospheric nitrogen (N) deposition events in which up to 90% of the annual N deposition can occur in just a few days. We undertook the first assessment of the fate of N from extreme deposition in High Arctic tundra and are presenting the results from the whole ecosystem (15)N labelling experiment. In 2010, we simulated N depositions at rates of 0, 0.04, 0.4 and 1.2 g Nm(-2)yr(-1), applied as (15)NH4(15)NO3 in Svalbard (79(°)N), during the summer. Separate applications of (15)NO3(-) and (15)NH4(+) were also made to determine the importance of N form in their retention. More than 95% of the total (15)N applied was recovered after one growing season (~90% after two), demonstrating a considerable capacity of Arctic tundra to retain N from these deposition events. Important sinks for the deposited N, regardless of its application rate or form, were non-vascular plants>vascular plants>organic soil>litter>mineral soil, suggesting that non-vascular plants could be the primary component of this ecosystem to undergo measurable changes due to N enrichment from extreme deposition events. Substantial retention of N by soil microbial biomass (70% and 39% of (15)N in organic and mineral horizon, respectively) during the initial partitioning demonstrated their capacity to act as effective buffers for N leaching. Between the two N forms, vascular plants (Salix polaris) in particular showed difference in their N recovery, incorporating four times greater (15)NO3(-) than (15)NH4(+), suggesting deposition rich in nitrate will impact them more. Overall, these findings show that despite the deposition rates being extreme in statistical terms, biologically they do not exceed the capacity of tundra to sequester pollutant N during the growing season. Therefore, current and future extreme events may represent a major source of eutrophication.

  11. Variation in mineral content of red maple sap across an atmospheric deposition gradient

    SciTech Connect

    McCormick, L.H.

    1997-11-01

    Xylem sap was collected from red maple (Acer rubrum L.) trees during the spring of 1988 and 1989 at seven forest sites along an atmospheric deposition gradient in north central Pennsylvania and analyzed for pH and twelve mineral constituents. The objectives of the study were to examine the sources and patterns of variation in red maple sap chemistry across an atmospheric deposition gradient and to assess the feasibility of using sap analysis as an indicator of nutrient bioavailability. For most sap constituents, there was considerable spatial and temporal variation in concentration. Sources of variation included within and between site variation, date, and year of collection. The nature and extent of variation varied for different constituents. Site differences were similar in 1988 and 1989 for most sap constituents and for some constituents corresponded with differences in soil levels.

  12. The effect of mercury speciation and meteorological processing on concentrations, transport and deposition of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Malcolm, Elizabeth Glover

    The toxic trace element mercury can be transported locally, regionally or globally within the atmosphere before deposition to a watershed. The fate of atmospheric mercury is dependent on its chemical and physical form, which determine its deposition rate under different environmental conditions. The importance of these influences on atmospheric mercury was investigated in dew, clouds and the coastal atmosphere. Measurements of mercury in dew were made at locations in Michigan and Florida. The mercury in dew was accounted for by deposition of particulate mercury and reactive gaseous mercury (RGM). RGM concentrations were significantly reduced at the onset of dew with RGM deposition velocities ranging from 0.2 to 1.3 cm/s. In areas with frequent dew formation and low precipitation, dew appears to be an important contribution to mercury deposition. Measurements of mercury in non-precipitating cloud water were made at Mt. Mansfield, VT. Concentrations of mercury and other trace elements with predominately anthropogenic, but not crustal origin, were higher in cloud water than in precipitation. This is hypothesized to be caused by (1) greater in-cloud scavenging of crustal aerosol in precipitating than non-precipitating clouds and (2) more efficient below-cloud scavenging of crustal than anthropogenic aerosol by rain. Concentrations of mercury in cloud water were explained by transport history, with the highest concentrations from the Mid-Atlantic and Ohio River Valley. Atmospheric mercury measurements along the Atlantic Coast of Florida revealed low concentrations of Hg0(g) and RGM in the marine boundary layer. This indicated that the ocean is not a large net source of mercury to the Eastern Florida shoreline. Higher daytime peaks in diurnal cycles of RGM were observed under anthropogenic influence, possibly produced by reaction with a photochemical oxidant. Particulate mercury concentrations could not be explained by sea spray alone, suggesting that gaseous Hg diffused

  13. Atmospheric distribution and deposition of mercury in the Idrija Hg mine region, Slovenia.

    PubMed

    Kocman, David; Vreča, Polona; Fajon, Vesna; Horvat, Milena

    2011-01-01

    The atmospheric distribution and deposition of Hg in the area of the former Idrija Hg-mine, Slovenia, were investigated. Mapping of air Hg(0) concentrations was performed to assess the spatial distribution and major sources of mercury to the atmosphere in the area. In addition, analyses of mercury speciation in the air over Idrija were performed during a 4-day sampling campaign in September 2006 to better understand the fate and transformation of Hg in the atmosphere of this specific mercury polluted site. The speciation results were then compared to the results of mercury speciation in the wet and throughfall deposition sampled on a precipitation event basis from October 2006 to September 2007. The Hg(0) concentration in air was mostly below 10 ng m(-3), with the highest concentration in the area of the former smelter complex exceeding 5000 ng m(-3). Mercury-bearing airborne particles (TPM) seem to dominate the atmospheric Hg deposition, which revealed noticeable variations between precipitation events (11-76 ng m(-2)day(-1)), mostly as a function of the amount of precipitation. Hg in precipitation was largely (∼ 50%) associated with the particulate phase (THg(P)). No correlation was found between the THg(P) and the dissolved phases (THg(D)), suggesting that particulate phase Hg is mostly the result of dry deposition. In the throughfall, significantly higher (2-10 fold) Hg concentrations than in associated event precipitation were observed, mostly due to Hg in the particulate phase (∼ 70% THg). As shown by SEM/EDXS microscopy, an important amount of mercury in the precipitation and throughfall samples is due to the presence of cinnabar particles as a result of the aeolian erosion of cinnabar-containing surfaces in the area.

  14. 700 years reconstruction of mercury and lead atmospheric deposition in the Pyrenees (NE Spain)

    NASA Astrophysics Data System (ADS)

    Corella, J. P.; Valero-Garcés, B. L.; Wang, F.; Martínez-Cortizas, A.; Cuevas, C. A.; Saiz-Lopez, A.

    2017-04-01

    Geochemical analyses in varved lake sediment cores (Lake Montcortès, Pre-Pyrenees) allowed reconstruction of mercury (Hg) and lead (Pb) atmospheric deposition over the past seven centuries in the Pyrenees (NE Spain). Accumulation Rates (AR) from the Middle Ages to the Industrial Period ranged from 2500 to 26130 μg m2.y-1 and 15-152 μg m2.y-1 for Pb and Hg respectively. Significant metal pollution started ca CE 1550 during a period of increased exploitation of ore resources in Spain. Colder and humid conditions in the Pyrenees during the Little Ice Age may have also favoured Hg and Pb atmospheric deposition in the lake. Therefore, the interplay between increased rainfall (wet deposition) and mining activities in the Iberian Peninsula has driven Hg and Pb AR during the Pre-industrial Period. More recently, the use of leaded gasoline in Europe in the mid-20th century may explain the highest Pb AR between CE 1953 and 1971. The highest Hg AR occurred in CE 1940 synchronous with the highest Hg production peak in Almadén mining district (southern Spain) and the Second World War. The record of Hg enrichment in Lake Montcortès shows a decrease during the last decades in Western Europe similar to other regional records and global emission models. This study highlights the exceptional quality of varved sequences to tease apart pollutants depositional mechanisms, identify historical periods of increased atmospheric pollution and provide a historical context for pollutant baseline values to make correct assessments of recent (atmospheric) pollution in lake ecosystems.

  15. Sintering of Glass in Hydrous Atmospheres and its Implications for Welding of Volcanic Deposits

    NASA Astrophysics Data System (ADS)

    von Aulock, F. W.; Wadsworth, F. B.; Lavallée, Y.; Vasseur, J.

    2014-12-01

    Volcanic ash sintering can occur during hot deposition or upon reheating, and recently published models have improved our understanding of viscous sintering timescales at magmatic temperatures. However, in most volcanic environments, water is present either from meteoric or magmatic sources. Water significantly lowers the viscosity of liquids and therefore should alter the onset temperature and timescales of sintering. The diffusion of water in melts and glasses at low (sub-liquidus) temperatures and pressures, and the partitioning between water vapor and dissolved water species are poorly understood. We investigate the impact of a water rich Ar -atmosphere on viscous sintering at temperatures close to the glass transition. Synthetic near-spherical soda-lime silica glass beads with a well-constrained size of about 10-350μm (produced by Spheriglass) were heated in simultaneous thermal analyses of both differential scanning calorimetry and thermogravimetry. Glass transition temperature onset and mass stayed consistent under argon atmosphere during successive heating cycles at a rate of 10 °C.min-1. Contrastingly, preliminary results show that, when heated, closely packed in a water-argon atmosphere (1) there is a measurable water uptake during timescales as short as 2 hours, and (2) sintering is more efficient and densification takes place at lower temperatures and/or within shorter timescales. Sintering of volcanic materials reduces both porosity and permeability of volcanic products. The process of sintering is, however, limited by quenching of the material shortly after eruption. External water present during deposition could allow welding of pyroclastic deposits at conditions and timescales otherwise not achievable from the deposited pyroclasts alone.. Viscous sintering in a water-rich atmosphere may enhance resorption and encourage the formation of vesicle-free obsidian.

  16. Recent atmospheric dust deposition in an ombrotrophic peat bog in Great Hinggan Mountain, Northeast China.

    PubMed

    Bao, Kunshan; Xing, Wei; Yu, Xiaofei; Zhao, Hongmei; McLaughlin, Neil; Lu, Xianguo; Wang, Guoping

    2012-08-01

    Recent deposition of atmospheric soil dust (ASD) was studied using (210)Pb-dated Sphagnum-derived peat sequences from Great Hinggan Mountain in northeast China. Physicochemical indices of peat including dry bulk density, water content, ash content, total organic carbon and mass magnetic susceptibility were measured. Acid-insoluble concentration of lithogenic metals (Al, Ca, Fe, Mn, V and Ti) were measured using ICP-AES. The basic physicochemical properties were used to assess the peat trophic status and indicated that the sections above 45-60 cm are rain-fed peat. A continuous record of ASD fluxes over the past 150 years was reconstructed based on the geochemical data obtained from the ombrotrophic zone, and the average input rate of ASD is 13.4-68.1 g m(-2) year(-1). The source of soil dust deposited in peat was dominated by the long-range transport of mineral aerosol from the drylands in north China and Mongolia. The temporal variation of ASD fluxes in the last 60 years coincides well with the meteorological records of dust storm frequency during 1954-2002 in north China. This suggests that the reconstructed sequence of atmospheric dust deposition is reliable and we can look back in time at the dust evolution before 1949. Dust storm events were observed occasionally in the late Qing dynasty, and their frequency and intensity were smaller than dust weather occurring in recent times. Four peaks of ASD fluxes were distinguished and correlated with the historical events at that time. This study presents the first atmospheric soil dust data in peat records in northeast China, and complements a global database of peat bog archives of atmospheric deposition. The results reflect the patterns of local environmental change over the past century in north China and will be helpful in formulating policies to achieve sustainable and healthy development.

  17. Detection of Atmospheric Water Deposits in Porous Media Using the TDR Technique

    PubMed Central

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Janik, Grzegorz; Albert, Małgorzata; Skierucha, Wojciech

    2015-01-01

    Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1.2 and 2.8 mm H2O. The respective sensitivities were equal to 3.2 × 10−3 and 7.5 × 10−3 g·ps−1. The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample. PMID:25871717

  18. A 270-year Ice Core Record of Atmospheric Mercury Deposition to Western North America

    NASA Astrophysics Data System (ADS)

    Schuster, P. F.; Krabbenhoft, D. P.; Naftz, D. L.; Cecil, L. D.; Olson, M. L.; DeWild, J. F.; Susong, D. D.; Green, J. R.

    2001-05-01

    The Upper Fremont Glacier (UFG), a mid-latitude glacier in the Wind River Range, Wyoming, U.S.A., contains a record of atmospheric mercury deposition. Although some polar ice-core studies have provided a limited record of past mercury deposition, polar cores are, at best, proxy indicators of historic mercury deposition in the mid-latitudes. Two ice cores removed from the UFG in 1991 and 1998 (totaling 160 meters in length) provided a chronology and paleoenvironmental framework. This aids in the interpretation of the mercury deposition record. For the first time reported from a mid-latitude ice core, using low-level procedures, 97 ice core samples were analyzed to reconstruct a 270-year atmospheric mercury deposition record based in the western United States. Trends in mercury concentration from the UFG record major releases to the atmosphere of both natural and anthropogenic mercury from regional and global sources. We find that mercury concentrations are significantly, but for relatively short time intervals, elevated during periods corresponding to volcanic eruptions with global impact. This indicates that these natural events "punctuate" the record. Anthropogenic activities such as industrialization (global scale), gold mining and war-time manufacturing (regional scale), indicate that chronic levels of elevated mercury emissions have a greater influence on the historical atmospheric deposition record from the UFG. In terms of total mercury deposition recorded by the UFG during approximately the past 270 years: anthropogenic inputs contributed 52 percent; volcanic events contributed 6 percent; and pre-industrialization or background accounted for 42 percent of the total input. More significantly, during the last 100 years, anthropogenic sources contributed 70 percent of the total mercury input. A declining trend in mercury concentrations is obvious during the past 20 years. Declining mercury concentrations in the upper section of the ice core are corroborated by

  19. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect

    Elderkin, C.E.

    1985-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to assess, describe, and predict the nature and fate of atmospheric contaminants and to study the impacts of contaminants on local, regional, and global climates. The contaminants being investigated are those resulting from the development and use of conventional resources (coal, gas, oil, and nuclear power) as well as alternative energy sources. The description of the research is organized into 3 sections: (1) Atmospheric Studies in Complex Terrain (ASCOT); (2) Boundary Layer Meteorology; and (3) Dispersion, Deposition, and Resuspension of Atmospheric Contaminants. Separate analytics have been done for each of the sections and are indexed and contained in the EDB. (MDF)

  20. Integrative evaluation of data derived from biomonitoring and models indicating atmospheric deposition of heavy metals.

    PubMed

    Nickel, Stefan; Schröder, Winfried

    2016-01-07

    Atmospheric deposition of heavy metals (HM) can be determined by use of numeric models, technical devices and biomonitors. Mainly focussing on Germany, this paper aims at evaluating data from deposition modelling and biomonitoring programmes. The model LOTOS-EUROS (LE) yielded data on HM deposition at a spatial resolution of 25 km by 25 km throughout Europe. The European Monitoring and Evaluation Programme (EMEP) provided model calculations on 50 km by 50 km grids. Corresponding data on HM concentration in moss, leaves and needles and soil were derived from the European Moss Survey (EMS), the German Environmental Specimen Bank (ESB) and the International Co-operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests (iCP Forests). The modelled HM deposition and respective concentrations in moss (EMS), leaves and needles (ESB, iCP Forests) and soil (iCP Forests) were investigated for their statistical relationships. Regression equations were applied on geostatistical surface estimations of HM concentration in moss and then the residuals were interpolated by use of kriging interpolation. Both maps were summed up to a map of cadmium (Cd) and lead (Pb) deposition across Germany. Biomonitoring data were strongly correlated to LE than to EMEP. For HM concentrations in moss, the highest correlations were found for the association between geostatistical surface estimations of HM concentration in moss and deposition (LE).

  1. Atmospheric N deposition alters connectance, but not functional potential among saprotrophic bacterial communities.

    PubMed

    Freedman, Zachary B; Zak, Donald R

    2015-06-01

    The use of co-occurrence patterns to investigate interactions between micro-organisms has provided novel insight into organismal interactions within microbial communities. However, anthropogenic impacts on microbial co-occurrence patterns and ecosystem function remain an important gap in our ecological knowledge. In a northern hardwood forest ecosystem located in Michigan, USA, 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. This ecosystem-level response occurred concomitantly with compositional changes in saprophytic fungi and bacteria. Here, we investigated the influence of experimental N deposition on biotic interactions among forest floor bacterial assemblages by employing phylogenetic and molecular ecological network analysis. When compared to the ambient treatment, the forest floor bacterial community under experimental N deposition was less rich, more phylogenetically dispersed and exhibited a more clustered co-occurrence network topology. Together, our observations reveal the presence of increased biotic interactions among saprotrophic bacterial assemblages under future rates of N deposition. Moreover, they support the hypothesis that nearly two decades of experimental N deposition can modify the organization of microbial communities and provide further insight into why anthropogenic N deposition has reduced decomposition, increased soil C storage and accelerated phenolic DOC production in our field experiment.

  2. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia.

    PubMed

    Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant.

  3. The influence of human physical activity and contaminated clothing type on particle resuspension.

    PubMed

    McDonagh, A; Byrne, M A

    2014-01-01

    A study was conducted to experimentally quantify the influence of three variables on the level of resuspension of hazardous aerosol particles from clothing. Variables investigated include physical activity level (two levels, low and high), surface type (four different clothing material types), and time i.e. the rate at which particles resuspend. A mixture of three monodisperse tracer-labelled powders, with median diameters of 3, 5, and 10 microns, was used to "contaminate" the samples, and the resuspended particles were analysed in real-time using an Aerodynamic Particle Sizer (APS), and also by Neutron Activation Analysis (NAA). The overall finding was that physical activity resulted in up to 67% of the contamination deposited on clothing being resuspended back into the air. A detailed examination of the influence of physical activity level on resuspension, from NAA, revealed that the average resuspended fraction (RF) of particles at low physical activity was 28 ± 8%, and at high physical activity was 30 ± 7%, while the APS data revealed a tenfold increase in the cumulative mass of airborne particles during high physical activity in comparison to that during low physical activity. The results also suggest that it is not the contaminated clothing's fibre type which influences particle resuspension, but the material's weave pattern (and hence the material's surface texture). Investigation of the time variation in resuspended particle concentrations indicated that the data were separable into two distinct regimes: the first (occurring within the first 1.5 min) having a high, positive rate of change of airborne particle concentration relative to the second regime. The second regime revealed a slower rate of change of particle concentration and remained relatively unchanged for the remainder of each resuspension event.

  4. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    NASA Astrophysics Data System (ADS)

    Baker, Alex

    2016-04-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the Industrial Revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). Over land, N deposition models can be assessed using comparisons to regional monitoring networks of precipitation chemistry (notably those located in North America, Europe and Southeast Asia). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is logistically very difficult. In this work we attempt instead to use ~2800 observations of aerosol nitrate and ammonium concentrations, acquired from sampling aboard ships in the period 1995 - 2012, to assess the performance of modelled N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected three ocean regions (the eastern tropical North Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Our presentation will focus on the eastern tropical North Atlantic region, which has the best data coverage of the three. We will compare dry deposition fluxes calculated from the observed nitrate

  5. Impact of atmospheric deposition on algal growth in Lake Tahoe, CA

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Mackey, K. R.; Jiang, Y.; Liston, A.; Allen, B.; Schladow, S. G.

    2010-12-01

    Lake Tahoe’s clarity has been declining over the past decades and it is important to understand the causes and consequences of this decline. Lake Tahoe’s clarity is determined by fine sediment particles and by nutrients. Nutrients affect lake clarity by promoting algae growth. Indeed primary productivity, the rate at which algae produce biomass through photosynthesis, has been increasing since 1959. Offshore, algae make the water greenish and less clear. The two nutrients that most affect algal growth in this system are nitrogen and phosphorus. Atmospheric deposition is an important source of nutrients to the lake contributing 55% of the nitrogen load and 15% of the phosphate load (State of the Lake Report - http://terc.ucdavis.edu/stateofthelake/StateOfTheLake2009.pdf). To evaluate if and how atmospheric deposition impacts phytoplankton growth and abundance we have preformed bioassay experiments with inorganic nutrient and aerosol additions during the summer of 2010. Our results indicate that, as expected for this season, nitrogen or combined nitrogen and phosphate induce growth. Our aerosol additions also induced growth and suggest that nutrients originating from aerosols are bio-available and can stimulate phytoplankton production. Atmospheric deposition can therefore affect lake clarity and should be monitored to ensure that the state of the lake does not deteriorate further.

  6. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    PubMed

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-06-10

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition.

  7. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    PubMed Central

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-01-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition. PMID:26059183

  8. CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Shen, Weijun; Zhu, Shidan; Wan, Shiqiang; Luo, Yiqi; Yan, Junhua; Wang, Keya; Liu, Lei; Dai, Huitang; Li, Peixue; Dai, Keyuan; Zhang, Weixin; Liu, Zhanfeng; Wang, Faming; Kuang, Yuanwen; Li, Zhian; Lin, Yongbiao; Rao, Xingquan; Li, Jiong; Zou, Bi; Cai, Xian; Mo, Jiangming; Zhao, Ping; Ye, Qing; Huang, Jianguo; Fu, Shenglei

    2015-06-01

    Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition.

  9. CO2 deficit in temperate forest soils receiving high atmospheric N-deposition.

    PubMed

    Fleischer, Siegfried

    2003-02-01

    Evidence is provided for an internal CO2 sink in forest soils, that may have a potential impact on the global CO2-budget. Lowered CO2 fraction in the soil atmosphere, and thus lowered CO2 release to the aboveground atmosphere, is indicated in high N-deposition areas. Also at forest edges, especially of spruce forest, where additional N-deposition has occurred, the soil CO2 is lowered, and the gradient increases into the closed forest. Over the last three decades the capacity of the forest soil to maintain the internal sink process has been limited to a cumulative supply of approximately 1000 and 1500 kg N ha(-1). Beyond this limit the internal soil CO2 sink becomes an additional CO2 source, together with nitrogen leaching. This stage of "nitrogen saturation" is still uncommon in closed forests in southern Scandinavia, however, it occurs in exposed forest edges which receive high atmospheric N-deposition. The soil CO2 gradient, which originally increases from the edge towards the closed forest, becomes reversed.

  10. External quality assurance project report for the National Atmospheric Deposition Program’s National Trends Network and Mercury Deposition Network, 2013–14

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Martin, RoseAnn

    2016-07-05

    The Mercury Deposition Network programs include the system blank program and an interlaboratory comparison program. System blank results indicated that maximum total mercury contamination concentrations in samples were less than the third percentile of all Mercury Deposition Network sample concentrations. The Mercury Analytical Laboratory produced chemical concentration results with low bias and variability compared with other domestic and international laboratories that support atmospheric-deposition monitoring.

  11. Role of volcanic dust in the atmospheric transport and deposition of polycyclic aromatic hydrocarbons and mercury.

    PubMed

    Stracquadanio, Milena; Dinelli, Enrico; Trombini, Claudio

    2003-12-01

    The role of volcanic ash as scavenger of atmospheric pollutants, in their transport and final deposition to the ground is examined. Attention is focused on polycyclic aromatic hydrocarbons (PAHs) and on particulate mercury (Hgp). The ash-fall deposits studied belong to the 2001 and 2002 eruptive activity of Mount Etna, Southern Italy, and were investigated at three (2001) and four (2002) sites downwind of the major tephra dispersal pattern. The dry deposition of mercury and PAHs was determined, and, in particular, a downward flux to the ground of PAHs (approximately 7.29 microg m(-2) per day) and mercury (750 ng m(-2) per day) was estimated in Catania from October 26 to October 28, 2002. Finally, evidence on the anthropogenic origin of PAHs scavenged from the troposphere by volcanic ash is supported by the analysis of PAH compositions in granulometrically homogeneous fractions.

  12. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-01

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ, and Hα were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit "coral" and "cauliflower-like" morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  13. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    DOE PAGES

    Gou, Huiyang; Hemley, Russell J.; Hemawan, Kadek W.

    2015-11-02

    Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ and Hα were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Furthermore, field emission scanning electron microscopy (SEM) images revealmore » that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.« less

  14. The Abundance of Atmospheric CO2 in Ocean Exoplanets: a Novel CO2 Deposition Mechanism

    NASA Astrophysics Data System (ADS)

    Levi, A.; Sasselov, D.; Podolak, M.

    2017-03-01

    We consider super-Earth sized planets which have a water mass fraction large enough to form an external mantle composed of high-pressure water-ice polymorphs and also lack a substantial H/He atmosphere. We consider such planets in their habitable zone, so that their outermost condensed mantle is a global, deep, liquid ocean. For these ocean planets, we investigate potential internal reservoirs of CO2, the amount of CO2 dissolved in the ocean for the various saturation conditions encountered, and the ocean-atmosphere exchange flux of CO2. We find that, in a steady state, the abundance of CO2 in the atmosphere has two possible states. When wind-driven circulation is the dominant CO2 exchange mechanism, an atmosphere of tens of bars of CO2 results, where the exact value depends on the subtropical ocean surface temperature and the deep ocean temperature. When sea-ice formation, acting on these planets as a CO2 deposition mechanism, is the dominant exchange mechanism, an atmosphere of a few bars of CO2 is established. The exact value depends on the subpolar surface temperature. Our results suggest the possibility of a negative feedback mechanism, unique to water planets, where a reduction in the subpolar temperature drives more CO2 into the atmosphere to increase the greenhouse effect.

  15. Enhanced solubility and ecological impact of atmospheric phosphorus deposition upon extended seawater exposure.

    PubMed

    Mackey, Katherine R M; Roberts, Kathryn; Lomas, Michael W; Saito, Mak A; Post, Anton F; Paytan, Adina

    2012-10-02

    Atmospheric P solubility affects the amount of P available for phytoplankton in the surface ocean, yet our understanding of the timing and extent of atmospheric P solubility is based on short-term leaching experiments where conditions may differ substantially from the surface ocean. We conducted longer- term dissolution experiments of atmospheric aerosols in filtered seawater, and found up to 9-fold greater dissolution of P after 72 h compared to instantaneous leaching. Samples rich in anthropogenic materials released dissolved inorganic P (DIP) faster than mineral dust. To gauge the effect of biota on the fate of atmospheric P, we conducted field incubations with aerosol samples collected in the Sargasso Sea and Red Sea. In the Sargasso Sea phytoplankton were not P limited, and biological activity enhanced DIP release from aerosols, and aerosols induced biological mineralization of dissolved organic P in seawater, leading to DIP accumulation. However, in the Red Sea where phytoplankton were colimited by P and N, soluble P was rapidly consumed by phytoplankton following aerosol enrichment. Our results suggest that atmospheric P dissolution could continue over multiple days once reaching the surface ocean, and that previous estimates of atmospheric P deposition may underestimate the contribution from this source.

  16. Atmospheric nitrogen deposition and its long-term dynamics in a southeast China coastal area.

    PubMed

    Chen, Nengwang; Hong, Huasheng; Huang, Quanjia; Wu, Jiezhong

    2011-06-01

    Measurements were conducted during 2004-2005 and 2009-2010 to characterize atmospheric nitrogen (N) deposition to the Jiulong River Estuary - Xiamen Bay area in southeast China. Isotopic analysis and long-term data (1990-2009) for inorganic N extracted from the national acid deposition dataset were used to determine the dominant source of atmospheric nitrate and N component dynamics. The results showed that the mean dissolved total N concentration in rain water for the three coastal area sites was 2.71 ± 1.58 mg N L(-1) (n = 141) in 2004. The mean dissolved inorganic N at the Xiamen site was 1.62 ± 1.19 mg N L(-1) (n = 46) in 2004-2005 and 1.56 ± 1.39 mg N L(-1) (n = 36) in 2009-2010, although the difference is not significant, nitrate turnover dominates the N component in the latter period. Total deposition flux over Xiamen was 30 kg N ha(-1) yr(-1), of which dry and wet deposition contributed 16% and 84%, respectively. Nitrate in wet deposition with low isotopic value (between -3.05 and -7.48‰) was likely to have mostly originated from combustion NO(x) from vehicle exhausts. The inorganic N in acid deposition exhibited a significant increase (mainly for nitrate) since the mid-1990s, which is consistent with the increased gaseous concentrations of NO(x) and expanding number of automobiles in the coastal city (Xiamen). The time series of nitrate anions and ammonium cations as well as pH values during the period 1990-2009 reflected an increasing trend of N emission with potential implication for N-induced acidification.

  17. Challenges in tracing the fate and effects of atmospheric polycyclic aromatic hydrocarbon deposition in vascular plants.

    PubMed

    Desalme, Dorine; Binet, Philippe; Chiapusio, Geneviève

    2013-05-07

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants that raise environmental concerns because of their toxicity. Their accumulation in vascular plants conditions harmful consequences to human health because of their position in the food chain. Consequently, understanding how atmospheric PAHs are taken up in plant tissues is crucial for risk assessment. In this review we synthesize current knowledge about PAH atmospheric deposition, accumulation in both gymnosperms and angiosperms, mechanisms of transfer, and ecological and physiological effects. PAHs emitted in the atmosphere partition between gas and particulate phases and undergo atmospheric deposition on shoots and soil. Most PAH concentration data from vascular plant leaves suggest that contamination occurs by both direct (air-leaf) and indirect (air-soil-root) pathways. Experimental studies demonstrate that PAHs affect plant growth, interfering with plant carbon allocation and root symbioses. Photosynthesis remains the most studied physiological process affected by PAHs. Among scientific challenges, identifying specific physiological transfer mechanisms and improving the understanding of plant-symbiont interactions in relation to PAH pollution remain pivotal for both fundamental and applied environmental sciences.

  18. Assessment of Annual and Seasonal Fluxes of Particulate Matter from Atmospheric Deposition to Lake Tahoe

    NASA Astrophysics Data System (ADS)

    Tai, Ya-Chun

    Lake Tahoe, an oligotrophic lake appreciated for its fresh water and geographic setting, has been reported of its declining water clarity over the past few decades due to nutrient and sediment particle inputs. Contributions from atmospheric deposition of particulate matter (PM) have been suggested to be substantial, yet inadequately quantified. This study established three long-term monitoring sites (July 2013 -- August 2014) to measure 24-hr, size-resolved dry and wet PM deposition in near-shore, offshore-background, and upper watershed conditions in the Lake Tahoe Basin. The objectives are to: 1) investigate spatiotemporal variations of PM deposition flux, 2) obtain dry deposition velocity using mass deposition flux and PM concentration measurements, and 3) provide estimated annual number deposition flux (NDF) via dry and wet processes. Dry deposition was quantified on passive substrates using a scanning electron microscope, while wet deposition was based on particles suspended in rain and/or snow water analyzed by laser diffraction spectroscopy. The results show higher NDFdry and greater monthly variability at the near-shore than the offshore and upper-watershed sites, suggesting substantial impacts of nearby beach, traffic, and construction activities. Seasonal NDF dry and NDFwet (1--20 mum) were consistent across all three monitoring sites, characterized by higher NDFdry in fall, winter and summer but higher NDFwet in spring when precipitation occurred more frequently. The annual NDFdry+wet, estimated between 4.31 x 1019 and 8.61 x 1019 particles per year, is in the same order of magnitude with a previous estimate of 7.4 x 10 19 (0.5--16 mum) particles per year by the Lake Tahoe Total Maximum Daily Load (TMDL) using an independent approach. Comparison of the NDFdry with conventional eddy correlation measurements was examined through short-term collocated monitoring.

  19. Simulated atmospheric NO3- deposition increases soil organic matter by slowing decomposition.

    PubMed

    Zak, Donald R; Holmes, William E; Burton, Andrew J; Pregitzer, Kurt S; Talhelm, Alan F

    2008-12-01

    Presently, there is uncertainty regarding the degree to which anthropogenic N deposition will foster C storage in the N-limited forests of the Northern Hemisphere, ecosystems which are globally important sinks for anthropogenic CO2. We constructed organic matter and N budgets for replicate northern hardwood stands (n = 4) that have received ambient (0.7-1.2 g N x m(-2) x yr(-1) and experimental NO3- deposition (ambient plus 3 g NO3(-)-N x m(-2) x yr(-1)) for a decade; we also traced the flow of a 15NO3- pulse over a six-year period. Experimental NO3- deposition had no effect on organic matter or N stored in the standing forest overstory, but it did significantly increase the N concentration (+19%) and N content (+24%) of canopy leaves. In contrast, a decade of experimental NO3- deposition significantly increased amounts of organic matter (+12%) and N (+9%) in forest floor and mineral soil, despite no increase in detritus production. A greater forest floor (Oe/a) mass under experimental NO3- deposition resulted from slower decomposition, which is consistent with previously reported declines in lignolytic activity by microbial communities exposed to experimental NO3- deposition. Tracing 15NO3- revealed that N accumulated in soil organic matter by first flowing through soil microorganisms and plants, and that the shedding of 15N-labeled leaf litter enriched soil organic matter over a six-year duration. Our results demonstrate that atmospheric NO3- deposition exerts a direct and negative effect on microbial activity in this forest ecosystem, slowing the decomposition of aboveground litter and leading to the accumulation of forest floor and soil organic matter. To the best of our knowledge, this mechanism is not represented in the majority of simulation models predicting the influence of anthropogenic N deposition on ecosystem C storage in northern forests.

  20. Wind Induced Resuspension in a Shallow Tropical Lagoon

    NASA Astrophysics Data System (ADS)

    Arfi, R.; Guiral, D.; Bouvy, M.

    1993-06-01

    In shallow environments, particle resuspension can induce large ecological effects. Under some certain conditions of fetch, wind velocity, bathymetry and bed roughness, resuspension is generated by wind induced waves. During December 1991, a shallow station (1 m depth) in the north shore of a tropical lagoon (Côte d'Ivoire) was investigated in order to study the impact of wind induced resuspension on the ecosystem. In this area, Austral Trade winds are dominant almost all year long, and their velocity shows a marked diel pattern. During the survey, three sequences were distinguished: a period of Austral Trade winds (with possible resuspension), a period of Boreal Trade winds (no wind induced waves at the station) and a period of transitional Trade winds. Only Austral Trade winds with a speed >3 m s -1 allowed particle resuspension. For chlorophyll, mineral seston and ammonia, significantly higher values were noted during the windy sequences. Conductivity and water colour varied in relation to tides. Granulometric and mineralogical analyses showed that only the 0-3 cm superficial level of the sediment was involved in resuspension. This process induced several effects: (1) an increase of suspended matter concentration in the water and thus a light attenuation due to a higher turbidity, (2) a distribution in the whole water column of nutrients from the pore water, (3) a modification of the sediment granulometric characteristics and (4) an increase in the food available for planktonic filter feeders since algal cells were periodically resuspended in the whole water column. Wind induced resuspension occurred in 10% of the Ebrié lagoon. In this area, the daily alternate of resuspension-sedimentation sequence is then a major factor controlling the productivity of a system which is potentially highly productive (high nutrient load, favourable climatic conditions) yet characterized by high turbidity. These observations can be generalized to comparable systems in the

  1. Source Term Model for Fine Particle Resuspension from Indoor Surfaces

    DTIC Science & Technology

    2008-02-01

    9 2.2.1 Resuspension Factor K and Resuspension Rate Λ 9 2.2.2 Empirical Models 9 2.2.3 Theoretical Models 11 2.3...17 3.3.1 Empirical Correlations 18 3.3.2 Physics-Based Model 27 3.3.3 Comparison...of Dimensionless Variables in Empirical Correlations and Physics- based Model 30 3.4 Testing of Models

  2. The growth characteristics of microcrystalline Si thin film deposited by atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kwon, Jung-Dae

    2013-11-01

    Microcrystalline silicon thin film was grown by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique with a cylindrical rotary electrode supplied with 150 MHz very-high-frequency power. The crystalline volume fraction could be controlled by changing the flow rate ratio of silane and hydrogen gas during AP-PECVD. We could also control it by regulating the substrate scanning speed. At low substrate scanning speed, the silicon film had a low crystalline volume faction and layer-by-layer structure with alternating layers of amorphous and microcrystalline Si. On the other hand, at high substrate scanning speed, silicon crystals of sizes 25 nm grew homogeneously throughout the whole film.

  3. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    PubMed

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  4. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    PubMed

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  5. Resuspension studies in the Marshall Islands

    SciTech Connect

    Shinn, J.H.; Homan, D.N.; Robison, W.L.

    1997-07-01

    The contribution of inhalation exposure to the total dose for residents of the Marshall Islands was monitored at occasions of opportunity on several islands in the Bikini and Enewetak Atolls. To determine the long-term potential for inhalation exposure, and to understand the mechanisms of redistribution and personal exposure, additional investigations were undertaken on Bikini Island under modified and controlled conditions. Experiments were conducted to provide key parameters for the assessment of inhalation exposure from plutonium-contaminated dust aerosols: characterization of the contribution of plutonium in soil-borne aerosols as compared to sea spray and organic aerosols, determination of plutonium resuspension rates as measured by the meteorological flux-gradient method during extreme conditions of a bare-soil vs. a stabilized surface, determination of the approximate individual exposures to resuspended plutonium by traffic, and studies of exposures to individuals in different occupational environments simulated by personal air sampling of workers assigned to a variety of tasks. Enhancement factors (defined as ratios of the plutonium-activity), of suspended aerosols relative to the plutonium-activity of the soil were determined to be less than 1 (typically 0.4 to 0.7) in the undisturbed, vegetated areas, but greater than 1 (as high as 3) for the case studies of disturbed bare soil, roadside travel, and for occupational duties in fields and in and around houses. 12 refs., 5 figs., 8 tabs.

  6. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2017-01-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature (P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  7. Engineering of pulsed laser deposited calcium phosphate biomaterials in controlled atmospheres

    NASA Astrophysics Data System (ADS)

    Drukteinis, Saulius E.

    Synthetic calcium phosphates (CAP) such as hydroxyapatite (HA) have been used as regenerative bone graft materials and also as thin films to improve the integration of biomedical implant devices within skeletal tissue. Pulsed laser deposition (PLD) can deposit crystalline HA with significant adhesion on titanium biomaterials. However, there are PLD processing constraints due to the complex physical and chemical interactions occurring simultaneously during PLD, which influence ablation plume formation and development. In this investigation PLD CAP films were engineered with a focus on novel decoupling of partial pressure of H2O (g) ( PH2O ) from total background pressure, in combination with substrate heat treatment and laser energy density control. Characterization of these films was performed with X-ray Diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Fourier Transform Infrared Spectroscopy, and Optical Profilometry. In vitro cellular adhesion testing was also performed using osteoblast (MC3T3) cell lines to evaluate adhesion of bone-forming cells on processed PLD CAP samples. Preferred a-axis orientation films were deposited in H2O (g) saturated atmospheres with reduced laser fluence (< 4 J/cm2). Crystalline HA/tetracalcium phosphate (TTCP) films were deposited in H2O ( g)-deficient atmospheres with higher laser fluence (> 3 J/cm 2). Varied PH2O resulted in control of biphasic HA/TTCP composition with increasing TTCP at lower PH2O . These were dense continuous films composed of micron-scale particles. Cellular adhesion assays did not demonstrate a significant difference between osteoblast adhesion density on HA films compared with biphasic HA/TTCP films. Room temperature PLD at varied PH2O combined with furnace heat treatment resulted in controlled variation in surface amplitude parameters including surface roughness (S a), root mean square (Sq), peak to valley height (St), and ten-point height ( Sz). These discontinuous films were

  8. Experimental study of fractal clusters formation from nanoparticles synthesized by atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mishin, Maxim V.; Protopopova, Vera S.; Alexandrov, Sergey E.

    2014-11-01

    This paper presents the experimental results from the fractal structures formation from nanoparticles of silicone dioxide deposited on the silicon substrate surface. Nanoparticles are synthesized by atmospheric pressure plasma-enhanced chemical vapor deposition with the use of capacitively coupled radio frequency (13.56 MHz) discharge sustained in helium atmosphere. Tetraethoxysilane is chosen as the test precursor. Correlation between the morphology of obtained deposits and the process parameters is found. The capability of nanoparticles movement along the deposit surface in local near-surface electric field is demonstrated. The empirical model that satisfactorily explained the mechanism of fractal clusters formation from nanoparticles on the substrate surface is developed. The model indicates that the dynamics of deposit morphology variations is determined by two competing processes: electrical charge transfer by nanoparticles to the deposit surface and electrical charge running off over the surface under conditions of changeable conductivity of the deposit surface.

  9. Estimates of the atmospheric deposition of sulfur and nitrogen species: Clean Air Status and Trends Network 1990-2000.

    PubMed

    Baumgardner, Ralph E; Lavery, Thomas F; Rogers, Christopher M; Isil, Selma S

    2002-06-15

    The Clean Air Status and Trends Network (CASTNet) was established by the U.S. EPA in response to the requirements of the 1990 Clean Air Act Amendments. To satisfy these requirements CASTNet was designed to assess and report on geographic patterns and long-term, temporal trends in ambient air pollution and acid deposition in order to gauge the effectiveness of current and future mandated emission reductions. This paper presents an analysis of the spatial patterns of deposition of sulfur and nitrogen pollutants for the period 1990-2000. Estimates of deposition are provided for two 4-yr periods: 1990-1993 and 1997-2000. These two periods were selected to contrast deposition before and after the large decrease in SO2 emissions that occurred in 1995. Estimates of dry deposition were obtained from measurements at CASTNet sites combined with deposition velocities that were modeled using the multilayer model, a 20-layer model that simulates the various atmospheric processes that contribute to dry deposition. Estimates of wet deposition were obtained from measurements at sites operated bythe National Atmospheric Deposition Program. The estimates of dry and wet deposition were combined to calculate total deposition of atmospheric sulfur (dry SO2, dry and wet SO4(2-)) and nitrogen (dry HNO3, dry and wet NO3-, dry and wet NH4+). An analysis of the deposition estimates showed a significant decline in sulfur deposition and no change in nitrogen deposition. The highest rates of sulfur deposition were observed in the Ohio River Valley and downwind states. This region also observed the largest decline in sulfur deposition. The highest rates of nitrogen deposition were observed in the Midwest from Illinois to southern New York State. Sulfur and nitrogen deposition fluxes were significantly higher in the eastern United States as compared to the western sites. Dry deposition contributed approximately 38% of total sulfur deposition and 30% of total nitrogen deposition in the eastern

  10. A new sampler for collecting separate dry and wet atmospheric depositions of trace organic chemicals

    NASA Astrophysics Data System (ADS)

    Waite, Don T.; Cessna, Allan J.; Gurprasad, Narine P.; Banner, James

    Studies conducted in Saskatchewan and elsewhere have demonstrated the atmospheric transport of agricultural pesticides and other organic contaminants and their deposition into aquatic ecosystems. To date these studies have focused on ambient concentrations in the atmosphere and in wet precipitation. To measure the dry deposition of organic chemicals, a new sampler was designed which uses a moving sheet of water to passively trap dry particles and gasses. The moving sheet of water drains into a reservoir and, during recirculation through the sampler, is passed through an XAD-2 resin column which adsorbs the trapped organic contaminants. All surfaces which contact the process water are stainless steel or Teflon. Chemicals collected can be related to airborne materials depositing into aquatic ecosystems. The sampler has received a United States patent (number 5,413,003 - 9 May 1996) with the Canadian patent pending. XAD-2 resin adsorption efficiencies for 10 or 50 μg fortifications of ten pesticides ranged from 76% for atrazine (2-chloro-4-ethylamino-6-isopropylamino- S-triazine) to 110% for triallate [ S-(2,3,3-trichloro-2-phenyl)bis(1-methylethyl)carbamothioate], dicamba (2-methoxy-3,6-dichlorobenzoic acid) and toxaphene (chlorinated camphene mixture). Field testing using duplicate samplers showed good reproducibility and amounts trapped were consistent with those from high volume and bulk pan samplers located on the same site. Average atmospheric dry deposition rates of three chemicals, collected for 5 weeks in May and June, were: dicamba, 69 ng m -2 da -1; 2,4-D (2,4-dichlorophenoxyacetic acid), 276 ng m -2 da -1: and, γ-HCH ( γ-1, 2, 3, 4, 5, 6-hexachlorocyclohexane), 327 ng m -2 da -1.

  11. National Atmospheric Deposition Program (NADP) Networks: Data on the chemistry of precipitation

    DOE Data Explorer

    The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) is a nationwide network of sites collecting data on the chemistry of precipitation for monitoring of geographical and temporal long-term trends. The precipitation at each station is collected weekly according to strict clean-handling procedures. It is then sent to the Central Analytical Laboratory where it is analyzed for hydrogen (acidity as pH), sulfate, nitrate, ammonium, chloride, and base cations (such as calcium, magnesium, potassium and sodium). The network is a cooperative effort between many different groups, including the State Agricultural Experiment Stations, U.S. Geological Survey, U.S. Department of Agriculture, and numerous other governmental and private entities. DOE is one of these cooperating agencies, though it plays a smaller funding role than some of the other federal sources. Since 1978, the NADP/NTN has grown from 22 stations to over 250 sites spanning the continental United States, Alaska, and Puerto Rico, and the Virgin Islands. The National Atmospheric Deposition Program has also expanded its sampling to two additional networks: 1) the Mercury Deposition Network (MDN), currently with over 90 sites, was formed in 1995 to collect weekly samples of precipitation which are analyzed by Frontier Geosciences for total mercury, and 2) the Atmospheric Integrated Research Monitoring Network (AIRMoN), formed for the purpose of studying precipitation chemistry trends with greater temporal resolution than the NTN. [taken from the NADP History and Overview page at http://nadp.sws.uiuc.edu/nadpoverview.asp] Data from these networks are freely available in via customized search interfaces linked to interactive maps of the stations in the three networks. Animated Isopleth maps in Flash and PowerPoint are also available to display concentrations and depositions various substances such as sulfate, nitrate, etc. (Specialized Interface)

  12. Critical loads of nitrogen deposition and critical levels of atmospheric ammonia for mediterranean evergreen woodlands

    NASA Astrophysics Data System (ADS)

    Pinho, P.; Theobald, M. R.; Dias, T.; Tang, Y. S.; Cruz, C.; Martins-Loução, M. A.; Máguas, C.; Sutton, M.; Branquinho, C.

    2011-11-01

    Nitrogen (N) has emerged in recent years as a key factor associated with global changes, with impacts on biodiversity, ecosystems functioning and human health. In order to ameliorate the effects of excessive N, safety thresholds have been established, such as critical loads (deposition fluxes) and levels (concentrations). For Mediterranean ecosystems, few studies have been carried out to assess these parameters. Our objective was therefore to determine the critical loads of N deposition and long-term critical levels of atmospheric ammonia for Mediterranean evergreen woodlands. For that we have considered changes in epiphytic lichen communities, which have been shown to be one of the most sensitive to excessive N. Based on a classification of lichen species according to their tolerance to N we grouped species into response functional groups, which we used as a tool to determine the critical loads and levels. This was done under Mediterranean climate, in evergreen cork-oak woodlands, by sampling lichen functional diversity and annual atmospheric ammonia concentrations and modelling N deposition downwind from a reduced N source (a cattle barn). By modelling the highly significant relationship between lichen functional groups and N deposition, the critical load was estimated to be below 26 kg (N) ha-1 yr-1, which is within the upper range established for other semi-natural ecosystems. By modelling the highly significant relationship of lichen functional groups with annual atmospheric ammonia concentration, the critical level was estimated to be below 1.9 μg m-3, in agreement with recent studies for other ecosystems. Taking into account the high sensitivity of lichen communities to excessive N, these values should be taken into account in policies that aim at protecting Mediterranean woodlands from the initial effects of excessive N.

  13. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    PubMed

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  14. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    NASA Technical Reports Server (NTRS)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  15. Increased atmospheric deposition of mercury in reference lakes near major urban areas

    USGS Publications Warehouse

    Van Metre, P.C.

    2012-01-01

    Atmospheric deposition of Hg is the predominant pathway for Hg to reach sensitive ecosystems, but the importance of emissions on near-field deposition remains unclear. To better understand spatial variability in Hg deposition, mercury concentrations were analyzed in sediment cores from 12 lakes with undeveloped watersheds near to (<50 km) and remote from (>150 km) several major urban areas in the United States. Background and focusing corrected Hg fluxes and flux ratios (modern to background) in the near-urban lakes (68 ?? 6.9 ??g m -2 yr -1 and 9.8 ?? 4.8, respectively) greatly exceed those in the remote lakes (14 ?? 9.3 ??g m -2 yr -1 and 3.5 ?? 1.0) and the fluxes are strongly related to distance from the nearest major urban area (r 2 = 0.87) and to population and Hg emissions within 50-100 km of the lakes. Comparison to monitored wet deposition suggests that dry deposition is a major contributor of Hg to lakes near major urban areas. ?? 2011 Elsevier Ltd. All rights reserved.

  16. Enhanced CO 2 trapping in water ice via atmospheric deposition with relevance to Mars

    NASA Astrophysics Data System (ADS)

    Trainer, Melissa G.; Tolbert, Margaret A.; McKay, Christopher P.; Toon, Owen B.

    2010-04-01

    It has been suggested that inclusions of CO 2 or CO 2 clathrate hydrates may comprise a portion of the polar deposits on Mars. Here we present results from an experimental study in which CO 2 molecules were trapped in water ice deposited from CO 2/H 2O atmospheres at temperatures relevant for the polar regions of Mars. Fourier-Transform Infrared spectroscopy was used to monitor the phase of the condensed ice, and temperature programmed desorption was used to quantify the ratio of species in the generated ice films. Our results show that when H 2O ice is deposited at 140-165 K, CO 2 is trapped in large quantities, greater than expected based on lower temperature studies in amorphous ice. The trapping occurs at pressures well below the condensation point for pure CO 2 ice, and therefore this mechanism may allow for CO 2 deposition at the poles during warmer periods. The amount of trapped CO 2 varied from 3% to 16% by mass at 160 K, depending on the substrate studied. Substrates studied were a tetrahydrofuran (C 4H 8O) base clathrate and Fe-montmorillonite clay, an analog for Mars soil. Experimental evidence indicates that the ice structures are likely CO 2 clathrate hydrates. These results have implications for the CO 2 content, overall composition, and density of the polar deposits on Mars.

  17. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    NASA Astrophysics Data System (ADS)

    Cherin, N.; Roustan, Y.; Musson-Genon, L.; Seigneur, C.

    2014-12-01

    Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially-distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially-distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area.

  18. Modelling atmospheric dry deposition in urban areas using an urban canopy approach

    NASA Astrophysics Data System (ADS)

    Cherin, N.; Roustan, Y.; Musson-Genon, L.; Seigneur, C.

    2015-03-01

    Atmospheric dry deposition is typically modelled using an average roughness length, which depends on land use. This classical roughness-length approach cannot account for the spatial variability of dry deposition in complex settings such as urban areas. Urban canopy models have been developed to parametrise momentum and heat transfer. We extend this approach here to mass transfer, and a new dry deposition model based on the urban canyon concept is presented. It uses a local mixing-length parametrisation of turbulence within the canopy, and a description of the urban canopy via key parameters to provide spatially distributed dry deposition fluxes. Three different flow regimes are distinguished in the urban canyon depending on the height-to-width ratio of built areas: isolated roughness flow, wake interference flow and skimming flow. Differences between the classical roughness-length model and the model developed here are investigated. Sensitivity to key parameters are discussed. This approach provides spatially distributed dry deposition fluxes that depend on surfaces (streets, walls, roofs) and flow regimes (recirculation and ventilation) within the urban area.

  19. Four studies on effects of environmental factors on the quality of National Atmospheric Deposition Program measurements

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Lehmann, Christopher M.B.; Rhodes, Mark F.

    2011-01-01

    Selected aspects of National Atmospheric Deposition Program / National Trends Network (NADP/NTN) protocols are evaluated in four studies. Meteorological conditions have minor impacts on the error in NADP/NTN sampling. Efficiency of frozen precipitation sample collection is lower than for liquid precipitation samples. Variability of NTN measurements is higher for relatively low-intensity deposition of frozen precipitation than for higher-intensity deposition of liquid precipitation. Urbanization of the landscape surrounding NADP/NTN sites is not affecting trends in wet-deposition chemistry data to a measureable degree. Five NADP siting criteria intended to preserve wet-deposition sample integrity have varying degrees of effectiveness. NADP siting criteria for objects within the 90 degrees cones and trees within the 120 degrees cones projected from the collector bucket to sky are important for protecting sample integrity. Tall vegetation, fences, and other objects located within 5 meters of the collectors are related to the frequency of visible sample contamination, indicating the importance of these factors in NADP siting criteria.

  20. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei

    2017-03-01

    We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.

  1. Atmospheric Nitrogen Deposition Threatens Biodiversity: Development of Novel Mitigation Policies in California

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2011-12-01

    Atmospheric nitrogen deposition threatens biodiversity in many parts of the world. In California, 20% of the land surface receives > 5 kg-N ha-1 year-1, with hotspots receiving > 50 kg-N ha-1 year-1. Documented impacts of N-deposition include increased growth of annual grass and other invasives in coastal sage scrub, serpentine grasslands, vernal pools, and deserts, altered nutrient cycling and fuel accumulation of montane forests, enhanced fire cycles, nitrate leaching into surface and groundwater, and eutrophication of montane lakes such as Lake Tahoe. 40% of listed threatened and endangered plants are exposed to > 5 kg-N ha-1 year-1, and N-deposition is arguably a greater immediate threat to biodiversity than is climate change. Appropriate policy responses are lagging, because the magnitude of N-deposition impacts on biodiversity is poorly known in the broader conservation/regulatory community and the general public. Policies to decrease emissions and deposition are clearly the ultimate solution on a decadal time scale. In the interim, habitat management is critical to preventing extinction of many species. This presentation reviews recent policies and regulatory actions in California that address N-deposition impacts on biodiversity. The immediate and long-term needs for invasive weed management are overwhelming and require long-term endowment funding. Mitigation requirements under the US Endangered Species Act have been used to secure land and management resources. The on-going story of the threatened Bay checkerspot butterfly, from the first precedent setting mitigation in 2001 through a regional Habitat Conservation Plan (HCP), illustrates the development of these novel policies based on science, regulatory authority, grassroots activism, public education, habitat restoration, and legal actions. The 50-year HCP will ultimately result in a network of conserved lands with management endowments. Eventually N-deposition may be reduced below critical loads

  2. Low temperature atmospheric pressure chemical vapor deposition of group 14 oxide films

    SciTech Connect

    Hoffman, D.M.; Atagi, L.M. |; Chu, Wei-Kan; Liu, Jia-Rui; Zheng, Zongshuang; Rubiano, R.R.; Springer, R.W.; Smith, D.C.

    1994-06-01

    Depositions of high quality SiO{sub 2} and SnO{sub 2} films from the reaction of homoleptic amido precursors M(NMe{sub 2})4 (M = Si,Sn) and oxygen were carried out in an atmospheric pressure chemical vapor deposition r. The films were deposited on silicon, glass and quartz substrates at temperatures of 250 to 450C. The silicon dioxide films are stoichiometric (O/Si = 2.0) with less than 0.2 atom % C and 0.3 atom % N and have hydrogen contents of 9 {plus_minus} 5 atom %. They are deposited with growth rates from 380 to 900 {angstrom}/min. The refractive indexes of the SiO{sub 2} films are 1.46, and infrared spectra show a possible Si-OH peak at 950 cm{sup {minus}1}. X-Ray diffraction studies reveal that the SiO{sub 2} film deposited at 350C is amorphous. The tin oxide films are stoichiometric (O/Sn = 2.0) and contain less than 0.8 atom % carbon, and 0.3 atom % N. No hydrogen was detected by elastic recoil spectroscopy. The band gap for the SnO{sub 2} films, as estimated from transmission spectra, is 3.9 eV. The resistivities of the tin oxide films are in the range 10{sup {minus}2} to 10{sup {minus}3} {Omega}cm and do not vary significantly with deposition temperature. The tin oxide film deposited at 350C is cassitterite with some (101) orientation.

  3. Pitfalls and new mechanisms in moss isotope biomonitoring of atmospheric nitrogen deposition.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Liu, Cong-Qiang; Li, Xiao-Dong; Yoh, Muneoki

    2012-11-20

    Moss N isotope (δ(15)N(bulk)) has been used to monitor N deposition, but it remains questionable whether inhibition of nitrate reductase activity (NRA) by reduced dissolved N (RDN) engenders overestimation of RDN in deposition when using moss δ(15)N(bulk). We tested this question by investigation of δ(15)N(bulk) and δ(15)NO(3)(-) in mosses under the dominance of RDN in N depositions of Guiyang, SW China. The δ(15)N(bulk) of mosses on bare rock (-7.9‰) was unable to integrate total dissolved N (TDN) (δ(15)N = -6.3‰), but it reflected δ(15)N-RDN (-7.5‰) exactly. Moreover, δ(15)N-NO(3)(-) in mosses (-1.7‰) resembled that of wet deposition (-1.9‰). These isotopic approximations, together with low isotopic enrichment with moss [NO(3)(-)] variations, suggest the inhibition of moss NRA by RDN. Moreover, isotopic mixing modeling indicated a negligible contribution from NO(3)(-) to moss δ(15)N(bulk) when the RDN/NO(3)(-) reaches 3.8, at which maximum overestimation (21%) of RDN in N deposition can be generated using moss δ(15)N(bulk) as δ(15)N-TDN. Moss δ(15)N-NO(3)(-) can indicate atmospheric NO(3)(-) under distinctly high RDN/NO(3)(-) in deposition, although moss δ(15)N(bulk) can reflect only the RDN therein. These results reveal pitfalls and new mechanisms associated with moss isotope monitoring of N deposition and underscore the importance of biotic N dynamics in biomonitoring studies.

  4. Atmospheric dispersion and deposition of iodine-131 released from the Hanford Site

    SciTech Connect

    Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.; Stage, S.A.

    1994-06-01

    Approximately 2.6x10{sup 4} TBq (700,000 curies) of iodine-131 were released to the air from reactor fuel processing plants on the Hanford Site in southcentral Washington State from December 1944 through December 1949. The Hanford Environmental Dose Reconstruction (HEDR) Project developed a suite of codes to estimate the doses that might have resulted from these releases. The Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET) computer code is part of this suite. The RATCHET code implements a Lagrangian-trajectory, Gaussian-puff dispersion model that uses hourly meteorological and release rate data to estimate daily time-integrated air concentrations and surface contamination for use in dose estimates. In this model, iodine is treated as a mixture of three species (nominally, inorganic gases, organic gases, and particles). Model deposition parameters are functions of the mixture and meteorological conditions. A resistance model is used to calculate dry deposition velocities. Equilibrium between concentrations in the precipitation and the air near the ground is assumed in calculating wet deposition of gases, and irreversible washout of the particles is assumed. RATCHET explicitly treats the uncertainties in model parameters and meteorological conditions. Uncertainties in iodine-131 release rates and partitioning among the nominal species are treated by varying model input. The results of 100 model runs for December 1944 through December 1949 indicate that monthly average air concentrations and deposition have uncertainties ranging from a factor of two near the center of the time-integrated plume to more than an order of magnitude near the edge. These results indicate that -10% of the iodine-131 released to the atmosphere decayed during transit in the study area, -56% was deposited within the study area, and the remaining 34% was transported out of the study area while still in the air.

  5. Dynamics of atmospheric nitrogen deposition in a temperate calcareous forest soil.

    PubMed

    Morier, Isabelle; Guenat, Claire; Siegwolf, Rolf; Védy, Jean-Claude; Schleppi, Patrick

    2008-01-01

    In temperate forest ecosystems, soil acts as a major sink for atmospheric N deposition. A (15)N labeling experiment in a hardwood forest on calcareous fluvisol was performed to study the processes involved. Low amounts of ammonium ((15)NH(4)(+)) or nitrate ((15)NO(3)(-)) were added to small plots. Soil samples were taken after periods ranging from 1 h to 1 yr. After 1 d, the litter layer retained approximately 28% of the (15)NH(4)(+) tracer and 19% of (15)NO(3)(-). The major fraction of deposited N went through the litter layer to reach the soil within the first hours following the tracer application. During the first day, a decrease in extractable (15)N in the soil was observed ((15)NH(4)(+): 50 to 5%; (15)NO(3)(-): 60 to 12%). During the same time, the amount of microbial (15)N remained almost constant and the (15)N immobilized in the soil (i.e., total (15)N recovered in the bulk soil minus extractable (15)N minus microbial (15)N) also decreased. Such results can therefore be understood as a net loss of (15)N from the soil. Such N loss is probably explained by NO(3)(-) leaching, which is enhanced by the well-developed soil structure. We presume that the N immobilization mainly occurs as an incorporation of deposited N into the soil organic matter. One year after the (15)N addition, recovery rates were similar and approximately three-quarters of the deposited N was recovered in the soil. We conclude that the processes relevant for the fate of atmospherically deposited N take place rapidly and that N recycling within the microbes-plants-soil organic matter (SOM) system prevents further losses in the long term.

  6. Background continental atmospheric deposition from a remote alpine site in the Canadian Southern Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Norman, A. L.; Lafreniere, M. J.; Hastings, M. G.

    2013-12-01

    Precipitation from the remote alpine Haig Valley in the Canadian Southern Rocky Mountains provides a useful baseline for background atmospheric sulphur (S) and nitrogen (N) deposition. Major controls on deposition were evaluated using seasonal glacier snowpack, reflecting atmospheric deposition from Sept. 2008 to April 2009, and Sept. 2009 to May 2010, along with June 28-August 22 2010, bulk summer precipitation. A narrow range in δ34S-SO42- values in bulk summer precipitation (6.1-8.7‰, n=12) with uniform S loads, at varied elevations, across the Haig Valley indicate atmospheric sulphate (SO42-) was well-mixed prior to deposition and dominantly from long range transport. Uniform ammonium (NH4+) loads also indicated well mixed dominantly distant sources for this N aerosol. Snowpack loads varied closely with snow water equivalent, which was orographically controlled. Deposition patterns for nitrate (NO3-) and nitrite (NO2-) along with δ15N-NO3- and δ18O-NO3- from summer bulk precipitation (with elevation in the SE facing Haig Valley and opposing NNW facing Robertson Valley), showed δ18O-NO3- values and [NO2-] to be effective tracers of regional (within 24 hours of atmospheric transport) NOx combustion emissions. Distant emissions (> 1 day transport), with high δ18O-NO3 values consistent with NOx oxidation dominantly by ozone, were associated with relatively high δ15N-NO3- values. In contrast, lower δ18O-NO3- values that reflect a higher proportion of NOx oxidation by atmospheric H2O and O2 and are consistent with an increased proportion of regional combustion emissions, were accompanied by lower δ15N-NO3- values. Combined analytical results from snowpack and summer precipitation showed a negative covariance of δ18O-NO3- values with [NO3-]. Summer precipitation formed the high [NO3-], low δ18O-NO3- segment of a trend with snowpack at the other end with low concentrations and high δ18O-NO3-values. [NO2-] and δ18O-NO3-values also negatively covaried

  7. Atmospheric Deposition of Trace Elements in Ombrotrophic Peat as a Result of Anthropic Activities

    NASA Astrophysics Data System (ADS)

    Fabio Lourençato, Lucio; Cabral Teixeira, Daniel; Vieira Silva-Filho, Emmanoel

    2014-05-01

    Ombrotrophic peat can be defined as a soil rich in organic matter, formed from the partial decomposition of vegetable organic material in a humid and anoxic environment, where the accumulation of material is necessarily faster than the decomposition. From the physical-chemical point of view, it is a porous and highly polar material with high adsorption capacity and cation exchange. The high ability of trace elements to undergo complexation by humic substances happens due to the presence of large amounts of oxygenated functional groups in these substances. Since the beginning of industrialization human activities have scattered a large amount of trace elements in the environment. Soil contamination by atmospheric deposition can be expressed as a sum of site contamination by past/present human activities and atmospheric long-range transport of trace elements. Ombrotrophic peat records can provide valuable information about the entries of trace metals into the atmosphere and that are subsequently deposited on the soil. These trace elements are toxic, non-biodegradable and accumulate in the food chain, even in relatively low quantities. Thus studies on the increase of trace elements in the environment due to human activities are necessary, particularly in the southern hemisphere, where these data are scarce. The aims of this study is to evaluate the concentrations of mercury in ombrotrophic peat altomontanas coming from atmospheric deposition. The study is conducted in the Itatiaia National Park, Brazilian conservation unit, situated between the southeastern state of Rio de Janeiro, São Paulo and Minas Gerais. An ombrotrophic peat core is being sampled in altitude (1980m), to measure the trace elements concentrations of this material. As it is conservation area, the trace elements found in the samples is mainly from atmospheric deposition, since in Brazil don't exist significant lithology of trace elements. The samples are characterized by organic matter content which

  8. Application of Ecosystem-Scale Fate and Bioaccumulation Models to Predict Fish Mercury Response Times to Changes in Atmospheric Deposition

    EPA Science Inventory

    Management strategies for controlling anthropogenic mercury emissions require understanding how ecosystems will respond to changes in atmospheric mercury deposition. Process-based mathematical models are valuable tools for informing such decisions, because measurement data often ...

  9. Spatial Patterns of Atmospherically Deposited Organic Contaminants at High Elevation in the Southern Sierra Nevada Mountains, California

    EPA Science Inventory

    Atmospherically deposited contaminants in the Sierra Nevada mountains of California have been implicated as adversely affecting amphibians and fish, yet the distributions of contaminants within the mountains are poorly known, particularly at high elevation. We tested the hypothe...

  10. Spatial Patterns of Atmospherically Deposited Organic Contaminants at High Elevation in the Southern Sierra Nevada Mountains, California

    EPA Science Inventory

    Atmospherically deposited contaminants in the Sierra Nevada mountains of California have been implicated as a factor adversely affecting biological resources such as amphibians and fish, yet the distributions of contaminants within the mountains are poorly known, particularly at...

  11. Temporal and Spatial Variation of Atmospherically Deposited Organic Contaminants at High Elevation in Yosemite National Park, California, USA

    EPA Science Inventory

    Atmospherically deposited organic contaminants in the Sierra Nevada mountains of California, USA, have exceeded some thresholds of concern, but the spatial and temporal distributions of contaminants in the mountains are not well known. The present study evaluated (1) whether the...

  12. Year-round grazing to counteract effects of atmospheric nitrogen deposition may aggravate these effects.

    PubMed

    van Dobben, H F; Wamelink, G W W; Klimkowska, A; Slim, P A; van Til, M

    2014-12-01

    Excessive nitrogen input in natural ecosystems is a major threat to biodiversity. A coastal dune area near Amsterdam in the Netherlands suffers from high atmospheric nitrogen deposition affecting sensitive habitats such as fixed coastal dunes with herbaceous vegetation ('grey dunes'). To mitigate its effect year round grazing was applied from 2007 until 2012. In winter, when natural food supply is low, the cattle received supplementary hay that caused additional inputs of nitrogen. Estimates based on nitrogen contents of hay, as well as of manure, showed the input through winter feeding (c. 3-14 kg N ha(-1).y(-1)) is in the same order of magnitude as both the actual deposition (c. 17 kg N ha(-1).y(-1)) and the critical load for a number of herbaceous habitat types (10-15 kg N ha(-1).y(-1)). Locally, the effect of winter feeding adds to the effect of nitrogen redistribution within the area caused by the cattle's terrain usage. We conclude that winter feeding may aggravate effects of atmospheric nitrogen deposition.

  13. Dry deposition, concentration and gas/particle partitioning of atmospheric carbazole

    NASA Astrophysics Data System (ADS)

    Esen, Fatma; Tasdemir, Yücel; Cindoruk, S. Sıddık

    2010-03-01

    The atmospheric concentrations and dry deposition of carbazole were measured to present the temporal changes, gas/particle partitioning and magnitude of fluxes. Atmospheric samples were collected from July 2004 to May 2005 at four different sites in Bursa, Turkey. The average total (gas and particulate) carbazole concentrations were 7.6 ± 9.9 ng m - 3 in Gulbahce (Residential), 1.1 ± 1.2 ng m - 3 in BUTAL (Traffic), 3.3 ± 5.0 ng m - 3 in BOID (Industrial), and 1.2 ± 0.7 ng m - 3 in the Uludag University Campus (UU) (Suburban). Experimental gas/particle partition coefficient ( Kp) was determined using the study results and compared with Kp values calculated from octanol-air and soot-air + octanol partitioning models. Total dry deposition fluxes of carbazole were 290 ± 484 ng m - 2 d - 1 in BUTAL and 72 ± 67 ng m - 2 d - 1 in the UU Campus. Particulate phase dry deposition velocities were 0.81 ± 0.78 cm s - 1 and 0.90 ± 1.53 cm s - 1 for BUTAL and the UU Campus, respectively. On the other hand, gas-phase mass transfer coefficients were calculated to be 0.34 ± 0.29 cm s - 1 and 0.26 ± 0.17 cm s - 1 for BUTAL and the UU Campus, respectively.

  14. Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes

    USGS Publications Warehouse

    Baron, J.S.; Driscoll, C.T.; Stoddard, J.L.; Richer, E.E.

    2011-01-01

    The ecological effects of elevated atmospheric nitrogen (N) deposition on high-elevation lakes of the western and northeastern United States include nutrient enrichment and acidification. The nutrient enrichment critical load for western lakes ranged from 1.0 to 3.0 kilograms (kg) of N per hectare (ha) per year, reflecting the nearly nonexistent watershed vegetation in complex, snowmelt-dominated terrain. The nutrient enrichment critical load for northeastern lakes ranged from 3.5 to 6.0 kg N per ha per year. The N acidification critical loads associated with episodic N pulses in waters with low values of acid neutralizing capacity were 4.0 kg N per ha per year (western) and 8.0 kg N per ha per year (northeastern). The empirical critical loads for N-caused acidification were difficult to determine because of a lack of observations in the West, and high sulfur deposition in the East. For both nutrient enrichment and acidification, the N critical load was a function of how atmospheric N deposition was determined. ?? 2011 by American Institute of Biological Sciences. All rights reserved.

  15. Mobile load simulators - A tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces

    NASA Astrophysics Data System (ADS)

    Gehrig, R.; Zeyer, K.; Bukowiecki, N.; Lienemann, P.; Poulikakos, L. D.; Furger, M.; Buchmann, B.

    2010-12-01

    Mechanically produced abrasion particles and resuspension processes are responsible for a significant part of the PM10 emissions of road traffic. However, specific differentiation between PM10 emissions due to abrasion and resuspension from road pavement is very difficult due to their similar elemental composition and highly correlated variation in time. In this work Mobile Load Simulators were used to estimate PM10 emission factors for pavement abrasion and resuspension on different pavement types for light and heavy duty vehicles. From the experiments it was derived that particle emissions due to abrasion from pavements in good condition are quite low in the range of only a few mg·km -1 per vehicle if quantifiable at all. Considerable abrasion emissions, however, can occur from damaged pavements. Resuspension of deposited dust can cause high and extremely variable particle emissions depending strongly on the dirt load of the road surface. Porous pavements seem to retain deposited dust better than dense pavements, thus leading to lower emissions due to resuspension compared to pavements with a dense structure (e.g. asphalt concrete). Tyre wear seemed not to be a quantitatively significant source of PM10 emissions from road traffic.

  16. Modelling of atmospheric transport and deposition of toxaphene into the great lakes ecosystem

    NASA Astrophysics Data System (ADS)

    Voldner, E. C.; Schroeder, W. H.

    Toxaphene, not extensively used in the Great Lakes basin, has been found in fish, lake water, ambient air and precipitation in this region. It has been suggested that the atmosphere constitutes a primary transport route of toxaphene to the Great Lakes from the major source regions in the southern U.S. Environmental measurements are too few to estimate the input of toxaphene to the Great Lakes basins. The ASTRAP model, used in acid rain research, was modified for simulation of the atmospheric pathway of toxaphene. Based on emission inventories, derived from use patterns in North America for 1976 and 1980, air concentration and deposition of toxaphene to the Great Lakes were estimated. The results confirm that the atmosphere is a major transport route of toxaphene to the Great Lakes region. They also show that toxaphene can be transported to the North Atlantic. Total deposition to the Lakes in 1980 was 3-10 t and annual average air concentrations about 0.5ngm -3. Although the information on physical/chemical properties and emissions is incomplete and air quality and precipitation chemistry measurements of toxaphene are few and uncertain, model predictions show good agreement with the measurements.

  17. Atmospheric mercury data for the Coquimbo region, Chile: influence of mineral deposits and metal recovery practices

    NASA Astrophysics Data System (ADS)

    Higueras, Pablo; Oyarzun, Roberto; Lillo, Javier; Oyarzún, Jorge; Maturana, Hugo

    This work reports data of atmospheric mercury for northern Chile. The study was centered in the Coquimbo region, a realm rich in mineral deposits. Some of the mining districts have historic importance and have been exploited almost continuously since the Spanish colonial time (16-18th century). Two of these districts are particularly relevant: (1) Andacollo, initially exploited for gold, and then for copper and gold; and (2) Punitaqui, initially exploited for mercury, and then for copper and gold. The continuous mercury measurement procedures carried out during this survey, have proved to be an excellent tool to detect Hg signatures associated with the mining industrial activities. The combination of cumulative log-probability graphs and atmospheric mercury concentration profiles, allows clear differentiation between areas subjected to agriculture (2-3 ngHg m -3), from those in which mining and metal concentration activities take place (>10 ngHg m -3, most data well beyond this figure). Gold recovery involving milling and amalgamation appear as the most contaminant source of mercury, and yield concentrations in the order of 10 4-10 5 ngHg m -3 (Andacollo). Second in importance are the vein mercury deposits of Punitaqui, with concentrations above 100 ngHg m -3, whereas the flotation tailings of the district yield concentrations near to 100 ngHg m -3. The large and modern open pit operations of Andacollo (Carmen: Cu; Dayton: Au) do not show high concentrations of atmospheric mercury.

  18. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean

    NASA Astrophysics Data System (ADS)

    Lin, Wuhui; Chen, Liqi; Zeng, Shi; Li, Tao; Wang, Yinghui; Yu, Kefu

    2016-06-01

    Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate 234Th (RAP234) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP234 is supported by different lines of evidence including seawater turbidity, residence time of total 234Th, Goldschmidt’s classification, and ratio of RAP234 to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP234 with dominant contributions from 234Th-238U and 212Bi-228Th. The ‘slope assumption’ for RAP234 indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP234 can shed new light on 234Th-based particle dynamics and should benefit the interpretation of historical 234Th-238U database. RAP234 resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system.

  19. Residual β activity of particulate (234)Th as a novel proxy for tracking sediment resuspension in the ocean.

    PubMed

    Lin, Wuhui; Chen, Liqi; Zeng, Shi; Li, Tao; Wang, Yinghui; Yu, Kefu

    2016-06-02

    Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate (234)Th (RAP234) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP234 is supported by different lines of evidence including seawater turbidity, residence time of total (234)Th, Goldschmidt's classification, and ratio of RAP234 to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP234 with dominant contributions from (234)Th-(238)U and (212)Bi-(228)Th. The 'slope assumption' for RAP234 indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP234 can shed new light on (234)Th-based particle dynamics and should benefit the interpretation of historical (234)Th-(238)U database. RAP234 resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system.

  20. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean

    PubMed Central

    Lin, Wuhui; Chen, Liqi; Zeng, Shi; Li, Tao; Wang, Yinghui; Yu, Kefu

    2016-01-01

    Sediment resuspension occurs in the global ocean, which greatly affects material exchange between the sediment and the overlying seawater. The behaviours of carbon, nutrients, heavy metals, and other pollutants at the sediment-seawater boundary will further link to climate change, eutrophication, and marine pollution. Residual β activity of particulate 234Th (RAP234) is used as a novel proxy to track sediment resuspension in different marine environments, including the western Arctic Ocean, the South China Sea, and the Southern Ocean. Sediment resuspension identified by high activity of RAP234 is supported by different lines of evidence including seawater turbidity, residence time of total 234Th, Goldschmidt’s classification, and ratio of RAP234 to particulate organic carbon. A conceptual model is proposed to elucidate the mechanism for RAP234 with dominant contributions from 234Th-238U and 212Bi-228Th. The ‘slope assumption’ for RAP234 indicated increasing intensity of sediment resuspension from spring to autumn under the influence of the East Asian monsoon system. RAP234 can shed new light on 234Th-based particle dynamics and should benefit the interpretation of historical 234Th-238U database. RAP234 resembles lithophile elements and has broad implications for investigating particle dynamics in the estuary-shelf-slope-ocean continuum and linkage of the atmosphere-ocean-sediment system. PMID:27252085

  1. Watershed-scale changes in terrestrial nitrogen cycling during a period of decreased atmospheric nitrate and sulfur deposition

    NASA Astrophysics Data System (ADS)

    Sabo, Robert D.; Scanga, Sara E.; Lawrence, Gregory B.; Nelson, David M.; Eshleman, Keith N.; Zabala, Gabriel A.; Alinea, Alexandria A.; Schirmer, Charles D.

    2016-12-01

    Recent reports suggest that decreases in atmospheric nitrogen (N) deposition throughout Europe and North America may have resulted in declining nitrate export in surface waters in recent decades, yet it is unknown if and how terrestrial N cycling was affected. During a period of decreased atmospheric N deposition, we assessed changes in forest N cycling by evaluating trends in tree-ring δ15N values (between 1980 and 2010; n = 20 trees per watershed), stream nitrate yields (between 2000 and 2011), and retention of atmospherically-deposited N (between 2000 and 2011) in the North and South Tributaries (North and South, respectively) of Buck Creek in the Adirondack Mountains, USA. We hypothesized that tree-ring δ15N values would decline following decreases in atmospheric N deposition (after approximately 1995), and that trends in stream nitrate export and retention of atmospherically deposited N would mirror changes in tree-ring δ15N values. Three of the six sampled tree species and the majority of individual trees showed declining linear trends in δ15N for the period 1980-2010; only two individual trees showed increasing trends in δ15N values. From 1980 to 2010, trees in the watersheds of both tributaries displayed long-term declines in tree-ring δ15N values at the watershed scale (R = -0.35 and p = 0.001 in the North and R = -0.37 and p <0.001 in the South). The decreasing δ15N trend in the North was associated with declining stream nitrate concentrations (-0.009 mg N L-1 yr-1, p = 0.02), but no change in the retention of atmospherically deposited N was observed. In contrast, nitrate yields in the South did not exhibit a trend, and the watershed became less retentive of atmospherically deposited N (-7.3% yr-1, p < 0.001). Our δ15N results indicate a change in terrestrial N availability in both watersheds prior to decreases in atmospheric N deposition, suggesting that decreased atmospheric N deposition was not the sole driver of tree-ring δ15N values at these

  2. Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: field observations

    NASA Astrophysics Data System (ADS)

    Sundarambal, P.; Balasubramanian, R.; Tkalich, P.; He, J.

    2010-12-01

    Atmospheric nutrients have recently gained considerable attention as a significant additional source of new nitrogen (N) and phosphorus (P) loading to the ocean. The effect of atmospheric macro nutrients on marine productivity depends on the biological availability of both inorganic and organic N and P forms. During October 2006, the regional smoke haze episodes in Southeast Asia (SEA) that resulted from uncontrolled forest and peat fires in Sumatra and Borneo blanketed large parts of the region. In this work, we determined the chemical composition of nutrients in aerosols and rainwater during hazy and non-hazy days to assess their impacts on aquatic ecosystem in SEA for the first time. We compared atmospheric dry and wet deposition of N and P species in aerosol and rainwater in Singapore between hazy and non-hazy days. Air mass back trajectories showed that large-scale forest and peat fires in Sumatra and Kalimantan were a significant source of atmospheric nutrients to aquatic environments in Singapore and SEA region on hazy days. It was observed that the average concentrations of nutrients increased approximately by a factor of 3 to 8 on hazy days when compared with non-hazy days. The estimated mean dry and wet atmospheric fluxes (mg/m2/day) of total nitrogen (TN) were 12.72 ± 2.12 and 2.49 ± 1.29 during non-hazy days and 132.86 ± 38.39 and 29.43 ± 10.75 during hazy days; the uncertainty estimates are represented as 1 standard deviation (1σ) here and throughout the text. The estimated mean dry and wet deposition fluxes (mg/m2/day) of total phosphorous (TP) were 0.82 ± 0.23 and 0.13 ± 0.03 for non-hazy days and 7.89 ± 0.80 and 1.56 ± 0.65 for hazy days. The occurrences of higher concentrations of nutrients from atmospheric deposition during smoke haze episodes may have adverse consequences on receiving aquatic ecosystems with cascading impacts on water quality.

  3. Mosses as an integrating tool for monitoring PAH atmospheric deposition: comparison with total deposition and evaluation of bioconcentration factors. A year-long case-study.

    PubMed

    Foan, Louise; Domercq, Maria; Bermejo, Raúl; Santamaría, Jesús Miguel; Simon, Valérie

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) atmospheric deposition was evaluated at a remote site in Northern Spain using moss biomonitoring with Hylocomium splendens (Hedw.) Schimp., and by measuring the total deposition fluxes of PAHs. The year-long study allowed seasonal variations of PAH content in mosses to be observed, and these followed a similar trend to those of PAH fluxes in total deposition. Generally, atmospheric deposition of PAHs is greater in winter than in summer, due to more PAH emissions from domestic heating, less photoreactivity of the compounds, and intense leaching of the atmosphere by wet deposition. However, fractionation of these molecules between the environmental compartments occurs: PAH fluxes in total deposition and PAH concentrations in mosses are correlated with their solubility (r=0.852, p<0.01) and lipophilic properties (KOW, r=0.768, p<0.01), respectively. This annual study therefore showed that atmospheric PAH fluxes can be estimated with moss biomonitoring data if the bioconcentration or 'enriching' factors are known.

  4. Atmospheric deposition of mercury in central Poland: Sources and seasonal trends

    NASA Astrophysics Data System (ADS)

    Siudek, Patrycja; Kurzyca, Iwona; Siepak, Jerzy

    2016-03-01

    Atmospheric deposition of total mercury was studied at two sites in central Poland, between April 2013 and October 2014. Hg in rainwater (bulk deposition) was analyzed in relation to meteorological parameters and major ions (H+, NO3-, Cl-, SO42 -) in order to investigate seasonal variation, identify sources and determine factors affecting atmospheric Hg chemistry and deposition. Total mercury concentrations varied between 1.24 and 22.1 ng L- 1 at the urban sampling site (Poznań) and between 0.57 and 18.3 ng L- 1 in the woodland protected area (Jeziory), with quite similar mean values of 6.96 and 6.37 ng L- 1, respectively. Mercury in precipitation exhibited lower spatial variability within the study domain (urban/forest transect) than the concentrations determined during other similar observations, reflecting the predominant influence of the same local sources. In our study, a significant seasonal pattern of Hg deposition was observed at both sampling sites, with higher and more variable concentrations of Hg reported for the urban area. In particular, deposition values of Hg were higher in the samples attributed to relatively large precipitation amounts in the summer and in those collected during the winter season (the result of higher contributions from combustion sources, i.e. intensive combustion of fossil fuels in residential and commercial boilers, individual power/heat-generating plants). In addition, a significant relationship between Hg concentration and precipitation amount was found while considering different types of wintertime samples (i.e. rain, snow and mixed precipitation). The analysis of backward trajectories showed that air masses arriving from polluted regions of western Europe and southern Poland largely affected the amount of Hg in rainwater. A seasonal variation in Hg deposition fluxes was also observed, with the maximum value of Hg in spring and minimum in winter. Our results indicated that rainwater Hg and, consequently, the wet deposition

  5. Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks.

    PubMed

    Huston, R; Chan, Y C; Gardner, T; Shaw, G; Chapman, H

    2009-04-01

    To characterise atmospheric input of chemical contaminants to urban rainwater tanks, bulk deposition (wet+dry deposition) was collected at sixteen sites in Brisbane, Queensland, Australia on a monthly basis during April 2007-March 2008 (N=175). Water from rainwater tanks (22 sites, 26 tanks) was also sampled concurrently. The deposition/tank water was analysed for metals, soluble anions and selected samples were additionally analysed for PAHs, pesticides, phenols, organic & inorganic carbon. Flux (mg/m(2)/d) of total solids mass was found to correlate with average daily rainfall (R(2)=0.49) indicating the dominance of the wet deposition contribution to total solids mass. On average 97% of the total mass of analysed components was accounted for by Cl(-) (25.0%), Na (22.6%), organic carbon (20.5%), NO(3)(-) (10.5%), SO(4)(2-) (9.8%), inorganic carbon (5.7%), PO(4)(3-) (1.6%) and NO(2)(-) (1.5%). For other minor elements the average flux from highest to lowest was in the order of Fe>Al>Zn>Mn>Sr>Pb>Ba>Cu>Se. There was a significant effect of location on flux of K, Sb, Sn, Li, Mn, Fe, Cu, Zn, Ba, Pb and SO(4)(2-) but not other metals or anions. Overall the water quality resulting from the deposition (wet+dry) was good but 10.3%, 1.7% and 17.7% of samples had concentrations of Pb, Cd and Fe respectively greater than the Australian Drinking Water Guidelines (ADWG). This generally occurred in the drier months. In comparison 14.2% and 6.1% of tank samples had total Pb and Zn concentrations exceeding the guidelines. The cumulative mean concentration of lead in deposition was on average only 1/4 of that in tank water over the year at a site with high concentrations of Pb in tank water. This is an indication that deposition from the atmosphere is not the major contributor to high lead concentrations in urban rainwater tanks in a city with reasonable air quality, though it is still a significant portion.

  6. The importance of source configuration in quantifying footprints of regional atmospheric sulphur deposition.

    PubMed

    Vieno, M; Dore, A J; Bealey, W J; Stevenson, D S; Sutton, M A

    2010-01-15

    An atmospheric transport-chemistry model is applied to investigate the effects of source configuration in simulating regional sulphur deposition footprints from elevated point sources. Dry and wet depositions of sulphur are calculated for each of the 69 largest point sources in the UK. Deposition contributions for each point source are calculated for 2003, as well as for a 2010 emissions scenario. The 2010 emissions scenario has been chosen to simulate the Gothenburg protocol emission scenario. Point source location is found to be a major driver of the dry/wet deposition ratio for each deposition footprint, with increased precipitation scavenging of SO(x) in hill areas resulting in a larger fraction of the emitted sulphur being deposited within the UK for sources located near these areas. This reduces exported transboundary pollution, but, associated with the occurrence of sensitive soils in hill areas, increases the domestic threat of soil acidification. The simulation of plume rise using individual stack parameters for each point source demonstrates a high sensitivity of SO(2) surface concentration to effective source height. This emphasises the importance of using site-specific information for each major stack, which is rarely included in regional atmospheric pollution models, due to the difficulty in obtaining the required input data. The simulations quantify how the fraction of emitted SO(x) exported from the UK increases with source magnitude, effective source height and easterly location. The modelled reduction in SO(x) emissions, between 2003 and 2010 resulted in a smaller fraction being exported, with the result that the reductions in SO(x) deposition to the UK are less than proportionate to the emission reduction. This non-linearity is associated with a relatively larger fraction of the SO(2) being converted to sulphate aerosol for the 2010 scenario, in the presence of ammonia. The effect results in less-than-proportional UK benefits of reducing in SO(2

  7. External quality-assurance results for the National Atmospheric Deposition Program / National Trends Network and Mercury Deposition Network, 2004

    USGS Publications Warehouse

    Wetherbee, Gregory A.; Latysh, Natalie E.; Greene, Shannon M.

    2006-01-01

    The U.S. Geological Survey (USGS) used five programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and two programs to provide external quality-assurance monitoring for the NADP/Mercury Deposition Network (NADP/MDN) during 2004. An intersite-comparison program was used to estimate accuracy and precision of field-measured pH and specific-conductance. The variability and bias of NADP/NTN data attributed to field exposure, sample handling and shipping, and laboratory chemical analysis were estimated using the sample-handling evaluation (SHE), field-audit, and interlaboratory-comparison programs. Overall variability of NADP/NTN data was estimated using a collocated-sampler program. Variability and bias of NADP/MDN data attributed to field exposure, sample handling and shipping, and laboratory chemical analysis were estimated using a system-blank program and an interlaboratory-comparison program. In two intersite-comparison studies, approximately 89 percent of NADP/NTN site operators met the pH measurement accuracy goals, and 94.7 to 97.1 percent of NADP/NTN site operators met the accuracy goals for specific conductance. Field chemistry measurements were discontinued by NADP at the end of 2004. As a result, the USGS intersite-comparison program also was discontinued at the end of 2004. Variability and bias in NADP/NTN data due to sample handling and shipping were estimated from paired-sample concentration differences and specific conductance differences obtained for the SHE program. Median absolute errors (MAEs) equal to less than 3 percent were indicated for all measured analytes except potassium and hydrogen ion. Positive bias was indicated for most of the measured analytes except for calcium, hydrogen ion and specific conductance. Negative bias for hydrogen ion and specific conductance indicated loss of hydrogen ion and decreased specific conductance from contact of the sample with

  8. Atmospheric mercury deposition recorded in an ombrotrophic peat core from Xiaoxing'an Mountain, Northeast China

    SciTech Connect

    Tang, Shunlin; Huang, Zhongwei; Liu, Jun; Yang, Zaichan; Lin, Qinhua

    2012-10-15

    The historical mercury accumulation rates (Hg AR) resulting from atmospheric deposition to Xiaoxing'an Mountain were determined via analysis of {sup 210}Pb- and {sup 14}C-dated cores up to 5000 years old. Natural Hg AR background, pre-industrial Hg AR and maximum industrial Hg AR in Northeast China were 2.2 {+-}1.0 {mu}g/m{sup 2}/yr for 5100-4500 BP, 5.7 {mu}g/m{sup 2}/yr and 112.4 {mu}g/m{sup 2}/yr, respectively. We assumed that the increase in Hg deposition in the Xiaoxing'an mountain area during industrial time was mainly attributed to local anthropogenic emissions around this peat bog.

  9. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe.

    PubMed

    Harmens, H; Norris, D A; Steinnes, E; Kubin, E; Piispanen, J; Alber, R; Aleksiayenak, Y; Blum, O; Coşkun, M; Dam, M; De Temmerman, L; Fernández, J A; Frolova, M; Frontasyeva, M; González-Miqueo, L; Grodzińska, K; Jeran, Z; Korzekwa, S; Krmar, M; Kvietkus, K; Leblond, S; Liiv, S; Magnússon, S H; Mankovská, B; Pesch, R; Rühling, A; Santamaria, J M; Schröder, W; Spiric, Z; Suchara, I; Thöni, L; Urumov, V; Yurukova, L; Zechmeister, H G

    2010-10-01

    In recent decades, mosses have been used successfully as biomonitors of atmospheric deposition of heavy metals. Since 1990, the European moss survey has been repeated at five-yearly intervals. Although spatial patterns were metal-specific, in 2005 the lowest concentrations of metals in mosses were generally found in Scandinavia, the Baltic States and northern parts of the UK; the highest concentrations were generally found in Belgium and south-eastern Europe. The recent decline in emission and subsequent deposition of heavy metals across Europe has resulted in a decrease in the heavy metal concentration in mosses for the majority of metals. Since 1990, the concentration in mosses has declined the most for arsenic, cadmium, iron, lead and vanadium (52-72%), followed by copper, nickel and zinc (20-30%), with no significant reduction being observed for mercury (12% since 1995) and chromium (2%). However, temporal trends were country-specific with sometimes increases being found.

  10. Natural and anthropogenic variations in atmospheric mercury deposition during the Holocene near Quelccaya Ice Cap, Peru

    NASA Astrophysics Data System (ADS)

    Beal, Samuel A.; Kelly, Meredith A.; Stroup, Justin S.; Jackson, Brian P.; Lowell, Thomas V.; Tapia, Pedro M.

    2014-04-01

    Mercury (Hg) is a toxic metal that is transported globally through the atmosphere. Emissions of Hg from mineral reservoirs and recycling between soil/biomass, oceans, and the atmosphere are fundamental to the global Hg cycle, yet past emissions from anthropogenic and natural sources are not fully constrained. We use a sediment core from Yanacocha, a headwater lake in southeastern Peru, to study the anthropogenic and natural controls on atmospheric Hg deposition during the Holocene. From 12.3 to 3.5 ka, Hg fluxes in the record are relatively constant (mean ± 1σ: 1.4 ± 0.6 µg m-2 a-1). Past Hg deposition does not correlate with changes in regional temperature and precipitation or with most large volcanic events that occurred regionally (~300-400 km from Yanacocha) and globally. In 1450 B.C. (3.4 ka), Hg fluxes abruptly increased and reached the Holocene-maximum flux (6.7 µg m-2 a-1) in 1200 B.C., concurrent with a ~100 year peak in Fe and chalcophile metals (As, Ag, Tl) and the presence of framboidal pyrite. Continuously elevated Hg fluxes from 1200 to 500 B.C. suggest a protracted mining-dust source near Yanacocha that is identical in timing to documented pre-Incan cinnabar mining in central Peru. During Incan and Colonial time (A.D. 1450-1650), Hg deposition remains elevated relative to background levels but lower relative to other Hg records from sediment cores in central Peru, indicating a limited spatial extent of preindustrial Hg emissions. Hg fluxes from A.D. 1980 to 2011 (4.0 ± 1.0 µg m-2 a-1) are 3.0 ± 1.5 times greater than preanthropogenic fluxes.

  11. Seasonal and spatial variations of atmospheric trace elemental deposition in the Aliaga industrial region, Turkey

    NASA Astrophysics Data System (ADS)

    Kara, Melik; Dumanoglu, Yetkin; Altiok, Hasan; Elbir, Tolga; Odabasi, Mustafa; Bayram, Abdurrahman

    2014-11-01

    Atmospheric bulk deposition (wet + dry deposition) samples (n = 40) were collected concurrently at ten sites in four seasons between June 2009 and April 2010 in the Aliaga heavily industrialized region, Turkey, containing a number of significant air pollutant sources. Analyses of trace elements were carried out using inductively coupled plasma-mass spectrometry (ICP-MS). While there were significant differences in the particulate matter (PM) deposition fluxes among the sampling sites, seasonal variations were not statistically significant (Kruskal-Wallis test, p < 0.05). Both PM deposition and elemental fluxes were increased at the sampling sites in the vicinity of industrial activities. The crustal elements (i.e., Ca, Mg) and some anthropogenic elements (such as Fe, Zn, Mn, Pb, Cu, and Cr) were high, and the highest fluxes were mostly measured in summer and winter seasons. The enrichment factor (EF) and principal component analysis (PCA) was applied to the data to determine the possible sources in the study area. High EF values were obtained for the anthropogenic elements such as Ag, Cd, Zn, Pb, Cu and Sb. The possible sources were identified as anthropogenic sources (i.e., iron-steel production) (45.4%), crustal and re-suspended dust (27.1%), marine aerosol (7.9%), and coal and wood combustion (8.2%). Thus, the iron-steel production and its related activities were found to be the main pollutant sources for this region.

  12. How well do environmental archives of atmospheric mercury deposition in the Arctic reproduce rates and trends depicted by atmospheric models and measurements?

    PubMed

    Goodsite, M E; Outridge, P M; Christensen, J H; Dastoor, A; Muir, D; Travnikov, O; Wilson, S

    2013-05-01

    This review compares the reconstruction of atmospheric Hg deposition rates and historical trends over recent decades in the Arctic, inferred from Hg profiles in natural archives such as lake and marine sediments, peat bogs and glacial firn (permanent snowpack), against those predicted by three state-of-the-art atmospheric models based on global Hg emission inventories from 1990 onwards. Model veracity was first tested against atmospheric Hg measurements. Most of the natural archive and atmospheric data came from the Canadian-Greenland sectors of the Arctic, whereas spatial coverage was poor in other regions. In general, for the Canadian-Greenland Arctic, models provided good agreement with atmospheric gaseous elemental Hg (GEM) concentrations and trends measured instrumentally. However, there are few instrumented deposition data with which to test the model estimates of Hg deposition, and these data suggest models over-estimated deposition fluxes under Arctic conditions. Reconstructed GEM data from glacial firn on Greenland Summit showed the best agreement with the known decline in global Hg emissions after about 1980, and were corroborated by archived aerosol filter data from Resolute, Nunavut. The relatively stable or slowly declining firn and model GEM trends after 1990 were also corroborated by real-time instrument measurements at Alert, Nunavut, after 1995. However, Hg fluxes and trends in northern Canadian lake sediments and a southern Greenland peat bog did not exhibit good agreement with model predictions of atmospheric deposition since 1990, the Greenland firn GEM record, direct GEM measurements, or trends in global emissions since 1980. Various explanations are proposed to account for these discrepancies between atmosphere and archives, including problems with the accuracy of archive chronologies, climate-driven changes in Hg transfer rates from air to catchments, waters and subsequently into sediments, and post-depositional diagenesis in peat bogs

  13. Aquatic Ecosystem Exposure Associated with Atmospheric Mercury Deposition: Importance of Watershed and Water Body Hot Spots and Hot Moments

    EPA Science Inventory

    Atmospheric deposition of divalent mercury (Hg(II)) is often the primary driving force for mercury contamination in fish tissue, resulting in mercury exposure to wildlife and humans. Transport and transformation of the deposited mercury into the environmentally relevant form, met...

  14. Exploring lag times between monthly atmospheric deposition and stream chemistry in Appalachian Forest using cross-correlation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although long-term reductions in surface water nitrogen and sulfate concentrations have been widely observed in response to reductions in atmospheric deposition, documenting and inter-relating transient variations in deposition and stream time series has proven problematical due to low signal-to-noi...

  15. Atmospheric pressure spatial atomic layer deposition web coating with in situ monitoring of film thickness

    SciTech Connect

    Yersak, Alexander S.; Lee, Yung C.; Spencer, Joseph A.; Groner, Markus D.

    2014-01-15

    Spectral reflectometry was implemented as a method for in situ thickness monitoring in a spatial atomic layer deposition (ALD) system. Al{sub 2}O{sub 3} films were grown on a moving polymer web substrate at 100 °C using an atmospheric pressure ALD web coating system, with film growth of 0.11–0.13 nm/cycle. The modular coating head design and the in situ monitoring allowed for the characterization and optimization of the trimethylaluminum and water precursor exposures, purge flows, and web speed. A thickness uniformity of ±2% was achieved across the web. ALD cycle times as low as 76 ms were demonstrated with a web speed of 1 m/s and a vertical gap height of 0.5 mm. This atmospheric pressure ALD system with in situ process control demonstrates the feasibility of low-cost, high throughput roll-to-roll ALD.

  16. Background atmospheric sulfate deposition at a remote alpine site in the Southern Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Wasiuta, Vivian; Norman, Ann-Lise; Lafrenière, Melissa J.; Hastings, Meredith G.

    2015-11-01

    We report observations of stable isotope ratios and ion concentrations from seasonal snowpack and summer bulk precipitation from remote alpine sites in the Southern Canadian Rocky Mountains. Spatial deposition patterns for sulfur (S) and δ34S-SO42- values indicate dominantly distant sources with little impact from local to regional pollution. Comparable S loads and total snowpack δ34S-SO42- values for glacier snowpack indicates S emissions were well mixed prior to dry deposition or incorporation into snowfall. A uniform S load and similar δ34S-SO42- values in a detailed study of summer bulk precipitation implies well-mixed distant emissions. We interpret the deposited 0.9 kg S ha-1yr-1 as atmospheric background deposition in midlatitude Western Canada. This study will improve calculations for sites impacted by point source emissions and provide a baseline for attributing changes associated with climate change, industrialization, and urban growth. Field evidence from this study supports theoretical and laboratory research on the relative importance of oxidation pathways on atmospheric δ34S-SO42- values for long-range transported sulfate. δ34S-SO42- of the dominant S source in summer bulk precipitation (~ +2‰) versus snowpack (≥ +9‰) cannot be explained by seasonal emission sources, temperature effects on fractionation, or Rayleigh distillation. The study supports a seasonal difference in the relative importance of the different SO2 to SO42- oxidation pathways with homogeneous oxidation by OH and heterogeneous oxidation by H2O2 most important in summer, and O2 catalyzed by transition metal ions in a radical chain reaction pathway more significant in winter.

  17. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    PubMed

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm.

  18. Development of ion-exchange collectors for monitoring atmospheric deposition of inorganic pollutants in Alaska parklands

    USGS Publications Warehouse

    Brumbaugh, William G.; Arms, Jesse W.; Linder, Greg L.; Melton, Vanessa D.

    2016-09-19

    Between 2010 and 2014, the U.S. Geological Survey completed a series of laboratory and field experiments designed to develop methodology to support the National Park Service’s long-term atmospheric pollutant monitoring efforts in parklands of Arctic Alaska. The goals of this research were to develop passive sampling methods that could be used for long-term monitoring of inorganic pollutants in remote areas of arctic parklands and characterize relations between wet and dry deposition of atmospheric pollutants to that of concentrations accumulated by mosses, specifically the stair-step, splendid feather moss, Hylocomium splendens. Mosses and lichens have been used by National Park Service managers as atmospheric pollutant biomonitors since about 1990; however, additional research is needed to better characterize the dynamics of moss bioaccumulation for various classes of atmospheric pollutants. To meet these research goals, the U.S. Geological Survey investigated the use of passive ionexchange collectors (IECs) that were adapted from the design of Fenn and others (2004). Using a modified IEC configuration, mulitple experiments were completed that included the following: (a) preliminary laboratory and development testing of IECs, (b) pilot-scale validation field studies during 2012 with IECs at sites with instrumental monitoring stations, and (c) deployment of IECs in 2014 at sites in Alaska having known or suspected regional sources of atmospheric pollutants where samples of Hylocomium splendens moss also could be collected for comparison. The targeted substances primarily included ammonium, nitrate, and sulfate ions, and certain toxicologically important trace metals, including cadmium, cobalt, copper, nickel, lead, and zinc.Deposition of atmospheric pollutants is comparatively low throughout most of Alaska; consequently, modifications of the original IEC design were needed. The most notable modification was conversion from a single-stage mixed-bed column to a two

  19. Effects of atmospheric deposition of energy-related pollutants on water quality: a review and assessment

    SciTech Connect

    Davis, M.J.

    1981-05-01

    The effects on surface-water quality of atmospheric pollutants that are generated during energy production are reviewed and evaluated. Atmospheric inputs from such sources to the aquatic environment may include trace elements, organic compounds, radionuclides, and acids. Combustion is the largest energy-related source of trace-element emissions to the atmosphere. This report reviews the nature of these emissions from coal-fired power plants and discusses their terrestrial and aquatic effects following deposition. Several simple models for lakes and streams are developed and are applied to assess the potential for adverse effects on surface-water quality of trace-element emissions from coal combustion. The probability of acute impacts on the aquatic environment appears to be low; however, more subtle, chronic effects are possible. The character of acid precipitation is reviewed, with emphasis on aquatic effects, and the nature of existing or potential effects on water quality, aquatic biota, and water supply is considered. The response of the aquatic environment to acid precipitation depends on the type of soils and bedrock in a watershed and the chemical characteristics of the water bodies in question. Methods for identifying regions sensitive to acid inputs are reviewed. The observed impact of acid precipitation ranges from no effects to elimination of fish populations. Coal-fired power plants and various stages of the nuclear fuel cycle release radionuclides to the atmosphere. Radioactive releases to the atmosphere from these sources and the possible aquatic effects of such releases are examined. For the nuclear fuel cycle, the major releases are from reactors and reprocessing. Although aquatic effects of atmospheric releases have not been fully quantified, there seems little reason for concern for man or aquatic biota.

  20. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.

    PubMed

    Doney, Scott C; Mahowald, Natalie; Lima, Ivan; Feely, Richard A; Mackenzie, Fred T; Lamarque, Jean-Francois; Rasch, Phil J

    2007-09-11

    Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO(3) and H2SO(4)) and bases (NH(3)) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO(3)(-)) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air-sea efflux of CO(2), reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air-sea CO(2) flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO(2). However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind.

  1. Atmospheric pressure glow discharge deposition of thermo-sensitive poly (N-isopropylacrylamide)

    NASA Astrophysics Data System (ADS)

    Shao, M.; Tang, X. L.; Wen, D.; Chen, Y.; Qiu, G.

    2013-12-01

    In this paper, a self-made atmospheric pressure dielectric barrier discharge reactor on intermediate frequency is brought forward and developed, which is equipped with power supply of 1-20 KHz, and the working gas is argon. The experimental results show that is a very stable and uniform atmospheric pressure glow discharge (APGD). Through a series of experiments, the waveforms of single pulse and multi-pulse glow discharge were both obtained. The voltage amplitude, discharge gap and dielectric material are studied, and the conditions of multi-pulse glow discharge are discussed as well. The novel methods of depositing poly (N-isopropylacrylamide) (PNIPAAm) coatings on the surface of glass slides and PS petri dish are provided by atmospheric pressure plasma polymerization. PNIPAAm can be obtained by plasma polymerization of N-isopropylacrylamide using the self-made equipment of atmospheric pressure plasma vapor treatment. The samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle. SEM analysis has revealed that the PNIPAAm coatings were formed on the surface of the smooth glass slides. Further evaluation by using XPS, it has shown the presence of PNIPAAm. The wettability can be significantly modified by changing of the temperatures at above and below of the lower critical solution temperature (LCST) from the data of the contact angle test. These results have advantage for further application on the thermo-sensitive textile materials.

  2. Observations of Atmospheric Nitrogen and Phosphorus Deposition During the Period of Algal Bloom Formation in Northern Lake Taihu, China

    NASA Astrophysics Data System (ADS)

    Zhai, Shuijing; Yang, Longyuan; Hu, Weiping

    2009-09-01

    Cyanobacterial blooms in Lake Taihu occurred at the end of April 2007 and had crucial impacts on the livelihood of millions of people living there. Excessive nutrients may promote bloom formation. Atmospheric nitrogen (N) and phosphorus (P) deposition appears to play an important role in algal bloom formation. Bulk deposition and rain water samples were collected respectively from May 1 to November 30, 2007, the period of optimal algal growth, to measure the bulk atmospheric deposition rate, wet deposition rate, and dry deposition rate for total nitrogen (TN; i.e., all species of nitrogen), and total phosphorus (TP; i.e., all species of phosphorus), in northern Lake Taihu, China. The trends of the bulk atmospheric deposition rate for TN and the wet deposition rate for TN showed double peaks during the observation period and distinct influence with plum rains and typhoons. Meanwhile, monthly bulk atmospheric deposition rates for TP showed little influence of annual precipitation. However, excessive rain may lead to high atmospheric N and P deposition rates. In bulk deposition samples, the average percentage of total dissolved nitrogen accounting for TN was 91.2% and changed little with time. However, the average percentage of total dissolved phosphorus accounting for TP was 65.6% and changed substantially with time. Annual bulk atmospheric deposition rates of TN and TP during 2007 in Lake Taihu were estimated to be 2,976 and 84 kg km-2 a-1, respectively. The results showed decreases of 34.4% and 78.7%, respectively, compared to 2002-2003. Annual bulk deposition load of TN for Lake Taihu was estimated at 6,958 t a-1 in 2007 including 4,642 t a-1 of wet deposition, lower than the values obtained in 2002-2003. This may be due to measures taken to save energy and emission control regulations in the Yangtze River Delta. Nevertheless, high atmospheric N and P deposition loads helped support cyanobacterial blooms in northern Lake Taihu during summer and autumn, the period

  3. Oxygen in the Martian atmosphere: Regulation of PO2 by the deposition of iron formations on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    During Earth's early history, and prior to the evolution of its present day oxygenated atmosphere, extensive iron rich siliceous sedimentary rocks were deposited, consisting of alternating layers of silica (chert) and iron oxide minerals (hematite and magnetite). The banding in iron formations recorded changes of atmosphere-hydrosphere interactions near sea level in the ancient ocean, which induced the oxidation of dissolved ferrous iron, precipitation of insoluble ferric oxides and silica, and regulation of oxygen in Earth's early atmosphere. Similarities between the Archean Earth and the composition of the present day atmosphere on Mars, together with the pervasive presence of ferric oxides in the Martian regolith suggest that iron formation might also have been deposited on Mars and influenced the oxygen content of the Martian atmosphere. Such a possibility is discussed here with a view to assessing whether the oxygen content of the Martian atmosphere has been regulated by the chemical precipitation of iron formations on Mars.

  4. Long-term assessment of airborne radiocesium after the Fukushima nuclear accident: re-suspension from bare soil and forest ecosystems

    NASA Astrophysics Data System (ADS)

    Kajino, Mizuo; Ishizuka, Masahide; Igarashi, Yasuhito; Kita, Kazuyuki; Yoshikawa, Chisato; Inatsu, Masaru

    2016-10-01

    The long-term effect of 137Cs re-suspension from contaminated soil and forests due to the Fukushima nuclear accident has been quantitatively assessed by numerical simulation, a field experiment on dust emission flux in a contaminated area (town of Namie, Fukushima prefecture), and air concentration measurements inside (Namie) and outside (city of Tsukuba, Ibaraki prefecture) the contaminated area. In order to assess the long-term effect, the full year of 2013 was selected to study just after the start of the field experiments. The 137Cs concentrations at Namie and Tsukuba were approximately 10-1-1 and 10-2-10-1 mBq m-3, respectively. The observed monthly median concentration at Namie was 1 to 2 orders of magnitude larger than that at Tsukuba. This observed difference between the two sites was consistent with the simulated difference, indicating successful modeling of 137Cs re-suspension and atmospheric transport. The estimated re-suspension rate was approximately 10-6 day-1, which was significantly lower than the decreasing rate of the ambient gamma dose rate in Fukushima prefecture (10-4-10-3 day-1) as a result of radioactive decay, migration in the soil and biota, and decontamination. Consequently, re-suspension contributed negligibly in reducing ground radioactivity. The dust emission model could reproduce the air concentration of 137Cs in winter, whereas the summer air concentration was underestimated by 1 to 2 orders of magnitude. Re-suspension from forests at a constant rate of 10-7 h-1, multiplied by the green area fraction, could explain the air concentration of 137Cs at Namie and its seasonal variation. The simulated contribution of dust re-suspension to the air concentration was 0.7-0.9 in the cold season and 0.2-0.4 in the warm season at both sites; the remainder of the contribution was re-suspension from forest. The re-suspension mechanisms, especially through the forest ecosystems, remain unknown. This is the first study that provides a crude

  5. Deposition and Effects of Atmospheric Nitrogen and Ozone in Holm Oak Forests in Spain

    NASA Astrophysics Data System (ADS)

    González Fernández, I.; García Gómez, H.; Calvete Sogo, H.; Bermejo, V.; Valiño, F.; Elvira, S.; Rábago, I.; Sanz, J.; Alonso, R.

    2013-12-01

    Atmospheric nitrogen (N) emissions in Spain, in the western Mediterranean basin, have followed an increasing trend since 1990 and have only started to decline recently. These trends have resulted in growing N depositions in some areas and in N enrichment of ecosystems, as described in previous studies by increasing records of nitrophilous species in herbaria and raising N content both in bryophytes and in leaves of forest trees. Tropospheric ozone (O3) background concentrations, formed as a result of photochemical reactions of N compounds in the atmosphere, have also increased during the last decades. Despite these evidences, limited information is available on N and O3 deposition and effects in Holm oak forests, important ecosystems in Spain. New studies are being developed to address this lack of data. First results on N deposition in a Holm oak forest in central Spain stress the importance of seasonal variations of N inputs in Mediterranean environments. Spring and autumn rainfall events added up to 80% of total annual bulk deposition and losses of NO3- in the soil water were detected when throughfall N pulses occurred during periods of low plant physiological activity. N uptake in the tree canopy was also observed. High O3 concentrations were also measured in this study. The exposure to both N and O3 is a common situation in Holm oak forests. The combined effect of N and O3 deposition on the annual pasture of the Holm oak forest understory has been studied in an open-top chamber study using a simplified community of six species. Results show that O3 can potentially reduce pasture growth, decrease its nutritive value for herbivores and cause shifts in species abundance. N deposition can partially counterbalance O3-induced effects on the pasture biomass, thus both O3 and N need to be considered together when studying air pollution impacts in these ecosystems. The studies presented here are intended for developing N and O3 critical loads and levels for the

  6. The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa

    NASA Astrophysics Data System (ADS)

    Conradie, E. H.; Van Zyl, P. G.; Pienaar, J. J.; Beukes, J. P.; Galy-Lacaux, C.; Venter, A. D.; Mkhatshwa, G. V.

    2016-12-01

    South Africa is the economic hub of southern Africa and is regarded as an important source region of atmospheric pollutants. A nitrogen dioxide (NO2) hotspot is clearly visible from space over the South African Mpumalanga Highveld, while South Africa is also regarded as the 9th largest anthropogenic sulphur (S) emitting country. Notwithstanding the importance of South Africa with regard to nitrogen (N) and S emissions, very limited data has been published on the chemical composition of wet deposition for this region. This paper presents the concentrations of sodium (Na+), ammonium (NH4+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), nitrate (NO3-), chloride (Cl-), sulphate (SO42-) and water-soluble organic acids (OA) in the wet deposition samples collected between 2009 and 2014 at four South African IDAF (IGAC DEBITS Africa) sites, which are regarded as regional representatives of the north-eastern interior. Also, wet deposition fluxes of the ten ions are calculated and presented in this paper. The results show that the total ionic concentrations and fluxes of wet deposition were much higher at the two sites closer to anthropogenic emissions, while the pH of wet deposition at these two sites were lower compared to that of the two sites that were less impacted by anthropogenic emissions. . The major sources of the ten ions included marine, terrigenous (crust), fossil fuel combustion, agriculture and biomass burning. Significant contributions from fossil fuel combustion were determined for the two sites in close proximity to anthropogenic source regions. The results of back trajectory analysis, however, did indicate that the two remote sites are also affected by air masses passing over the source region through anti-cyclonic recirculation. The largest contributions at the two sites distant from the anthropogenic source regions were marine sources, while the impact of biomass burning was also more significant at the remote sites. Comparison to previous wet

  7. Photocatalytic Functional Coating of TiO2 Thin Film Deposited by Cyclic Plasma Chemical Vapor Deposition at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Kwon, Jung-Dae; Rha, Jong-Joo; Nam, Kee-Seok; Park, Jin-Seong

    2011-08-01

    Photocatalytic TiO2 thin films were prepared with titanium tetraisopropoxide (TTIP) using cyclic plasma chemical vapor deposition (CPCVD) at atmospheric pressure. The CPCVD TiO2 films contain carbon-free impurities up to 100 °C and polycrystalline anatase phases up to 200 °C, due to the radicals and ion-bombardments. The CPCVD TiO2 films have high transparency in the visible wavelength region and absorb wavelengths below 400 nm (>3.2 eV). The photocatalytic effects of the CPCVD TiO2 and commercial sprayed TiO2 films were measured by decomposing methylene blue (MB) solution under UV irradiation. The smooth CPCVD TiO2 films showed a relatively lower photocatalytic efficiency, but superior catalyst-recycling efficiency, due to their high adhesion strength on the substrates. This CPCVD technique may provide the means to produce photocatalytic thin films with low cost and high efficiency, which would be a reasonable candidate for practical photocatalytic applications, because of the reliability and stability of their photocatalytic efficiency in a practical environment.

  8. Cadmium contamination in Tianjin agricultural soils and sediments: relative importance of atmospheric deposition from coal combustion.

    PubMed

    Wu, Guanghong; Yang, Cancan; Guo, Lan; Wang, Zhongliang

    2013-06-01

    Cadmium (Cd) in coal, fly ash, slag, atmospheric deposition, soils and sediments collected from Tianjin, northern China, were measured to provide baseline information and determine possible Cd sources and potential risk. The concentrations of Cd in coal, fly ash and atmospheric deposition were much higher than the soil background values. Fallout from coal-fired thermal power plants, heating boilers and industrial furnaces has increased the Cd concentration in soils and sediments in Tianjin. The concentrations of Cd in soils of suburban areas were significantly higher than in rural areas, suggesting that coal burning in Tianjin may have an important impact on the local physical environment. Cd from coal combustion is readily mobilized in soils. It is soluble and can form aqueous complexes and permeate river sediments. The high proportion of mobile Cd affects the migration of Cd in soils and sediments, which may pose an environmental threat in Tianjin due to the exposure to Cd and Cd compounds via the food chain. This study may provide a window for understanding and tracing sources of Cd in the local environment and the risk associated with Cd bioaccessibility.

  9. Atmospheric deposition of trace elements in Santiago de Querétaro city

    NASA Astrophysics Data System (ADS)

    Camacho Díaz, J. G.; González Sosa, E.; García Martínez, R.; Mondragón Olguín, V.; Miranda Castañeda, G.

    2013-05-01

    Atmospheric pollution and environment are one of the main problems around the planet. That's the reason which is important to understand the way pollution interact with weather. This work researches the contamination process from biological organisms or bio-indicators to identify and quantify those elements which are dangerous for humans. On one hand, because bio-indicators reduce cost for in situ monitoring systems and sample methods, and by the other hand because they can combine with isotopic analysis. Tilandsia Recurvata Liquens (Bromeliaceae) were collected in urban zone from Santiago de Querétaro, establishing 2 sample periods, which are April - June 2011 and March - April 2012. Total number of samples was 190 from 14 sites, 100 corresponding for first period and 90 for the second. Also, reference samples were collected from a place located at 30 km from metropolitan area. Element concentrations were determined through isotopy for 13C y 15N and metal elements by using and ICP-MS. Maps were drawn to explain distribution and deposition in the city to distinguish natural contribution and anthropogenic deposition. 13C y 15N results showed that distribution of carbon and nitrogen compound is conditioned due vehicular traffic activity, wind frequency and rain patterns. Key Words: Bio-monitoring, bio-indicator, liquen, atmospheric pollution, isotopy, ICP-MS Analysis.

  10. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  11. [Pollution Evaluation and Risk Assessment of Heavy Metals from Atmospheric Deposition in the Parks of Nanjing].

    PubMed

    Wang, Cheng; Qian, Xin; Li, Hui-ming; Sun, Yi-xuan; Wang, Jin-hua

    2016-05-15

    Contents of heavy metals involving As, Cd, Cr, Cu, Ni, Pb and Zn from atmospheric deposition in 10 parks of Nanjing were analyzed. The pollution level, ecological risk and health risk were evaluated using Geoaccumulation Index, Potential Ecological Risk Index and the US EPA Health Risk Assessment Model, respectively. The results showed that the pollution levels of heavy metals in Swallow Rock Park, Swallow Rock Park and Mochou Lake Park were higher than the others. Compared to other cities such as Changchun, Wuhan and Beijing, the contents of heavy metals in atmospheric deposition of parks in Nanjing were higher. The evaluation results of Geoaccumulation Index showed that Pb was at moderate pollution level, Zn and Cu were between moderate and serious levels, while Cd was between serious and extreme levels. The ecological risk level of Cd was high. The assessment results of Health Risk Assessment Model indicated that there was no non-carcinogenic risk for all the seven heavy metals. For carcinogenic risk, the risks of Cd, Cr and Ni were all negligible (Risk < 1 x 10⁻⁶), whereas As had carcinogenic risk possibility but was considered to be acceptable (10⁻⁶ < Risk < 10⁻⁴).

  12. Atmospheric transport and deposition, an additional input pathway for triazine herbicides to surface waters

    SciTech Connect

    Muir, D.C.G.; Rawn, D.F.

    1996-10-01

    Although surface runoff from treated fields is regarded as the major route of entry of triazine herbicides to surface waters, other pathways such as deposition via precipitation, gas absorption and dryfall may also be important. Triazine herbicides have been detected in precipitation but there has been only a very limited amount of work on gas phase and aerosols. To examine the importance of atmospheric inputs concentrations of atrazine, cyanazine and terbuthylazine in gas phase/aerosols, precipitation, and surface waters were determined (along with other herbicides) using selected ion GC-MS. Atrazine was detected at low ng/L concentrations in surface waters (<0.04-5.3 ng/L) and precipitation (0.1-53 ng/L), and at 0.02-0.1 ng/m{sup 3} in air. Cyanazine and terbuthylazine were detected in air and infrequently in water. Highest atrazine concentrations in air were found during June each year on both gas phase and particles. Concentrations of atrazine in surface waters at both locations increased during June, even in the absence of precipitation or overland flow, presumably due to inputs from dryfall and to gas areas and boreal forest lakes due to transport and deposition. Ecological risk assessment of triazines, especially for pristine aquatic environments should include consideration of this atmospheric pathway.

  13. Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum

    NASA Astrophysics Data System (ADS)

    Schilling, Jonathan S.; Lehman, Mary E.

    Ectohydric mosses are known accumulators of atmospheric heavy metals. Reliable bioindication of atmospheric heavy metals in the Southern Appalachians using moss has been limited by poor species distribution in moss used in analogous studies. In this study, Pb, Cu, Cr, and Ni concentrations were quantified in the tissue of fern moss Thuidium delicatulum in the central Blue Ridge of Virginia. The objectives of the study were to evaluate the suitability of fern moss for moss-monitoring studies in the Southern Appalachians, to compare local terrestrial metal concentrations, and to test the effects of several geographical and environmental variables on deposition. Fern moss was sampled over four mountains in Virginia following the standard protocol of the German moss-monitoring method. Sampling was standardized for monitoring in deciduous forests, and analysis was performed by graphite furnace-atomic absorption spectrophotometry. Overall concentrations of two metals were significantly different depending on the presence of Pinus spp. in the canopy. Positive and negative correlations of heavy metal concentrations with elevation were also observed, suggesting a need for comprehensive sampling at high and low elevations in mountainous areas. A role for similar moss-monitoring is suggested as a complement to current precipitation analysis techniques and as a compendium for landscape-scale metal monitoring projects. The applications of heavy metal bioindication with this particular species throughout the physiographic province of the Blue Ridge and the Appalachians in future heavy metal deposition studies are discussed.

  14. Historical deposition of persistent organic pollutants in Lake Victoria and two alpine equatorial lakes from East Africa: Insights into atmospheric deposition from sedimentation profiles.

    PubMed

    Arinaitwe, Kenneth; Rose, Neil L; Muir, Derek C G; Kiremire, Bernard T; Balirwa, John S; Teixeira, Camilla

    2016-02-01

    Information on historical deposition of persistent organic pollutants (POPs) for African lakes is very limited. We investigated historical deposition trends and sources of POPs in sediment cores from Lakes Victoria (SC1), Bujuku (Buju2) and Mahoma (Maho2). The latter two lakes are situated in the Rwenzori mountain range in western Uganda. SC1 was taken from a central depositional area within the Ugandan part of the lake. Profiles in Buju2 and Maho2 were used as a reference for historical atmospheric deposition. For the post-1940 sediment deposits in SC1, average focusing factor-adjusted fluxes (FFFs) of ΣDDTs, polychlorinated biphenyls (ΣPCBs), hexachlorocyclohexanes (ΣHCHs) and chlordanes (ΣCHLs) were 390, 230, 210 and 120 ng m(-2) yr(-1). Higher fluxes of ΣDDTs, ΣPCBs, and ΣCHLs were observed in Buju2 and Maho2. The average FFF of HCB in Buju2 was the highest while the values for Maho2 and SC1 were similar. The endosulfan FFFs in SC1 were lower than in the alpine lake cores. Generally, Buju2 was a better reference for historical atmospheric deposition of POPs than Maho2 probably due to distortion of the latter's profile by Lake Mahoma's forested catchment. Profiles of p,p'-DDE, ΣCHLs and HCB in SC1 were consistent with atmospheric deposition while profiles of PCBs and HCHs were indicative of particle-bound loadings from additional sources. Profiles of endosulfans, DDTs, and chlordanes were consistent with influence of other factors such as anoxia, and dilution. Further studies of spatial resolution of historical deposition, especially in near-shore deposition areas of the lake are recommended.

  15. Atmospheric deposition and solute export in giant sequoia: mixed conifer watersheds in the Sierra Nevada, California

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Melack, John M.; Esperanza, Anne M.; Parsons, David J.

    1991-01-01

    Atmospheric depostion and stream discharge and solutes were measured for three years (September 1984 - August 1987) in two mixed conifer watersheds in Sequoia National Park, in the southern Sierra Nevada of California. The Log Creek watershed (50 ha, 2067-2397 m elev.) is drained by a perennial stream, while Tharp's Creek watershed (13 ha, 2067-2255 m elev.) contains an intermittent stream. Dominant trees in the area include Abies concolor (white fir), Sequoiadendron giganteum (giant sequoia), A. magnifica (red fir), and Pinus lambertiana (sugar pine). Bedrock is predominantly granite and granodiorite, and the soils are mostly Pachic Xerumbrepts. Over the three year period, sulfate (SO42-), nitrate (NO3-), and chloride (Cl-) were the major anions in bulk precipitation with volume-weighted average concentrations of 12.6, 12.3 and 10.0 μeq/1, respectively. Annual inputs of NO3-N, NH4-N and SO4-S from wet deposition were about 60 to 75% of those reported from bulk deposition collectors. Discharge from the two watersheds occurs primarily during spring snowmelt. Solute exports from Log and Tharp's Creeks were dominated by HCO3-, Ca2+ and Na+, while H+, NO3-, NH4+ and PO43- outputs were relatively small. Solute concentrations were weakly correlated with instantaneous stream flow for all solutes (r2 3- (Log Cr. r2=0.72; Tharp's Cr. r2=0.38), Na+ (Log Cr. r2=0.56; Tharp's Cr. r2=0.47), and silicate (Log Cr. r2=0.71; Tharp's Cr. r2=0.49). Mean annual atmospheric contributions of NO3-N (1.6 kg ha-1), NH4-N (1.7 kg ha-1), and SO4-S (1.8 kg ha-1), which are associated with acidic deposition, greatly exceed hydrologic losses. Annual watershed yields (expressed as eq ha-1) of HCO3- exceeded by factors of 2.5 to 37 the annual atmospheric deposition of H+.

  16. Atmospheric occurrence and deposition of hexachlorobenzene and hexachlorocyclohexanes in the Southern Ocean and Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Galbán-Malagón, Cristóbal; Cabrerizo, Ana; Caballero, Gemma; Dachs, Jordi

    2013-12-01

    Despite the distance of Antarctica and the Southern Ocean to primary source regions of organochlorine pesticides, such as hexachlorobenzene (HCB) and hexachlorocyclohexanes (HCHs), these organic pollutants are found in this remote region due to long range atmospheric transport and deposition. This study reports the gas- and aerosol-phase concentrations of α-HCH, γ-HCH, and HCB in the atmosphere from the Weddell, South Scotia and Bellingshausen Seas. The atmospheric samples were obtained in two sampling cruises in 2008 and 2009, and in a third sampling campaign at Livingston Island (2009) in order to quantify the potential secondary sources of HCHs and HCB due to volatilization from Antarctic soils and snow. The gas phase concentrations of HCHs and HCB are low, and in the order of very few pg m-3 α-HCH and γ-HCH concentrations were higher when the air mass back trajectory was coming from the Antarctic continent, consistent with net volatilization fluxes of γ-HCH measured at Livingston Island being a significant secondary source to the regional atmosphere. In addition, the Southern ocean is an important net sink of HCHs, and to minor extent of HCB, due to high diffusive air-to-water fluxes. These net absorption fluxes for HCHs are presumably due to the role of bacterial degradation, depleting the water column concentrations of HCHs in surface waters and driving an air-water disequilibrium. This is the first field study that has investigated the coupling between the atmospheric occurrence of HCHs and HCB, the simultaneous air-water exchange, soil/snow-air exchange, and long range transport of organic pollutants in Antarctica and the Southern Ocean.

  17. Long Term Atmospheric Deposition of Trace Elements to the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Church, T. M.; Veron, A. J.; Alleman, L.

    2001-12-01

    Trace element deposition to surface ocean waters relates to both the emission sources from surrounding continents and micro-nutrient requirements of marine organisms. This is particularly true in mid-ocean gyres such as the Saragasso Sea surrounded by large industrial regions such as in North America and Europe. Atmospheric deposition for trace elements has been sampled at Bermuda since 1982 under three separate programs. The micro-nutrients include natural crustal elements (Fe, Mn) from dust, and anthropogenic elements (Cd, Cu, Zn) from combustion sources. The Bermuda deposition record shows large scale variations of these elements over the past two decades, both on seasonal and inter-annual scales. The changes in dust elements appear related to variations in climatic conditions, such as the NAO index which could effect source transport, or aridity in the Saharan source regions which should effect source strength. Those changes in the other industrial elements, related to variations in combustion practices such as ore smelting or biomass burning. None of these changes the atmospheric delivery of micro-nutrient elements may effect surface ocean productivity if these sources are replete for the North Atlantic relative to other potentially limiting nutrients such as P. The element Pb from similar combustion sources has had very large scale reductions in the Bermuda record due to the phasing out of leaded gasoline first in North America followed by Europe. The regional sources and transient fate of lead in the surface Sargasso can be traced using its stable isotope signature. Included is the downward ventilation of the transient tracer, plus the role of surface advection in its mass balance.

  18. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces.

    PubMed

    Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D

    2012-01-01

    Contaminants deposited on impermeable surfaces migrate to stormwater following rainfall events, but accurately quantifying their spatial and temporal yields useful for mitigation purposes is challenging. To overcome limitations in current sampling methods, a system was developed for rapid quantification of contaminant build-up and wash-off dynamics from different impervious surfaces. Thin boards constructed of concrete and two types of asphalt were deployed at different locations of a large carpark to capture spatially distributed contaminants from dry atmospheric deposition over specified periods of time. Following experimental exposure time, the boards were then placed under a rainfall simulator in the laboratory to generate contaminant runoff under controlled conditions. Single parameter effects including surface roughness and material composition, number of antecedent dry days, rain intensity, and water quality on contaminant build-up and wash-off yields could be investigated. The method was applied to quantify spatial differences in deposition rates of contaminants (TSS, zinc, copper and lead) at two locations varying in their distance to vehicle traffic. Results showed that boards exposed at an unused part of the carpark >50 m from vehicular traffic captured similar amounts of contaminants compared with boards that were exposed directly adjacent to the access route, indicating substantial atmospheric contaminant transport. Furthermore, differences in contaminant accumulation as a function of surface composition were observed. Runoff from asphalt boards yielded higher zinc loads compared with concrete surfaces, whereas runoff from concrete surfaces resulted in higher TSS concentrations attributed to its smoother surfaces. The application of this method enables relationships between individual contaminant behaviour and specific catchment characteristics to be investigated and provides a technique to derive site-specific build-up and wash-off functions required

  19. Atmospheric deposition of polycyclic aromatic hydrocarbons to water surfaces: A mass balance approach

    NASA Astrophysics Data System (ADS)

    McVeety, Bruce D.; Hites, Ronald A.

    A mass balance model was developed to explain the movement of polycyclic aromatic hydrocarbons (PAH) into and out of Siskiwit Lake, which is located on a wilderness island in northern Lake Superior. Because of its location, the PAH found in this lake must have originated exclusively from atmospheric sources. Using gas Chromatographie mass spectrometry, 11 PAH were quantified in rain, snow, air, lake water, sediment core and sediment trap samples. From the dry deposition fluxes, an aerosol deposition velocity of 0.99 ± 0.15 cm s -1 was calculated for indeno[1,2,3- cd]pyrene and benzo[ ghi]perylene, two high molecular weight PAH which are not found in the gas phase. The dry aerosol deposition was found to dominate the wet removal mechanism by an average ratio of 9:1. The dry gas flux was negative, indicating that surface volatilization was taking place; it accounted for 10-80 % of the total output flux depending on the volatility of the PAH. The remaining PAH were lost to sedimentation. From the dry gas flux, an overall mass transfer coefficient for PAH was calculated to be 0.18 ± 0.06 m d -1. In this case, the overall mass transfer is dominated by the liquid phase resistance.

  20. Sensitivity of continental United States atmospheric budgets of oxidized and reduced nitrogen to dry deposition parametrizations

    PubMed Central

    Dennis, Robin L.; Schwede, Donna B.; Bash, Jesse O.; Pleim, Jon E.; Walker, John T.; Foley, Kristen M.

    2013-01-01

    Reactive nitrogen (Nr) is removed by surface fluxes (air–surface exchange) and wet deposition. The chemistry and physics of the atmosphere result in a complicated system in which competing chemical sources and sinks exist and impact that removal. Therefore, uncertainties are best examined with complete regional chemical transport models that simulate these feedbacks. We analysed several uncertainties in regional air quality model resistance analogue representations of air–surface exchange for unidirectional and bi-directional fluxes and their effect on the continental Nr budget. Model sensitivity tests of key parameters in dry deposition formulations showed that uncertainty estimates of continental total nitrogen deposition are surprisingly small, 5 per cent or less, owing to feedbacks in the chemistry and rebalancing among removal pathways. The largest uncertainties (5%) occur with the change from a unidirectional to a bi-directional NH3 formulation followed by uncertainties in bi-directional compensation points (1–4%) and unidirectional aerodynamic resistance (2%). Uncertainties have a greater effect at the local scale. Between unidirectional and bi-directional formulations, single grid cell changes can be up to 50 per cent, whereas 84 per cent of the cells have changes less than 30 per cent. For uncertainties within either formulation, single grid cell change can be up to 20 per cent, but for 90 per cent of the cells changes are less than 10 per cent. PMID:23713122

  1. A generalized mathematical scheme to analytically solve the atmospheric diffusion equation with dry deposition

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Sheng; Hildemann, Lynn M.

    A generalized mathematical scheme is developed to simulate the turbulent dispersion of pollutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the atmospheric diffusion equation with height-dependent wind speed and eddy diffusivities, and with a Robin-type boundary condition at the ground. Unlike published solutions of similar problems where complex or non-programmable (e.g., hypergeometric or Kummer) functions are obtained, the analytical solution proposed herein consists of two previously derived Green's functions (modified Bessel functions) expressed in an integral form that is amenable to numerical integration. In the case of invariant wind speed and turbulent eddies with height (i.e., Gaussian deposition plume), the solution reduces to an equivalent well-known heat conduction solution. The physical behavior represented by the Green's functions comprising the solution can be interpreted. This generalized scheme can be modified further to account for inversion effects or other meteorological conditions. The solution derived is useful for examining the accuracy and performance of sophisticated numerical dispersion models, and is particularly suitable for modeling the transport of pollutants undergoing strong surface adsorption or high depositional losses.

  2. Changes in atmospheric nitrate deposition in Germany--an isotopic perspective.

    PubMed

    Beyn, Fabian; Matthias, Volker; Dähnke, Kirstin

    2014-11-01

    We investigated the isotopic composition of atmospheric NO3(-) deposition at a moderately polluted site in Western Europe over an annual cycle from December 2011 to November 2012. On average, we measured load-weighted δ(15)N values of +0.1 and +3.0‰ in wet and dry deposition, respectively. A comparison to source-specific N emission trends and to isotope data from the 1980s reveals distinct changes in δ(15)N-NO3(-) values: In contrast to the increasing relative importance of isotopically depleted natural NOx sources, we find an increase of isotope values in comparison to historical data. We explore the role of land-based N sources, because backward trajectories reveal a correlation of higher δ(15)N to air mass origin from industrialized areas. Nowadays isotopically enriched NOx of coal-fired power plants using selective catalytic converters and land-based vehicle emissions, which use same technology, are apparently the main driver of rising δ(15)N values in nitrate deposition.

  3. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    SciTech Connect

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J.

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  4. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    SciTech Connect

    Gou, Huiyang; Hemley, Russell J.; Hemawan, Kadek W.

    2015-11-02

    Polycrystalline diamond has been successfully synthesized on silicon substrates at atmospheric pressure using a microwave capillary plasma chemical vapor deposition technique. The CH4/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H2 into the deposition gas chemistry. Electronically excited species of CN, C2, Ar, N2, CH, Hβ and Hα were observed in emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T2g phonon at 1333 cm-1 peak relative to the Raman features of graphitic carbon. Furthermore, field emission scanning electron microscopy (SEM) images reveal that, depending on the on growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  5. A non-equilibrium model for the hygroscopic growth and dry deposition of atmospheric particles to water surfaces

    SciTech Connect

    Zufall, M.J.; Davidson, C.I.; Bergin, M.H.

    1995-12-31

    Atmospheric dry deposition may provide a significant contribution of pollutants to a body of water. The rate of dry deposition to water surfaces may be enhanced by the growth of hygroscopic aerosols. Current dry deposition models predict hygroscopic growth by assuming equilibrium between the particles and atmosphere. However, particles larger than 1 mm may not reach their equilibrium size. These models also assume a constant, high (> 99%) relative humidity throughout the laminar flow region several centimeters above the water surface. Relative humidity profiles determined for ocean surfaces show that this is generally not the case, as the relative humidity decreases quickly above the water surface. A hygroscopic growth model is presented that combines more accurate relative humidity profiles with detailed water vapor mass transport. Hygroscopic growth estimates for ammonium nitrate, ammonium sulfate and mixtures of these two salts show that the current deposition models greatly over predict the influence of hygroscopic growth on deposition velocity to water surfaces.

  6. The Effects of Urbanization on Atmospheric Nitrogen Deposition and Nitrate Removal Capacity of Urban Wetlands

    NASA Astrophysics Data System (ADS)

    Stander, E. K.; Ehrenfeld, J. G.

    2006-12-01

    Wetlands are increasingly being used as management tools to combat the widespread problem of excess nitrogen in surface waters of the United States. This is particularly true in urban or urbanizing watersheds. However, due to hypothesized higher rates of atmospheric nitrogen deposition and altered hydrology in the urban context, urban wetlands may actually be acting as sources of nitrate to receiving bodies of water. Fourteen palustrine, forested wetlands in northeastern New Jersey, the most urban part of the state, were sampled for hydrology and rates of nitrogen cycling processes. One autowell in each site recorded water table measurements four times daily. In situ rates of net nitrogen mineralization and nitrification were measured monthly during the same time period using the static core technique. Denitrification rates were measured monthly in laboratory incubations using the acetylene block technique. Additionally, in nine of the 14 sites, which represent a gradient of urban intensity from very urban to less urban, we measured inorganic nitrogen in throughfall and leachate on a weekly basis. Throughfall collectors and lysimeters to 50cm depth were installed in three locations in each of the nine sites. Throughfall and leachate samples were analyzed for 15N and 18O isotopes to distinguish between atmospheric versus nitrification sources of nitrate in soil leachate. Hydrographs demonstrated that many sites have water table depths below 30 cm (i.e., below the biologically active zone) for long periods of time. Many wetlands display uncharacteristically flashy hydrographs. Wetlands with dry or flashy hydrographs had higher rates of nitrification and lower rates of denitrification than wetlands with more normal hydrology. Rates of atmospheric N deposition were higher in wetlands located in municipalities with higher population densities. Population density, however, was not a good predictor of nitrification or denitrification rates. Results from the isotopic

  7. Climate, not atmospheric deposition, drives the biogeochemical mass-balance of a mountain watershed

    USGS Publications Warehouse

    Baron, Jill S.; Heath, Jared

    2014-01-01

    Watershed mass-balance methods are valuable tools for demonstrating impacts to water quality from atmospheric deposition and chemical weathering. Owen Bricker, a pioneer of the mass-balance method, began applying mass-balance modeling to small watersheds in the late 1960s and dedicated his career to expanding the literature and knowledge of complex watershed processes. We evaluated long-term trends in surface-water chemistry in the Loch Vale watershed, a 660-ha. alpine/subalpine catchment located in Rocky Mountain National Park, CO, USA. Many changes in surface-water chemistry correlated with multiple drivers, including summer or monthly temperature, snow water equivalent, and the runoff-to-precipitation ratio. Atmospheric deposition was not a significant causal agent for surface-water chemistry trends. We observed statistically significant increases in both concentrations and fluxes of weathering products including cations, SiO2, SO4 2−, and ANC, and in inorganic N, with inorganic N being primarily of atmospheric origin. These changes are evident in the individual months June, July, and August, and also in the combined June, July, and August summer season. Increasingly warm summer temperatures are melting what was once permanent ice and this may release elements entrained in the ice, stimulate chemical weathering with enhanced moisture availability, and stimulate microbial nitrification. Weathering rates may also be enhanced by sustained water availability in high snowpack years. Rapid change in the flux of weathering products and inorganic N is the direct and indirect result of a changing climate from warming temperatures and thawing cryosphere.

  8. Sulfur isotope dynamics in two central european watersheds affected by high atmospheric deposition of SO x

    NASA Astrophysics Data System (ADS)

    Novák, Martin; Kirchner, James W.; Groscheová, Hana; Havel, Miroslav; Černý, Jiří; Krejčí, Radovan; Buzek, František

    2000-02-01

    Sulfur fluxes and δ34S values were determined in two acidified small watersheds located near the Czech-German border, Central Europe. Sulfur of sulfate aerosol in the broader region (mean δ 34S of 7.5‰ CDT) was isotopically heavier than sulfur of airborne SO 2 (mean δ 34S of 4.7‰). The annual atmospheric S deposition to the Jezeřı´ watershed decreased markedly in 1993, 1994, and 1995 (40, 33, and 29 kg/ ha · yr), reflecting reductions in industrial S emissions. Sulfur export from Jezeří via surface discharge was twice atmospheric inputs, and increased from 52 to 58 to 85 kg/ha · yr over the same three-year period. The δ 34S value of Jezeřı´ streamflow was 4.5 ± 0.3‰, intermediate between the average atmospheric deposition (5.4 ± 0.2‰) and soil S (4.0 ± 0.5‰), suggesting that the excess sulfate in runoff comes from release of S from the soil. Bedrock is not a plausible source of the excess S, because its S concentration is very low (<0.003 wt.%) and because its δ 34S value is too high (5.8‰) to be consistent with the δ 34S of runoff. A sulfur isotope mixing model indicated that release of soil S accounted for 64 ± 33% of sulfate S in Jezeřı´ discharge. Approximately 30% of total sulfate S in the discharge were organically cycled. At Načetı´n, the same sequence of δ34S IN > δ34S OUT > δ34S SOIL was observed. The seasonality found in atmospheric input (higher δ 34S in summer, lower δ 34S in winter) was preserved in shallow (<10 cm) soil water, but not in deeper soil water. δ 34S values of deeper (>10 cm) soil water (4.8 ± 0.2‰) were intermediate between those of atmospheric input (5.9 ± 0.3‰) and Nac̆etín soils (2.4 ± 0.1‰), again suggesting that remobilization of soil S accounts for a significant fraction (roughly 40 ± 10%) of the S in soil water at Načetı´n. The inventories of soil S at both of these sites are legacies of more intense atmospheric pollution during previous decades, and are large enough (740

  9. Contribution of atmospheric nitrogen deposition to diffuse pollution in a typical hilly red soil catchment in southern China.

    PubMed

    Shen, Jianlin; Liu, Jieyun; Li, Yong; Li, Yuyuan; Wang, Yi; Liu, Xuejun; Wu, Jinshui

    2014-09-01

    Atmospheric nitrogen (N) deposition is currently high and meanwhile diffuse N pollution is also serious in China. The correlation between N deposition and riverine N export and the contribution of N deposition to riverine N export were investigated in a typical hilly red soil catchment in southern China over a two-year period. N deposition was as high as 26.1 to 55.8kgN/(ha·yr) across different land uses in the studied catchment, while the riverine N exports ranged from 7.2 to 9.6kgN/(ha·yr) in the forest sub-catchment and 27.4 to 30.3kgN/(ha·yr) in the agricultural sub-catchment. The correlations between both wet N deposition and riverine N export and precipitation were highly positive, and so were the correlations between NH4(+)-N or NO3(-)-N wet deposition and riverine NH4(+)-N or NO3(-)-N exports except for NH4(+)-N in the agricultural sub-catchment, indicating that N deposition contributed to riverine N export. The monthly export coefficients of atmospheric deposited N from land to river in the forest sub-catchment (with a mean of 14%) presented a significant positive correlation with precipitation, while the monthly contributions of atmospheric deposition to riverine N export (with a mean of 18.7% in the agricultural sub-catchment and a mean of 21.0% in the whole catchment) were significantly and negatively correlated with precipitation. The relatively high contribution of N deposition to diffuse N pollution in the catchment suggests that efforts should be done to control anthropogenic reactive N emissions to the atmosphere in hilly red soil regions in southern China.

  10. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models

    NASA Astrophysics Data System (ADS)

    Angot, Hélène; Dastoor, Ashu; De Simone, Francesco; Gårdfeldt, Katarina; Gencarelli, Christian N.; Hedgecock, Ian M.; Langer, Sarka; Magand, Olivier; Mastromonaco, Michelle N.; Nordstrøm, Claus; Pfaffhuber, Katrine A.; Pirrone, Nicola; Ryjkov, Andrei; Selin, Noelle E.; Skov, Henrik; Song, Shaojie; Sprovieri, Francesca; Steffen, Alexandra; Toyota, Kenjiro; Travnikov, Oleg; Yang, Xin; Dommergue, Aurélien

    2016-08-01

    Mercury (Hg) is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission). Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011-2015) in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes.

  11. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    USGS Publications Warehouse

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  12. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources.

    PubMed

    Domagalski, Joseph; Majewski, Michael S; Alpers, Charles N; Eckley, Chris S; Eagles-Smith, Collin A; Schenk, Liam; Wherry, Susan

    2016-10-15

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio>1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (<0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (<0.1), whereas urbanized areas had higher ratios (0.34-1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  13. Riverine Response of Sulfate to Declining Atmospheric Sulfur Deposition in Agricultural Watersheds.

    PubMed

    David, Mark B; Gentry, Lowell E; Mitchell, Corey A

    2016-07-01

    Sulfur received extensive study as an input to terrestrial ecosystems from acidic deposition during the 1980s. With declining S deposition inputs across the eastern United States, there have been many studies evaluating ecosystem response, with the exception of agricultural watersheds. We used long-term (22 and 18 yr) sulfate concentration data from two rivers and recent (6 yr) data from a third river to better understand cycling and transport of S in agricultural, tile-drained watersheds. Sulfate concentrations and yields steadily declined in the Embarras (from ∼10 to 6 mg S L) and Kaskaskia rivers (from 7 to 3.5 mg S L) during the sampling period, with an overall -23.1 and -12.8 kg S ha yr balance for the two watersheds. There was evidence of deep groundwater inputs of sulfate in the Salt Fork watershed, with a much smaller input to the Embarras and none to the Kaskaskia. Tiles in the watersheds had low sulfate concentrations (<10 mg S L), similar to the Kaskaskia River, unless the field had received some form of S fertilizer. A multiple regression model of runoff (cm) and S deposition explained much of the variation in Embarras River sulfate ( = 0.86 and 0.80 for concentrations and yields; = 46). Although atmospheric deposition was much less than outputs (grain harvest + stream export of sulfate), riverine transport of sulfate reflected the decline in inputs. Watershed S balances suggest a small annual depletion of soil organic S pools, and S fertilization will likely be needed at some future date to maintain crop yields.

  14. Changes in Sport Fish Mercury Concentrations from Food Web Shifts Suggest Partial Decoupling from Atmospheric Deposition in Two Colorado Reservoirs.

    PubMed

    Wolff, Brian A; Johnson, Brett M; Lepak, Jesse M

    2017-02-01

    Partial decoupling of mercury (Hg) loading and observed Hg concentrations ([Hg]) in biotic and abiotic samples has been documented in aquatic systems. We studied two Colorado reservoirs to test whether shifts in prey for sport fish would lead to changes in [Hg] independent of external atmospheric Hg deposition. We compared sport fish total mercury concentrations ([T-Hg]) and macroinvertebrate (chironomids and crayfish) methylmercury concentrations ([MeHg]) before and after food web shifts occurred in both reservoirs. We also monitored wet atmospheric Hg deposition and sediment [T-Hg] and [MeHg] at each reservoir. We found rapid shifts in Hg bioaccumulation in each reservoir's sport fish, and these changes could not be attributed to atmospheric Hg deposition. Our study shows that trends in atmospheric deposition, environmental samples (e.g., sediments), and samples of species at the low trophic levels (e.g., chironomids and crayfish) may not accurately reflect conditions that result in fish consumption advisories for high trophic level sport fish. We suggest that in the short-term, monitoring fish [Hg] is necessary to adequately protect human health because natural and anthropogenic perturbations to aquatic food-webs that affect [Hg] in sport fish will continue regardless of trends in atmospheric deposition.

  15. Modeling volcanic ash resuspension - application to the 14-18 October 2011 outbreak episode in Central Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Folch, A.; Mingari, L.; Osores, M. S.; Collini, E.

    2013-09-01

    Volcanic fallout deposits from the June 2011 Cordón Caulle eruption in Central Patagonia were remobilized in several occasions months after their emplacement. In particular, during 14-18 October 2011, an intense outbreak episode generated huge volcanic clouds that were dispersed across Argentina, causing multiple impacts in the environment, affecting the air quality and disrupting airports. Fine ash particles in volcanic fallout deposits can be resuspended under favourable meteorological conditions, particularly during strong wind episodes in arid environments having low soil moisture and poor vegetation coverage. In opposition to eruption-formed ash clouds, modeling of resuspension-formed ash clouds has received little attention. In consequence, there are no emission schemes specially developed and calibrated for volcanic ash, and no operational product exists to model and forecast the formation and dispersal of resuspension ash clouds. Here we implement three dust emission schemes of increasing complexity in the FALL3D tephra dispersal model and use the 14-18 October 2011 outbreak episode as a model test case. We calibrate the emission schemes and validate the results of the coupled WRF-ARW/FALL3D modeling system using satellite imagery and measurements of visibility (a quantity related to total suspended particle concentration at surface) and particulate matter (PM10) concentration at several meteorological and air quality stations sparse across Argentina and Uruguay. Our final goal is to test the capability of the modeling system to become, in the near future, an operational forecast product for volcanic ash resuspension events.

  16. Spatial variation of atmospheric nitrogen deposition and critical loads for aquatic ecosystems in the Greater Yellowstone Area.

    PubMed

    Nanus, L; McMurray, J A; Clow, D W; Saros, J E; Blett, T; Gurdak, J J

    2017-04-01

    Current and historic atmospheric nitrogen (N) deposition has impacted aquatic ecosystems in the Greater Yellowstone Area (GYA). Understanding the spatial variation in total atmospheric deposition (wet + dry) of N is needed to estimate air pollution deposition critical loads for sensitive aquatic ecosystems. This is particularly important for areas that have an increasing contribution of ammonia dry deposition to total N (TN), such as the GYA. High resolution geostatistical models and maps of TN deposition (wet + dry) were developed using a variety of techniques including ordinary kriging in a geographic information system, to evaluate spatial variability and identify areas of elevated loading of pollutants for the GYA. TN deposition estimates in the GYA range from <1.4 to 7.5 kg N ha(-1) yr(-1) and show greater variability than wet inorganic N deposition. Critical loads of TN deposition (CLTNdep) for nutrient enrichment in aquatic ecosystems range from less than 1.5 ± 1.0 kg N ha(-1) yr(-1) to over 4.0 ± 1.0 kg N ha(-1) yr(-1) and variability is controlled by differences in basin characteristics. The lowest CLTNdep estimates occurred in high elevation basins within GYA Wilderness boundaries. TN deposition maps were used to identify critical load exceedances for aquatic ecosystems. Estimated CLTNdep exceedances for the GYA range from 17% to 48% depending on the surface water nitrate (NO3(-)) threshold. Based on a NO3(-) threshold of 1.0 μmol L(-1), TN deposition exceeds CLTNdep in approximately 30% of the GYA. These predictive models and maps can be used to help identify and protect sensitive ecosystems that may be impacted by excess atmospheric N deposition.

  17. Sediment resuspension and transport patterns on a fringing reef flat, Molokai, Hawaii

    USGS Publications Warehouse

    Ogston, A.S.; Storlazzi, C.D.; Field, M.E.; Presto, M.K.

    2004-01-01

    Corals are known to flourish in various turbid environments around the world. The quantitative distinction between clear and turbid water in coral habitats is not well defined nor are the amount of sediment in suspension and rates of sedimentation used to evaluate the condition of reef environments well established. This study of sediment resuspension, transport, and resulting deposition on a fringing reef flat off Molokai, Hawaii, uses a year of time-series data from a small, instrumented tripod. It shows the importance of trade winds and ocean wave heights in controlling the movement of sediment. Sediment is typically resuspended daily and the dominant controls on the magnitude of events (10-25 mg/l) are the trade-wind-generated waves and currents and tidal elevation on the reef flat. The net flux of sediment on this reef is primarily along the reef flat in the direction of the prevailing trade winds (to the west), with a secondary direction of slightly offshore, towards a zone of low coral abundance. These results have application to reef studies and reef management in other areas in several ways. First, the observed resuspension and turbidity results from fine-grained terrigenous sediment that appears to be trapped and recycled on the reef flat. Thus corals are subjected to light attenuation by the same particles repeatedly, however small the amount. Secondly, the measurements show high temporal variability (from daily to seasonal scales) of sediment resuspension, indicating that single measurements are inadequate to accurately describe conditions on a reef flat. ?? Springer-Verlag 2004.

  18. Relevance of canopy drip for the accumulation of nitrogen in moss used as biomonitors for atmospheric nitrogen deposition in Europe.

    PubMed

    Meyer, Michaela; Schröder, Winfried; Nickel, Stefan; Leblond, Sébastien; Lindroos, Antti-Jussi; Mohr, Karsten; Poikolainen, Jarmo; Santamaria, Jesus Miguel; Skudnik, Mitja; Thöni, Lotti; Beudert, Burkhard; Dieffenbach-Fries, Helga; Schulte-Bisping, Hubert; Zechmeister, Harald G

    2015-12-15

    High atmospheric deposition of nitrogen (N) impacts functions and structures of N limited ecosystems. Due to filtering and related canopy drip effects forests are particularly exposed to N deposition. Up to now, this was proved by many studies using technical deposition samplers but there are only some few studies analysing the canopy drip effect on the accumulation of N in moss and related small scale atmospheric deposition patterns. Therefore, we investigated N deposition and related accumulation of N in forests and in (neighbouring) open fields by use of moss sampled across seven European countries. Sampling and chemical analyses were conducted according to the experimental protocol of the European Moss Survey. The ratios between the measured N content in moss sampled inside and outside of forests were computed and used to calculate estimates for non-sampled sites. Potentially influencing environmental factors were integrated in order to detect their relationships to the N content in moss. The overall average N content measured in moss was 20.0mgg(-1) inside and 11.9mgg(-1) outside of forests with highest N values in Germany inside of forests. Explaining more than 70% of the variance, the multivariate analyses confirmed that the sampling site category (site with/without canopy drip) showed the strongest correlation with the N content in moss. Spatial variances due to enhanced dry deposition in vegetation stands should be considered in future monitoring and modelling of atmospheric N deposition.

  19. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    NASA Astrophysics Data System (ADS)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  20. Energy deposition and middle atmosphere electrodynamic response to a highly relativistic electron precipitation event

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Baker, D. N.; Herrero, F. A.; Mccarthy, S. P.; Twigg, P. A.; Croskey, C. L.; Hale, L. C.

    1994-01-01

    Rocket data have been used to evaluate the characteristics of precipitating relativistic electrons and their effects on the electrodynamic structure of the middle atmosphere. These data were obtained at Poker Flat, Alaska, on May 13 and 14, 1990, during a midday, highly relativistic electron (HRE) precipitation event. Solid state detectors were used to measure the electron fluxes and their energy spectra. An X ray scintillator was included on each flight to measure bremsstrahlung X rays produced by energetic electrons impacting on the upper atmosphere. However, these were found the be of negligible importance for this particular event. The energy deposition by the electrons has been determined from the flux measurements and compared with in situ measurements of the atmospheric electrical response. The electrodynamic measurements were obtained by the same rockets and additionally on May 13, with an accompanying rocket. The impact flux was highly irregular, containing short-lived bursts of relativistic electrons, mainly with energies below 0.5 MeV and with fluxes most enhanced between pitch angles of 0 deg - 20 deg. Although the geostationary counterpart of this measured event was considered to be of relatively low intensity and hardness, energy deposition peaked near 75 km with fluxes approaching an ion pair production rate in excess of 100/cu cm s. This exceeds peak fluxes in relativistic electron precipitation (REP) events as observed by us in numerous rocket soundings since 1976. Conductivity measurements from a blunt probe showed that negative electrical conductivities exceeded positive conductivities down to 50 km or lower, consistent with steady ionization by precipitating electrons above 1 MeV. These findings imply that the electrons from the outer radiation zone can modulate the electrical properties of the middle atmosphere to altitudes below 50 km. During the decline and activity minimum of the current solar cycle, we anticipate the occurence of similar

  1. Antifouling Transparent ZnO Thin Films Fabricated by Atmospheric Pressure Cold Plasma Deposition

    NASA Astrophysics Data System (ADS)

    Suzaki, Yoshifumi; Du, Jinlong; Yuji, Toshifumi; Miyagawa, Hayato; Ogawa, Kazufumi

    2015-09-01

    One problem with outdoor-mounted solar panels is that power generation efficiency is reduced by face plate dirt; a problem with electronic touch panels is the deterioration of screen visibility caused by finger grease stains. To solve these problems, we should fabricate antifouling surfaces which have superhydrophobic and oil-repellent properties without spoiling the transparency of the transparent substrate. In this study, an antifouling surface with both superhydrophobicity and oil-repellency was fabricated on a glass substrate by forming a fractal microstructure. The fractal microstructure was constituted of transparent silica particles 100 nm in diameter and transparent zinc-oxide columns grown on silica particles through atmospheric pressure cold plasma deposition; the sample surface was coated with a chemically adsorbed monomolecular layer. Samples were obtained which had a superhydrophobic property (with a water droplet contact angle of more than 150°) and a high average transmittance of about 90% (with wavelengths ranging from 400 nm to 780 nm).

  2. Si delta-doped field-effect transistors by atmospheric pressure metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Pan, N.; Carter, J.; Jackson, G. S.; Hendriks, H.; Zheng, X. L.; Kim, M. H.

    1991-07-01

    Si delta-doped GaAs field-effect transistors (FETs) are demonstrated by atmospheric pressure metalorganic chemical vapor deposition (MOCVD) and characterized by Hall-effect, capacitance-voltage (C-V), and Shubnikov de-Haas measurements. The Si delta doping was accomplished by interrupting the growth and flowing silane with controlled timing under an arsenic overpressure. Devices with 0.5 μm gate length (Ns=2.2×1012 cm-2) were fabricated with a maximum extrinsic transconductance of 140 mS/mm and a current gain cutoff frequency of 17 GHz. The transconductance as a function of gate voltage showed a plateau region through a range of 1.5 V further supporting spatial confinement of the electrons.

  3. An assessment of the variability in performance of wet atmospheric deposition samplers

    USGS Publications Warehouse

    Graham, R.C.; Robertson, J.K.; Obal, John

    1987-01-01

    The variability in performance of two brands of wet/dry atmospheric deposition samplers were compared for 1 year at a sincle site. A total of nine samplers were used. Samples were collected weekly and analyzed for pH, specific conductance, common chemical constituents, and sample volume. Additionally, data on the duration of each sampler opening were recorded using a microdatalogger. These data disprove the common perception that samplers remain open throughout a precipitation event. The sensitivity of sampler sensors within the range tested did not have a defineable impact on sample collection. The nonnormal distribution within the data set necessitated application of the nonparametric Friedman Test to assess comparability of sample chemical composition and volume between and within sampler brands. Statistically significant differences existed for most comparisons, however the test did not permit quantification of their magnitudes. Differences in analyte concentrations between samplers were small. (USGS)

  4. Atmospheric Pressure Chemical Vapor Deposition of Graphene Using a Liquid Benzene Precursor.

    PubMed

    Kang, Cheong; Jung, Da Hee; Lee, Jin Seok

    2015-11-01

    Graphene has attracted great attention owing to its unique structural and electrical properties. Among various synthetic approaches of the graphene, metal assisted chemical vapor deposition (CVD) is the most reasonable and proper method to produce large-scale and low-defect graphene films. Until now, CVD from gaseous hydrocarbon sources has shown great promises for large-scale graphene growth, but high growth temperature is required for such growth. A recent work by using liquid benzene precursor has shown that monolayer graphene could be obtained at 300 degrees C by low pressure, required for high vacuum equipment. Here, we report the first successful attempt of atmospheric pressure CVD graphene growth on Cu foil using liquid benzene as a precursor. We investigated the effect of hydrogen partial pressure, growth time, and precursor temperature on the domain size of as-grown graphene. Also, micro-Raman analysis confirmed that these reaction parameters influenced the number of layer and uniformity of the graphene.

  5. A sediment resuspension and water quality model of Lake Okeechobee

    USGS Publications Warehouse

    James, R.T.; Martin, J.; Wool, T.; Wang, P.-F.

    1997-01-01

    The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeeehobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspended solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is lightlimited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sedimentwater interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.

  6. Dissemination, resuspension, and filtration of carbon fibers. [aircraft fires

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    Carbon fiber transport was studied using mathematical models established for other pollution problems. It was demonstrated that resuspension is not a major factor contributing to the risk. Filtration and fragmentation tests revealed that fiber fragmentation shifts the fiber spectrum to shorter mean lengths in high velocity air handling systems.

  7. Sources, atmospheric transport and deposition mechanism of organochlorine pesticides in soils of the Tibetan Plateau.

    PubMed

    Chen, Laiguo; Feng, Qianhua; He, Qiusheng; Huang, Yumei; Zhang, Yu; Jiang, Guo; Zhao, Wei; Gao, Bo; Lin, Kui; Xu, Zhencheng

    2017-01-15

    Because of mountain cold-trapping, the soil in the Tibetan Plateau may be an important global sink of organochlorine pesticides (OCPs). However, there are limited data on OCPs in the soils of the Tibetan Plateau. In addition, the atmospheric transport and deposition mechanisms of OCPs also need to be further studied. In this study, the sampling area covered most regions of the Tibetan Plateau. The detection frequencies of ΣChlordane (sum of trans-chlordane, cis-chlordane and oxychlordane), HCB, ΣNonachlor (sum of trans- and cis-nonachlor), DDTs, ΣEndo (sum of endosulfan-I, endosulfan-II and endosulfate), aldrin, HCHs, ΣHeptachlor (sum of heptachlor and heptachlor epoxide), mirex and dieldrin were 100%, 98.3%, 96.6%, 94.8%, 89.7%, 87.9%, 62.1%, 55.2%, 32.8% and 6.9%, respectively. DDTs (with arithmetic mean values of 1050ngkg(-1) dw) and HCHs (393ngkg(-1)) were the principal OCPs in cultivated soils, whereas ΣEndo (192ngkg(-1)) and ΣChlordane (152ngkg(-1)) were the principal OCPs in non-cultivated soils. Local use of DDTs, dicofol and HCHs may be an important source of OCP accumulation in the soil of the Tibetan Plateau. Aldrin and endosulfan are considered to be good indicators for studying atmospheric transport and deposition of OCPs from South Asia and Southeast Asia. Two zones with high OCP levels were found in the southeast and northwest of the Tibetan Plateau. The zones have dissimilar pollution sources of OCPs and are influenced by different factors that affect their precipitation scavenging efficiency. The amount of precipitation was the dominant factor in the southeast, whereas large differences in temperature and wind speed were the dominant factors in the northwest.

  8. A critical review of protocols for moss biomonitoring of atmospheric deposition: sampling and sample preparation.

    PubMed

    Fernández, J A; Boquete, M T; Carballeira, A; Aboal, J R

    2015-06-01

    Currently, the most important guideline for the application of the moss technique to monitor the atmospheric deposition of heavy metals is the "Heavy metals, nitrogen and POPs in European mosses: 2015 survey" published by the UNECE ICP Vegetation. Two main problems have been identified with this guideline: i) some of the recommendations regarding the methodological aspects involved in the application of the moss technique are not based on scientific criteria; and, ii) some recommendations in the manual are very vague and some aspects are even left out (e.g., elevation, distance to the coast). As a result there exists a high variability in the application of the protocol and many scientists adapt it to the specific conditions in the studied areas without evaluating how changes affect the results obtained. Therefore, in this article a total of 369 studies were reviewed including both methodological and application studies of the passive biomonitoring of the atmospheric deposition of heavy metals with terrestrial mosses. The results of this review have shown on the one hand, that none of the articles completely accomplished the ICP-Vegetation protocol suggestions, either because the information regarding some aspects was lacking or simply because the authors did not follow the manual suggestions. On the other hand, it was found that the results of methodological studies sometimes contradicted the ICP Vegetation manual recommendations. Thus, a new protocol in which each suggestion has been carefully and rigorously contrasted with the available literature has been proposed in this paper. In addition, practical and economic issues have also been considered and much more concise suggestions have been proposed which would facilitate its fulfilment in a more objective way.

  9. Trends in the composition of wet deposition: effects of the atmospheric rehabilitation in East-Germany

    NASA Astrophysics Data System (ADS)

    Marquardt, Wolfgang; Brüggemann, Erika; Ihle, Peter

    1996-07-01

    The chemical components in precipitation largely depend on type and quantity of emissions on the course of the air masses at the sampling site. Beginning in 1982, the concentrations of major ions in precipitation at initially 3 sites are described in total as well as arrival sectors. For regions with specific geographical or emission features, 5 to 7 sectors for every sampling site are established, e.g., Scandinavia, or the centres of brown coal combustion in the former GDR. Particulary from the sectors of the former GDR, the precipitation was over-averaged contaminated anthropogenically in the years before the political change. Some components were significantly raised in comparison to other sectors. However, acidity remained on the level of the other sectors in the 80s. In the early 90s, anthropogenic emissions were systematically reduced partly by substitution of brown coal of inferior quality, better flue gas cleaning and partly by closing down industries. The effect of such steps on the wet deposition is being studied in a national German SANA research project (SANA: scientific program of rehabilitation of the atmosphere). In this project, the sampling sites were extended to 7 while maintaining the sampling procedure and the recording of relevant meteorological input-data. As a result, there now exists a homogeneous long-term data base allowing us to study the effects of emissions on wet deposition by the rehabilitation of the atmosphere in the former GDR. The paper focusses on changes in sulphate, nitrate, calcium, acidity, chloride and potassium concentrations in precipitation at the 3 so-called long-term sites. There are conspicuous decreases of some ions on one hand, but there is also an increase of nitrate and acidity, especially in recent years.

  10. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea.

    PubMed

    Mackey, Katherine R M; Buck, Kristen N; Casey, John R; Cid, Abigail; Lomas, Michael W; Sohrin, Yoshiki; Paytan, Adina

    2012-01-01

    This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu(2+) concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity.

  11. Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea

    PubMed Central

    Mackey, Katherine R. M.; Buck, Kristen N.; Casey, John R.; Cid, Abigail; Lomas, Michael W.; Sohrin, Yoshiki; Paytan, Adina

    2012-01-01

    This study investigated the impact of atmospheric metal deposition on natural phytoplankton communities at open-ocean and coastal sites in the Sargasso Sea during the spring bloom. Locally collected aerosols with different metal contents were added to natural phytoplankton assemblages from each site, and changes in nitrate, dissolved metal concentration, and phytoplankton abundance and carbon content were monitored. Addition of aerosol doubled the concentrations of cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe), manganese (Mn), and nickel (Ni) in the incubation water. Over the 3-day experiments, greater drawdown of dissolved metals occurred in the open ocean water, whereas little metal drawdown occurred in the coastal water. Two populations of picoeukaryotic algae and Synechococcus grew in response to aerosol additions in both experiments. Particulate organic carbon increased and was most sensitive to changes in picoeukaryote abundance. Phytoplankton community composition differed depending on the chemistry of the aerosol added. Enrichment with aerosol that had higher metal content led to a 10-fold increase in Synechococcus abundance in the oceanic experiment but not in the coastal experiment. Enrichment of aerosol-derived Co, Mn, and Ni were particularly enhanced in the oceanic experiment, suggesting the Synechococcus population may have been fertilized by these aerosol metals. Cu-binding ligand concentrations were in excess of dissolved Cu in both experiments, and increased with aerosol additions. Bioavailable free hydrated Cu2+ concentrations were below toxicity thresholds throughout both experiments. These experiments show (1) atmospheric deposition contributes biologically important metals to seawater, (2) these metals are consumed over time scales commensurate with cell growth, and (3) growth responses can differ between distinct Synechococcus or eukaryotic algal populations despite their relatively close geographic proximity and taxonomic similarity. PMID

  12. In situ flume measurements of resuspension in the North Sea

    NASA Astrophysics Data System (ADS)

    Thompson, C. E. L.; Couceiro, F.; Fones, G. R.; Helsby, R.; Amos, C. L.; Black, K.; Parker, E. R.; Greenwood, N.; Statham, P. J.; Kelly-Gerreyn, B. A.

    2011-07-01

    The in situ annular flume, Voyager II, was deployed at three sites in the North Sea in order to investigate resuspension events, to determine the physical characteristics of the seabed, to determine the threshold of resuspension of the bed and to quantify erosion rates and erosion depths. These are the first controlled, in situ flume experiments to study resuspension in the North Sea, and were combined with long-term measurements of waves and currents. Resuspension experiments were undertaken at two muddy, and one sandy site: north of the Dogger Bank (DG: water depths ˜80 m, very fine, poorly sorted, very fine-skewed sediment experiencing seasonal thermal stratification of the water column along with oxygen depletion); the Oyster Grounds (OG: ˜40 m, similar bed properties, year round water column thermal stratification, Atlantic forcing); and in the Sean Gas Field (SGF: ˜20 m, moderately sorted, very coarse-skewed sand, and well mixed water column). The erosion thresholds of the bed were found to be 0.66-1.04 Pa (DG) and 0.91-1.27 Pa (OG), with corresponding erosion depths of 0.1-0.15 mm and 0.02-0.06 mm throughout the experiments. Evaluation of a year of current velocities from 2007 indicated that at OG, resuspension of the consolidated bed was limited to on average ˜8% of the time as a result of tidal forcing alone for short (<30 min) durations, but would potentially increase during the winter as a result of wave influences. At DG, under similar conditions this would increase to 13%, and in the SGF, wave-induced resuspension events occurred throughout the year, with the potential exceedance of the threshold for suspension greater than 50% in January and March. Resuspension of bed material and erosion rates were closely related to applied bed shear stresses, and eroded depths were significantly correlated with the physical properties of the bed. Therefore, while complex variations in biogeophysical factors affected the critical threshold of erosion, once

  13. Thresholds for protecting Pacific Northwest ecosystems from atmospheric deposition of nitrogen: state of knowledge report

    USGS Publications Warehouse

    Cummings, Tonnie; Blett, Tamara; Porter, Ellen; Geiser, Linda; Graw, Rick; McMurray, Jill; Perakis, Steven S.; Rochefort, Regina

    2014-01-01

    The National Park Service and U.S. Forest Service manage areas in the states of Idaho, Oregon, and Washington – collectively referred to in this report as the Pacific Northwest - that contain significant natural resources and provide many recreational opportunities. The agencies are mandated to protect the air quality and air pollution-sensitive resources on these federal lands. Human activity has greatly increased the amount of nitrogen emitted to the atmosphere, resulting in elevated amounts of nitrogen being deposited in park and forest ecosystems. There is limited information in the Pacific Northwest about the levels of nitrogen that negatively affect natural systems, i.e., the critical loads. The National Park Service and U.S. Forest Service, with scientific input from the U.S. Geological Survey, have developed an approach for accumulating additional nitrogen critical loads information in the Pacific Northwest and using the data in planning and regulatory arenas. As a first step in that process, this report summarizes the current state of knowledge about nitrogen deposition, effects, and critical loads in the region. It also describes ongoing research efforts and identifies and prioritizes additional data needs.

  14. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.

  15. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles

    NASA Astrophysics Data System (ADS)

    Nikiforov, Anton Yu.; Deng, Xiaolong; Onyshchenko, Iuliia; Vujosevic, Danijela; Vuksanovic, Vineta; Cvelbar, Uros; De Geyter, Nathalie; Morent, Rino; Leys, Christophe

    2016-08-01

    A simple method for preparation of nanoparticle incorporated non-woven fabric with high antibacterial efficiency has been proposed based on atmospheric pressure plasma process. In this work direct current plasma jet stabilized by fast nitrogen flow was used as a plasma deposition source. Three different types of the nanoparticles (silver, copper and zinc oxide nanoparticles) were employed as antimicrobial agents. X-ray photoelectron spectroscopy (XPS) measurements have shown a positive chemical shift observed for Ag 3d 5/2 (at 368.1 eV) suggests that silver nanoparticles (AgNPs) are partly oxidized during the deposition. The surface chemistry and the antibacterial activity of the samples against Staphylococcus aureus and Escherichia coli were investigated and analyzed. It is shown that the samples loaded with nanoparticles of Ag and Cu and having the barrier layer of 10 nm characterized by almost 97% of bacterial reduction whereas the samples with ZnO nanoparticles provide 86% reduction of Staphylococcus aureus. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  16. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea.

    PubMed

    Lai, Senchao; Xie, Zhiyong; Song, Tianli; Tang, Jianhui; Zhang, Yingyi; Mi, Wenying; Peng, Jinhu; Zhao, Yan; Zou, Shichun; Ebinghaus, Ralf

    2015-05-01

    Nine organophosphate esters (OPEs) in airborne particles were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. The concentration of the total OPEs (∑OPEs) was 47.1-160.9 pg m(-3), which are lower than previous measurements in marine atmosphere environments. Higher OPE concentrations were observed in terrestrially influenced samples, suggesting that OPE concentrations were significantly influenced by air mass transport. Chlorinated OPEs were the dominant OPEs, accounting for 65.8-83.7% of the ∑OPEs. Tris-(2-chloroethyl) phosphate (TCEP) was the predominant OPE compound in the samples (45.0±12.1%), followed by tris-(1-chloro-2-propyl) phosphates (TCPPs) (28.8±8.9%). Dry particle-bound deposition fluxes ranged from 8.2 to 27.8 ng m(-2) d(-1) for the ∑OPEs. Moreover, the dry deposition input of the ∑OPEs was estimated to be 4.98 ton y(-1) in 2013 in a vast area of northern SCS. About half of the input was found to relate to air masses originating from China.

  17. Potential canopy influences on the isotopic composition of nitrogen and sulphur in atmospheric deposition.

    PubMed

    Heaton, T H E; Spiro, Baruch; Robertson, S Madeline C

    1997-02-01

    Isotopic studies of nitrogen and sulphur inputs to plant/soil systems commonly rely on limited published data for the (15)N/(14)N and (34)S/(32)S ratios of nitrate, ammonium and sulphate in rainfall. For systems with well-developed plant canopies, however, inputs of these ions from dry deposition or particulates may be more important than rainfall. The manner in which isotopic fractionation between ions and gases may lead to dry deposition and particulates having (15)N/(14)N or (34)S/(32)S ratios different from those of rainfall is considered. Data for rainfall and throughfall in coniferous plantations are then discussed, and suggest that: (1) in line with expectations, nitrate washed from the canopy has (15)N/(14)N ratios higher than those in rainfall; (2) the (15)N/(14)N ratios of ammonium washed from the canopy are variable, with high ratios being found for canopies of higher pH in conditions of elevated ambient ammonia gas concentrations; and (3) in accord with expectations and previous work, (34)S/(32)S ratios of sulphate washed from the canopy are not substantially different from those in rainfall. The study suggests that if atmospheric inputs are relevant to isotopic studies of the sources of nitrogen for canopied systems, then confident interpretation will require analysis of these inputs.

  18. Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition

    SciTech Connect

    Deng, Zhang; He, Wenjie; Duan, Chenlong; Chen, Rong; Shan, Bin

    2016-01-15

    Spatial atomic layer deposition (SALD) is a promising technology with the aim of combining the advantages of excellent uniformity and conformity of temporal atomic layer deposition (ALD), and an industrial scalable and continuous process. In this manuscript, an experimental and numerical combined model of atmospheric SALD system is presented. To establish the connection between the process parameters and the growth efficiency, a quantitative model on reactant isolation, throughput, and precursor utilization is performed based on the separation gas flow rate, carrier gas flow rate, and precursor mass fraction. The simulation results based on this model show an inverse relation between the precursor usage and the carrier gas flow rate. With the constant carrier gas flow, the relationship of precursor usage and precursor mass fraction follows monotonic function. The precursor concentration, regardless of gas velocity, is the determinant factor of the minimal residual time. The narrow gap between precursor injecting heads and the substrate surface in general SALD system leads to a low Péclet number. In this situation, the gas diffusion act as a leading role in the precursor transport in the small gap rather than the convection. Fluid kinetics from the numerical model is independent of the specific structure, which is instructive for the SALD geometry design as well as its process optimization.

  19. First survey of atmospheric heavy metal deposition in Kosovo using moss biomonitoring.

    PubMed

    Maxhuni, Albert; Lazo, Pranvera; Kane, Sonila; Qarri, Flora; Marku, Elda; Harmens, Harry

    2016-01-01

    Bryophytes act as bioindicators and bioaccumulators of metal deposition in the environment. The atmospheric deposition of Cd, Cr, Cu, Fe, Hg, Ni, Mn, Pb, and Zn in Kosovo was investigated by using carpet-forming moss species (Pseudocleropodium purum and Hypnum cupressiforme) as bioindicators. This research is part of the European moss survey coordinated by the ICP Vegetation, an International Cooperative Programme reporting on the effects of air pollution on vegetation to the UNECE Convention on Long-range Transboundary Air Pollution. Sampling was performed during the summer of 2011 at 25 sampling sites homogenously distributed over Kosovo. Unwashed, dried samples were digested by using wet digestion in Teflon tubes. The concentrations of metal elements were determined by atomic absorption spectrometry (AAS) equipped with flame and/or furnace systems. The heavy metal concentration in mosses reflected local emission sources. The data obtained in this study were compared with those of similar studies in neighboring countries and Europe (2010-2014 survey). The geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. The concentrations of Cr, Ni, Pb, and Zn were higher than the respective median values of Europe, suggesting that the zones with heavy vehicular traffic and industry emission input are important emitters of these elements. Selected zones are highly polluted particularly by Cd, Pb, Hg, and Ni. The statistical analyses revealed that a strong correlation exists between the Pb and Cd content in mosses, and the degree of pollution in the studied sites was assessed.

  20. Atmospheric deposition of heavy metals in Wuxi, China: estimation based on native moss analysis.

    PubMed

    Yan, Yun; Zhang, Qiang; Wang, G Geoff; Fang, Yan-Ming

    2016-06-01

    We studied atmospheric deposition of heavy metals in Wuxi, China, using moss (Haplocladium microphyllum and H. angustifolium) as a biomonitoring agent. Moss samples were collected from 49 sites determined by a systematic sampling method. The top layer of soil on each site was also sampled. No significant correlation (P < 0.05) was observed between the moss and soil concentrations for any of the six heavy metal elements (Cd, Cr, Cu, Ni, Pb, and Zn), indicating that the soil substrate had little effect on the heavy metal concentrations in the moss materials. The metal enrichment capacity of the moss material, characterized by the concentration ratio between the moss and soil samples for each heavy metal, was topped by Cd and then followed by Zn, Pb, Cu, Cr, and Ni, respectively. Significant (P < 0.05) correlations were found among the six elements in mosses, suggesting potential anthropogenic inputs of these heavy metal pollutants. Based on concentrations of the heavy metals in mosses and the calculated contamination factors, we evaluated the contamination level of each heavy metal on the 49 sampling sites. Spatial distribution maps of heavy metal deposition for each element were interpolated using ArcGIS 9.0. A total pollution coefficient was calculated for each sampling site to identify the seriously polluted areas in the region.

  1. Trend analysis of atmospheric deposition data: A comparison of statistical approaches

    NASA Astrophysics Data System (ADS)

    Marchetto, Aldo; Rogora, Michela; Arisci, Silvia

    2013-01-01

    Numerical simulation was used to compare the most used trend analysis techniques on data series of ionic concentrations in atmospheric deposition. The Seasonal Kendall Test (SKT) showed the highest power, which increased in particular when using original weekly data instead of pooling together the samples in monthly or yearly volume-weighted averages. The simulation also showed that differences in power among tests and pooling intervals would be negligible for data series longer than about 12 years. We tested these results using data from a network of bulk deposition samplers at nine forest sites in Italy, for which data have been available since 1998. These sites were selected in different forests, ranging from arid Mediterranean evergreen oak forest to rainy Alpine beech or spruce forests. The results showed relevant differences as regards the number of significant trends detected using different techniques and different data pooling, even for 13-year data series. The use of minimum-maximum autocorrelation factor analysis allowed a better interpretation of the data, showing the main trend shapes among stations and variables.

  2. Reconstruction of historical atmospheric deposition of DDT in the Zempoala Lagoon, in the center of Mexico

    USGS Publications Warehouse

    van, Afferden M.; Hansen, A.M.; Fuller, C.C.

    2005-01-01

    Historical trend in deposition of DDT and its metabolites has been reconstructed by analyzing sediment cores of the Zempoala Lagoon, in the center of Mexico. The small watershed of this mountain lagoon is closed, and it is located between 2.800 and 3.700 masl. It ls neither affected by agriculture nor by permanent populations. The Zempoala Lagoon has an average depth of 3.9 mand a maximum depth of 8.8 m. Sediments were extracted with a eore sampler and analyzed by isotope methods (137CS and 2'OPb) for dating. Average sedimentation rate was determined in 0.129 9 cm" yr', corresponding to a maximum age of the 44 cm eore of approximately 60 years. The first presence of total-DDT oecurs in a depth between 28 and 32 cm of the sediment profile, corresponding to the 1960's, with a concentration of 5.3 I1g kg-'. The maximum eoncentration of total-DDT (13.0I1g kg-') occurs in sediment layers representing the late 1970's and beginning 1980's. More recently the concentration decreases towards the present concentration of 1.6 I1g kg-'. This concentration is below most DDT levels reported in recent sediment studies in the USA. The results indicate that the Zempoala Lagoon represents a natural reeipient for studies of the reconstruction of historical trends of atmospheric contaminant deposition in this region. The limitations of the methodology applied, due to the influenee of biodegradation on the definition of correct historical coneentrations of DDT depositions, are demonstrated.

  3. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  4. Atmospheric deposition studies of heavy metals in Arctic by comparative analysis of lichens and cryoconite.

    PubMed

    Singh, Shiv Mohan; Sharma, Jagdev; Gawas-Sakhalkar, Puja; Upadhyay, Ajay K; Naik, Simantini; Pedneker, Shailesh M; Ravindra, Rasik

    2013-02-01

    Lichens and cryoconite (rounded or granular, brownish-black debris occurring in holes on the glacier surface) from Ny-Ålesund were used for understanding the elemental deposition pattern in the area. Lichen samples collected from low-lying coastal region and cryoconite samples from high altitudinal glacier area were processed and analysed for elements such as aluminium (Al), arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), vanadium (V) and zinc (Zn) through inductively coupled plasma mass spectrometry. Results showed that heavy metals, Al and Fe, are present in high concentration in the cryoconite samples. Al was also present in high amounts in seven of the eight lichen samples studied. The general scheme of elements in the decreasing order of their concentrations for most of the cryoconite samples was Al > Fe > Mn > Zn > V > Pb > Cr > Ni > Cu > Co > As > Cs > Cd while that for the lichen samples was Al > Fe > Zn > Mn > Pb > Cu > Cs > Cr > Ni > V > Co > As > Cd. Similarity in trends in the two sample types confirms that the environment indeed contains these elements in that order of concentration which overtime got accumulated in the samples. Overall comparison showed most elements to be present in high concentrations in the cryoconite samples as compared to the lichen samples. Within the lichens, elemental accumulation data suggests that the low-lying site (L-2) from where Cladonia mediterranea sample was collected was the most polluted accumulating a number of elements at high concentrations. The probable reasons for such deposition patterns in the region could be natural (crustal contribution and sea salt spray) and anthropogenic (local and long-distance transmission of dust particles). In the future, this data can form a baseline for monitoring quantum of atmospheric heavy metal deposition in lichens and cryoconite of Svalbard, Arctic.

  5. Atmospheric deposition of mercury and methylmercury to landscapes and waterbodies of the Athabasca oil sands region.

    PubMed

    Kirk, Jane L; Muir, Derek C G; Gleason, Amber; Wang, Xiaowa; Lawson, Greg; Frank, Richard A; Lehnherr, Igor; Wrona, Fred

    2014-07-01

    Atmospheric deposition of metals originating from a variety of sources, including bitumen upgrading facilities and blowing dusts from landscape disturbances, is of concern in the Athabasca oil sands region of northern Alberta, Canada. Mercury (Hg) is of particular interest as methylmercury (MeHg), a neurotoxin which bioaccumulates through foodwebs, can reach levels in fish and wildlife that may pose health risks to human consumers. We used spring-time sampling of the accumulated snowpack at sites located varying distances from the major developments to estimate winter 2012 Hg loadings to a ∼20 000 km(2) area of the Athabasca oil sands region. Total Hg (THg; all forms of Hg in a sample) loads were predominantly particulate-bound (79 ± 12%) and increased with proximity to major developments, reaching up to 1000 ng m(-2). MeHg loads increased in a similar fashion, reaching up to 19 ng m(-2) and suggesting that oil sands developments are a direct source of MeHg to local landscapes and water bodies. Deposition maps, created by interpolation of measured Hg loads using geostatistical software, demonstrated that deposition resembled a bullseye pattern on the landscape, with areas of maximum THg and MeHg loadings located primarily between the Muskeg and Steepbank rivers. Snowpack concentrations of THg and MeHg were significantly correlated (r = 0.45-0.88, p < 0.01) with numerous parameters, including total suspended solids (TSS), metals known to be emitted in high quantities from the upgraders (vanadium, nickel, and zinc), and crustal elements (aluminum, iron, and lanthanum), which were also elevated in this region. Our results suggest that at snowmelt, a complex mixture of chemicals enters aquatic ecosystems that could impact biological communities of the oil sands region.

  6. Distributed emergency response system to model dispersion and deposition of atmospheric releases

    SciTech Connect

    Taylor, S.S.

    1985-04-01

    Aging hardware and software and increasing commitments by the Departments of Energy and Defense have led us to develop a new, expanded system to replace the existing Atmospheric Release Advisory Capability (ARAC) system. This distributed, computer-based, emergency response system is used by state and federal agencies to assess the environmental health hazards resulting from an accidental release of radioactive material into the atmosphere. Like its predecessor, the expanded system uses local meteorology (e.g., wind speed and wind direction), as well as terrain information, to simulate the transport and dispersion of the airborne material. The system also calculates deposition and dose and displays them graphically over base maps of the local geography for use by on-site authorities. This paper discusses the limitations of the existing ARAC system. It also discusses the components and functionality of the new system, the technical difficulties encountered and resolved in its design and implementation, and the software methodologies and tools employed in its development.

  7. VALDRIFT 1.0: A valley atmospheric dispersion model with deposition

    SciTech Connect

    Allwine, K.J.; Bian, X.; Whiteman, C.D.

    1995-05-01

    VALDRIFT version 1.0 is an atmospheric transport and diffusion model for use in well-defined mountain valleys. It is designed to determine the extent of ddft from aedal pesticide spraying activities, but can also be applied to estimate the transport and diffusion of various air pollutants in valleys. The model is phenomenological -- that is, the dominant meteorological processes goveming the behavior of the valley atmosphere are formulated explicitly in the model, albeit in a highly parameterized fashion. The key meteorological processes treated are: (1) nonsteady and nonhomogeneous along-valley winds and turbulent diffusivities, (2) convective boundary layer growth, (3) inversion descent, (4) noctumal temperature inversion breakup, and (5) subsidence. The model is applicable under relatively cloud-free, undisturbed synoptic conditions and is configured to operate through one diumal cycle for a single valley. The inputs required are the valley topographical characteristics, pesticide release rate as a function of time and space, along-valley wind speed as a function of time and space, temperature inversion characteristics at sunrise, and sensible heat flux as a function of time following sunrise. Default values are provided for certain inputs in the absence of detailed observations. The outputs are three-dimensional air concentration and ground-level deposition fields as a function of time.

  8. Threefold atmospheric-pressure annealing for suppressing graphene nucleation on copper in chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Suzuki, Seiya; Nagamori, Takashi; Matsuoka, Yuki; Yoshimura, Masamichi

    2014-09-01

    Chemical vapor deposition (CVD) is a promising method of producing a large single-crystal graphene on a catalyst, especially on copper (Cu), and a further increase in domain size is desirable for electro/optic applications. Here, we report on threefold atmospheric-pressure (ATM) annealing for suppressing graphene nucleation in atmospheric CVD. Threefold ATM annealing formed a step and terrace surface of the underlying Cu, in contrast to ATM annealing. Atomic force microscopy and Auger electron mapping revealed that Si-containing particles existed on threefold-ATM- and ATM-annealed surfaces; particles on Cu had a lower density after threefold ATM annealing than after ATM annealing. The formation of a step and terrace surface and the lower density of particles following the threefold ATM annealing would play a role in reducing graphene nucleation. By combining threefold ATM annealing and electropolishing of Cu, the nucleation of graphene was effectively suppressed, and a submillimeter-sized hexagonal single-crystal graphene was successfully obtained.

  9. Ammonium first: natural mosses prefer atmospheric ammonium but vary utilization of dissolved organic nitrogen depending on habitat and nitrogen deposition.

    PubMed

    Liu, Xue-Yan; Koba, Keisuke; Makabe, Akiko; Li, Xiao-Dong; Yoh, Muneoki; Liu, Cong-Qiang

    2013-07-01

    Mosses, among all types of terrestrial vegetation, are excellent scavengers of anthropogenic nitrogen (N), but their utilization of dissolved organic N (DON) and their reliance on atmospheric N remain uncharacterized in natural environments, which obscures their roles in N cycles. Natural (15) N abundance of N sources (nitrate (NO(3)(-)), ammonium (NH(4)(+)) and DON in deposition and soil) for epilithic and terricolous mosses was analyzed at sites with different N depositions at Guiyang, China. Moss NO(3)(-) assimilation was inhibited substantially by the high supply of NH(4)(+) and DON. Therefore, contributions of NH(4)(+) and DON to moss N were partitioned using isotopic mass-balance methods. The N contributions averaged 56% and 46% from atmospheric NH(4)(+), and 44% and 17% from atmospheric DON in epilithic and terricolous mosses, respectively. In terricolous mosses, soil NH(4)(+) and soil DON accounted for 16% and 21% of bulk N, which are higher than current estimations obtained using (15) N-labeling methods. Moreover, anthropogenic NH(4)(+) deposition suppressed utilization of DON and soil N because of the preference of moss for NH(4)(+) under elevated NH(4)(+) deposition. These results underscore the dominance of, and preference for, atmospheric NH(4)(+) in moss N utilization, and highlight the importance of considering DON and soil N sources when estimating moss N sequestration and the impacts of N deposition on mosses.

  10. Novel thin films deposited on electrospun PCL scaffolds by atmospheric pressure plasma jet for L929 fibroblast cell cultivation

    NASA Astrophysics Data System (ADS)

    Gozutok, M.; Baitukha, A.; Arefi-Khonsari, F.; Turkoglu Sasmazel, H.

    2016-11-01

    This paper reports on the deposition of PCL homopolymers and poly ɛ-caprolactone-polyethylene glycol (PCL-PEG) copolymers by atmospheric pressure plasma jet (APPJ) onto electrospun PCL scaffolds for improving L929 fibroblast cell growth. Polymer deposited scaffolds showed better stability as well as lower CA as compared to those treated with APPJ in Ar alone used as the carrier gas to introduce the precursors due to the formation of polar groups generated during the plasma treatment, such as -OH and/or -COO. Average fiber and porosity sizes were calculated by using SEM photographs and the ImageJ Launcher Software program and higher values were observed for both PCL and PCL-PEG deposited scaffolds than the untreated electrospun PCL scaffolds. XPS analysis showed that C1s% content decreased for PCL deposited (from 82.4% to 71.0%) and PCL-PEG deposited (from 82.4% to 57.7%) and O1s% composition increased for PCL deposited (from 17.6% to 29.0%) and PCL-PEG deposited (from 17.6% to 42.3%) compared to the untreated one. XPS results proved more incorporation of oxygen moieties on the deposited surfaces than the untreated samples giving rise to more hydrophilic surfaces to the deposited ones. Standard in vitro MTT test, Giemsa staining, fluorescence and CLSM imaging techniques were used for the determination of cell viability, adhesion and proliferation. Cell culture experiments showed that PCL-PEG deposited electrospun PCL scaffolds had the most promising cell adhesion, proliferation and growth among the treated scaffolds. The increased average fiber diameter caused by deposition as well as oxygen containing polar groups formed on the surfaces due to the radicals present in the plasma atmosphere provided higher surface area and functionality, respectively, for cells to attach, yielding better biocompatibility performance.

  11. Atmospheric deposition of particles at a sensitive alpine lake: Size-segregated daily and annual fluxes from passive sampling techniques.

    PubMed

    Tai, Anna Y-C; Chen, L-W Antony; Wang, Xiaoliang; Chow, Judith C; Watson, John G

    2017-02-01

    Lake Tahoe, a North American alpine lake long appreciated for its clear water and geographic setting, has experienced a trend of declining water clarity due to increasing nutrient and particle inputs. Contributions from atmospheric deposition of particulate matter (PM) could be important, yet they are inadequately quantified. This study established a yearlong deposition monitoring network in the northern Lake Tahoe Basin. Dry deposition was quantified on surrogate surfaces while wet deposition was based on particles suspended in precipitation at 24-hour resolution. The particle size ranges by these passive techniques were 1-64μm and 0.5-20μm in diameter for dry and wet deposition, respectively. Dry deposition of submicrometer (0.5-1μm) particles was also estimated by extrapolation of a lognormal size distribution. Higher daily number deposition fluxes (NDFdry and NDFwet) were found at a near-shore site, confirming substantial impacts of commercial and tourist activities. The two more isolated sites indicated a uniform regional background. On average, daily NDFdry is about one order of magnitude lower than daily NDFwet. Dry deposition velocities increased rapidly with particle size, as evidenced by collocated measurements of NDFdry and ambient particle number concentrations, though it seems less so for wet deposition due to different scavenging mechanisms. Despite fewer "wet" days than "dry" days during the monitoring period, wet processes dominated seasonal particle deposition, particularly in winter and spring when most precipitation occurred. Adopting sediment (insoluble, inorganic) particle fraction estimates from the literature, this study reports an annual particle flux of 2.9-5.2×10(10)#m(-2)yr(-1) for sediment particles with 1-20μm diameter and 6.1-11×10(10)#m(-2)yr(-1) for those with 0.5-20μm diameter. Implications of these findings to the current knowledge of atmospheric deposition in the Lake Tahoe Total Maximum Daily Load (TMDL) are discussed.

  12. Atmospheric wet deposition of nitrogen and sulfur in the agroecosystem in developing and developed areas of Southeastern China

    NASA Astrophysics Data System (ADS)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuanqiu; Yang, Hao; Mao, Jingdong; Zhang, Mingli; Wang, Yanhua; Wang, Shuwei

    2014-06-01

    Atmospheric nitrogen (N) and sulfur (S) deposition is a significant and growing issue for ecological environment in many parts of the world such as China. However, the study on atmospheric deposition, especially N deposition, is still at the initial stage and usually neglected in agro-ecosystems. To assess the characteristics of N and S wet deposition in agro-ecosystems, we selected Yingtan Station (YTS) located in the developing area and Changshu Station (CSS) in the developed area as typical, agricultural study sites in Southeastern China during 2010-2011. In the two areas, the total N and S wet deposition were in ranges of 30.49-37.37 kg ha-1 year-1 N and 56.02-59.06 kg ha-1 year-1 S, respectively, surpassing their corresponding critical loads in China. The annual means of NH4+-N, NO3--N and dissolved organic N (DON) deposition contributed 49.6%, 26.4% and 24.0% of the total deposition, respectively. Similar total N and S deposition data were observed in the two sites, but their N species, especially DON, were different due to different numbers of slaughter pigs and types of N fertilizers applied. In conclusion, DON was identified as an important contributor to the total N deposition and should also be monitored in the future. Such high N and S deposition would deteriorate agroecosystems in Southeastern China. Related political measures on livestock industries, managements of motor vehicles and technologies of coal and oil combustion should be improved timely and implemented effectively for reducing the regional N emission and deposition in the future.

  13. Sediment chronologies of atmospheric deposition in a precipitation-dominated seepage lake.

    SciTech Connect

    Doskey, P. V.; Talbot, R. W.; Environmental Research; Univ. of New Hampshire

    2000-01-01

    Chronologies of Pb, polycyclic aromatic hydrocarbons (PAHs), Al, carbon, and n-alkanes in pelagic sediments of Crystal Lake, a precipitation-dominated seepage lake in north-central Wisconsin, were determined to investigate the geochemistry of sediments derived from atmospheric deposition and to evaluate the impact of environmental changes in the region on the geochemistry of this oligotrophic lake. Concentrations of Pb and combustion-derived PAHs in Crystal Lake sediments have increased by factors of 8 and 3, respectively, over the past 150 years. In contrast, levels of perylene increased with depth in the sediment, indicating that postdepositional formation of this PAH might be occurring. Atmospheric fluxes of anthropogenic Pb and combustion-derived PAHs were estimated to be 10,000 {mu}g m{sup -2} a{sup -1} and 34 {mu}g m{sup 02} a{sup -1}, respectively. The settling sediment fluxes of planktonic n-alkanes ({Sigma} C{sub 15}, C{sub 17}, C{sub 19}) and terrestrial n-alkanes ({Sigma} C{sub 25}, C{sub 27}, C{sub 29}, C{sub 31}) in Crystal Lake were 4,400 {mu}g m{sup -2} a{sup -1} and 10,500 {mu}g m{sup 2} a{sup 1}, respectively, whereas their accumulation rates in pelagic sediments were 270 {mu}g m{sup -2} a{sup -1} and 7,100 {mu}g m 2 a{sup 1}, respectively. The large difference between the settling sediment flux and the accumulation rate of the planktonic n-alkanes in the sediments is ascribed to microbial degradation during or soon after deposition. In contrast, the terrestrial n-alkanes are incorporated in a wax matrix and are protected from degradation. The contribution of terrestrial n-alkanes to the organic carbon of the sediments has remained relatively constant over the past 150 years. About 20% of the organic carbon that is incorporated in the present-day sediments of Crystal Lake can be attributed to the deposition of pine pollen in the lake. Deforestation of the region in the late 1800s apparently caused terrigenous inputs and primary productivity of

  14. Ombrotrophic peat bogs are not suited as natural archives to investigate the historical atmospheric deposition of perfluoroalkyl substances.

    PubMed

    Dreyer, Annekatrin; Thuens, Sabine; Kirchgeorg, Torben; Radke, Michael

    2012-07-17

    As ombrotrophic peat bogs receive only atmospheric input of contaminants, they have been identified as suitable natural archives for investigating historical depositions of airborne pollutants. To elucidate their suitability for determining the historical atmospheric contamination with perfluoroalkyl substances (PFAS), two peat cores were sampled at Mer Bleue, a bog located close to Ottawa, Canada. Peat cores were segmented, dried, and analyzed in duplicate for 25 PFASs (5 perfluororalkyl sulfonates (PFSAs), 13 perfluoroalkyl carboxylates (PFCAs), 7 perfluororalkyl sulfonamido substances). Peat samples were extracted by ultrasonication, cleaned up using a QuEChERS method, and PFASs were measured by HPLC-MS/MS. Twelve PFCAs and PFSAs were detected regularly in peat samples with perfluorooctane sulfonate (85-655 ng kg(-1)), perfluorooctanoate (150-390 ng kg(-1)), and perfluorononanoate (45-320 ng kg(-1)) at highest concentrations. Because of post depositional relocation processes within the peat cores, true or unbiased deposition fluxes (i.e., not affected by post depositional changes) could not be calculated. Apparent or biased deposition rates (i.e., affected by post depositional changes) were lower than measured/calculated deposition rates for similar urban or near-urban sites. Compared to PFAS production, PFAS concentration and deposition maxima were shifted about 30 years toward the past and some analytes were detected even in the oldest segments from the beginning of the 20th century. This was attributed to PFAS mobility in the peat profile. Considerable differences were observed between both peat cores and different PFASs. Overall, this study demonstrates that ombrotrophic bogs are not suited natural archives to provide authentic and reliable temporal trend data of historical atmospheric PFAS deposition.

  15. Can the foliar nitrogen concentration of upland vegetation be used for predicting atmospheric nitrogen deposition? Evidence from field surveys.

    PubMed

    Hicks, W K; Leith, I D; Woodin, S J; Fowler, D

    2000-03-01

    The deposition of atmospheric nitrogen can be enhanced at high altitude sites as a consequence of cloud droplet deposition and orographic enhancement of wet deposition on hills. The degree to which the increased deposition of nitrogen influences foliar nitrogen concentration in a range of upland plant species was studied in a series of field surveys in northern Britain. A range of upland plant species sampled along altitudinal transects at sites of known atmospheric nitrogen deposition showed marked increases in foliar nitrogen concentration with increasing nitrogen deposition and altitude (and hence with decreasing temperature). For Nardus stricta L., Deschampsia flexuosa (L.) Trin., Calluna vulgaris (L.) Hull, Erica cinerea L. and Hylocomium splendens (Hedw.) Br. Eur. on an unpolluted hill, foliar nitrogen increased by 0.07, 0.12, 0.15, 0.08 and 0.04% dry weight respectively for each 1 kg ha(-1) year(-1) increase in nitrogen deposition. Most species showed an approximately linear relationship between foliar nitrogen concentration and altitude but no trend with altitude for foliar phosphorus concentration. This provided evidence that the tissue nutrient status of upland plants reflects nutrient availability rather than the direct effects of climate on growth. However, differences in the relationship between foliar nitrogen concentration and atmospheric nitrogen deposition for N. stricta sampled on hills in contrasting pollution climates show that the possibility of temperature-mediated growth effects on foliar nitrogen concentration should not be ignored. Thus, there is potential to use upland plant species as biomonitors of nitrogen deposition, but the response of different species to nitrogen addition, in combination with climatic effects on growth, must be well characterised.

  16. Modeling the atmospheric transport and deposition of polychlorinated dibenzo- p-dioxins and dibenzofurans in North America

    NASA Astrophysics Data System (ADS)

    Zhang, Baoning; Meng, Fan; Shi, Chune; Yang, Fuquan; Wen, Deyong; Aronsson, Jonatan; Gbor, Philip K.; Sloan, James J.

    The atmospheric fate of polychlorinated dibenzo- p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) was simulated for the year 2000 in North America using a SMOKE/CMAQ-based chemical transport model that was modified for this purpose. The 1999 USEPA emission inventories of PCDD/Fs and criteria pollutants were used. The 1995 Canadian emission inventory of criteria pollutants and the 1995 Canadian area source emissions for PCDD/Fs were used with the 2000 Canadian point source emissions. Modifications to CMAQ involved coupling it with dual organic matter (OM) absorption and black carbon (BC) adsorption models to calculate PCDD/F gas-particle partitioning. The model satisfactorily reproduced the particle bound fractions at all rural sites for which there were measured data and across the whole domain, the modeled vs. measured differences in particle bound fractions were less than 20% for nearly all congeners. The model predicted ambient air PCDD/F concentrations were also consistent with measurements. Simulated deposition fluxes were within 58% of direct measurements. PCDD/F atmospheric depositions to each of the Great Lakes were estimated for the year 2000. The results indicate that approximately 76% of the total deposition of PCDD/Fs to the Great Lakes (in W-TEQ, or toxic equivalent units as defined by the World Health Organization) is attributed to PCDD/Fs absorbed into OM in aerosol. For all of the lakes, more than 92% of all deposition is particle phase wet deposition and only 5-8% is particle phase dry deposition. Wet deposition from the gas phase is negligible. Of the 17 toxic PCDD/F congeners, the Cl 4-5DD/F compounds contribute approximately 70% to the total atmospheric deposition to the Great Lakes. The seasonal changes in the PCDD/F deposition flux track variations in ambient temperature.

  17. Atmospheric mercury deposition during the last 270 years--A glacial ice core record of natural and anthropogenic sources

    USGS Publications Warehouse

    Schuster, Paul F.; Krabbenhoft, David P.; Naftz, David L.; Cecil, L. DeWayne; Olson, Mark L.; DeWild, John F.; Susong, David D.; Green, Jaromy R.; Abbott, Michael L.

    2002-01-01

    Mercury (Hg) contamination of aquatic ecosystems and subsequent methylmercury bioaccumulation are significant environmental problems of global extent. At regional to global scales, the primary mechanism of Hg contamination is atmospheric Hg transport. Thus, a better understanding of the long-term history of atmospheric Hg cycling and quantification of the sources is critical for assessing the regional and global impact of anthropogenic Hg emissions. Ice cores collected from the Upper Fremont Glacier (UFG), Wyoming, contain a high-resolution record of total atmospheric Hg deposition (ca. 1720−1993). Total Hg in 97 ice-core samples was determined with trace-metal clean handling methods and low-level analytical procedures to reconstruct the first and most comprehensive atmospheric Hg deposition record of its kind yet available from North America. The record indicates major atmospheric releases of both natural and anthropogenic Hg from regional and global sources. Integrated over the past 270-year ice-core history, anthropogenic inputs contributed 52%, volcanic events 6%, and background sources 42%. More significantly, during the last 100 years, anthropogenic sources contributed 70% of the total Hg input. Unlike the 2−7-fold increase observed from preindustrial times (before 1840) to the mid-1980s in sediment-core records, the UFG record indicates a 20-fold increase for the same period. The sediment-core records, however, are in agreement with the last 10 years of this ice-core record, indicating declines in atmospheric Hg deposition.

  18. Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors.

    PubMed

    García-Gomez, Héctor; Izquieta-Rojano, Sheila; Aguillaume, Laura; González-Fernández, Ignacio; Valiño, Fernando; Elustondo, David; Santamaría, Jesús M; Àvila, Anna; Fenn, Mark E; Alonso, Rocío

    2016-09-01

    Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work, bulk and throughfall deposition of inorganic nitrogen were monitored in three different holm oak forests in Spain during two years. The results obtained with IECs were contrasted with a conventional technique using bottle collectors and with a literature review of similar studies. The performance of IECs in comparison with the conventional method was good for measuring bulk deposition of nitrate and acceptable for ammonium and total dissolved inorganic nitrogen. Mean annual bulk deposition of inorganic nitrogen ranged 3.09-5.43 kg N ha(-1) according to IEC methodology, and 2.42-6.83 kg N ha(-1) y(-1) using the conventional method. Intra-annual variability of the net throughfall deposition of nitrogen measured with the conventional method revealed the existence of input pulses of nitrogen into the forest soil after dry periods, presumably originated from the washing of dry deposition accumulated in the canopy. Important methodological recommendations on the IEC method and discussed, compiled and summarized.

  19. Epitaxial Growth of Silicon Films on SiO2 Patterned Si(100) Substrates by Atmospheric Pressure Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Duan, Chunyan; Deng, Youjun; Ai, Bin; Liu, Chao; Zhuang, Lin; Shen, Hui

    2012-09-01

    In order to investigate the effect of selective area nucleation on epitaxial growth of silicon (Si) films, 35 µm thick Si films were deposited by atmospheric pressure chemical vapor deposition (APCVD) under the standard condition on two kinds of SiO2 patterned Si(100) wafers. One was circular patterns, and the other was striated patterns. Then, the structural properties of the as-deposited silicon thin films were investigated by metallurgical microscope, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM). The results show that normal epitaxial growth occurs on the exposed Si(100) regions, while just polycrystalline Si deposition happens on the SiO2 regions. Moreover, for the substrates with circular patterns, the as-deposited Si thin films possess pyramid surface morphology thus excellent light trapping performance being spontaneously formed, and the sizes of the pyramid grains approximately equal to the sum of the diameter and spacing of the round exposed Si regions.

  20. History of the atmospheric deposition of major and trace elements in the industrialized St. Lawrence Valley, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Gélinas, Yves; Lucotte, Marc; Schmit, Jean-Pierre

    The history of the atmospheric deposition of major and trace elements over southwestern Quebec, Canada, was reconstructed using multielemental analysis of lacustrine sediments sampled in a small and undisturbed lake located on top of a mountain in the heart of the industrialized St. Lawrence Valley. Acid leachable and residual elements were extracted from a 37-cm long core (1-cm resolution) using clean techniques and analyzed by inductively coupled plasma mass spectrometry. Organic matter and sulfur concentrations were high and played a major role in the low postdepositional diagenetic remobilization of many trace elements. Sulfur, manganese, iron, arsenic, molybdenum and barium displayed a high mobility making it exceedingly difficult to infer unambiguously time-dependent changes in atmospheric deposition for these elements. Atmospheric deposition rates for the less mobile elements (e.g., potassium, vanadium, chromium, cobalt, nickel, copper, zinc, rubidium, cadmium, tin, antimony, mercury, thallium, lead, and bismuth) increased regularly between 1942 and 1960-1975 in the Lake Hertel area and then stabilized for most of these elements, with the exception of nickel, copper, zinc and tin. Lead deposition rate was reduced by about 25% between 1982 and 1995, and a slight decreasing trend was also found for cobalt, mercury, and thallium during the same period. Present-day atmospheric deposition of metals directly on the lake surface represents a small percentage of the sedimentary deposition rates at this location. Deposition followed by surface runoff and outwash of terrestrial organic and inorganic matter most likely is the driving mechanism leading to the non-diagenetic enrichment of metals in Lake Hertel sediments.

  1. Atmospheric gas-particle partitioning versus gaseous/particle-bound deposition of SVOCs: Why they are not equivalent

    NASA Astrophysics Data System (ADS)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Hungerbühler, Konrad

    2015-08-01

    Semi-volatile organic compounds (SVOCs) can be particle-bound or in the gas phase in the atmosphere, depending on the (temperature dependent) gas-particle partitioning of the chemicals and the fraction of particles in air. Several studies linked gas-particle partitioning of SVOCs in the atmosphere directly to the gaseous/particle-bound deposition of these chemicals, i.e. in cases of compounds occurring mainly in the gas phase, the deposition was also assumed to be mainly in gaseous form. In this study, we apply a multi-media fate model to point out that gas-particle partitioning of SVOCs in air and gaseous/particle-bound deposition of SVOCs are driven by different mechanism and, thus, cannot be deduced from each other. We apply our calculations to polychlorinated biphenyls (PCBs), as model SVOCs. We show that the fraction of particle-bound deposition to deciduous forest is 1.5-190 times higher in winter and between 5 and 1000 times higher in summer than the particle-bound fraction of these chemicals in air. The fraction of particle-bound deposition to coniferous forest is 1.5-172 times higher in winter and between 5 and 1000 times higher in summer than the particle-bound fraction of PCBs in air. In addition to the fractions of particle-bound SVOCs in air and particle-bound deposition, we recalculated particle-bound and gaseous deposition velocities to coniferous and deciduous forest for PCBs. The deposition velocities obtained for dry gaseous deposition (<1 m/h) are much lower than the existing values in the literature (10-200 m/h) because earlier studies assumed that for PCBs occurring predominantly in the gas phase, interception was also completely due to dry gaseous deposition.

  2. Atmospheric inductively coupled Ar/H2 plasmas jet for low-temperature deposition of Cu Thin Film on Polyimide

    NASA Astrophysics Data System (ADS)

    Zhao, Peng; Zheng, Wei; Meng, Yuedong; Nagatsu, Masaaki

    2013-09-01

    For fabrication of future flexible electronic devices and depositing Cu thin films on polyimide substrate at low temperature, an atmospheric inductively coupled plasma jet driven by a 13.56 MHz radio frequency (RF) power is developed. In previous studies, we found that by adding a fractional amount of H2 gas into Ar plasma, quality of Cu film was significantly improved. But under air atmosphere, the oxidization of deposited film is inevitable. So we developed the technology in nitrogen atmosphere. We invested the plasma jet properties of Ar plasma in air, Ar/ H2 plasma in air and Ar/ H2 plasma in nitrogen atmosphere, to discuss the effect of adding H2 to Ar plasma and nitrogen background on plasma properties. The plasma gas temperature diagnoses and chemical reaction research during deposition were performed by OES. The plasma jet non-equilibrium numeral simulations were also carried out for thermal and transport properties during deposition. The effects on Cu films quality were studied by means of XPS and SEM. All the plasma properties and the results of Cu film would give us an insight on the mechanism and the possibility of improving the process.

  3. Temporal and spatial variation of atmospherically deposited organic contaminants at high elevation in Yosemite National Park, California, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospherically deposited organic contaminants in the Sierra Nevada Mountains of California, USA, have exceeded some thresholds of concern, yet the distributions of contaminants in the mountains are not well known and there is little knowledge of temporal variation. The present study, (1) evaluated...

  4. A GENERALIZED MATHEMATICAL SCHEME TO ANALYTICALLY SOLVE THE ATMOSPHERIC DIFFUSION EQUATION WITH DRY DEPOSITION. (R825689C072)

    EPA Science Inventory

    Abstract

    A generalized mathematical scheme is developed to simulate the turbulent dispersion of pollutants which are adsorbed or deposit to the ground. The scheme is an analytical (exact) solution of the atmospheric diffusion equation with height-dependent wind speed a...

  5. In Search of Patagonian Dust: Atmospheric Deposition of Micronutrients to the Southern Atlantic

    NASA Astrophysics Data System (ADS)

    Chance, R.; Baker, A. R.; Jickells, T. D.

    2012-12-01

    Atmospheric inputs constitute a low but variable source of micronutrients to the south Atlantic and Southern Ocean, the magnitude and spatial distribution of which remains poorly constrained. In particular, dust arising from the arid parts of southern South America has been identified as a potentially significant source of micronutrients. Ice core records indicate large fluctuations in Patagonian dust supply over glacial-interglacial timescales, but little is known about modern day fluxes. As part of the UK-GEOTRACES program, atmospheric aerosol was simultaneously sampled in the eastern and western basins of the southern Atlantic downwind of Patagonia. Specifically, a new time-series station for monitoring atmospheric aerosol in the western south Atlantic was established at Carcass Island (51o15' S, 60o35' W) in the Falkland Islands, in September 2010, and shipboard aerosol and rain samples were collected in the region between Cape Town, South Africa, and 40oS, 5oW in November and December 2010 (cruise D357). Sampling at Carcass Island continued during the austral summer of 2011-2012, and in January 2012 a second shipboard transect across the Atlantic at 40oS was completed (cruise JC068). Here we compare atmospheric concentrations and wet and dry deposition fluxes for trace metals and major nutrients in the two basins are compared, and use principal component analysis to investigate qualitative differences in the overall composition of aerosol from different sources. Concentrations of aerosol nitrogen were higher at Carcass Island than in the eastern Atlantic. During cruise D357, median concentrations of 1.7 nmol m-3 nitrate and 2.0 nmol m-3 ammonium were observed, consistent with remote south Atlantic air, while on Carcass Island corresponding concentrations were 2.3 and 6.3 nmol m-3 during the first year of sampling. Differences in the isotopic composition of aerosol nitrate from the two campaigns are discussed. "Soluble" trace metals were operationally defined

  6. Studies in graphene growth and processing using atmospheric pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Merrell, Andrew Nephi

    This dissertation focuses on graphene, a promising two-dimensional, carbon material with many favorable electronic properties. The prospect of implementing graphene into a wide variety of potential device applications is enticing, but many factors stand in the way before this goal is realized. Atmospheric pressure chemical vapor deposition (APCVD) is a graphene production method that may be compatible with large-scale growth. Motivated by the need to more fully understand APCVD growth of graphene, a system is constructed, and several studies are carried out. Specifically, a detailed study is presented which involves the effects of hydrogen and contaminant oxygen in APCVD-grown graphene. The research shows that hydrogen is an important factor to control during the cooling stage of APCVD, as it has a direct effect on the formation of oxides on the copper foil (copper is used as the catalyst for graphene growth in APCVD). It is also determined that hydrogen, as well as the reaction chamber, play an important role in the formation of SiO2 nanoparticles, which accumulate on the copper surface during graphene growth. Methods for patterning and processing graphene are also explored in this dissertation, as such methods are crucial in the realization of graphene-based devices. The method of e-beam assisted metal deposition used in conjunction with masked-CVD growth is proposed as an effective alternative to conventional processing methods such as photolithography and electron-beam lithography. The proposed methods have several advantages, which pave the way for lowering graphene/metal contact resistance, and preserving the intrinsic properties of graphene during device fabrication.

  7. Atmospheric deposition of {sup 7}Be by rain events, incentral Argentina

    SciTech Connect

    Ayub, J. Juri; Velasco, H.; Rizzotto, M.; Di Gregorio, D. E.; Huck, H.

    2008-08-07

    Beryllium-7 is a natural radionuclide that enters into the ecosystems through wet and dry depositions and has numerous environmental applications in terrestrial and aquatic ecosystems. Atmospheric wet deposition of {sup 7}Be was measured in central Argentina. Rain traps were installed (1 m above ground) and individual rain events have been collected. Rain samples were filtered and analyzed by gamma spectrometry. The gamma counting was undertaken using a 40%-efficient p-type coaxial intrinsic high-purity natural germanium crystal built by Princeton Gamma-Tech. The cryostat was made from electroformed high-purity copper using ultralow-background technology. The detector was surrounded by 50 cm of lead bricks to provide shielding against radioactive background. The detector gamma efficiency was determined using a water solution with known amounts of chemical compounds containing long-lived naturally occurring radioisotopes, {sup 176}Lu, {sup 138}La and {sup 40}K. Due to the geometry of the sample and its position close to the detector, the efficiency points from the {sup 176}Lu decay, had to be corrected for summing effects. The measured samples were 400 ml in size and were counted curing one day. The {sup 7}Be detection limit for the present measurements was as low as 0.2 Bq l{sup -1}. Thirty two rain events were sampled and analyzed (November 2006-May 2007). The measured values show that the events corresponding to low rainfall (<20 mm) are characterized by significantly higher activity concentrations (Bq l{sup -1}). The activity concentration of each individual event varied from 0.8 to 3.5 Bq l{sup -1}, while precipitations varied between 4 and 70 mm. The integrated activity by event of {sup 7}Be was fitted with a model that takes into account the precipitation amount and the elapsed time between two rain events. The integrated activities calculated with this model show a good agreement with experimental values.

  8. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    SciTech Connect

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  9. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Jie; Zhao, Liang-Cheng; Fang, Shi-Bo; Liu, Si-Wa; Hu, Jian-Sen; Wang, Lei; Liu, Xiao-Di; Wu, Qing-Feng

    2016-04-01

    Air pollution is a major concern in China. Lichens are a useful biomonitor for atmospheric elemental deposition but have rarely been used in North China. The aim of this study was to investigate the atmospheric depositions of 30 trace elements (Al, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Sc, Sm, Sr, Tb, Th, Ti, Tl, V and Zn) in a region of the Taihang Mountains, Hebei Province, China using lichens as biomonitors. Epilithic foliose lichen Xanthoria mandschurica was sampled from 21 sites and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results show that 1) eight elements (Cd, Cr, Cu, Mo, P, Pb, Sb and Zn) are of atmospheric origin and are highly influenced by the atmospheric transportation from the North China Plain, as well as local mining activities, while 2) the remaining 22 elements are primarily of crustal origin, the concentration of which has been enhanced by local mining and quarrying activities. These results clearly validate the applicability of lichens in biomonitoring of atmospheric elemental deposition and demonstrate the spatial pattern for air pollution in the region.

  10. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China

    PubMed Central

    Liu, Hua-Jie; Zhao, Liang-Cheng; Fang, Shi-Bo; Liu, Si-Wa; Hu, Jian-Sen; Wang, Lei; Liu, Xiao-Di; Wu, Qing-Feng

    2016-01-01

    Air pollution is a major concern in China. Lichens are a useful biomonitor for atmospheric elemental deposition but have rarely been used in North China. The aim of this study was to investigate the atmospheric depositions of 30 trace elements (Al, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Sc, Sm, Sr, Tb, Th, Ti, Tl, V and Zn) in a region of the Taihang Mountains, Hebei Province, China using lichens as biomonitors. Epilithic foliose lichen Xanthoria mandschurica was sampled from 21 sites and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results show that 1) eight elements (Cd, Cr, Cu, Mo, P, Pb, Sb and Zn) are of atmospheric origin and are highly influenced by the atmospheric transportation from the North China Plain, as well as local mining activities, while 2) the remaining 22 elements are primarily of crustal origin, the concentration of which has been enhanced by local mining and quarrying activities. These results clearly validate the applicability of lichens in biomonitoring of atmospheric elemental deposition and demonstrate the spatial pattern for air pollution in the region. PMID:27089945

  11. Use of the lichen Xanthoria mandschurica in monitoring atmospheric elemental deposition in the Taihang Mountains, Hebei, China.

    PubMed

    Liu, Hua-Jie; Zhao, Liang-Cheng; Fang, Shi-Bo; Liu, Si-Wa; Hu, Jian-Sen; Wang, Lei; Liu, Xiao-Di; Wu, Qing-Feng

    2016-04-19

    Air pollution is a major concern in China. Lichens are a useful biomonitor for atmospheric elemental deposition but have rarely been used in North China. The aim of this study was to investigate the atmospheric depositions of 30 trace elements (Al, Ba, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, Sb, Sc, Sm, Sr, Tb, Th, Ti, Tl, V and Zn) in a region of the Taihang Mountains, Hebei Province, China using lichens as biomonitors. Epilithic foliose lichen Xanthoria mandschurica was sampled from 21 sites and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The results show that 1) eight elements (Cd, Cr, Cu, Mo, P, Pb, Sb and Zn) are of atmospheric origin and are highly influenced by the atmospheric transportation from the North China Plain, as well as local mining activities, while 2) the remaining 22 elements are primarily of crustal origin, the concentration of which has been enhanced by local mining and quarrying activities. These results clearly validate the applicability of lichens in biomonitoring of atmospheric elemental deposition and demonstrate the spatial pattern for air pollution in the region.

  12. History of atmospheric deposition of trace elements in lake sediments, ~1880 to 2007

    NASA Astrophysics Data System (ADS)

    Sarkar, Sayantan; Ahmed, Tanveer; Swami, Kamal; Judd, Christopher D.; Bari, Abdul; Dutkiewicz, Vincent A.; Husain, Liaquat

    2015-06-01

    We report measurements of 30 major and trace elements (TEs) in sediment cores from two high-altitude lakes, West Pine Pond (WPP), and Clear Pond (CP), in the Adirondack Mountains of New York State using inductively coupled plasma-mass spectrometry. The data are used to deduce atmospheric deposition histories of TEs over ~130 years. The cores were collected using a gravity corer, sliced, freeze dried, and ages determined using 210Pb and 137Cs techniques. TE data in WPP were supplemented with our earlier elemental carbon (EC) measurements. Lithophilic elements showed no systematic temporal pattern or any significant enrichment over their crustal abundances. Anthropogenic TEs exhibited distinct increases beginning ~1900, and peaked around 1920-1970, due apparently to energy-related emissions. Peak concentrations of most TEs, except Pb and Hg, were observed at ~1921 in WPP and ~1940s in CP. Concentration of Pb peaked in 1973 in both lakes and Hg only in CP at ~1965. Lead fluxes were reflective of historical smelter production and combustion of coal and leaded gasoline. Copper and zinc fluxes mimicked corresponding primary production, while EC fluxes followed the long-term trend for fossil and biofuel combustion. TE and EC flux trends were closely related to the growth of industrialization in the Central and Midwestern U.S. and changing fuel consumption patterns. Compared to peak values, the modern TE fluxes decreased by 25-85%, whereas EC decreased by 96%. Apparently, the regulations intended to control pollutant emissions have succeeded in reducing atmospheric concentrations of the species studied and have improved air quality.

  13. Reconstructing historical atmospheric mercury deposition in Western Europe using: Misten peat bog cores, Belgium.

    PubMed

    Allan, Mohammed; Le Roux, Gael; Sonke, Jeroen E; Piotrowska, Natalia; Streel, Maurice; Fagel, Nathalie

    2013-01-01

    Four sediment cores were collected in 2008 from the Misten ombrotrophic peat bog in the Northern part of the Hautes Fagnes Plateau in Belgium. Total mercury (Hg) concentrations were analyzed to investigate the intra-site variability in atmospheric Hg deposition over the past 1,500 years. Mercury concentrations in the four cores ranged from 16 to 1,100 μg kg(-1), with the maxima between 840 and 1,100 μg kg(-1). A chronological framework was established using radiometric (210)Pb and (14)C dating of two cores (M1 and M4). Pollen horizons from these two cores were correlated with data from two additional cores, providing a consistent dating framework between all the sites. There was good agreement between atmospheric Hg accumulation rates in the four cores over time based on precise age dating and pollen chronosequences. The average Hg accumulation rate before the influence of human activities (from 500 to 1,300 AD) was 1.8 ± 1 μg m(-2)y(-1) (2SD). Maximum Hg accumulation rates ranged from 90 to 200 μg m(-2)y(-1) between 1930 and 1980 AD. During the European-North American Industrial Revolution, the mean Hg accumulation rate exceeded the pre-Industrial values by a factor of 63. Based on comparisons with historical records of anthropogenic activities in Europe and Belgium, the predominant regional anthropogenic sources of Hg during and after the Industrial Revolution were coal burning and smelter Hg emissions. Mercury accumulation rates and chronologies in the Misten cores were consistent with those reported for other European peat records.

  14. Effects of wet deposition on optical properties of the atmosphere over Bermuda and Barbados

    NASA Astrophysics Data System (ADS)

    Todd, Deborah L.; Keene, William C.; Moody, Jennie L.; Maring, Hal; Galloway, James N.

    2003-02-01

    Substantial spatial and temporal variabilities in chemical and physical properties of aerosols complicate attempts to model associated influences on global climate. Although wet deposition is the major mechanism by which most aerosols are removed from the atmosphere, direct effects of precipitation on radiative properties of the atmosphere are not well understood. To address this issue, attenuation coefficients for total insoluble constituents (ACt) and for nonvolatile (at 500°C) insoluble constituents (ACnv; primarily crustal dust) of precipitation at Bermuda and Barbados were measured at six wavelengths between 414 and 859 nm. Coefficients for volatile (at 500°C) insoluble constituents (ACv; primarily carbonaceous species) were calculated by difference. Between April and September, ACt at Bermuda was dominated by mineral constituents transported from North Africa, whereas carbonaceous species from North America were relatively low and exhibited no systematic seasonal variability. ACt and ACnv at Barbados were dominated by mineral dust, especially between April and September. Relative to ACv, ACnv decreased more rapidly with increasing wavelength. The wavelength dependencies of ACs for volatile and nonvolatile constituents at Bermuda were statistically indistinguishable from those at Barbados. The optical and chemical characteristics of precipitation were compared with scattering and absorption by ambient aerosols in associated air parcels to evaluate the influence of scavenging on the radiative properties of air. Although discernible relationships were evident, the small number of cases limited their applicability as reliable empirical predictors. However, these data do provide useful constraints for validating models of aerosol scavenging and wet removal on the optical properties of the troposphere.

  15. Resuspension of Particles by Aerodynamic Deagglomeration

    NASA Technical Reports Server (NTRS)

    Fonda, Mark; Petach, Mike; Rogers, C. Fred; Huntington, Judith; Stratton, David; Nishioka, Kenji; Tipo, Mark

    1998-01-01

    A deagglomerator system was developed, characterized by laboratory tests and flown under low gravity (low-g) microgravity conditions. Requirements for a dry powder deagglomeration system were generated by university and National Aeronautics and Space Administration (NASA) scientists from diverse fields of interest including exobiology, planetary sciences, and atmospheric sciences. Existing deagglomeration methods and devices are reviewed. An aerosol generation method suitable for dry powders over a large range of particles sizes and types at high concentrations with consistent deagglomeration efficiency was evaluated. Development of a pulsed-flow laboratory device and experimental approaches to meet the requirements without being g- dependent are described. Results of laboratory one-g quantitative characterization on one type of dry powder particle generator is discussed. Data from NASA low-g tests are summarized.

  16. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    SciTech Connect

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W.

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  17. Exploring lag times between monthly atmospheric deposition and stream chemistry in Appalachian forests using cross-correlation

    NASA Astrophysics Data System (ADS)

    DeWalle, David R.; Boyer, Elizabeth W.; Buda, Anthony R.

    2016-12-01

    Forecasts of ecosystem changes due to variations in atmospheric emissions policies require a fundamental understanding of lag times between changes in chemical inputs and watershed response. Impacts of changes in atmospheric deposition in the United States have been documented using national and regional long-term environmental monitoring programs beginning several decades ago. Consequently, time series of weekly NADP atmospheric wet deposition and monthly EPA-Long Term Monitoring stream chemistry now exist for much of the Northeast which may provide insights into lag times. In this study of Appalachian forest basins, we estimated lag times for S, N and Cl by cross-correlating monthly data from four pairs of stream and deposition monitoring sites during the period from 1978 to 2012. A systems or impulse response function approach to cross-correlation was used to estimate lag times where the input deposition time series was pre-whitened using regression modeling and the stream response time series was filtered using the deposition regression model prior to cross-correlation. Cross-correlations for S were greatest at annual intervals over a relatively well-defined range of lags with the maximum correlations occurring at mean lags of 48 months. Chloride results were similar but more erratic with a mean lag of 57 months. Few high-correlation lags for N were indicated. Given the growing availability of atmospheric deposition and surface water chemistry monitoring data and our results for four Appalachian basins, further testing of cross-correlation as a method of estimating lag times on other basins appears justified.

  18. Variations of weekly atmospheric deposition for multiple collectors at a site on the shore of Lake Okeechobee, Florida

    USGS Publications Warehouse

    Peters, N.E.; Reese, R.S.

    1995-01-01

    Eight wet/dry precipitation collectors were modified to house four additional dryfall collectors and one bulk precipitation collector to sample atmospheric deposition for 12 weeks in a small area on the southwestern shore of Lake Okeechobee; sample contamination, primarily by insects, reduced the comparison to the last nine weeks. The deposition was determined for Ca2+, Na+, Cl-, and SO42- and nutrients including total phosphorus, orthophosphate, total ammonia plus organic nitrogen, and nitrite plus nitrate. In general, deposition was lower and less variable in wet precipitation than in bulk precipitation. The higher variability of the bulk precipitation was attributed to local contamination, particularly by dust and insects. Each wet/dry precipitation collector was fitted with dryfall collectors that consisted of the dry-side bucket on a wet/dry collector, which was preloaded with distilled and deionized water, and four glass dish collectors; two of the glass dishes were preloaded with water and the other two remained dry. The deposition to the dry dish collectors was not comparable in adjacent collectors for any constituent; however, the deposition in the adjacent water-loaded dishes was comparable for most major constituents, except nutrients. A comparison of Ortho-P deposition with Total-P indicated that the P collected by the dryfall collectors was predominantly reactive, which also was reflected in the bulk deposition, whereas that in the wet deposition was mostly nonreactive. The large variability in deposition of P among the bulk and dryfall collectors suggests that alternative methods must be used to evaluate the P sources and processes of atmospheric transfer.

  19. Origin of Martian Interior Layered Deposits (ILDs) by atmospherically driven processes

    NASA Astrophysics Data System (ADS)

    Michalski, J. R.; Niles, P. B.

    2011-12-01

    Since the first photogeologic exploration of Mars, vast mounds of layered sediments found within the Valles Marineris canyon system (Interior Layered Deposits or ILDs) have remained unexplained. Recent spectroscopic results showing that these materials contain coarse-grained hematite [1] and sulfate [2-8] suggest that they are fundamentally similar to layered sulfate deposits seen elsewhere on Mars [3], and are therefore a key piece of Mars' global aqueous history. Layered sulfate deposits (including ILDs) are often considered to have formed in association with transient, wet surface environments caused by groundwater upwelling [9] in the Hesperian. Here, we use spectroscopic mapping along with geomorphic observations and mass balance calculations to demonstrate that the sulfate-bearing ILDs likely did not form due to groundwater upwelling or any similar playa-lacustrine scenario. Instead, the ILDs likely formed from atmospherically driven processes in a configuration similar to that observed today. We suggest that Hesperian layered sulfate deposits formed in response to massive amounts of pyroclastic volcanism and SO2-outgassing that peaked near 3.5-3.7 Ga in a Martian climate that was largely cold and dry. This origin for the ILDs is also applicable to other layered terrain of similar age and characteristics, including sulphate-bearing crater fill, chaos terrains, and the Meridiani Planum sediments. [1] Weitz, C. M., Lane, M. D., Staid, M. & Dobrea, E. N. Gray hematite distribution and formation in Ophir and Candor chasmata. Journal of Geophysical Research-Planets 113, doi:E02016 10.1029/2007je002930 (2008). [2] Wendt, L. et al. Sulfates and iron oxides in Ophir Chasma, Mars, based on OMEGA and CRISM observations. Icarus 213, 86-103, doi:10.1016/j.icarus.2011.02.013 (2011). [3] Murchie, S. et al. Evidence for the origin of layered deposits in Candor Chasma, Mars, from mineral composition and hydrologic modeling. Journal of Geophysical Research-Planets 114, doi

  20. The watershed depositon tool : a tool for incorporating atmospheric deposition in water-quality analyses {sup 1}.

    SciTech Connect

    Schwede, D. B.; Dennis, R. L.; Bitz, M. A.; Decision and Information Sciences; NOAA; EPA

    2009-08-01

    A tool for providing the linkage between air and water-quality modeling needed for determining the Total Maximum Daily Load (TMDL) and for analyzing related nonpoint-source impacts on watersheds has been developed. Using gridded output of atmospheric deposition from the Community Multiscale Air Quality (CMAQ) model, the Watershed Deposition Tool (WDT) calculates average per unit area and total deposition to selected watersheds and subwatersheds. CMAQ estimates the wet and dry deposition for all of its gaseous and particulate chemical species, including ozone, sulfur species, nitrogen species, secondary organic aerosols, and hazardous air pollutants at grid scale sizes ranging from 4 to 36 km. An overview of the CMAQ model is provided. The somewhat specialized format of the CMAQ files is not easily imported into standard spatial analysis tools. The WDT provides a graphical user interface that allows users to visualize CMAQ gridded data and perform further analyses on selected watersheds or simply convert CMAQ gridded data to a shapefile for use in other programs. Shapefiles for the 8-digit (cataloging unit) hydrologic unit code polygons for the United States are provided with the WDT; however, other user-supplied closed polygons may be used. An example application of the WDT for assessing the contributions of different source categories to deposition estim