Sample records for atmospheric gamma-ray imaging

  1. Solar X-Ray and Gamma-Ray Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Dennis, B. R.; Christe, S. D.; Shih, A. Y.; Holman, G. D.; Emslie, A. G.; Caspi, A.

    2018-02-01

    X-ray and gamma-ray Sun observations from a lunar-based observatory would provide unique information on solar atmosphere thermal and nonthermal processes. EUV and energetic neutral atom imaging spectroscopy would augment the scientific value.

  2. Future Gamma-Ray Imaging of Solar Eruptive Events

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2012-01-01

    Solar eruptive events, the combination of large solar flares and coronal mass ejections (CMEs), accelerate ions to tens of Gev and electrons to hundreds of MeV. The energy in accelerated particles can be a significant fraction (up to tens of percent) of the released energy and is roughly equipartitioned between ions and electrons. Observations of the gamma-ray signatures produced by these particles interacting with the ambient solar atmosphere probes the distribution and composition of the accelerated population, as well as the atmospheric parameters and abundances of the atmosphere, ultimately revealing information about the underlying physics. Gamma-ray imaging provided by RHESSI showed that the interacting approx.20 MeV/nucleon ions are confined to flare magnetic loops rather than precipitating from a large CME-associated shock. Furthermore, RHESSI images show a surprising, significant spatial separation between the locations where accelerated ions and electrons are interacting, thus indicating a difference in acceleration or transport processes for the two types of particles. Future gamma-ray imaging observations, with higher sensitivity and greater angular resolution, can investigate more deeply the nature of ion acceleration. The technologies being proven on the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS), a NASA balloon instrument, are possible approaches for future instrumentation. We discuss the GRIPS instrument and the future of studying this aspect of solar eruptive events.

  3. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  4. Gamma-ray background induced by atmospheric neutrons

    NASA Astrophysics Data System (ADS)

    Ma, Y.-Q.

    1984-03-01

    A small piggyback detector system is used to study the reduction of gamma-ray background induced by atmospheric neutrons in the type of actively shielded gamma-ray spectroscopes. The system consists of two 1.5 x 1.5 arcsec NaI crystal units, one of which is surrounded by some neutron shield material. The results of a balloon flight in 1981 are presented. The data show that a shield of 3 cm-thick pure paraffin cannot reduce the gamma-ray background. On the contrary, it may even cause some enhancement.

  5. A three-dimensional study of 30- to 300-MeV atmospheric gamma rays

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    1974-01-01

    A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. A knowledge of these atmospheric secondaries has significant applications to the study of cosmic gamma rays. For detectors carried on balloons, atmospherically produced gamma rays are the major source of background. For satellite detectors, atmospheric secondaries provide a calibration source. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. A new model of atmospheric secondary production has calculated the depth, the energy, and the zenith angle dependence of gamma rays above 30 MeV, using a comprehensive three-dimensional Monte Carlo model of the nucleon-meson-electromagnetic cascade.

  6. Production of gamma rays with energies greater than 30 MeV in the atmosphere

    NASA Technical Reports Server (NTRS)

    Thompson, D.; Fichtel, C.; Kniffen, D.

    1974-01-01

    A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. Experimental results compare reasonably well with a three-dimensional Monte Carlo calculation of atmospheric gamma ray production. Inclusion of upward-moving gamma rays makes possible the use of atmospheric secondaries for in-flight calibration of satellite gamma ray detectors.

  7. Science with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Coppi, Paolo

    2009-05-01

    We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.

  8. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose

  9. The Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2008-04-01

    We describe a concept for a ˜km^2 ground-based gamma-ray experiment (AGIS) comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present the scientific drivers for AGIS including the prospects for contributions to understanding extragalactic sources such as nearby galaxies, active galaxies, galaxy clusters and GRB; galactic sources such as X-ray binaries, supernova remnants, and pulsar wind nebulae; as well as probes of fundamental physics including indirectly detecting dark matter and probing TeV-scale physics. With the current generation of atmospheric Cherenkov telescope arrays, TeV astronomy has become well established, with the number TeV gamma-ray sources now nearing 100, including many unidentified and serendipitous sources. Improvements in the instantaneous field of view, angular resolution, effective area and energy resolution of AGIS are certain to provide great scientific returns in high energy astrophysics as well as opening up new discovery space. Here we present an overview of the ongoing design studies for AGIS including the optimization of array parameters as well as an overview of the technical drivers for the observatory.

  10. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2006-09-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  11. Gamma-Ray Imaging for Explosives Detection

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Hunter, S. D.; Barbier, L. M.; Link, J. T.; Son, S.; Floyd, S. R.; Guardala, N.; Skopec, M.; Stark, B.

    2008-01-01

    We describe a gamma-ray imaging camera (GIC) for active interrogation of explosives being developed by NASA/GSFC and NSWCICarderock. The GIC is based on the Three-dimensional Track Imager (3-DTI) technology developed at GSFC for gamma-ray astrophysics. The 3-DTI, a large volume time-projection chamber, provides accurate, approx.0.4 mm resolution, 3-D tracking of charged particles. The incident direction of gamma rays, E, > 6 MeV, are reconstructed from the momenta and energies of the electron-positron pair resulting from interactions in the 3-DTI volume. The optimization of the 3-DTI technology for this specific application and the performance of the GIC from laboratory tests is presented.

  12. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow studies of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  13. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen; GRI Consortium

    2006-06-01

    With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction have paved the way towards a new gamma-ray mission, providing major improvements regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  14. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  15. The Gamma-Ray Imager GRI

    NASA Astrophysics Data System (ADS)

    Wunderer, Cornelia B.; GRI Collaboration

    2008-03-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are major science themes that are addressed in the gamma-ray regime. ESA's INTEGRAL observatory currently provides the astronomical community with a unique tool to investigate the sky up to MeV energies and hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes have been discovered. NASA's GLAST mission will similarly take the next step in surveying the high-energy ( GeV) sky, and NuSTAR will pioneer focusing observations at hard X-ray energies (to 80 keV). There will be clearly a growing need to perform deeper, more focused investigations of gamma-ray sources in the 100-keV to MeV regime. Recent technological advances in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow the study of particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  16. Simulation based evaluation of the designs of the Advanced Gamma-ray Imageing System (AGIS)

    NASA Astrophysics Data System (ADS)

    Bugaev, Slava; Buckley, James; Digel, Seth; Funk, Stephen; Konopelko, Alex; Krawczynski, Henric; Lebohec, Steohan; Maier, Gernot; Vassiliev, Vladimir

    2009-05-01

    The AGIS project under design study, is a large array of imaging atmospheric Cherenkov telescopes for gamma-rays astronomy between 40GeV and 100 TeV. In this paper we present the ongoing simulation effort to model the considered design approaches as a function of the main parameters such as array geometry, telescope optics and camera design in such a way the gamma ray observation capabilities can be optimized against the overall project cost.

  17. GRI: the gamma-ray imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, Jürgen

    2006-06-01

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe. While at lower wavebands the observed emission is generally dominated by thermal processes, the gamma-ray sky provides us with a view on the non-thermal Universe. Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood, and nuclear reactions are synthesizing the basic constituents of our world. Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime. With the INTEGRAL observatory, ESA has provided a unique tool to the astronomical community revealing hundreds of sources, new classes of objects, extraordinary views of antimatter annihilation in our Galaxy, and fingerprints of recent nucleosynthesis processes. While INTEGRAL provides the global overview over the soft gamma-ray sky, there is a growing need to perform deeper, more focused investigations of gamma-ray sources. In soft X-rays a comparable step was taken going from the Einstein and the EXOSAT satellites to the Chandra and XMM/Newton observatories. Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques hav paved the way towards a gamma-ray mission, providing major improvements compared to past missions regarding sensitivity and angular resolution. Such a future Gamma-Ray Imager will allow to study particle acceleration processes and explosion physics in unprecedented detail, providing essential clues on the innermost nature of the most violent and most energetic processes in the Universe.

  18. The Advanced Gamma-ray Imageing System (AGIS): Simulation Design Studies

    NASA Astrophysics Data System (ADS)

    Bugaev, V.; Buckley, J.; Digel, S.; Fegan, S.; Funk, S.; Konopelko, A.; Krawczynski, H.; Lebohec, S.; Maier, G.; Vassiliev, V.

    2008-04-01

    We present design studies for AGIS, a proposed array of ˜100 imaging atmospheric Cherenkov telescopes for gamma-rays astronomy in the 40GeV to 100 TeV energy regime. We describe optimization studies for the array configuration, pixel size and field of view aimed at achieving the best sensitivity over the entire energy range and best angular resolution for a fixed project total cost.

  19. Development and Evaluation of Real-Time Volumetric Compton Gamma-Ray Imaging

    NASA Astrophysics Data System (ADS)

    Barnowski, Ross Wegner

    An approach to gamma-ray imaging has been developed that enables near real-time volumetric (3D) imaging of unknown environments thus improving the utility of gamma-ray imaging for source-search and radiation mapping applications. The approach, herein dubbed scene data fusion (SDF), is based on integrating mobile radiation imagers with real time tracking and scene reconstruction algorithms to enable a mobile mode of operation and 3D localization of gamma-ray sources. The real-time tracking allows the imager to be moved throughout the environment or around a particular object of interest, obtaining the multiple perspectives necessary for standoff 3D imaging. A 3D model of the scene, provided in real-time by a simultaneous localization and mapping (SLAM) algorithm, can be incorporated into the image reconstruction reducing the reconstruction time and improving imaging performance. The SDF concept is demonstrated in this work with a Microsoft Kinect RGB-D sensor, a real-time SLAM solver, and two different mobile gamma-ray imaging platforms. The first is a cart-based imaging platform known as the Volumetric Compton Imager (VCI), comprising two 3D position-sensitive high purity germanium (HPGe) detectors, exhibiting excellent gamma-ray imaging characteristics, but with limited mobility due to the size and weight of the cart. The second system is the High Efficiency Multimodal Imager (HEMI) a hand-portable gamma-ray imager comprising 96 individual cm3 CdZnTe crystals arranged in a two-plane, active-mask configuration. The HEMI instrument has poorer energy and angular resolution than the VCI, but is truly hand-portable, allowing the SDF concept to be tested in multiple environments and for more challenging imaging scenarios. An iterative algorithm based on Compton kinematics is used to reconstruct the gamma-ray source distribution in all three spatial dimensions. Each of the two mobile imaging systems are used to demonstrate SDF for a variety of scenarios, including

  20. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  1. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in

  2. Gamma-Ray imaging for nuclear security and safety: Towards 3-D gamma-ray vision

    NASA Astrophysics Data System (ADS)

    Vetter, Kai; Barnowksi, Ross; Haefner, Andrew; Joshi, Tenzing H. Y.; Pavlovsky, Ryan; Quiter, Brian J.

    2018-01-01

    The development of portable gamma-ray imaging instruments in combination with the recent advances in sensor and related computer vision technologies enable unprecedented capabilities in the detection, localization, and mapping of radiological and nuclear materials in complex environments relevant for nuclear security and safety. Though multi-modal imaging has been established in medicine and biomedical imaging for some time, the potential of multi-modal data fusion for radiological localization and mapping problems in complex indoor and outdoor environments remains to be explored in detail. In contrast to the well-defined settings in medical or biological imaging associated with small field-of-view and well-constrained extension of the radiation field, in many radiological search and mapping scenarios, the radiation fields are not constrained and objects and sources are not necessarily known prior to the measurement. The ability to fuse radiological with contextual or scene data in three dimensions, in analog to radiological and functional imaging with anatomical fusion in medicine, provides new capabilities enhancing image clarity, context, quantitative estimates, and visualization of the data products. We have developed new means to register and fuse gamma-ray imaging with contextual data from portable or moving platforms. These developments enhance detection and mapping capabilities as well as provide unprecedented visualization of complex radiation fields, moving us one step closer to the realization of gamma-ray vision in three dimensions.

  3. X-ray and gamma ray astronomy detectors

    NASA Technical Reports Server (NTRS)

    Decher, Rudolf; Ramsey, Brian D.; Austin, Robert

    1994-01-01

    X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.

  4. Three-dimensional Monte-Carlo simulation of gamma-ray scattering and production in the atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, D.J.

    1989-05-15

    Monte Carlo codes have been developed to simulate gamma-ray scattering and production in the atmosphere. The scattering code simulates interactions of low-energy gamma rays (20 to several hundred keV) from an astronomical point source in the atmosphere; a modified code also simulates scattering in a spacecraft. Four incident spectra, typical of gamma-ray bursts, solar flares, and the Crab pulsar, and 511 keV line radiation have been studied. These simulations are consistent with observations of solar flare radiation scattered from the atmosphere. The production code simulates the interactions of cosmic rays which produce high-energy (above 10 MeV) photons and electrons. Itmore » has been used to calculate gamma-ray and electron albedo intensities at Palestine, Texas and at the equator; the results agree with observations in most respects. With minor modifications this code can be used to calculate intensities of other high-energy particles. Both codes are fully three-dimensional, incorporating a curved atmosphere; the production code also incorporates the variation with both zenith and azimuth of the incident cosmic-ray intensity due to geomagnetic effects. These effects are clearly reflected in the calculated albedo by intensity contrasts between the horizon and nadir, and between the east and west horizons.« less

  5. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    NASA Astrophysics Data System (ADS)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  6. Gamma-ray lens development status for a European gamma-ray imager

    NASA Astrophysics Data System (ADS)

    Frontera, F.; Pisa, A.; Carassiti, V.; Evangelisti, F.; Loffredo, G.; Pellicciotta, D.; Andersen, K. H.; Courtois, P.; Amati, L.; Caroli, E.; Franceschini, T.; Landini, G.; Silvestri, S.; Stephen, J. B.

    2006-06-01

    A breakthrough in the sensitivity level of the hard X-/gamma-ray telescopes, which today are based on detectors that view the sky through (or not) coded masks, is expected when focusing optics will be available also in this energy range. Focusing techniques are now in an advanced stage of development. To date the most efficient technique to focus hard X-rays with energies above 100 keV appears to be the Bragg diffraction from crystals in transmission configuration (Laue lenses). Crystals with mosaic structure appear to be the most suitable to build a Laue lens with a broad passband, even though other alternative structures are being investigated. The goal of our project is the development of a broad band focusing telescope based on gamma-ray lenses for the study of the continuum emission of celestial sources from 60 keV up to >600 keV. We will report details of our project, its development status and results of our assessment study of a lens configuration for the European Gamma Ray Imager (GRI) mission now under study for the ESA plan Cosmic Vision 2015-2025.

  7. The Use of Gamma-Ray Imaging to Improve Portal Monitor Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, Klaus-Peter; Collins, Jeff; Fabris, Lorenzo

    2008-01-01

    We have constructed a prototype, rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. Our Roadside Tracker uses automated target acquisition and tracking (TAT) software to identify and track vehicles in visible light images. The field of view of the visible camera overlaps with and is calibrated to that of a one-dimensional gamma-ray imager. The TAT code passes information on when vehicles enter and exit the system field of view and when they cross gamma-ray pixel boundaries. Based on this in-formation, the gamma-ray imager "harvests"more » the gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. In this fashion we are able to generate vehicle-specific radiation signatures and avoid source confusion problems that plague nonimaging approaches to the same problem.« less

  8. AGIS -- the Advanced Gamma-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  9. Kernel analysis in TeV gamma-ray selection

    NASA Astrophysics Data System (ADS)

    Moriarty, P.; Samuelson, F. W.

    2000-06-01

    We discuss the use of kernel analysis as a technique for selecting gamma-ray candidates in Atmospheric Cherenkov astronomy. The method is applied to observations of the Crab Nebula and Markarian 501 recorded with the Whipple 10 m Atmospheric Cherenkov imaging system, and the results are compared with the standard Supercuts analysis. Since kernel analysis is computationally intensive, we examine approaches to reducing the computational load. Extension of the technique to estimate the energy of the gamma-ray primary is considered. .

  10. Gamma-ray detectors for breast imaging

    NASA Astrophysics Data System (ADS)

    Williams, Mark B.; Goode, Allen R.; Majewski, Stan; Steinbach, Daniela; Weisenberger, Andrew G.; Wojcik, Randolph F.; Farzanpay, Farzin

    1997-07-01

    Breast cancer is the most common cancer of American women and is the leading cause of cancer-related death among women aged 15 - 54; however recent years have shown that early detection using x-ray mammography can lead to a high probability of cure. However, because of mammography's low positive predictive value, surgical or core biopsy is typically required for diagnosis. In addition, the low radiographic contrast of many nonpalpable breast masses, particularly among women with radiographically dense breasts, results in an overall rate of 10% to 25% for missed tumors. Nuclear imaging of the breast using single gamma emitters (scintimammography) such as (superscript 99m)Tc, or positron emitters such as F-18- fluorodeoxyglucose (FDG) for positron emission tomography (PET), can provide information on functional or metabolic tumor activity that is complementary to the structural information of x-ray mammography, thereby potentially reducing the number of unnecessary biopsies and missed cancers. This paper summarizes recent data on the efficacy of scintimammography using conventional gamma cameras, and describes the development of dedicated detectors for gamma emission breast imaging. The detectors use new, high density crystal scintillators and large area position sensitive photomultiplier tubes (PSPMTs). Detector design, imaging requirements, and preliminary measured imaging performance are discussed.

  11. Handheld real-time volumetric 3-D gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Haefner, Andrew; Barnowski, Ross; Luke, Paul; Amman, Mark; Vetter, Kai

    2017-06-01

    This paper presents the concept of real-time fusion of gamma-ray imaging and visual scene data for a hand-held mobile Compton imaging system in 3-D. The ability to obtain and integrate both gamma-ray and scene data from a mobile platform enables improved capabilities in the localization and mapping of radioactive materials. This not only enhances the ability to localize these materials, but it also provides important contextual information of the scene which once acquired can be reviewed and further analyzed subsequently. To demonstrate these concepts, the high-efficiency multimode imager (HEMI) is used in a hand-portable implementation in combination with a Microsoft Kinect sensor. This sensor, in conjunction with open-source software, provides the ability to create a 3-D model of the scene and to track the position and orientation of HEMI in real-time. By combining the gamma-ray data and visual data, accurate 3-D maps of gamma-ray sources are produced in real-time. This approach is extended to map the location of radioactive materials within objects with unknown geometry.

  12. Single-Grid-Pair Fourier Telescope for Imaging in Hard-X Rays and gamma Rays

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan

    2008-01-01

    This instrument, a proposed Fourier telescope for imaging in hard-x rays and gamma rays, would contain only one pair of grids made of an appropriate radiation-absorpting/ scattering material, in contradistinction to multiple pairs of such as grids in prior Fourier x- and gamma-ray telescopes. This instrument would also include a relatively coarse gridlike image detector appropriate to the radiant flux to be imaged. Notwithstanding the smaller number of grids and the relative coarseness of the imaging detector, the images produced by the proposed instrument would be of higher quality.

  13. Fiber fed x-ray/gamma ray imaging apparatus

    DOEpatents

    Hailey, C.J.; Ziock, K.P.

    1992-06-02

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  14. Gamma ray transients

    NASA Technical Reports Server (NTRS)

    Cline, Thomas L.

    1987-01-01

    The discovery of cosmic gamma ray bursts was made with systems designed at Los Alamos Laboratory for the detection of nuclear explosions beyond the atmosphere. HELIOS-2 was the first gamma ray burst instrument launched; its initial results in 1976, seemed to deepen the mystery around gamma ray transients. Interplanetary spacecraft data were reviewed in terms of explaining the behavior and source of the transients.

  15. The Advanced Gamma-ray Imaging System (AGIS): Telescope Mechanical Designs

    NASA Astrophysics Data System (ADS)

    Guarino, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Horan, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Wagner, R.; Woods, M.; Vassiliev, V.

    2008-04-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 40 GeV-100 TeV is based on an array of sim 100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvements of AGIS sensitivity, angular resolution and reliability of operation impose demanding technological and cost requirements on the design of IACTs. The relatively inexpensive Davies-Cotton telescope design has been used in ground-based gamma-ray astronomy for almost fifty years and is an excellent option. We are also exploring alternative designs and in this submission we focus on the recent mechanical design of a two-mirror telescope with a Schwarzschild-Couder (SC) optical system. The mechanical structure provides support points for mirrors and camera. The design was driven by the requirement of minimizing the deflections of the mirror support structures. The structure is also designed to be able to slew in elevation and azimuth at 10 degrees/sec.

  16. Gamma Ray Imaging of Inertial Confinement Fusion Experiments

    NASA Astrophysics Data System (ADS)

    Wilde, Carl; Volegov, Petr; Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Fittinghoff, David; Grim, Gary; NIF Nuclear Diagnostic Team Team; Advanced Imaging Team Team

    2016-10-01

    Experiments consisting of an ablatively driven plastic (CH) shell surrounding a deuterium tritium (DT) fuel region are routinely performed at the National Ignition Facility (NIF). Neutrons produced in the burning fuel in-elastically scatter with carbon atoms in the plastic shell producing 4.4 MeV gamma rays. Providing a spatially resolved distribution of the origin of these gammas can inform models of ablator physics and also provide a bounding volume for the cold fuel (un-burned DT fuel) region. Using the NIF neutron imaging system hardware, initial studies have been performed of the feasibility of imaging these gamma rays. A model of the system has been developed to inform under which experimental conditions this measurement can be made. Presented here is an analysis of the prospects for this diagnostic probe and a proposed set of modifications to the NIF neutron imaging line-of-site to efficiently enable this measurement.

  17. Fermi large area telescope observations of the cosmic-ray induced {gamma}-ray emission of the Earth's atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A. A.; National Academy of Sciences, Washington, D.C. 20001; Ackermann, M.

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded {approx}6.4x10{sup 6} photons with energies >100 MeV and {approx}250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-lawmore » shape up to 500 GeV with spectral index {gamma}=2.79{+-}0.06.« less

  18. AGIS: A Next-generation TeV Gamma-ray Observatory

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Justin

    2010-05-01

    The Advanced Gamma-ray Imaging System (AGIS) is a next-generation array of imaging atmospheric Cherenkov telescopes for gamma-ray astronomy in the 100 GeV to 100 TeV band. TeV astronomy has flourished in the last few years. Together with the extremely successful first year of the Fermi LAT telescope for GeV gamma-ray astronomy, we are now in a golden age of gamma-ray astronomy. AGIS seeks to continue the success of gamma-ray astronomy by discovering hundreds of new TeV sources and improving our understanding of known sources, as well as searching for signals from dark matter annihilation. AGIS will feature 36 Schwarzschild-Couder (SC) telescopes spanning 1 km2. The two-mirror SC design allows a wide field of view (8 deg diameter) and high-resolution (0.05 deg diameter) pixellation. I will present the science capabilities of the AGIS observatory as well as the technical design and current status of the project.

  19. Gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  20. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  1. Coded-aperture Compton camera for gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Farber, Aaron M.

    This dissertation describes the development of a novel gamma-ray imaging system concept and presents results from Monte Carlo simulations of the new design. Current designs for large field-of-view gamma cameras suitable for homeland security applications implement either a coded aperture or a Compton scattering geometry to image a gamma-ray source. Both of these systems require large, expensive position-sensitive detectors in order to work effectively. By combining characteristics of both of these systems, a new design can be implemented that does not require such expensive detectors and that can be scaled down to a portable size. This new system has significant promise in homeland security, astronomy, botany and other fields, while future iterations may prove useful in medical imaging, other biological sciences and other areas, such as non-destructive testing. A proof-of-principle study of the new gamma-ray imaging system has been performed by Monte Carlo simulation. Various reconstruction methods have been explored and compared. General-Purpose Graphics-Processor-Unit (GPGPU) computation has also been incorporated. The resulting code is a primary design tool for exploring variables such as detector spacing, material selection and thickness and pixel geometry. The advancement of the system from a simple 1-dimensional simulation to a full 3-dimensional model is described. Methods of image reconstruction are discussed and results of simulations consisting of both a 4 x 4 and a 16 x 16 object space mesh have been presented. A discussion of the limitations and potential areas of further study is also presented.

  2. Gamma-Ray Imager With High Spatial And Spectral Resolution

    NASA Technical Reports Server (NTRS)

    Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.

    1996-01-01

    Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.

  3. Gamma ray imager on the DIII-D tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pace, D. C., E-mail: pacedc@fusion.gat.com; Taussig, D.; Eidietis, N. W.

    2016-04-15

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1–60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. First measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  4. Gamma ray imager on the DIII-D tokamak

    DOE PAGES

    Pace, D. C.; Cooper, C. M.; Taussig, D.; ...

    2016-04-13

    A gamma ray camera is built for the DIII-D tokamak [J. Luxon, Nucl. Fusion 42, 614 (2002)] that provides spatial localization and energy resolution of gamma flux by combining a lead pinhole camera with custom-built detectors and optimized viewing geometry. This diagnostic system is installed on the outer midplane of the tokamak such that its 123 collimated sightlines extend across the tokamak radius while also covering most of the vertical extent of the plasma volume. A set of 30 bismuth germanate detectors can be secured in any of the available sightlines, allowing for customizable coverage in experiments with runaway electronsmore » in the energy range of 1- 60 MeV. Commissioning of the gamma ray imager includes the quantification of electromagnetic noise sources in the tokamak machine hall and a measurement of the energy spectrum of background gamma radiation. In conclusion, first measurements of gamma rays coming from the plasma provide a suitable testbed for implementing pulse height analysis that provides the energy of detected gamma photons.« less

  5. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    NASA Astrophysics Data System (ADS)

    Vassiliev, Vladimir; Buckley, Jim; Falcone, Abe; Fegan, Steven; Finley, John; Gaurino, Victor; Hanna, David; Kaaret, Philip; Konopelko, Alex; Krawczynski, Henric; Romani, Roger; Weekes, Trevor

    2008-04-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory based on an array of ˜100 imaging atmospheric Cherenkov telescopes (IACTs) with a sensitivity to gamma-rays in the energy range 40 GeV-100 TeV. The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of the IACTs. In this submission we focus on the optical system (OS) of the AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime- focus telescope designs, as well as a novel two-mirror aplanatic OS originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes such as cold and hot glass slumping, cured CFRP, and electroforming provide new opportunities for cost effective solutions for the design of the OS. We evaluate the capabilities of these mirror fabrication methods for the AGIS project.

  6. The Gamma-Ray Imager/Polarimeter for Solar Flares (GRIPS)

    NASA Technical Reports Server (NTRS)

    Shih, Albert Y.; Lin, Robert P.; Hurford, Gordon J.; Duncan, Nicole A.; Saint-Hilaire, Pascal; Bain, Hazel M.; Boggs, Steven E.; Zoglauer, Andreas C.; Smith, David M.; Tajima, Hiroyasu; hide

    2012-01-01

    The balloon-borne Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument will provide a near-optimal combination of high-resolution imaging, spectroscopy, and polarimetry of solar-flare gamma-ray/hard X-ray emissions from approximately 20 keV to greater than approximately 10 MeV. GRIPS will address questions raised by recent solar flare observations regarding particle acceleration and energy release, such as: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? The spectrometer/polarimeter consists of sixteen 3D position-sensitive germanium detectors (3D-GeDs), where each energy deposition is individually recorded with an energy resolution of a few keV FWHM and a spatial resolution of less than 0.1 cubic millimeter. Imaging is accomplished by a single multi-pitch rotating modulator (MPRM), a 2.5-centimeter thick tungsten alloy slit/slat grid with pitches that range quasi-continuously from 1 to 13 millimeters. The MPRM is situated 8 meters from the spectrometer to provide excellent image quality and unparalleled angular resolution at gamma-ray energies (12.5 arcsec FWHM), sufficient to separate 2.2 MeV footpoint sources for almost all flares. Polarimetry is accomplished by analyzing the anisotropy of reconstructed Compton scattering in the 3D-GeDs (i.e., as an active scatterer), with an estimated minimum detectable polarization of a few percent at 150-650 keV in an X-class flare. GRIPS is scheduled for a continental-US engineering test flight in fall 2013, followed by long or ultra-long duration balloon flights in Antarctica.

  7. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    NASA Astrophysics Data System (ADS)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  8. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of themore » data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.« less

  9. Instrumental and atmospheric background lines observed by the SMM gamma-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Kinzer, R. L.; Strickman, M. S.; Letaw, J. R.; Chupp, E. L.

    1989-01-01

    Preliminary identifications of instrumental and atmospheric background lines detected by the gamma-ray spectrometer on NASA's Solar Maximum Mission satellite (SMM) are presented. The long-term and stable operation of this experiment has provided data of high quality for use in this analysis. Methods are described for identifying radioactive isotopes which use their different decay times. Temporal evolution of the features are revealed by spectral comparisons, subtractions, and fits. An understanding of these temporal variations has enabled the data to be used for detecting celestial gamma-ray sources.

  10. GRI: The Gamma-Ray Imager mission

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Gri Consortium

    Observations of the gamma-ray sky reveal the most powerful sources and the most violent events in the Universe While at lower wavebands the observed emission is generally dominated by thermal processes the gamma-ray sky provides us with a view on the non-thermal Universe Here particles are accelerated to extreme relativistic energies by mechanisms which are still poorly understood and nuclear reactions are synthesizing the basic constituents of our world Cosmic accelerators and cosmic explosions are the major science themes that are addressed in the gamma-ray regime With the INTEGRAL observatory ESA has provided a unique tool to the astronomical community and has put Europe in the lead in the field of gamma-ray astronomy INTEGRAL provides an unprecedented survey of the soft gamma-ray sky revealing hundreds of sources new classes of objects extraordinary views of antimatter annihilation in our Galaxy and fingerprints of recent nucleosynthesis processes While INTEGRAL has provided the global overview over the soft gamma-ray sky there is a growing need to perform deeper more focused investigations of gamma-ray sources In soft X-rays a comparable step was taken going from the Einstein satellite to the XMM Newton observatory Technological advances in the past years in the domain of gamma-ray focusing using Laue diffraction and multilayer-coated mirror techniques have paved the way towards a gamma-ray mission providing major improvements compared to past missions regarding sensitivity and angular resolution Such a

  11. A large-area gamma-ray imaging telescope system

    NASA Technical Reports Server (NTRS)

    Koch, D. G.

    1983-01-01

    The concept definition of using the External Tank (ET) of the Space Shuttle as the basis for constructing a large area gamma ray imaging telescope in space is detailed. The telescope will be used to locate and study cosmic sources of gamma rays of energy greater than 100 MeV. Both the telescope properties and the means whereby an ET is used for this purpose are described. A parallel is drawn between those systems that would be common to both a Space Station and this ET application. In addition, those systems necessary for support of the telescope can form the basis for using the ET as part of the Space Station. The major conclusions of this concept definition are that the ET is ideal for making into a gamma ray telescope, and that this telescope will provide a substantial increase in collecting area.

  12. Terrestrial Gamma-Ray Flashes (TGFs)

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2010-01-01

    This slide presentation reviews the observation of Terrestrial Gamma Ray Flashes (TGFs) by Gamma-Ray Telescopes. These were: (1) BATSE /Compton Observatory, (2) Solar Spectroscopic Imager, (3) AGILE Gamma-ray Telescope, and (4) Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope. It contains charts which display the counts over time, a map or the TGFs observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). and a map showing the latitude and longitude of 85 of the TGFs observed by the Fermi GBM.

  13. Prompt gamma ray imaging for verification of proton boron fusion therapy: A Monte Carlo study.

    PubMed

    Shin, Han-Back; Yoon, Do-Kun; Jung, Joo-Young; Kim, Moo-Sub; Suh, Tae Suk

    2016-10-01

    The purpose of this study was to verify acquisition feasibility of a single photon emission computed tomography image using prompt gamma rays for proton boron fusion therapy (PBFT) and to confirm an enhanced therapeutic effect of PBFT by comparison with conventional proton therapy without use of boron. Monte Carlo simulation was performed to acquire reconstructed image during PBFT. We acquired percentage depth dose (PDD) of the proton beams in a water phantom, energy spectrum of the prompt gamma rays, and tomographic images, including the boron uptake region (BUR; target). The prompt gamma ray image was reconstructed using maximum likelihood expectation maximisation (MLEM) with 64 projection raw data. To verify the reconstructed image, both an image profile and contrast analysis according to the iteration number were conducted. In addition, the physical distance between two BURs in the region of interest of each BUR was measured. The PDD of the proton beam from the water phantom including the BURs shows more efficient than that of conventional proton therapy on tumour region. A 719keV prompt gamma ray peak was clearly observed in the prompt gamma ray energy spectrum. The prompt gamma ray image was reconstructed successfully using 64 projections. Different image profiles including two BURs were acquired from the reconstructed image according to the iteration number. We confirmed successful acquisition of a prompt gamma ray image during PBFT. In addition, the quantitative image analysis results showed relatively good performance for further study. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. The Advanced Gamma-ray Imaging System (AGIS) - Camera Electronics Development

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Bechtol, K.; Buehler, R.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Hanna, D.; Horan, D.; Humensky, B.; Karlsson, N.; Kieda, D.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Mukherjee, R.; Ong, R.; Otte, N.; Quinn, J.; Schroedter, M.; Swordy, S.; Wagner, R.; Wakely, S.; Weinstein, A.; Williams, D.; Camera Working Group; AGIS Collaboration

    2010-03-01

    AGIS, a next-generation imaging atmospheric Cherenkov telescope (IACT) array, aims to achieve a sensitivity level of about one milliCrab for gamma-ray observations in the energy band of 50 GeV to 100 TeV. Achieving this level of performance will require on the order of 50 telescopes with perhaps as many as 1M total electronics channels. The larger scale of AGIS requires a very different approach from the currently operating IACTs, with lower-cost and lower-power electronics incorporated into camera modules designed for high reliability and easy maintenance. Here we present the concept and development status of the AGIS camera electronics.

  15. The gamma-ray observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    An overview is given of the Gamma Ray Observatory (GRO) mission. Detection of gamma rays and gamma ray sources, operations using the Space Shuttle, and instruments aboard the GRO, including the Burst and Transient Source Experiment (BATSE), the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), and the Energetic Gamma Ray Experiment Telescope (EGRET) are among the topics surveyed.

  16. Gamma-sky.net: Portal to the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Voruganti, Arjun; Deil, Christoph; Donath, Axel; King, Johannes

    2017-01-01

    http://gamma-sky.net is a novel interactive website designed for exploring the gamma-ray sky. The Map View portion of the site is powered by the Aladin Lite sky atlas, providing a scalable survey image tesselated onto a three-dimensional sphere. The map allows for interactive pan and zoom navigation as well as search queries by sky position or object name. The default image overlay shows the gamma-ray sky observed by the Fermi-LAT gamma-ray space telescope. Other survey images (e.g. Planck microwave images in low/high frequency bands, ROSAT X-ray image) are available for comparison with the gamma-ray data. Sources from major gamma-ray source catalogs of interest (Fermi-LAT 2FHL, 3FGL and a TeV source catalog) are overlaid over the sky map as markers. Clicking on a given source shows basic information in a popup, and detailed pages for every source are available via the Catalog View component of the website, including information such as source classification, spectrum and light-curve plots, and literature references. We intend for gamma-sky.net to be applicable for both professional astronomers as well as the general public. The website started in early June 2016 and is being developed as an open-source, open data project on GitHub (https://github.com/gammapy/gamma-sky). We plan to extend it to display more gamma-ray and multi-wavelength data. Feedback and contributions are very welcome!

  17. Cosmic ray albedo gamma rays from the quiet sun

    NASA Technical Reports Server (NTRS)

    Seckel, D.; Stanev, T.; Gaisser, T. K.

    1992-01-01

    We estimate the flux of gamma-rays that result from collisions of high energy galactic cosmic rays with the solar atmosphere. An important aspect of our model is the propagation of cosmic rays through the magnetic fields of the inner solar systems. We use diffusion to model propagation down to the bottom of the corona. Below the corona we trace particle orbits through the photospheric fields to determine the location of cosmic ray interactions in the solar atmosphere and evolve the resultant cascades. For our nominal choice of parameters, we predict an integrated flux of gamma rays (at 1 AU) of F(E(sub gamma) greater than 100 MeV) approximately = 5 x 10(exp -8)/sq cm sec. This can be an order of magnitude above the galactic background and should be observable by the Energetic Gamma Ray experiment telescope (EGRET).

  18. Primary gamma ray selection in a hybrid timing/imaging Cherenkov array

    NASA Astrophysics Data System (ADS)

    Postnikov, E. B.; Grinyuk, A. A.; Kuzmichev, L. A.; Sveshnikova, L. G.

    2017-06-01

    This work is a methodical study on hybrid reconstruction techniques for hybrid imaging/timing Cherenkov observations. This type of hybrid array is to be realized at the gamma-observatory TAIGA intended for very high energy gamma-ray astronomy (> 30 TeV). It aims at combining the cost-effective timing-array technique with imaging telescopes. Hybrid operation of both of these techniques can lead to a relatively cheap way of development of a large area array. The joint approach of gamma event selection was investigated on both types of simulated data: the image parameters from the telescopes, and the shower parameters reconstructed from the timing array. The optimal set of imaging parameters and shower parameters to be combined is revealed. The cosmic ray background suppression factor depending on distance and energy is calculated. The optimal selection technique leads to cosmic ray background suppression of about 2 orders of magnitude on distances up to 450 m for energies greater than 50 TeV.

  19. Particle Swarm Imaging (PSIM) - Innovative Gamma-Ray Assay - 13497

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parvin, Daniel; Clarke, Sean; Humes, Sarah J.

    2013-07-01

    Particle Swarm Imaging is an innovative technique used to perform quantitative gamma-ray assay. The innovation overcomes some of the difficulties associated with the accurate measurement and declaration of measurement uncertainties of radionuclide inventories within waste items when the distribution of activity is unknown. Implementation requires minimal equipment, with field measurements and results obtained using only a single electrically cooled HRGS gamma-ray detector. Examples of its application in the field are given in this paper. (authors)

  20. Topics in gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.

    1986-01-01

    Observations of gamma rays from solar flares, gamma ray bursts, the Galactic center, galactic nucleosynthesis, SS433, and Cygnus X-3, and their effects on astrophysical problems are discussed. It is observed that gamma ray spectra from solar flares are applicable to the study of particle acceleration and confinement and the determination of chemical abundances in the solar atmosphere. The gamma ray lines from the compact galactic object SS433 are utilized to examine the acceleration of jets, and analysis of the gamma ray lines of Cygnus X-3 reveal that particles can be accelerated in compact sources to ultrahigh energies.

  1. The Advanced Gamma-ray Imaging System (AGIS)-Science Highlights

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Coppi, P.; Digel, S.; Funk, S.; Krawczynski, H.; Krennrich, F.; Pohl, M.; Romani, R.; Vassiliev, V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS), a future gamma-ray telescope consisting of an array of ~50 atmospheric Cherenkov telescopes distributed over an area of ~1 km2, will provide a powerful new tool for exploring the high-energy universe. The order-of-magnitude increase in sensitivity and improved angular resolution could provide the first detailed images of γ-ray emission from other nearby galaxies or galaxy clusters. The large effective area will provide unprecedented sensitivity to short transients (such as flares from AGNs and GRBs) probing both intrinsic spectral variability (revealing the details of the acceleration mechanism and geometry) as well as constraining the high-energy dispersion in the velocity of light (probing the structure of spacetime and Lorentz invariance). A wide field of view (~4 times that of current instruments) and excellent angular resolution (several times better than current instruments) will allow for an unprecedented survey of the Galactic plane, providing a deep unobscured survey of SNRs, X-ray binaries, pulsar-wind nebulae, molecular cloud complexes and other sources. The differential flux sensitivity of ~10-13 erg cm-2 sec-1 will rival the most sensitive X-ray instruments for these extended Galactic sources. The excellent capabilities of AGIS at energies below 100 GeV will provide sensitivity to AGN and GRBs out to cosmological redshifts, increasing the number of AGNs detected at high energies from about 20 to more than 100, permitting population studies that will provide valuable insights into both a unified model for AGN and a detailed measurement of the effects of intergalactic absorption from the diffuse extragalactic background light. A new instrument with fast-slewing wide-field telescopes could provide detections of a number of long-duration GRBs providing important physical constraints from this new spectral component. The new array will also have excellent background rejection and very large effective area

  2. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics

    PubMed Central

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D.; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-01-01

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that “Electron Tracking Compton Camera” (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics. PMID:28155870

  3. Establishment of Imaging Spectroscopy of Nuclear Gamma-Rays based on Geometrical Optics.

    PubMed

    Tanimori, Toru; Mizumura, Yoshitaka; Takada, Atsushi; Miyamoto, Shohei; Takemura, Taito; Kishimoto, Tetsuro; Komura, Shotaro; Kubo, Hidetoshi; Kurosawa, Shunsuke; Matsuoka, Yoshihiro; Miuchi, Kentaro; Mizumoto, Tetsuya; Nakamasu, Yuma; Nakamura, Kiseki; Parker, Joseph D; Sawano, Tatsuya; Sonoda, Shinya; Tomono, Dai; Yoshikawa, Kei

    2017-02-03

    Since the discovery of nuclear gamma-rays, its imaging has been limited to pseudo imaging, such as Compton Camera (CC) and coded mask. Pseudo imaging does not keep physical information (intensity, or brightness in Optics) along a ray, and thus is capable of no more than qualitative imaging of bright objects. To attain quantitative imaging, cameras that realize geometrical optics is essential, which would be, for nuclear MeV gammas, only possible via complete reconstruction of the Compton process. Recently we have revealed that "Electron Tracking Compton Camera" (ETCC) provides a well-defined Point Spread Function (PSF). The information of an incoming gamma is kept along a ray with the PSF and that is equivalent to geometrical optics. Here we present an imaging-spectroscopic measurement with the ETCC. Our results highlight the intrinsic difficulty with CCs in performing accurate imaging, and show that the ETCC surmounts this problem. The imaging capability also helps the ETCC suppress the noise level dramatically by ~3 orders of magnitude without a shielding structure. Furthermore, full reconstruction of Compton process with the ETCC provides spectra free of Compton edges. These results mark the first proper imaging of nuclear gammas based on the genuine geometrical optics.

  4. The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies

    NASA Astrophysics Data System (ADS)

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  5. The Advanced Gamma-ray Imaging System (AGIS): Topological Array Trigger

    NASA Astrophysics Data System (ADS)

    Smith, Andrew W.

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of the telescopes and on the triggering and readout systems for AGIS. To maximize the capabilities of large arrays of IACTs with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We outline the status of the development of a stereoscopic array trigger that calculates image parameters and correlates them across a subset of telescopes. Field Programmable Gate Arrays (FPGAs) implement the real-time pattern recognition to suppress cosmic rays and night-sky background events. A proof of principle system is being developed to run at camera trigger rates up to 10MHz and array-level rates up to 10kHz.

  6. A balloon-borne payload for imaging hard X-rays and gamma rays from solar flares

    NASA Technical Reports Server (NTRS)

    Crannell, Carol J.; Dennis, Brian R.; Orwig, Larry E.; Schmahl, Edward J.; Lang, Frederic L.; Starr, Richard; Norris, Jay P.; Greene, Michael E.; Hurford, Gordon J.; Johnson, W. N.

    1991-01-01

    Hard X-rays and gamma rays provide direct evidence of the roles of accelerated particles in solar flares. An approach that employs a spatial Fourier-transform technique for imaging the sources of these emissions is described, and the development of a balloon-borne imaging device based on this instrumental technique is presented. The detectors, together with the imaging optics, are sensitive to hard X-ray and gamma-ray emission in the energy-range from 20 to 700 keV. This payload, scheduled for its first flight in June 1992, will provide 11-arc second angular resolution and millisecond time resolution with a whole-sun field of view. For subsequent flights, the effective detector area can be increased by as much as a factor of four, and imaging optics with angular resolution as fine as 2 arcsec can be added to the existing gondola and metering structures.

  7. Ultralow-dose, feedback imaging with laser-Compton X-ray and laser-Compton gamma ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    Ultralow-dose, x-ray or gamma-ray imaging is based on fast, electronic control of the output of a laser-Compton x-ray or gamma-ray source (LCXS or LCGS). X-ray or gamma-ray shadowgraphs are constructed one (or a few) pixel(s) at a time by monitoring the LCXS or LCGS beam energy required at each pixel of the object to achieve a threshold level of detectability at the detector. An example provides that once the threshold for detection is reached, an electronic or optical signal is sent to the LCXS/LCGS that enables a fast optical switch that diverts, either in space or time the laser pulsesmore » used to create Compton photons. In this way, one prevents the object from being exposed to any further Compton x-rays or gamma-rays until either the laser-Compton beam or the object are moved so that a new pixel location may be illumination.« less

  8. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    PubMed

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  9. Developments in mercuric iodide gamma ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patt, B.E.; Beyerle, A.G.; Dolin, R.C.

    A mercuric iodide gamma-ray imaging array and camera system previously described has been characterized for spatial and energy resolution. Based on this data a new camera is being developed to more fully exploit the potential of the array. Characterization results and design criterion for the new camera will be presented. 2 refs., 7 figs.

  10. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  11. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.« less

  12. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF

    PubMed Central

    Lemieux, Daniel A.; Baudet, Camille; Grim, Gary P.; Barber, H. Bradford; Miller, Brian W.; Fasje, David; Furenlid, Lars R.

    2013-01-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world’s leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, 12C(n,n’γ)12C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10−3 of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented. PMID:23420688

  13. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF

    NASA Astrophysics Data System (ADS)

    Lemieux, Daniel A.; Baudet, Camille; Grim, Gary P.; Barber, H. Bradford; Miller, Brian W.; Fasje, David; Furenlid, Lars R.

    2011-09-01

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, 12C(n,n'γ)12C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10-3 of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.

  14. Investigation of the possibility of gamma-ray diagnostic imaging of target compression at NIF.

    PubMed

    Lemieux, Daniel A; Baudet, Camille; Grim, Gary P; Barber, H Bradford; Miller, Brian W; Fasje, David; Furenlid, Lars R

    2011-09-23

    The National Ignition Facility at Lawrence Livermore National Laboratory is the world's leading facility to study the physics of igniting plasmas. Plasmas of hot deuterium and tritium, undergo d(t,n)α reactions that produce a 14.1 MeV neutron and 3.5 MeV a particle, in the center of mass. As these neutrons pass through the materials surrounding the hot core, they may undergo subsequent (n,x) reactions. For example, (12)C(n,n'γ)(12)C reactions occur in remnant debris from the polymer ablator resulting in a significant fluence of 4.44 MeV gamma-rays. Imaging of these gammas will enable the determination of the volumetric size and symmetry of the ablation; large size and high asymmetry is expected to correlate with poor compression and lower fusion yield. Results from a gamma-ray imaging system are expected to be complimentary to a neutron imaging diagnostic system already in place at the NIF. This paper describes initial efforts to design a gamma-ray imaging system for the NIF using the existing neutron imaging system as a baseline for study. Due to the cross-section and expected range of ablator areal densities, the gamma flux should be approximately 10(-3) of the neutron flux. For this reason, care must be taken to maximize the efficiency of the gamma-ray imaging system because it will be gamma starved. As with the neutron imager, use of pinholes and/or coded apertures are anticipated. Along with aperture and detector design, the selection of an appropriate scintillator is discussed. The volume of energy deposition of the interacting 4.44 MeV gamma-rays is a critical parameter limiting the imaging system spatial resolution. The volume of energy deposition is simulated with GEANT4, and plans to measure the volume of energy deposition experimentally are described. Results of tests on a pixellated LYSO scintillator are also presented.

  15. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  16. Coded-aperture imaging of the Galactic center region at gamma-ray energies

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Grunsfeld, John M.; Heindl, William A.; Palmer, David M.; Prince, Thomas A.

    1991-01-01

    The first coded-aperture images of the Galactic center region at energies above 30 keV have revealed two strong gamma-ray sources. One source has been identified with the X-ray source IE 1740.7 - 2942, located 0.8 deg away from the nucleus. If this source is at the distance of the Galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV. The second source is consistent in location with the X-ray source GX 354 + 0 (MXB 1728-34). In addition, gamma-ray flux from the location of GX 1 + 4 was marginally detected at a level consistent with other post-1980 measurements. No significant hard X-ray or gamma-ray flux was detected from the direction of the Galactic nucleus or from the direction of the recently discovered gamma-ray source GRS 1758-258.

  17. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an

  18. Telescope for x ray and gamma ray studies in astrophysics

    NASA Technical Reports Server (NTRS)

    Weaver, W. D.; Desai, Upendra D.

    1993-01-01

    Imaging of x-rays has been achieved by various methods in astrophysics, nuclear physics, medicine, and material science. A new method for imaging x-ray and gamma-ray sources avoids the limitations of previously used imaging devices. Images are formed in optical wavelengths by using mirrors or lenses to reflect and refract the incoming photons. High energy x-ray and gamma-ray photons cannot be reflected except at grazing angles and pass through lenses without being refracted. Therefore, different methods must be used to image x-ray and gamma-ray sources. Techniques using total absorption, or shadow casting, can provide images in x-rays and gamma-rays. This new method uses a coder made of a pair of Fresnel zone plates and a detector consisting of a matrix of CsI scintillators and photodiodes. The Fresnel zone plates produce Moire patterns when illuminated by an off-axis source. These Moire patterns are deconvolved using a stepped sine wave fitting or an inverse Fourier transform. This type of coder provides the capability of an instantaneous image with sub-arcminute resolution while using a detector with only a coarse position-sensitivity. A matrix of the CsI/photodiode detector elements provides the necessary coarse position-sensitivity. The CsI/photodiode detector also allows good energy resolution. This imaging system provides advantages over previously used imaging devices in both performance and efficiency.

  19. Characteristics of Gamma-Ray Loud Blazars in the VLBA Imaging and Polarimetry Survey

    NASA Technical Reports Server (NTRS)

    Linford, J. D.; Taylor, G. B.; Romani, R. W.; Healey, S. E.; Helmboldt, J. F.; Readhead, A. C.; Reeves, R.; Richards, J. L.; Cotter, G.

    2010-01-01

    The radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been observed as part of the VLBA Imaging and Polarimetry Survey. This large, flux-limited sample of active galactic nuclei (AGNs) provides insights into the mechanism that produces strong gamma-ray emission. At lower flux levels, radio flux density does not directly correlate with gamma-ray flux. We find that the LAT-detected BL Lac objects tend to be similar to the non-LAT BL Lac objects, but that the LAT-detected FSRQs are often significantly different from the non-LAT FSRQs. The differences between the gamma-ray loud and quiet FSRQS can be explained by Doppler boosting; these objects appear to require larger Doppler factors than those of the BL Lac objects. It is possible that the gamma-ray loud FSRQs are fundamentally different from the gamma-ray quiet FSRQs. Strong polarization at the base of the jet appears to be a signature for gamma-ray loud AGNs.

  20. Gamma-ray Astrophysics with AGILE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; Tavani, M.; Barbiellini, G.

    2007-07-12

    AGILE will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational in spring 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources. Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a large field of view coveringmore » {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV AGILE is now (March 2007) undergoing launcher integration and testing. The PLSV launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  1. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration

    2008-03-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.

  2. Gamma-ray astronomy: From Fermi up to the HAWC high-energy {gamma}-ray observatory in Sierra Negra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carraminana, Alberto; Collaboration: HAWC Collaboration

    Gamma-rays represent the most energetic electromagnetic window for the study of the Universe. They are studied both from space at MeV and GeV energies, with instruments like the Fermi{gamma}-ray Space Telescope, and at TeV energies with ground based instruments profiting of particle cascades in the atmosphere and of the Cerenkov radiation of charged particles in the air or in water. The Milagro gamma-ray observatory represented the first instrument to successfully implement the water Cerenkov technique for {gamma}-ray astronomy, opening the ground for the more sensitive HAWC {gamma}-ray observatory, currently under development in the Sierra Negra site and already providing earlymore » science results.« less

  3. Quantitative criteria for assessment of gamma-ray imager performance

    NASA Astrophysics Data System (ADS)

    Gottesman, Steve; Keller, Kristi; Malik, Hans

    2015-08-01

    In recent years gamma ray imagers such as the GammaCamTM and Polaris have demonstrated good imaging performance in the field. Imager performance is often summarized as "resolution", either angular, or spatial at some distance from the imager, however the definition of resolution is not always related to the ability to image an object. It is difficult to quantitatively compare imagers without a common definition of image quality. This paper examines three categories of definition: point source; line source; and area source. It discusses the details of those definitions and which ones are more relevant for different situations. Metrics such as Full Width Half Maximum (FWHM), variations on the Rayleigh criterion, and some analogous to National Imagery Interpretability Rating Scale (NIIRS) are discussed. The performance against these metrics is evaluated for a high resolution coded aperture imager modeled using Monte Carlo N-Particle (MCNP), and for a medium resolution imager measured in the lab.

  4. Imaging observations of SN1987A at gamma-ray energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, W.R.; Palmer, D.M.; Prince, T.A.

    1988-09-25

    The Caltech imaging ..gamma..-ray telescope was launched by balloon from Alice Springs, NT, Australia for observations of SN1987A during the period 18.60--18.87 November 1987 UT. The preliminary results presented here are derived from 8200 seconds of instrument livetime on the supernova and 2500 seconds on the Crab Nebula and pulsar at a float altitude of 37 km. We have obtained the first images of the SN1987A region at ..gamma..-ray energies confirming that the bulk of the ..gamma..-ray emission comes from the supernova and not from LMC X-1. A count excess is detected between 300 and 1300 keV from the directionmore » of the supernova, one third of which comes from energy bands of width 80 and 92 keV centered on 847 and 1238 keV, respectively. The excess can be interpreted as a line photon flux plus scattered photon continuum from the radioactive decay of /sup 56/Co synthesized in the supernova explosion. We compare our data to recent predictions and find it to be consistent with models invoking moderate mixing of core material into the envelope.« less

  5. The Advanced Gamma-ray Imaging System (AGIS) Telescope Optical System Designs

    NASA Astrophysics Data System (ADS)

    Bugaev, V.; Buckley, J.; Diegel, S.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Ramsey, B.; Romani, R.; Vassiliev, V.; Weekes, T.

    2008-12-01

    AGIS is a conceptual design for a future ground-based gamma-ray observatory operating in the energy range 25 GeV-100 TeV, which is based on an array of ~20-100 imaging atmospheric Cherenkov telescopes (IACTs). The desired improvement in sensitivity, angular resolution, and reliability of operation of AGIS imposes demanding technological and cost requirements on the design of the IACTs. We are considering several options for the optical system (OS) of the AGIS telescopes, which include the traditional Davies-Cotton design as well as novel two-mirror design. Emerging mirror production technologies based on replication processes such as cold and hot glass slumping, cured carbon fiber reinforced plastic (CFRP), and electroforming provide new opportunities for cost-effective solutions for the design of the OS.

  6. High-resolution imaging gamma-ray spectroscopy with externally segmented germanium detectors

    NASA Technical Reports Server (NTRS)

    Callas, J. L.; Mahoney, W. A.; Varnell, L. S.; Wheaton, W. A.

    1993-01-01

    Externally segmented germanium detectors promise a breakthrough in gamma-ray imaging capabilities while retaining the superb energy resolution of germanium spectrometers. An angular resolution of 0.2 deg becomes practical by combining position-sensitive germanium detectors having a segment thickness of a few millimeters with a one-dimensional coded aperture located about a meter from the detectors. Correspondingly higher angular resolutions are possible with larger separations between the detectors and the coded aperture. Two-dimensional images can be obtained by rotating the instrument. Although the basic concept is similar to optical or X-ray coded-aperture imaging techniques, several complicating effects arise because of the penetrating nature of gamma rays. The complications include partial transmission through the coded aperture elements, Compton scattering in the germanium detectors, and high background count rates. Extensive electron-photon Monte Carlo modeling of a realistic detector/coded-aperture/collimator system has been performed. Results show that these complicating effects can be characterized and accounted for with no significant loss in instrument sensitivity.

  7. Gamma-Ray Focusing Optics for Small Animal Imaging

    NASA Technical Reports Server (NTRS)

    Pivovaroff, M. J.; Barber, W. C.; Craig, W. W.; Hasegawa, B. H.; Ramsey, B. D.; Taylor, C.

    2004-01-01

    There is a well-established need for high-resolution radionuclide imaging techniques that provide non-invasive measurement of physiological function in small animals. We, therefore, have begun developing a small animal radionuclide imaging system using grazing incidence mirrors to focus low-energy gamma-rays emitted by I-125, and other radionuclides. Our initial prototype optic, fabricated from thermally-formed glass, demonstrated a resolution of 1500 microns, consistent with the performance predicted by detailed simulations. More recently, we have begun constructing mirrors using a replication technique that reduces low spatial frequency errors in the mirror surface, greatly improving the resolution. Each technique offers particular advantages: e.g., multilayer coatings are easily deposited on glass, while superior resolution is possible with replicated optics. Scaling the results from our prototype optics, which only have a few nested shells, to system where the lens has a full complement of several tens of nested shells, a sensitivity of approx. 1 cps/micro Ci is possible, with the exact number dependent on system magnification and radionuclide species. (Higher levels of efficiency can be obtained with multi-optic imaging systems.) The gamma-ray lens will achieve a resolution as good as 100 microns, independent of the final sensitivity. The combination of high spatial resolution and modest sensitivity will enable in vivo single photon emission imaging studies in small animals.

  8. Micro-Slit Collimators for X-Ray/Gamma-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Appleby, Michael; Fraser, Iain; Klinger, Jill

    2011-01-01

    A hybrid photochemical-machining process is coupled with precision stack lamination to allow for the fabrication of multiple ultra-high-resolution grids on a single array substrate. In addition, special fixturing and etching techniques have been developed that allow higher-resolution multi-grid collimators to be fabricated. Building on past work of developing a manufacturing technique for fabricating multi-grid, high-resolution coating modulation collimators for arcsecond and subarcsecond x-ray and gamma-ray imaging, the current work reduces the grid pitch by almost a factor of two, down to 22 microns. Additionally, a process was developed for reducing thin, high-Z (tungsten or molybdenum) from the thinnest commercially available foil (25 microns thick) down to approximately equal to 10 microns thick using precisely controlled chemical etching

  9. The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs

    NASA Astrophysics Data System (ADS)

    Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.

    2008-04-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.

  10. Supernova remnants and pulsar wind nebulae with Imaging Atmospheric Cherenkov Telescopes (IACTs)

    NASA Astrophysics Data System (ADS)

    Eger, Peter

    2015-08-01

    The observation of very-high-energy (VHE, E > 100 GeV) gamma rays is an excellent tool to study the most energetic and violent environments in the Galaxy. This energy range is only accessible with ground-based instruments such as Imaging Atmospheric Cherenkov Telescopes (IACTs) that reconstruct the energy and direction of the primary gamma ray by observing the Cherenkov light from the induced extended air showers in Earths atmosphere. The main goals of Galactic VHE gamma-ray science are the identification of individual sources of cosmic rays (CRs), such as supernova remnants (SNRs), and the study of other extreme astrophysical objects at the highest energies, such as gamma-ray binaries and pulsar wind nebulae (PWNe). One of the main challenges is the discrimination between leptonic and hadronic gamma-ray production channels. To that end, the gamma-ray signal from each individual source needs to be brought into context with the multi-wavelength environment of the astrophysical object in question, particularly with observations tracing the density of the surrounding interstellar medium, or synchrotron radiation from relativistic electrons. In this review presented at the European Cosmic Ray Symposium 2014 (ECRS2014), the most recent developments in the field of Galactic VHE gamma-ray science are highlighted, with particular emphasis on SNRs and PWNe.

  11. Exploring atmospheric radon with airborne gamma-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldoncini, Marica; Albéri, Matteo; Bottardi, Carlo; Minty, Brian; Raptis, Kassandra G. C.; Strati, Virginia; Mantovani, Fabio

    2017-12-01

    222Rn is a noble radioactive gas produced along the 238U decay chain, which is present in the majority of soils and rocks. As 222Rn is the most relevant source of natural background radiation, understanding its distribution in the environment is of great concern for investigating the health impacts of low-level radioactivity and for supporting regulation of human exposure to ionizing radiation in modern society. At the same time, 222Rn is a widespread atmospheric tracer whose spatial distribution is generally used as a proxy for climate and pollution studies. Airborne gamma-ray spectroscopy (AGRS) always treated 222Rn as a source of background since it affects the indirect estimate of equivalent 238U concentration. In this work the AGRS method is used for the first time for quantifying the presence of 222Rn in the atmosphere and assessing its vertical profile. High statistics radiometric data acquired during an offshore survey are fitted as a superposition of a constant component due to the experimental setup background radioactivity plus a height dependent contribution due to cosmic radiation and atmospheric 222Rn. The refined statistical analysis provides not only a conclusive evidence of AGRS 222Rn detection but also a (0.96 ± 0.07) Bq/m3 222Rn concentration and a (1318 ± 22) m atmospheric layer depth fully compatible with literature data.

  12. Gamma ray camera

    DOEpatents

    Perez-Mendez, Victor

    1997-01-01

    A gamma ray camera for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array.

  13. Imaging the Crab nebula when it is flaring in gamma-rays

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2012-10-01

    One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula in September 2010. In April 2011 a similar flare, lasting several days, made the nebula the brightest source in the gamma-ray sky. A critical reassessment of long term behavior of the Crab flux clearly showed that both Agile and Fermi had already detected similar events in October 2007 and February 2009, pointing to a recurrence time of once per year. A HST observing strategy must be set up to react promptly to any possible new brightening of the Crab in gamma rays. In September 2010 we requested a DD observation which was promptly accepted and carried out. However, the lack of a suitable reference image hampered our efforts to pinpoint the sites of possible variability inside the nebula. Thus, while now we ask for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or Fermi missions, we are also organizing a regular {monthly} monitoring of the source both in X-ray and optical through a joint Chandra-HST proposal.

  14. Gamma-ray transfer and energy deposition in supernovae

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Sutherland, Peter G.; Harkness, Robert P.

    1995-01-01

    Solutions to the energy-independent (gray) radiative transfer equations are compared to results of Monte Carlo simulations of the Ni-56 and Co-56 decay gamma-ray energy deposition in supernovae. The comparison shows that an effective, purely absorptive, gray opacity, kappa(sub gamma) approximately (0. 06 +/- 0.01)Y(sub e) sq cm/g, where Y is the total number of electrons per baryon, accurately describes the interaction of gamma-rays with the cool supernova gas and the local gamma-ray energy deposition within the gas. The nature of the gamma-ray interaction process (dominated by Compton scattering in the relativistic regime) creates a weak dependence of kappa(sub gamma) on the optical thickness of the (spherically symmetric) supernova atmosphere: The maximum value of kappa(sub gamma) applies during optically thick conditions when individual gamma-rays undergo multiple scattering encounters and the lower bound is reached at the phase characterized by a total Thomson optical depth to the center of the atmosphere tau(sub e) approximately less than 1. Gamma-ray deposition for Type Ia supernova models to within 10% for the epoch from maximum light to t = 1200 days. Our results quantitatively confirm that the quick and efficient solution to the gray transfer problem provides an accurate representation of gamma-ray energy deposition for a broad range of supernova conditions.

  15. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera.

    PubMed

    Koide, Ayako; Kataoka, Jun; Masuda, Takamitsu; Mochizuki, Saku; Taya, Takanori; Sueoka, Koki; Tagawa, Leo; Fujieda, Kazuya; Maruhashi, Takuya; Kurihara, Takuya; Inaniwa, Taku

    2018-05-25

    Imaging of nuclear gamma-ray lines in the 1-10 MeV range is far from being established in both medical and physical applications. In proton therapy, 4.4 MeV gamma rays are emitted from the excited nucleus of either 12 C* or 11 B* and are considered good indicators of dose delivery and/or range verification. Further, in gamma-ray astronomy, 4.4 MeV gamma rays are produced by cosmic ray interactions in the interstellar medium, and can thus be used to probe nucleothynthesis in the universe. In this paper, we present a high-precision image of 4.4 MeV gamma rays taken by newly developed 3-D position sensitive Compton camera (3D-PSCC). To mimic the situation in proton therapy, we first irradiated water, PMMA and Ca(OH)2 with a 70 MeV proton beam, then we identified various nuclear lines with the HPGe detector. The 4.4 MeV gamma rays constitute a broad peak, including single and double escape peaks. Thus, by setting an energy window of 3D-PSCC from 3 to 5 MeV, we show that a gamma ray image sharply concentrates near the Bragg peak, as expected from the minimum energy threshold and sharp peak profile in the cross section of 12 C(p,p) 12 C*.

  16. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory (GRO) being deployed by the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-37 mission in April 1991. The GRO reentered Earth atmosphere and ended its successful mission in June 2000. For nearly 9 years, the GRO Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center (MSFC), kept an unblinking watch on the universe to alert scientists to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of stars, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in the BATSE science program.

  17. Compton Gamma-Ray Observatory

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This photograph shows the Compton Gamma-Ray Observatory being released from the Remote Manipulator System (RMS) arm aboard the Space Shuttle Atlantis during the STS-35 mission in April 1991. The GRO reentered the Earth's atmosphere and ended its successful mission in June 2000. For nearly 9 years, GRO's Burst and Transient Source Experiment (BATSE), designed and built by the Marshall Space Flight Center, kept an unblinking watch on the universe to alert scientist to the invisible, mysterious gamma-ray bursts that had puzzled them for decades. By studying gamma-rays from objects like black holes, pulsars, quasars, neutron stars, and other exotic objects, scientists could discover clues to the birth, evolution, and death of star, galaxies, and the universe. The gamma-ray instrument was one of four major science instruments aboard the Compton. It consisted of eight detectors, or modules, located at each corner of the rectangular satellite to simultaneously scan the entire universe for bursts of gamma-rays ranging in duration from fractions of a second to minutes. In January 1999, the instrument, via the Internet, cued a computer-controlled telescope at Las Alamos National Laboratory in Los Alamos, New Mexico, within 20 seconds of registering a burst. With this capability, the gamma-ray experiment came to serve as a gamma-ray burst alert for the Hubble Space Telescope, the Chandra X-Ray Observatory, and major gound-based observatories around the world. Thirty-seven universities, observatories, and NASA centers in 19 states, and 11 more institutions in Europe and Russia, participated in BATSE's science program.

  18. Study on detecting spatial distribution of neutrons and gamma rays using a multi-imaging plate system.

    PubMed

    Tanaka, Kenichi; Sakurai, Yoshinori; Endo, Satoru; Takada, Jun

    2014-06-01

    In order to measure the spatial distributions of neutrons and gamma rays separately using the imaging plate, the requirement for the converter to enhance specific component was investigated with the PHITS code. Consequently, enhancing fast neutrons using recoil protons from epoxy resin was not effective due to high sensitivity of the imaging plate to gamma rays. However, the converter of epoxy resin doped with (10)B was found to have potential for thermal and epithermal neutrons, and graphite for gamma rays. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).

  20. A laboratory demonstration of high-resolution hard X-ray and gamma-ray imaging using Fourier-transform techniques

    NASA Technical Reports Server (NTRS)

    Palmer, David; Prince, Thomas A.

    1987-01-01

    A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.

  1. Gamma ray camera

    DOEpatents

    Perez-Mendez, V.

    1997-01-21

    A gamma ray camera is disclosed for detecting rays emanating from a radiation source such as an isotope. The gamma ray camera includes a sensor array formed of a visible light crystal for converting incident gamma rays to a plurality of corresponding visible light photons, and a photosensor array responsive to the visible light photons in order to form an electronic image of the radiation therefrom. The photosensor array is adapted to record an integrated amount of charge proportional to the incident gamma rays closest to it, and includes a transparent metallic layer, photodiode consisting of a p-i-n structure formed on one side of the transparent metallic layer, and comprising an upper p-type layer, an intermediate layer and a lower n-type layer. In the preferred mode, the scintillator crystal is composed essentially of a cesium iodide (CsI) crystal preferably doped with a predetermined amount impurity, and the p-type upper intermediate layers and said n-type layer are essentially composed of hydrogenated amorphous silicon (a-Si:H). The gamma ray camera further includes a collimator interposed between the radiation source and the sensor array, and a readout circuit formed on one side of the photosensor array. 6 figs.

  2. 3D printing in X-ray and Gamma-Ray Imaging: A novel method for fabricating high-density imaging apertures☆

    PubMed Central

    Miller, Brian W.; Moore, Jared W.; Barrett, Harrison H.; Fryé, Teresa; Adler, Steven; Sery, Joe; Furenlid, Lars R.

    2011-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for cost-effective fabrication of custom components in gamma-ray and X-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum are presented. PMID:22199414

  3. Fermi Gamma-Ray Imaging of a Radio Galaxy

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less

  4. Search for TeV gamma ray emission from the Andromeda galaxy

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Akhperjanian, A. G.; Beilicke, M.; Bernlöhr, K.; Bojahr, H.; Bolz, O.; Börst, H.; Coarasa, T.; Contreras, J. L.; Cortina, J.; Denninghoff, S.; Fonseca, V.; Girma, M.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Röhring, A.; Rowell, G. P.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.

    2003-03-01

    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, the Andromeda galaxy (M 31) was surveyed for TeV gamma ray emission. Given the large field of view of the HEGRA telescopes, three pointings were sufficient to cover all of M 31, including also M 32 and NGC 205. No indications for point sources of TeV gamma rays were found. Upper limits are given at a level of a few percent of the Crab flux. A specific search for monoenergetic gamma-ray lines from annihilation of supersymmetric dark matter particles accumulating near the center of M 31 resulted in flux limits in the 10-13 cm-2 s-1 range, well above the predicted MSSM flux levels except for models with pronounced dark-matter spikes or strongly enhanced annihilation rates.

  5. A Monte Carlo simulation study for the gamma-ray/neutron dual-particle imager using rotational modulation collimator (RMC).

    PubMed

    Kim, Hyun Suk; Choi, Hong Yeop; Lee, Gyemin; Ye, Sung-Joon; Smith, Martin B; Kim, Geehyun

    2018-03-01

    The aim of this work is to develop a gamma-ray/neutron dual-particle imager, based on rotational modulation collimators (RMCs) and pulse shape discrimination (PSD)-capable scintillators, for possible applications for radioactivity monitoring as well as nuclear security and safeguards. A Monte Carlo simulation study was performed to design an RMC system for the dual-particle imaging, and modulation patterns were obtained for gamma-ray and neutron sources in various configurations. We applied an image reconstruction algorithm utilizing the maximum-likelihood expectation-maximization method based on the analytical modeling of source-detector configurations, to the Monte Carlo simulation results. Both gamma-ray and neutron source distributions were reconstructed and evaluated in terms of signal-to-noise ratio, showing the viability of developing an RMC-based gamma-ray/neutron dual-particle imager using PSD-capable scintillators.

  6. Technology Needs for Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Gamma ray astronomy is currently in an exciting period of multiple missions and a wealth of data. Results from INTEGRAL, Fermi, AGILE, Suzaku and Swift are making large contributions to our knowledge of high energy processes in the universe. The advances are due to new detector and imaging technologies. The steps to date have been from scintillators to solid state detectors for sensors and from light buckets to coded aperture masks and pair telescopes for imagers. A key direction for the future is toward focusing telescopes pushing into the hard X-ray regime and Compton telescopes and pair telescopes with fine spatial resolution for medium and high energy gamma rays. These technologies will provide finer imaging of gamma-ray sources. Importantly, they will also enable large steps forward in sensitivity by reducing background.

  7. Motion estimation accuracy for visible-light/gamma-ray imaging fusion for portable portal monitoring

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Gee, Timothy F.

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Portable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest. We have constructed a prototype, rapid-deployment portal gamma-ray imaging portal monitor that uses machine vision and gamma-ray imaging to monitor multiple lanes of traffic. Vehicles are detected and tracked by using point detection and optical flow methods as implemented in the OpenCV software library. Points are clustered together but imperfections in the detected points and tracks cause errors in the accuracy of the vehicle position estimates. The resulting errors cause a "blurring" effect in the gamma image of the vehicle. To minimize these errors, we have compared a variety of motion estimation techniques including an estimate using the median of the clustered points, a "best-track" filtering algorithm, and a constant velocity motion estimation model. The accuracy of these methods are contrasted and compared to a manually verified ground-truth measurement by quantifying the rootmean- square differences in the times the vehicles cross the gamma-ray image pixel boundaries compared with a groundtruth manual measurement.

  8. First Flight of the Gamma-Ray Imager Polarimeter for Solar Flares (GRIPS) Instrument

    NASA Technical Reports Server (NTRS)

    Duncan, Nicole; Saint-Hilaire, P.; Shih, A. Y.; Hurford, G. J.; Bain, H. M.; Amman, M.; Mochizuki, A. B.; Hoberman, J.; Olson, J.; Maruca, B. A.; hide

    2016-01-01

    The Gamma-Ray Imager/Polarimeter for Solar ares (GRIPS) instrument is a balloon-borne telescope designed to study solar-flare particle acceleration and transport. We describe GRIPS's first Antarctic long-duration flight in January 2016 and report preliminary calibration and science results. Electron and ion dynamics, particle abundances and the ambient plasma conditions in solar flares can be understood by examining hard X-ray (HXR) and gamma-ray emission (20 keV to 10 MeV). Enhanced imaging, spectroscopy and polarimetry of flare emissions in this energy range are needed to study particle acceleration and transport questions. The GRIPS instrument is specifically designed to answer questions including: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? GRIPS's key technological improvements over the current solar state of the art at HXR/gamma-ray energies, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), include 3D position-sensitive germanium detectors (3D-GeDs) and a single-grid modulation collimator, the multi-pitch rotating modulator (MPRM). The 3D-GeDs have spectral FWHM resolution of a few hundred keV and spatial resolution less than 1cu mm. For photons that Compton scatter, usually greater or equal to 150 keV, the energy deposition sites can be tracked, providing polarization measurements as well as enhanced background reduction through Compton imaging. Each of GRIPS's detectors has 298 electrode strips read out with ASIC/FPGA electronics. In GRIPS's energy range, indirect imaging methods provide higher resolution than focusing optics or Compton imaging techniques. The MPRM grid-imaging system has a single-grid design which provides twice the throughput of a bi-grid imaging system

  9. First flight of the Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument

    NASA Astrophysics Data System (ADS)

    Duncan, Nicole; Saint-Hilaire, P.; Shih, A. Y.; Hurford, G. J.; Bain, H. M.; Amman, M.; Mochizuki, B. A.; Hoberman, J.; Olson, J.; Maruca, B. A.; Godbole, N. M.; Smith, D. M.; Sample, J.; Kelley, N. A.; Zoglauer, A.; Caspi, A.; Kaufmann, P.; Boggs, S.; Lin, R. P.

    2016-07-01

    The Gamma-Ray Imager/Polarimeter for Solar flares (GRIPS) instrument is a balloon-borne telescope designed to study solar- are particle acceleration and transport. We describe GRIPS's first Antarctic long-duration flight in January 2016 and report preliminary calibration and science results. Electron and ion dynamics, particle abundances and the ambient plasma conditions in solar flares can be understood by examining hard X-ray (HXR) and gamma-ray emission (20 keV to 10 MeV). Enhanced imaging, spectroscopy and polarimetry of are emissions in this energy range are needed to study particle acceleration and transport questions. The GRIPS instrument is specifically designed to answer questions including: What causes the spatial separation between energetic electrons producing hard X-rays and energetic ions producing gamma-ray lines? How anisotropic are the relativistic electrons, and why can they dominate in the corona? How do the compositions of accelerated and ambient material vary with space and time, and why? GRIPS's key technological improvements over the current solar state of the art at HXR/gamma-ray energies, the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), include 3D position-sensitive germanium detectors (3D-GeDs) and a single-grid modulation collimator, the multi-pitch rotating modulator (MPRM). The 3D-GeDs have spectral FWHM resolution of a few hundred keV and spatial resolution <1 mm3. For photons that Compton scatter, usually > 150 keV, the energy deposition sites can be tracked, providing polarization measurements as well as enhanced background reduction through Compton imaging. Each of GRIPS's detectors has 298 electrode strips read out with ASIC/FPGA electronics. In GRIPS's energy range, indirect imaging methods provide higher resolution than focusing optics or Compton imaging techniques. The MPRM gridimaging system has a single-grid design which provides twice the throughput of a bi-grid imaging system like RHESSI. The grid is

  10. An experimental assessment of the imaging quality of the low energy gamma-ray telescope ZEBRA

    NASA Technical Reports Server (NTRS)

    Butler, R. C.; Caroli, E.; Dicocco, G.; Natalucci, L.; Spada, G.; Spizzichino, A.; Stephen, J. B.; Carter, J. N.; Charalambous, P. M.; Dean, A. J.

    1985-01-01

    One gamma-ray detection plane of the ZEBRA telescope, consisting of nine position sensitive scintillation crystal bars designed to operate over the spectral range 0.2 to 10 MeV, has been constructed in the laboratory. A series of experimental images has been generated using a scaled down flight pattern mask in conjunction with a diverging gamma-ray beam. Point and extended sources have been imaged in order to assess quantitatively the performance of the system.

  11. FIREFLY: A cubesat mission to study terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Klenzing, J. H.; Rowland, D. E.; Hill, J.; Weatherwax, A. T.

    2009-12-01

    FIREFLY is small satellite mission to investigate the link between atmospheric lightning and terrestrial gamma-ray flashes scheduled to launch in late 2010. The instrumentation includes a Gamma-Ray Detector (GRD), VLF receiver, and photometer. GRD will measure the energy and arrival time of x-ray and gamma-ray photons, as well as the energetic electron flux by using a phoswitch-style layered scintillator. The current status of the instrumentation will be discussed, including laboratory tests and simulations of the GRD. FIREFLY is the second in a series of NSF-funded cubesats designed to study the upper atmosphere.

  12. Investigation of Martian H2O and CO2 via orbital gamma ray spectroscopy

    NASA Technical Reports Server (NTRS)

    Evans, Larry G.; Squyres, Steven W.

    1987-01-01

    The capability of an orbital gamma ray spectrometer to address presently unanswered questions concerning H2O and CO2 on Mars is investigated. The gamma ray signal produced by the Martian atmosphere and by several simple models of Martian surface materials is calculated. Results are reported for: (1) the production of neutrons in the atmosphere and in the subsurface material by cosmic ray interactions, (2) the scattering of neutrons and the resultant neutron energy spectrum and spatial distributions, (3) the reproduction of gamma rays by neutron prompt capture and nonelastic scatter reactions, (4) the production of gamma rays by natural radionuclides, (5) the attenuation of the gamma ray signal by passage through surface materials and the Martian atmosphere, (6) the production of the gamma ray continuum background, and (7) the uncertainty in gamma ray line strengths that results from the combined signal and background observed by the detector.

  13. IR observations in gamma-ray blazars

    NASA Technical Reports Server (NTRS)

    Mahoney, W. A.; Gautier, T. N.; Ressler, M. E.; Wallyn, P.; Durouchoux, P.; Higdon, J. C.

    1997-01-01

    The infrared photometric and spectral observation of five gamma ray blazars in coordination with the energetic gamma ray experiment telescope (EGRET) onboard the Compton Gamma Ray Observatory is reported. The infrared measurements were made with a Cassegrain infrared camera and the mid-infrared large well imager at the Mt. Palomar 5 m telescope. The emphasis is on the three blazars observed simultaneously by EGRET and the ground-based telescope during viewing period 519. In addition to the acquisition of broadband spectral measurements for direct correlation with the 100 MeV EGRET observations, near infrared images were obtained, enabling a search for intra-day variability to be carried out.

  14. Insights into electron and ion acceleration and transport from x-ray and gamma-ray imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Hurford, Gordon J.; Krucker, Samuel

    The previous solar maximum has featured high resolution imaging/spectroscopy observations at hard x-ray and gamma-ray energies by the Reuven Ramaty High Energy Solar/Spectroscopic Imager (RHESSI). Highlights of these observations will be reviewed, along with their impli-cations for our understanding of ion and electron acceleration and transport processes. The results to date have included new insights into the location of the acceleration region and the thick target model, a new appreciation of the significance of x-ray albedo, observation of coronal gamma-ray sources and their implications for electron trapping, and indications of differences in the acceleration and transport between electrons and ions. The role of RHESSI's observational strengths and weaknesses in determining the character of its scientific results will also be discussed and used to identify what aspects of the acceleration and transport processes must await the next generation of instrumentation. The extent to which new instrumentation now under development, such as Solar Orbiter/STIX, GRIPS, and FOXSI, can address these open issues will be outlined.

  15. Impact of an ionic liquid on protein thermodynamics in the presence of cold atmospheric plasma and gamma rays.

    PubMed

    Attri, Pankaj; Kim, Minsup; Choi, Eun Ha; Cho, Art E; Koga, Kazunori; Shiratani, Masaharu

    2017-09-27

    Cold atmospheric plasma and gamma rays are known to have anticancer properties, even though their specific mechanisms and roles as co-solvents during their action are still not clearly understood. Despite the use of gamma rays in cancer therapy, they have oncogenic potential, whereas this has not been observed for plasma treatment (to date). To gain a better understanding, we studied the action of dielectric barrier discharge (DBD) plasma and gamma rays on the myoglobin protein. We analyzed the secondary structure and thermodynamic properties of myoglobin after both treatments. In addition, in the last few years, ammonium ionic liquids (ILs) have revealed their important role in protein folding as co-solvents. In this work, we treated the protein with ammonium ILs such as triethylammonium methanesulfonate (TEMS) and tetrabutylammonium methanesulfonate (TBMS) and later treated this IL-protein solution with DBD plasma and gamma rays. In this study, we show the chemical and thermal denaturation of the protein after plasma and gamma treatments in the presence and absence of ILs using circular dichroism (CD) and UV-vis spectroscopy. Furthermore, we also show the influence of plasma and gamma rays on the secondary structure of myoglobin in the absence and presence of ILs or ILs + urea using CD. Finally, molecular dynamic simulations were conducted to gain deeper insight into how the ILs behave to protect the protein against the hydrogen peroxide generated by the DBD plasma and gamma rays.

  16. Unidentified Gamma-Ray Sources: Hunting Gamma-Ray Blazars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; D'Abrusco, R.; Tosti, G.

    2012-04-02

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of the unidentified {gamma}-ray sources (UGSs). Despite the large improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one third of the Fermi-detected objects are still not associated to low energy counterparts. Recently, using the Wide-field Infrared Survey Explorer (WISE) survey, we discovered that blazars, the rarest class of Active Galactic Nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Basedmore » on this result, we designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated to the UGS sample of the second Fermi {gamma}-ray catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated to {gamma}-ray sources in the 2FGL catalog.« less

  17. UNIDENTIFIED {gamma}-RAY SOURCES: HUNTING {gamma}-RAY BLAZARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Ajello, M.; D'Abrusco, R.

    2012-06-10

    One of the main scientific objectives of the ongoing Fermi mission is unveiling the nature of unidentified {gamma}-ray sources (UGSs). Despite the major improvements of Fermi in the localization of {gamma}-ray sources with respect to the past {gamma}-ray missions, about one-third of the Fermi-detected objects are still not associated with low-energy counterparts. Recently, using the Wide-field Infrared Survey Explorer survey, we discovered that blazars, the rarest class of active galactic nuclei and the largest population of {gamma}-ray sources, can be recognized and separated from other extragalactic sources on the basis of their infrared (IR) colors. Based on this result, wemore » designed an association method for the {gamma}-ray sources to recognize if there is a blazar candidate within the positional uncertainty region of a generic {gamma}-ray source. With this new IR diagnostic tool, we searched for {gamma}-ray blazar candidates associated with the UGS sample of the second Fermi {gamma}-ray LAT catalog (2FGL). We found that our method associates at least one {gamma}-ray blazar candidate as a counterpart to each of 156 out of 313 UGSs analyzed. These new low-energy candidates have the same IR properties as the blazars associated with {gamma}-ray sources in the 2FGL catalog.« less

  18. The Advanced Gamma-ray Imaging System (AGIS): Telescope Optical System Designs

    NASA Astrophysics Data System (ADS)

    Hanna, David S.; Buckley, J. H.; Falcone, A.; Fegan, S.; Finley, J.; Guarino, V.; Kaaret, P.; Krawczynski, H.; Krennrich, F.; Konopelko, A.; Romani, R.; Vassilliev, V.; Optical System Working Group; AGIS Collaboration

    2008-03-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV-200 TeV is based on an array of 50-200 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission we will focus on the optical system (OS) of AGIS telescopes and consider options which include traditional Davies-Cotton and the other prime-focus telescope designs, as well as the novel two-mirror aplanatic OS originally proposed by Schwarzschild. The emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the OS. We initially evaluate capabilities of these mirror fabrication methods for the AGIS project.

  19. Prospects for Dark Matter Measurements with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Buckley, James

    2009-05-01

    AGIS, a concept for a future gamma-ray observatory consisting of an array of 50 atmospheric Cherenkov telescopes, would provide a powerful new tool for determining the nature of dark matter and its role in structure formation in the universe. The advent of more sensitive direct detection experiments, the launch of Fermi and the startup of the LHC make the near future an exciting time for dark matter searches. Indirect measurements of cosmic-ray electrons may already provide a hint of dark matter in our local halo. However, gamma-ray measurements will provide the only means for mapping the dark matter in the halo of our galaxy and other galaxies. In addition, the spectrum of gamma-rays (either direct annihilation to lines or continuum emission from other annihilation channels) will be imprinted with the mass of the dark matter particle, and the particular annihilation channels providing key measurements needed to identify the dark matter particle. While current gamma-ray instruments fall short of the generic sensitivity required to measure the dark matter signal from any sources other than the (confused) region around the Galactic center, we show that the planned AGIS array will have the angular resolution, energy resolution, low threshold energy and large effective area required to detect emission from dark matter annihilation in Galactic substructure or nearby Dwarf spheroidal galaxies.

  20. Characterization and Applications of a CdZnTe-Based Gamma-Ray Imager

    NASA Astrophysics Data System (ADS)

    Galloway, Michelle Lee

    Detection of electromagnetic radiation in the form of gamma rays provides a means to discover the presence of nuclear sources and the occurrence of highly-energetic events that occur in our terrestrial and astrophysical environment. The highly penetrative nature of gamma rays allows for probing into objects and regions that are obscured at other wavelengths. The detection and imaging of gamma rays relies upon an understanding of the ways in which these high-energy photons interact with matter. The applications of gamma-ray detection and imaging are numerous. Astrophysical observation of gamma rays expands our understanding of the Universe in which we live. Terrestrial detection and imaging of gamma rays enable environmental monitoring of radioactivity. This allows for identification and localization of nuclear materials to prevent illicit trafficking and to ultimately protect against harmful acts. This dissertation focusses on the development and characterization of a gamma-ray detection and imaging instrument and explores its capabilities for the aforementioned applications. The High Efficiency Multimode Imager, HEMI, is a prototype instrument that is based on Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The detectors are arranged in a two-planar configuration to allow for both Compton and coded-aperture imaging. HEMI was initially developed as a prototype instrument to demonstrate its capabilities for nuclear threat detection, spectroscopy, and imaging. The 96-detector instrument was developed and fully characterized within the laboratory environment, yielding a system energy resolution of 2.4% FWHM at 662 keV, an angular resolution of 9.5 deg. FWHM at 662 keV in Compton mode, and a 10.6 deg. angular resolution in coded aperture mode. After event cuts, the effective area for Compton imaging of the 662 keV photopeak is 0.1 cm 22. Imaging of point sources in both Compton and coded aperture modes have been demonstrated. The minimum detectable activity of

  1. Hard X-ray and gamma-ray imaging spectroscopy for the next solar maximum

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.; Crannell, C. J.; Dennis, B. R.; Spicer, D. S.; Davis, J. M.; Hurford, G. J.; Lin, R. P.

    1990-01-01

    The objectives and principles are described of a single spectroscopic imaging package that can provide effective imaging in the hard X- and gamma-ray ranges. Called the High-Energy Solar Physics (HESP) mission instrument for solar investigation, the device is based on rotating modulation collimators with germanium semiconductor spectrometers. The instrument is planned to incorporate thick modulation plates, and the range of coverage is discussed. The optics permit the coverage of high-contrast hard X-ray images from small- and medium-sized flares with large signal-to-noise ratios. The detectors allow angular resolution of less than 1 arcsec, time resolution of less than 1 arcsec, and spectral resolution of about 1 keV. The HESP package is considered an effective and important instrument for investigating the high-energy solar events of the near-term future efficiently.

  2. Observation of gamma ray bursts and flares by the EGRET telescope on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Schneid, E. J.; Bertsch, D. L.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Kwok, P. W.; Mattox, J. R.; Sreekumar, P.; Thompson, D. J.; Kanbach, G.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory has observed energetic gamma ray bursts and flares. On May 3, 1991, EGRET detected a gamma ray burst both in the energy measuring NaI (Tl) scintillator and independently in the spark chamber imaging assembly. The NaI spectra were accumulated by a special BURST mode of EGRET. The spectra were measured over a range from 1 to 200 MeV, in three sequential spectra of 1,2, and 4 seconds. During the peak of the burst, six individual gamma rays were detected in the spark chamber, allowing a determination of the burst arrival direction. The intense flares of June were also detected. A solar flare on June 4 was observed to last for several minutes and for a brief time, less than a minute, had significant emission of gamma rays exceeding 150 MeV.

  3. Development of Simultaneous Beta-and-Coincidence-Gamma Imager for Plant Imaging Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuan-Chuan

    2016-09-30

    The goal of this project is to develop a novel imaging system that can simultaneously acquire beta and coincidence gamma images of positron sources in thin objects such as leaves of plants. This hybrid imager can be used to measure carbon assimilation in plants quantitatively and in real-time after C-11 labeled carbon-dioxide is administered. A better understanding of carbon assimilation, particularly under the increasingly elevated atmospheric CO 2 level, is extremely critical for plant scientists who study food crop and biofuel production. Phase 1 of this project is focused on the technology development with 3 specific aims: (1) develop amore » hybrid detector that can detect beta and gamma rays simultaneously; (2) develop an imaging system that can differentiate these two types of radiation and acquire beta and coincidence gamma images in real-time; (3) develop techniques to quantify radiotracer distribution using beta and gamma images. Phase 2 of this project is to apply technologies developed in phase 1 to study plants using positron-emitting radionuclide such as 11C to study carbon assimilation in biofuel plants.« less

  4. High resolution x-ray and gamma ray imaging using diffraction lenses with mechanically bent crystals

    DOEpatents

    Smither, Robert K [Hinsdale, IL

    2008-12-23

    A method for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation is provided. High quality mechanically bent diffracting crystals of 0.1 mm radial width are used for focusing the radiation and directing the radiation to an array of detectors which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for the use of a multi-component high resolution detector array and for narrow source and detector apertures.

  5. Photodetectors for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; Advanced Gamma-ray Imaging System AGIS Collaboration

    2010-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation very high energy gamma-ray observatory. Design goals include an order of magnitude better sensitivity, better angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. Given the scale of AGIS, the camera must be reliable and cost effective. The Schwarzschild-Couder optical design yields a smaller plate scale than present-day Cherenkov telescopes, enabling the use of more compact, multi-pixel devices, including multianode photomultipliers or Geiger avalanche photodiodes. We present the conceptual design of the focal plane for the camera and results from testing candidate! focal plane sensors.

  6. Tycho's Star Shines in Gamma Rays

    NASA Image and Video Library

    2017-12-08

    NASA image relase December 13, 2011 Gamma-rays detected by Fermi's LAT show that the remnant of Tycho's supernova shines in the highest-energy form of light. This portrait of the shattered star includes gamma rays (magenta), X-rays (yellow, green, and blue), infrared (red) and optical data. Credit: Gamma ray, NASA/DOE/Fermi LAT Collaboration; X-ray, NASA/CXC/SAO; Infrared, NASA/JPL-Caltech; Optical, MPIA, Calar Alto, O. Krause et al. and DSS To read more go to: www.nasa.gov/mission_pages/GLAST/news/tycho-star.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  7. Very high-energy gamma rays from gamma-ray bursts.

    PubMed

    Chadwick, Paula M

    2007-05-15

    Very high-energy (VHE) gamma-ray astronomy has undergone a transformation in the last few years, with telescopes of unprecedented sensitivity having greatly expanded the source catalogue. Such progress makes the detection of a gamma-ray burst at the highest energies much more likely than previously. This paper describes the facilities currently operating and their chances for detecting gamma-ray bursts, and reviews predictions for VHE gamma-ray emission from gamma-ray bursts. Results to date are summarized.

  8. A liquid xenon imaging telescope for 1-30 MeV gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Aprile, Elena; Mukherjee, Reshmi; Suzuki, Masayo

    1989-01-01

    A study of the primary scintillation light in liquid xenon excited by 241 Am alpha particles and 207 Bi internal conversion electrons are discussed. The time dependence and the intensity of the light at different field strengths have been measured with a specifically designed chamber, equipped with a CaF sub 2 light transmitting window coupled to a UV sensitive PMT. The time correlation between the fast light signal and the charge signal shows that the scintillation signals produced in liquid xenon by ionizing particles provides an ideal trigger in a Time Projection type LXe detector aiming at full imaging of complex gamma-ray events. Researchers also started Monte Carlo calculations to establish the performance of a LXe imaging telescope for high energy gamma-rays.

  9. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S; Suh, T; Yoon, D

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU).more » Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.« less

  10. Recommended Priorities for NASA's Gamma Ray Astronomy Program 1999-2013

    NASA Technical Reports Server (NTRS)

    Carol, Ladd

    1999-01-01

    The Gamma-Ray Astronomy Program Working Group (GRAPWG) recommends priorities for the NASA Gamma-Ray Astronomy Program. The highest priority science topic is nuclear astrophysics and sites of gamma ray line emission. Other high priority topics are gamma ray bursts, hard x-ray emission from accreting black holes and neutron stars, the Advanced Compton Telescope (ACT), the High-resolution Spectroscopic Imager (HSI), and the Energetic X-ray Imaging Survey Telescope (EXIST). The recommendations include special consideration for technology development, TeV astronomy, the ultra-long duration balloon (ULDB) program, the International Space Station, optical telescope support, and data analysis and theory.

  11. The AGILE Mission and Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longo, Francesco; INFN, section of Trieste; Tavani, M.

    2007-05-01

    The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager and a hard X-ray imager. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing. The AGILE instrument is designed to simultaneously detect and image photons in the 30 MeV - 50 GeV and 15 - 45 keV energy bands with excellent imaging and timing capabilities, and a largemore » field of view covering {approx} 1/5 of the entire sky at energies above 30 MeV. A CsI calorimeter is capable of GRB triggering in the energy band 0.3-50 MeV. The broadband detection of GRBs and the study of implications for particle acceleration and high energy emission are primary goals of the mission. AGILE can image GRBs with 2-3 arcminute error boxes in the hard X-ray range, and provide broadband photon-by photon detection in the 15-45 keV, 03-50 MeV, and 30 MeV-30 GeV energy ranges. Microsecond on-board photon tagging and a {approx} 100 microsecond gamma-ray detection deadtime will be crucial for fast GRB timing. On-board calculated GRB coordinates and energy fluxes will be quickly transmitted to the ground by an ORBCOMM transceiver. AGILE is now (January 2007) undergoing final satellite integration and testing. The PLS V launch is planned in spring 2007. AGILE is then foreseen to be fully operational during the summer of 2007.« less

  12. Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction

    NASA Technical Reports Server (NTRS)

    Gehrels, N.

    1985-01-01

    Instrumental background in balloon-borne gamma-ray spectrometers is presented. The calculations are based on newly available interaction cross sections and new analytic techniques, and are the most detailed and accurate published to date. Results compare well with measurements made in the 20 keV to 10 MeV energy range by the Goddard Low Energy Gamma-ray Spectrometer (LEGS). The principal components of the continuum background in spectrometers with GE detectors and thick active shields are: (1) elastic neutron scattering of atmospheric neutrons on the Ge nuclei; (2) aperture flux of atmospheric and cosmic gamma rays; (3) beta decays of unstable nuclides produced by nuclear interactions of atmospheric protons and neutrons with Ge nuclei; and (4) shield leakage of atmospheric gamma rays. The improved understanding of these components leads to several recommended techniques for reducing the background.

  13. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; AGIS Photodetector Group; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Tajima, H.; Williams, D.

    2008-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfill this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to less than 0.05 deg, i.e. two to three times smaller than the pixel size of current IACT cameras. With finer pixelation and the plan to deploy on the order of 100 telescopes in the AGIS array, the channel count will exceed 1,000,000 imaging pixels. High uniformity and long mean time-to-failure will be important aspects of a successful photodetector technology choice. Here we present alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Results from laboratory testing of MAPMTs and SiPMs are presented along with results from the first incorporation of these devices in cameras on test bed Cherenkov telescopes.

  14. The solar gamma ray and neutron capabilities of COMPTEL on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Ryan, James M.; Lockwood, John A.

    1989-01-01

    The imaging Compton telescope COMPTEL on the Gamma Ray Observatory (GRO) has unusual spectroscopic capabilities for measuring solar gamma-ray and neutron emission. The launch of the GRO is scheduled for June 1990 near the peak of the sunspot cycle. With a 30 to 40 percent probability for the Sun being in the COMPTEL field-of-view during the sunlit part of an orbit, a large number of flares will be observed above the 800 keV gamma-ray threshold of the telescope. The telescope energy range extends to 30 MeV with high time resolution burst spectra available from 0.1 to 10 MeV. Strong Compton tail suppression of instrumental gamma-ray interactions will facilitate improved spectral analysis of solar flare emissions. In addition, the high signal to noise ratio for neutron detection and measurement will provide new neutron spectroscopic capabilities. Specifically, a flare similar to that of 3 June 1982 will provide spectroscopic data on greater than 1500 individual neutrons, enough to construct an unambiguous spectrum in the energy range of 20 to 200 MeV. Details of the instrument and its response to solar gamma-rays and neutrons will be presented.

  15. The Study of Equilibrium factor between Radon-222 and its Daughters in Bangkok Atmosphere by Gamma-ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Rujiwarodom, Rachanee

    2010-05-01

    To study the Equilibrium between radon-222 and its daughters in Bangkok atmosphere by Gamma-ray spectrometry, air sample were collected on 48 activated charcoal canister and 360 glass fiber filters by using a high volume jet-air sampler during December 2007 to November 2008.The Spectra of gamma-ray were measured by using a HPGe (Hyper Pure Germanium Detector). In the condition of secular equilibrium obtaining between Radon-222 and its decay products, radon-222 on activated charcoal canister and its daughters on glass fiber filters collected in the same time interval were calculated. The equilibrium factor (F) in the open air had a value of 0.38 at the minimum ,and 0.75 at the maximum. The average value of equilibrium factor (F) was 0.56±0.12. Based on the results, F had variations with a maximum value in the night to the early morning and decreased in the afternoon. In addition, F was higher in the winter than in the summer. This finding corresponds with the properties of the Earth atmosphere. The equilibrium factor (F) also depended on the concentration of dust in the atmosphere. People living in Bangkok were exposed to average value of 30 Bq/m3 of Radon-222 in the atmosphere. The equilibrium factor (0.56±0.12) and the average value of Radon-222 showed that people were exposed to alpha energy from radon-222 and its daughters decay at 0.005 WL(Working Level) which is lower than the safety standard at 0.02 WL. Keywords: Radon, Radon daughters , equilibrium factor, Gamma -ray spectrum analysis ,Bangkok ,Thailand

  16. AGATE: A High Energy Gamma-Ray Telescope Using Drift Chambers

    NASA Astrophysics Data System (ADS)

    Mukherjee, R.; Dingus, B. L.; Esposito, J. A.; Bertsch, D. L.; Cuddapah, R.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Thompson, D. J.

    1996-01-01

    The exciting results from the highly successful Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory (CGRO) has contributed significantly to increasing our understanding of high energy gamma-ray astronomy. A follow-on mission to EGRET is needed to continue these scientific advances as well as to address the several new scientific questions raised by EGRET. Here we describe the work being done on the development of the Advanced Gamma-Ray Astronomy Telescope Experiment (AGATE), visualized as the successor to EGRET. In order to achieve the scientific goals, AGATE will have higher sensitivity than EGRET in the energy range 30 MeV to 30 GeV, larger effective area, better angular resolution, and an extended low and high energy range. In its design, AGATE will follow the tradition of the earlier gamma-ray telescopes, SAS-2, COS B, and EGRET, and will have the same four basic components of an anticoincidence system, directional coincidence system, track imaging, and energy measurement systems. However, due to its much larger size, AGATE will use drift chambers as its track imaging system rather than the spark chambers used by EGRET. Drift chambers are an obvious choice as they have less deadtime per event, better spatial resolution, and are relatively easy and inexpensive to build. Drift chambers have low power requirements, so that many layers of drift chambers can be included. To test the feasibility of using drift chambers, we have constructed a prototype instrument consisting of a stack of sixteen 1/2m × 1/2m drift chambers and have measured the spatial resolution using atmospheric muons. The results on the drift chamber performance in the laboratory are presented here.

  17. GeV-gamma-ray emission regions

    NASA Image and Video Library

    2017-12-08

    NASA's Fermi Closes on Source of Cosmic Rays New images from NASA's Fermi Gamma-ray Space Telescope show where supernova remnants emit radiation a billion times more energetic than visible light. The images bring astronomers a step closer to understanding the source of some of the universe's most energetic particles -- cosmic rays. Fermi mapped GeV-gamma-ray emission regions (magenta) in the W44 supernova remnant. The features clearly align with filaments detectable in other wavelengths. This composite merges X-rays (blue) from the Germany-led ROSAT mission, infrared (red) from NASA's Spitzer Space Telescope, and radio (orange) from the Very Large Array near Socorro, N.M. Credit: NASA/DOE/Fermi LAT Collaboration, ROSAT, JPL-Caltech, and NRAO/AUI For more information: www.nasa.gov/mission_pages/GLAST/news/cosmic-rays-source....

  18. Camera Concepts for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Nepomuk Otte, Adam

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Each telescope is equipped with a camera that detects and records the Cherenkov-light flashes from air showers. The camera is comprised of a pixelated focal plane of blue sensitive and fast (nanosecond) photon detectors that detect the photon signal and convert it into an electrical one. The incorporation of trigger electronics and signal digitization into the camera are under study. Given the size of AGIS, the camera must be reliable, robust, and cost effective. We are investigating several directions that include innovative technologies such as Geiger-mode avalanche-photodiodes as a possible detector and switched capacitor arrays for the digitization.

  19. Gamma-ray imaging system for real-time measurements in nuclear waste characterisation

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Albiol Colomer, F.; Corbi Bellot, A.; Domingo-Pardo, C.; Leganés Nieto, J. L.; Agramunt Ros, J.; Contreras, P.; Monserrate, M.; Olleros Rodríguez, P.; Pérez Magán, D. L.

    2018-03-01

    A compact, portable and large field-of-view gamma camera that is able to identify, locate and quantify gamma-ray emitting radioisotopes in real-time has been developed. The device delivers spectroscopic and imaging capabilities that enable its use it in a variety of nuclear waste characterisation scenarios, such as radioactivity monitoring in nuclear power plants and more specifically for the decommissioning of nuclear facilities. The technical development of this apparatus and some examples of its application in field measurements are reported in this article. The performance of the presented gamma-camera is also benchmarked against other conventional techniques.

  20. The gamma-ray Cherenkov telescope for the Cherenkov telescope array

    NASA Astrophysics Data System (ADS)

    Tibaldo, L.; Abchiche, A.; Allan, D.; Amans, J.-P.; Armstrong, T. P.; Balzer, A.; Berge, D.; Boisson, C.; Bousquet, J.-J.; Brown, A. M.; Bryan, M.; Buchholtz, G.; Chadwick, P. M.; Costantini, H.; Cotter, G.; Daniel, M. K.; De Franco, A.; De Frondat, F.; Dournaux, J.-L.; Dumas, D.; Ernenwein, J.-P.; Fasola, G.; Funk, S.; Gironnet, J.; Graham, J. A.; Greenshaw, T.; Hervet, O.; Hidaka, N.; Hinton, J. A.; Huet, J.-M.; Jankowsky, D.; Jegouzo, I.; Jogler, T.; Kraus, M.; Lapington, J. S.; Laporte, P.; Lefaucheur, J.; Markoff, S.; Melse, T.; Mohrmann, L.; Molyneux, P.; Nolan, S. J.; Okumura, A.; Osborne, J. P.; Parsons, R. D.; Rosen, S.; Ross, D.; Rowell, G.; Rulten, C. B.; Sato, Y.; Sayède, F.; Schmoll, J.; Schoorlemmer, H.; Servillat, M.; Sol, H.; Stamatescu, V.; Stephan, M.; Stuik, R.; Sykes, J.; Tajima, H.; Thornhill, J.; Trichard, C.; Vink, J.; Watson, J. J.; White, R.; Yamane, N.; Zech, A.; Zink, A.; Zorn, J.; CTA Consortium

    2017-01-01

    The Cherenkov Telescope Array (CTA) is a forthcoming ground-based observatory for very-high-energy gamma rays. CTA will consist of two arrays of imaging atmospheric Cherenkov telescopes in the Northern and Southern hemispheres, and will combine telescopes of different types to achieve unprecedented performance and energy coverage. The Gamma-ray Cherenkov Telescope (GCT) is one of the small-sized telescopes proposed for CTA to explore the energy range from a few TeV to hundreds of TeV with a field of view ≳ 8° and angular resolution of a few arcminutes. The GCT design features dual-mirror Schwarzschild-Couder optics and a compact camera based on densely-pixelated photodetectors as well as custom electronics. In this contribution we provide an overview of the GCT project with focus on prototype development and testing that is currently ongoing. We present results obtained during the first on-telescope campaign in late 2015 at the Observatoire de Paris-Meudon, during which we recorded the first Cherenkov images from atmospheric showers with the GCT multi-anode photomultiplier camera prototype. We also discuss the development of a second GCT camera prototype with silicon photomultipliers as photosensors, and plans toward a contribution to the realisation of CTA.

  1. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    NASA Astrophysics Data System (ADS)

    Byrum, Karen L.; Vassiliev, V.; AGIS Collaboration

    2010-03-01

    AGIS is a concept for the next-generation ground-based gamma-ray observatory. It will be an array of 36 imaging atmospheric Cherenkov telescopes (IACTs) sensitive in the energy range from 50 GeV to 200 TeV. The required improvements in sensitivity, angular resolution, and reliability of operation relative to the present generation instruments imposes demanding technological and cost requirements on the design of AGIS telescopes. In this submission, we outline the status of the development of the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic telescope. This design can provide a field of view and angular resolution significantly better to those offered by the traditional Davies-Cotton optics utilized in present-day IACTs. Other benefits of the novel design include isochronous focusing and compatibility with cost-effective, high quantum efficiency image sensors such as multi-anode PMTs, silicon PMTs (SiPMs), or image intensifiers.

  2. Design of Dual-Road Transportable Portal Monitoring System for Visible Light and Gamma-Ray Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karnowski, Thomas Paul; Cunningham, Mark F; Goddard Jr, James Samuel

    2010-01-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they entermore » and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third alignment camera for motion compensation and are mounted on a 50 deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.« less

  3. Design of dual-road transportable portal monitoring system for visible light and gamma-ray imaging

    NASA Astrophysics Data System (ADS)

    Karnowski, Thomas P.; Cunningham, Mark F.; Goddard, James S.; Cheriyadat, Anil M.; Hornback, Donald E.; Fabris, Lorenzo; Kerekes, Ryan A.; Ziock, Klaus-Peter; Bradley, E. Craig; Chesser, J.; Marchant, W.

    2010-04-01

    The use of radiation sensors as portal monitors is increasing due to heightened concerns over the smuggling of fissile material. Transportable systems that can detect significant quantities of fissile material that might be present in vehicular traffic are of particular interest, especially if they can be rapidly deployed to different locations. To serve this application, we have constructed a rapid-deployment portal monitor that uses visible-light and gamma-ray imaging to allow simultaneous monitoring of multiple lanes of traffic from the side of a roadway. The system operation uses machine vision methods on the visible-light images to detect vehicles as they enter and exit the field of view and to measure their position in each frame. The visible-light and gamma-ray cameras are synchronized which allows the gamma-ray imager to harvest gamma-ray data specific to each vehicle, integrating its radiation signature for the entire time that it is in the field of view. Thus our system creates vehicle-specific radiation signatures and avoids source confusion problems that plague non-imaging approaches to the same problem. Our current prototype instrument was designed for measurement of upto five lanes of freeway traffic with a pair of instruments, one on either side of the roadway. Stereoscopic cameras are used with a third "alignment" camera for motion compensation and are mounted on a 50' deployable mast. In this paper we discuss the design considerations for the machine-vision system, the algorithms used for vehicle detection and position estimates, and the overall architecture of the system. We also discuss system calibration for rapid deployment. We conclude with notes on preliminary performance and deployment.

  4. Spectroscopic CZT detectors development for x- and gamma-ray imaging instruments

    NASA Astrophysics Data System (ADS)

    Quadrini, Egidio M.; Uslenghi, Michela; Alderighi, Monica; Casini, Fabio; D'Angelo, Sergio; Fiorini, Mauro; La Palombara, Nicola; Mancini, Marcello; Monti, Serena; Bazzano, Angela; Di Cosimo, Sergio; Frutti, Massimo; Natalucci, Lorenzo; Ubertini, Pietro; Guadalupi, Giuseppe M.; Sassi, Matteo; Negri, Barbara

    2007-09-01

    In the context of R&D studies financed by the Italian Space Agency (ASI), a feasibility study to evaluate the Italian Industry interest in medium-large scale production of enhanced CZT detectors has been performed by an Italian Consortium. The R&D investment aims at providing in-house source of high quality solid state spectrometers for Space Astrophysics applications. As a possible spin-off industrial applications to Gamma-ray devices for non-destructive inspections in medical, commercial and security fields have been considered by ASI. The short term programme mainly consists of developing proprietary procedures for 2-3" CZT crystals growth, including bonding and contact philosophy, and a newly designed low-power electronics readout chain. The prototype design and breadboarding is based on a fast signal AD conversion with the target in order to perform a new run for an already existing low-power (<0.7 mW/pixel) ASIC. The prototype also provides digital photon energy reconstruction with particular care for multiple events and polarimetry evaluations. Scientific requirement evaluations for Space Astrophysics Satellite applications have been carried out in parallel, targeted to contribute to the ESA Cosmic Vision 2015-2025 Announcement of Opportunity. Detailed accommodation studies are undergoing, as part of this programme, to size a "Large area arcsecond angular resolution Imager" for the Gamma Ray Imager satellite (Knödlseder et al., this conference).and a new Gamma-ray Wide Field Camera for the "EDGE" proposal (Piro et al., this conference). Finally, an extended market study for cost analysis evaluation in view of the foreseen massive detector production has been performed.

  5. Multiwavelength observations of a VHE gamma-ray flare from PKS 1510-089 in 2015

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zarić, D.; Desiante, R.; Becerra González, J.; D'Ammando, F.; Larsson, S.; Raiteri, C. M.; Reinthal, R.; Lähteenmäki, A.; Järvelä, E.; Tornikoski, M.; Ramakrishnan, V.; Jorstad, S. G.; Marscher, A. P.; Bala, V.; MacDonald, N. R.; Kaur, N.; Sameer; Baliyan, K.; Acosta-Pulido, J. A.; Lazaro, C.; Martí-nez-Lombilla, C.; Grinon-Marin, A. B.; Pastor Yabar, A.; Protasio, C.; Carnerero, M. I.; Jermak, H.; Steele, I. A.; Larionov, V. M.; Borman, G. A.; Grishina, T. S.

    2017-07-01

    Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the very-high-energy (VHE, > 100 GeV) gamma-ray band. Aims: We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ray state. Methods: We performed VHE gamma-ray observations of PKS 1510-089 with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes during a long, high gamma-ray state in May 2015. In order to perform broadband modeling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray, and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results: PKS 1510-089 was detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, owing to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to those obtained during previous measurements of the source. The observed flux variability sets constraints for the first time on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.

  6. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  7. Active neutron and gamma-ray imaging of highly enriched uranium for treaty verification

    DOE PAGES

    Hamel, Michael C.; Polack, J. Kyle; Ruch, Marc L.; ...

    2017-08-11

    The detection and characterization of highly enriched uranium (HEU) presents a large challenge in the non-proliferation field. HEU has a low neutron emission rate and most gamma rays are low energy and easily shielded. To address this challenge, an instrument known as the dual-particle imager (DPI) was used with a portable deuterium-tritium (DT) neutron generator to detect neutrons and gamma rays from induced fission in HEU. We evaluated system response using a 13.7-kg HEU sphere in several configurations with no moderation, high-density polyethylene (HDPE) moderation, and tungsten moderation. A hollow tungsten sphere was interrogated to evaluate the response to amore » possible hoax item. First, localization capabilities were demonstrated by reconstructing neutron and gamma-ray images. Once localized, additional properties such as fast neutron energy spectra and time-dependent neutron count rates were attributed to the items. For the interrogated configurations containing HEU, the reconstructed neutron spectra resembled Watt spectra, which gave confidence that the interrogated items were undergoing induced fission. The time-dependent neutron count rate was also compared for each configuration and shown to be dependent on the neutron multiplication of the item. This result showed that the DPI is a viable tool for localizing and confirming fissile mass and multiplication.« less

  8. Apollo-Soyuz pamphlet no. 2: X-rays, gamma-rays. [experimental design

    NASA Technical Reports Server (NTRS)

    Page, L. W.; From, T. P.

    1977-01-01

    The nature of high energy radiation and its penetration through earth's atmosphere is examined with emphasis on X-rays, gamma rays, and cosmic radiation and the instruments used in their detection. The history of radio astronomy and the capabilities of the Uhuru satellite are summarized. The ASTP soft X-ray experiment (MA-048) designed to study the spectra in the range from 0.1 to 10 keV and survey the background over a large section of the sky is described, as well as the determination of SMC C-1 as an X-ray pulsar. The crystal activation experiment (MA-151) used to measure the radioactive isotopes created by cosmic rays in crystals used for gamma ray detectors is also discussed.

  9. A study of the sensitivity of an imaging telescope (GRITS) for high energy gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Yearian, Mason R.

    1990-01-01

    When a gamma-ray telescope is placed in Earth orbit, it is bombarded by a flux of cosmic protons much greater than the flux of interesting gammas. These protons can interact in the telescope's thermal shielding to produce detectable gamma rays, most of which are vetoed. Since the proton flux is so high, the unvetoed gamma rays constitute a significant background relative to some weak sources. This background increases the observing time required to pinpoint some sources and entirely obscures other sources. Although recent telescopes have been designed to minimize this background, its strength and spectral characteristics were not previously calculated in detail. Monte Carlo calculations are presented which characterize the strength, spectrum and other features of the cosmic proton background using FLUKA, a hadronic cascade program. Several gamma-ray telescopes, including SAS-2, EGRET and the Gamma Ray Imaging Telescope System (GRITS), are analyzed, and their proton-induced backgrounds are characterized. In all cases, the backgrounds are either shown to be low relative to interesting signals or suggestions are made which would reduce the background sufficiently to leave the telescope unimpaired. In addition, several limiting cases are examined for comparison to previous estimates and calibration measurements.

  10. Gammapy: Python toolbox for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph; Donath, Axel; Owen, Ellis; Terrier, Regis; Bühler, Rolf; Armstrong, Thomas

    2017-11-01

    Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA).

  11. Development of a high resolution liquid xenon imaging chamber for gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1991-01-01

    The objective was to develop the technology of liquid xenon (LXe) detectors for spectroscopy and imaging of gamma rays from astrophysical sources emitting in the low to medium energy regime. In particular, the technical challenges and the physical processes relevant to the realization of the LXe detector operated as a Time Projection Chamber (TPC) were addressed and studied. Experimental results were obtained on the following topics: (1) long distance drift of free electrons in LXe (purity); (2) scintillation light yield for electrons and alphas in LXe (triggering); and (3) ionization yield for electrons and gamma rays in LXe (energy resolution). The major results from the investigations are summarized.

  12. An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    NASA Technical Reports Server (NTRS)

    Dacostafereiraneri, A.; Bui-Van, A.; Lavigne, J. M.; Sabaud, C.; Vedrenne, G.; Agrinier, B.; Gouiffes, C.

    1985-01-01

    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range.

  13. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2018-04-17

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  14. Open high-level data formats and software for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Deil, Christoph; Boisson, Catherine; Kosack, Karl; Perkins, Jeremy; King, Johannes; Eger, Peter; Mayer, Michael; Wood, Matthew; Zabalza, Victor; Knödlseder, Jürgen; Hassan, Tarek; Mohrmann, Lars; Ziegler, Alexander; Khelifi, Bruno; Dorner, Daniela; Maier, Gernot; Pedaletti, Giovanna; Rosado, Jaime; Contreras, José Luis; Lefaucheur, Julien; Brügge, Kai; Servillat, Mathieu; Terrier, Régis; Walter, Roland; Lombardi, Saverio

    2017-01-01

    In gamma-ray astronomy, a variety of data formats and proprietary software have been traditionally used, often developed for one specific mission or experiment. Especially for ground-based imaging atmospheric Cherenkov telescopes (IACTs), data and software are mostly private to the collaborations operating the telescopes. However, there is a general movement in science towards the use of open data and software. In addition, the next-generation IACT instrument, the Cherenkov Telescope Array (CTA), will be operated as an open observatory. We have created a Github organisation at https://github.com/open-gamma-ray-astro where we are developing high-level data format specifications. A public mailing list was set up at https://lists.nasa.gov/mailman/listinfo/open-gamma-ray-astro and a first face-to-face meeting on the IACT high-level data model and formats took place in April 2016 in Meudon (France). This open multi-mission effort will help to accelerate the development of open data formats and open-source software for gamma-ray astronomy, leading to synergies in the development of analysis codes and eventually better scientific results (reproducible, multi-mission). This write-up presents this effort for the first time, explaining the motivation and context, the available resources and process we use, as well as the status and planned next steps for the data format specifications. We hope that it will stimulate feedback and future contributions from the gamma-ray astronomy community.

  15. Fast-neutron and gamma-ray imaging with a capillary liquid xenon converter coupled to a gaseous photomultiplier

    NASA Astrophysics Data System (ADS)

    Israelashvili, I.; Coimbra, A. E. C.; Vartsky, D.; Arazi, L.; Shchemelinin, S.; Caspi, E. N.; Breskin, A.

    2017-09-01

    Gamma-ray and fast-neutron imaging was performed with a novel liquid xenon (LXe) scintillation detector read out by a Gaseous Photomultiplier (GPM). The 100 mm diameter detector prototype comprised a capillary-filled LXe converter/scintillator, coupled to a triple-THGEM imaging-GPM, with its first electrode coated by a CsI UV-photocathode, operated in Ne/5%CH4 at cryogenic temperatures. Radiation localization in 2D was derived from scintillation-induced photoelectron avalanches, measured on the GPM's segmented anode. The localization properties of 60Co gamma-rays and a mixed fast-neutron/gamma-ray field from an AmBe neutron source were derived from irradiation of a Pb edge absorber. Spatial resolutions of 12± 2 mm and 10± 2 mm (FWHM) were reached with 60Co and AmBe sources, respectively. The experimental results are in good agreement with GEANT4 simulations. The calculated ultimate expected resolutions for our application-relevant 4.4 and 15.1 MeV gamma-rays and 1-15 MeV neutrons are 2-4 mm and ~ 2 mm (FWHM), respectively. These results indicate the potential applicability of the new detector concept to Fast-Neutron Resonance Radiography (FNRR) and Dual-Discrete-Energy Gamma Radiography (DDEGR) of large objects.

  16. The goals of gamma-ray spectroscopy in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.; Higdon, James C.; Leventhal, Marvin; Ramaty, Reuven; Woosley, Stanford E.

    1990-01-01

    The use of high resolution gamma-ray spectroscopy in astrophysics is discussed with specific attention given to the application of the Nuclear Astrophysics Explorer (NAE). The gamma-ray lines from nuclear transitions in radionucleic decay and positron annihilation permits the study of current sites, rates and models of nucleosynthesis, and galactic structure. Diffuse galactic emission is discussed, and the high-resolution observations of gamma-ray lines from discrete sites are also described. Interstellar mixing and elemental abundances can also be inferred from high-resolution gamma-ray spectroscopy of nucleosynthetic products. Compact objects can also be examined by means of gamma-ray emissions, allowing better understanding of neutron stars and the accreting black hole near the galactic center. Solar physics can also be investigated by examining such features as solar-flare particle acceleration and atmospheric abundances.

  17. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  18. Modeling of Pulses in Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor

    2015-04-01

    Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.

  19. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  20. Predicted TeV Gamma-ray Spectra and Images of Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Reynolds, S. P.

    1999-04-01

    One supernova remnant, SN 1006, is now known to produce synchrotron X-rays (Koyama et al., 1995, Nature, 378, 255), requiring 100 TeV electrons. SN 1006 has also been seen in TeV gamma rays (Tanimori et al., 1998, ApJ, 497, L25), almost certainly due to cosmic-microwave-background photons being upscattered by those same electrons. Other young supernova remnants should also produce high-energy electrons, even if their X-ray synchrotron emission is swamped by conventional thermal X-ray emission. Upper limits to the maximum energy of shock-accelerated electrons can be found for those remnants by requiring that their synchrotron spectrum steepen enough to fall below observed thermal X-rays (Reynolds and Keohane 1999, ApJ, submitted). For those upper-limit spectra, I present predicted TeV inverse-Compton spectra and images for assumed values of the mean remnant magnetic field. Ground-based TeV gamma-ray observations of remnants may be able to put even more severe limits on the presence of highly energetic electrons in remnants, raising problems for conventional theories of galactic cosmic-ray production in supernova remnants. Detections will immediately confirm that SN 1006 is not alone, and will give mean remnant magnetic field strengths.

  1. High Precision Grids for Neutron, Hard X-Ray, and Gamma-Ray Imaging Systems

    NASA Technical Reports Server (NTRS)

    Campbell, Jonathan W. (Inventor)

    2002-01-01

    Fourier telescopes permit observations over a very broad band of energy. They generally include synthetic spatial filtering structures, known as multilayer grids or grid pairs consisting of alternate layers of absorbing and transparent materials depending on whether neutrons or photons are being imaged. For hard x-rays and gamma rays high (absorbing) and low (transparent) atomic number elements, termed high-Z and low-Z materials may be used. Fabrication of these multilayer grid structures is not without its difficulties. Herein the alternate layers of the higher material and the lower material are inserted in a polyhedron, transparent to photons of interest, through an open face of the polyhedron. The inserted layers are then uniformly compressed to form a multilayer grid.

  2. Venus Measurements by the MESSENGER Gamma-Ray and X-Ray Spectrometers

    NASA Astrophysics Data System (ADS)

    Rhodes, E. A.; Starr, R. D.; Goldsten, J. O.; Schlemm, C. E.; Boynton, W. V.

    2007-12-01

    The Gamma-Ray Spectrometer (GRS), which is a part of the Gamma-Ray and Neutron Spectrometer Instrument, and the X-Ray Spectrometer (XRS) on the MESSENGER spacecraft made calibration measurements during the Venus flyby on June 5, 2007. The purpose of these instruments is to determine elemental abundances on the surface of Mercury. The GRS measures gamma-rays emitted from element interactions with cosmic rays impinging on the surface, while the XRS measures X-ray emissions induced on the surface by the incident solar flux. The GRS sensor is a high-resolution high-purity Ge detector cooled by a Stirling cryocooler, surrounded by a borated-plastic anticoincidence shield. The GRS is sensitive to gamma-rays up to ~10 MeV and can identify most major elements, sampling down to depths of about ten centimeters. Only the shield was powered on for this flyby in order to conserve cooler lifetime. Gamma-rays were observed coming from Venus as well as from the spacecraft. Although the Venus gamma-rays originate from its thick atmosphere rather than its surface, the GRS data from this encounter will provide useful calibration data from a source of known composition. In particular, the data will be useful for determining GRS sensitivity and pointing options for the Mercury flybys, the first of which will be in January 2008. The X-ray spectrum of a planetary surface is dominated by a combination of the fluorescence and scattered solar X-rays. The most prominent fluorescent lines are the Kα lines from the major elements Mg, Al, Si, S, Ca, Ti, and Fe (1-10 keV). The sampling depth is less than 100 u m. The XRS is similar in design to experiments flown on Apollo 15 and 16 and the NEAR-Shoemaker mission. Three large-area gas-proportional counters view the planet, and a small Si-PIN detector mounted on the spacecraft sunshade monitors the Sun. The energy resolution of the gas proportional counters (~850 eV at 5.9 keV) is sufficient to resolve the X-ray lines above 2 keV, but Al and Mg

  3. Observation of fluctuation of gamma-ray count rate accompanying thunderstorm activity and energy spectrum of gamma rays in the atmosphere up to several kilometers altitude from the ground

    NASA Astrophysics Data System (ADS)

    Torii, T.; Sanada, Y.; Watanabe, A.

    2017-12-01

    In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.

  4. SU-C-201-03: Coded Aperture Gamma-Ray Imaging Using Pixelated Semiconductor Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, S; Kaye, W; Jaworski, J

    2015-06-15

    Purpose: Improved localization of gamma-ray emissions from radiotracers is essential to the progress of nuclear medicine. Polaris is a portable, room-temperature operated gamma-ray imaging spectrometer composed of two 3×3 arrays of thick CdZnTe (CZT) detectors, which detect gammas between 30keV and 3MeV with energy resolution of <1% FWHM at 662keV. Compton imaging is used to map out source distributions in 4-pi space; however, is only effective above 300keV where Compton scatter is dominant. This work extends imaging to photoelectric energies (<300keV) using coded aperture imaging (CAI), which is essential for localization of Tc-99m (140keV). Methods: CAI, similar to the pinholemore » camera, relies on an attenuating mask, with open/closed elements, placed between the source and position-sensitive detectors. Partial attenuation of the source results in a “shadow” or count distribution that closely matches a portion of the mask pattern. Ideally, each source direction corresponds to a unique count distribution. Using backprojection reconstruction, the source direction is determined within the field of view. The knowledge of 3D position of interaction results in improved image quality. Results: Using a single array of detectors, a coded aperture mask, and multiple Co-57 (122keV) point sources, image reconstruction is performed in real-time, on an event-by-event basis, resulting in images with an angular resolution of ∼6 degrees. Although material nonuniformities contribute to image degradation, the superposition of images from individual detectors results in improved SNR. CAI was integrated with Compton imaging for a seamless transition between energy regimes. Conclusion: For the first time, CAI has been applied to thick, 3D position sensitive CZT detectors. Real-time, combined CAI and Compton imaging is performed using two 3×3 detector arrays, resulting in a source distribution in space. This system has been commercialized by H3D, Inc. and is being acquired

  5. Cosmic Gamma-Rays

    Science.gov Websites

    [Argonne Logo] [DOE Logo] Cosmic Gamma-Rays Home Publications Talks People Students Argonne > ; HEP > Cosmic Gamma-Rays Projects VERITAS Past Projects TrICE What's New CTA Cosmic Gamma-Rays The

  6. A novel Compton camera design featuring a rear-panel shield for substantial noise reduction in gamma-ray images

    NASA Astrophysics Data System (ADS)

    Nishiyama, T.; Kataoka, J.; Kishimoto, A.; Fujita, T.; Iwamoto, Y.; Taya, T.; Ohsuka, S.; Nakamura, S.; Hirayanagi, M.; Sakurai, N.; Adachi, S.; Uchiyama, T.

    2014-12-01

    After the Japanese nuclear disaster in 2011, large amounts of radioactive isotopes were released and still remain a serious problem in Japan. Consequently, various gamma cameras are being developed to help identify radiation hotspots and ensure effective decontamination operation. The Compton camera utilizes the kinematics of Compton scattering to contract images without using a mechanical collimator, and features a wide field of view. For instance, we have developed a novel Compton camera that features a small size (13 × 14 × 15 cm3) and light weight (1.9 kg), but which also achieves high sensitivity thanks to Ce:GAGG scintillators optically coupled wiith MPPC arrays. By definition, in such a Compton camera, gamma rays are expected to scatter in the ``scatterer'' and then be fully absorbed in the ``absorber'' (in what is called a forward-scattered event). However, high energy gamma rays often interact with the detector in the opposite direction - initially scattered in the absorber and then absorbed in the scatterer - in what is called a ``back-scattered'' event. Any contamination of such back-scattered events is known to substantially degrade the quality of gamma-ray images, but determining the order of gamma-ray interaction based solely on energy deposits in the scatterer and absorber is quite difficult. For this reason, we propose a novel yet simple Compton camera design that includes a rear-panel shield (a few mm thick) consisting of W or Pb located just behind the scatterer. Since the energy of scattered gamma rays in back-scattered events is much lower than that in forward-scattered events, we can effectively discriminate and reduce back-scattered events to improve the signal-to-noise ratio in the images. This paper presents our detailed optimization of the rear-panel shield using Geant4 simulation, and describes a demonstration test using our Compton camera.

  7. Multiwavelength Study of Gamma-Ray Bright Blazars

    NASA Astrophysics Data System (ADS)

    Morozova, Daria; Larionov, V. M.; Hagen-Thorn, V. A.; Jorstad, S. G.; Marscher, A. P.; Troitskii, I. S.

    2011-01-01

    We investigate total intensity radio images of 6 gamma-ray bright blazars (BL Lac, 3C 279, 3C 273, W Com, PKS 1510-089, and 3C 66A) and their optical and gamma-ray light curves to study connections between gamma-ray and optical brightness variations and changes in the parsec-scale radio structure. We use high-resolution maps obtained by the BU group at 43 GHz with the VLBA, optical light curves constructed by the St.Petersburg State U. (Russia) team using measurements with the 0.4 m telescope of St.Petersburg State U. (LX200) and the 0.7 m telescope of the Crimean Astrophysical Observatory (AZT-8), and gamma-ray light curves, which we have constructed with data provided by the Fermi Large Area Telescope. Over the period from August 2008 to November 2009, superluminal motion is found in all 6 objects with apparent speed ranging from 2c to 40c. The blazars with faster apparent speeds, 3C 273, 3C 279, PKS 1510-089, and 3C 66A, exhibit stronger variability of the gamma-ray emission. There is a tendency for sources with sharply peaked gamma-ray flares to have faster jet speed than sources with gamma-ray light curves with no sharp peaks. Gamma-ray light curves with sharply peaked gamma-ray flares possess a stronger gamma-ray/optical correlations. The research at St.Petersburg State U. was funded by the Minister of Education and Science of the Russian Federation (state contract N#P123). The research at BU was funded in part by NASA Fermi Guest Investigator grant NNX08AV65G and by NSF grant AST-0907893. The VLBA is an instrument of the National Radio Astronomy Observatory, a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  8. Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    NASA Technical Reports Server (NTRS)

    Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.

  9. Gamma-ray imaging and holdup assays of 235-F PuFF cells 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aucott, T.

    Savannah River National Laboratory (SRNL) Nuclear Measurements (L4120) was tasked with performing enhanced characterization of the holdup in the PuFF shielded cells. Assays were performed in accordance with L16.1-ADS-2460 using two high-resolution gamma-ray detectors. The first detector, an In Situ Object Counting System (ISOCS)-characterized detector, was used in conjunction with the ISOCS Geometry Composer software to quantify grams of holdup. The second detector, a Germanium Gamma-ray Imager (GeGI), was used to visualize the location and relative intensity of the holdup in the cells. Carts and collimators were specially designed to perform optimum assays of the cells. Thick, pencil-beam tungsten collimatorsmore » were fabricated to allow for extremely precise targeting of items of interest inside the cells. Carts were designed with a wide range of motion to position and align the detectors. A total of 24 measurements were made, each typically 24 hours or longer to provide sufficient statistical precision. This report presents the results of the enhanced characterization for cells 1 and 2. The measured gram values agree very well with results from the 2014 study. In addition, images were created using both the 2014 data and the new GeGI data. The GeGI images of the cells walls reveal significant Pu-238 holdup on the surface of the walls in cells 1 and 2. Additionally, holdup is visible in the two pass-throughs from cell 1 to the wing cabinets. This report documents the final element (exterior measurements coupled with gamma-ray imaging and modeling) of the enhanced characterization of cells 1-5 (East Cell Line).« less

  10. Spectrum of Very High Energy Gamma-Rays from the blazar 1ES 1959+650 during Flaring Activity in 2002

    NASA Astrophysics Data System (ADS)

    Daniel, M. K.; Badran, H. M.; Bond, I. H.; Boyle, P. J.; Bradbury, S. M.; Buckley, J. H.; Carter-Lewis, D. A.; Catanese, M.; Celik, O.; Cogan, P.; Cui, W.; D'Vali, M.; de la Calle Perez, I.; Duke, C.; Falcone, A.; Fegan, D. J.; Fegan, S. J.; Finley, J. P.; Fortson, L. F.; Gaidos, J. A.; Gammell, S.; Gibbs, K.; Gillanders, G. H.; Grube, J.; Hall, J.; Hall, T. A.; Hanna, D.; Hillas, A. M.; Holder, J.; Horan, D.; Humensky, T. B.; Jarvis, A.; Jordan, M.; Kenny, G. E.; Kertzman, M.; Kieda, D.; Kildea, J.; Knapp, J.; Kosack, K.; Krawczynski, H.; Krennrich, F.; Lang, M. J.; Le Bohec, S.; Linton, E.; Lloyd-Evans, J.; Milovanovic, A.; Moriarty, P.; Müller, D.; Nagai, T.; Nolan, S.; Ong, R. A.; Pallassini, R.; Petry, D.; Power-Mooney, B.; Quinn, J.; Quinn, M.; Ragan, K.; Rebillot, P.; Reynolds, P. T.; Rose, H. J.; Schroedter, M.; Sembroski, G. H.; Swordy, S. P.; Syson, A.; Vassiliev, V. V.; Wakely, S. P.; Walker, G.; Weekes, T. C.; Zweerink, J.

    2005-03-01

    The blazar 1ES 1959+650 was observed in a flaring state with the Whipple 10 m Imaging Atmospheric Cerenkov Telescope in 2002 May. A spectral analysis has been carried out on the data from that time period, and the resulting very high energy gamma-ray spectrum (E>=316 GeV) can be well fitted by a power law of differential spectral index α=2.78+/-0.12stat+/-0.21sys. On 2002 June 4, the source flared dramatically in the gamma-ray range without any coincident increase in the X-ray emission, providing the first unambiguous example of an ``orphan'' gamma-ray flare from a blazar. The gamma-ray spectrum for these data can also be described by a simple power-law fit with α=2.82+/-0.15stat+/-0.30sys. There is no compelling evidence for spectral variability or for any cutoff to the spectrum.

  11. Solving the Mystery of Short Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2006-01-01

    Gamma-ray bursts are among the most fascinating occurrences in the cosmos. Until this year, the origin of short gamma-ray bursts was a complete mystery. A new NASA satellite named Swift has now captured the first images of these events and found that they are caused by tremendous explosions in the distant universe.

  12. Experimental determination of energy spectrum of atmospheric gamma rays. [0. 9 to 18. 0 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, I.M.; Dutra, S.L.G.; Palmeira, R.A.R.

    The energy spectrum of atmospheric gamma rays from 0.9 to 18.0 MeV was measured as a function of altitude in a series of two balloon flights from Sao Jose dos Campos, Sao Paulo, Brasil (12 GV cut-off rigidity). The detector used was a NaI(T1) crystal with a 1-cm-thick plastic scintillator anti-coincidence shield, connected to a 128-channel pulse height analyzer. Above 20 g/cm/sup 2/ the energy spectrum could be fitted to a power law with exponent 1.0 + or - 0.1 independent of the altitude. From 20 to 760 g/cm/sup 2/ the spectrum was found to be somewhat steeper, with themore » exponential index being 1.3 + or - 0.1. At 3.5 g/cm/sup 2/ the gamma ray flux was 0.30 photons/cm/sup 2/ -s at 1 MeV. These measurements are discussed and compared with calculated results. (auth)« less

  13. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  14. Sneaky Gamma-Rays: Using Gravitational Lensing to Avoid Gamma-Gamma-Absorption

    NASA Astrophysics Data System (ADS)

    Boettcher, Markus; Barnacka, Anna

    2014-08-01

    It has recently been suggested that gravitational lensing studies of gamma-ray blazars might be a promising avenue to probe the location of the gamma-ray emitting region in blazars. Motivated by these prospects, we have investigated potential gamma-gamma absorption signatures of intervening lenses in the very-high-energy gamma-ray emission from lensedblazars. We considered intervening galaxies and individual stars within these galaxies. We find that the collective radiation field of galaxies acting as sources of macrolensing are not expected to lead to significant gamma-gamma absorption. Individual stars within intervening galaxies could, in principle, cause a significant opacity to gamma-gamma absorption for VHE gamma-rays if the impact parameter (the distance of closest approach of the gamma-ray to the center of the star) is small enough. However, we find that the curvature of the photon path due to gravitational lensing will cause gamma-ray photons to maintain a sufficiently large distance from such stars to avoid significant gamma-gamma absorption. This re-inforces the prospect of gravitational-lensing studies of gamma-ray blazars without interference due to gamma-gamma absorption due to the lensing objects.

  15. Wavelet-based techniques for the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  16. Computed radiography as a gamma ray detector—dose response and applications

    NASA Astrophysics Data System (ADS)

    O'Keeffe, D. S.; McLeod, R. W.

    2004-08-01

    Computed radiography (CR) can be used for imaging the spatial distribution of photon emissions from radionuclides. Its wide dynamic range and good response to medium energy gamma rays reduces the need for long exposure times. Measurements of small doses can be performed without having to pre-sensitize the computed radiography plates via an x-ray exposure, as required with screen-film systems. Cassette-based Agfa MD30 and Kodak GP25 CR plates were used in applications involving the detection of gamma ray emissions from technetium-99m and iodine-131. Cassette entrance doses as small as 1 µGy (140 keV gamma rays) produce noisy images, but the images are suitable for applications such as the detection of breaks in radiation protection barriers. A consequence of the gamma ray sensitivity of CR plates is the possibility that some nuclear medicine patients may fog their x-rays if the x-ray is taken soon after their radiopharmaceutical injection. The investigation showed that such fogging is likely to be diffuse.

  17. ESA presents INTEGRAL, its space observatory for Gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    1998-09-01

    A unique opportunity for journalists and cameramen to view INTEGRAL will be provided at ESA/ESTEC, Noordwijk, the Netherlands on Tuesday 22 September. On show will be the full-size structural thermal model which is now beeing examined in ESA's test centre. Following introductions to the project, the INTEGRAL spacecraft can be seen, filmed and photographed in its special clean room environment.. Media representatives wishing to participate in the visit to ESA's test centre and the presentation of INTEGRAL are kindly requested to return by fax the attached registration form to ESA Public relations, Tel. +33 (0) 1.53.69.71.55 - Fax. +33 (0) 1.53.69.76.90. For details please see the attached programme Gamma-ray astronomy - why ? Gamma-rays cannot be detected from the ground since the earth's atmosphere shields us from high energetic radiation. Only space technology has made gamma-astronomy possible. To avoid background radiation effects INTEGRAL will spend most of its time in the orbit outside earth's radiation belts above an altitude of 40'000 km. Gamma-rays are the highest energy form of electromagnetic radiation. Therefore gamma-ray astronomy explores the most energetic phenomena occurring in nature and addresses some of the most fundamental problems in physics. We know for instance that most of the chemical elements in our bodies come from long-dead stars. But how were these elements formed? INTEGRAL will register gamma-ray evidence of element-making. Gamma-rays also appear when matter squirms in the intense gravity of collapsed stars or black holes. One of the most important scientific objectives of INTEGRAL is to study such compact objects as neutron stars or black holes. Besides stellar black holes there may exist much bigger specimens of these extremely dense objects. Most astronomers believe that in the heart of our Milky Way as in the centre of other galaxies there may lurk giant black holes. INTEGRAL will have to find evidence of these exotic objects. Even

  18. The gamma ray north-south effect

    NASA Technical Reports Server (NTRS)

    White, R. S.; O'Neill, T. J.; Tumer, O. T.; Zych, A. D.

    1988-01-01

    Theoretical calculations are presented that explain the balloon observations by O'Neill et al. (1987) of a strong north-south anisotropy of atmospheric gamma rays over the Southern Hemisphere, and to predict the north-south ratios. It is shown that the gamma rays that originate at the longest distances from the telescopes give the largest north-south ratios. Comparisons are made of the experimental north-south ratios measured on balloons launched from Alice Springs, Australia, and from Palestine, Texas, U.S., and predictions are made for ratios at other geomagnetic latitudes and longitudes. It is pointed out that observers who measure backgrounds for celestial sources may be misled unless they correct for the north-south effect.

  19. Ground-based very high energy gamma ray astronomy: Observational highlights

    NASA Technical Reports Server (NTRS)

    Turver, K. E.

    1986-01-01

    It is now more than 20 years since the first ground based gamma ray experiments involving atmospheric Cerenkov radiation were undertaken. The present highlights in observational ground-based very high energy (VHE) gamma ray astronomy and the optimism about an interesting future for the field follow progress in these areas: (1) the detection at increased levels of confidence of an enlarged number of sources so that at present claims were made for the detection, at the 4 to 5 sd level of significance, of 8 point sources; (2) the replication of the claimed detections with, for the first time, confirmation of the nature and detail of the emission; and (3) the extension of gamma ray astronomy to the ultra high energy (UHE) domain. The pattern, if any, to emerge from the list of sources claimed so far is that X-ray binary sources appear to be copious emitters of gamma rays over at least 4 decades of energy. These X-ray sources which behave as VHE and UHE gamma ray emitters are examined.

  20. Observation of pulsed gamma-rays above 25 GeV from the Crab pulsar with MAGIC.

    PubMed

    Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Delgado Mendez, C; Dominguez, A; Dorner, D; Doro, M; Elsässer, D; Errando, M; Fagiolini, M; Ferenc, D; Fernandez, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; Garcia Lopez, R J; Garczarczyk, M; Gaug, M; Goebel, F; Hadasch, D; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; Lopez, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martinez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J; de Jager, O C; de Ona Wilhelmi, E

    2008-11-21

    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 giga-electron volts. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 giga-electron volts, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.

  1. A cosmic gamma-ray burst on May 14, 1975

    NASA Technical Reports Server (NTRS)

    Herzo, D.; Dayton, B.; Zych, A. D.; White, R. S.

    1975-01-01

    A cosmic gamma-ray burst is reported that occurred at 29309.11 s UTC, May 14, 1975. The burst was detected at an atmospheric depth of 4 g/sq cm residual atmosphere with the University of California double scatter gamma-ray telescope launched on a balloon from Palestine, Texas at 1150 UTC, May 13, 1975. The burst was observed both in the single scatter mode by the top liquid scintillator tank in anti-coincidence with the surrounding plastic scintillator and in the double scatter mode from which energy and directional information are obtained. The burst is 24 standard deviations above the background for single scatter events. The total gamma-ray flux in the burst, incident on the atmosphere with photon energy greater than 0.5 MeV, is 0.59 + or - 0.15 photons/sq cm. The initial rise time to 90% of maximum is 0.015 + or - 0.005 s and the duration is 0.11 s. Time structure down to the 5 ms resolution of the telescope is seen. The mean flux over this time period is 5.0 + or - 1.3 photons/sq cm/s and the maximum flux is 8.5 + or - 2.1 photons/sq cm/s.

  2. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  3. High-Resolution Gamma-Ray Imaging Measurements Using Externally Segmented Germanium Detectors

    NASA Technical Reports Server (NTRS)

    Callas, J.; Mahoney, W.; Skelton, R.; Varnell, L.; Wheaton, W.

    1994-01-01

    Fully two-dimensional gamma-ray imaging with simultaneous high-resolution spectroscopy has been demonstrated using an externally segmented germanium sensor. The system employs a single high-purity coaxial detector with its outer electrode segmented into 5 distinct charge collection regions and a lead coded aperture with a uniformly redundant array (URA) pattern. A series of one-dimensional responses was collected around 511 keV while the system was rotated in steps through 180 degrees. A non-negative, linear least-squares algorithm was then employed to reconstruct a 2-dimensional image. Corrections for multiple scattering in the detector, and the finite distance of source and detector are made in the reconstruction process.

  4. Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    D'Andrea, C. P.; D'Andrea, Christopher; Gress, Joseph; Race, Doran

    2003-07-01

    project GRAND is a 100m × 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-p enetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within ±5° of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7σ ) is for the event that was predicted to be the most likely to be observed (GRB 971110).

  5. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  6. A high resolution liquid xenon imaging telescope for 0.3-10 MeV gamma-ray astrophysics: Construction and initial balloon flights

    NASA Technical Reports Server (NTRS)

    Aprile, Elena

    1994-01-01

    An instrument is described which will provide a direct image of gamma-ray line or continuum sources in the energy range 300 keV to 10 MeV. The use of this instrument to study the celestial distribution of the (exp 26)Al isotope by observing the 1.809 MeV deexcitation gamma-ray line is illustrated. The source location accuracy is 2' or better. The imaging telescope is a liquid xenon time projection chamber coupled with a coded aperture mask (LXe-CAT). This instrument will confirm and extend the COMPTEL observations from the Compton Gamma-Ray Observatory (CGRO) with an improved capability for identifying the actual Galactic source or sources of (exp 26)Al, which are currently not known with certainty. sources currently under consideration include red giants on the asymptotic giant branch (AGB), novae, Type 1b or Type 2 supernovae, Wolf-Rayet stars and cosmic-rays interacting in molecular clouds. The instrument could also identify a local source of the celestial 1.809 MeV gamma-ray line, such as a recent nearby supernova.

  7. Long duration gamma-ray emission from thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole A.

    Gamma-ray glows are long duration emission coming from thunderclouds. They are one example of high-energy atmospheric physics, a relatively new field studying high-energy phenomena from thunderstorms and lightning. Glows arise from sustained relativistic runaway electron avalanches (RREA). Gamma-ray instruments on the ground, balloons and airplanes have detected glows. The Airborne Detector for Energetic Lightning Emissions (ADELE) is an array of gamma-ray detectors, built at the University of California, Santa Cruz. ADELE detected 12 gamma-ray glows during its summer 2009 campaign. ADELE was designed to study another type of high-energy atmospheric physics, terrestrial gamma-ray flashes (TGFs). TGFs are incredibly bright, sub-millisecond bursts of gamma-rays coming from thunderstorms. ADELE was installed on NCAR's Gulfstream V for the summer of 2009. While many glows were detected, only one TGF was observed. In this thesis I present a detailed explanation of the 2009 version of ADELE along with the results of the 2009 campaign. ADELE was modified to become a smaller, autonomous instrument to fly on the NASA drone, a Global Hawk. This was a piggyback to NASA's Hurricane and Severe Storm Sentinel mission. These flights took place during the summer of 2013. The following summer, ADELE flew on an Orion P3 as a piggyback of NOAA's Hurricane Hunters. This newer, modified instrument is discussed in detail in this thesis. The 12 gamma-ray glows from the 2009 campaign are presented, with information about nearby lightning activity. I show that lightning activity is suppressed after a glow. This could be from the glow causing the cloud to discharge and therefore reduce the lightning activity. It is also possible that glows can only occur once lightning activity has diminished. Lightning is also used to find a distance to the glow. Using this distance, it is found that the brightness of glow cannot be explained as a function of distance while the duration of the glow is

  8. Gamma-ray tracking method for pet systems

    DOEpatents

    Mihailescu, Lucian; Vetter, Kai M.

    2010-06-08

    Gamma-ray tracking methods for use with granular, position sensitive detectors identify the sequence of the interactions taking place in the detector and, hence, the position of the first interaction. The improved position resolution in finding the first interaction in the detection system determines a better definition of the direction of the gamma-ray photon, and hence, a superior source image resolution. A PET system using such a method will have increased efficiency and position resolution.

  9. Observation of Multi-TeV Gamma Rays from the Crab Nebula using the Tibet Air Shower Array.

    PubMed

    Amenomori; Ayabe; Cao; Danzengluobu; Ding; Feng; Fu; Guo; He; Hibino; Hotta; Huang; Huo; Izu; Jia; Kajino; Kasahara; Katayose; Labaciren; Li; Lu; Lu; Luo; Meng; Mizutani; Mu; Nanjo; Nishizawa; Ohnishi; Ohta; Ouchi; Ren; Saito; Sakata; Sasaki; Shi; Shibata; Shiomi; Shirai; Sugimoto; Taira; Tan; Tateyama; Torii; Utsugi; Wang; Wang; Xu; Yamamoto; Yu; Yuan; Yuda; Zhang; Zhang; Zhang; Zhang; Zhang; Zhaxisangzhu; Zhaxiciren; Zhou; Collaboration)

    1999-11-10

    The Tibet experiment, operating at Yangbajing (4300 m above sea level), is the lowest energy air shower array, and the new high-density array constructed in 1996 is sensitive to gamma-ray air showers at energies as low as 3 TeV. With this new array, the Crab Nebula was observed in multi-TeV gamma-rays and a signal was detected at the 5.5 sigma level. We also obtained the energy spectrum of gamma-rays in the energy region above 3 TeV which partially overlaps those observed with imaging atmospheric Cerenkov telescopes. The Crab spectrum observed in this energy region can be represented by the power-law fit dJ&parl0;E&parr0;&solm0;dE=&parl0;4.61+/-0.90&parr0;x10-12&parl0;E&solm0;3 TeV&parr0;-2.62+/-0.17 cm-2 s-1 TeV-1. This is the first observation of gamma-ray signals from point sources with a conventional air shower array using scintillation detectors.

  10. Basics of Gamma Ray Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinnett, Jacob; Venkataraman, Ram

    The objective of this training is to explain the origin of x-rays and gamma rays, gamma ray interactions with matter, detectors and electronics used in gamma ray-spectrometry, and features of a gamma-ray spectrum for nuclear material that is safeguarded.

  11. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically

  12. Method of incident low-energy gamma-ray direction reconstruction in the GAMMA-400 gamma-ray space telescope

    NASA Astrophysics Data System (ADS)

    Kheymits, M. D.; Leonov, A. A.; Zverev, V. G.; Galper, A. M.; Arkhangelskaya, I. V.; Arkhangelskiy, A. I.; Suchkov, S. I.; Topchiev, N. P.; Yurkin, Yu T.; Bakaldin, A. V.; Dalkarov, O. D.

    2016-02-01

    The GAMMA-400 gamma-ray space-based telescope has as its main goals to measure cosmic γ-ray fluxes and the electron-positron cosmic-ray component produced, theoretically, in dark-matter-particles decay or annihilation processes, to search for discrete γ-ray sources and study them in detail, to examine the energy spectra of diffuse γ-rays — both galactic and extragalactic — and to study gamma-ray bursts (GRBs) and γ-rays from the active Sun. Scientific goals of GAMMA-400 telescope require fine angular resolution. The telescope is of a pair-production type. In the converter-tracker, the incident gamma-ray photon converts into electron-positron pair in the tungsten layer and then the tracks are detected by silicon- strip position-sensitive detectors. Multiple scattering processes become a significant obstacle in the incident-gamma direction reconstruction for energies below several gigaelectronvolts. The method of utilising this process to improve the resolution is proposed in the presented work.

  13. Gamma Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The project has progressed successfully during this period of performance. The highlights of the Gamma Ray Astronomy teams efforts are: (1) Support daily BATSE data operations, including receipt, archival and dissemination of data, quick-look science analysis, rapid gamma-ray burst and transient monitoring and response efforts, instrument state-of-health monitoring, and instrument commanding and configuration; (2) On-going scientific analysis, including production and maintenance of gamma-ray burst, pulsed source and occultation source catalogs, gamma-ray burst spectroscopy, studies of the properties of pulsars and black holes, and long-term monitoring of hard x-ray sources; (3) Maintenance and continuous improvement of BATSE instrument response and calibration data bases; (4) Investigation of the use of solid state detectors for eventual application and instrument to perform all sky monitoring of X-Ray and Gamma sources with high sensitivity; and (5) Support of BATSE outreach activities, including seminars, colloquia and World Wide Web pages. The highlights of this efforts can be summarized in the publications and presentation list.

  14. Development of an omnidirectional gamma-ray imaging Compton camera for low-radiation-level environmental monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Takara; Enomoto, Ryoji; Muraishi, Hiroshi; Katagiri, Hideaki; Kagaya, Mika; Fukushi, Masahiro; Kano, Daisuke; Satoh, Wataru; Takeda, Tohoru; Tanaka, Manobu M.; Tanaka, Souichi; Uchida, Tomohisa; Wada, Kiyoto; Wakamatsu, Ryo

    2018-02-01

    We have developed an omnidirectional gamma-ray imaging Compton camera for environmental monitoring at low levels of radiation. The camera consisted of only six CsI(Tl) scintillator cubes of 3.5 cm, each of which was readout by super-bialkali photo-multiplier tubes (PMTs). Our camera enables the visualization of the position of gamma-ray sources in all directions (∼4π sr) over a wide energy range between 300 and 1400 keV. The angular resolution (σ) was found to be ∼11°, which was realized using an image-sharpening technique. A high detection efficiency of 18 cps/(µSv/h) for 511 keV (1.6 cps/MBq at 1 m) was achieved, indicating the capability of this camera to visualize hotspots in areas with low-radiation-level contamination from the order of µSv/h to natural background levels. Our proposed technique can be easily used as a low-radiation-level imaging monitor in radiation control areas, such as medical and accelerator facilities.

  15. Development of Camera Electronics for the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyasu

    2009-05-01

    AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. We have developed test systems for some of these concepts and are testing their performance. Here we present test results of the test systems.

  16. A Study of Spatially-Coincident IceCube Neutrinos and Fermi Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Seymour, Hannah; Mukherjee, Reshmi; Shaevitz, Michael; Santander, Marcos

    2016-03-01

    The IceCube neutrino telescope has detected very-high-energy neutrino events with energies between several hundred TeV to a few PeV beginning inside the detector. These events are unlikely to have originated in the atmosphere, and are suspected to come from astrophysical sources, the likes of which can also be observed in gamma rays by the Fermi Gamma-Ray Space Telescope. We present an analysis of archival GeV gamma-ray data collected with the Large Area Telescope onboard the Fermi satellite to search for gamma-ray sources spatially coincident with the locations of high-enery muon neutrinos detected by IceCube. The combined detection of gamma rays and neutrinos from an astrophysical source will allow us to identify cosmic-ray acceleration sites. With gratitude to the Nevis Laboratories REU program.

  17. A Search for Microsecond Gamma Ray Bursts From Primordial Black Holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frank Krennrich

    2004-08-12

    The project is called SGARFACE (Short Gamma Ray Front Air Cherenkov Experiment) and is an atmospheric Cherenkov detector to provide sensitivity to short bursts of gamma rays of extraterrestrial origin. The detector is an addition to the Whipple 10m gamma ray telescope on Mt. Hopkins in southern Arizona and uses a digital trigger module for recognizing Cherenkov light flashes from gamma ray bursts. The digital trigger modules have been designed, tested and constructed at Iowa State University and have been installed at the Whipple 10m telescope. Operation of the experiment started in March 2003 and data collecting will likely continuemore » until spring of 2005. A final results paper addressing a search for primordial black holes is likely to be finished by summer of 2005.« less

  18. Periodic gamma-ray emissions from Geminga at or = 10(12) eV

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Rawat, H. S.; Sanecha, V. K.; Rannot, R. C.; Sapru, M.; Tickoo, A. K.; Qazi, R. A.; Bhat, C. L.; Razdan, H.; Tonwar, S. C.

    1985-01-01

    Analysis of data from an atmospheric Cerenkov telescope indicated the periodic emission of gamma rays of energy 10 to the 12th power eV, at 60.25 second period, from 2CG 195+4. The gamma ray flux at 99% confidence level is estimated to be 9.5 x 10 to 12 photons/sq cm/s.

  19. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Williams, David A.; AGIS Collaboration

    2009-01-01

    The spectacular astrophysical discoveries made by the present generation of ground-based gamma-ray observatories have opened a new era in the exploration of the highest energy Universe and have conclusively established the field of very-high-energy (VHE) astronomy, covering the energy regime above about 50 GeV. The detection of nearly 100 galactic and extragalactic sources has generated considerable interest in the astronomy, astrophysics and particle physics communities and has stimulated ambitious ideas and plans for future gamma-ray observatories. AGIS is a concept for a next generation VHE observatory with a collecting area on the scale of a square kilometer being developed by an international collaboration. It would have significantly improved angular and energy resolution, increased field of view, and an order of magnitude increase in sensitivity over existing space or ground-based instruments in the energy range 40 GeV to 100 TeV. The scientific motivations and R&D roadmap for AGIS will be discussed.

  20. Hard X-ray imaging from Explorer

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Murray, S. S.

    1981-01-01

    Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

  1. Development of the instruments for the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Madden, J. J.; Kniffen, D. A.

    1986-01-01

    The Gamma Ray Observatory (GRO) is to be launched in 1988 by the STS. The GRO will feature four very large instruments: the Oriented Scintillation Spectrometer Experiment (OSSE), the Imaging Compton Telescope (COMPTEL), the Energetic Gamma Ray Experiment Telescope (EGRET) and the Burst and Transient Source Experiment (BATSE). The instruments weigh from 900-1200 kg each, and required the development of specialized lifting and dolly devices to permit their assembly, manipulation and testing. The GRO is intended a{s a tool for studying discrete celestial objects such as black holes, neutron stars and other gamma-ray emitting objects, scanning for nucleosynthesis processes, mapping the Galaxy and other, high energy galaxies in terms of gamma rays, searching for cosmological effects and observing gamma ray bursts. The instruments will be sensitive from the upper end mof X-rya wavelengths to the highest energies possible. Details of the hardware and performance specifications of each of the instruments are discussed.

  2. Technology Development for AGIS (Advanced Gamma-ray Imaging System).

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2008-04-01

    Next-generation arrays of atmospheric Cherenkov telescopes are at the conceptual planning stage and each could consist of on the order of 100 telescopes. The two currently-discussed projects AGIS in the US and CTA in Europe, have the potential to achieve an order of magnitude better sensitivity for Very High Energy (VHE) gamma-ray observations over state-to-the-art observatories. These projects require a substantial increase in scale from existing 4-telescope arrays such as VERITAS and HESS. The optimization of a large array requires exploring cost reduction and research and development for the individual elements while maximizing their performance as an array. In this context, the technology development program for AGIS will be discussed. This includes developing new optical designs, evaluating new types of photodetectors, developing fast trigger systems, integrating fast digitizers into highly-pixilated cameras, and reliability engineering of the individual components.

  3. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    NASA Astrophysics Data System (ADS)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  4. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  5. Imaging the Crab nebula when it is flaring in gamma-rays

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2013-10-01

    One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula. Such events, detected roughly once per year, can be very spectacular. Indeed, in April 2011, for a few days the Crab was by far the brightest source in the gamma-ray sky. Such a dramatic variability challenges our understanding of how pulsar wind nebulae work and defies current astrophysical models for particle acceleration. With the aim of locating the site{s} of the flares, an ad hoc HST strategy must be put in place to be prepared and react promptly in case of a new brightening in gamma rays. We ask here for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or Fermi missions. This is a crucial part of a multiwavelength program that we are organizing, based on lessons learnt from our follow-up observations of previous flares, including a regular {monthly} monitoring of the source both in X-ray and optical through a joint Chandra-HST proposal.

  6. Imaging the Crab nebula when it is flaring in gamma-rays

    NASA Astrophysics Data System (ADS)

    De Luca, Andrea

    2014-10-01

    One of the most intriguing results of the gamma-ray instruments currently in orbit has been the detection of powerful flares from the Crab Nebula. Such events, with a recurrence time of about once per year, can be so dramatic to make the system the brightest source in the gamma-ray sky, as it occurred in April 2011. Such a discovery challenges our understanding of how pulsar wind nebulae work and defies current astrophysical models for particle acceleration. With the aim of locating the site(s) of the flares, an ad hoc HST strategy have been put in place to be prepared and react promptly in case of a new brightening in gamma rays. We ask here for a triggered TOO observation of the Crab Nebula with ACS/WFC in case a gamma-ray flare is announced by the Agile and/or the Fermi missions. This TOO is crucial part of a multiwavelength program that we have organized, based on lessons learnt from our follow-up observations of previous flares, including a regular (quarterly) monitoring of the source both in X-rays and optical through a joint Chandra-HST proposal.

  7. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    NASA Astrophysics Data System (ADS)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  8. The Gamma-ray Sky with Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David

    2012-01-01

    Gamma rays reveal extreme, nonthermal conditions in the Universe. The Fermi Gamma-ray Space Telescope has been exploring the gamma-ray sky for more than four years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge gamma-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  9. Large-area PSPMT based gamma-ray imager with edge reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, K-P; Nakae, L

    2000-09-21

    We describe a coded aperture, gamma-ray imager which uses a CsI(Na) scintillator coupled to an Hamamatsu R3292 position-sensitive photomultiplier tube (PSPMT) as the position-sensitive detector. We have modified the normal resistor divider readout of the PSPMT to allow use of nearly the full 10 cm diameter active area of the PSPMT with a single scintillator crystal one centimeter thick. This is a significant performance improvement over that obtained with the standard readout technique where the linearity and position resolution start to degrade at radii as small as 3.5 cm with a crystal 0.75 crn thick. This represents a recovery ofmore » over 60% of the PSPMT active area. The performance increase allows the construction of an imager with a field of view 20 resolution elements in diameter with useful quantum efficiency from 60-700 keV. In this paper we describe the readout technique, its implementation in a coded aperture imager and the performance of that imager.« less

  10. Three-dimensional reconstruction of neutron, gamma-ray, and x-ray sources using spherical harmonic decomposition

    NASA Astrophysics Data System (ADS)

    Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.

    2017-11-01

    Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.

  11. A Spherical Active Coded Aperture for 4π Gamma-ray Imaging

    DOE PAGES

    Hellfeld, Daniel; Barton, Paul; Gunter, Donald; ...

    2017-09-22

    Gamma-ray imaging facilitates the efficient detection, characterization, and localization of compact radioactive sources in cluttered environments. Fieldable detector systems employing active planar coded apertures have demonstrated broad energy sensitivity via both coded aperture and Compton imaging modalities. But, planar configurations suffer from a limited field-of-view, especially in the coded aperture mode. In order to improve upon this limitation, we introduce a novel design by rearranging the detectors into an active coded spherical configuration, resulting in a 4pi isotropic field-of-view for both coded aperture and Compton imaging. This work focuses on the low- energy coded aperture modality and the optimization techniquesmore » used to determine the optimal number and configuration of 1 cm 3 CdZnTe coplanar grid detectors on a 14 cm diameter sphere with 192 available detector locations.« less

  12. Future Hard X-ray and Gamma-Ray Missions

    NASA Astrophysics Data System (ADS)

    Krawczynski, Henric; Physics of the Cosmos (PCOS) Gamma Ray Science Interest Group (GammaSIG) Team

    2017-01-01

    With four major NASA and ESA hard X-ray and gamma-ray missions in orbit (Swift, NuSTAR, INTEGRAL, and Fermi) hard X-ray and gamma-ray astronomy is making major contributions to our understanding of the cosmos. In this talk, I will summarize the current and upcoming activities of the Physics of the Cosmos Gamma Ray Science Interest Group and highlight a few of the future hard X-ray and gamma-ray mission discussed by the community. HK thanks NASA for the support through the awards NNX14AD19G and NNX16AC42G and for PCOS travel support.

  13. Development of ultrashort x-ray/gamma-ray sources using ultrahigh power lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Taek; Nakajima, Kazuhisa; Hojbota, Calin; Jeon, Jong Ho; Rhee, Yong-Joo; Lee, Kyung Hwan; Lee, Seong Ku; Sung, Jae Hee; Lee, Hwang Woon; Pathak, Vishwa B.; Pae, Ki Hong; Sebban, Stéphane; Tissandier, Fabien; Gautier, Julien; Ta Phuoc, Kim; Malka, Victor; Nam, Chang Hee

    2017-05-01

    Short-pulse x-ray/gamma-ray sources have become indispensable light sources for investigating material science, bio technology, and photo-nuclear physics. In past decades, rapid advancement of high intensity laser technology led extensive progresses in the field of radiation sources based on laser-plasma interactions - x-ray lasers, betatron radiation and Compton gamma-rays. Ever since the installation of a 100-TW laser in 2006, we have pursued the development of ultrashort x-ray/gamma-ray radiations, such as x-ray lasers, relativistic high-order harmonics, betatron radiation and all-optical Compton gamma-rays. With the construction of two PW Ti:Sapphire laser beamlines having peak powers of 1.0 PW and 1.5 PW in 2010 and 2012, respectively [1], we have investigated the generation of multi-GeV electron beams [2] and MeV betatron radiations. We plan to carry out the Compton backscattering to generate MeV gamma-rays from the interaction of a GeV electron beam and a PW laser beam. Here, we present the recent progress in the development of ultrashort x-ray/gamma-ray radiation sources based on laser plasma interactions and the plan for developing Compton gamma-ray sources driven by the PW lasers. In addition, we will present the applications of laser-plasma x-ray lasers to x-ray holography and coherent diffraction imaging. [references] 1. J. H. Sung, S. K. Lee, T. J. Yu, T. M. Jeong, and J. Lee, Opt. Lett. 35, 3021 (2010). 2. H. T. Kim, K. H. Pae, H. J. Cha, I J. Kim, T. J. Yu, J. H. Sung, S. K. Lee, T. M. Jeong, J. Lee, Phys. Rev. Lett. 111, 165002 (2013).

  14. A New Type of Transient Luminous Events Produced by Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Xu, W.; Celestin, S. J.; Pasko, V. P.; Marshall, R. A.

    2016-12-01

    Discovered in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere characterized by their close association with thunderstorm activities. Since the discovery, TGFs have also been observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010], and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Space-borne measurements have revealed the temporal and spectral features of TGFs: typically lasting from fractions of to a few milliseconds, having a fluence of fractions of photons/cm2, and exhibiting a hard energy spectra extending up to a few tens of MeVs [Dwyer et al., Space Sci. Rev., 173, 133, 2012]. Moreover, detailed analyses of radio emissions have pointed out the close correlation between TGFs and the initial development stages of normal polarity intra-cloud lightning that transports negative charge upward (+IC) [e.g., Lu et al., GRL, 37, L11806, 2010; JGR, 116, A03316, 2011]. In this work, we show that, while TGFs pass through the atmosphere, the large quantities of energetic electrons knocked out during collisions of gamma-rays with air molecules can generate significant amount of excited species of neutral and ionized nitrogen molecules, thereby leading to production of a new type of transient luminous events (TLEs). The spectroscopic and morphological features of this predicted luminous phenomenon have been theoretically quantified in the framework of Monte Carlo simulations. Considering the measurability of this type of events and its close relation with TGFs, corresponding measurements would provide a novel perspective to investigate TGFs, as well as the initial

  15. Very-high-energy gamma rays from a distant quasar: how transparent is the universe?

    PubMed

    Albert, J; Aliu, E; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Barrio, J A; Bartko, H; Bastieri, D; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Bigongiari, C; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Bosch-Ramon, V; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Chilingarian, A; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea Del Pozo, E; de Los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Mendez, C Delgado; Dominguez, A; Dorner, D; Doro, M; Errando, M; Fagiolini, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; López, R J García; Garczarczyk, M; Gaug, M; Goebel, F; Hayashida, M; Herrero, A; Höhne, D; Hose, J; Hsu, C C; Huber, S; Jogler, T; Kneiske, T M; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Meyer, M; Miranda, J M; Mirzoyan, R; Mizobuchi, S; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Otte, N; Oya, I; Panniello, M; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Piccioli, A; Prada, F; Prandini, E; Puchades, N; Raymers, A; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Sartori, P; Satalecka, K; Scalzotto, V; Scapin, V; Schmitt, R; Schweizer, T; Shayduk, M; Shinozaki, K; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Tluczykont, M; Torres, D F; Turini, N; Vankov, H; Venturini, A; Vitale, V; Wagner, R M; Wittek, W; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2008-06-27

    The atmospheric Cherenkov gamma-ray telescope MAGIC, designed for a low-energy threshold, has detected very-high-energy gamma rays from a giant flare of the distant Quasi-Stellar Radio Source (in short: radio quasar) 3C 279, at a distance of more than 5 billion light-years (a redshift of 0.536). No quasar has been observed previously in very-high-energy gamma radiation, and this is also the most distant object detected emitting gamma rays above 50 gigaelectron volts. Because high-energy gamma rays may be stopped by interacting with the diffuse background light in the universe, the observations by MAGIC imply a low amount for such light, consistent with that known from galaxy counts.

  16. Design upgrades to the DIII-D gamma ray imager

    NASA Astrophysics Data System (ADS)

    Lvovskiy, A.; Cooper, C. M.; Eidietis, N. W.; Pace, D.; Paz-Soldan, C.

    2016-10-01

    Generation of runaway electrons (RE) in tokamak disruptions can cause damage of plasma facing components. RE studies are necessary in order to provide a reliable mechanism of RE mitigation. For that task a gamma ray imager (GRI) has been developed for DIII-D. It measures the bremsstrahlung emission by RE providing information on RE energy spectrum and RE distribution across a poloidal cross-section. The GRI consists of a lead pinhole camera illuminating a 2D array of 30 BGO detectors placed in the DIII-D mid-plane. First results showed the successful measurements of RE energy spectra in the range 1 - 60 MeV with time resolution 100 μs. They have been obtained in the low-flux quiescent RE regime via pulse-high analysis. The measurements in the high gamma flux post-disruption RE regime showed strong signal saturation. Here we present GRI design upgrades towards signal attenuation and better detector shielding including Monte-Carlo Neutral Particle modeling of GRI irradiation, as well as improved calibration techniques and options to improve electronic noise rejection. Work supported by US DOE under DE-AC05-06OR23100 and DE-FC02-04ER54698.

  17. Gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stecker, F. W. (Editor); Trombka, J. I. (Editor)

    1973-01-01

    Conference papers on gamma ray astrophysics are summarized. Data cover the energy region from about 0.3 MeV to a few hundred GeV and theoretical models of production mechanisms that give rise to both galactic and extragalactic gamma rays.

  18. The Gamma-ray Universe through Fermi

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  19. The Topo-trigger: a new concept of stereo trigger system for imaging atmospheric Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    López-Coto, R.; Mazin, D.; Paoletti, R.; Blanch Bigas, O.; Cortina, J.

    2016-04-01

    Imaging atmospheric Cherenkov telescopes (IACTs) such as the Major Atmospheric Gamma-ray Imaging Cherenkov (MAGIC) telescopes endeavor to reach the lowest possible energy threshold. In doing so the trigger system is a key element. Reducing the trigger threshold is hampered by the rapid increase of accidental triggers generated by ambient light (the so-called Night Sky Background NSB). In this paper we present a topological trigger, dubbed Topo-trigger, which rejects events on the basis of their relative orientation in the telescope cameras. We have simulated and tested the trigger selection algorithm in the MAGIC telescopes. The algorithm was tested using MonteCarlo simulations and shows a rejection of 85% of the accidental stereo triggers while preserving 99% of the gamma rays. A full implementation of this trigger system would achieve an increase in collection area between 10 and 20% at the energy threshold. The analysis energy threshold of the instrument is expected to decrease by ~ 8%. The selection algorithm was tested on real MAGIC data taken with the current trigger configuration and no γ-like events were found to be lost.

  20. Gamma-Ray Background Variability in Mobile Detectors

    NASA Astrophysics Data System (ADS)

    Aucott, Timothy John

    Gamma-ray background radiation significantly reduces detection sensitivity when searching for radioactive sources in the field, such as in wide-area searches for homeland security applications. Mobile detector systems in particular must contend with a variable background that is not necessarily known or even measurable a priori. This work will present measurements of the spatial and temporal variability of the background, with the goal of merging gamma-ray detection, spectroscopy, and imaging with contextual information--a "nuclear street view" of the ubiquitous background radiation. The gamma-ray background originates from a variety of sources, both natural and anthropogenic. The dominant sources in the field are the primordial isotopes potassium-40, uranium-238, and thorium-232, as well as their decay daughters. In addition to the natural background, many artificially-created isotopes are used for industrial or medical purposes, and contamination from fission products can be found in many environments. Regardless of origin, these backgrounds will reduce detection sensitivity by adding both statistical as well as systematic uncertainty. In particular, large detector arrays will be limited by the systematic uncertainty in the background and will suffer from a high rate of false alarms. The goal of this work is to provide a comprehensive characterization of the gamma-ray background and its variability in order to improve detection sensitivity and evaluate the performance of mobile detectors in the field. Large quantities of data are measured in order to study their performance at very low false alarm rates. Two different approaches, spectroscopy and imaging, are compared in a controlled study in the presence of this measured background. Furthermore, there is additional information that can be gained by correlating the gamma-ray data with contextual data streams (such as cameras and global positioning systems) in order to reduce the variability in the background

  1. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Commaux, N.; Eidietis, N. W.; Hollmann, E. M.; Shiraki, D.

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  2. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited).

    PubMed

    Cooper, C M; Pace, D C; Paz-Soldan, C; Commaux, N; Eidietis, N W; Hollmann, E M; Shiraki, D

    2016-11-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  3. Gamma-Ray Imaging Probes.

    NASA Astrophysics Data System (ADS)

    Wild, Walter James

    1988-12-01

    External nuclear medicine diagnostic imaging of early primary and metastatic lung cancer tumors is difficult due to the poor sensitivity and resolution of existing gamma cameras. Nonimaging counting detectors used for internal tumor detection give ambiguous results because distant background variations are difficult to discriminate from neighboring tumor sites. This suggests that an internal imaging nuclear medicine probe, particularly an esophageal probe, may be advantageously used to detect small tumors because of the ability to discriminate against background variations and the capability to get close to sites neighboring the esophagus. The design, theory of operation, preliminary bench tests, characterization of noise behavior and optimization of such an imaging probe is the central theme of this work. The central concept lies in the representation of the aperture shell by a sequence of binary digits. This, coupled with the mode of operation which is data encoding within an axial slice of space, leads to the fundamental imaging equation in which the coding operation is conveniently described by a circulant matrix operator. The coding/decoding process is a classic coded-aperture problem, and various estimators to achieve decoding are discussed. Some estimators require a priori information about the object (or object class) being imaged; the only unbiased estimator that does not impose this requirement is the simple inverse-matrix operator. The effects of noise on the estimate (or reconstruction) is discussed for general noise models and various codes/decoding operators. The choice of an optimal aperture for detector count times of clinical relevance is examined using a statistical class-separability formalism.

  4. High resolution phoswich gamma-ray imager utilizing monolithic MPPC arrays with submillimeter pixelized crystals

    NASA Astrophysics Data System (ADS)

    Kato, T.; Kataoka, J.; Nakamori, T.; Kishimoto, A.; Yamamoto, S.; Sato, K.; Ishikawa, Y.; Yamamura, K.; Kawabata, N.; Ikeda, H.; Kamada, K.

    2013-05-01

    We report the development of a high spatial resolution tweezers-type coincidence gamma-ray camera for medical imaging. This application consists of large-area monolithic Multi-Pixel Photon Counters (MPPCs) and submillimeter pixelized scintillator matrices. The MPPC array has 4 × 4 channels with a three-side buttable, very compact package. For typical operational gain of 7.5 × 105 at + 20 °C, gain fluctuation over the entire MPPC device is only ± 5.6%, and dark count rates (as measured at the 1 p.e. level) amount to <= 400 kcps per channel. We selected Ce-doped (Lu,Y)2(SiO4)O (Ce:LYSO) and a brand-new scintillator, Ce-doped Gd3Al2Ga3O12 (Ce:GAGG) due to their high light yield and density. To improve the spatial resolution, these scintillators were fabricated into 15 × 15 matrices of 0.5 × 0.5 mm2 pixels. The Ce:LYSO and Ce:GAGG scintillator matrices were assembled into phosphor sandwich (phoswich) detectors, and then coupled to the MPPC array along with an acrylic light guide measuring 1 mm thick, and with summing operational amplifiers that compile the signals into four position-encoded analog outputs being used for signal readout. Spatial resolution of 1.1 mm was achieved with the coincidence imaging system using a 22Na point source. These results suggest that the gamma-ray imagers offer excellent potential for applications in high spatial medical imaging.

  5. Gamma rays from Centaurus A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Nayantara, E-mail: nayan@phy.iitb.ac.in

    2008-06-15

    Centaurus A, the cosmic ray accelerator a few Mpc away from us, is possibly one of the nearest sources of extremely high energy cosmic rays. We investigate whether the gamma ray data currently available from Centaurus A in the GeV-TeV energy band can be explained with only proton-proton interactions. We show that for a single power law proton spectrum, mechanisms of {gamma}-ray production other than proton-proton interactions are needed inside this radio-galaxy to explain the gamma ray flux observed by EGRET, upper limits from HESS/CANGAROO-III and the correlated extremely energetic cosmic ray events observed by the Pierre Auger experiment. Inmore » future, with better {gamma}-ray data, and simultaneous observation with {gamma}-ray and cosmic ray detectors, it will be possible to carry out such studies on different sources in more detail.« less

  6. Future prospects for gamma-ray

    NASA Technical Reports Server (NTRS)

    Fichtel, C.

    1980-01-01

    Astrophysical phenomena discussed are: the very energetic and nuclear processes associated with compact objects; astrophysical nucleo-synthesis; solar particle acceleration; the chemical composition of the planets and other bodies of the solar system; the structure of our galaxy; the origin and dynamic pressure effects of the cosmic rays; the high energy particles and energetic processes in other galaxies, especially active ones; and the degree of matter antimater symmetry of the universe. The gamma ray results of GAMMA-I, the gamma ray observatory, the gamma ray burst network, solar polar, and very high energy gamma ray telescopes on the ground provide justification for more sophisticated telescopes.

  7. Real-time 3-D X-ray and gamma-ray viewer

    NASA Technical Reports Server (NTRS)

    Yin, L. I. (Inventor)

    1983-01-01

    A multi-pinhole aperture lead screen forms an equal plurality of invisible mini-images having dissimilar perspectives of an X-ray and gamma-ray emitting object (ABC) onto a near-earth phosphor layer. This layer provides visible light mini-images directly into a visible light image intensifier. A viewing screen having an equal number of dissimilar perspective apertures distributed across its face in a geometric pattern identical to the lead screen, provides a viewer with a real, pseudoscopic image (A'B'C') of the object with full horizontal and vertical parallax. Alternatively, a third screen identical to viewing screen and spaced apart from a second visible light image intensifier, may be positioned between the first image intensifier and the viewing screen, thereby providing the viewer with a virtual, orthoscopic image (A"B"C") of the object (ABC) with full horizontal and vertical parallax.

  8. The Advanced Gamma-ray Imaging System (AGIS): Schwarzschild-Couder (SC) Telescope Mechanical and Optical System Design

    NASA Astrophysics Data System (ADS)

    Guarino, V.; Vassiliev, V.; Buckley, J.; Byrum, K.; Falcone, A.; Fegan, S.; Finley, J.; Hanna, D.; Kaaret, P.; Konopelko, A.; Krawczynski, H.; Krennrich, F.; Romani, R.; Wagner, R.; Woods, M.

    2009-05-01

    The concept of a future ground-based gamma-ray observatory, AGIS, in the energy range 20 GeV to 200 TeV is based on an array of 50-100 imaging atmospheric Cherenkov telescopes (IACTs). The anticipated improvement of AGIS sensitivity, angular resolution, and reliability of operation imposes demanding technological and cost requirements on the design of IACTs. In this submission, we focus on the optical and mechanical systems for a novel Schwarzschild-Couder two-mirror aplanatic optical system originally proposed by Schwarzschild. Emerging new mirror production technologies based on replication processes, such as cold and hot glass slumping, cured CFRP, and electroforming, provide new opportunities for cost effective solutions for the design of the optical system. We explore capabilities of these mirror fabrication methods for the AGIS project and alignment methods for optical systems. We also study a mechanical structure which will provide support points for mirrors and camera design driven by the requirement of minimizing the deflections of the mirror support structures.

  9. Gamma ray astrophysics to the year 2000. Report of the NASA Gamma Ray Program Working Group

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Important developments in gamma-ray astrophysics up to energies of 100 GeV during the last decade are reviewed. Also, the report seeks to define the major current scientific goals of the field and proposes a vigorous program to pursue them, extending to the year 2000. The goals of gamma-ray astronomy include the study of gamma rays which provide the most direct means of studying many important problems in high energy astrophysics including explosive nucleosynthesis, accelerated particle interactions and sources, and high-energy processes around compact objects. The current research program in gamma-ray astronomy in the U.S. including the space program, balloon program and foreign programs in gamma-ray astronomy is described. The high priority recommendations for future study include an Explorer-class high resolution gamma-ray spectroscopy mission and a Get Away Special cannister (GAS-can) or Scout class multiwavelength experiment for the study of gamma-ray bursts. Continuing programs include an extended Gamma Ray Observatory mission, continuation of the vigorous program of balloon observations of the nearby Supernova 1987A, augmentation of the balloon program to provide for new instruments and rapid scientific results, and continuation of support for theoretical research. Long term recommendations include new space missions using advanced detectors to better study gamma-ray sources, the development of these detectors, continued study for the assembly of large detectors in space, collaboration with the gamma-ray astronomy missions initiated by other countries, and consideration of the Space Station attached payloads for gamma-ray experiments.

  10. The SWIFT Gamma-Ray Burst X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Burrows, D. N.; Nousek, J. A.; Wells, A.; Chincarini, G.; Abbey, A. F.; Angelini, L.; Beardmore, A.; Brauninger, H. W.; Chang, W.

    2006-01-01

    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts.

  11. GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.; Mayer, M.; Deil, C.; Cayrou, J.-B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.-C.; Buehler, R.; Forest, F.; Louge, T.; Siejkowski, H.; Kosack, K.; Gerard, L.; Schulz, A.; Martin, P.; Sanchez, D.; Ohm, S.; Hassan, T.; Brau-Nogué, S.

    2016-08-01

    The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++ and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope Array Observatory.

  12. Discovery of a new TeV gamma-ray source: VER J0521+211

    DOE PAGES

    Archambault, S.; Arlen, T.; Aune, T.; ...

    2013-09-27

    Here, we report the detection of a new TeV gamma-ray source, VER J0521+211, based on observations made with the VERITAS imaging atmospheric Cherenkov Telescope Array. These observations were motivated by the discovery of a cluster of >30 GeV photons in the first year of Fermi Large Area Telescope observations. VER J0521+211 is relatively bright at TeV energies, with a mean photon flux of (1.93 ± 0.13 stat ± 0.78 sys) × 10 –11 cm –2 s –1 above 0.2 TeV during the period of the VERITAS observations. The source is strongly variable on a daily timescale across all wavebands, frommore » optical to TeV, with a peak flux corresponding to ~0.3 times the steady Crab Nebula flux at TeV energies. Follow-up observations in the optical and X-ray bands classify the newly discovered TeV source as a BL Lac-type blazar with uncertain redshift, although recent measurements suggest z = 0.108. VER J0521+211 exhibits all the defining properties of blazars in radio, optical, X-ray, and gamma-ray wavelengths.« less

  13. Gamma ray detector shield

    DOEpatents

    Ohlinger, R.D.; Humphrey, H.W.

    1985-08-26

    A gamma ray detector shield comprised of a rigid, lead, cylindrical-shaped vessel having upper and lower portions with an pneumatically driven, sliding top assembly. Disposed inside the lead shield is a gamma ray scintillation crystal detector. Access to the gamma detector is through the sliding top assembly.

  14. Galactic Diffuse Gamma Ray Emission Is Greater than 10 Gev

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    AGILE and Gamma-ray Large Area Telescope (GLAST) are the next high-energy gamma-ray telescopes to be flown in space. These instruments will have angular resolution about 5 times better than Energetic Gamma-Ray Experiment Telescope (EGRET) above 10 GeV and much larger field of view. The on-axis effective area of AGILE will be about half that of EGRET, whereas GLAST will have about 6 times greater effective area than EGRET. The capabilities of ground based very high-energy telescopes are also improving, e.g. Whipple, and new telescopes, e.g. Solar Tower Atmospheric Cerenkov Effect Experiment (STACEE), Cerenkov Low Energy Sampling and Timing Experiment (CELESTE), and Mars Advanced Greenhouse Integrated Complex (MAGIC) are expected to have low-energy thresholds and sensitivities that will overlap the GLAST sensitivity above approximately 10 GeV. In anticipation of the results from these new telescopes, our current understanding of the galactic diffuse gamma-ray emission, including the matter and cosmic ray distributions is reviewed. The outstanding questions are discussed and the potential of future observations with these new instruments to resolve these questions is examined.

  15. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima

    NASA Astrophysics Data System (ADS)

    Mochizuki, S.; Kataoka, J.; Tagawa, L.; Iwamoto, Y.; Okochi, H.; Katsumi, N.; Kinno, S.; Arimoto, M.; Maruhashi, T.; Fujieda, K.; Kurihara, T.; Ohsuka, S.

    2017-11-01

    Considerable amounts of radioactive substances (mainly 137Cs and 134Cs) were released into the environment after the Japanese nuclear disaster in 2011. Some restrictions on residence areas were lifted in April 2017, owing to the successive and effective decontamination operations. However, the distribution of radioactive substances in vast areas of mountain, forest and satoyama close to the city is still unknown; thus, decontamination operations in such areas are being hampered. In this paper, we report on the first aerial gamma-ray imaging of a schoolyard in Fukushima using a drone that carries a high sensitivity Compton camera. We show that the distribution of 137Cs in regions with a diameter of several tens to a hundred meters can be imaged with a typical resolution of 2-5 m within a 10-20 min flights duration. The aerial gamma-ray images taken 10 m and 20 m above the ground are qualitatively consistent with a dose map reconstructed from the ground-based measurements using a survey meter. Although further quantification is needed for the distance and air-absorption corrections to derive in situ dose map, such an aerial drone system can reduce measurement time by a factor of ten and is suitable for place where ground-based measurement are difficult.

  16. Gamma-Ray Bursts: An Overview

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    1995-01-01

    A history and overview of the observed properties of gamma-ray bursts are presented. The phenomenon of gamma-ray bursts is without precedent in astronomy, having no observed property that would be a direct indicator of their distance and no counterpart object in another wavelength region. Their brief, random appearance only in the gamma-ray region has made their study difficult. The observed time profiles, spectral properties, and durations of gamma-ray bursts cover a wide range. All proposed models for their origin must be considered speculative. It is humbling to think that even after 25 years since their discovery, the distance scale of gamma-ray bursts is still very much debatable.

  17. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  18. ESA's Integral solves thirty-year old gamma-ray mystery

    NASA Astrophysics Data System (ADS)

    Integral solves mystery hi-res Size hi-res: 60 kb Credits: Credit: ESA, F. Lebrun (CEA-Saclay). ESA's Integral solves thirty-year old gamma-ray mystery The central regions of our galaxy, the Milky Way, as seen by Integral in gamma rays. With its superior ability to see faint details, Integral correctly reveals the individual sources that comprised the foggy, gamma-ray background seen by previous observatories. The brightest 91 objects seen in this image were classified by Integral as individual sources, while the others appear too faint to be properly characterized at this stage. During the spring and autumn of 2003, Integral observed the central regions of our Galaxy, collecting some of the perpetual glow of diffuse low-energy gamma rays that bathe the entire Galaxy. These gamma rays were first discovered in the mid-1970s by high-flying balloon-borne experiments. Astronomers refer to them as the 'soft' Galactic gamma-ray background, with energies similar to those used in medical X-ray equipment. Initially, astronomers believed that the glow was caused by interactions involving the atoms of the gas that pervades the Galaxy. Whilst this theory could explain the diffuse nature of the emission, since the gas is ubiquitous, it failed to match the observed power of the gamma rays. The gamma rays produced by the proposed mechanisms would be much weaker than those observed. The mystery has remained unanswered for decades. Now Integral's superb gamma-ray telescope IBIS, built for ESA by an international consortium led by Principal Investigator Pietro Ubertini (IAS/CNR, Rome, Italy), has seen clearly that, instead of a fog produced by the interstellar medium, most of the gamma-rays are coming from individual celestial objects. In the view of previous, less sensitive instruments, these objects appeared to merge together. In a paper published today in "Nature", Francois Lebrun (CEA Saclay, Gif sur Yvette, France) and his collaborators report the discovery of 91 gamma-ray

  19. Space instrumentation for gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Teegarden, B. J.

    1999-02-01

    The decade of the 1990s has witnessed a renaissance in the field of gamma-ray astronomy. The seminal event was the launch of the Compton Gamma-Ray Observatory (CGRO) in April 1991. There have been a flood of major discoveries from CGRO including breakthroughs in gamma-ray bursts, annihilation radiation, and blazars. The Italian SAX satellite was launched in April 1996. Although not primarily a gamma-ray mission, it has added a new dimension to our understanding of gamma-ray bursts. Along with these new discoveries a firm groundwork has been laid for missions and new technology development that should maintain a healthy and vigorous field throughout most of the next decade. These include the ESA INTEGRAL mission (INTErnational Gamma-Ray Astrophysics Laboratory, to be launched in mid-2001) and the NASA GLAST mission (Gamma-Ray Large Area Space Telescope) with a likely launch in the middle of the next decade. These two missions will extend the observational capabilities well beyond those of CGRO. New technologies (to gamma-ray astronomy), such as cooled germanium detectors, silicon strip detectors, and CdTe detectors are planned for these new missions. Additional promising new technologies such as CdZnTe strip detectors, scintillator fibers, and a gamma-ray lens for future gamma-ray astronomy missions are under development in laboratories around the world.

  20. Diffuse flux of galactic neutrinos and gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carceller, J.M.; Masip, M., E-mail: jmcarcell@correo.ugr.es, E-mail: masip@ugr.es

    We calculate the fluxes of neutrinos and gamma rays from interactions of cosmic rays with interstellar matter in our galaxy. We use EPOS-LHC, SIBYLL and GHEISHA to parametrize the yield of these particles in proton, helium and iron collisions at kinetic energies between 1 and 10{sup 8} GeV, and we correlate the cosmic ray density with the mean magnetic field strength in the disk and the halo of our galaxy. We find that at E > 1 PeV the fluxes depend very strongly on the cosmic-ray composition, whereas at 1–5 GeV the main source of uncertainty is the cosmic-ray spectrummore » out of the heliosphere. We show that the diffuse flux of galactic neutrinos becomes larger than the conventional atmospheric one at E >1 PeV, but that at all IceCube energies it is 4 times smaller than the atmospheric flux from forward-charm decays.« less

  1. First On-Site True Gamma-Ray Imaging-Spectroscopy of Contamination near Fukushima Plant

    PubMed Central

    Tomono, Dai; Mizumoto, Tetsuya; Takada, Atsushi; Komura, Shotaro; Matsuoka, Yoshihiro; Mizumura, Yoshitaka; Oda, Makoto; Tanimori, Toru

    2017-01-01

    We have developed an Electron Tracking Compton Camera (ETCC), which provides a well-defined Point Spread Function (PSF) by reconstructing a direction of each gamma as a point and realizes simultaneous measurement of brightness and spectrum of MeV gamma-rays for the first time. Here, we present the results of our on-site pilot gamma-imaging-spectroscopy with ETCC at three contaminated locations in the vicinity of the Fukushima Daiichi Nuclear Power Plants in Japan in 2014. The obtained distribution of brightness (or emissivity) with remote-sensing observations is unambiguously converted into the dose distribution. We confirm that the dose distribution is consistent with the one taken by conventional mapping measurements with a dosimeter physically placed at each grid point. Furthermore, its imaging spectroscopy, boosted by Compton-edge-free spectra, reveals complex radioactive features in a quantitative manner around each individual target point in the background-dominated environment. Notably, we successfully identify a “micro hot spot” of residual caesium contamination even in an already decontaminated area. These results show that the ETCC performs exactly as the geometrical optics predicts, demonstrates its versatility in the field radiation measurement, and reveals potentials for application in many fields, including the nuclear industry, medical field, and astronomy. PMID:28155883

  2. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com; Pace, D. C.; Paz-Soldan, C.

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  3. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    DOE PAGES

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; ...

    2016-08-30

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5-100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead "pinhole camera" mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20,000 pulses permore » second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Furthermore, magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.« less

  4. The GAMCIT gamma ray burst detector

    NASA Technical Reports Server (NTRS)

    Mccall, Benjamin J.; Grunsfeld, John M.; Sobajic, Srdjan D.; Chang, Chinley Leonard; Krum, David M.; Ratner, Albert; Trittschuh, Jennifer E.

    1993-01-01

    The GAMCIT payload is a Get-Away-Special payload designed to search for high-energy gamma-ray bursts and any associated optical transients. This paper presents details on the design of the GAMCIT payload, in the areas of battery selection, power processing, electronics design, gamma-ray detection systems, and the optical imaging of the transients. The paper discusses the progress of the construction, testing, and specific design details of the payload. In addition, this paper discusses the unique challenges involved in bringing this payload to completion, as the project has been designed, constructed, and managed entirely by undergraduate students. Our experience will certainly be valuable to other student groups interested in taking on a challenging project such as a Get-Away-Special payload.

  5. NRAO Teams With NASA Gamma-Ray Satellite

    NASA Astrophysics Data System (ADS)

    2007-06-01

    The National Radio Astronomy Observatory (NRAO) is teaming with NASA's upcoming Gamma-ray Large Area Space Telescope (GLAST) to allow astronomers to use both the orbiting facility and ground-based radio telescopes to maximize their scientific payoff. Under the new, streamlined process, astronomers can compete for coordinated observing time and support from both GLAST and NRAO's radio telescopes. GLAST satellite Artist's rendering of the GLAST spacecraft in orbit above the Earth. CREDIT: General Dynamics C4 Systems Click on Image for Larger File Images of NRAO Telescopes Robert C. Byrd Green Bank Telescope Very Long Baseline Array Very Large Array Atacama Large Millimeter/submillimeter Array GLAST is scheduled for launch no earlier than December 14. It will perform a survey of the entire sky at gamma-ray wavelengths every 3 hours using its primary instrument, the Large Area Telescope (LAT). NRAO operates the Very Large Array (VLA) in New Mexico, the continent-wide Very Long Baseline Array (VLBA), and the Robert C. Byrd Green Bank Telescope (GBT) in West Virginia. The NRAO is a research facility of the National Science Foundation (NSF). "Coordinated gamma-ray and radio observations of celestial objects will greatly enhance the ability to fully understand those objects. Astronomy today requires such multiwavelength studies, and this agreement paves the way for exciting, cutting-edge research," said Fred K.Y. Lo, NRAO Director. GLAST will be vastly more capable than previous gamma-ray satellites, and will carry an instrument, the GLAST Burst Monitor, specifically designed to detect gamma-ray bursts. GLAST observers will study objects such as active galaxies, pulsars, and supernova remnants, which are also readily studied with radio telescopes. By working together, NASA's GLAST mission and NSF's NRAO facilities can study flares from blazars over the widest possible range of energies, which is crucial to understanding how black holes, notorious for drawing matter in, can

  6. Very high energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1976-01-01

    Recent results in ground based very high energy gamma ray astronomy are reviewed. The various modes of the atmospheric Cerenkov technique are described, and the importance of cosmic ray rejection methods is stressed. The positive detections of the Crab pulsar that suggest a very flat spectrum and time-variable pulse phase are discussed. Observations of other pulsars (particularly Vela) suggest these features may be general. Evidence that a 4.8 hr modulated effect was detected from Cyg X-3 is strengthened in that the exact period originally proposed agrees well with a recent determination of the X-ray period. The southern sky observations are reviewed, and the significance of the detection of an active galaxy (NGC 5128) is considered for source models and future observations.

  7. On the timing between terrestrial gamma ray flashes, radio atmospherics, and optical lightning emission

    NASA Astrophysics Data System (ADS)

    Gjesteland, Thomas; Østgaard, Nikolai; Bitzer, Phillip; Christian, Hugh J.

    2017-07-01

    On 25 October 2012 the Reuven Ramaty High Energy Solar Spectroscope Imager (RHESSI) and the Tropical Rainfall Measuring Mission (TRMM) satellites passed over a thunderstorm on the coast of Sri Lanka. RHESSI observed a terrestrial gamma ray flash (TGF) originating from this thunderstorm. Optical measurements of the causative lightning stroke were made by the lightning imaging sensor (LIS) on board TRMM. The World Wide Lightning Location Network (WWLLN) detected the very low frequency (VLF) radio emissions from the lightning stroke. The geolocation from WWLLN, which we also assume is the TGF source location, was in the convective core of the cloud. By using new information about both RHESSI and LIS timing accuracy, we find that the peak in the TGF light curve occurs 230 μs before the WWLLN time. Analysis of the optical signal from LIS shows that within the uncertainties, we cannot conclude which comes first: the gamma emission or the optical emission. We have also applied the new information about the LIS timing on a previously published event by Østgaard et al. (2012). Also for this event we are not able to conclude which signal comes first. More accurate instruments are needed in order to get the exact timing between the TGF and the optical signal.

  8. Status of the Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy (TAIGA)

    NASA Astrophysics Data System (ADS)

    Tkachev, L.; Astapov, I.; Bezyazeekov, P.; Borodin, A.; Brueckner, M.; Budnev, N.; Chiavassa, A.; Gress, O.; Gress, T.; Grishin, O.; Dyachok, A.; Fedorov, O.; Gafarov, A.; Grebenyuk, V.; Grinyuk, A.; Ivanova, A.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Korosteleva, E.; Kozhin, V.; Kravchenko, E.; Kunnas, M.; Kuzmichev, L.; Lemeshev, Yu.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoya, R.; Monkhoev, R.; Nachtigall, R.; Osipova, E.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Petrukhin, A.; Poleschuk, V.; Popesku, M.; Popova, E.; Porelli, A.; Postnikov, E.; Prosin, V.; Ptuskin, V.; Rjabov, E.; Rubtsov, G.; Pushnin, A.; Sabirov, B.; Sagan, Y.; Samoliga, V.; Semeney, Yu.; Silaev, A.; Silaev, A.; Sidorenkov, A.; Skurikhin, A.; Slunecka, V.; Sokolov, A.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tarashansky, B.; Tkachenko, A.; Tluczykont, M.; Wischnewski, R.; Zagorodnikov, A.; Zurbanov, V.; Yashin, I.; Zhurov, D.

    The new TAIGA project is proposed to solve a number of fundamental problems of high- energy gamma astronomy, cosmic-ray and particle physics. The array will be located in the Tunka valley at the site of the Tunka-133 array. TAIGA will consist of wide-angle (FOV 0.6 sr) non-imaging Cherenkov optical detectors (TAIGA-HiSCORE) covering an area of up to 5 km2, and up to 16 IACTs (Imaging Atmospheric Cherenkov Telescopes) (FOV 10 × 10°) based on 9 m2 mirrors and muon detectors with a total sensitive area of 2000 m2. The current TAIGA status is presented.

  9. Gamma Ray Pulsars: Multiwavelength Observations

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2004-01-01

    High-energy gamma rays are a valuable tool for studying particle acceleration and radiation in the magnetospheres of energetic pulsars. The seven or more pulsars seen by instruments on the Compton Gamma Ray Observatory (CGRO) show that: the light curves usually have double-peak structures (suggesting a broad cone of emission); gamma rays are frequently the dominant component of the radiated power; and all the spectra show evidence of a high-energy turnover. For all the known gamma-ray pulsars, multiwavelength observations and theoretical models based on such observations offer the prospect of gaining a broad understanding of these rotating neutron stars. The Gamma-ray Large Area Space Telescope (GLAST), now in planning for a launch in 2006, will provide a major advance in sensitivity, energy range, and sky coverage.

  10. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    NASA Astrophysics Data System (ADS)

    Komura, S.; Takada, A.; Mizumura, Y.; Miyamoto, S.; Takemura, T.; Kishimoto, T.; Kubo, H.; Kurosawa, S.; Matsuoka, Y.; Miuchi, K.; Mizumoto, T.; Nakamasu, Y.; Nakamura, K.; Oda, M.; Parker, J. D.; Sawano, T.; Sonoda, S.; Tanimori, T.; Tomono, D.; Yoshikawa, K.

    2017-04-01

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factor over an FoV of up to 2π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 107 s exposure and over 20 GRBs down to a 6 × 10-6 erg cm-2 fluence and 10% polarization during a one-year observation.

  11. Did A Galactic Gamma-Ray Burst Kill the Dinosaurs?

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    1997-12-01

    Gamma-ray bursts now appear to be primarily of extragalactic origin. Statistically, assuming isotropic emission, the observed event rates and fluxes imply that one event occurs per 10(4) \\ - 10(6) \\ years per galaxy, with about 10(51) \\ - 10(53) \\ ergs in gamma-rays emitted per event. Unless the Milky Way is unusual, a gamma-ray burst should occur within 10(2) \\ - 10(3) \\ pc of the Sun in a time span of order 10(8) \\ years. Independent of the underlying cause of the event, it would irradiate the solar system with a brief flash of MeV gamma-rays with a fluence as large as 10(9) - 10(11) \\ erg cm(-2) . What is the effect of such an event on the Earth and objects nearby? Ruderman (\\underbar{Science}, 184, 1079, 1974) and subsequent authors have considered a number of effects of a flash of gamma-rays from a nearby supernova explosion on the Earth's atmosphere, and on its biota. However, with regard to the demise of the dinosaurs, it appears that there was a marked increase in the deposition rate of the rare earth iridium coincident with their extinction. For this reason, an asteroid-Earth impact has been considered the leading contender for the death of the dinosaurs. Here we consider a new mechanism for mass biological extinctions, caused by small comets nudged into the inner solar system by nearby gamma-ray bursts. If comets populate the Oort cloud with a wide distribution of masses, radii and orbital eccentricities, we find that small (< 1 km), low density (10(-2) \\ gm cm(-3) ) objects in highly eccentric orbits can be injected into the inner solar system by a nearby gamma-ray burst. For a relatively brief period of time, the near Earth comet population would increase dramatically. The consequent increased probability of comet-Earth impacts of appropriate energy and material content could account for many of the characteristics of the Cretaceous-Tertiary or other terrestrial mass biological extinctions.

  12. Physics of Gamma Ray Burst Sources

    NASA Technical Reports Server (NTRS)

    Meszaros, Peter

    2004-01-01

    During this grant period, the physics of gamma-ray bursts was investigated. A number of new results have emerged. The importance of pair formation in high compactness burst spectra may help explain x-ray flashes; a universal jet shape is a likely explanation for the distribution of jet break times; gravitational waves may be copiously produced both in short bursts from compact mergers and in long bursts arising from collapsars; x-ray iron lines are likely to be due to interaction with the stellar atmosphere of the progenitor; prompt optical flashes from reverse shocks will give diagnostics on the Lorentz factor and the environment; GeV and TeV emission from bursts may be expected in the external shock; etc. The group working with the PI included postdocs Dr. Bing Zhang (now assistant professor at University of Nevada); Dr. Shiho Kobayashi; graduate student Lijun Gou; collaborators Drs. Tim Kallman and Martin Rees. Meszaros shared with Rees and Dr. Bohan Paczynsky the AAS Rossi Prize in 2000 for their work on the theory of gamma ray bursts. The refereed publications and conference proceedings resulting from this research are summarized below. The PI gave a number of invited talks at major conferences, also listed.

  13. Gamma ray pulsars

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1976-01-01

    Recent data from the high energy gamma ray experiment have revealed the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields correspond to many radiation lengths which cause electrons to emit photons via magnetic bremsstrahlung and these photons to pair produce. The cascade develops until the mean photon energy drops below the pair production threshold which happens to be in the gamma ray range; at this stage the photons break out from the source.

  14. Sky and Elemental Planetary Mapping Via Gamma Ray Emissions

    NASA Technical Reports Server (NTRS)

    Roland, John M.

    2011-01-01

    Low-energy gamma ray emissions ((is) approximately 30keV to (is) approximately 30MeV) are significant to astrophysics because many interesting objects emit their primary energy in this regime. As such, there has been increasing demand for a complete map of the gamma ray sky, but many experiments to do so have encountered obstacles. Using an innovative method of applying the Radon Transform to data from BATSE (the Burst And Transient Source Experiment) on NASA's CGRO (Compton Gamma-Ray Observatory) mission, we have circumvented many of these issues and successfully localized many known sources to 0.5 - 1 deg accuracy. Our method, which is based on a simple 2-dimensional planar back-projection approximation of the inverse Radon transform (familiar from medical CAT-scan technology), can thus be used to image the entire sky and locate new gamma ray sources, specifically in energy bands between 200keV and 2MeV which have not been well surveyed to date. Samples of these results will be presented. This same technique can also be applied to elemental planetary surface mapping via gamma ray spectroscopy. Due to our method's simplicity and power, it could potentially improve a current map's resolution by a significant factor.

  15. Gamma-Ray Astronomy Technology Needs

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cannizzo, J. K.

    2012-01-01

    In recent decades gamma-ray observations have become a valuable tool for studying the universe. Progress made in diverse 8re1lS such as gamma-ray bursts (GRBs), nucleosynthesis, and active galactic nuclei (AGNs) has complimented and enriched our astrophysical understanding in many ways. We present an overview of current and future planned space y-ray missions and discussion technology needs for- the next generation of space gamma-ray instruments.

  16. REVIEWS OF TOPICAL PROBLEMS: Gamma astronomy of the Sun and study of solar cosmic rays

    NASA Astrophysics Data System (ADS)

    Kuzhevskiĭ, B. M.

    1982-06-01

    A detailed discussion is given of the various nuclear reactions proceeding in the Sun's atmosphere under the influence of flare-accelerated particles. The role of such reactions in formation of the line spectrum and continuum of gamma-rays from the disturbed and quiet Sun is discussed. The gamma-ray fluxes in individual lines and in the continuum are estimated. The possibility of applying data on gamma-ray emission from the Sun to analysis of particle acceleration in solar flares and the conditions of their ejection into interplanetary space is analyzed.

  17. The Andromeda galaxy in gamma-rays

    NASA Technical Reports Server (NTRS)

    Oezel, M. E.; Berkhuijsen, E. M.

    1987-01-01

    Implications of high-energy gamma-ray observations of the Andromeda galaxy with the next generation of satellites Gamma-1 and GRO are discussed in the context of the origin of cosmic rays and gamma-ray processes. The present estimate of the total gamma-ray flux of this galaxy at energies above 100 MeV is a factor of about three less than previous estimates.

  18. Gamma-ray burster recurrence timescales

    NASA Technical Reports Server (NTRS)

    Schaefer, B. E.; Cline, T. L.

    1984-01-01

    Three optical transients have been found which are associated with gamma-ray bursters (GRBs). The deduced recurrence timescale for these optical transients (tau sub opt) will depend on the minimum brightness for which a flash would be detected. A detailed analysis using all available data of tau sub opt as a function of E(gamma)/E(opt) is given. For flashes similar to those found in the Harvard archives, the best estimate of tau sub opt is 0.74 years, with a 99% confidence interval from 0.23 years to 4.7 years. It is currently unclear whether the optical transients from GRBs also give rise to gamma-ray events. One way to test this association is to measure the recurrence timescale of gamma-ray events tau sub gamma. A total of 210 gamma-ray error boxes were examined and it was found that the number of observed overlaps is not significantly different from the number expected from chance coincidence. This observation can be used to place limits on tau sub gamma for an assumed luminosity function. It was found that tau sub gamma is approx. 10 yr if bursts are monoenergetic. However, if GRBs have a power law luminosity function with a wide dynamic range, then the limit is tau sub gamma 0.5 yr. Hence, the gamma-ray data do not require tau sub gamma and tau sub opt to be different.

  19. Gamma-Ray Telescope and Uncertainty Principle

    ERIC Educational Resources Information Center

    Shivalingaswamy, T.; Kagali, B. A.

    2012-01-01

    Heisenberg's Uncertainty Principle is one of the important basic principles of quantum mechanics. In most of the books on quantum mechanics, this uncertainty principle is generally illustrated with the help of a gamma ray microscope, wherein neither the image formation criterion nor the lens properties are taken into account. Thus a better…

  20. Gamma ray spectroscopy in astrophysics. [conferences

    NASA Technical Reports Server (NTRS)

    Cline, T. L. (Editor); Ramaty, R. (Editor)

    1978-01-01

    Experimental and theoretical aspects of gamma ray spectroscopy in high energy astrophysics are discussed. Line spectra from solar, stellar, planetary, and cosmic gamma rays are examined as well as HEAO investigations, the prospects of a gamma ray observatory, and follow-on X-ray experiments in space.

  1. Gamma-ray line astrophysics

    NASA Technical Reports Server (NTRS)

    Lingenfelter, R. E.; Ramaty, R.

    1986-01-01

    Recent observations of gamma-ray line emission from solar flares, gamma-ray bursts, the galactic center, the interstellar medium and the jets of SS433 are reviewed. The implications of these observations on high energy processes in these sources are discussed.

  2. On the Performance of X-ray Imaging Plates in Gamma Radiography employing Reactor-produced Radioisotopes

    NASA Astrophysics Data System (ADS)

    Silvani, Maria Ines; de Almeida, Gevaldo L.; Furieri, Rosanne C.; Lopes, Ricardo T.

    2011-08-01

    Gamma-radiography employing radiographic films is a well established technique for non-destructive assays. The advent of X-ray sensitive Imaging Plates opens up new possibilities to apply this technique thanks to the advantages exhibited by this new device. Indeed, besides a sensitivity about 20 times higher then the conventional photographic film, requiring thus a shorter exposure time, it does not require a dark room for a cumbersome and time-consuming chemical processing associated to the development, an can be erased to be reused many times. Moreover, its development carried out by means of a laser beam produces digitalized images which can be promptly stored in a computer. Although its resolution is still poorer than that of the conventional film, those advantages overwhelms this specific parameter when it is not an essential feature for the intended application. This work evaluates the feasibility of employing X-ray Imaging Plates as detector for higher photon energies as those emitted by reactor-produced radioisotopes. Within this frame, radioisotopes such as 198Au and 56Mn, produced at the Argonauta research reactor in the Instituto de Engenharia Nuclear-CNEN have been employed as sources to acquire radiographic images of several pieces of equipment, devices and components. In order to keep the source appearance—with regard to the detector—as punctual as possible, reducing hence the penumbra effect, the mass of the irradiated material had to be limited. Therefore, due to the low neutron flux available at the main port of the reactor, the exposure times have to be extended along several hours or even a couple of days in order to reach an image with adequate contrast. This demand, nevertheless, does not constitute a serious hindrance as the exposure process can be carried out without any intervention or surveillance. Results have shown that in spite of the higher photon energies used, surpassing the X-ray range for which the imaging plates have been

  3. GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    NASA Technical Reports Server (NTRS)

    Hill, J. E.; Morris, D. C.; Sakamoto, T.; Sato, G.; Burrows, D. N.; Angelini, L.; Pagani, C.; Moretti, A.; Abbey, A. F.; Barthelmy, S.

    2005-01-01

    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position.

  4. STS-37 Gamma Ray Observatory (GRO) grappled by RMS

    NASA Image and Video Library

    1991-04-07

    Backdropped against the Earth's surface, the Gamma Ray Observatory (GRO) with its solar array (SA) panels deployed is grappled by the remote manipulator system (RMS) during STS-37 systems checkout. GRO's four complement instruments are visible: the Energetic Gamma Ray Experiment Telescope (EGRET) (at the bottom); the Imaging Compton Telescope (COMPTEL) (center); the Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (on four corners). The view was taken by STS-37 crew through an aft flight deck overhead window.

  5. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    NASA Astrophysics Data System (ADS)

    Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.

    2017-10-01

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2-5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).

  6. Highlights of GeV Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Because high-energy gamma rays are primarily produced by high-energy particle interactions, the gamma-ray survey of the sky by the Fermi Gamma-ray Space Telescope offers a view of sites of cosmic ray production and interactions. Gamma-ray bursts, pulsars, pulsar wind nebulae, binary sources, and Active Galactic Nuclei are all phenomena that reveal particle acceleration through their gamma-ray emission. Diffuse Galactic gamma radiation, Solar System gamma-ray sources, and energetic radiation from supernova remnants are likely tracers of high-energy particle interactions with matter and photon fields. This paper will present a broad overview of the constantly changing sky seen with the Large Area Telescope (LAT) on the Fermi spacecraft.

  7. Thermal design of the hard x-ray imager and the soft gamma-ray detector onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Noda, Hirofumi; Nakazawa, Kazuhiro; Makishima, Kazuo; Iwata, Naoko; Ogawa, Hiroyuki; Ohta, Masayuki; Sato, Goro; Kawaharada, Madoka; Watanabe, Shin; Kokubun, Motohide; Takahashi, Tadayuki; Ohno, Masanori; Fukazawa, Yasushi; Tajima, Hiroyasu; Uchiyama, Hideki; Ito, Shuji; Fukuzawa, Keita

    2014-07-01

    The Hard X-ray Imager and the Soft Gamma-ray Detector, onboard the 6th Japanese X-ray satellite ASTRO-H, aim at unprecedentedly-sensitive observations in the 5-80 keV and 40-600 keV bands, respectively. Because their main sensors are composed of a number of semi-conductor devices, which need to be operated in a temperature of -20 to -15°C, heat generated in the sensors must be efficiently transported outwards by thermal conduction. For this purpose, we performed thermal design, with the following three steps. First, we additionally included thermally-conductive parts, copper poles and graphite sheets. Second, constructing a thermal mathematical model of the sensors, we estimated temperature distributions in thermal equilibria. Since the model had rather large uncertainties in contact thermal conductions, an accurate thermal dummy was constructed as our final step. Vacuum measurement with the dummy successfully reduced the conductance uncertainties. With these steps, we confirmed that our thermal design of the main sensors satisfies the temperature requirement.

  8. Spectra and angular distributions of atmospheric gamma rays from 0.3 to 10 MeV at lambda = 40 deg

    NASA Technical Reports Server (NTRS)

    Ling, J. C.; Gruber, D. E.

    1977-01-01

    Measurements of the spectral and angular distributions of atmospheric gamma sq cm rays in the energy range 0.3-10 MeV over Palestine, Texas, at residual depths of 2.5 and 70 g/sq cm are reported. In confirmation of the general features of a model prediction, the measurements show at 2.5 g/sq cm upward moving fluxes greater than the downward moving fluxes, the effect increasing with energy, and approximate isotropy at 70 g/sq cm. Numerous characteristic gamma-ray lines were observed, most prominently at 0.511, 1.6, 2.3, 4.4, and 6.1 MeV. Their intensities were also compared with model predictions. Observations were made with an actively shielded scintillator counter with two detectors, one of aperture 50 deg FWHM and the other of 120 deg FWHM. Above 1 MeV, contributions to the counting rate from photons penetrating the shield annulus and from neutron interactions were large; they were studied by means of a Monte Carlo code and are extensively discussed.

  9. Portable compton gamma-ray detection system

    DOEpatents

    Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA

    2008-03-04

    A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.

  10. Imaging Polarimeter for a Sub-MeV Gamma-Ray All-sky Survey Using an Electron-tracking Compton Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komura, S.; Takada, A.; Mizumura, Y.

    2017-04-10

    X-ray and gamma-ray polarimetry is a promising tool to study the geometry and the magnetic configuration of various celestial objects, such as binary black holes or gamma-ray bursts (GRBs). However, statistically significant polarizations have been detected in few of the brightest objects. Even though future polarimeters using X-ray telescopes are expected to observe weak persistent sources, there are no effective approaches to survey transient and serendipitous sources with a wide field of view (FoV). Here we present an electron-tracking Compton camera (ETCC) as a highly sensitive gamma-ray imaging polarimeter. The ETCC provides powerful background rejection and a high modulation factormore » over an FoV of up to 2 π sr thanks to its excellent imaging based on a well-defined point-spread function. Importantly, we demonstrated for the first time the stability of the modulation factor under realistic conditions of off-axis incidence and huge backgrounds using the SPring-8 polarized X-ray beam. The measured modulation factor of the ETCC was 0.65 ± 0.01 at 150 keV for an off-axis incidence with an oblique angle of 30° and was not degraded compared to the 0.58 ± 0.02 at 130 keV for on-axis incidence. These measured results are consistent with the simulation results. Consequently, we found that the satellite-ETCC proposed in Tanimori et al. would provide all-sky surveys of weak persistent sources of 13 mCrab with 10% polarization for a 10{sup 7} s exposure and over 20 GRBs down to a 6 × 10{sup −6} erg cm{sup −2} fluence and 10% polarization during a one-year observation.« less

  11. Observations of TeV Gamma Rays from Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Buckley, James H.

    1994-12-01

    Measurements of the gamma ray flux from a number of supernova remnants (SNRs) at energies above 250 GeV have been made with the Whipple Imaging air \\v Cerenkov detector. Observation of the gamma ray emission of SNRs at energies above 1 GeV should provide a sensitive test of shock acceleration models of particle acceleration in SNRs. Gamma-ray luminosities of supernova remnants are well constrained by the observed supernova rate and the cosmic ray flux if supernovae are indeed the source of cosmic rays. Drury et al. (Astron. Astrophys. 287, 959 (1994)) predict that the luminosity of nearby Sedov-phase SNRs should be observable by the Whipple telescope. In this model, diffusive shock acceleration produces energetic charged particles which interact with the ambient medium forming gamma rays. There is an indication that a number of unidentified EGRET sources may correspond to supernova remnants (G. Kanbach, private communication), although at these energies (>100 MeV) the diffuse background is somewhat uncertain. Measurements of the gamma-ray flux with the Whipple instrument have a similar sensitivity to the EGRET detector for a source spectral index of 2.15, and less sensitivity to diffuse background. A number of observations of SNRs including: Tycho, W66, IC443, and others have been made. Currently for Tycho an upper limit of 9times 10(-12) cm(-2) sec(-1) is obtained. The status of these observations will be presented, and it will be shown that these measurements combined with the EGRET observations are beginning to provide a useful constraint on models of cosmic ray origin. Gamma-ray observations may also be used to constrain models of particle acceleration in SNRs exhibiting pulser-powered synchrotron nebula (plerions). The status of observations of this class of objects, including the Crab nebula, will also be presented. Supported in part by the U.S. Dept. of Energy.

  12. Mathematical Investigation of Gamma Ray and Neutron Absorption Grid Patterns for Homeland Defense Related Fourier Imaging Systems

    NASA Technical Reports Server (NTRS)

    Boccio, Dona

    2003-01-01

    Terrorist suitcase nuclear devices typically using converted Soviet tactical nuclear warheads contain several kilograms of plutonium. This quantity of plutonium emits a significant number of gamma rays and neutrons as it undergoes radioactive decay. These gamma rays and neutrons normally penetrate ordinary matter to a significant distance. Unfortunately this penetrating quality of the radiation makes imaging with classical optics impractical. However, this radiation signature emitted by the nuclear source may be sufficient to be imaged from low-flying aerial platforms carrying Fourier imaging systems. The Fourier imaging system uses a pair of co-aligned absorption grids to measure a selected range of spatial frequencies from an object. These grids typically measure the spatial frequency in only one direction at a time. A grid pair that looks in all directions simultaneously would be an improvement over existing technology. A number of grid pairs governed by various parameters were investigated to solve this problem. By examining numerous configurations, it became apparent that an appropriate spiral pattern could be made to work. A set of equations was found to describe a grid pattern that produces straight fringes. Straight fringes represent a Fourier transform of a point source at infinity. An inverse Fourier transform of this fringe pattern would provide an accurate image (location and intensity) of a point source.

  13. Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Yoshiyuki; Kalashev, Oleg E.; Kusenko, Alexander

    2014-02-01

    Very high-energy gamma-ray measurements of distant blazars can be well explained by secondary gamma rays emitted by cascades induced by ultra-high-energy cosmic rays. The secondary gamma rays will enable one to detect a large number of blazars with future ground based gamma-ray telescopes such as Cherenkov Telescope Array (CTA). We show that the secondary emission process will allow CTA to detect 100, 130, 150, 87, and 8 blazars above 30 GeV, 100 GeV, 300 GeV, 1 TeV, and 10 TeV, respectively, up to z~8 assuming the intergalactic magnetic field (IGMF) strength B=10-17 G and an unbiased all sky survey withmore » 0.5 h exposure at each field of view, where total observing time is ~540 h. These numbers will be 79, 96, 110, 63, and 6 up to z~5 in the case of B=10-15 G. This large statistics of sources will be a clear evidence of the secondary gamma-ray scenarios and a new key to studying the IGMF statistically. We also find that a wider and shallower survey is favored to detect more and higher redshift sources even if we take into account secondary gamma rays.« less

  14. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  15. 5@5 - A 5 GeV Energy Threshold Array of Imaging Atmospheric Cherenkov Telescopes at 5 km Altitude

    NASA Astrophysics Data System (ADS)

    Aharonian, F. A.; Konopelko, A. K.; Voelk, H. J.; Quintana, H.

    2000-10-01

    We discuss the concept and the performance of 5@5 - a stereoscopic array of several large imaging atmospheric Cherenkov telescopes installed at a very high mountain elevation of about 5 km a.s.l. or more - for the study of the gamma-ray sky at energies from several GeV to 100 GeV. With its capability to detect the ``standard'' EGRET sources with spectra extending up to 10 GeV in exposure times from 1 to 103 seconds, such a detector may serve as an ideal "Gamma-Ray Timing Explorer" for the study of transient non-thermal phenomena like gamma-radiation from AGN jets, synchrotron flares of microquasars, the high energy (GeV) counterparts of Gamma Ray Bursts, etc. Such an instrument would also allow detailed studies of the spectral characteristics of persistent gamma-ray sources like pulsars, supernova remnants, plerions, radiogalaxies, etc, in the energy region between 10 GeV and 100 GeV, where the capabilities of both the current space-based and ground-based gamma-ray projects are quite limited. The existing technological achievements in the design and construction of multi (1000) pixel, high resolution imagers, as well as of large, 20 m diameter class multi-mirror dishes with rather modest optical requirements, would allow the construction of the "5@5" in a foreseeable future. The Llano de Chajnantor (or the neighboring Cerro Toco) in the Atacama desert of Northern Chile seems an ideal site for such a ``post - CANGAROO/H.E.S.S./MAGIC/VERITAS'' era ground-based gamma-ray detector. The large flat area of that site, which was recently chosen for the installation of one of the most powerful future astronomical instruments - the Atacama Large Millimeter Array (ALMA) - could accomodate also an additional Cherenkov telescope array which requires a relatively compact area with a radius of about 100 m.

  16. Gamma Ray Bursts-Afterglows and Counterparts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J

    1998-01-01

    Several breakthrough discoveries were made last year of x-ray, optical and radio afterglows and counterparts to gamma-ray bursts, and a redshift has been associated with at least one of these. These discoveries were made possible by the fast, accurate gamma-ray burst locations of the BeppoSAX satellite. It is now generally believed that the burst sources are at cosmological distances and that they represent the most powerful explosions in the Universe. These observations also open new possibilities for the study of early star formation, the physics of extreme conditions and perhaps even cosmology. This session will concentrate on recent x-ray, optical and radio afterglow observations of gamma-ray bursts, associated redshift measurements, and counterpart observations. Several review and theory talks will also be presented, along with a summary of the astrophysical implications of the observations. There will be additional poster contributions on observations of gamma-ray burst source locations at wavelengths other than gamma rays. Posters are also solicited that describe new observational capabilities for rapid follow-up observations of gamma-ray bursts.

  17. Characteristics of gamma-ray line flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Dennis, B.

    1983-01-01

    Observations of solar gamma rays by the Solar Maximum Mission (SMM) demonstrate that energetic protons and ions are rapidly accelerated during the impulsive phase. To understand the acceleration mechanisms for these particles, the characteristics of the gamma ray line flares observed by SMM were studied. Some very intense hard X-ray flares without detectable gamma ray lines were also investigated. Gamma ray line flares are distinguished from other flares by: (1) intense hard X-ray and microwave emissions; (2) delay of high energy hard X-rays; (3) emission of type 2 and/or type 4 radio bursts; and (4) flat hard X-ray spectra (average power law index: 3.1). The majority of the gamma ray line flares shared all these characteristics, and the remainder shared at least three of them. Positive correlations were found between durations of spike bursts and spatial sizes of flare loops as well as between delay times and durations of spike bursts.

  18. About cosmic gamma ray lines

    NASA Astrophysics Data System (ADS)

    Diehl, Roland

    2017-06-01

    Gamma ray lines from cosmic sources convey the action of nuclear reactions in cosmic sites and their impacts on astrophysical objects. Gamma rays at characteristic energies result from nuclear transitions following radioactive decays or high-energy collisions with excitation of nuclei. The gamma-ray line from the annihilation of positrons at 511 keV falls into the same energy window, although of different origin. We present here the concepts of cosmic gamma ray spectrometry and the corresponding instruments and missions, followed by a discussion of recent results and the challenges and open issues for the future. Among the lessons learned are the diffuse radioactive afterglow of massive-star nucleosynthesis in 26Al and 60Fe gamma rays, which is now being exploited towards the cycle of matter driven by massive stars and their supernovae; large interstellar cavities and superbubbles have been recognised to be of key importance here. Also, constraints on the complex processes making stars explode as either thermonuclear or core-collapse supernovae are being illuminated by gamma-ray lines, in this case from shortlived radioactivities from 56Ni and 44Ti decays. In particular, the three-dimensionality and asphericities that have recently been recognised as important are enlightened in different ways through such gamma-ray line spectroscopy. Finally, the distribution of positron annihilation gamma ray emission with its puzzling bulge-dominated intensity disctribution is measured through spatially-resolved spectra, which indicate that annihilation conditions may differ in different parts of our Galaxy. But it is now understood that a variety of sources may feed positrons into the interstellar medium, and their characteristics largely get lost during slowing down and propagation of positrons before annihilation; a recent microquasar flare was caught as an opportunity to see positrons annihilate at a source.

  19. Near-infrared and gamma-ray monitoring of TANAMI gamma-ray bright sources

    DOE PAGES

    Nesci, R.; Tosti, G.; Pursimo, T.; ...

    2013-06-18

    Context. We present that spectral energy distribution and its variability are basic tools for understanding the physical processes operating in active galactic nuclei (AGN). Aims. In this paper we report the results of a one-year near-infrared (NIR) and optical monitoring of a sample of 22 AGN known to be gamma-ray emitters, aimed at discovering correlations between optical and gamma-ray emission. Methods. We observed our objects with the Rapid Eye Mount (REM) telescope in J,H,K, and R bands nearly twice every month during their visibility window and derived light curves and spectral indexes. We also analyzed the gamma-ray data from themore » Fermi gamma-ray Space Telescope, making weekly averages. Results. Six sources were never detected during our monitoring, proving to be fainter than their historical Two micron all sky survey (2MASS) level. All of the sixteen detected sources showed marked flux density variability, while the spectral indexes remained unchanged within our sensitivity limits. Steeper sources showed, on average, a larger variability. From the NIR light curves we also computed a variability speed index for each detected source. Only one source (PKS 0208-512) underwent an NIR flare during our monitoring. Half of the sources showed a regular flux density trend on a one-year time scale, but do not show any other peculiar characteristic. The broadband spectral index α ro appears to be a good proxy of the NIR spectral index only for BL Lac objects. No clear correlation between NIR and gamma-ray data is evident in our data, save for PKS 0537-441, PKS 0521-360, PKS 2155-304, and PKS 1424-418. In conclusion, the gamma-ray/NIR flux ratio showed a large spread, QSO being generally gamma-louder than BL Lac, with a marked correlation with the estimated peak frequency (ν peak) of the synchrotron emission.« less

  20. Lunar occultations for gamma-ray source measurements

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.; Nolan, Patrick L.

    1990-01-01

    The unambiguous association of discrete gamma-ray sources with objects radiating at other wavelengths, the separation of discrete sources from the extended emission within the Galaxy, the mapping of gamma-ray emission from nearby galaxies and the measurement of structure within a discrete source cannot presently be accomplished at gamma-ray energies. In the past, the detection processes used in high-energy gamma-ray astronomy have not allowed for good angular resolution. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For purposes of discussion, this concept is examined for gamma rays above 100 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  1. Mercuric iodine room temperature gamma-ray detectors

    NASA Technical Reports Server (NTRS)

    Patt, Bradley E.; Markakis, Jeffrey M.; Gerrish, Vernon M.; Haymes, Robert C.; Trombka, Jacob I.

    1990-01-01

    high resolution mercuric iodide room temperature gamma-ray detectors have excellent potential as an essential component of space instruments to be used for high energy astrophysics. Mercuric iodide detectors are being developed both as photodetectors used in combination with scintillation crystals to detect gamma-rays, and as direct gamma-ray detectors. These detectors are highly radiation damage resistant. The list of applications includes gamma-ray burst detection, gamma-ray line astronomy, solar flare studies, and elemental analysis.

  2. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2008-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched this year, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio frequencies, are likely to emit greater than 100 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d2, where E-dot is the energy loss due to rotational spin-down, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d2) times efficiency, assumed proportional to l/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will rely on radio and X-ray timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  3. Polarimetric Analysis of the Long Duration Gamma-Ray Burst GRB 160530A With the Balloon Borne Compton Spectrometer and Imager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, A. W.; Boggs, S. E; Chiu, C. L.

    2017-10-20

    A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) andmore » 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).« less

  4. On the production of Gamma rays and Relativistic Runaway Electron Avalanches from Martian dust storms

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Majid, W.; Dwyer, J. R.; Rassoul, H.

    2016-12-01

    In Earth's atmosphere, runaway electrons are routinely produced from large electric fields such as occurs inside thunderclouds. Electrons run away when the average rate of energy loss in a medium is less than the average rate of energy gains from an electric field. These electrons can then produce more energetic electrons, and subsequently an avalanche of energetic electrons, through electron-electron Møller scattering with air atoms and molecules. The process is called a Relativistic Runaway Electron Avalanche (RREA). RREA also produces large flux of X-rays and gamma rays (e.g. Terrestrial Gamma Ray Flashes) through bremsstrahlung scattering. Theoretical modeling of electric fields inside dust devils [Farrel et al. 2006], and possible observation of large electrostatic discharges from Mars [Ruf et al. 2009] suggest that the electric fields could get close to the breakdown values for Mars' atmosphere, i.e. 25 kV/m. Using detailed Monte Carlo simulations, we have shown that for such electric fields it is possible to have a RREA-like mechanism also at work inside the Martian dust storms, capable of producing a large flux of gamma-ray photons. We have also shown that the resulting gamma ray photons could be detected using instruments either on the surface of Mars or on orbiting satellites.

  5. Soft gamma-ray detector (SGD) onboard the ASTRO-H mission

    NASA Astrophysics Data System (ADS)

    Fukazawa, Yasushi; Tajima, Hiroyasu; Watanabe, Shin; Blandford, Roger; Hayashi, Katsuhiro; Harayama, Atsushi; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Grzegorz M.; Makishima, Kazuo; Mizuno, Tsunefumi; Mori, Kunishiro; Nakamori, Takeshi; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Saito, Shin'ya; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Yasuyuki; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamaoka, Kazutaka; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2014-07-01

    The Soft Gamma-ray Detector (SGD) is one of observational instruments onboard the ASTRO-H, and will provide 10 times better sensitivity in 60{600 keV than the past and current observatories. The SGD utilizes similar technologies to the Hard X-ray Imager (HXI) onboard the ASTRO-H. The SGD achieves low background by constraining gamma-ray events within a narrow field-of-view by Compton kinematics, in addition to the BGO active shield. In this paper, we will present the results of various tests using engineering models and also report the flight model production and evaluations.

  6. New Fermi-LAT event reconstruction reveals more high-energy gamma rays from gamma-ray bursts

    DOE PAGES

    Atwood, W. B.; Baldini, L.; Bregeon, J.; ...

    2013-08-19

    Here, based on the experience gained during the four and a half years of the mission, the Fermi-LAT Collaboration has undertaken a comprehensive revision of the event-level analysis going under the name of Pass 8. Although it is not yet finalized, we can test the improvements in the new event reconstruction with the special case of the prompt phase of bright gamma-ray bursts (GRBs), where the signal-to-noise ratio is large enough that loose selection cuts are sufficient to identify gamma rays associated with the source. Using the new event reconstruction, we have re-analyzed 10 GRBs previously detected by the Largemore » Area Telescope (LAT) for which an X-ray/optical follow-up was possible and found four new gamma rays with energies greater than 10 GeV in addition to the seven previously known. Among these four is a 27.4 GeV gamma ray from GRB 080916C, which has a redshift of 4.35, thus making it the gamma ray with the highest intrinsic energy (~147 GeV) detected from a GRB. We present here the salient aspects of the new event reconstruction and discuss the scientific implications of these new high-energy gamma rays, such as constraining extragalactic background light models, Lorentz invariance violation tests, the prompt emission mechanism, and the bulk Lorentz factor of the emitting region.« less

  7. Observations of medium energy gamma ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium energy range between 15 and 100 MeV, obtained during two ballon flights from Brazil are presented. The importance of this energy region in determining whether pi deg - decay of electron bremsstrahlung is the most likely dominant source mechanism is discussed along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to theoretical spectrum calculations including both sources mechanisms, but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  8. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  9. Modeling the Martian neutron and gamma-ray leakage fluxes using Geant4

    NASA Astrophysics Data System (ADS)

    Pirard, Benoit; Desorgher, Laurent; Diez, Benedicte; Gasnault, Olivier

    A new evaluation of the Martian neutron and gamma-ray (continuum and line) leakage fluxes has been performed using the Geant4 code. Even if numerous studies have recently been carried out with Monte Carlo methods to characterize planetary radiation environments, only a few however have been able to reproduce in detail the neutron and gamma-ray spectra observed in orbit. We report on the efforts performed to adapt and validate the Geant4-based PLAN- ETOCOSMICS code for use in planetary neutron and gamma-ray spectroscopy data analysis. Beside the advantage of high transparency and modularity common to Geant4 applications, the new code uses reviewed nuclear cross section data, realistic atmospheric profiles and soil layering, as well as specific effects such as gravity acceleration for low energy neutrons. Results from first simulations are presented for some Martian reference compositions and show a high consistency with corresponding neutron and gamma-ray spectra measured on board Mars Odyssey. Finally we discuss the advantages and perspectives of the improved code for precise simulation of planetary radiation environments.

  10. A link between prompt optical and prompt gamma-ray emission in gamma-ray bursts.

    PubMed

    Vestrand, W T; Wozniak, P R; Wren, J A; Fenimore, E E; Sakamoto, T; White, R R; Casperson, D; Davis, H; Evans, S; Galassi, M; McGowan, K E; Schier, J A; Asa, J W; Barthelmy, S D; Cummings, J R; Gehrels, N; Hullinger, D; Krimm, H A; Markwardt, C B; McLean, K; Palmer, D; Parsons, A; Tueller, J

    2005-05-12

    The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.

  11. Estimation of NOx Production from Terrestrial Gamma-ray Flashes

    NASA Astrophysics Data System (ADS)

    Cramer, E. S.; Briggs, M. S.; Liu, N.; Mailyan, B.; Rassoul, H.; Dwyer, J. R.

    2016-12-01

    The motivation of this work is to understand the effects of TGFs on the ozone layer. One of the main ozone-destroying mechanisms is the production of NOx in the stratospheric region. We first review the mechanisms for NOx production in this region, specifically looking at the global rate produced by lightning. Terrestrial Gamma-ray Flashes, with runaway electron avalanches and the subsequent bremsstrahlung gamma rays, produce atmospheric ionization at all altitudes of the atmosphere. TGFs might have a greater impact on the ozone concentration in the stratosphere since they directly produce ionization and thus NOx in the ozone layer. In order to study the effect from TGFs, we use the runaway electron avalanche model (REAM) to simulate a typical TGF. The photons are then transported through Earth's atmosphere, where they deposit some of their energy as ionization in the ozone layer. We then calculate the number of NOx molecules produced by considering the average energy required to produce one electron-ion pair (W = 35 eV). The W factor has been experimentally quantified and is constant for various types of radiation and over large energy ranges and electric fields. Finally, the effect of TGF NOx production is estimated using the global annual rate of TGFs.

  12. Gamma-Ray Pulsar Candidates for GLAST

    NASA Technical Reports Server (NTRS)

    Thompson, David J.; Smith, D. A.; Dumora, D.; Guillemot, L.; Parent, D.; Reposeur, T.; Grove, E.; Romani, R. W.; Thorsett, S. E.

    2007-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) will be launched less than a year from now, and its Large Area Telescope (LAT) is expected to discover scores to hundreds of gamma-ray pulsars. This poster discusses which of the over 1700 known pulsars, mostly visible only at radio Erequencies, are likely to emit greater than l00 MeV gamma rays with intensities detectable by the LAT. The main figure of merit used to select gamma-ray pulsar candidates is sqrt(E-dot)/d^2, where E-dot is the energy loss due to rotational spindown, and d is the distance to the pulsar. The figure of merit incorporates spin-down flux at earth (proportional to E-dot/d^2) times efficiency, assumed proportional to 1/sqrt(E-dot). A few individual objects are cited to illustrate the issues. Since large E-dot pulsars also tend to have large timing noise and occasional glitches, their ephemerides can become inaccurate in weeks to months. To detect and study the gamma-ray emission the photons must be accurately tagged with the pulse phase. With hours to days between gamma-ray photon arrival times from a pulsar and months to years of LAT exposure needed for good detections, GLAST will need timing measurements throughout the continuous gamma-ray observations. The poster will describe efforts to coordinate pulsar timing of the candidate gamma-ray pulsars.

  13. Neutron induced background in the COMPTEL detector on the Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Morris, D. J.; Aarts, H.; Bennett, K.; Busetta, M.; Byrd, R.; Collmar, W.; Connors, A.; Diehl, R.; Eymann, G.; Foster, C.

    1992-01-01

    Interactions of neutrons in a prototype of the Compton imaging telescope (COMPTEL) gamma ray detector for the Gamma Ray Observatory were studied to determine COMPTEL's sensitivity as a neutron telescope and to estimate the gamma ray background resulting from neutron interactions. The IUCF provided a pulsed neutron beam at five different energies between 18 and 120 MeV. These measurements showed that the gamma ray background from neutron interactions is greater than previously expected. It was thought that most such events would be due to interactions in the upper detector modules of COMPTEL and could be distinguished by pulse shape discrimination. Rather, the bulk of the gamma ray background appears to be due to interactions in passive material, primarily aluminum, surrounding the D1 modules. In a considerable fraction of these interactions, two or more gamma rays are produced simultaneously, with one interacting in the D1 module and the other interacting in the module of the lower (D2) detector. If the neutron interacts near the D1 module, the D1 D2 time of flight cannot distinguish such an event from a true gamma ray event. In order to assess the significance of this background, the flux of neutrons in orbit has been estimated based on observed events with neutron pulse shape signature in D1. The strength of this neutron induced background is estimated. This is compared with the rate expected from the isotropic cosmic gamma ray flux.

  14. Gamma-ray imaging assay of cells 3-5 of the east cell line in the 235-F plutonium fuel form facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, A. D.; Aucott, T. J.; Diprete, D. P.

    In August and September, 2016, scientists from the Savannah River National Laboratory (SRNL) took a series of gamma-ray imaging measurements through the cell windows in front of Cells 3-5 on the east line of the Plutonium Fuel Form (PuFF) Facility using an electrically cooled, high-purity germanium detector. A Germanium Gamma Ray Imager (GeGI) was utilized since it allowed for the location from which the radiation was being emitted to be identified by incoming gamma-ray energy. This measurement technique provided a tool which allowed for the relative concentration of Pu-238 to be mapped throughout each cell. The mapping and new assaymore » data were then used to update the model used in an assay discussed in a 2014 report (SRNL-STI-2014-00629) and to calculate a more accurate value for the holdup in each of the cells [1]. Note that the mapping and new assay data did not replace the previous assay data in the model. Rather, the mapping and new assay data provided additional details on source distribution, which supplemented the previous assay data.« less

  15. The Mystery of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2004-01-01

    Gamma-ray bursts remain one of the greatest mysteries in astrophysics. Observations of gamma-ray bursts made by the BATSE experiment on the Compton Gamma-Ray Observatory will be described. Most workers in the field now believe that they originate from cosmological distances. This view has been reinforced by observations this year of several optical afterglow counterparts to gamma-ray bursts. A summary of these recent discoveries will be presented, along with their implications for models of the burst emission mechanism and the energy source of the bursts.

  16. A burst of energetic gamma rays. [measured by balloon-borne instruments

    NASA Technical Reports Server (NTRS)

    Koga, R.; Simnett, G.; White, R. S.

    1974-01-01

    A burst of gamma rays with energies greater than 1 MeV occurring on May 14, 1972, at 201247 UT (151247 local time) was detected during a balloon flight from Palestine, Texas, at a float altitude of 4g/sq cm residual atmosphere. The detector was a tank of liquid scintillator 1m x 0.5 m x 15 cm surrounded by a 0.6 cm plastic scintillator in anticoincidence. The signal was 60 standard deviations above a steady background of 600 counts/sec. The flux was 0.12 (+0.07 or -0.04) gamma/sq cm, and the time integrated flux 20(+11 or -7) gamma/sq cm. Only one such event was seen during the 8 hours of observation in the daytime on May 14 and 15. Two sub-flares in H alpha occurred during the burst, but not coincident with the start time. A detector on the Solrad satellite observed X-rays on all channels 2 minutes after the gamma ray start time. This event is similar to three earlier reported events.

  17. Fermi-LAT Detection of Gravitational Lens Delayed Gamma-Ray Flares from Blazar B0218+357

    NASA Technical Reports Server (NTRS)

    Cheung, C. C.; Larsson, S.; Scargle, J. D.; Amin, M. A.; Blandford, R. D.; Bulmash, D.; Chiang, J.; Ciprini, S.; Corbet, R. D. H.; Falco, E. E.; hide

    2014-01-01

    Using data from the Fermi Large Area Telescope (LAT), we report the first clear gamma-ray measurement of a delay between flares from the gravitationally lensed images of a blazar. The delay was detected in B0218+357, a known double-image lensed system, during a period of enhanced gamma-ray activity with peak fluxes consistently observed to reach greater than 20-50 times its previous average flux. An auto-correlation function analysis identified a delay in the gamma-ray data of 11.46 plus or minus 0.16 days (1 sigma) that is approximately 1 day greater than previous radio measurements. Considering that it is beyond the capabilities of the LAT to spatially resolve the two images, we nevertheless decomposed individual sequences of superposing gamma-ray flares/delayed emissions. In three such approximately 8-10 day-long sequences within an approximately 4-month span, considering confusion due to overlapping flaring emission and flux measurement uncertainties, we found flux ratios consistent with approximately 1, thus systematically smaller than those from radio observations. During the first, best-defined flare, the delayed emission was detailed with a Fermi pointing, and we observed flux doubling timescales of approximately 3-6 hours implying as well extremely compact gamma-ray emitting regions.

  18. Studying the High Energy Gamma Ray Sky with Gamma Ray Large Area Space Telescope (GLAST)

    NASA Technical Reports Server (NTRS)

    Kamae, T.; Ohsugi, T.; Thompson, D. J.; Watanabe, K.

    1998-01-01

    Building on the success of the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory, the Gamma Ray Large Area Space Telescope (GLAST) will make a major step in the study of such subjects as blazars, gamma Ray bursts, the search for dark matter, supernova remnants, pulsars, diffuse radiation, and unidentified high energy sources. The instrument will be built on new and mature detector technologies such as silicon strip detectors, low-power low-noise LSI, and a multilevel data acquisition system. GLAST is in the research and development phase, and one full tower (of 25 total) is now being built in collaborating institutes. The prototype tower will be tested thoroughly at Stanford Linear Accelerator Center (SLAC) in the fall of 1999.

  19. Studies on a silicon-photomultiplier-based camera for Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Arcaro, C.; Corti, D.; De Angelis, A.; Doro, M.; Manea, C.; Mariotti, M.; Rando, R.; Reichardt, I.; Tescaro, D.

    2017-12-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) represent a class of instruments which are dedicated to the ground-based observation of cosmic VHE gamma ray emission based on the detection of the Cherenkov radiation produced in the interaction of gamma rays with the Earth atmosphere. One of the key elements of such instruments is a pixelized focal-plane camera consisting of photodetectors. To date, photomultiplier tubes (PMTs) have been the common choice given their high photon detection efficiency (PDE) and fast time response. Recently, silicon photomultipliers (SiPMs) are emerging as an alternative. This rapidly evolving technology has strong potential to become superior to that based on PMTs in terms of PDE, which would further improve the sensitivity of IACTs, and see a price reduction per square millimeter of detector area. We are working to develop a SiPM-based module for the focal-plane cameras of the MAGIC telescopes to probe this technology for IACTs with large focal plane cameras of an area of few square meters. We will describe the solutions we are exploring in order to balance a competitive performance with a minimal impact on the overall MAGIC camera design using ray tracing simulations. We further present a comparative study of the overall light throughput based on Monte Carlo simulations and considering the properties of the major hardware elements of an IACT.

  20. Characteristics of bursts observed by the SMM Gamma-Ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Share, G. H.; Messina, D. C.; Iadicicco, A.; Matz, S. M.; Rieger, E.; Forrest, D. J.

    1992-01-01

    The Gamma Ray Spectrometer (GRS) on the SMM completed close to 10 years of highly successful operation when the spacecraft reentered the atmosphere on December 2, 1989. During this period the GRS detected 177 events above 300 keV which have been classified as cosmic gamma-ray bursts. A catalog of these events is in preparation which will include time profiles and spectra for all events. Visual inspection of the spectra indicates that emission typically extends into the MeV range, without any evidence for a high-energy cutoff; 17 of these events are also observed above 10 MeV. We find no convincing evidence for line-like emission features in any of the time-integrated spectra.

  1. Maximum-Likelihood Methods for Processing Signals From Gamma-Ray Detectors

    PubMed Central

    Barrett, Harrison H.; Hunter, William C. J.; Miller, Brian William; Moore, Stephen K.; Chen, Yichun; Furenlid, Lars R.

    2009-01-01

    In any gamma-ray detector, each event produces electrical signals on one or more circuit elements. From these signals, we may wish to determine the presence of an interaction; whether multiple interactions occurred; the spatial coordinates in two or three dimensions of at least the primary interaction; or the total energy deposited in that interaction. We may also want to compute listmode probabilities for tomographic reconstruction. Maximum-likelihood methods provide a rigorous and in some senses optimal approach to extracting this information, and the associated Fisher information matrix provides a way of quantifying and optimizing the information conveyed by the detector. This paper will review the principles of likelihood methods as applied to gamma-ray detectors and illustrate their power with recent results from the Center for Gamma-ray Imaging. PMID:20107527

  2. Hard X-ray and low-energy gamma-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Crannell, C. J.; Orwig, L. E.; Forrest, D. J.; Lin, R. P.; Starr, R.

    1988-01-01

    Basic principles of operation and characteristics of scintillation and semi-conductor detectors used for solar hard X-ray and gamma-ray spectrometers are presented. Scintillation materials such as NaI offer high stopping power for incident gamma rays, modest energy resolution, and relatively simple operation. They are, to date, the most often used detector in solar gamma-ray spectroscopy. The scintillator BGO has higher stopping power than NaI, but poorer energy resolution. The primary advantage of semi-conductor materials such as Ge is their high-energy resolution. Monte-Carlo simulations of the response of NaI and Ge detectors to model solar flare inputs show the benefit of high resoluton for studying spectral lines. No semi-conductor material besides Ge is currently available with adequate combined size and purity to make general-use hard X-ray and gamma-ray detectors for solar studies.

  3. Fermi Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie E.; Michelson, Peter F.; Paclesas, William S.; Ritz, Steven

    2012-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an observatory designed to survey the high-energy gamma-ray sky. The primary instrument, the Large Area Telescope (LAT), provides observations from 20 MeV to greater than 300 GeV. A second instrument, the Gamma-ray Burst Monitor (GBM), provides observations of transients from less than 10 keV to 40 MeV. We describe the design and performance of the instruments and their subsystems, the spacecraft and the ground system.

  4. Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Actis, M.; Agnetta, G.; Aharonian, F.; Akhperjanian, A.; Aleksić, J.; Aliu, E.; Allan, D.; Allekotte, I.; Antico, F.; Antonelli, L. A.; Antoranz, P.; Aravantinos, A.; Arlen, T.; Arnaldi, H.; Artmann, S.; Asano, K.; Asorey, H.; Bähr, J.; Bais, A.; Baixeras, C.; Bajtlik, S.; Balis, D.; Bamba, A.; Barbier, C.; Barceló, M.; Barnacka, A.; Barnstedt, J.; Barres de Almeida, U.; Barrio, J. A.; Basso, S.; Bastieri, D.; Bauer, C.; Becerra, J.; Becherini, Y.; Bechtol, K.; Becker, J.; Beckmann, V.; Bednarek, W.; Behera, B.; Beilicke, M.; Belluso, M.; Benallou, M.; Benbow, W.; Berdugo, J.; Berger, K.; Bernardino, T.; Bernlöhr, K.; Biland, A.; Billotta, S.; Bird, T.; Birsin, E.; Bissaldi, E.; Blake, S.; Blanch, O.; Bobkov, A. A.; Bogacz, L.; Bogdan, M.; Boisson, C.; Boix, J.; Bolmont, J.; Bonanno, G.; Bonardi, A.; Bonev, T.; Borkowski, J.; Botner, O.; Bottani, A.; Bourgeat, M.; Boutonnet, C.; Bouvier, A.; Brau-Nogué, S.; Braun, I.; Bretz, T.; Briggs, M. S.; Brun, P.; Brunetti, L.; Buckley, J. H.; Bugaev, V.; Bühler, R.; Bulik, T.; Busetto, G.; Buson, S.; Byrum, K.; Cailles, M.; Cameron, R.; Canestrari, R.; Cantu, S.; Carmona, E.; Carosi, A.; Carr, J.; Carton, P. H.; Casiraghi, M.; Castarede, H.; Catalano, O.; Cavazzani, S.; Cazaux, S.; Cerruti, B.; Cerruti, M.; Chadwick, P. M.; Chiang, J.; Chikawa, M.; Cieślar, M.; Ciesielska, M.; Cillis, A.; Clerc, C.; Colin, P.; Colomé, J.; Compin, M.; Conconi, P.; Connaughton, V.; Conrad, J.; Contreras, J. L.; Coppi, P.; Corlier, M.; Corona, P.; Corpace, O.; Corti, D.; Cortina, J.; Costantini, H.; Cotter, G.; Courty, B.; Couturier, S.; Covino, S.; Croston, J.; Cusumano, G.; Daniel, M. K.; Dazzi, F.; de Angelis, A.; de Cea Del Pozo, E.; de Gouveia Dal Pino, E. M.; de Jager, O.; de La Calle Pérez, I.; de La Vega, G.; de Lotto, B.; de Naurois, M.; de Oña Wilhelmi, E.; de Souza, V.; Decerprit, B.; Deil, C.; Delagnes, E.; Deleglise, G.; Delgado, C.; Dettlaff, T.; di Paolo, A.; di Pierro, F.; Díaz, C.; Dick, J.; Dickinson, H.; Digel, S. W.; Dimitrov, D.; Disset, G.; Djannati-Ataï, A.; Doert, M.; Domainko, W.; Dorner, D.; Doro, M.; Dournaux, J.-L.; Dravins, D.; Drury, L.; Dubois, F.; Dubois, R.; Dubus, G.; Dufour, C.; Durand, D.; Dyks, J.; Dyrda, M.; Edy, E.; Egberts, K.; Eleftheriadis, C.; Elles, S.; Emmanoulopoulos, D.; Enomoto, R.; Ernenwein, J.-P.; Errando, M.; Etchegoyen, A.; Falcone, A. D.; Farakos, K.; Farnier, C.; Federici, S.; Feinstein, F.; Ferenc, D.; Fillin-Martino, E.; Fink, D.; Finley, C.; Finley, J. P.; Firpo, R.; Florin, D.; Föhr, C.; Fokitis, E.; Font, Ll.; Fontaine, G.; Fontana, A.; Förster, A.; Fortson, L.; Fouque, N.; Fransson, C.; Fraser, G. W.; Fresnillo, L.; Fruck, C.; Fujita, Y.; Fukazawa, Y.; Funk, S.; Gäbele, W.; Gabici, S.; Gadola, A.; Galante, N.; Gallant, Y.; García, B.; García López, R. J.; Garrido, D.; Garrido, L.; Gascón, D.; Gasq, C.; Gaug, M.; Gaweda, J.; Geffroy, N.; Ghag, C.; Ghedina, A.; Ghigo, M.; Gianakaki, E.; Giarrusso, S.; Giavitto, G.; Giebels, B.; Giro, E.; Giubilato, P.; Glanzman, T.; Glicenstein, J.-F.; Gochna, M.; Golev, V.; Gómez Berisso, M.; González, A.; González, F.; Grañena, F.; Graciani, R.; Granot, J.; Gredig, R.; Green, A.; Greenshaw, T.; Grimm, O.; Grube, J.; Grudzińska, M.; Grygorczuk, J.; Guarino, V.; Guglielmi, L.; Guilloux, F.; Gunji, S.; Gyuk, G.; Hadasch, D.; Haefner, D.; Hagiwara, R.; Hahn, J.; Hallgren, A.; Hara, S.; Hardcastle, M. J.; Hassan, T.; Haubold, T.; Hauser, M.; Hayashida, M.; Heller, R.; Henri, G.; Hermann, G.; Herrero, A.; Hinton, J. A.; Hoffmann, D.; Hofmann, W.; Hofverberg, P.; Horns, D.; Hrupec, D.; Huan, H.; Huber, B.; Huet, J.-M.; Hughes, G.; Hultquist, K.; Humensky, T. B.; Huppert, J.-F.; Ibarra, A.; Illa, J. M.; Ingjald, J.; Inoue, Y.; Inoue, S.; Ioka, K.; Jablonski, C.; Jacholkowska, A.; Janiak, M.; Jean, P.; Jensen, H.; Jogler, T.; Jung, I.; Kaaret, P.; Kabuki, S.; Kakuwa, J.; Kalkuhl, C.; Kankanyan, R.; Kapala, M.; Karastergiou, A.; Karczewski, M.; Karkar, S.; Karlsson, N.; Kasperek, J.; Katagiri, H.; Katarzyński, K.; Kawanaka, N.; Kȩdziora, B.; Kendziorra, E.; Khélifi, B.; Kieda, D.; Kifune, T.; Kihm, T.; Klepser, S.; Kluźniak, W.; Knapp, J.; Knappy, A. R.; Kneiske, T.; Knödlseder, J.; Köck, F.; Kodani, K.; Kohri, K.; Kokkotas, K.; Komin, N.; Konopelko, A.; Kosack, K.; Kossakowski, R.; Kostka, P.; Kotuła, J.; Kowal, G.; Kozioł, J.; Krähenbühl, T.; Krause, J.; Krawczynski, H.; Krennrich, F.; Kretzschmann, A.; Kubo, H.; Kudryavtsev, V. A.; Kushida, J.; La Barbera, N.; La Parola, V.; La Rosa, G.; López, A.; Lamanna, G.; Laporte, P.; Lavalley, C.; Le Flour, T.; Le Padellec, A.; Lenain, J.-P.; Lessio, L.; Lieunard, B.; Lindfors, E.; Liolios, A.; Lohse, T.; Lombardi, S.; Lopatin, A.; Lorenz, E.; Lubiński, P.; Luz, O.; Lyard, E.; Maccarone, M. C.; Maccarone, T.; Maier, G.; Majumdar, P.; Maltezos, S.; Małkiewicz, P.; Mañá, C.; Manalaysay, A.; Maneva, G.; Mangano, A.; Manigot, P.; Marín, J.; Mariotti, M.; Markoff, S.; Martínez, G.; Martínez, M.; Mastichiadis, A.; Matsumoto, H.; Mattiazzo, S.; Mazin, D.; McComb, T. J. L.; McCubbin, N.; McHardy, I.; Medina, C.; Melkumyan, D.; Mendes, A.; Mertsch, P.; Meucci, M.; Michałowski, J.; Micolon, P.; Mineo, T.; Mirabal, N.; Mirabel, F.; Miranda, J. M.; Mirzoyan, R.; Mizuno, T.; Moal, B.; Moderski, R.; Molinari, E.; Monteiro, I.; Moralejo, A.; Morello, C.; Mori, K.; Motta, G.; Mottez, F.; Moulin, E.; Mukherjee, R.; Munar, P.; Muraishi, H.; Murase, K.; Murphy, A. Stj.; Nagataki, S.; Naito, T.; Nakamori, T.; Nakayama, K.; Naumann, C.; Naumann, D.; Nayman, P.; Nedbal, D.; Niedźwiecki, A.; Niemiec, J.; Nikolaidis, A.; Nishijima, K.; Nolan, S. J.; Nowak, N.; O'Brien, P. T.; Ochoa, I.; Ohira, Y.; Ohishi, M.; Ohka, H.; Okumura, A.; Olivetto, C.; Ong, R. A.; Orito, R.; Orr, M.; Osborne, J. P.; Ostrowski, M.; Otero, L.; Otte, A. N.; Ovcharov, E.; Oya, I.; Oziȩbło, A.; Paiano, S.; Pallota, J.; Panazol, J. L.; Paneque, D.; Panter, M.; Paoletti, R.; Papyan, G.; Paredes, J. M.; Pareschi, G.; Parsons, R. D.; Paz Arribas, M.; Pedaletti, G.; Pepato, A.; Persic, M.; Petrucci, P. O.; Peyaud, B.; Piechocki, W.; Pita, S.; Pivato, G.; Płatos, Ł.; Platzer, R.; Pogosyan, L.; Pohl, M.; Pojmański, G.; Ponz, J. D.; Potter, W.; Prandini, E.; Preece, R.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quel, E.; Quirrenbach, A.; Rajda, P.; Rando, R.; Rataj, M.; Raue, M.; Reimann, C.; Reimann, O.; Reimer, A.; Reimer, O.; Renaud, M.; Renner, S.; Reymond, J.-M.; Rhode, W.; Ribó, M.; Ribordy, M.; Rico, J.; Rieger, F.; Ringegni, P.; Ripken, J.; Ristori, P.; Rivoire, S.; Rob, L.; Rodriguez, S.; Roeser, U.; Romano, P.; Romero, G. E.; Rosier-Lees, S.; Rovero, A. C.; Roy, F.; Royer, S.; Rudak, B.; Rulten, C. B.; Ruppel, J.; Russo, F.; Ryde, F.; Sacco, B.; Saggion, A.; Sahakian, V.; Saito, K.; Saito, T.; Sakaki, N.; Salazar, E.; Salini, A.; Sánchez, F.; Sánchez Conde, M. Á.; Santangelo, A.; Santos, E. M.; Sanuy, A.; Sapozhnikov, L.; Sarkar, S.; Scalzotto, V.; Scapin, V.; Scarcioffolo, M.; Schanz, T.; Schlenstedt, S.; Schlickeiser, R.; Schmidt, T.; Schmoll, J.; Schroedter, M.; Schultz, C.; Schultze, J.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schweizer, T.; Seiradakis, J.; Selmane, S.; Seweryn, K.; Shayduk, M.; Shellard, R. C.; Shibata, T.; Sikora, M.; Silk, J.; Sillanpää, A.; Sitarek, J.; Skole, C.; Smith, N.; Sobczyńska, D.; Sofo Haro, M.; Sol, H.; Spanier, F.; Spiga, D.; Spyrou, S.; Stamatescu, V.; Stamerra, A.; Starling, R. L. C.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steiner, S.; Stergioulas, N.; Sternberger, R.; Stinzing, F.; Stodulski, M.; Straumann, U.; Suárez, A.; Suchenek, M.; Sugawara, R.; Sulanke, K. H.; Sun, S.; Supanitsky, A. D.; Sutcliffe, P.; Szanecki, M.; Szepieniec, T.; Szostek, A.; Szymkowiak, A.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, K.; Takalo, L.; Takami, H.; Talbot, R. G.; Tam, P. H.; Tanaka, M.; Tanimori, T.; Tavani, M.; Tavernet, J.-P.; Tchernin, C.; Tejedor, L. A.; Telezhinsky, I.; Temnikov, P.; Tenzer, C.; Terada, Y.; Terrier, R.; Teshima, M.; Testa, V.; Tibaldo, L.; Tibolla, O.; Tluczykont, M.; Todero Peixoto, C. J.; Tokanai, F.; Tokarz, M.; Toma, K.; Torres, D. F.; Tosti, G.; Totani, T.; Toussenel, F.; Vallania, P.; Vallejo, G.; van der Walt, J.; van Eldik, C.; Vandenbroucke, J.; Vankov, H.; Vasileiadis, G.; Vassiliev, V. V.; Vegas, I.; Venter, L.; Vercellone, S.; Veyssiere, C.; Vialle, J. P.; Videla, M.; Vincent, P.; Vink, J.; Vlahakis, N.; Vlahos, L.; Vogler, P.; Vollhardt, A.; Volpe, F.; von Gunten, H. P.; Vorobiov, S.; Wagner, S.; Wagner, R. M.; Wagner, B.; Wakely, S. P.; Walter, P.; Walter, R.; Warwick, R.; Wawer, P.; Wawrzaszek, R.; Webb, N.; Wegner, P.; Weinstein, A.; Weitzel, Q.; Welsing, R.; Wetteskind, H.; White, R.; Wierzcholska, A.; Wilkinson, M. I.; Williams, D. A.; Winde, M.; Wischnewski, R.; Wiśniewski, Ł.; Wolczko, A.; Wood, M.; Xiong, Q.; Yamamoto, T.; Yamaoka, K.; Yamazaki, R.; Yanagita, S.; Yoffo, B.; Yonetani, M.; Yoshida, A.; Yoshida, T.; Yoshikoshi, T.; Zabalza, V.; Zagdański, A.; Zajczyk, A.; Zdziarski, A.; Zech, A.; Ziȩtara, K.; Ziółkowski, P.; Zitelli, V.; Zychowski, P.

    2011-12-01

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.

  5. Design Concepts for the Cherenkov Telescope Array CTA: An Advanced Facility for Ground-Based High-Energy Gamma-Ray Astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Actis, M

    Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTAmore » is based on currently available technology. This document reports on the status and presents the major design concepts of CTA.« less

  6. The Gamma Ray Imaging Detector of the AGILE satellite: A novel application of silicon trackers for detection of astrophysics high-energy photons

    NASA Astrophysics Data System (ADS)

    Rappoldi, Andrea; AGILE Collaboration

    2009-10-01

    AGILE is a project of the Italian Space Agency (ASI) Scientific Program dedicated to Gamma ray astrophysics. It is designed to be a very light and compact instrument, capable of photon detections and imaging in both the 30 MeV-50 GeV and 18-60 keV energy ranges, with a large field of view (FOV is ˜3 and ˜1 sr, respectively). The core of the instrument (launched on April 23, 2007 from the Indian Space Research Organization's launch facility) is represented by the Gamma Ray Imaging Detector (GRID), which is a silicon tracker developed by the Italian National Institute of Nuclear Physics (INFN), with a spatial resolution of ˜40 μm. The GRID performances have been studied by means of a GEANT Montecarlo, and tested with a dedicated calibration campaign using the tagged gamma beam available at Beam Test Facility (BTF) of INFN Frascati Laboratory.

  7. High energy gamma-ray astronomy; Proceedings of the International Conference, ANN Arbor, MI, Oct. 2-5, 1990

    NASA Astrophysics Data System (ADS)

    Matthews, James

    The present volume on high energy gamma-ray astronomy discusses the composition and properties of heavy cosmic rays greater than 10 exp 12 eV, implications of the IRAS Survey for galactic gamma-ray astronomy, gamma-ray emission from young neutron stars, and high-energy diffuse gamma rays. Attention is given to observations of TeV photons at the Whipple Observatory, TeV gamma rays from millisecond pulsars, recent data from the CYGNUS experiment, and recent results from the Woomera Telescope. Topics addressed include bounds on a possible He/VHE gamma-ray line signal of Galactic dark matter, albedo gamma rays from cosmic ray interactions on the solar surface, source studies, and the CANGAROO project. Also discussed are neural nets and other methods for maximizing the sensitivity of a low-threshold VHE gamma-ray telescope, a prototype water-Cerenkov air-shower detector, detection of point sources with spark chamber gamma-ray telescopes, and real-time image parameterization in high energy gamma-ray astronomy using transputers. (For individual items see A93-25002 to A93-25039)

  8. Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)

    NASA Astrophysics Data System (ADS)

    Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.

    2016-04-01

    The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.

  9. Cosmic rays, gamma rays and synchrotron radiation from the Galaxy

    DOE PAGES

    Orlando, Elena

    2012-07-30

    Galactic cosmic rays (CR), interstellar gamma-ray emission and synchrotron radiation are related topics. CR electrons propagate in the Galaxy and interact with the interstellar medium, producing inverse-Compton emission measured in gamma rays and synchrotron emission measured in radio. I present an overview of the latest results with Fermi/LAT on the gamma-ray diffuse emission induced by CR nuclei and electrons. Then I focus on the recent complementary studies of the synchrotron emission in the light of the latest gamma-ray results. Relevant observables include spectral indices and their variations, using surveys over a wide range of radio frequencies. As a result, thismore » paper emphasizes the importance of using the parallel study of gamma rays and synchrotron radiation in order to constrain the low-energy interstellar CR electron spectrum, models of propagation of CRs, and magnetic fields.« less

  10. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, F V; Albert, F; Anderson, G G

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.« less

  11. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A.M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A.I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approx. 0.01 deg (E(sub gamma) > 100 GeV), the energy resolution approx. 1% (E(sub gamma) > 10 GeV), and the proton rejection factor approx 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  12. Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.

    2007-06-14

    We use the GEANT4 Monte Carlo framework to calculate the gamma-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of gamma-rays from the Moon is very steep with an effective cutoff around 3 GeV (600 MeV for the inner part of the Moon disc). Since it is the only (almost) black spot in the gamma-ray sky, it provides a unique opportunity for calibration of gamma-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST).more » The albedo flux depends on the incident CR spectrum which changes over the solar cycle. Therefore, it is possible to monitor the CR spectrum using the albedo gamma-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo -rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the GLAST LAT to monitor the CR spectrum near the Earth beyond the lifetime of PAMELA.« less

  13. Characterizing the source properties of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.; Liu, Ningyu; Eric Grove, J.; Rassoul, Hamid; Smith, David M.

    2017-08-01

    Monte Carlo simulations are used to determine source properties of terrestrial gamma ray flashes (TGFs) as a function of atmospheric column depth and beaming geometry. The total mass per unit area traversed by all the runaway electrons (i.e., the total grammage) during a TGF, Ξ, is introduced, defined to be the total distance traveled by all the runaway electrons along the electric field lines multiplied by the local air mass density along their paths. It is shown that key properties of TGFs may be directly calculated from Ξ and its time derivative, including the gamma ray emission rate, the current moment, and the optical power of the TGF. For the calculations presented in this paper, a standard TGF gamma ray fluence, F0 = 0.1 cm-2 above 100 keV for a spacecraft altitude of 500 km, and a standard total grammage, Ξ0 = 1018 g/cm2, are introduced, and results are presented in terms of these values. In particular, the current moments caused by the runaway electrons and their accompanying ionization are found for a standard TGF fluence, as a function of source altitude and beaming geometry, allowing a direct comparison between the gamma rays measured in low-Earth orbit and the VLF-LF radio frequency emissions recorded on the ground. Such comparisons should help test and constrain TGF models and help identify the roles of lightning leaders and streamers in the production of TGFs.

  14. A Topological Array Trigger for AGIS, the Advanced Gamma ray Imaging System

    NASA Astrophysics Data System (ADS)

    Krennrich, F.; Anderson, J.; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Haberichter, W.; Imran, A.; Krawczynski, H.; Kreps, A.; Schroedter, M.; Smith, A.

    2008-12-01

    Next generation ground based γ-ray observatories such as AGIS1 and CTA2 are expected to cover a 1 km2 area with 50-100 imaging atmospheric Cherenkov telescopes. The stereoscopic view ol air showers using multiple view points raises the possibility to use a topological array trigger that adds substantial flexibility, new background suppression capabilities and a reduced energy threshold. In this paper we report on the concept and technical implementation of a fast topological trigger system, that makes use of real time image processing of individual camera patterns and their combination in a stereoscopic array analysis. A prototype system is currently under construction and we discuss the design and hardware of this topological array trigger system.

  15. Low-mass X-ray binaries and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lasota, J. P.; Frank, J.; King, A. R.

    1992-01-01

    More than twenty years after their discovery, the nature of gamma-ray burst sources (GRBs) remains mysterious. The results from BATSE experiment aboard the Compton Observatory show however that most of the sources of gamma-ray bursts cannot be distributed in the galactic disc. The possibility that a small fraction of sites of gamma-ray bursts is of galactic disc origin cannot however be excluded. We point out that large numbers of neutron-star binaries with orbital periods of 10 hr and M dwarf companions of mass 0.2-0.3 solar mass are a natural result of the evolution of low-mass X-ray binaries (LMXBs). The numbers and physical properties of these systems suggest that some gamma-ray burst sources may be identified with this endpoint of LMXB evolution. We suggest an observational test of this hypothesis.

  16. Characterizing near-surface elemental layering on Mars using gamma-ray spectroscopy: A proof-of-principle experiment

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Wilson, Jack T.; Beck, Andrew W.; Burks, Morgan; Goldsten, John O.; Lawrence, David J.

    2018-01-01

    Gamma-ray spectroscopy investigations characterize the chemical composition of planetary surfaces by measuring element-characteristic gamma rays with energies of ∼100 keV to ∼9 MeV. Over this energy range, the mean free path of a gamma ray varies from about 1 to 25 cm, therefore gamma-ray measurements sample subsurface composition. Many elements emit gamma rays at multiple, often widely spaced energies, so gamma-ray measurements can in principle also be used to identify depth-dependent variations in subsurface composition. We report results from laboratory measurements and radiation transport modeling designed to demonstrate this capability. The laboratory measurements verified the presence of depth-dependent gamma-ray signatures, and were then used to benchmark radiation transport simulations that were used to model realistic Mars-like scenarios. The models indicate that compositionally distinct subsurface deposits, buried to depths of ∼80 cm (125 g/cm2), can be identified using gamma-ray measurements. Going beyond identification to characterization (burial depth, relative composition of the layers) of the deposits requires knowledge of the vertical and horizontal variability in the water content of the near-surface surface materials, the local Galactic Cosmic Ray environment (magnitude and energy distribution), the depth-dependent neutron flux, gamma-ray production cross sections, and knowledge of the composition and column density of the atmosphere. The results of our experiments and models provided a basis for examining the utility of using orbiter- and lander-based gamma-ray measurements to identify subsurface deposits on Mars.

  17. Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

    NASA Technical Reports Server (NTRS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu V.; hide

    2012-01-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons (+) positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is approximately 0.01deg (E(sub gamma) greater than 100 GeV), the energy resolution approximately 1% (E(sub gamma) greater than 10 GeV), and the proton rejection factor approximately 10(exp 6). GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  18. Overview of Mono-Energetic Gamma-Ray Sources and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartemann, Fred; /LLNL, Livermore; Albert, Felicie

    2012-06-25

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energymore » range via Compton scattering. This MEGaray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence.« less

  19. Resolving the Crab Nebula with Direct Hard X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    Swartz, Douglas A.; Ramsey, Brian D.; Tennant, Allyn F.; Dietz, Kurtis L.; Apple, Jeff A.; Gaskin, Jessica A.; Weisskopf, Martin

    2008-01-01

    We report the first direct hard (25--60 keV) X-ray imaging observation of the Crab Nebula that resolves structure to approximately 0.25 pc. The observation was performed over a 1.4 hour period during a balloon flight from Ft. Sumner, NM, on 2007 May 27. The source was detected in the energy band above the atmospheric cutoff at approx.25 keV and below the mirror graze angle cutoff at approx.60 keV. The image shows elongation about 25 degrees E of N in the direction along the plane of the torus (and perpendicular to the jet axis) with a slight surface-brightness enhancement NE of the pulsar. The spectrum within a 1.7 arcminute radius region centered on the Crab pulsar can be fitted with a Gamma=2 power law absorbed by an atmospheric column consistent with the balloon altitude at the time of observation.

  20. Observations of medium-energy gamma-ray emission from the galactic center region

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Bertsch, D. L.; Morris, D. J.; Palmeira, R. A. R.; Rao, K. R.

    1978-01-01

    Measurements of the gamma-ray emission in the medium-energy range between 15 and 100 MeV, obtained during two balloon flights from Brazil, are presented. The importance of this energy region in determining whether neutral-pion decay or electron bremsstrahlung is the most likely dominant source mechanism is discussed, along with the implications of such observations. Specifically, the data from this experiment suggest that emission from the galactic plane is similar to the theoretical spectrum calculated by Fichtel et al. (1976), including both source mechanisms but with the bremsstrahlung component enhanced by a factor of about 2. A spectral distribution of gamma-rays produced in the residual atmosphere above the instrument is also presented and compared with other data. A rather smooth spectral variation from high to low energies is found for the atmospheric spectrum.

  1. Simultaneous optical/gamma-ray observations of GRBs

    NASA Technical Reports Server (NTRS)

    Greiner, J.; Wenzel, W.; Hudec, R.; Moskalenko, E. I.; Metlov, V.; Chernych, N. S.; Getman, V. S.; Ziener, Rainer; Birkle, K.; Bade, N.

    1994-01-01

    Details on the project to search for serendipitous time correlated optical photographic observations of Gamma Ray Bursters (GRB's) are presented. The ongoing photographic observations at nine observatories are used to look for plates which were exposed simultaneously with a gamma ray burst detected by the gamma ray instrument team (BATSE) and contain the burst position. The results for the first two years of the gamma ray instrument team operation are presented.

  2. Simulation of the hybrid Tunka Advanced International Gamma-ray and Cosmic ray Astrophysics (TAIGA)

    NASA Astrophysics Data System (ADS)

    Kunnas, M.; Astapov, I.; Barbashina, N.; Beregnev, S.; Bogdanov, A.; Bogorodskii, D.; Boreyko, V.; Brückner, M.; Budnev, N.; Chiavassa, A.; Chvalaev, O.; Dyachok, A.; Epimakhov, S.; Eremin, T.; Gafarov, A.; Gorbunov, N.; Grebenyuk, V.; Gress, O.; Gress, T.; Grinyuk, A.; Grishin, O.; Horns, D.; Ivanova, A.; Karpov, N.; Kalmykov, N.; Kazarina, Y.; Kindin, V.; Kirichkov, N.; Kiryuhin, S.; Kokoulin, R.; Kompaniets, K.; Konstantinov, E.; Korobchenko, A.; Korosteleva, E.; Kozhin, V.; Kuzmichev, L.; Lenok, V.; Lubsandorzhiev, B.; Lubsandorzhiev, N.; Mirgazov, R.; Mirzoyan, R.; Monkhoev, R.; Nachtigall, R.; Pakhorukov, A.; Panasyuk, M.; Pankov, L.; Perevalov, A.; Petrukhin, A.; Platonov, V.; Poleschuk, V.; Popescu, M.; Popova, E.; Porelli, A.; Porokhovoy, S.; Prosin, V.; Ptuskin, V.; Romanov, V.; Rubtsov, G. I.; Müger; Rybov, E.; Samoliga, V.; Satunin, P.; Saunkin, A.; Savinov, V.; Semeney, Yu; Shaibonov (junior, B.; Silaev, A.; Silaev (junior, A.; Skurikhin, A.; Slunecka, M.; Spiering, C.; Sveshnikova, L.; Tabolenko, V.; Tkachenko, A.; Tkachev, L.; Tluczykont, M.; Veslopopov, A.; Veslopopova, E.; Voronov, D.; Wischnewski, R.; Yashin, I.; Yurin, K.; Zagorodnikov, A.; Zirakashvili, V.; Zurbanov, V.

    2015-08-01

    Up to several 10s of TeV, Imaging Air Cherenkov Telescopes (IACTs) have proven to be the instruments of choice for GeV/TeV gamma-ray astronomy due to their good reconstrucion quality and gamma-hadron separation power. However, sensitive observations at and above 100 TeV require very large effective areas (10 km2 and more), which is difficult and expensive to achieve. The alternative to IACTs are shower front sampling arrays (non-imaging technique or timing-arrays) with a large area and a wide field of view. Such experiments provide good core position, energy and angular resolution, but only poor gamma-hadron separation. Combining both experimental approaches, using the strengths of both techniques, could optimize the sensitivity to the highest energies. The TAIGA project plans to combine the non-imaging HiSCORE [8] array with small (∼10m2) imaging telescopes. This paper covers simulation results of this hybrid approach.

  3. Design and performance of the GAMMA-400 gamma-ray telescope for dark matter searches

    NASA Astrophysics Data System (ADS)

    Galper, A. M.; Adriani, O.; Aptekar, R. L.; Arkhangelskaja, I. V.; Arkhangelskiy, A. I.; Boezio, M.; Bonvicini, V.; Boyarchuk, K. A.; Fradkin, M. I.; Gusakov, Yu. V.; Kaplin, V. A.; Kachanov, V. A.; Kheymits, M. D.; Leonov, A. A.; Longo, F.; Mazets, E. P.; Maestro, P.; Marrocchesi, P.; Mereminskiy, I. A.; Mikhailov, V. V.; Moiseev, A. A.; Mocchiutti, E.; Mori, N.; Moskalenko, I. V.; Naumov, P. Yu.; Papini, P.; Picozza, P.; Rodin, V. G.; Runtso, M. F.; Sparvoli, R.; Spillantini, P.; Suchkov, S. I.; Tavani, M.; Topchiev, N. P.; Vacchi, A.; Vannuccini, E.; Yurkin, Yu. T.; Zampa, N.; Zverev, V. G.; Zirakashvili, V. N.

    2013-02-01

    The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is ~0.01° (Eγ > 100 GeV), the energy resolution ~1% (Eγ > 10 GeV), and the proton rejection factor ~106. GAMMA-400 will be installed on the Russian space platform Navigator. The beginning of observations is planned for 2018.

  4. TEMPORAL CORRELATIONS BETWEEN OPTICAL AND GAMMA-RAY ACTIVITY IN BLAZARS

    DOE PAGES

    Cohen, Daniel P.; Romani, Roger W.; Filippenko, Alexei V.; ...

    2014-12-08

    For this research, we have been using the 0.76 m Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory to optically monitor a sample of 157 blazars that are bright in gamma-rays being detected with high significance (≥10σ) in one year by the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. We attempt to observe each source on a three-day cadence with KAIT, subject to weather and seasonal visibility. The gamma-ray coverage is essentially continuous. KAIT observations extend over much of the five-year Fermi mission for several objects, and most have >100 optical measurements spanning the last three years.more » These blazars (flat-spectrum radio quasars and BL Lac objects) exhibit a wide range of flaring behavior. Using the discrete correlation function (DCF), here we search for temporal relationships between optical and gamma-ray light curves in the 40 brightest sources in hopes of placing constraints on blazar acceleration and emission zones. We find strong optical-gamma-ray correlation in many of these sources at time delays of ~1 to ~10 days, ranging between –40 and +30 days. A stacked average DCF of the 40 sources verifies this correlation trend, with a peak above 99% significance indicating a characteristic time delay consistent with 0 days. These findings strongly support the widely accepted leptonic models of blazar emission. However, we also find examples of apparently uncorrelated flares (optical flares with no gamma-ray counterpart and gamma-ray flares with no optical counterpart) that challenge simple, one-zone models of blazar emission. Moreover, we find that flat-spectrum radio quasars tend to have gamma-rays leading the optical, while intermediate- and high-synchrotron peak blazars with the most significant peaks have smaller lags/leads. In conclusion, it is clear that long-term monitoring at high cadence is necessary to reveal the underlying physical correlation.« less

  5. Feasibility study of single photon emission coupled tomography imaging technique based on prompt gamma ray during antiproton therapy using boron particle

    NASA Astrophysics Data System (ADS)

    Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Sunmi; Choi, Yong; Yoon, Do-Kun; Suh, Tae Suk

    2018-06-01

    In this study, we proposed an absorbed-dose monitoring technique using prompt gamma rays emitted from the reaction between an antiproton and a boron particle, and demonstrated the greater physical effect of the antiproton boron fusion therapy in comparison with proton beam using Monte Carlo simulation. The physical effect of the treatment, which was 3.5 times greater, was confirmed from the antiproton beam irradiation compared to the proton beam irradiation. Moreover, the prompt gamma ray image is acquired successfully during antiproton irradiation to boron regions. The results show the application feasibility of absorbed dose monitoring technique proposed in our study.

  6. A NEW RESULT ON THE ORIGIN OF THE EXTRAGALACTIC GAMMA-RAY BACKGROUND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Ming; Wang Jiancheng, E-mail: mzhou@ynao.ac.cn

    2013-06-01

    In this paper, we repeatedly use the method of image stacking to study the origin of the extragalactic gamma-ray background (EGB) at GeV bands, and find that the Faint Images of the Radio Sky at Twenty centimeters (FIRST) sources undetected by the Large Area Telescope on the Fermi Gamma-ray Space Telescope can contribute about (56 {+-} 6)% of the EGB. Because FIRST is a flux-limited sample of radio sources with incompleteness at the faint limit, we consider that point sources, including blazars, non-blazar active galactic nuclei, and starburst galaxies, could produce a much larger fraction of the EGB.

  7. Biological radiation dose from secondary particles in a Milky Way gamma-ray burst

    NASA Astrophysics Data System (ADS)

    Atri, Dimitra; Melott, Adrian L.; Karam, Andrew

    2014-07-01

    Gamma-ray bursts (GRBs) are a class of highly energetic explosions emitting radiation in a very short timescale of a few seconds and with a very narrow opening angle. Although, all GRBs observed so far are extragalactic in origin, there is a high probability of a GRB of galactic origin beaming towards the Earth in the past ~0.5 Gyr. We define the level of catastrophic damage to the biosphere as approximation 100 kJ m-2, based on Thomas et al. (2005a, b). Using results in Melott & Thomas (2011), we estimate the probability of the Earth receiving this fluence from a GRB of any type, as 87% during the last 500 Myr. Such an intense burst of gamma rays would ionize the atmosphere and deplete the ozone (O3) layer. With depleted O3, there will be an increased flux of Solar UVB on the Earth's surface with potentially harmful biological effects. In addition to the atmospheric damage, secondary particles produced by gamma ray-induced showers will reach the surface. Among all secondary particles, muons dominate the ground-level secondary particle flux (99% of the total number of particles) and are potentially of biological significance. Using the Monte Carlo simulation code CORSIKA, we modelled the air showers produced by gamma-ray primaries up to 100 GeV. We found that the number of muons produced by the electromagnetic component of hypothetical galactic GRBs significantly increases the total muon flux. However, since the muon production efficiency is extremely low for photon energies below 100 GeV, and because GRBs radiate strongly for only a very short time, we find that the biological radiation dose from secondary muons is negligible. The main mechanism of biological damage from GRBs is through Solar UVB irradiation from the loss of O3 in the upper atmosphere.

  8. Gamma-ray, neutron, and hard X-ray studies and requirements for a high-energy solar physics facility

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Dennis, B. R.; Emslie, A. G.

    1988-01-01

    The requirements for future high-resolution spatial, spectral, and temporal observation of hard X-rays, gamma rays and neutrons from solar flares are discussed in the context of current high-energy flare observations. There is much promise from these observations for achieving a deep understanding of processes of energy release, particle acceleration and particle transport in a complicated environment such as the turbulent and highly magnetized atmosphere of the active sun.

  9. First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418

    NASA Astrophysics Data System (ADS)

    H.E.S.S. Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Akhperjanian, A. G.; Andersson, T.; Angüner, E. O.; Arakawa, M.; Arrieta, M.; Aubert, P.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Carr, J.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chalme-Calvet, R.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Chrétien, M.; Coffaro, M.; Colafrancesco, S.; Cologna, G.; Condon, B.; Conrad, J.; Cui, Y.; Davids, I. D.; Decock, J.; Degrange, B.; Deil, C.; Devin, J.; Dewilt, P.; Dirson, L.; Djannati-Ataï, A.; Domainko, W.; Donath, A.; Drury, L. O.'c.; Dutson, K.; Dyks, J.; Edwards, T.; Egberts, K.; Eger, P.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Funk, S.; Füßling, M.; Gabici, S.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Giavitto, G.; Giebels, B.; Glicenstein, J. F.; Gottschall, D.; Goyal, A.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hervet, O.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Janiak, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jogler, T.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; Kieffer, M.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Kolitzus, D.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lees, J.-P.; Lefaucheur, J.; Lefranc, V.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Öttl, S.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poon, H.; Prokhorov, D.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Reimer, A.; Reimer, O.; Renaud, M.; de Los Reyes, R.; Richter, S.; Rieger, F.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Salek, D.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Settimo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Simoni, R.; Sol, H.; Spanier, F.; Spengler, G.; Spies, F.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stycz, K.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zabalza, V.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Żywucka, N.; Superb Collaboration; Jankowski, F.; Keane, E. F.; Petroff, E.

    2017-01-01

    Aims: Following the detection of the fast radio burst FRB150418 by the SUPERB project at the Parkes radio telescope, we aim to search for very-high energy gamma-ray afterglow emission. Methods: Follow-up observations in the very-high energy gamma-ray domain were obtained with the H.E.S.S. imaging atmospheric Cherenkov telescope system within 14.5 h of the radio burst. Results: The obtained 1.4 h of gamma-ray observations are presented and discussed. At the 99% C.L. we obtained an integral upper limit on the gamma-ray flux of Φγ(E > 350 GeV) < 1.33 × 10-8 m-2 s-1. Differential flux upper limits as function of the photon energy were derived and used to constrain the intrinsic high-energy afterglow emission of FRB 150418. Conclusions: No hints for high-energy afterglow emission of FRB 150418 were found. Taking absorption on the extragalactic background light into account and assuming a distance of z = 0.492 based on radio and optical counterpart studies and consistent with the FRB dispersion, we constrain the gamma-ray luminosity at 1 TeV to L < 5.1 × 1047 erg/s at 99% C.L.

  10. Gamma ray astrophysics. [emphasizing processes and absorption

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1974-01-01

    Gamma ray production processes are reviewed, including Compton scattering, synchrotron radiation, bremsstrahlung interactions, meson decay, nucleon-antinucleon annihilations, and pion production. Gamma ray absorption mechanisms through interactions with radiation and with matter are discussed, along with redshifts and gamma ray fluxes.

  11. Hard-X-Ray/Soft-Gamma-Ray Imaging Sensor Assembly for Astronomy

    NASA Technical Reports Server (NTRS)

    Myers, Richard A.

    2008-01-01

    An improved sensor assembly has been developed for astronomical imaging at photon energies ranging from 1 to 100 keV. The assembly includes a thallium-doped cesium iodide scintillator divided into pixels and coupled to an array of high-gain avalanche photodiodes (APDs). Optionally, the array of APDs can be operated without the scintillator to detect photons at energies below 15 keV. The array of APDs is connected to compact electronic readout circuitry that includes, among other things, 64 independent channels for detection of photons in various energy ranges, up to a maximum energy of 100 keV, at a count rate up to 3 kHz. The readout signals are digitized and processed by imaging software that performs "on-the-fly" analysis. The sensor assembly has been integrated into an imaging spectrometer, along with a pair of coded apertures (Fresnel zone plates) that are used in conjunction with the pixel layout to implement a shadow-masking technique to obtain relatively high spatial resolution without having to use extremely small pixels. Angular resolutions of about 20 arc-seconds have been measured. Thus, for example, the imaging spectrometer can be used to (1) determine both the energy spectrum of a distant x-ray source and the angular deviation of the source from the nominal line of sight of an x-ray telescope in which the spectrometer is mounted or (2) study the spatial and temporal development of solar flares, repeating - ray bursters, and other phenomena that emit transient radiation in the hard-x-ray/soft- -ray region of the electromagnetic spectrum.

  12. A gamma beam profile imager for ELI-NP Gamma Beam System

    NASA Astrophysics Data System (ADS)

    Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.

    2018-06-01

    The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.

  13. Thallium Bromide as an Alternative Material for Room-Temperature Gamma-Ray Spectroscopy and Imaging

    NASA Astrophysics Data System (ADS)

    Koehler, William

    Thallium bromide is an attractive material for room-temperature gamma-ray spectroscopy and imaging because of its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm3), and a wide bandgap (2.68 eV). In this work, 5 mm thick TlBr detectors achieved 0.94% FWHM at 662 keV for all single-pixel events and 0.72% FWHM at 662 keV from the best pixel and depth using three-dimensional position sensing technology. However, these results were limited to stable operation at -20°C. After days to months of room-temperature operation, ionic conduction caused these devices to fail. Depth-dependent signal analysis was used to isolate room-temperature degradation effects to within 0.5 mm of the anode surface. This was verified by refabricating the detectors after complete failure at room temperature; after refabrication, similar performance and functionality was recovered. As part of this work, the improvement in electron drift velocity and energy resolution during conditioning at -20°C was quantified. A new method was developed to measure the impurity concentration without changing the gamma ray measurement setup. The new method was used to show that detector conditioning was likely the result of charged impurities drifting out of the active volume. This space charge reduction then caused a more stable and uniform electric field. Additionally, new algorithms were developed to remove hole contributions in high-hole-mobility detectors to improve depth reconstruction. These algorithms improved the depth reconstruction (accuracy) without degrading the depth uncertainty (precision). Finally, spectroscopic and imaging performance of new 11 x 11 pixelated-anode TlBr detectors was characterized. The larger detectors were used to show that energy resolution can be improved by identifying photopeak events from their Tl characteristic x-rays.

  14. Found: A Galaxy's Missing Gamma Rays

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Recent reanalysis of data from the Fermi Gamma-ray Space Telescope has resulted in the first detection of high-energy gamma rays emitted from a nearby galaxy. This discovery reveals more about how supernovae interact with their environments.Colliding Supernova RemnantAfter a stellar explosion, the supernovas ejecta expand, eventually encountering the ambient interstellar medium. According to models, this generates a strong shock, and a fraction of the kinetic energy of the ejecta is transferred into cosmic rays high-energy radiation composed primarily of protons and atomic nuclei. Much is still unknown about this process, however. One open question is: what fraction of the supernovas explosion power goes into accelerating these cosmic rays?In theory, one way to answer this is by looking for gamma rays. In a starburst galaxy, the collision of the supernova-accelerated cosmic rays with the dense interstellar medium is predicted to produce high-energy gamma rays. That radiation should then escape the galaxy and be visible to us.Pass 8 to the RescueObservational tests of this model, however, have beenstumped by Arp 220. This nearby ultraluminous infrared galaxy is the product of a galaxy merger ~700 million years ago that fueled a frenzy of starbirth. Due to its dusty interior and extreme levels of star formation, Arp 220 has long been predicted to emit the gamma rays produced by supernova-accelerated cosmic rays. But though weve looked, gamma-ray emission has never been detected from this galaxy until now.In a recent study, a team of scientists led by Fang-Kun Peng (Nanjing University) reprocessed 7.5 years of Fermi observations using the new Pass 8 analysis software. The resulting increase in resolution revealed the first detection of GeV emission from Arp 220!Acceleration EfficiencyGamma-ray luminosity vs. total infrared luminosity for LAT-detected star-forming galaxies and Seyferts. Arp 220s luminosities are consistent with the scaling relation. [Peng et al. 2016

  15. Search of the energetic gamma-ray experiment telescope (EGRET) data for high-energy gamma-ray microsecond bursts

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Bertsch, D. L.; Dingus, B. L.; Esposito, J. A.; Hartman, R. C.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Lin, Y. C.; Mattox, J. R.

    1994-01-01

    Hawking (1974) and Page & Hawking (1976) investigated theoretically the possibility of detecting high-energy gamma rays produced by the quantum-mechanical decay of a small black hole created in the early universe. They concluded that, at the very end of the life of the small black hole, it would radiate a burst of gamma rays peaked near 250 MeV with a total energy of about 10(exp 34) ergs in the order of a microsecond or less. The characteristics of a black hole are determined by laws of physics beyond the range of current particle accelerators; hence, the search for these short bursts of high-energy gamma rays provides at least the possibility of being the first test of this region of physics. The Compton Observatory Energetic Gamma-Ray Experiment Telescope (EGRET) has the capability of detecting directly the gamma rays from such bursts at a much fainter level than SAS 2, and a search of the EGRET data has led to an upper limit of 5 x 10(exp -2) black hole decays per cu pc per yr, placing constraints on this and other theories predicting microsecond high-energy gamma-ray bursts.

  16. Integral's first look at the gamma-ray Universe

    NASA Astrophysics Data System (ADS)

    2002-12-01

    powerful gamma-ray instruments. It has a camera, or imager, called IBIS and a spectrometer, SPI. Spectrometers are used to measure the energy of the gamma rays received. Gamma-ray sources are often extremely variable and can fluctuate within minutes or seconds. It is therefore crucial to record data simultaneously in different wavelengths. To achieve this, Integral also carries an X-ray and an optical monitor (JEM-X and OMC). All four instruments will observe the same objects, at the same time. In this way they can capture fleeting events completely. Integral sends the data from all the instruments to the Integral Science Data Centre (ISDC) near Geneva, Switzerland, where they are processed for eventual release to the scientific community. “We have been optimising the instruments’ performance to produce the best overall science. We expect to be ready for astronomers around the world to use Integral by the end of the year,” says Arvind Parmar, acting Integral Project Scientist at ESA. “These images and spectra prove that Integral can certainly do the job it was designed to do, and more", which is to unlock some of the secrets of the high-energy Universe. Integral’s primary mission will last for two years, but it is carrying enough fuel to continue for five years, all being well. Notes to Editors Integral was launched on board a Russian Proton rocket from the Baikonur Cosmodrome, Kazakhstan, on 17 October 2002. The satellite was placed in a tilted orbit that looped from 600 to 153 000 kilometres above the Earth and back again. Integral’s own thrusters then steered the spacecraft, in a series of five manoeuvres, into its operational orbit, between 9 000 and 153 000 kilometres above the Earth. Although Integral orbits above the Earth's atmosphere and weather, it still has ‘space weather’ to contend with. Space weather consists of a constant rain of tiny particles that can temporarily blind detectors designed to register gamma radiation. “The flashes last

  17. RoboPol: the optical polarization of gamma-ray-loud and gamma-ray-quiet blazars

    NASA Astrophysics Data System (ADS)

    Angelakis, E.; Hovatta, T.; Blinov, D.; Pavlidou, V.; Kiehlmann, S.; Myserlis, I.; Böttcher, M.; Mao, P.; Panopoulou, G. V.; Liodakis, I.; King, O. G.; Baloković, M.; Kus, A.; Kylafis, N.; Mahabal, A.; Marecki, A.; Paleologou, E.; Papadakis, I.; Papamastorakis, I.; Pazderski, E.; Pearson, T. J.; Prabhudesai, S.; Ramaprakash, A. N.; Readhead, A. C. S.; Reig, P.; Tassis, K.; Urry, M.; Zensus, J. A.

    2016-12-01

    We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gamma-ray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high-synchrotron-peaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low-synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high-synchrotron-peaked sources, it tends to concentrate around preferred directions while for low-synchrotron-peaked sources, it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.

  18. Gamma-ray Output Spectra from 239 Pu Fission

    DOE PAGES

    Ullmann, John

    2015-05-25

    The gamma-ray multiplicities, individual gamma-ray energy spectra, and total gamma energy spectra following neutron-induced fission of 239Pu were measured using the DANCE detector at Los Alamos. Corrections for detector response were made using a forward-modeling technique based on propagating sets of gamma rays generated from a paramaterized model through a GEANT model of the DANCE array and adjusting the parameters for best fit to the measured spectra. The results for the gamma-ray spectrum and multiplicity are in general agreement with previous results, but the measured total gamma-ray energy is about 10% higher. We found that a dependence of the gamma-raymore » spectrum on the gamma-ray multplicity was also observed. Finally, global model calculations of the multiplicity and gamma energy distributions are in good agreement with the data, but predict a slightly softer total-energy distribution.« less

  19. Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Melott, Adrian L.; Jackman, Charles H.; Laird, Claude M.; Medvedev, Mikhail V.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.; Ejzak, Larissa M.

    2005-11-01

    Gamma-ray bursts (GRBs) are likely to have made a number of significant impacts on the Earth during the last billion years. The gamma radiation from a burst within a few kiloparsecs would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar UVB radiation reaching the surface. This radiation is harmful to life, damaging DNA and causing sunburn. In addition, NO2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of GRBs delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have estimated DNA damage levels caused by increased solar UVB radiation, reduction in solar visible light due to NO2 opacity, and deposition of nitrates through rainout of HNO3. For the ``typical'' nearest burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 yr after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. The impact scales with the total fluence of the GRB at the Earth but is insensitive to the time of day of the burst and its duration (1-1000 s). We find DNA damage of up to 16 times the normal annual global average, well above lethal levels for simple life forms such as phytoplankton. The greatest damage occurs at mid- to low latitudes. We find reductions in visible sunlight of a few percent, primarily in the polar regions. Nitrate deposition similar to or slightly greater than that currently caused by lightning is also observed, lasting several years. We discuss how these results support the

  20. GLAST and Ground-Based Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2008-01-01

    The launch of the Gamma-ray Large Area Space Telescope together with the advent of a new generation of ground-based gamma-ray detectors such as VERITAS, HESS, MAGIC and CANGAROO, will usher in a new era of high-energy gamma-ray astrophysics. GLAST and the ground based gamma-ray observatories will provide highly complementary capabilities for spectral, temporal and spatial studies of high energy gamma-ray sources. Joint observations will cover a huge energy range, from 20 MeV to over 20 TeV. The LAT will survey the entire sky every three hours, allowing it both to perform uniform, long-term monitoring of variable sources and to detect flaring sources promptly. Both functions complement the high-sensitivity pointed observations provided by ground-based detectors. Finally, the large field of view of GLAST will allow a study of gamma-ray emission on large angular scales and identify interesting regions of the sky for deeper studies at higher energies. In this poster, we will discuss the science returns that might result from joint GLAST/ground-based gamma-ray observations and illustrate them with detailed source simulations.

  1. Gamma-Ray Emission from Galaxy Clusters : DARK MATTER AND COSMIC-RAYS

    NASA Astrophysics Data System (ADS)

    Pinzke, Anders

    The quest for the first detection of a galaxy cluster in the high energy gamma-ray regime is ongoing, and even though clusters are observed in several other wave-bands, there is still no firm detection in gamma-rays. To complement the observational efforts we estimate the gamma-ray contributions from both annihilating dark matter and cosmic-ray (CR) proton as well as CR electron induced emission. Using high-resolution simulations of galaxy clusters, we find a universal concave shaped CR proton spectrum independent of the simulated galaxy cluster. Specifically, the gamma-ray spectra from decaying neutral pions, which are produced by CR protons, dominate the cluster emission. Furthermore, based on our derived flux and luminosity functions, we identify the galaxy clusters with the brightest galaxy clusters in gamma-rays. While this emission is challenging to detect using the Fermi satellite, major observations with Cherenkov telescopes in the near future may put important constraints on the CR physics in clusters. To extend these predictions, we use a dark matter model that fits the recent electron and positron data from Fermi, PAMELA, and H.E.S.S. with remarkable precision, and make predictions about the expected gamma-ray flux from nearby clusters. In order to remain consistent with the EGRET upper limit on the gamma-ray emission from Virgo, we constrain the minimum mass of substructures for cold dark matter halos. In addition, we find comparable levels of gamma-ray emission from CR interactions and dark matter annihilations without Sommerfeld enhancement.

  2. CVD-diamond-based position sensitive photoconductive detector for high-flux x-rays and gamma rays.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, D.

    1999-04-19

    A position-sensitive photoconductive detector (PSPCD) using insulating-type CVD diamond as its substrate material has been developed at the Advanced Photon Source (APS). Several different configurations, including a quadrant pattern for a x-ray-transmitting beam position monitor (TBPM) and 1-D and 2-D arrays for PSPCD beam profilers, have been developed. Tests on different PSPCD devices with high-heat-flux undulator white x-ray beam, as well as with gamma-ray beams from {sup 60}Co sources have been done at the APS and National Institute of Standards and Technology (NIST). It was proven that the insulating-type CVD diamond can be used to make a hard x-ray andmore » gamma-ray position-sensitive detector that acts as a solid-state ion chamber. These detectors are based on the photoconductivity principle. A total of eleven of these TBPMs have been installed on the APS front ends for commissioning use. The linear array PSPCD beam profiler has been routinely used for direct measurements of the undulator white beam profile. More tests with hard x-rays and gamma rays are planned for the CVD-diamond 2-D imaging PSPCD. Potential applications include a high-dose-rate beam profiler for fourth-generation synchrotrons radiation facilities, such as free-electron lasers.« less

  3. Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Burtovoi, A.; Zampieri, L.

    2016-07-01

    We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.

  4. A New View of the High Energy Gamma-Ray Sky with the Ferrni Gamma-Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2009-01-01

    Following its launch in June 2008, high energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have opened a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, supernova remnants and the origin of cosmic rays, and searches for hypothetical new phenomena such as super symmetric dark matter annihilations. In this talk I will describe the current status of the Fermi observatory and review the science highlights from the first year of observations.

  5. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  6. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  7. Gamma Ray Bursts

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  8. Very-high-energy gamma-ray observations of the Type Ia Supernova SN 2014J with the MAGIC telescopes

    NASA Astrophysics Data System (ADS)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Frantzen, K.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Garrido Terrats, D.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; La Barbera, A.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Miranda, J. M.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.

    2017-06-01

    Context. In this work we present data from observations with the MAGIC telescopes of SN 2014J detected on January 21 2014, the closest Type Ia supernova since Imaging Air Cherenkov Telescopes started to operate. Aims: We aim to probe the possibility of very-high-energy (VHE; E ≥ 100 GeV) gamma rays produced in the early stages of Type Ia supernova explosions. Methods: We performed follow-up observations after this supernova (SN) explosion for five days, between January 27 and February 2 2014. We searched for gamma-ray signals in the energy range between 100 GeV and several TeV from the location of SN 2014J using data from a total of 5.5 h of observations. Prospects for observing gamma rays of hadronic origin from SN 2014J in the near future are also being addressed. Results: No significant excess was detected from the direction of SN 2014J. Upper limits at 95% confidence level on the integral flux, assuming a power-law spectrum, dF/dE ∝ E- Γ, with a spectral index of Γ = 2.6, for energies higher than 300 GeV and 700 GeV, are established at 1.3 × 10-12 and 4.1 × 10-13 photons cm-2 s-1, respectively. Conclusions: For the first time, upper limits on the VHE emission of a Type Ia supernova are established. The energy fraction isotropically emitted into TeV gamma rays during the first 10 days after the supernova explosion for energies greater than 300 GeV is limited to 10-6 of the total available energy budget ( 1051 erg). Within the assumed theoretical scenario, the MAGIC upper limits on the VHE emission suggest that SN 2014J will not be detectable in the future by any current or planned generation of Imaging Atmospheric Cherenkov Telescopes.

  9. Discoveries by the Fermi Gamma Ray Space Telescope

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil

    2011-01-01

    Fermi is a large space gamma-ray mission developed by NASA and the DOE with major contributions from France, Germany, Italy, Japan and Sweden. It was launched in June 2008 and has been performing flawlessly since then. The main instrument is the Large Area Telescope (LAT) operating in the 20 MeV to 300 GeV range and a smaller monitor instrument is the Gamma-ray Burst Monitor (GBM) operating in the 8 keV to 40 MeV range. New findings are occurring every week. Some of the key discoveries are: 1) Discovery of many new gamma-ray pulsars, including gamma-ray only and millisecond pulsars. 2) Detection of high energy gamma-ray emission from globular clusters, most likely due to summed emission from msec pulsars. 3) Discovery of delayed and extended high energy gamma-ray emission from short and long gamma-ray busts. 4) Detection of approximately 250 gamma-ray bursts per year with the GBM instrument. 5) Most accurate measurement of the cosmic ray electron spectrum between 30 GeV and 1 TeV, showing some excess above the conventional diffusion model. The talk will present the new discoveries and their implications.

  10. Gamma Rays at Very High Energies

    NASA Astrophysics Data System (ADS)

    Aharonian, Felix

    This chapter presents the elaborated lecture notes on Gamma Rays at Very High Energies given by Felix Aharonian at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". Any coherent description and interpretation of phenomena related to gammarays requires deep knowledge of many disciplines of physics like nuclear and particle physics, quantum and classical electrodynamics, special and general relativity, plasma physics, magnetohydrodynamics, etc. After giving an introduction to gamma-ray astronomy the author discusses the astrophysical potential of ground-based detectors, radiation mechanisms, supernova remnants and origin of the galactic cosmic rays, TeV emission of young supernova remnants, gamma-emission from the Galactic center, pulsars, pulsar winds, pulsar wind nebulae, and gamma-ray loud binaries.

  11. An image-based array trigger for imaging atmospheric Cherenkov telescope arrays

    NASA Astrophysics Data System (ADS)

    Dickinson, Hugh; Krennrich, Frank; Weinstein, Amanda; Eisch, Jonathan; Byrum, Karen; Anderson, John; Drake, Gary

    2018-05-01

    It is anticipated that forthcoming, next generation, atmospheric Cherenkov telescope arrays will include a number of medium-sized telescopes that are constructed using a dual-mirror Schwarzschild-Couder configuration. These telescopes will sample a wide (8 °) field of view using a densely pixelated camera comprising over 104 individual readout channels. A readout frequency congruent with the expected single-telescope trigger rates would result in substantial data rates. To ameliorate these data rates, a novel, hardware-level Distributed Intelligent Array Trigger (DIAT) is envisioned. A copy of the DIAT operates autonomously at each telescope and uses reduced resolution imaging data from a limited subset of nearby telescopes to veto events prior to camera readout and any subsequent network transmission of camera data that is required for centralized storage or aggregation. We present the results of Monte-Carlo simulations that evaluate the efficacy of a "Parallax width" discriminator that can be used by the DIAT to efficiently distinguish between genuine gamma-ray initiated events and unwanted background events that are initiated by hadronic cosmic rays.

  12. GLAST: Exploring Nature's Highest Energy Processes with the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Digel, Seth; Myers, J. D.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is an international and multi-agency space mission that will study the cosmos in the energy range 10 keV-300 GeV. Several successful exploratory missions in gamma-ray astronomy led to the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Gamma Ray Observatory (CGRO). Launched in 1991, EGRET made the first complete survey of the sky in the 30 MeV-10 GeV range. EGRET showed the high-energy gamma-ray sky to be surprisingly dynamic and diverse, with sources ranging from the sun and moon to massive black holes at large redshifts. Most of the gamma-ray sources detected by EGRET remain unidentified. In light of the discoveries with EGRET, the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope vastly more capable than instruments flown previously, as well as a secondary instrument to augment the study of gamma-ray bursts. The main instrument, the Large Area Telescope (LAT), will have superior area, angular resolution, field of view, and deadtime that together will provide a factor of 30 or more advance in sensitivity, as well as provide capability for study of transient phenomena. The GLAST Burst Monitor (GBM) will have a field of view several times larger than the LAT and will provide spectral coverage of gamma-ray bursts that extends from the lower limit of the LAT down to 10 keV. The basic parameters of the GBM are compared to those of the Burst and Transient Source Experiment (BATSE) instrument on CGRO in Table 1-2. With the LAT and GBM, GLAST will be a flexible observatory for investigating the great range of astrophysical phenomena best studied in high-energy gamma rays. NASA plans to launch GLAST in late 2005.

  13. A Concept for a High-Energy Gamma-ray Polarimeter

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Depaola, G. O.; Longo, F.

    2003-01-01

    We present a concept for an imaging gamma-ray polarimeter operating from approx. 50 MeV to approx. 1 GeV. Such an instrument would be valuable for the study of high-energy pulsars, active galactic nuclei, supernova remnants, and gamma-ray bursts. The concept makes use of pixelized gas micro-well detectors, under development at Goddard Space Flight Center, to record the electron-positron tracks from pair-production events in a large gas volume. Pixelized micro-well detectors have the potential to form large-volume 3-D track imagers with approx. 100 micron (rms) position resolution at moderate cost. The combination of high spatial resolution and a continuous low-density gas medium permits many thousands of measurements per radiation length, allowing the particle tracks to be imaged accurately before multiple scattering masks their original directions. The polarization of the incoming radiation may then be determined from the azimuthal distribution of the electron-positron pairs. We have performed Geant4 simulations of these processes to estimate the polarization sensitivity as a function of instrument parameters and event selection criteria.

  14. Future Facilities for Gamma-Ray Pulsar Studies

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.

    2003-01-01

    Pulsars seen at gamma-ray energies offer insight into particle acceleration to very high energies, along with information about the geometry and interaction processes in the magnetospheres of these rotating neutron stars. During the next decade, a number of new gamma-ray facilities will become available for pulsar studies. This brief review describes the motivation for gamma-ray pulsar studies, the opportunities for such studies, and some specific discussion of the capabilities of the Gamma-ray Large Area Space Telescope (GLAST) Large Area Telescope (LAT) for pulsar measurements.

  15. A new population of very high energy gamma-ray sources in the Milky Way.

    PubMed

    Aharonian, F; Akhperjanian, A G; Aye, K-M; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Berghaus, P; Bernlöhr, K; Boisson, C; Bolz, O; Borgmeier, C; Braun, I; Breitling, F; Brown, A M; Gordo, J Bussons; Chadwick, P M; Chounet, L-M; Cornils, R; Costamante, L; Degrange, B; Djannati-Ataï, A; Drury, L O'C; Dubus, G; Ergin, T; Espigat, P; Feinstein, F; Fleury, P; Fontaine, G; Funk, S; Gallant, Y A; Giebels, B; Gillessen, S; Goret, P; Hadjichristidis, C; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hofmann, W; Holleran, M; Horns, D; de Jager, O C; Jung, I; Khélifi, B; Komin, Nu; Konopelko, A; Latham, I J; Le Gallou, R; Lemière, A; Lemoine, M; Leroy, N; Lohse, T; Marcowith, A; Masterson, C; McComb, T J L; de Naurois, M; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Raubenheimer, B C; Raue, M; Raux, J; Rayner, S M; Redondo, I; Reimer, A; Reimer, O; Ripken, J; Rob, L; Rolland, L; Rowell, G; Sahakian, V; Saugé, L; Schlenker, S; Schlickeiser, R; Schuster, C; Schwanke, U; Siewert, M; Sol, H; Steenkamp, R; Stegmann, C; Tavernet, J-P; Terrier, R; Théoret, C G; Tluczykont, M; van der Walt, D J; Vasileiadis, G; Venter, C; Vincent, P; Visser, B; Völk, H J; Wagner, S J

    2005-03-25

    Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.

  16. Cosmological gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Paczynski, Bohdan

    1991-01-01

    The distribution in angle and flux of gamma-ray bursts indicates that the majority of gamma-ray bursters are at cosmological distances, i.e., at z of about 1. The rate is then about 10 exp -8/yr in a galaxy like the Milky Way, i.e., orders of magnitude lower than the estimated rate for collisions between neutron stars in close binary systems. The energy per burst is about 10 exp 51 ergs, assuming isotropic emission. The events appear to be less energetic and more frequent if their emission is strongly beamed. Some tests for the distance scale are discussed: a correlation between the burst's strength and its spectrum; the absorption by the Galactic gas below about 2 keV; the X-ray tails caused by forward scattering by the Galactic dust; about 1 month recurrence of some bursts caused by gravitational lensing by foreground galaxies; and a search for gamma-ray bursts in M31. The bursts appear to be a manifestation of something exotic, but conventional compact objects can provide an explanation. The best possibility is offered by a decay of a bindary composed of a spinning-stellar-mass black-hole primary and a neutron or a strange-quark star secondary. In the final phase the secondary is tidally disrupted, forms an accretion disk, and up to 10 exp 54 ergs are released. A very small fraction of this energy powers the gamma-ray burst.

  17. Soft gamma-ray detector for the ASTRO-H Mission

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Blandford, Roger; Enoto, Teruaki; Kataoka, Jun; Kawaharada, Madoka; Kokubun, Motohide; Laurent, Philippe; Lebrun, François; Limousin, Olivier; Madejski, Greg; Makishima, Kazuo; Mizuno, Tsunefumi; Nakamori, Takeshi; Nakazawa, Kazuhiro; Mori, Kunishiro; Odaka, Hirokazu; Ohno, Masanori; Ohta, Masayuki; Sato, Goro; Sato, Rie; Takeda, Shin'ichiro; Takahashi, Hiromitsu; Takahashi, Tadayuki; Tanaka, Takaaki; Tashiro, Makoto; Terada, Yukikatsu; Uchiyama, Hideki; Uchiyama, Yasunobu; Yamada, Shinya; Yatsu, Yoichi; Yonetoku, Daisuke; Yuasa, Takayuki

    2012-09-01

    ASTRO-H is the next generation JAXA X-ray satellite, intended to carry instruments with broad energy coverage and exquisite energy resolution. The Soft Gamma-ray Detector (SGD) is one of ASTRO-H instruments and will feature wide energy band (60-600 keV) at a background level 10 times better than the current instruments on orbit. The SGD is complimentary to ASTRO-H’s Hard X-ray Imager covering the energy range of 5-80 keV. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield where Compton kinematics is utilized to reject backgrounds. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and CdTe (cadmium telluride) sensors. Good energy resolution is afforded by semiconductor sensors, and it results in good background rejection capability due to better constraints on Compton kinematics. Utilization of Compton kinematics also makes the SGD sensitive to the gamma-ray polarization, opening up a new window to study properties of gamma-ray emission processes. In this paper, we will present the detailed design of the SGD and the results of the final prototype developments and evaluations. Moreover, we will also present expected performance based on the measurements with prototypes.

  18. Significance of medium energy gamma ray astronomy in the study of cosmic rays

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.; Kniffen, D. A.; Thompson, D. J.; Bignami, G. F.; Cheung, C. Y.

    1975-01-01

    Medium energy (about 10 to 30 MeV) gamma ray astronomy provides information on the product of the galactic electron cosmic ray intensity and the galactic matter to which the electrons are dynamically coupled by the magnetic field. Because high energy (greater than 100 MeV) gamma ray astronomy provides analogous information for the nucleonic cosmic rays and the relevant matter, a comparison between high energy and medium energy gamma ray intensities provides a direct ratio of the cosmic ray electrons and nucleons throughout the galaxy. A calculation of gamma ray production by electron bremsstrahlung shows that: bremsstrahlung energy loss is probably not negligible over the lifetime of the electrons in the galaxy; and the approximate bremsstrahlung calculation often used previously overestimates the gamma ray intensity by about a factor of two. As a specific example, expected medium energy gamma ray intensities are calculated for the speral arm model.

  19. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  20. Development of a high-resolution liquid xenon detector for gamma-ray astrophysics

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi

    It has been shown here that liquid xenon is one of the most promising detector media for future gamma-ray detectors, owing to an excellent combination of physical properties. The feasibility of the construction of a high resolution liquid xenon detector as a gamma-ray detector for astrophysics has been demonstrated. Up to 3.5 liters of liquid xenon has been successfully purified and using both small and large volume prototypes, the charge and the energy resolution response of such detectors to gamma-rays, internal conversion electrons and alpha particles have been measured. The best energy resolution measured was 4.5 percent FWHM at 1 MeV. Cosmic ray tracks have been imaged using a 2-dimensional liquid xenon multiwire imaging chamber. The spatial resolution along the direction of the drifting electrons was 180 microns rms. Experiments have been performed to study the scintillation light in liquid xenon, as the prompt scintillation signal in the liquid is an electron-ion pair in liquid krypton was measured for the first time with a pulsed ionization chamber to be 18.4 plus or minus 0.3 eV.

  1. Observations with the High Altitude GAmma Ray (HAGAR) telescope array in the Indian Himalayas

    NASA Astrophysics Data System (ADS)

    Britto, R. J.; Acharya, B. S.; Anupama, G. C.; Bhatt, N.; Bhattacharjee, P.; Bhattacharya, S. S.; Chitnis, V. R.; Cowsik, R.; Dorji, N.; Duhan, S. K.; Gothe, K. S.; Kamath, P. U.; Koul, R.; Mahesh, P. K.; Mitra, A.; Nagesh, B. K.; Parmar, N. K.; Prabhu, T. P.; Rannot, R. C.; Rao, S. K.; Saha, L.; Saleem, F.; Saxena, A. K.; Sharma, S. K.; Shukla, A.; Singh, B. B.; Srinivasan, R.; Srinivasulu, G.; Sudersanan, P. V.; Tickoo, A. K.; Tsewang, D.; Upadhya, S.; Vishwanath, P. R.; Yadav, K. K.

    2010-12-01

    For several decades, it was thought that astrophysical sources emit high energy photons within the energy range of the gamma-ray region of the electromagnetic spectrum also. These photons originate from interactions of high energy particles from sources involving violent phenomena in the Universe (supernovae, pulsars, Active Galactic Nuclei, etc.) with gas and radiation fields. Since the first reliable detections of cosmic gamma rays in the 1970's, improvements in instrumentation have led gamma-ray astronomy to an established branch of modern Astrophysics, with a constant increase in the number of detected sources. But the 30-300 GeV energy range remained sparsely explored until the launch of the Fermi space telescope in June 2008. The ground-based gamma-ray telescope array HAGAR is the first array of atmospheric Cherenkov telescopes established at a so high altitude (4270 m a.s.l.), and was designed to reach a relatively low energy threshold with quite a low mirror area (31 m^2). It is located at Hanle in India, in the Ladakh region of the Himalayas. Regular source observations have begun with the complete setup of 7 telescopes on Sept. 2008. We report and discuss our estimation of the systematics through dark region studies, and present preliminary results from gamma-ray sources in this paper.

  2. Nuclear gamma rays from energetic particle interactions

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Kozlovsky, B.; Lingenfelter, R. E.

    1978-01-01

    Gamma ray line emission from nuclear deexcitation following energetic particle reactions is evaluated. The compiled nuclear data and the calculated gamma ray spectra and intensities can be used for the study of astrophysical sites which contain large fluxes of energetic protons and nuclei. A detailed evaluation of gamma ray line production in the interstellar medium is made.

  3. Very-high-energy gamma-ray observations of pulsar wind nebulae and cataclysmic variable stars with MAGIC and development of trigger systems for IACTs

    NASA Astrophysics Data System (ADS)

    Lopez-Coto, Ruben

    2015-07-01

    The history of astronomy is as ancient as the reach of our written records. All the human civilizations have been interested in the study and interpretation of the night sky and its objects and phenomena. These observations were performed with the naked eye until the beginning of the 17th century, when Galileo Galilei started to use an instrument recently developed called telescope. Since then, the range of accessible wavelengths has been increasing, with a burst in the 20th century with the developing of instruments to observe them: antennas (radio and submillimeter), telescopes (optical, IR) and satellites (UV, X-rays and soft gamma rays). The last wavelength range accessed was the Very-High-Energy (VHE) gamma rays. At this range fluxes are so low that it is not possible to use space-based instruments with typical collection areas of O(1) m2. We must resort to the imaging atmospheric Cherenkov technique, which is based on the detection of the flashes of Cherenkov light that VHE gamma rays produce when they interact with the Earth's atmosphere. The field is very young, with the first source discovered in 1989 by the pioneering Whipple telescope. It is very dynamic with more than 150 sources detected to date, most of them by MAGIC, HESS and VERITAS, that make up the current generation of instruments. Finally, the field is also very promising, with the preparation of a next generation of imaging atmospheric Cherenkov telescopes: CTA, that is expected to start full operation in 2020. The work presented in this thesis comprises my efforts to take the ground-based γ-ray astronomy one step forward. Part I of the thesis is an introduction to the non- thermal universe, the imaging atmospheric Cherenkov technique and the Imaging Atmospheric Cherenkov Telescopes (IACTs) MAGIC and CTA. Part II deals with several ways to reduce the trigger threshold of IACTs. This includes the simula- tion, characterization and test of an analog trigger especially designed to achieve the

  4. MeV gamma-ray observation with a well-defined point spread function based on electron tracking

    NASA Astrophysics Data System (ADS)

    Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.

    2016-07-01

    The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.

  5. Hipparcos pinpoints an amazing gamma-ray clock

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Following a preliminary report at a symposium on Hipparcos results in Venice in May, the full story of the pinpointing of Geminga is told in a paper to be published in Astronomy and Astrophysics in January 1998. Patrizia Caraveo of the Istituto di Fisica Cosmica in Milan is the lead author, and other astronomers in Milan, Turin, Garching, Copenhagen and Noordwijk contributed to this aspect of the work (see footnote). The result made it possible to to use the observation of gamma-ray pulses to time the rotation of Geminga with extreme accuracy, as described in a paper by John Mattox of Boston University, Jules Halpern of Columbia University, and Patrizia Caraveo. It is due to appear in the Astrophysical Journal in February 1998, and is already accessible on the Internet. Geminga is a unique object: a highly compressed, spinning neutron star which does not emit radio beeps like the well-known pulsars. Yet it is a powerful source of pulsating gamma-rays and X-rays. Geminga is probably the prototype of millions of radio-silent neutron stars in the Milky Way Galaxy, so far unrecognized. "We needed Hipparcos to finish a long and complicated task of tracking down Geminga," Patrizia Caraveo comments. "Never was so faint an object pinpointed so precisely. Now we can say that we have more exact knowledge on the position of Geminga than of any other 'classical' neutron star -- even the famous Crab pulsar." Closing in on Geminga When first observed in a systematic way by COS-B, Geminga's place in the sky was known only to within half a degree -- an uncertainty in position as wide as the Moon. X-ray observations by other satellites narrowed the field and led to the detection of Geminga by visible light, as an extremely faint star. Last year, the same Milan-based Italian team was able to determine the distance of Geminga at 500 light-years, by a succession of observations with the Hubble Space Telescope (see ESA Information Note 04-96). The next task was precisely to situate a

  6. SU-G-IeP4-12: Performance of In-111 Coincident Gamma-Ray Counting: A Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pahlka, R; Kappadath, S; Mawlawi, O

    2016-06-15

    Purpose: The decay of In-111 results in a non-isotropic gamma-ray cascade, which is normally imaged using a gamma camera. Creating images with a gamma camera using coincident gamma-rays from In-111 has not been previously studied. Our objective was to explore the feasibility of imaging this cascade as coincidence events and to determine the optimal timing resolution and source activity using Monte Carlo simulations. Methods: GEANT4 was used to simulate the decay of the In-111 nucleus and to model the gamma camera. Each photon emission was assigned a timestamp, and the time delay and angular separation for the second gamma-ray inmore » the cascade was consistent with the known intermediate state half-life of 85ns. The gamma-rays are transported through a model of a Siemens dual head Symbia “S” gamma camera with a 5/8-inch thick crystal and medium energy collimators. A true coincident event was defined as a single 171keV gamma-ray followed by a single 245keV gamma-ray within a specified time window (or vice versa). Several source activities (ranging from 10uCi to 5mCi) with and without incorporation of background counts were then simulated. Each simulation was analyzed using varying time windows to assess random events. The noise equivalent count rate (NECR) was computed based on the number of true and random counts for each combination of activity and time window. No scatter events were assumed since sources were simulated in air. Results: As expected, increasing the timing window increased the total number of observed coincidences albeit at the expense of true coincidences. A timing window range of 200–500ns maximizes the NECR at clinically-used source activities. The background rate did not significantly alter the maximum NECR. Conclusion: This work suggests coincident measurements of In-111 gamma-ray decay can be performed with commercial gamma cameras at clinically-relevant activities. Work is ongoing to assess useful clinical applications.« less

  7. Investigation of runaway electron dissipation in DIII-D using a gamma ray imager

    NASA Astrophysics Data System (ADS)

    Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N.; Pace, D.; Taussig, D.

    2017-10-01

    We report the findings of a novel gamma ray imager (GRI) to study runaway electron (RE) dissipation in the quiescent regime on the DIII-D tokamak. The GRI measures the bremsstrahlung emission by RE providing information on RE energy spectrum and distribution across a poloidal cross-section. It consists of a lead pinhole camera illuminating a matrix of BGO detectors placed in the DIII-D mid-plane. The number of detectors was recently doubled to provide better spatial resolution and additional detector shielding was implemented to reduce un-collimated gamma flux and increase single-to-noise ratio. Under varying loop voltage, toroidal magnetic field and plasma density, a non-monotonic RE distribution function has been revealed as a result of the interplay between electric field, synchrotron radiation and collisional damping. A fraction of the high-energy RE population grows forming a bump at the RE distribution function while synchrotron radiation decreases. A possible destabilizing effect of Parail-Pogutse instability on the RE population will be also discussed. Work supported by the US DOE under DE-FC02-04ER54698.

  8. Spectrum of atmospheric gamma rays to 10 MeV at lambda = 40 deg. [as function of altitude

    NASA Technical Reports Server (NTRS)

    Peterson, L. E.; Schwartz, D. A.; Ling, J. C.

    1973-01-01

    Results of measurements of the differential counting rate spectra due to atmospheric gamma rays as a function of altitude to 3.6 g/sq cm over Texas. Two gain settings and a 128-channel pulse height analyzer were used to cover the range from 0.2 to 10 MeV. The detector was a 7.6 x 7.6 cm NaI crystal, which was surrounded on five sides by a 2-cm-thick plastic anticoincidence shield for charged particle rejection. The system had a nearly isotropic response to photons above 0.2 MeV. The spectrum at ceiling appeared as a steep continuum with a power-law index of about 1.4. The only obvious feature was the 0.51-MeV positron annihilation line. The spectral shape was independent for depths less than 20 g/sq cm, the absolute intensity varying in proportion to the intensity of the cosmic ray secondary charged particles. Also, at depths less than 30 g/sq cm the observed flux variation with altitude can be described in terms of an empirical depth-dependent source function.

  9. Fermi large area telescope observations of the cosmic-ray induced γ -ray emission of the Earth’s atmosphere

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-29

    In this paper, we report on measurements of the cosmic-ray induced γ-ray emission of Earth’s atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded ~6.4 × 10 6 photons with energies > 100 MeV and ~ 250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. In additon, the spectrum of the emission—oftenmore » referred to as Earth albedo gamma-ray emission—has a power-law shape up to 500 GeV with spectral index Γ = 2.79 ± 0.06 .« less

  10. Gamma-400 Science Objectives Built on the Current HE Gamma-Ray and CR Results

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander; Mitchell, John; Thompson, David

    2012-01-01

    The main scientific interest of the Russian Gamma-400 team: Observe gamma-rays above approximately 50 GeV with excellent energy and angular resolution with the goals of: (1) Studying the fine spectral structure of the isotropic high-energy gamma-radiation, (2) Attempting to identify the many still-unidentified Fermi-LAT gamma-ray sources. Gamma-400 will likely be the only space-based gamma-ray observatory operating at the end of the decade. In our proposed Gamma-400-LE version, it will substantially improve upon the capabilities of Fermi LAT and AGILE in both LE and HE energy range. Measuring gamma-rays from approx 20 MeV to approx 1 TeV for at least 7 years, Gamma-400-LE will address the topics of dark matter, cosmic ray origin and propagation, neutron stars, flaring pulsars, black holes, AGNs, GRBs, and actively participate in multiwavelength campaigns.

  11. The Gamma-Ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, I.V.; /Stanford U., HEPL /KIPAC, Menlo Park; Porter, T.A.

    2008-03-25

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  12. The Gamma-ray Albedo of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; /Stanford U., HEPL; Porter, Troy A.

    2007-09-28

    We use the GEANT4 Monte Carlo framework to calculate the {gamma}-ray albedo of the Moon due to interactions of cosmic ray (CR) nuclei with moon rock. Our calculation of the albedo spectrum agrees with the EGRET data. We show that the spectrum of {gamma}-rays from the Moon is very steep with an effective cutoff around 3-4 GeV (600 MeV for the inner part of the Moon disk) and exhibits a narrow pion-decay line at 67.5 MeV, perhaps unique in astrophysics. Apart from other astrophysical sources, the albedo spectrum of the Moon is well understood, including its absolute normalization; this makesmore » it a useful 'standard candle' for {gamma}-ray telescopes. The steep albedo spectrum also provides a unique opportunity for energy calibration of {gamma}-ray telescopes, such as the forthcoming Gamma Ray Large Area Space Telescope (GLAST). Since the albedo flux depends on the incident CR spectrum which changes over the solar cycle, it is possible to monitor the CR spectrum using the albedo {gamma}-ray flux. Simultaneous measurements of CR proton and helium spectra by the Payload for Antimatter-Matter Exploration and Light-nuclei Astrophysics (PAMELA), and observations of the albedo {gamma}-rays by the GLAST Large Area Telescope (LAT), can be used to test the model predictions and will enable the LAT to monitor the CR spectrum near the Earth beyond the lifetime of the PAMELA.« less

  13. Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1989-01-01

    The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.

  14. NEAR Gamma Ray Spectrometer Characterization and Repair

    NASA Technical Reports Server (NTRS)

    Groves, Joel Lee; Vajda, Stefan

    1998-01-01

    This report covers the work completed in the third year of the contract. The principle activities during this period were (1) the characterization of the NEAR 2 Gamma Ray Spectrometer using a neutron generator to generate complex gamma ray spectra and a large Ge Detecter to identify all the major peaks in the spectra; (2) the evaluation and repair of the Engineering Model Unit of the Gamma Ray Spectrometer for the NEAR mission; (3) the investigation of polycapillary x-ray optics for x-ray detection; and (4) technology transfer from NASA to forensic science.

  15. Electron Trajectory Reconstruction for Advanced Compton Imaging of Gamma Rays

    NASA Astrophysics Data System (ADS)

    Plimley, Brian Christopher

    Gamma-ray imaging is useful for detecting, characterizing, and localizing sources in a variety of fields, including nuclear physics, security, nuclear accident response, nuclear medicine, and astronomy. Compton imaging in particular provides sensitivity to weak sources and good angular resolution in a large field of view. However, the photon origin in a single event sequence is normally only limited to the surface of a cone. If the initial direction of the Compton-scattered electron can be measured, the cone can be reduced to a cone segment with width depending on the uncertainty in the direction measurement, providing a corresponding increase in imaging sensitivity. Measurement of the electron's initial direction in an efficient detection material requires very fine position resolution due to the electron's short range and tortuous path. A thick (650 mum), fully-depleted charge-coupled device (CCD) developed for infrared astronomy has 10.5-mum position resolution in two dimensions, enabling the initial trajectory measurement of electrons of energy as low as 100 keV. This is the first time the initial trajectories of electrons of such low energies have been measured in a solid material. In this work, the CCD's efficacy as a gamma-ray detector is demonstrated experimentally, using a reconstruction algorithm to measure the initial electron direction from the CCD track image. In addition, models of fast electron interaction physics, charge transport and readout were used to generate modeled tracks with known initial direction. These modeled tracks allowed the development and refinement of the reconstruction algorithm. The angular sensitivity of the reconstruction algorithm is evaluated extensively with models for tracks below 480 keV, showing a FWHM as low as 20° in the pixel plane, and 30° RMS sensitivity to the magnitude of the out-of-plane angle. The measurement of the trajectories of electrons with energies as low as 100 keV have the potential to make electron

  16. The development of the gamma-ray Cherenkov telescope at the South Pole

    NASA Astrophysics Data System (ADS)

    Barbagli, G.; Castellini, G.; Landi, G.; Morse, R.; Tasselli, P. L.; Tilav, S.

    1993-05-01

    An atmospheric Cherenkov telescope (ACT) designated GASP (Gamma Astronomy at the South Pole) has been installed near the SPASE (South Pole Air Shower Experiment) scintillator array at the South Pole Observing Facility. During the austral summer 1992, it was aimed at objects such as PKS 0537-441 and PSR 1706-44, simultaneously with the Egret detector on the Compton Gamma Ray Observatory (CGRO). Recently observed radio silent quasars that emit gamma rays with enormous intensity may account for the origin of cosmic ray flux at energies that exceed 1016 eV. Other galactic sources like Cygnus X-3 are believed to produce the UHE cosmic gamma flux. In addition to SPASE and GASP, a group of particle detectors (AMANDA, ACA, POOL, MICE) are currently being tested. The above instrumentation will constitute the South Pole Observatory Facility. The members of the GASP collaboration are as follows: Firenze: G. Barbagli G. Castellini, G. Landi, P.L. Tasselli; Purdue: J. Gaidos, F. Loeffler, G. Sembroski; C. Wilson; Smithsonian: K. Harris, M.A. Lawrence, T.C. Weekes; Wisconsin K. Engel, F. Halzen R. Morse, P. Surrey, S. Tilav

  17. High-energy gamma-ray emission from pion decay in a solar flare magnetic loop

    NASA Technical Reports Server (NTRS)

    Mandzhavidze, Natalie; Ramaty, Reuven

    1992-01-01

    The production of high-energy gamma rays resulting from pion decay in a solar flare magnetic loop is investigated. Magnetic mirroring, MHD pitch-angle scattering, and all of the relevant loss processes and photon production mechanisms are taken into account. The transport of both the primary ions and the secondary positrons resulting from the decay of the positive pions, as well as the transport of the produced gamma-ray emission are considered. The distributions of the gamma rays as a function of atmospheric depth, time, emission angle, and photon energy are calculated and the dependence of these distributions on the model parameters are studied. The obtained angular distributions are not sufficiently anisotropic to account for the observed limb brightening of the greater than 10 MeV flare emission, indicating that the bulk of this emission is bremsstrahlung from primary electrons.

  18. On Gamma Ray Instrument On-Board Data Processing Real-Time Computational Algorithm for Cosmic Ray Rejection

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Hunter, Stanley D.; Hanu, Andrei R.; Sheets, Teresa B.

    2016-01-01

    Richard O. Duda and Peter E. Hart of Stanford Research Institute in [1] described the recurring problem in computer image processing as the detection of straight lines in digitized images. The problem is to detect the presence of groups of collinear or almost collinear figure points. It is clear that the problem can be solved to any desired degree of accuracy by testing the lines formed by all pairs of points. However, the computation required for n=NxM points image is approximately proportional to n2 or O(n2), becoming prohibitive for large images or when data processing cadence time is in milliseconds. Rosenfeld in [2] described an ingenious method due to Hough [3] for replacing the original problem of finding collinear points by a mathematically equivalent problem of finding concurrent lines. This method involves transforming each of the figure points into a straight line in a parameter space. Hough chose to use the familiar slope-intercept parameters, and thus his parameter space was the two-dimensional slope-intercept plane. A parallel Hough transform running on multi-core processors was elaborated in [4]. There are many other proposed methods of solving a similar problem, such as sampling-up-the-ramp algorithm (SUTR) [5] and algorithms involving artificial swarm intelligence techniques [6]. However, all state-of-the-art algorithms lack in real time performance. Namely, they are slow for large images that require performance cadence of a few dozens of milliseconds (50ms). This problem arises in spaceflight applications such as near real-time analysis of gamma ray measurements contaminated by overwhelming amount of traces of cosmic rays (CR). Future spaceflight instruments such as the Advanced Energetic Pair Telescope instrument (AdEPT) [7-9] for cosmos gamma ray survey employ large detector readout planes registering multitudes of cosmic ray interference events and sparse science gamma ray event traces' projections. The AdEPT science of interest is in the

  19. Gamma-ray dose from an overhead plume

    DOE PAGES

    McNaughton, Michael W.; Gillis, Jessica McDonnel; Ruedig, Elizabeth; ...

    2017-05-01

    Standard plume models can underestimate the gamma-ray dose when most of the radioactive material is above the heads of the receptors. Typically, a model is used to calculate the air concentration at the height of the receptor, and the dose is calculated by multiplying the air concentration by a concentration-to-dose conversion factor. Models indicate that if the plume is emitted from a stack during stable atmospheric conditions, the lower edges of the plume may not reach the ground, in which case both the ground-level concentration and the dose are usually reported as zero. However, in such cases, the dose frommore » overhead gamma-emitting radionuclides may be substantial. Such underestimates could impact decision making in emergency situations. The Monte Carlo N-Particle code, MCNP, was used to calculate the overhead shine dose and to compare with standard plume models. At long distances and during unstable atmospheric conditions, the MCNP results agree with the standard models. As a result, at short distances, where many models calculate zero, the true dose (as modeled by MCNP) can be estimated with simple equations.« less

  20. Terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Marisaldi, Martino; Fuschino, Fabio; Labanti, Claudio; Tavani, Marco; Argan, Andrea; Del Monte, Ettore; Longo, Francesco; Barbiellini, Guido; Giuliani, Andrea; Trois, Alessio; Bulgarelli, Andrea; Gianotti, Fulvio; Trifoglio, Massimo

    2013-08-01

    Lightning and thunderstorm systems in general have been recently recognized as powerful particle accelerators, capable of producing electrons, positrons, gamma-rays and neutrons with energies as high as several tens of MeV. In fact, these natural systems turn out to be the highest energy and most efficient natural particle accelerators on Earth. Terrestrial Gamma-ray Flashes (TGFs) are millisecond long, very intense bursts of gamma-rays and are one of the most intriguing manifestation of these natural accelerators. Only three currently operative missions are capable of detecting TGFs from space: the RHESSI, Fermi and AGILE satellites. In this paper we review the characteristics of TGFs, including energy spectrum, timing structure, beam geometry and correlation with lightning, and the basic principles of the associated production models. Then we focus on the recent AGILE discoveries concerning the high energy extension of the TGF spectrum up to 100 MeV, which is difficult to reconcile with current theoretical models.

  1. The supernova-gamma-ray burst-jet connection.

    PubMed

    Hjorth, Jens

    2013-06-13

    The observed association between supernovae and gamma-ray bursts represents a cornerstone in our understanding of the nature of gamma-ray bursts. The collapsar model provides a theoretical framework for this connection. A key element is the launch of a bipolar jet (seen as a gamma-ray burst). The resulting hot cocoon disrupts the star, whereas the (56)Ni produced gives rise to radioactive heating of the ejecta, seen as a supernova. In this discussion paper, I summarize the observational status of the supernova-gamma-ray burst connection in the context of the 'engine' picture of jet-driven supernovae and highlight SN 2012bz/GRB 120422A--with its luminous supernova but intermediate high-energy luminosity--as a possible transition object between low-luminosity and jet gamma-ray bursts. The jet channel for supernova explosions may provide new insights into supernova explosions in general.

  2. Search for medium-energy gamma-ray pulsars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, W.E. Jr.

    1987-01-01

    Results are presented from a search for pulsed gamma rays from four radio pulsars, chosen for their interest to gamma-ray astronomers in previous studies. The data set used for the search consists of gamma-ray events at energies of 1-30 MeV, detected during a 40-hour balloon flight of the UCR double Compton scatter telescope launched at the National Scientific Balloon Facility in Palestine, Texas, USA on September 30, 1978. No statistically significant signals were detected from any of the pulsars. Three sigma upper limits to pulsed 1-30 MeV gamma ray flux from PSR 0950+08, PSR 1822+09, PSR 1929+10, and PSR 1953+29more » are presented. Two complete exposures to PSR 0950+08 were obtained. The reported tentative detection of 1-20 MeV gamma rays from PSR 0950+08 is not confirmed.« less

  3. Long term monitoring of Gamma-Ray emission from the BL Lacertae object (1ES 2200+420)

    NASA Astrophysics Data System (ADS)

    Gunawardhana, Isuru; VERITAS Collaboration

    2016-03-01

    Blazars are a class of Active Galactic Nuclei (AGN) that have relativistic jets pointing along the observer line of sight. Blazars exhibit variable emission extending from radio to TeV energies. The variability timescale of the TeV flux is a key component of understanding the location of the very high energy emission zones. Deep observations of the quiescent state measurements are also required to disentangle the flaring state emission from quiescent state emission, a prerequisite for understanding the origin of blazar spectral variability. BL Lacertae (also known as 1ES 2200+420), as the namesake for all BL Lac objects, is a prime example of one such blazar. The VERITAS Observatory, an Imaging Atmospheric Cherenkov Telescope (IACT) array sensitive to gamma rays in the range from 85 GeV to 30 TeV, dedicates approximately 110 hours per year on deep observations of known gamma-ray blazars. In this talk, I will describe the TeV photon flux variability of BL Lacertae measured by VERITAS from 2013 to 2015.

  4. A novel type of transient luminous event produced by terrestrial gamma-ray flashes

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Celestin, Sebastien; Pasko, Victor P.; Marshall, Robert A.

    2017-03-01

    Terrestrial Gamma-ray Flashes (TGFs), discovered in 1994 by the Compton Gamma-Ray Observatory, are high-energy photon bursts originating in the Earth's atmosphere in association with thunderstorms. In this paper, we demonstrate theoretically that, while TGFs pass through the atmosphere, the large quantities of energetic electrons knocked out by collisions between photons and air molecules generate excited species of neutral and ionized molecules, leading to a significant amount of optical emissions. These emissions represent a novel type of transient luminous events in the vicinity of the cloud tops. We show that this predicted phenomenon illuminates a region with a size notably larger than the TGF source and has detectable levels of brightness. Since the spectroscopic, morphological, and temporal features of this luminous event are closely related with TGFs, corresponding measurements would provide a novel perspective for investigation of TGFs, as well as lightning discharges that produce them.

  5. Cosmic Ray-Air Shower Measurement from Space

    NASA Technical Reports Server (NTRS)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  6. DAMPE: A gamma and cosmic ray observatory in space

    NASA Astrophysics Data System (ADS)

    D'Urso, D.; Dampe Collaboration

    2017-05-01

    DAMPE (DArk Matter Particle Explorer) is one of the five satellite missions in the framework of the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Sciences (CAS). Launched on December 17th 2015 at 08:12 Beijing time, it is taking data into a sun-synchronous orbit, at the altitude of 500km. The main scientific objective of DAMPE is to detect electrons and photons in the range 5GeV-10TeV with unprecedented energy resolution, in order to identify possible Dark Matter signatures. It will also measure the flux of nuclei up to 100TeV with excellent energy resolution. The satellite is equipped with a powerful space telescope for high energy gamma-ray, electron and cosmic rays detection. It consists of a plastic scintillator strips detector (PSD) that serves as anti-coincidence detector, a silicon-tungsten tracker (STK), a BGO imaging calorimeter of about 32 radiation lengths, and a neutron detector. With its excellent photon detection capability and its detector performances (at 100GeV energy resolution ˜1% , angular resolution ˜0.1° , the DAMPE mission is well placed to make strong contributions to high-energy gamma-ray observations: it covers the gap between space and ground observation; it will allow to detect a line signature in the gamma-ray spectrum, if present, in the sub-TeV to TeV region; it will allow a high precision gamma-ray astronomy. A report on the mission goals and status will be discussed, together with in-orbit first data coming from space.

  7. Gamma-Ray Astrophysics: New Insight Into the Universe

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.; Trombka, Jacob I.

    1997-01-01

    During the 15 years that have passed since the first edition of this book was published, there has been a major increase in our knowledge of gamma-ray astronomy. Much of this advance arises from the extensive results that have been forthcoming from the Compton Gamma-Ray Observatory. There has been the discovery of a new class of gamma-ray objects, namely high-energy gamma- ray-emitting blazars, a special class of Active Galactic Nuclei, whose basic high-energy properties now seem to be understood. A much improved picture of our galaxy now exists in the frequency range of gamma rays. The question of whether cosmic rays are galactic or metagalactic now seems settled with certainty. Significant new information exists on the gamma-ray properties of neutron star pulsars, Seyfert galaxies, and gamma-ray bursts. Substantial new insight has been obtained on solar phenomena through gamma-ray observations. Hence, this seemed to be an appropriate time to write a new edition of this book to add the important scientific implications of these many new findings. The special importance of gamma-ray astrophysics had long been recognized by many physicists and astronomers, and theorists had pursued many aspects of the subject well before the experimental results began to become available. The slower development of the experimental side was not because of a lack of incentive, but due to the substantial experimental difficulties that had to be overcome. Thus, as the gamma-ray results became available in much greater number and detail, it was possible to build upon the theoretical work that already existed and to make substantial progress in the study of many of the phenomena involved. Consequently, a much better understanding of many of the astrophysical phenomena mentioned here and others is now possible. Our principal aims in writing this book are the same as they were for the first edition: to provide a text which describes the significance of gamma-ray astrophysics and to assemble

  8. [An investigation of the effect of gamma rays emitted by patients undergoing radionuclide bone scintigraphy in computed radiography during X-ray mammography examination].

    PubMed

    Kamigiri, Akira; Nagasawa, Naoki; Yamaji, Masami; Nakamura, Mikako; Ito, Morihiro; Nakanishi, Satoshi; Kitano, Tokio

    2010-03-20

    For convenience of outpatients, mammographies of outpatients are often taken after the injection of a radionuclide. In this study, we investigated the effects of gamma rays emitted by a patient onto imaging plates (IPs). We used a flat container filled with (99m)Tc solution as a planar source to irradiate gamma rays onto IPs. We changed irradiation times on each IP, and took radiographies of an ACR-specified 156 model phantom and AGH-D210F phantom. We evaluated radiography images, using visual evaluation, and profile curves, histograms, and CNR and RMS granularities analyses. The results indicated that the depiction ability of a fibrous part began to fall when the irradiation time exceeded 3 minutes. With an increase in irradiation time, an increase in pixel value and RMS granularity value and a decrease in CNR value were observed. In conclusion, IP exposed by gamma rays influenced the evaluation of phantom images.

  9. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy

    PubMed Central

    Peterson, S W; Robertson, D; Polf, J

    2011-01-01

    In this work, we investigate the use of a three-stage Compton camera to measure secondary prompt gamma rays emitted from patients treated with proton beam radiotherapy. The purpose of this study was (1) to develop an optimal three-stage Compton camera specifically designed to measure prompt gamma rays emitted from tissue and (2) to determine the feasibility of using this optimized Compton camera design to measure and image prompt gamma rays emitted during proton beam irradiation. The three-stage Compton camera was modeled in Geant4 as three high-purity germanium detector stages arranged in parallel-plane geometry. Initially, an isotropic gamma source ranging from 0 to 15 MeV was used to determine lateral width and thickness of the detector stages that provided the optimal detection efficiency. Then, the gamma source was replaced by a proton beam irradiating a tissue phantom to calculate the overall efficiency of the optimized camera for detecting emitted prompt gammas. The overall calculated efficiencies varied from ~10−6 to 10−3 prompt gammas detected per proton incident on the tissue phantom for several variations of the optimal camera design studied. Based on the overall efficiency results, we believe it feasible that a three-stage Compton camera could detect a sufficient number of prompt gammas to allow measurement and imaging of prompt gamma emission during proton radiotherapy. PMID:21048295

  10. GRIS observations of Al-26 gamma-ray line emission from two points in the Galactic plane

    NASA Technical Reports Server (NTRS)

    Teegarden, B. J.; Barthelmy, S. D.; Gehrels, N.; Tueller, J.; Leventhal, M.

    1991-01-01

    Both of the Gamma-Ray Imaging Spectrometer (GRIS) experiment's two observations of the Galactic center region, at l = zero and 335 deg respectively, detected Al-26 gamma-ray line emission. While these observations are consistent with the assumed high-energy gamma-ray distribution, they are consistent with other distributions as well. The data suggest that the Al-26 emission is distributed over Galactic longitude rather than being confined to a point source. The GRIS data also indicate that the 1809 keV line is broadened.

  11. Gamma Ray and Neutron Spectrometer for the Lunar Resource Mapper

    NASA Technical Reports Server (NTRS)

    Moss, C. E.; Byrd, R. C.; Drake, D. M.; Feldman, W. C.; Martin, R. A.; Merrigan, M. A.; Reedy, R. C.

    1992-01-01

    One of the early Space Exploration Initiatives will be a lunar orbiter to map the elemental composition of the Moon. This mission will support further lunar exploration and habitation and will provide a valuable dataset for understanding lunar geological processes. The proposed payload will consist of the gamma ray and neutron spectrometers which are discussed, an x ray fluorescence imager, and possibly one or two other instruments.

  12. Smoking Gun Found for Gamma-Ray Burst in Milky Way

    NASA Astrophysics Data System (ADS)

    2004-06-01

    plane of the sky by about 20 degrees. W49B Chandra Fe K-line Image of W49B Four rings about 25 light years in diameter can be identified in the infrared image. These rings, which are due to warm gas, were presumably flung out by the rapid rotation of the massive star a few hundred thousand years before the star exploded. The rings were pushed outward by a hot wind from the star a few thousand years before it exploded. Chandra's image and spectral data show that the jets of multimillion-degree-Celsius gas extending along the axis of the barrel are rich in iron and nickel ions, consistent with their being ejected from the center of the star. This distinguishes the explosion from a conventional type II supernova in which most of the Fe and Ni goes into making the neutron star, and the outer part of the star is what is flung out. In contrast, in the collapsar model of gamma ray bursts iron and nickel from the center is ejected along the jet. At the ends of the barrel, the X-ray emission flares out to make a hot cap. The X-ray cap is surrounded by a flattened cloud of hydrogen molecules detected in the infrared. These features indicate that the shock wave produced by the explosion has encountered a large, dense cloud of gas and dust. The scenario that emerges is one in which a massive star formed from a dense cloud of dust, shone brightly for a few million years while spinning off rings of gas and pushing them away, forming a nearly empty cavity around the star. The star then underwent a collapsar-type supernova explosion that resulted in a gamma-ray burst. The observations of W49B may help to resolve a problem that has bedeviled the collapsar model for gamma-ray bursts. On the one hand, the model is based on the collapse of a massive star, which is normally formed from a dense cloud. On the other hand, observations of the afterglow of many gamma-ray bursts indicate that the explosion occurred in a low-density gas. Based on the W49B data, the resolution proposed by Keohane

  13. Gamma ray energy tracking in GRETINA

    NASA Astrophysics Data System (ADS)

    Lee, I. Y.

    2011-10-01

    The next generation of stable and exotic beam accelerators will provide physics opportunities to study nuclei farther away from the line of stability. However, these experiments will be more demanding on instrumentation performance. These come from the lower production rate for more exotic beams, worse beam impurities, and large beam velocity from the fragmentation and inverse reactions. Gamma-ray spectroscopy will be one of the most effective tools to study exotic nuclei. However, to fully exploit the physics reach provided by these new facilities, better gamma-ray detector will be needed. In the last 10 years, a new concept, gamma-ray energy tracking array, was developed. Tracking arrays will increase the detection sensitivity by factors of several hundred compared to current arrays used in nuclear physics research. Particularly, the capability of reconstructing the position of the interaction with millimeters resolution is needed to correct the Doppler broadening of gamma rays emitted from high velocity nuclei. GRETINA is a gamma-ray tracking array which uses 28 Ge crystals, each with 36 segments, to cover ¼ of the 4 π of the 4 π solid angle. The gamma ray tracking technique requires detailed pulse shape information from each of the segments. These pulses are digitized using 14-bit 100 MHz flash ADCs, and digital signal analysis algorithms implemented in the on-board FPGAs provides energy, time and selection of pulse traces. A digital trigger system, provided flexible trigger functions including a fast trigger output, and also allows complicated trigger decisions to be made up to 20 microseconds. Further analyzed, carried out in a computer cluster, determine the energy, time, and three-dimensional positions of all gamma-ray interactions in the array. This information is then utilized, together with the characteristics of Compton scattering and pair-production processes, to track the scattering sequences of the gamma rays. GRETINA construction is completed in

  14. Possible Detection of Gamma Ray Air Showers in Coincidence with BATSE Gamma Ray Bursts

    NASA Astrophysics Data System (ADS)

    Lin, Tzu-Fen

    1999-08-01

    Project GRAND presents the results of a search for coincident high-energy gamma ray events in the direction and at the time of nine Gamma Ray Bursts (GRBs) detected by BATSE. A gamma ray has a non-negligible hadron production cross section; for each gamma ray of energy of 100 GeV, there are 0.015 muons which reach detection level (Fasso & Poirier, 1999). These muons are identified and their angles are measured in stations of eight planes of proportional wire chambers (PWCs). A 50 mm steel plate above the bottom pair of planes is used to distinguish muons from electrons. The mean angular resolution is 0.26o over a ± 61o range in the XZ and YZ planes. The BATSE GRB catalogue is examined for bursts which are near zenith for Project GRAND. The geometrical acceptance is calculated for each of these events. The product is then taken of the GRB flux and GRANDÕs geometrical acceptance. The nine sources with the best combination of detection efficiency and BATSEÕs intensity are selected to be examined in the data. The most significant detection of these nine sources is at a statistical significance of +3.7s; this is also the GRB with the highest product of GRB flux and geometrical acceptance.

  15. SYSTEMATIC STUDY OF GAMMA-RAY-BRIGHT BLAZARS WITH OPTICAL POLARIZATION AND GAMMA-RAY VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Ryosuke; Fukazawa, Yasushi; Kanda, Yuka

    Blazars are highly variable active galactic nuclei that emit radiation at all wavelengths from radio to gamma rays. Polarized radiation from blazars is one key piece of evidence for synchrotron radiation at low energies, and it also varies dramatically. The polarization of blazars is of interest for understanding the origin, confinement, and propagation of jets. However, even though numerous measurements have been performed, the mechanisms behind jet creation, composition, and variability are still debated. We performed simultaneous gamma-ray and optical photopolarimetry observations of 45 blazars between 2008 July and 2014 December to investigate the mechanisms of variability and search formore » a basic relation between the several subclasses of blazars. We identify a correlation between the maximum degree of optical linear polarization and the gamma-ray luminosity or the ratio of gamma-ray to optical fluxes. Since the maximum polarization degree depends on the condition of the magnetic field (chaotic or ordered), this result implies a systematic difference in the intrinsic alignment of magnetic fields in parsec-scale relativistic jets between different types of blazars (flat-spectrum radio quasars vs. BL Lacs) and consequently between different types of radio galaxies (FR I versus FR II).« less

  16. Gamma Ray Burst Optical Counterpart Search Experiment (GROCSE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, H.S.; Ables, E.; Bionta, R.M.

    GROCSE (Gamma-Ray Optical Counterpart Search Experiments) is a system of automated telescopes that search for simultaneous optical activity associated with gamma ray bursts in response to real-time burst notifications provided by the BATSE/BACODINE network. The first generation system, GROCSE 1, is sensitive down to Mv {approximately} 8.5 and requires an average of 12 seconds to obtain the first images of the gamma ray burst error box defined by the BACODINE trigger. The collaboration is now constructing a second generation system which has a 4 second slewing time and can reach Mv {approximately} 14 with a 5 second exposure. GROCSE 2more » consists of 4 cameras on a single mount. Each camera views the night sky through a commercial Canon lens (f/1.8, focal length 200 mm) and utilizes a 2K x 2K Loral CCD. Light weight and low noise custom readout electronics were designed and fabricated for these CCDs. The total field of view of the 4 cameras is 17.6 x 17.6 {degree}. GROCSE II will be operated by the end of 1995. In this paper, the authors present an overview of the GROCSE system and the results of measurements with a GROCSE 2 prototype unit.« less

  17. Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers

    NASA Astrophysics Data System (ADS)

    Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.

    2016-11-01

    We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.

  18. Gamma emission of the atmosphere in the vicinity of the Earth. [28 keV to 4. 1 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golenetskii, S.V.; Gur'yan, Yu.A.; Il'inskii, V.N.

    1975-01-01

    The X-ray and ..gamma..-emissions of the earth's atmosphere were measured on Kosmos 461 in the range of 28 keV to 4.1 MeV. The energy spectrum of the emission was measured and the geomagnetic dependence of intensity in the continuous spectrum and in the 0.511-MeV line was determined. Measurements on Kosmos 135 yielded data on the height dependence of the atmospheric ..gamma..-quantum flux. 10 references.

  19. Solar Gamma Rays Above 8 MeV

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Crannell, H.; Ramaty, R.

    1978-01-01

    Processes which lead to the production of gamma rays with energy greater than 8 MeV in solar flares are reviewed and evaluated. Excited states produced by inelastic scattering, charge exchange, and spallation reactions in the abundant nuclear species are considered in order to identify nuclear lines which may contribute to the Gamma ray spectrum of solar flares. The flux of 15.11 MeV Gamma rays relative to the flux of 4.44 MeV Gamma rays from the de-excitation of the corresponding states in C12 is calculated for a number of assumed distributions of exciting particles. This flux ratio is a sensitive diagnostic of accelerated particle spectra. Other high energy nuclear levels are not so isolated as the 15.11 MeV state and are not expected to be so strong. The spectrum of Gamma rays from the decay of Pi dey is sensitive to the energy distribution of particles accelerated to energies greater than 100 MeV.

  20. Gamma ray constraints on the Galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, Donald D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1991-01-01

    We perform Monte Carlo simulations of the expected gamma ray signatures of Galactic supernovae of all types to estimate the significance of the lack of a gamma ray signal due to supernovae occurring during the last millenium. Using recent estimates of the nuclear yields, we determine mean Galactic supernova rates consistent with the historic supernova record and the gamma ray limits. Another objective of these calculations of Galactic supernova histories is their application to surveys of diffuse Galactic gamma ray line emission.

  1. Gamma ray constraints on the galactic supernova rate

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; The, L.-S.; Clayton, D. D.; Leising, M.; Mathews, G.; Woosley, S. E.

    1992-01-01

    Monte Carlo simulations of the expected gamma-ray signatures of galactic supernovae of all types are performed in order to estimate the significance of the lack of a gamma-ray signal due to supernovae occurring during the last millenium. Using recent estimates of nuclear yields, we determine galactic supernova rates consistent with the historic supernova record and the gamma-ray limits. Another objective of these calculations of galactic supernova histories is their application to surveys of diffuse galactic gamma-ray line emission.

  2. Particle acceleration and gamma rays in solar flares: Recent observations and new modeling

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, L. I.; Gan, W. Q.

    2012-09-01

    Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian-Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different

  3. High energy gamma-ray astronomy observations of Geminga with the VERITAS array

    NASA Astrophysics Data System (ADS)

    Finnegan, Gary Marvin

    The closest known supernova remnant and pulsar is Geminga. The Geminga pulsar is the first pulsar to have ever been detected initially by gamma rays and the first pulsar in a class of radio-quiet pulsars. In 2007, the Milagro collaboration detected a large angularly extended (˜ 2.6°) emission of high energy gamma rays (˜ 20 TeV ) that was positionally coincident with Geminga. The Very Energetic Radiation Imaging Telescope Array System (VERITAS) is a ground- based observatory with four imaging Cherenkov telescopes with an energy range between 100 GeV to more than 30 TeV. The imaging Cherenkov telescopes detect the Cherenkov light from charged particles in electromagnetic air showers initiated by high energy particles such as gamma rays and cosmic rays. Most gamma-ray sources detected by VERITAS are point like sources, which have an angular extension smaller than the angular resolution of the telescopes (˜ 0.1°). For a point source, the background noise can be measured in the same field of view (FOV) as the source. For an angularly extended object, such as Geminga, an external FOV from the source region must be used to estimate the background noise, to avoid contamination from the extended source region. In this dissertation, I describe a new analysis procedure that is designed to increase the observation sensitivity of angularly extended objects like Geminga. I apply this procedure to a known extended gamma-ray source, Boomerang, as well as Geminga. The results indicate the detection of very high energy emission from the Geminga region at the level of 4% of the Crab nebula with a weighted average spectral index of -2.8 ± 0.2. A possible extension less than one degree wide is shown. This detection, however, awaits a confirmation by the VERITAS collaboration. The luminosity of the Geminga extended source, the Vela Nebula, and the Crab nebula was calculated for energies greater than 1 TeV. The data suggest that older pulsars, such as Geminga and Vela, convert the

  4. Effects of Correlated and Uncorrelated Gamma Rays on Neutron Multiplicity Counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowles, Christian C.; Behling, Richard S.; Imel, George R.

    Neutron multiplicity counting relies on time correlation between neutron events to assay the fissile mass, (α,n) to spontaneous fission neutron ratio, and neutron self-multiplication of samples. Gamma-ray sensitive neutron multiplicity counters may misidentify gamma rays as neutrons and therefore miscalculate sample characteristics. Time correlated and uncorrelated gamma-ray-like signals were added into gamma-ray free neutron multiplicity counter data to examine the effects of gamma ray signals being misidentified as neutron signals on assaying sample characteristics. Multiplicity counter measurements with and without gamma-ray-like signals were compared to determine the assay error associated with gamma-ray-like signals at various gamma-ray and neutron rates. Correlatedmore » and uncorrelated gamma-ray signals each produced consistent but different measurement errors. Correlated gamma-ray signals most strongly led to fissile mass overestimates, whereas uncorrelated gamma-ray signals most strongly lead to (α,n) neutron overestimates. Gamma-ray sensitive neutron multiplicity counters may be able to account for the effects of gamma-rays on measurements to mitigate measurement uncertainties.« less

  5. Fermi: The Gamma-Ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  6. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  7. HUBBLE STAYS ON TRAIL OF FADING GAMMA-RAY BURST FIREBALL

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A Hubble Space Telescope image of the fading fireball from one of the universe's most mysterious phenomena, a gamma-ray burst. Though the visible component has faded to 1/500th its brightness (27.7 magnitude) from the time it was first discovered by ground- based telescopes last March (the actual gamma-ray burst took place on February 28), Hubble continues to clearly see the fireball and discriminated a surrounding nebulosity (at 25th magnitude) which is considered a host galaxy. The continued visibility of the burst, and the rate of its fading, support theories that the light from a gamma-ray burst is an expanding relativistic (moving near the speed of light) fireball, possibly produced by the collision of two dense objects, such as an orbiting pair of neutron stars. If the burst happened nearby, within our own galaxy, the resulting fireball should have had only enough energy to propel it into space for a month. The fact that this fireball is still visible after six months means the explosion was truly titanic and, to match the observed brightness, must have happened at the vast distances of galaxies. The energy released in a burst, which can last from a fraction of a second to a few hundred seconds, is equal to all of the Sun's energy generated over its 10 billion year lifetime. The false-color image was taken Sept. 5, 1997 with the Space Telescope Imaging Spectrograph. Credit: Andrew Fruchter (STScI), Elena Pian (ITSRE-CNR), and NASA

  8. Gamma-ray luminosity and photon index evolution of FSRQ blazars and contribution to the gamma-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singal, J.; Ko, A.; Petrosian, V., E-mail: jsingal@richmond.edu

    We present the redshift evolutions and distributions of the gamma-ray luminosity and photon spectral index of flat spectrum radio quasar (FSRQ) type blazars, using non-parametric methods to obtain the evolutions and distributions directly from the data. The sample we use for analysis consists of almost all FSRQs observed with a greater than approximately 7σ detection threshold in the first-year catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, with redshifts as determined from optical spectroscopy by Shaw et al. We find that FSQRs undergo rapid gamma-ray luminosity evolution, but negligible photon index evolution, with redshift. With these evolutions accountedmore » for we determine the density evolution and luminosity function of FSRQs and calculate their total contribution to the extragalactic gamma-ray background radiation, resolved and unresolved, which is found to be 16(+10/–4)%, in agreement with previous studies.« less

  9. Compact, high-resolution, gamma ray imaging for scintimammography and other medical diagostic applications

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.; Wojcik, Randolph F.; Steinbach, Daniela

    1999-01-01

    A high resolution gamma ray imaging device includes an aluminum housing, a lead screen collimator at an opened end of the housing, a crystal scintillator array mounted behind the lead screen collimator, a foam layer between the lead screen collimator and the crystal scintillator array, a photomultiplier window coupled to the crystal with optical coupling grease, a photomultiplier having a dynode chain body and a base voltage divider with anodes, anode wire amplifiers each connected to four anodes and a multi pin connector having pin connections to each anode wire amplifier. In one embodiment the crystal scintillator array includes a yttrium aluminum perovskite (YAP) crystal array. In an alternate embodiment, the crystal scintillator array includes a gadolinium oxyorthosilicate (GSO) crystal array.

  10. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  11. Ground level gamma-ray and electric field enhancements during disturbed weather: Combined signatures from convective clouds, lightning and rain

    NASA Astrophysics Data System (ADS)

    Reuveni, Yuval; Yair, Yoav; Price, Colin; Steinitz, Gideon

    2017-11-01

    We report coincidences of ground-level gamma-ray enhancements with precipitation events and strong electric fields typical of thunderstorms, measured at the Emilio Segre Cosmic Ray observatory located on the western slopes of Mt. Hermon in northern Israel. The observatory hosts 2 × 2″ Nal(TI) gamma ray scintillation detectors alongside a vertical atmospheric electric field (Ez) mill and conduction current (Jz) plates. During several active thunderstorms that occurred near the Mt. Hermon station in October and November 2015, we recorded prolonged periods of gamma ray enhancements, which lasted tens of minutes and coincided with peaks both in precipitation and the vertical electric field. Two types of events were detected: slow increase (up to 300 min) of atmospheric gamma ray radiation due to radon progeny washout (or rainout) along with minutes of Ez enhancement, which were not associated with the occurrences of nearby CG lightning discharges. The second type showed 30 min bursts of gamma rays, coinciding with minutes of Ez enhancement that closely matched the occurrences of nearby CG lightning discharges, and are superimposed on the radiation from radon daughters washed out to near surface levels by precipitation. We conclude that a superposition of accelerated high energy electrons by thunderstorm electric fields and radon progeny washout (or rainout) explains the relatively fast near surface gamma-ray increase, where the minutes-scale vertical electric field enhancement are presumably caused due to nearby convective clouds. Our results show that the mean exponential half-life depletion times of the residual nuclei produced during events without lightning occurrences were between 25-65 min, compared to 55-100 min when lightning was present, indicating that different types of nuclei were involved.

  12. The BATSE experiment on the Gamma Ray Observatory: Solar flare hard x ray and gamma-ray capabilities

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Parnell, T. A.; Paciesas, W. S.; Pendleton, G. N.; Hudson, H. S.; Matteson, J. L.; Peterson, L. E.; Cline, T. L.

    1989-01-01

    The Burst and Transient Source Experiment (BATSE) for the Gamma Ray Observatory (GRO) consists of eight detector modules that provide full-sky coverage for gamma-ray bursts and other transient phenomena such as solar flares. Each detector module has a thin, large-area scintillation detector (2025 sq cm) for high time-resolution studies, and a thicker spectroscopy detector (125 sq cm) to extend the energy range and provide better spectral resolution. The total energy range of the system is 15 keV to 100 MeV. These 16 detectors and the associated onboard data system should provide unprecedented capabilities for observing rapid spectral changes and gamma-ray lines from solar flares. The presence of a solar flare can be detected in real-time by BATSE; a trigger signal is sent to two other experiments on the GRO. The launch of the GRO is scheduled for June 1990, so that BATSE can be an important component of the Max '91 campaign.

  13. The Advanced Gamma-ray Imaging System (AGIS): A Nanosecond Time Scale Stereoscopic Array Trigger System.

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Horan, D.; Krawzcynski, H.; Schroedter, M.

    2008-04-01

    Imaging atmospheric Cherenkov telescope arrays (VERITAS, HESS) have shown unprecedented background suppression capabilities for reducing cosmic-ray induced air showers, muons and night sky background fluctuations. Next-generation arrays with on the order of 100 telescopes offer larger collection areas, provide the possibility to see the air shower from more view points on the ground, have the potential to improve the sensitivity and give additional background suppression. Here we discuss the design of a fast array trigger system that has the potential to perform a real time image analysis allowing substantially improved background rate suppression at the trigger level.

  14. Pulsed high-energy gamma rays from PSR 1055-52

    NASA Technical Reports Server (NTRS)

    Fierro, J. M.; Bertsch, D. L.; Brazier, K. T.; Chiang, J.; D'Amico, N.; Fichtel, C. E.; Hartman, R. C.; Hunter, S. D.; Johnston, S.; Kanbach, G.

    1993-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory has detected a high-energy gamma-ray source at a position coincident with that of the radio pulsar PSR 1055-52. Analysis of the EGRET data at the radio pulsar period of 197 ms has revealed pulsed gamma-radiation at energies above 300 MeV, making PSR 1055-52 the fifth detected high-energy gamma-ray pulsar. The pulsed radiation from PSR 1055-52 has a very hard photon spectral index of -1.18 +/- 0.16 and a high efficiency for converting its rotational energy into gamma-rays. No unpulsed emission was observed.

  15. Bright x-ray flares in gamma-ray burst afterglows.

    PubMed

    Burrows, D N; Romano, P; Falcone, A; Kobayashi, S; Zhang, B; Moretti, A; O'brien, P T; Goad, M R; Campana, S; Page, K L; Angelini, L; Barthelmy, S; Beardmore, A P; Capalbi, M; Chincarini, G; Cummings, J; Cusumano, G; Fox, D; Giommi, P; Hill, J E; Kennea, J A; Krimm, H; Mangano, V; Marshall, F; Mészáros, P; Morris, D C; Nousek, J A; Osborne, J P; Pagani, C; Perri, M; Tagliaferri, G; Wells, A A; Woosley, S; Gehrels, N

    2005-09-16

    Gamma-ray burst (GRB) afterglows have provided important clues to the nature of these massive explosive events, providing direct information on the nearby environment and indirect information on the central engine that powers the burst. We report the discovery of two bright x-ray flares in GRB afterglows, including a giant flare comparable in total energy to the burst itself, each peaking minutes after the burst. These strong, rapid x-ray flares imply that the central engines of the bursts have long periods of activity, with strong internal shocks continuing for hundreds of seconds after the gamma-ray emission has ended.

  16. Gamma-ray Full Spectrum Analysis for Environmental Radioactivity by HPGe Detector

    NASA Astrophysics Data System (ADS)

    Jeong, Meeyoung; Lee, Kyeong Beom; Kim, Kyeong Ja; Lee, Min-Kie; Han, Ju-Bong

    2014-12-01

    Odyssey, one of the NASA¡¯s Mars exploration program and SELENE (Kaguya), a Japanese lunar orbiting spacecraft have a payload of Gamma-Ray Spectrometer (GRS) for analyzing radioactive chemical elements of the atmosphere and the surface. In these days, gamma-ray spectroscopy with a High-Purity Germanium (HPGe) detector has been widely used for the activity measurements of natural radionuclides contained in the soil of the Earth. The energy spectra obtained by the HPGe detectors have been generally analyzed by means of the Window Analysis (WA) method. In this method, activity concentrations are determined by using the net counts of energy window around individual peaks. Meanwhile, an alternative method, the so-called Full Spectrum Analysis (FSA) method uses count numbers not only from full-absorption peaks but from the contributions of Compton scattering due to gamma-rays. Consequently, while it takes a substantial time to obtain a statistically significant result in the WA method, the FSA method requires a much shorter time to reach the same level of the statistical significance. This study shows the validation results of FSA method. We have compared the concentration of radioactivity of 40K, 232Th and 238U in the soil measured by the WA method and the FSA method, respectively. The gamma-ray spectrum of reference materials (RGU and RGTh, KCl) and soil samples were measured by the 120% HPGe detector with cosmic muon veto detector. According to the comparison result of activity concentrations between the FSA and the WA, we could conclude that FSA method is validated against the WA method. This study implies that the FSA method can be used in a harsh measurement environment, such as the gamma-ray measurement in the Moon, in which the level of statistical significance is usually required in a much shorter data acquisition time than the WA method.

  17. Gamma-Ray "Raindrops" from Flaring Blazar

    NASA Image and Video Library

    2017-12-08

    This visualization shows gamma rays detected during 3C 279's big flare by the LAT instrument on NASA's Fermi satellite. Gamma rays are represented as expanding circles reminiscent of raindrops on water. The flare is an abrupt shower of "rain" that trails off toward the end of the movie. Both the maximum size of the circle and its color represent the energy of the gamma ray, with white lowest and magenta highest. In a second version of the visualization, a background map shows how the LAT detects 3C 279 and other sources by accumulating high-energy photons over time (brighter squares reflect higher numbers of gamma rays). The movie starts on June 14 and ends June 17. The area shown is a region of the sky five degrees on a side and centered on the position of 3C 279. Read more: go.nasa.gov/1TqximF Credits: NASA/DOE/Fermi LAT Collaboration

  18. Hybrid Skyshine Calculations for Complex Neutron and Gamma-Ray Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shultis, J. Kenneth

    2000-10-15

    A two-step hybrid method is described for computationally efficient estimation of neutron and gamma-ray skyshine doses far from a shielded source. First, the energy and angular dependence of radiation escaping into the atmosphere from a source containment is determined by a detailed transport model such as MCNP. Then, an effective point source with this energy and angular dependence is used in the integral line-beam method to transport the radiation through the atmosphere up to 2500 m from the source. An example spent-fuel storage cask is analyzed with this hybrid method and compared to detailed MCNP skyshine calculations.

  19. Review on Monte-Carlo Tools for Simulating Relativistic Runaway Electron Avalanches and the Propagation of TerretrialTerrestrial-Gamma Ray Flashes in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Sarria, D.

    2016-12-01

    The field of High Energy Atmospheric Physics (HEAP) includes the study of energetic events related to thunderstorms, such as Terrestrial Gamma-ray Flashes (TGF), associated electron-positron beams (TEB), gamma-ray glows and Thunderstorm Ground Enhancements (TGE). Understanding these phenomena requires accurate models for the interaction of particles with atmospheric air and electro-magnetic fields in the <100 MeV energy range. This study is the next step of the work presented in [C. Rutjes et al., 2016] that compared the performances of various codes in the absence of electro-magnetic fields. In the first part, we quantify simple but informative test cases of electrons in various electric field profiles. We will compare the avalanche length (of the Relativistic Runaway Electron Avalanche (RREA) process), the photon/electron spectra and spatial scattering. In particular, we test the effect of the low-energy threshold, that was found to be very important [Skeltved et al., 2014]. Note that even without a field, it was found to be important because of the straggling effect [C. Rutjes et al., 2016]. For this first part, we will be comparing GEANT4 (different flavours), FLUKA and the custom made code GRRR. In the second part, we test the propagation of these high energy particles in the atmosphere, from production altitude (around 10 km to 18 km) to satellite altitude (600 km). We use a simple and clearly fixed set-up for the atmospheric density, the geomagnetic field, the initial conditions, and the detection conditions of the particles. For this second part, we will be comparing GEANT4 (different flavours), FLUKA/CORSIKA and the custom made code MC-PEPTITA. References : C. Rutjes et al., 2016. Evaluation of Monte Carlo tools for high energy atmospheric physics. Geosci. Model Dev. Under review. Skeltved, A. B. et al., 2014. Modelling the relativistic runaway electron avalanche and the feedback mechanism with geant4. JGRA, doi :10.1002/2014JA020504.

  20. Polarization of the prompt gamma-ray emission from the gamma-ray burst of 6 December 2002.

    PubMed

    Coburn, Wayne; Boggs, Steven E

    2003-05-22

    Observations of the afterglows of gamma-ray bursts (GRBs) have revealed that they lie at cosmological distances, and so correspond to the release of an enormous amount of energy. The nature of the central engine that powers these events and the prompt gamma-ray emission mechanism itself remain enigmatic because, once a relativistic fireball is created, the physics of the afterglow is insensitive to the nature of the progenitor. Here we report the discovery of linear polarization in the prompt gamma-ray emission from GRB021206, which indicates that it is synchrotron emission from relativistic electrons in a strong magnetic field. The polarization is at the theoretical maximum, which requires a uniform, large-scale magnetic field over the gamma-ray emission region. A large-scale magnetic field constrains possible progenitors to those either having or producing organized fields. We suggest that the large magnetic energy densities in the progenitor environment (comparable to the kinetic energy densities of the fireball), combined with the large-scale structure of the field, indicate that magnetic fields drive the GRB explosion.

  1. Data analysis of the COMPTEL instrument on the NASA gamma ray observatory

    NASA Technical Reports Server (NTRS)

    Diehl, R.; Bennett, K.; Collmar, W.; Connors, A.; Denherder, J. W.; Hermsen, W.; Lichti, G. G.; Lockwood, J. A.; Macri, J.; Mcconnell, M.

    1992-01-01

    The Compton imaging telescope (COMPTEL) on the Gamma Ray Observatory (GRO) is a wide field of view instrument. The coincidence measurement technique in two scintillation detector layers requires specific analysis methods. Straightforward event projection into the sky is impossible. Therefore, detector events are analyzed in a multi-dimensional dataspace using a gamma ray sky hypothesis convolved with the point spread function of the instrument in this dataspace. Background suppression and analysis techniques have important implications on the gamma ray source results for this background limited telescope. The COMPTEL collaboration applies a software system of analysis utilities, organized around a database management system. The use of this system for the assistance of guest investigators at the various collaboration sites and external sites is foreseen and allows different detail levels of cooperation with the COMPTEL institutes, dependent on the type of data to be studied.

  2. Sizing up the population of gamma-ray binaries

    NASA Astrophysics Data System (ADS)

    Dubus, Guillaume; Guillard, Nicolas; Petrucci, Pierre-Olivier; Martin, Pierrick

    2017-12-01

    Context. Gamma-ray binaries are thought to be composed of a young pulsar in orbit around a massive O or Be star with their gamma-ray emission powered by pulsar spin-down. The number of such systems in our Galaxy is not known. Aims: We aim to estimate the total number of gamma-ray binaries in our Galaxy and to evaluate the prospects for new detections in the GeV and TeV energy range, taking into account that their gamma-ray emission is modulated on the orbital period. Methods: We modelled the population of gamma-ray binaries and evaluated the fraction of detected systems in surveys with the Fermi-LAT (GeV), H.E.S.S., HAWC and CTA (TeV) using observation-based and synthetic template light curves. Results: The detected fraction depends more on the orbit-average flux than on the light-curve shape. Our best estimate for the number of gamma-ray binaries is 101-52+89 systems. A handful of discoveries are expected by pursuing the Fermi-LAT survey. Discoveries in TeV surveys are less likely. However, this depends on the relative amounts of power emitted in GeV and TeV domains. There could be as many as ≈ 200 HESS J0632+057-like systems with a high ratio of TeV to GeV emission compared to other gamma-ray binaries. Statistics allow for as many as three discoveries in five years of HAWC observations and five discoveries in the first two years of the CTA Galactic Plane survey. Conclusions: We favour continued Fermi-LAT observations over ground-based TeV surveys to find new gamma-ray binaries. Gamma-ray observations are most sensitive to short orbital period systems with a high spin-down pulsar power. Radio pulsar surveys (SKA) are likely to be more efficient in detecting long orbital period systems, providing a complementary probe into the gamma-ray binary population.

  3. The hump in the Cerenkov lateral distribution of gamma ray showers

    NASA Technical Reports Server (NTRS)

    Sinha, S.; Sao, M. V. S.

    1985-01-01

    The lateral distribution of atmospheric Cerenkov photons emitted by gamma ray showers of energy 100 GeV is calculated. The lateral distribution shows a characteristic hump at a distance of approx. 135 meter from the core. The hump is shown to be due to electrons of threshold energy 1 GeV, above which the mean scattering angle becomes smaller than the Cerenkov angle.

  4. Cherenkov Telescope Array: the next-generation gamma ray observatory

    NASA Astrophysics Data System (ADS)

    Ebr, Jan

    2017-08-01

    The Cherenkov Telescope Array (CTA) is a project to build the next generation ground-based observatory for gamma-ray astronomy at very-high energies in the range from 20 GeV to 300 TeV, which will both surpass the sensitivity of existing instruments in their energy domains and extend the limits of the observed energy spectrum. It will probe some of the most energetic processes in the Universe and provide insight into topics such as the acceleration of charged cosmic rays and their role in galaxy evolution, processes in relativistic jets, wind and explosions and the nature and distribution of dark matter. The CTA Observatory will consist of more than a hundred imaging atmospheric Cherenkov telescopes (IACT) of three different size classes, installed at two premier astronomical locations, one in each hemisphere. It is foreseen that the telescopes will use a variety of optical designs including parabolic primary mirrors, variations of the Davies-Cotton design and two-mirror setups such as the Schwarzschild-Couder telescope, and several camera designs, using both photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) for detection of the nanosecond-scale Cherenkov flashes. Each telescope will feature a precise but lightweight and agile mount, allowing even the largest telescopes to change targets within 20 seconds, with systems of sensors and actuators actively controlling the shape of the reflecting surfaces. As an integral part, the Observatory will feature extensive calibration facilities, closely monitoring both the detectors themselves and the surrounding atmosphere. Several telescope prototypes already exist and the installation works at the northern site have started.

  5. Analysis of Data from the Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory

    NASA Technical Reports Server (NTRS)

    Kniffen, Donald A.; Elliott, William W.

    1999-01-01

    The final report consists of summaries of work proposed, work accomplished, papers and presentations published and continuing work regarding the cooperative agreement. The work under the agreement is based on high energy gamma ray source data analysis collected from the Energetic Gamma-Ray Experiment Telescope (EGRET).

  6. Pair Creation Transparency in Gamma-Ray Pulsars

    NASA Astrophysics Data System (ADS)

    Story, Sarah A.

    Pulsars are rapidly rotating, highly magnetized neutron stars that produce photon pulses in energies from radio to gamma-rays. The population of known gamma-ray pulsars has been increased nearly twenty-fold in the past six years since the launch of the Fermi Gamma-Ray Space Telescope; it now exceeds 145 sources and has defined an important part of Fermi's science legacy. In order to understand the detectability of pulsars in gamma-rays, it is important to consider not only the radiative mechanisms that produce gamma-rays, but the processes that can attenuate photons before they can leave the pulsar magnetosphere. Here I explore two such processes, one-photon magnetic pair creation and two-photon pair creation. Magnetic pair creation has been at the core of radio pulsar paradigms and central to polar cap models of gamma-ray pulsars for over three decades. Among the population characteristics well established for Fermi pulsars is the common occurrence of exponential turnovers in the spectra in the 1-10 GeV range. These turnovers are too gradual to arise from magnetic pair creation in the strong magnetic fields of pulsar inner magnetospheres. By demanding insignificant photon attenuation precipitated by such single-photon pair creation, the energies of these turnovers for Fermi pulsars can be used to compute lower bounds for the typical altitude of GeV band emission. In this thesis, I explore such pair transparency constraints below the turnover energy and update earlier altitude bound determinations that have been deployed in various gamma-ray pulsar papers by the Fermi-LAT collaboration. For low altitude emission locales, general relativistic influences are found to be important, increasing cumulative opacity, shortening the photon attenuation lengths, and also reducing the maximum energy that permits escape of photons from a neutron star magnetosphere. Rotational aberration influences are also explored, and are found to be small at low altitudes, except near the

  7. Prompt optical emission from gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Kehoe, Robert; Akerlof, Karl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Priedhorsky, Bill; Szymanski, John; Wren, Jim

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure contemporaneous and early afterglow optical emission from gamma-ray bursts (GRBs). The ROTSE-I telescope array has been fully automated and responding to burst alerts from the GRB Coordinates Network since March 1998, taking prompt optical data for 30 bursts in its first year. We will briefly review observations of GRB990123 which revealed the first detection of an optical burst occurring during the gamma-ray emission, reaching 9th magnitude at its peak. In addition, we present here preliminary optical results for seven other gamma-ray bursts. No other optical counterparts were seen in this analysis, and the best limiting senisitivities are mV > 13.0 at 14.7 seconds after the gamma-ray rise, and mmV > 16.4 at 62 minutes. These are the most stringent limits obtained for GRB optical counterpart brightness in the first hour after the burst. This analysis suggests that there is not a strong correlation between optical flux and gamma-ray emission.

  8. Gamma ray spectroscopy in astrophysics: Solar gamma ray astronomy on solar maximum mission. [experimental design

    NASA Technical Reports Server (NTRS)

    Forrest, D. J.

    1978-01-01

    The SMM gamma ray experiment and the important scientific capabilities of the instrument are discussed. The flare size detectable as a function of spectrum integration time was studied. A preliminary estimate indicates that a solar gamma ray line at 4.4 MeV one-fifth the intensity of that believed to have been emitted on 4 August 1972 can be detected in approximately 1000 sec with a confidence level of 99%.

  9. A Search for Early Optical Emission at Gamma-Ray Burst Locations by the Solar Mass Ejection Imager (SMEI)

    NASA Technical Reports Server (NTRS)

    Band, David L.; Buffington, Andrew; Jackson, Bernard V.; Hick, P. Paul; Smith, Aaron C.

    2005-01-01

    The Solar Mass Ejection Imager (SMEI) views nearly every point on the sky once every 102 minutes and can detect point sources as faint as R approx. 10th magnitude. Therefore, SMEI can detect or provide upper limits for the optical afterglow from gamma-ray bursts in the tens of minutes after the burst when different shocked regions may emit optically. Here we provide upper limits for 58 bursts between 2003 February and 2005 April.

  10. Comparison of the imaging performances for recently developed monolithic scintillators: CRY018 and CRY019 for dual isotope gamma ray imaging applications

    NASA Astrophysics Data System (ADS)

    Polito, C.; Pani, R.; Trigila, C.; Cinti, M. N.; Fabbri, A.; Frantellizzi, V.; De Vincentis, G.; Pellegrini, R.; Pani, R.

    2017-01-01

    The growing interest for new scintillation crystals with outstanding imaging performances (i.e. resolution and efficiency) has suggested the study of recently discovered scintillators named CRY018 and CRY019. The crystals under investigation are monolithic and have shown enhanced characteristics both for gamma ray spectrometry and for Nuclear Medicine imaging applications such as the dual isotope imaging. Moreover, the non-hygroscopic nature and the absence of afterglow make these scintillators even more attractive for the potential improvement in a wide range of applications. These scintillation crystals show a high energy resolution in the energy range involved in Nuclear Medicine, allowing the discrimination between very close energy values. Moreover, in order to prove their suitability of being powerful imaging systems, the imaging performances like the position linearity and the intrinsic spatial resolution have been evaluated obtaining satisfactory results thanks to the implementation of an optimized algorithm for the images reconstruction.

  11. Gamma-ray Bursts May Originate in Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    2001-04-01

    than that expected by the standard scenario of a fireball in a low-density medium - an important clue that the explosion occurred in a dense region. Next, on February 22, 2001, Piro said that Chandra observations of the burst's afterglow, one of the brightest bursts ever observed by BeppoSAX, provided evidence of a fireball expanding in a very dense gas. These recent results supported data from four other gamma-ray bursts observed by BeppoSAX and Chandra (GRB970508, GRB990705, GRB991216, and GRB000214). In these bursts, Piro and his team found evidence indicating that the burst had encountered an extremely dense gas. The properties of this gas suggest that it originated from a very massive progenitor before it exploded as a gamma-ray burst. A key element in the success of these observations has been the perfect timing and liaison between the two satellites, Chandra and BeppoSAX, according to Piro. Piro is the Mission Scientist for BeppoSAX, the instrument that first detected X-ray afterglows from gamma-ray bursts. Currently, astronomers are not usually notified about gamma-ray bursts until an hour or so after they occur. These bursts last only for a few milliseconds to about a minute, although their afterglow can linger in X-ray and optical light for days or weeks. The HETE-2 satellite, launched in October 2000, and Swift, scheduled for a 2003 launch, will provide nearly instant notification of bursts in action, providing satellites such as Chandra a better opportunity to study the afterglow phenomenon in depth. The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this

  12. Analysis of Multi-band Photometry of Violently Variable Gamma-Ray Sources

    NASA Astrophysics Data System (ADS)

    Kadowaki, Jennifer; Malkan, M. A.

    2013-01-01

    We studied the relationship between rapid variations in the jet intensities and changes in accretion disk activity of blazar subtype, Flat Spectrum Radio Quasar (FSRQ). Fifteen known FSRQs were specifically chosen for their prominent big blue bumps with redshifts near z=1, in order for the rest-frame UV to be redshifted into the blue-band pass. Flux changes for these 15 FSRQs were monitored for 15 observational nights in BVRI-bands and 20 nights in JHK-bands over a 12 month period using NASA's Fermi Gamma-ray Space Telescope, Lick Observatory's Nickel Telescope, and Kitt Peak National Observatory's 2.1 m Telescope. With 6.3’ x 6.3’ field of view for Nickel’s Direct Imaging Camera and 20’ x 20’ for Flamingos IR Imaging Spectrometer, approximately a half dozen, bright and non-variable stars were available to compare the concurrent changes in each of the quasar’s brightness. This process of differential photometry yielded photometric measurements of quasar brightness with 1-2% level precision. Light curves were then created for these 15 monitored quasars in optical, infrared, and gamma-ray energy bands. Dominating the redder emission spectrum due to non-thermal, synchrotron radiation and compton scattering of gamma-rays off high energy electrons, jet activity was compared to bluer spectral regions having strong accretion disk component with rest frame of approximately 2000 Angstroms. Most of the targeted FSRQs varied significantly over the 12 month monitoring period, with varying levels of fluctuations for each observed wavelength. Some correlations between gamma-ray and optical wavelengths were also present, which will be further discussed in the poster.

  13. IceCube's Search for Neutrinos from Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    In a cubic kilometer of volume of ice under Antarctica, an observatory called IceCube is taking measurements that may help us to determine what causes the ultra-high-energy cosmic rays (UHECRs) we occasionally observe from Earth. A recent study reports on its latest results.Atomic BaseballsCosmic rays are high-energy radiation primarily composed of protons and atomic nuclei. When these charged and extremely energetic particles impact the Earths atmosphere on their journey through space, they generate showers of secondary particles that we then detect.A UHECR is any cosmic-ray particle with a kinetic energy exceeding 1018 eV and some have been detected with energies of more than 1020 eV! In practical terms, this is an atomic nucleus with the same kinetic energy as a baseball pitched at 60mph. These unbelievably energetic particlesare quite rare, but weve observed them for decades. Yet in spite of this, the source of UHECRs is unknown.Illustration of a gamma-ray burst in a star-forming region. Could these phenomena accelerate UHECRs to their enormous energies? [NASA/Swift/Mary Pat Hrybyk-Keith and John Jones]Gamma-Ray Burst FireballsOne proposed source that could accelerate particles to these energies is a gamma-ray burst (GRB). In some models for GRBs, the explosion is envisioned as a relativistically expanding fireball of electrons, photons and protons. Internal shock fronts accelerate electrons and protons within the fireball, generating UHECRs, gamma rays, and neutrinos in the process.Because the charged cosmic-ray particles can be easily deflected as they travel, its difficult to identify where they came from. Neutrinos and photons, on the other hand, both travel largely undeflected through the universe. As a result, if we detect high-energy neutrinos that are correlated with gamma-ray photons from a GRB, this would providestrong support for GRBfireball models for UHECR production.Heading Under the IceThe IceCube Laboratory in Antarctica. Beneath the Antarctic

  14. LUMINOSITY EVOLUTION OF GAMMA-RAY PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirotani, Kouichi, E-mail: hirotani@tiara.sinica.edu.tw

    2013-04-01

    We investigate the electrodynamic structure of a pulsar outer-magnetospheric particle accelerator and the resulting gamma-ray emission. By considering the condition for the accelerator to be self-sustained, we derive how the trans-magnetic-field thickness of the accelerator evolves with the pulsar age. It is found that the thickness is small but increases steadily if the neutron-star envelope is contaminated by sufficient light elements. For such a light element envelope, the gamma-ray luminosity of the accelerator is kept approximately constant as a function of age in the initial 10,000 yr, forming the lower bound of the observed distribution of the gamma-ray luminosity ofmore » rotation-powered pulsars. If the envelope consists of only heavy elements, on the other hand, the thickness is greater, but it increases less rapidly than a light element envelope. For such a heavy element envelope, the gamma-ray luminosity decreases relatively rapidly, forming the upper bound of the observed distribution. The gamma-ray luminosity of a general pulsar resides between these two extreme cases, reflecting the envelope composition and the magnetic inclination angle with respect to the rotation axis. The cutoff energy of the primary curvature emission is regulated below several GeV even for young pulsars because the gap thickness, and hence the acceleration electric field, is suppressed by the polarization of the produced pairs.« less

  15. Gamma-Ray Telescopes: 400 Years of Astronomical Telescopes

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2010-01-01

    The last half-century has seen dramatic developments in gamma-ray telescopes, from their initial conception and development through to their blossoming into full maturity as a potent research tool in astronomy. Gamma-ray telescopes are leading research in diverse areas such as gamma-ray bursts, blazars, Galactic transients, and the Galactic distribution of Al-26.

  16. The EGRET high energy gamma ray telescope

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.

    1992-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  17. The EGRET high energy gamma ray telescope

    NASA Astrophysics Data System (ADS)

    Hartman, R. C.; Bertsch, D. L.; Fichtel, C. E.; Hunter, S. D.; Kanbach, G.; Kniffen, D. A.; Kwok, P. W.; Lin, Y. C.; Mattox, J. R.; Mayer-Hasselwander, H. A.; Michelson, P. F.; von Montigny, C.; Nolan, P. L.; Pinkau, K.; Rothermel, H.; Schneid, E.; Sommer, M.; Sreekumar, P.; Thompson, D. J.

    1992-02-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (GRO) is sensitive in the energy range from about 20 MeV to about 30,000 MeV. Electron-positron pair production by incident gamma photons is utilized as the detection mechanism. The pair production occurs in tantalum foils interleaved with the layers of a digital spark chamber system; the spark chamber records the tracks of the electron and positron, allowing the reconstruction of the arrival direction of the gamma ray. If there is no signal from the charged particle anticoincidence detector which surrounds the upper part of the detector, the spark chamber array is triggered by two hodoscopes of plastic scintillators. A time of flight requirement is included to reject events moving backward through the telescope. The energy of the gamma ray is primarily determined by absorption of the energies of the electron and positron in a 20 cm deep NaI(Tl) scintillator.

  18. Prompt Optical Observations of Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Akerlof, Carl; Balsano, Richard; Barthelmy, Scott; Bloch, Jeff; Butterworth, Paul; Casperson, Don; Cline, Tom; Fletcher, Sandra; Frontera, Fillippo; Gisler, Galen; Heise, John; Hills, Jack; Hurley, Kevin; Kehoe, Robert; Lee, Brian; Marshall, Stuart; McKay, Tim; Pawl, Andrew; Piro, Luigi; Szymanski, John; Wren, Jim

    2000-03-01

    The Robotic Optical Transient Search Experiment (ROTSE) seeks to measure simultaneous and early afterglow optical emission from gamma-ray bursts (GRBs). A search for optical counterparts to six GRBs with localization errors of 1 deg2 or better produced no detections. The earliest limiting sensitivity is mROTSE>13.1 at 10.85 s (5 s exposure) after the gamma-ray rise, and the best limit is mROTSE>16.0 at 62 minutes (897 s exposure). These are the most stringent limits obtained for the GRB optical counterpart brightness in the first hour after the burst. Consideration of the gamma-ray fluence and peak flux for these bursts and for GRB 990123 indicates that there is not a strong positive correlation between optical flux and gamma-ray emission.

  19. Evaluation of a Fluorochlorozirconate Glass-Ceramic Storage Phosphor Plate for Gamma-Ray Computed Radiography

    DOE PAGES

    Leonard, Russell L.; Gray, Sharon K.; Alvarez, Carlos J.; ...

    2015-05-21

    In this paper, a fluorochlorozirconate (FCZ) glass-ceramic containing orthorhombic barium chloride crystals doped with divalent europium was evaluated for use as a storage phosphor in gamma-ray imaging. X-ray diffraction and phosphorimetry of the glass-ceramic sample showed the presence of a significant amount of orthorhombic barium chloride crystals in the glass matrix. Transmission electron microscopy and scanning electron microscopy were used to identify crystal size, structure, and morphology. The size of the orthorhombic barium chloride crystals in the FCZ glass matrix was very large, ~0.5–0.7 μm, which can limit image resolution. The FCZ glass-ceramic sample was exposed to 1 MeV gammamore » rays to determine its photostimulated emission characteristics at high energies, which were found to be suitable for imaging applications. Test images were made at 2 MeV energies using gap and step wedge phantoms. Gaps as small as 101.6 μm in a 440 stainless steel phantom were imaged using the sample imaging plate. Analysis of an image created using a depleted uranium step wedge phantom showed that emission is proportional to incident energy at the sample and the estimated absorbed dose. Finally, the results showed that the sample imaging plate has potential for gamma-ray-computed radiography and dosimetry applications.« less

  20. Research in cosmic and gamma ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1989-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. The activities are divided into sections and described, followed by a bibliography. The astrophysical aspects of cosmic rays, gamma rays, and of the radiation and electromagnetic field environment of the Earth and other planets are investigated. These investigations are performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  1. SKYSINE-II procedure: calculation of the effects of structure design on neutron, primary gamma-ray and secondary gamma-ray dose rates in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampley, C.M.

    1979-01-01

    An updated version of the SKYSHINE Monte Carlo procedure has been developed. The new computer code, SKYSHINE-II, provides a substantial increase in versatility in that the program possesses the ability to address three types of point-isotropic radiation sources: (1) primary gamma rays, (2) neutrons, and (3) secondary gamma rays. In addition, the emitted radiation may now be characterized by an energy emission spectrum product of a new energy-dependent atmospheric transmission data base developed by Radiation Research Associates, Inc. for each of the three source types described above. Most of the computational options present in the original program have been retainedmore » in the new version. Hence, the SKYSHINE-II computer code provides a versatile and viable tool for the analysis of the radiation environment in the vicinity of a building structure containing radiation sources, situated within the confines of a nuclear power plant. This report describes many of the calculational methods employed within the SKYSHINE-II program. A brief description of the new data base is included. Utilization instructions for the program are provided for operation of the SKYSHINE-II code on the Brookhaven National Laboratory Central Scientific Computing Facility. A listing of the source decks, block data routines, and the new atmospheric transmission data base are provided in the appendices of the report.« less

  2. A library least-squares approach for scatter correction in gamma-ray tomography

    NASA Astrophysics Data System (ADS)

    Meric, Ilker; Anton Johansen, Geir; Valgueiro Malta Moreira, Icaro

    2015-03-01

    Scattered radiation is known to lead to distortion in reconstructed images in Computed Tomography (CT). The effects of scattered radiation are especially more pronounced in non-scanning, multiple source systems which are preferred for flow imaging where the instantaneous density distribution of the flow components is of interest. In this work, a new method based on a library least-squares (LLS) approach is proposed as a means of estimating the scatter contribution and correcting for this. The validity of the proposed method is tested using the 85-channel industrial gamma-ray tomograph previously developed at the University of Bergen (UoB). The results presented here confirm that the LLS approach can effectively estimate the amounts of transmission and scatter components in any given detector in the UoB gamma-ray tomography system.

  3. Delayed Gamma-ray Spectroscopy for Safeguards Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozin, Vladimir

    The delayed gamma-ray assay technique utilizes an external neutron source (D-D, D-T, or electron accelerator-driven), and high-resolution gamma-ray spectrometers to perform characterization of SNM materials behind shielding and in complex configurations such as a nuclear fuel assembly. High-energy delayed gamma-rays (2.5 MeV and above) observed following the active interrogation, provide a signature for identification of specific fissionable isotopes in a mixed sample, and determine their relative content. Potential safeguards applications of this method are: 1) characterization of fresh and spent nuclear fuel assemblies in wet or dry storage; 2) analysis of uranium enrichment in shielded or non-characterized containers or inmore » the presence of a strong radioactive background and plutonium contamination; 3) characterization of bulk and waste and product streams at SNM processing plants. Extended applications can include warhead confirmation and warhead dismantlement confirmation in the arms control area, as well as SNM diagnostics for the emergency response needs. In FY16 and prior years, the project has demonstrated the delayed gamma-ray measurement technique as a robust SNM assay concept. A series of empirical and modeling studies were conducted to characterize its response sensitivity, develop analysis methodologies, and analyze applications. Extensive experimental tests involving weapons-grade Pu, HEU and depleted uranium samples were completed at the Idaho Accelerator Center and LLNL Dome facilities for various interrogation time regimes and effects of the neutron source parameters. A dedicated delayed gamma-ray response modeling technique was developed and its elements were benchmarked in representative experimental studies, including highresolution gamma-ray measurements of spent fuel at the CLAB facility in Sweden. The objective of the R&D effort in FY17 is to experimentally demonstrate the feasibility of the delayed gamma-ray interrogation of shielded

  4. Simulating deep surveys of the Galactic Plane with the Advanced Gamma-ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Funk, Stefan; Digel, Seth

    2009-05-01

    The pioneering survey of the Galactic plane by H.E.S.S., together with the northern complement now underway with VERITAS, has shown the inner Milky Way to be rich in TeV-emitting sources; new source classes have been found among the H.E.S.S. detections and unidentified sources remain. In order to explore optimizations of the design of an Advanced Gamma-ray Imaging System (AGIS)-like instrument for survey science, we constructed a model of the flux and size distributions of Galactic TeV sources, normalized to the H.E.S.S. sources but extrapolated to lower flux levels. We investigated potential outcomes from a survey with the order of magnitude improvement in sensitivity and attendant improvement in angular resolution planned for AGIS. Studies of individual sources and populations found with such a sensitivity survey will advance understanding of astrophysical particle acceleration, source populations, and even high-energy cosmic rays via detection of the low-level TeV diffuse emission in regions of high cosmic-ray densitiy.

  5. The Most Remote Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    2000-10-01

    seconds is larger than that of the Sun during its entire life time (about 10,000 million years). "Gamma-ray bursts" are in fact by far the most powerful events since the Big Bang that are known in the Universe. While there are indications that gamma-ray bursts originate in star-forming regions within distant galaxies, the nature of such explosions remains a puzzle. Recent observations with large telescopes, e.g. the measurement of the degree of polarization of light from a gamma-ray burst in May 1999 with the VLT ( ESO PR 08/99), are now beginning to cast some light on this long-standing mystery. The afterglow of GRB 000131 ESO PR Photo 28a/00 ESO PR Photo 28a/00 [Preview - JPEG: 400 x 475 pix - 41k] [Normal - JPEG: 800 x 949 pix - 232k] [Full-Res - JPEG: 1200 x 1424 pix - 1.2Mb] ESO PR Photo 28b/00 ESO PR Photo 28b/00 [Preview - JPEG: 400 x 480 pix - 67k] [Normal - JPEG: 800 x 959 pix - 288k] [Full-Res - JPEG: 1200 x 1439 pix - 856k] Caption : PR Photo 28a/00 is a colour composite image of the sky field around the position of the gamma-ray burst GRB 000131 that was detected on January 31, 2000. It is based on images obtained with the ESO Very Large Telescope at Paranal. The object is indicated with an arrow, near a rather bright star (magnitude 9, i.e., over 1 million times brighter than the faintest objects visible on this photo). This and other bright objects in the field are responsible for various unavoidable imaging effects, caused by optical reflections (ring-shaped "ghost images", e.g. to the left of the brightest star) and detector saturation effects (horizontal and vertical straight lines and coloured "coronae" at the bright objects, and areas of "bleeding", e.g. below the bright star). PR Photo 28b/00 shows the rapid fading of the optical counterpart of GRB 000131 (slightly left of the centre), by means of exposures with the VLT on February 4 (upper left), 6 (upper right), 8 (lower left) and March 5 (lower right). It is no longer visible on the last photo

  6. H.E.S.S. and CTA, present and perspectives in ground-based gamma-ray astronomy

    NASA Astrophysics Data System (ADS)

    Sol, H.

    2016-12-01

    Very high energy (VHE) gamma-ray astronomy emerged as a new branch of astronomy about ten years ago with the major discoveries achieved by the High Energy Stereocopic System (H.E.S.S.) operating in Namibia, quickly followed by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) in the Canary Islands and the Very Energetic Radiation Imaging Telescope Array System (VERITAS) in the USA. These experiments succeeded to start exploring the cosmos at TeV energies, with the present detection of 178 sources in this range, mostly pulsar wind nebulae, supernova remnants, binary systems, blazars, and a variety of other types of sources. Based on these promizing results, the scientific community soon defined a next generation global project with significantly improved performance, the Cherenkov Telescope Array (CTA), in order to implement an open observatory at extreme energies, allowing a deep analysis of the sky in the highest part of the electromagnetic spectrum, from 20 GeV to 300 TeV. The CTA preparation phase is now completed. Production of the first telescopes should start in 2017 for deployment in 2018, in the perspective of an array fully operational at the horizon 2022.

  7. Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters

    NASA Astrophysics Data System (ADS)

    Zhang, Bin-Bin; Zhang, Bing; Castro-Tirado, Alberto J.

    2016-04-01

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that the central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.

  8. Research in particle and gamma-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Stone, E. C.; Davis, L., Jr.; Mewaldt, R. A.; Prince, T. A.

    1988-01-01

    Research activities in cosmic rays, gamma rays, and astrophysical plasmas are covered. Each activity is described, followed by a bibliography. The research program is directed toward the investigation of the astrophysical aspects of cosmic rays and gamma rays and of the radiation and electromagnetic field environment of the earth and other planets. These investigations were performed by means of energetic particle and photon detector systems flown on spacecraft and balloons.

  9. The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger

    NASA Astrophysics Data System (ADS)

    Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.

    2009-05-01

    Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.

  10. Locating very high energy gamma-ray sources with arcminute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  11. Fermi GBM Observations of Terrestrial Gamma-Ray Flashes

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.; hide

    2010-01-01

    This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.

  12. ADP study of gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Lamb, Don Q.; Wang, John C. L.; Heuter, Geoffry J.; Graziani, Carlo; Loredo, Tom; Freeman, Peter

    1991-01-01

    This grant supported study of cyclotron scattering lines in the spectra of gamma-ray bursts through analysis of Ginga and HEAO-1 archival data, and modeling of the results in terms of radiation transfer calculations of cyclotron scattering in a strong magnetic field. A Monte Carlo radiation transfer code with which we are able to calculate the expected properties of cyclotron scattering lines in the spectra of gamma-ray bursts was developed. The extensive software necessary in order to carry out fits of these model spectra to gamma-ray burst spectral data, including folding of the model spectra through the detector response functions was also developed. Fits to Ginga satellite data on burst GB880205 were completed and fits to Ginga satellite data on burst GB870303 are being carried out. These fits have allowed us to test our software, as well as to garner new scientific results. This work has demonstrated that cyclotron resonant scattering successfully accounts for the locations, strengths, and widths of the observed line features in GB870303 and GB880205. The success of the model provides compelling evidence that these gamma-ray bursts come from strongly magnetic neutron stars and are galactic in origin, resolving longstanding controversies about the nature and distance of the burst sources. These results were reported in two papers which are in press in the proceedings of the Taos Workshop on Gamma-Ray Bursts, and in a paper submitted for publication.

  13. Compact FEL-driven inverse compton scattering gamma-ray source

    DOE PAGES

    Placidi, M.; Di Mitri, Simone; Pellegrini, C.; ...

    2017-02-28

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less

  14. Compact FEL-driven inverse compton scattering gamma-ray source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Placidi, M.; Di Mitri, Simone; Pellegrini, C.

    Many research and applications areas require photon sources capable of producing gamma-ray beams in the multi-MeV energy range with reasonably high fluxes and compact footprints. Besides industrial, nuclear physics and security applications, a considerable interest comes from the possibility to assess the state of conservation of cultural assets like statues, columns etc., via visualization and analysis techniques using high energy photon beams. Computed Tomography scans, widely adopted in medicine at lower photon energies, presently provide high quality three-dimensional imaging in industry and museums. We explore the feasibility of a compact source of quasi-monochromatic, multi-MeV gamma-rays based on Inverse Compton Scatteringmore » (ICS) from a high intensity ultra-violet (UV) beam generated in a free-electron laser by the electron beam itself. This scheme introduces a stronger relationship between the energy of the scattered photons and that of the electron beam, resulting in a device much more compact than a classic ICS for a given scattered energy. As a result, the same electron beam is used to produce gamma-rays in the 10–20 MeV range and UV radiation in the 10–15 eV range, in a ~4 × 22 m 2 footprint system.« less

  15. Soft gamma rays from black holes versus neutron stars

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1992-01-01

    The recent launches of GRANAT and GRO provide unprecedented opportunities to study compact collapsed objects from their hard x ray and gamma ray emissions. The spectral range above 100 keV can now be explored with much higher sensitivity and time resolution than before. The soft gamma ray spectral data is reviewed of black holes and neutron stars, radiation, and particle energization mechanisms and potentially distinguishing gamma ray signatures. These may include soft x ray excesses versus deficiencies, thermal versus nonthermal processes, transient gamma ray bumps versus power law tails, lines, and periodicities. Some of the highest priority future observations are outlines which will shed much light on such systems.

  16. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  17. Air shower detectors in gamma-ray astronomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinnis, Gus

    2008-01-01

    Extensive air shower (EAS) arrays directly detect the particles in an EAS that reach the observation altitude. This detection technique effectively makes air shower arrays synoptic telescopes -- they are capable of simultaneously and continuously viewing the entire overhead sky. Typical air shower detectors have an effective field-of-view of 2 sr and operate nearly 100% of the time. These two characteristics make them ideal instruments for studying the highest energy gamma rays, extended sources and transient phenomena. Until recently air shower arrays have had insufficient sensitivity to detect gamma-ray sources. Over the past decade, the situation has changed markedly. Milagro,more » in the US, and the Tibet AS{gamma} array in Tibet, have detected very-high-energy gamma-ray emission from the Crab Nebula and the active galaxy Markarian 421 (both previously known sources). Milagro has discovered TeV diffuse emission from the Milky Way, three unidentified sources of TeV gamma rays, and several candidate sources of TeV gamma rays. Given these successes and the suite of existing and planned instruments in the GeV and TeV regime (AGILE, GLAST, HESS, VERITAS, CTA, AGIS and IceCube) there are strong reasons for pursuing a next generation of EAS detectors. In conjunction with these other instruments the next generation of EAS instruments could answer long-standing problems in astrophysics.« less

  18. Modeling Photodisintegration-induced TeV Photon Emission from Low-luminosity Gamma-Ray Bursts

    NASA Astrophysics Data System (ADS)

    Liu, Xue-Wen; Wu, Xue-Feng; Lu, Tan

    2012-05-01

    Ultra-high-energy cosmic-ray heavy nuclei have recently been considered as originating from nearby low-luminosity gamma-ray bursts that are associated with Type Ibc supernovae. Unlike the power-law decay in long duration gamma-ray bursts, the light curve of these bursts exhibits complex UV/optical behavior: shock breakout dominated thermal radiation peaks at about 1 day, and, after that, nearly constant emission sustained by radioactive materials for tens of days. We show that the highly boosted heavy nuclei at PeV energy interacting with the UV/optical photon field will produce considerable TeV photons via the photodisintegration/photo-de-excitation process. It was later predicted that a thermal-like γ-ray spectrum peaks at about a few TeV, which may serve as evidence of nucleus acceleration. The future observations by the space telescope Fermi and by the ground atmospheric Cherenkov telescopes such as H.E.S.S., VERITAS, and MAGIC will shed light on this prediction.

  19. OV-104's RMS releases Gamma Ray Observatory (GRO) during STS-37 deployment

    NASA Image and Video Library

    1991-04-07

    Atlantis', Orbiter Vehicle (OV) 104's, remote manipulator system (RMS) releases Gamma Ray Observatory (GRO) during STS-37 deployment. Visible on the GRO as it drifts away from the RMS end effector are the four complement instruments: the Energetic Gamma Ray Experiment (bottom); Imaging Compton Telescope (COMPTEL) (center); Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (at four corners). GRO's solar array (SA) panels are extended and are in orbit configuration. View was taken through aft flight deck window which reflects some of the crew compartment interior.

  20. A Novel Study Connecting Ultra-High Energy Cosmic Rays, Neutrinos, and Gamma-Rays

    NASA Astrophysics Data System (ADS)

    Coenders, Stefan; Resconi, Elisa; Padovani, Paolo; Giommi, Paolo; Caccianiga, Lorenzo

    We present a novel study connecting ultra-high energy cosmic rays, neutrinos, and gamma-rays with the objective to identify common counterparts of the three astrophysical messengers. In the test presented here, we first identify potential hadronic sources by filtering gamma-ray emitters that are in spatial coincidence with IceCube neutrinos. Subsequently, these objects are correlated against ultra-high energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array, scanning in gamma-ray flux and angular separation between sources and cosmic rays. A maximal excess of 80 cosmic rays (41.9 expected) is observed for the second catalog of hard Fermi-LAT objects of blazars of the high synchrotron peak type. This corresponds to a deviation from the null-hypothesis of 2.94σ . No excess is observed for objects not in spatial connection with neutrinos. The gamma-ray sources that make up the excess are blazars of the high synchrotron peak type.

  1. BOREAS HYD-6 Aircraft Gamma Ray Soil Moisture Data

    NASA Technical Reports Server (NTRS)

    Peck, Eugene L.; Hall, Forrest G. (Editor); Knapp, David E. (Editor); Carroll, Thomas; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Hydrology (HYD)-6 team collected several data sets related to the moisture content of soil and overlying humus layers. This data set contains percent soil moisture (by weight) (and/or water content if there is a moss/humus layer) measured from aircraft using a terrestrial gamma ray instrument. There are also data that indicate the location of the aircraft at the time it collected the terrestrial gamma ray data for the various flight lines and bins. The location information contains a list of coordinates that indicate the path of the aircraft for each bin. The data were collected during four time periods from September 1993 to September 1994 over the southern study area (SSA) and two time periods from February to August 1994 over the northern study area (NSA). The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884) or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  2. The gamma-ray light curves of SN 1987A

    NASA Technical Reports Server (NTRS)

    Leising, Mark D.; Share, Gerald H.

    1990-01-01

    Observations of the SN 1987A ejecta in four Co-56-decay gamma-ray lines, obtained using the SMM gamma-ray spectrometer between February 1987 and May 1989, are reported and analyzed. The instrument characteristics and data-reduction procedures are described, and the results are presented in extensive tables and graphs and discussed with reference to theoretical models. Gamma-ray fluxes significantly above possible instrumental levels (as determined from analysis of pre-1987 data) were detected in the second half of 1987 and the first half of 1988. The data are found to favor a model with some Co-56 in regions of low gamma-ray optical depth by 200 d after the SN outburst over models with all Co-56 at one depth within a uniform expanding envelope. Also investigated are the gamma-ray contribution to the total bolometric luminosity and the escape (and potential observability) of Co-57 gamma rays.

  3. Gamma-ray pulsars: Emission zones and viewing geometries

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Yadigaroglu, I.-A.

    1995-01-01

    There are now a half-dozen young pulsars detected in high-energy photons by the Compton Gamma-Ray Observatory (CGRO), showing a variety of emission efficiencies and pulse profiles. We present here a calculation of the pattern of high-energy emission on the sky in a model which posits gamma-ray production by charge-depleted gaps in the outer magnetosphere. This model accounts for the radio to gamma-ray pulse offsets of the known pulsars, as well as the shape of the high-energy pulse profiles. We also show that about one-third of emitting young radio pulsars will not be detected due to beaming effects, while approximately 2.5 times the number of radio-selected gamma-ray pulsars will be viewed only high energies. Finally we compute the polarization angle variation and find that the previously misunderstood optical polarization sweep of the Crab pulsar arises naturally in this picture. These results strongly support an outer magnetosphere location for the gamma-ray emission.

  4. Gamma rays from hidden millisecond pulsars

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    The properties were studied of a new class of gamma ray sources consisting of millisecond pulsars totally or partially surrounded by evaporating material from irradiated companion stars. Hidden millisecond pulsars offer a unique possibility to study gamma ray, optical and radio emission from vaporizing binaries. The relevance of this class of binaries for GRO observations and interpretation of COS-B data is emphasized.

  5. Population Studies of Radio and Gamma-Ray Pulsars

    NASA Technical Reports Server (NTRS)

    Harding, Alice K; Gonthier, Peter; Coltisor, Stefan

    2004-01-01

    Rotation-powered pulsars are one of the most promising candidates for at least some of the 40-50 EGRET unidentified gamma-ray sources that lie near the Galactic plane. Since the end of the EGRO mission, the more sensitive Parkes Multibeam radio survey has detected mere than two dozen new radio pulsars in or near unidentified EGRET sources, many of which are young and energetic. These results raise an important question about the nature of radio quiescence in gamma-ray pulsars: is the non-detection of radio emission a matter of beaming or of sensitivity? The answer is very dependent on the geometry of the radio and gamma-ray beams. We present results of a population synthesis of pulsars in the Galaxy, including for the first time the full geometry of the radio and gamma-ray beams. We use a recent empirically derived model of the radio emission and luminosity, and a gamma-ray emission geometry and luminosity derived theoretically from pair cascades in the polar slot gap. The simulation includes characteristics of eight radio surveys of the Princeton catalog plus the Parkes MB survey. Our results indicate that EGRET was capable of detecting several dozen pulsars as point sources, with the ratio of radio-loud to radio-quiet gamma-ray pulsars increasing significantly to about ten to one when the Parkes Survey is included. Polar cap models thus predict that many of the unidentified EGRET sources could be radio-loud gamma- ray pulsars, previously undetected as radio pulsars due to distance, large dispersion and lack of sensitivity. If true, this would make gamma-ray telescopes a potentially more sensitive tool for detecting distant young neutron stars in the Galactic plane.

  6. "Short, Hard Gamma-Ray Bursts - Mystery Solved?????"

    NASA Technical Reports Server (NTRS)

    Parsons, A.

    2006-01-01

    After over a decade of speculation about the nature of short-duration hard-spectrum gamma-ray bursts (GRBs), the recent detection of afterglow emission from a small number of short bursts has provided the first physical constraints on possible progenitor models. While the discovery of afterglow emission from long GRBs was a real breakthrough linking their origin to star forming galaxies, and hence the death of massive stars, the progenitors, energetics, and environments for short gamma-ray burst events remain elusive despite a few recent localizations. Thus far, the nature of the host galaxies measured indicates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors. On the other hand, some of the short burst afterglow observations cannot be easily explained in the coalescence scenario. These observations raise the possibility that short GRBs may have different or multiple progenitors systems. The study of the short-hard GRB afterglows has been made possible by the Swift Gamma-ray Burst Explorer, launched in November of 2004. Swift is equipped with a coded aperture gamma-ray telescope that can observe up to 2 steradians of the sky and can compute the position of a gamma-ray burst to within 2-3 arcmin in less than 10 seconds. The Swift spacecraft can slew on to this burst position without human intervention, allowing its on-board x ray and optical telescopes to study the afterglow within 2 minutes of the original GRB trigger. More Swift short burst detections and afterglow measurements are needed before we can declare that the mystery of short gamma-ray burst is solved.

  7. Gamma ray pulsars. [electron-photon cascades

    NASA Technical Reports Server (NTRS)

    Oegelman, H.; Ayasli, S.; Hacinliyan, A.

    1977-01-01

    Data from the SAS-2 high-energy gamma-ray experiment reveal the existence of four pulsars emitting photons above 35 MeV. An attempt is made to explain the gamma-ray emission from these pulsars in terms of an electron-photon cascade that develops in the magnetosphere of the pulsar. Although there is very little material above the surface of the pulsar, the very intense magnetic fields (10 to the 12th power gauss) correspond to many radiation lengths which cause electrons to emit photons by magnetic bremsstrahlung and which cause these photons to pair-produce. The cascade develops until the mean photon energy drops below the pair-production threshold which is in the gamma-ray range; at this stage, the photons break out from the source.

  8. Fermi: The Gamma-Ray Large Area Telescope Mission Status

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  9. Swift Gamma-Ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2004-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UV, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  10. Swift Gamma-ray Burst Explorer: Mission Design for Rapid, Accurate Location of Gamma-ray Bursts

    NASA Technical Reports Server (NTRS)

    Bundas, David J.

    2005-01-01

    The Swift Gamma-ray Burst Explorer is a NASA Mid-sized Explorer (MIDEX) with the primary mission of determining the origins of Gamma-Ray Bursts (GRBs). It will be the first mission to autonomously respond to newly-discovered GRBs and provide immediate follow-up with narrow field instruments capable of multi-wavelength (UT, Optical, X-ray) observations. The characteristics of GRBs that are the key mission design drivers, are their non-repeating and brief duration bursts of multi-wavelength photons. In addition, rapid notification of the location and characteristics of the GRBs to ground-and-space-based observatories drive the end-to-end data analysis and distribution requirements.

  11. Development of a Telescope for Medium-Energy Gamma-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2010-01-01

    Since the launch of AGILE and FERMI, the scientific progress in high-energy (E(sub gamma) greater than approximately 200 MeV) gamma-ray science has been, and will continue to be dramatic. Both of these telescopes cover a broad energy range from approximately 20 MeV to greater than 10 GeV. However, neither instrument is optimized for observations below approximately 200 MeV where many astrophysical objects exhibit unique, transitory behavior, such as spectral breaks, bursts, and flares. Hence, while significant progress from current observations is expected, there will nonetheless remain a significant sensitivity gap in the medium-energy (approximately 0.1-200 MeV) regime; the lower end of this range remains largely unexplored whereas the upper end will allow comparison with FERMI data. Tapping into this unexplored regime requires significant improvements in sensitivity. A major emphasis of modern detector development, with the goal of providing significant improvements in sensitivity in the medium-energy regime, focuses on high-resolution electron tracking. The Three-Dimensional Track Imager (3-DTI) technology being developed at GSFC provides high resolution tracking of the electron-positron pair from gamma-ray interactions from 5 to 200 MeV. The 3-DTI consists of a time projection chamber (TPC) and 2-D cross-strip microwell detector (MWD). The low-density and homogeneous design of the 3-DTI, offers unprecedented sensitivity by providing angular resolution near the kinematic limit. Electron tracking also enables measurement of gamma-ray polarization, a new tool to study astrophysical phenomenon. We describe the design, fabrication, and performance of a 30x30x30 cubic centimeters 3-DTI detector prototype of a medium-energy gamma-ray telescope.

  12. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    Important Observations with La Silla Telescopes Several articles appear today in the scientific journal Nature about the strange supernova SN 1998bw that exploded earlier this year in the spiral galaxy ESO184-G82 . These studies indicate that this event was linked to a Gamma-Ray Burst and may thus provide new insights into this elusive phenomenon. Important observations of SN 1998bw have been made with several astronomical telescopes at the ESO La Silla Observatory by some of the co-authors of the Nature articles [1]. The measurements at ESO will continue during the next years. The early observations On April 25, the BeppoSAX satellite detected a Gamma-Ray Burst from the direction of the constellation Telescopium, deep in the southern sky. Although there is now general consensus that they originate in very distant galaxies, the underlying physical causes of these events that release great amounts of energy within seconds are still puzzling astronomers. Immediately after reports about the April 25 Burst had been received, astronomers at La Silla took some images of the sky region where the gamma-rays were observed as a "Target of Opportunity" (ToO) programme. The aim was to check if the visual light of one of the objects in the field had perhaps brightened when compared to exposures made earlier. This would then provide a strong indication of the location of the Gamma-Ray Burst. The digital exposures were transferred to the Italian/Dutch group around BeppoSax that had requested these ToO observations. Astronomers of this group quickly noticed a new, comparatively bright star, right on the arm of a small spiral galaxy. This galaxy was first catalogued in the 1970's during the ESO/Uppsala Survey of the Southern Sky and received the designation ESO184-G82 . It is located at a distance of about 140 million light-years. SN 1998bw ESO PR Photo 39a/98 ESO PR Photo 39a/98 [Preview - JPEG: 800 x 963 pix - 592k] [High-Res - JPEG: 3000 x 3612 pix - 4.1Mb] ESO PR Photo 39b/98

  13. Gamma-ray flares from the Crab Nebula.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  14. Gamma-Ray Flares from the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Costamante, L.; Cutini, S.; D'Ammando, F.; Dermer, C. D.; de Angelis, A.; de Luca, A.; de Palma, F.; Digel, S. W.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hayashida, M.; Hays, E.; Horan, D.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Khangulyan, D.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marelli, M.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Ray, P. S.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Romani, R. W.; Sadrozinski, H. F.-W.; Sanchez, D.; Parkinson, P. M. Saz; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Wang, P.; Wood, K. S.; Yang, Z.; Ziegler, M.

    2011-02-01

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (1015 electron volts) electrons in a region smaller than 1.4 × 10-2 parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  15. Primary gamma rays. [resulting from cosmic ray interaction with interstellar matter

    NASA Technical Reports Server (NTRS)

    Fichtel, C. E.

    1974-01-01

    Within this galaxy, cosmic rays reveal their presence in interstellar space and probably in source regions by their interactions with interstellar matter which lead to gamma rays with a very characteristic energy spectrum. From the study of the intensity of the high energy gamma radiation as a function of galactic longitude, it is already clear that cosmic rays are almost certainly not uniformly distributed in the galaxy and are not concentrated in the center of the galaxy. The galactic cosmic rays appear to be tied to galactic structural features, presumably by the galactic magnetic fields which are in turn held by the matter in the arm segments and the clouds. On the extragalactic scale, it is now possible to say that cosmic rays are not universal at the density seen near the earth. The diffuse celestial gamma ray spectrum that is observed presents the interesting possibility of cosmological studies and possible evidence for a residual universal cosmic ray density, which is much lower than the present galactic cosmic ray density.

  16. A data acquisition and control system for high-speed gamma-ray tomography

    NASA Astrophysics Data System (ADS)

    Hjertaker, B. T.; Maad, R.; Schuster, E.; Almås, O. A.; Johansen, G. A.

    2008-09-01

    A data acquisition and control system (DACS) for high-speed gamma-ray tomography based on the USB (Universal Serial Bus) and Ethernet communication protocols has been designed and implemented. The high-speed gamma-ray tomograph comprises five 500 mCi 241Am gamma-ray sources, each at a principal energy of 59.5 keV, which corresponds to five detector modules, each consisting of 17 CdZnTe detectors. The DACS design is based on Microchip's PIC18F4550 and PIC18F4620 microcontrollers, which facilitates an USB 2.0 interface protocol and an Ethernet (IEEE 802.3) interface protocol, respectively. By implementing the USB- and Ethernet-based DACS, a sufficiently high data acquisition rate is obtained and no dedicated hardware installation is required for the data acquisition computer, assuming that it is already equipped with a standard USB and/or Ethernet port. The API (Application Programming Interface) for the DACS is founded on the National Instrument's LabVIEW® graphical development tool, which provides a simple and robust foundation for further application software developments for the tomograph. The data acquisition interval, i.e. the integration time, of the high-speed gamma-ray tomograph is user selectable and is a function of the statistical measurement accuracy required for the specific application. The bandwidth of the DACS is 85 kBytes s-1 for the USB communication protocol and 28 kBytes s-1 for the Ethernet protocol. When using the iterative least square technique reconstruction algorithm with a 1 ms integration time, the USB-based DACS provides an online image update rate of 38 Hz, i.e. 38 frames per second, whereas 31 Hz for the Ethernet-based DACS. The off-line image update rate (storage to disk) for the USB-based DACS is 278 Hz using a 1 ms integration time. Initial characterization of the high-speed gamma-ray tomograph using the DACS on polypropylene phantoms is presented in the paper.

  17. A small field of view camera for hybrid gamma and optical imaging

    NASA Astrophysics Data System (ADS)

    Lees, J. E.; Bugby, S. L.; Bhatia, B. S.; Jambi, L. K.; Alqahtani, M. S.; McKnight, W. R.; Ng, A. H.; Perkins, A. C.

    2014-12-01

    The development of compact low profile gamma-ray detectors has allowed the production of small field of view, hand held imaging devices for use at the patient bedside and in operating theatres. The combination of an optical and a gamma camera, in a co-aligned configuration, offers high spatial resolution multi-modal imaging giving a superimposed scintigraphic and optical image. This innovative introduction of hybrid imaging offers new possibilities for assisting surgeons in localising the site of uptake in procedures such as sentinel node detection. Recent improvements to the camera system along with results of phantom and clinical imaging are reported.

  18. SAS-2 gamma-ray observations of PSR 1747-46. [radio pulsar

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Fichtel, C. E.; Kniffen, D. A.; Ogelman, H. B.; Lamb, R. C.

    1976-01-01

    Evidence is reported for the observation of gamma-ray emission from the radio pulsar PSR 1747-46 by the gamma-ray telescope aboard SAS 2. The evidence is based on the presence of both an approximately 3-sigma enhancement of gamma rays at the pulsar's location and an approximately 4-sigma peak in the phase plot of 79 gamma-ray events whose phase was calculated from the pulsar's known period. The gamma-ray pulsation is found to appear at a phase lag of about 0.16 from that predicted by the radio observations. The pulsed gamma-ray fluxes above 35 MeV and 100 MeV are estimated, and it is shown that the gamma-ray pulse width is similar to the radio pulse width. It is concluded that PSR 1747-46 is a most likely candidate for pulsed gamma-ray emission.

  19. Application of CdZnTe Gamma-Ray Detector for Imaging Corrosion under Insulation

    NASA Astrophysics Data System (ADS)

    Abdullah, J.; Yahya, R.

    2007-05-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. This type of corrosion can cause failures in areas that are not normally of a primary concern to an inspection program. The failures are often the result of localised corrosion and not general wasting over a large area. These failures can tee catastrophic in nature or at least have an adverse economic effect in terms of downtime and repairs. There are a number of techniques used today for CUI investigations. The main ones are profile radiography, pulse eddy current, ultrasonic spot readings and insulation removal. A new system now available is portable Pipe-CUI-Profiler. The nucleonic system is based on dual-beam gamma-ray absorption technique using Cadmium Zinc Telluride (CdZnTe) semiconductor detectors. The Pipe-CUI-Profiler is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100, 125 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibreglass or calcium silicate insulation to thickness of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting pipe in industrial plant operations. This paper describes the application of gamma-ray techniques and CdZnTe semiconductor detectors in the development of Pipe-CUI-Profiler for non-destructive imaging of corrosion under insulation of steel pipes. Some results of actual pipe testing in large-scale industrial plant will be presented.

  20. Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Taewoong; Lee, Hyounggun; Lee, Wonho

    2015-10-01

    This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.

  1. ASTRONOMY: Neighborhood Gamma Ray Burst Boosts Theory.

    PubMed

    Schilling, G

    2000-07-07

    Titanic explosions that emit powerful flashes of energetic gamma rays are one of astronomy's hottest mysteries. Now an analysis of the nearest gamma ray burst yet detected has added weight to the popular theory that they are expelled during the death throes of supermassive stars.

  2. High energy gamma-ray observations of SN 1987A

    NASA Technical Reports Server (NTRS)

    Sood, R. K.; Thomas, J. A.; Waldron, L.; Manchanda, R. K.; Rochester, G. K.

    1988-01-01

    Results are presented from observations of SN 1987A made with a combined high energy gamma ray and hard X-ray payload carried on a balloon flight over Alice Springs, Australia on April 5, 1988. The payload instrumentation is described, emphasizing the characteristics of the gamma-ray detector. The gamma-ray emission profile is illustrated and the preliminary results of the observations are summarized.

  3. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift

  4. Detecting Axionlike Particles with Gamma Ray Telescopes

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Serpico, Pasquale D.

    2007-12-01

    We propose that axionlike particles (ALPs) with a two-photon vertex, consistent with all astrophysical and laboratory bounds, may lead to a detectable signature in the spectra of high-energy gamma-ray sources. This occurs as a result of gamma rays being converted into ALPs in the magnetic fields of efficient astrophysical accelerators according to the “Hillas criterion”, such as jets of active galactic nuclei or hot spots of radio galaxies. The discovery of such an effect is possible by GLAST in the 1 100 GeV range and by ground-based gamma-ray telescopes in the TeV range.

  5. Hard gamma-ray background from the coding collimator of a gamma-ray telescope during in conditions of a space experiment

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. P.; Berezovoj, A. N.; Gal'Per, A. M.; Grachev, V. M.; Dmitrenko, V. V.; Kirillov-Ugryumov, V. G.; Lebedev, V. V.; Lyakhov, V. A.; Moiseev, A. A.; Ulin, S. E.; Shchvets, N. I.

    1984-11-01

    Coding collimators are used to improve the angular resolution of gamma-ray telescopes at energies above 50 MeV. However, the interaction of cosmic rays with the collimator material can lead to the appearance of a gramma-ray background flux which can have a deleterious effect on measurement efficiency. An experiment was performed on the Salyut-6-Soyuz spacecraft system with the Elena-F small-scale gamma-ray telescope in order to measure the magnitude of this background. It is shown that, even at a zenith angle of approximately zero degrees (the angle at which the gamma-ray observations are made), the coding collimator has only an insignificant effect on the background conditions.

  6. An Ordinary Gamma-Ray Burst with Extraordinary Consequences

    NASA Image and Video Library

    2017-10-18

    On Aug. 17, the Gamma-ray Burst Monitor on NASA's Fermi Gamma-ray Space Telescope caught a short burst of gamma rays from the spectacular smashup of two neutron stars, setting off a chain of events that marks the first-ever detection of a cosmic event in gravitational waves and different kinds of light. NASA scientists Colleen Wilson-Hodge and Tyson Littenberg explain what happened and what it means for science and discovery.

  7. The Advanced Gamma-ray Imaging System (AGIS): Next-generation Cherenkov telescopes array.

    NASA Astrophysics Data System (ADS)

    Vassiliev, Vladimir; AGIS Collaboration

    2010-03-01

    AGIS is a concept for a next-generation ground-based gamma-ray observatory in the energy range from 50 GeV to 200 TeV. AGIS is being designed to have significantly improved sensitivity, angular resolution, and reliability of operation relative to the present generation instruments such as VERITAS and H.E.S.S. The novel technologies of AGIS are expected to enable great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way (e.g. SNR, X-ray binaries, dense molecular clouds) and outside the Galaxy (e.g. AGN, GRBs, galaxy clusters, and star-forming galaxies). AGIS will complement and extend the results now being obtained in the GeV range with the Fermi mission providing wide energy coverage, superior angular resolution, and sensitivity to variability on short time scales. AGIS will be a key instrument for identifying and characterizing Fermi LAT sources. In this submission we outline the status of the development of AGIS project, design concept, and principal technologies. As illustrations of the scientific capabilities of AGIS, we review its potential to indirectly search for dark matter and measure cosmological magnetic fields.

  8. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  9. Detection of 6.13 MeV gamma-rays within and at the top of the atmosphere

    NASA Technical Reports Server (NTRS)

    Willett, J. B.; Ling, J. C.; Mahoney, W. A.; Jacobson, A. S.

    1979-01-01

    A measurement of the 6.13 MeV gamma-radiation from excited O-16 in the atmosphere has been made with a high-resolution Ge(Li) spectrometer flown from Palestine, Texas, 1974 June 10, on a high-altitude balloon. This measurement, made both within and near the top of the atmosphere, is found to have the same general profile as predicted by a semiempirical model, but gives a flux about a factor of 2 higher than predicted. Certain variations in the intensity at float altitude have led to the hypothesis of an extraterrestrial source of 6.13 MeV gamma-radiation from the galactic anticenter. The 3 sigma upper limits for a number of other astrophysically significant line fluxes are also given. The data presented here are consistent with either a source or a no-source hypothesis.

  10. Gamma-Ray Flares from the Crab Nebula

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-01-06

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega–electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta–electron-volt (10more » 15 electron volts) electrons in a region smaller than 1.4 × 10 -2 parsecs. In conclusion, these are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.« less

  11. POET: a SMEX mission for gamma ray burst polarimetry

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.; Baring, Matthew; Bloser, Peter; Dwyer, Joseph F.; Emslie, A. Gordon; Ertley, Camden D.; Greiner, Jochen; Harding, Alice K.; Hartmann, Dieter H.; Hill, Joanne E.; Kaaret, Philip; Kippen, R. M.; Mattingly, David; McBreen, Sheila; Pearce, Mark; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Toma, Kenji; Vestrand, W. Thomas; Zhang, Bing

    2014-07-01

    Polarimeters for Energetic Transients (POET) is a mission concept designed to t within the envelope of a NASA Small Explorer (SMEX) mission. POET will use X-ray and gamma-ray polarimetry to uncover the energy release mechanism associated with the formation of stellar-mass black holes and investigate the physics of extreme magnetic ields in the vicinity of compact objects. Two wide-FoV, non-imaging polarimeters will provide polarization measurements over the broad energy range from about 2 keV up to about 500 keV. A Compton scatter polarimeter, using an array of independent scintillation detector elements, will be used to collect data from 50 keV up to 500 keV. At low energies (2{15 keV), data will be provided by a photoelectric polarimeter based on the use of a Time Projection Chamber for photoelectron tracking. During a two-year baseline mission, POET will be able to collect data that will allow us to distinguish between three basic models for the inner jet of gamma-ray bursts.

  12. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    NASA Astrophysics Data System (ADS)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  13. CENTRAL ENGINE MEMORY OF GAMMA-RAY BURSTS AND SOFT GAMMA-RAY REPEATERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Castro-Tirado, Alberto J.; Zhang, Bing, E-mail: zhang.grb@gmail.com

    Gamma-ray bursts (GRBs) are bursts of γ-rays generated from relativistic jets launched from catastrophic events such as massive star core collapse or binary compact star coalescence. Previous studies suggested that GRB emission is erratic, with no noticeable memory in the central engine. Here we report a discovery that similar light curve patterns exist within individual bursts for at least some GRBs. Applying the Dynamic Time Warping method, we show that similarity of light curve patterns between pulses of a single burst or between the light curves of a GRB and its X-ray flare can be identified. This suggests that themore » central engine of at least some GRBs carries “memory” of its activities. We also show that the same technique can identify memory-like emission episodes in the flaring emission in soft gamma-ray repeaters (SGRs), which are believed to be Galactic, highly magnetized neutron stars named magnetars. Such a phenomenon challenges the standard black hole central engine models for GRBs, and suggest a common physical mechanism behind GRBs and SGRs, which points toward a magnetar central engine of GRBs.« less

  14. Imaging of gamma-Irradiated Regions of a Crystal

    NASA Technical Reports Server (NTRS)

    Dragoi, Danut; McClure, Steven; Johnston, Allan; Chao, Tien-Hsin

    2004-01-01

    A holographic technique has been devised for generating a visible display of the effect of exposure of a photorefractive crystal to gamma rays. The technique exploits the space charge that results from trapping of electrons in defects induced by gamma rays. The technique involves a three-stage process. In the first stage, one writes a holographic pattern in the crystal by use of the apparatus shown in Figure 1. A laser beam of 532-nm wavelength is collimated and split into signal and reference beams by use of a polarizing beam splitter. On its way to the crystal, the reference beam goes through a two-dimensional optical scanner that contains two pairs of lenses (L1y, L2y and L1x,L2x) and mirrors M1 and M2, which can be rotated by use of micrometer drives to make fine adjustments. The signal beam is sent through a spatial light modulator that imposes the holographic pattern, then through two imaging lenses L(sub img) on its way to the crystal. An aperture is placed at the common focus of lenses Limg to suppress high-order diffraction from the spatial light modulator. The hologram is formed by interference between the signal and reference beams. A camera lens focuses an image of the interior of the crystal onto a charge-coupled device (CCD). If the crystal is illuminated by only the reference beam once the hologram has been formed, then an image of the hologram is formed on the CCD: this phenomenon is exploited to make visible the pattern of gamma irradiation of the crystal, as described next. In the second stage of the process, the crystal is removed from the holographic apparatus and irradiated with rays at a dose of about 100 krad. In the third stage of the process, the crystal is remounted in the holographic apparatus in the same position as in the first stage and illuminated with only the reference beam to obtain the image of the hologram as modified by the effect of the rays. The orientations of M1 and M2 can be adjusted slightly, if necessary, to maximize the

  15. ESA's Integral detects closest cosmic gamma-ray burst

    NASA Astrophysics Data System (ADS)

    2004-08-01

    over 170 wafer-thin cylindrical mirrors spread over three telescopes. Its orbit takes it almost a third of the way to the Moon, so that astronomers can enjoy long, uninterrupted views of celestial objects. For more information about XMM-Newton please see: http://www.esa.int/esaSC/spk.html More about Chandra NASA's Marshall Space Flight Center, Huntsville, Alabama, manages the Chandra programme for the Office of Space Science, NASA Headquarters, Washington DC, USA. Northrop Grumman of Redondo Beach, California, formerly TRW Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Massachusetts. For more information about Chandra please see: http://chandra.harvard.edu/about More about the Very Large Array The Very Large Array (VLA) is a research facility of the United States National Science Foundation. With 27 dish antennas, each 25 metres in diameter, working together as a single imaging instrument, it is the most versatile and most widely used radio telescope in the world. Dedicated in 1980, the VLA has been used by thousands of scientists and has contributed valuable new information to nearly every specialty within astronomy. In 1997, the VLA made the first-ever detection of a gamma-ray burst afterglow at radio wavelengths, and has been at the forefront of gamma-ray burst afterglow research since.

  16. On the Sensitivity of the HAWC Observatory to Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Hays, E.; McEnery, Julie E.

    2011-01-01

    We present the sensitivity of HAWC to Gamma Ray Bursts (GRBs). HAWC is a very high-energy gamma-ray observatory currently under construction in Mexico at an altitude of 4100 m. It will observe atmospheric air showers via the water Cherenkov method. HAWC will consist of 300 large water tanks instrumented with 4 photomultipliers each. HAWC has two data acquisition (DAQ) systems. The main DAQ system reads out coincident signals in the tanks and reconstructs the direction and energy of individual atmospheric showers. The scaler DAQ counts the hits in each photomultiplier tube (PMT) in the detector and searches for a statistical excess over the noise of all PMTs. We show that HAWC has a realistic opportunity to observe the high-energy power law components of GRBs that extend at least up to 30 GeV, as it has been observed by Fermi LAT. The two DAQ systems have an energy threshold that is low enough to observe events similar to GRB 090510 and GRB 090902b with the characteristics observed by Fermi LAT. HAWC will provide information about the high-energy spectra of GRBs which in turn will lead to understanding about e-pair attenuation in GRB jets, extragalactic background light absorption, as well as establishing the highest energy to which GRBs accelerate particles.

  17. Method for efficient, narrow-bandwidth, laser compton x-ray and gamma-ray sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barty, Christopher P. J.

    A method of x-ray and gamma-ray generation via laser Compton scattering uses the interaction of a specially-formatted, highly modulated, long duration, laser pulse with a high-frequency train of high-brightness electron bunches to both create narrow bandwidth x-ray and gamma-ray sources and significantly increase the laser to Compton photon conversion efficiency.

  18. Disentangling Hadronic and Leptonic Cascade Scenarios from the Very-High-Energy Gamma-Ray Emission of Distant Hard-Spectrum Blazars

    DOE PAGES

    Takami, Hajime; Murase, Kohta; Dermer, Charles D.

    2013-06-26

    We show that recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; ≳ 100 eV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311–1938. We consider the prospects for detection of the VHE sources by the plannedmore » Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above ~500 GeV (depending on source redshift) for several luminous sources with z ≲ 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311–1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Lastly, accurate redshift measurements of hard-spectrum blazars are essential for this study.« less

  19. The Advanced Energetic Pair Telescope (AdEPT}: A Future Medium-Energy Gamma-Ray Balloon (and Explorer?) Mission

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2011-01-01

    Gamma-ray astrophysics probes the highest energy, exotic phenomena in astrophysics. In the medium-energy regime, 0.1-200 MeV, many astrophysical objects exhibit unique and transitory behavior such as the transition from electron dominated to hadron dominated processes, spectral breaks, bursts, and flares. Medium-energy gamma-ray imaging however, continues to be a major challenge particularly because of high background, low effective area, and low source intensities. The sensitivity and angular resolution required to address these challenges requires a leap in technology. The Advance Energetic Pair Telescope (AdEPT) being developed at GSFC is designed to image gamma rays above 5 MeV via pair production with angular resolution of 1-10 deg. In addition AdEPT will, for the first time, provide high polarization sensitivity in this energy range. This performance is achieved by reducing the effective area in favor of enhanced angular resolution through the use of a low-density gaseous conversion medium. AdEPT is based on the Three-Dimensional Track Imager (3-DTI) technology that combines a large volume Negative Ion Time Projection Chamber (NITPC) with 2-D Micro-Well Detector (MWD) readout. I will review the major science topics addressable with medium-energy gamma-rays and discuss the current status of the AdEPT technology, a proposed balloon instrument, and the design of a future satellite mission.

  20. Cross correlation analysis of medium energy gamma rays for the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Long, J.; Zanrosso, E.; Zych, A. D.; White, R. S.

    1982-01-01

    In the cross correlation method the observed gamma rays are compared with the expected telescope response for a discrete celestial source. The background consists of the atmospheric flux with its maximum near the horizon, the cosmic diffuse flux, and neutron induced gamma rays in the telescope. In sharp contrast to the background, a celestial source produces an asymmetric azimuthal response which varies predictably in time as the source moves through the telescope's aperture. This contrast serves as the basis of the cross correlation technique. Continuous data of 47.5 hr were obtained during a balloon flight from Palestine, TX from 0930 UT on September 30, 1978 to 2300 UT on October 1, 1978. The Crab Nebula-Anticenter region was observed on two consecutive days. A number of other medium energy source candidates also crossed the field-of-view. The obtained results are discussed.