Sample records for atmospheric mapping sensor

  1. The Maneuverable Atmospheric Probe (MAP), a Remotely Piloted Vehicle.

    DTIC Science & Technology

    1982-05-01

    9 lb. MAP vehicle and major- components .................................... 10 2. Endevco Pitot tube airspeed indicator mounted below front...28 8. Cascaded PIXE impactors, housing cylinder and wing pod front end cup with aerosol inlet plastic tubing ........................... 30 9...turbulence sensors, a Pitot tube , two air temperature sensors, and a yaw gust probe. Located at each wing tip are sensors that contain encapsulated

  2. Verification of small-scale water vapor features in VAS imagery using high resolution MAMS imagery. [VISSR Atmospheric Sounder - Multispectral Atmospheric Mapping Sensor

    NASA Technical Reports Server (NTRS)

    Menzel, Paul W.; Jedlovec, Gary; Wilson, Gregory

    1986-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS), a modification of NASA's Airborne Thematic Mapper, is described, and radiances from the MAMS and the VISSR Atmospheric Sounder (VAS) are compared which were collected simultaneously on May 18, 1985. Thermal emission from the earth atmosphere system in eight visible and three infrared spectral bands (12.3, 11.2 and 6.5 microns) are measured by the MAMS at up to 50 m horizontal resolution, and the infrared bands are similar to three of the VAS infrared bands. Similar radiometric performance was found for the two systems, though the MAMS showed somewhat less attenuation from water vapor than VAS because its spectral bands are shifted to shorter wavelengths away from the absorption band center.

  3. Plenoptic mapping for imaging and retrieval of the complex field amplitude of a laser beam.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2016-12-26

    The plenoptic sensor has been developed to sample complicated beam distortions produced by turbulence in the low atmosphere (deep turbulence or strong turbulence) with high density data samples. In contrast with the conventional Shack-Hartmann wavefront sensor, which utilizes all the pixels under each lenslet of a micro-lens array (MLA) to obtain one data sample indicating sub-aperture phase gradient and photon intensity, the plenoptic sensor uses each illuminated pixel (with significant pixel value) under each MLA lenslet as a data point for local phase gradient and intensity. To characterize the working principle of a plenoptic sensor, we propose the concept of plenoptic mapping and its inverse mapping to describe the imaging and reconstruction process respectively. As a result, we show that the plenoptic mapping is an efficient method to image and reconstruct the complex field amplitude of an incident beam with just one image. With a proof of concept experiment, we show that adaptive optics (AO) phase correction can be instantaneously achieved without going through a phase reconstruction process under the concept of plenoptic mapping. The plenoptic mapping technology has high potential for applications in imaging, free space optical (FSO) communication and directed energy (DE) where atmospheric turbulence distortion needs to be compensated.

  4. Multispectral atmospheric mapping sensor of mesoscale water vapor features

    NASA Technical Reports Server (NTRS)

    Menzel, P.; Jedlovec, G.; Wilson, G.; Atkinson, R.; Smith, W.

    1985-01-01

    The Multispectral atmospheric mapping sensor was checked out for specified spectral response and detector noise performance in the eight visible and three infrared (6.7, 11.2, 12.7 micron) spectral bands. A calibration algorithm was implemented for the infrared detectors. Engineering checkout flights on board the ER-2 produced imagery at 50 m resolution in which water vapor features in the 6.7 micron spectral band are most striking. These images were analyzed on the Man computer Interactive Data Access System (McIDAS). Ground truth and ancillary data was accessed to verify the calibration.

  5. Spectral Ratio Imaging with Hyperion Satellite Data for Geological Mapping

    NASA Technical Reports Server (NTRS)

    Vincent, Robert K.; Beck, Richard A.

    2005-01-01

    Since the advent of LANDSAT I in 1972, many different multispectral satellites have been orbited by the U.S. and other countries. These satellites have varied from 4 spectral bands in LANDSAT I to 14 spectral bands in the ASTER sensor aboard the TERRA space platform. Hyperion is a relatively new hyperspectral sensor with over 220 spectral bands. The huge increase in the number of spectral bands offers a substantial challenge to computers and analysts alike when it comes to the task of mapping features on the basis of chemical composition, especially if little or no ground truth is available beforehand from the area being mapped. One approach is the theoretical approach of the modeler, where all extraneous information (atmospheric attenuation, sensor electronic gain and offset, etc.) is subtracted off and divided out, and laboratory (or field) spectra of materials are used as training sets to map features in the scene of similar composition. This approach is very difficult to keep accurate because of variations in the atmosphere, solar illumination, and sensor electronic gain and offset that are not always perfectly recorded or accounted for. For instance, to apply laboratory or field spectra of materials as data sets from the theoretical approach, the header information of the files must reflect the correct, up-to-date sensor electronic gain and offset and the analyst must pick the exact atmospheric model that is appropriate for the day of data collection in order for classification procedures to accurately match pixels in the scene with the laboratory or field spectrum of a desired target on the basis of the hyperspectral data. The modeling process is so complex that it is difficult to tell when it is operating well or determine how to fix it when it is incorrect. Recently RSI has announced that the latest version of their ENVI software package is not performing atmospheric corrections correctly with the FLAASH atmospheric model. It took a long time to determine that it was wrong, and may take an equally long time (or longer) to fix.

  6. Development of a low cost unmanned aircraft system for atmospheric carbon dioxide leak detection

    NASA Astrophysics Data System (ADS)

    Mitchell, Taylor Austin

    Carbon sequestration, the storage of carbon dioxide gas underground, has the potential to reduce global warming by removing a greenhouse gas from the atmosphere. These storage sites, however, must first be monitored to detect if carbon dioxide is leaking back out to the atmosphere. As an alternative to traditional large ground-based sensor networks to monitor CO2 levels for leaks, unmanned aircraft offer the potential to perform in-situ atmospheric leak detection over large areas for a fraction of the cost. This project developed a proof-of-concept sensor system to map relative carbon dioxide levels to detect potential leaks. The sensor system included a Sensair K-30 FR CO2 sensor, GPS, and altimeter connected an Arduino microcontroller which logged data to an onboard SD card. Ground tests were performed to verify and calibrate the system including wind tunnel tests to determine the optimal configuration of the system for the quickest response time (4-8 seconds based upon flowrate). Tests were then conducted over a controlled release of CO 2 in addition to over controlled rangeland fires which released carbon dioxide over a large area as would be expected from a carbon sequestration source. 3D maps of carbon dioxide were developed from the system telemetry that clearly illustrated increased CO2 levels from the fires. These tests demonstrated the system's ability to detect increased carbon dioxide concentrations in the atmosphere.

  7. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronald; Russell, Jeffrey A.; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the basis for many inter-sensor interoperability or change detection techniques. Satellite inter-comparisons and accurate vegetation indices such as the Normalized Difference Vegetation Index, which is used to describe or to imply a wide variety of biophysical parameters and is defined in terms of near-infrared and redband reflectance, require the generation of accurate reflectance maps. This generation relies upon the removal of solar illumination, satellite geometry, and atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance, however, has been widely applied to only a few systems. In this study, we atmospherically corrected commercially available, high spatial resolution IKONOS and QuickBird imagery using several methods to determine the accuracy of the resulting reflectance maps. We used extensive ground measurement datasets for nine IKONOS and QuickBird scenes acquired over a two-year period to establish reflectance map accuracies. A correction approach using atmospheric products derived from Moderate Resolution Imaging Spectrometer data created excellent reflectance maps and demonstrated a reliable, effective method for reflectance map generation.

  8. Nondestructive and continuous monitoring of oxygen levels in modified atmosphere packaged ready-to-eat mixed salad products using optical oxygen sensors, and its effects on sensory and microbiological counts during storage.

    PubMed

    Hempel, A; O'Sullivan, M G; Papkovsky, D B; Kerry, J P

    2013-07-01

    The objective of this study was to determine the percentage oxygen consumption of fresh, respiring ready-to-eat (RTE) mixed leaf salad products (Iceberg salad leaf, Caesar salad leaf, and Italian salad leaf). These were held under different modified atmosphere packaging (MAP) conditions (5% O2 , 5% CO2 , 90% N2 (MAPC-commercial control), 21% O2 , 5% CO2 , 74% N2 (MAP 1), 45% O2 , 5% CO2 , 50% N2 (MAP 2), and 60% O2 , 5% CO2 , 35% N2 (MAP 3)) and 4 °C for up to 10 d. The quality and shelf-life stability of all packaged salad products were evaluated using sensory, physiochemical, and microbial assessment. Oxygen levels in all MAP packs were measured on each day of analysis using optical oxygen sensors allowing for nondestructive assessment of packs. Analysis showed that with the exception of control packs, oxygen levels for all MAP treatments decreased by approximately 10% after 7 d of storage. Oxygen levels in control packs were depleted after 7 d of storage. This appears to have had no detrimental effect on either the sensory quality or shelf-life stability of any of the salad products investigated. Additionally, the presence of higher levels of oxygen in modified atmosphere packs did not significantly improve product quality or shelf-life stability; however, these additional levels of oxygen were freely available to fresh respiring produce if required. This study shows that the application of optical sensors in MAP packs was successful in nondestructively monitoring oxygen level, or changes in oxygen level, during refrigerated storage of RTE salad products. © 2013 Institute of Food Technologists®

  9. Multi-Sensor Characterization of the Boreal Forest: Initial Findings

    NASA Technical Reports Server (NTRS)

    Reith, Ernest; Roberts, Dar A.; Prentiss, Dylan

    2001-01-01

    Results are presented in an initial apriori knowledge approach toward using complementary multi-sensor multi-temporal imagery in characterizing vegetated landscapes over a site in the Boreal Ecosystem-Atmosphere Study (BOREAS). Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Airborne Synthetic Aperture Radar (AIRSAR) data were segmented using multiple endmember spectral mixture analysis and binary decision tree approaches. Individual date/sensor land cover maps had overall accuracies between 55.0% - 69.8%. The best eight land cover layers from all dates and sensors correctly characterized 79.3% of the cover types. An overlay approach was used to create a final land cover map. An overall accuracy of 71.3% was achieved in this multi-sensor approach, a 1.5% improvement over our most accurate single scene technique, but 8% less than the original input. Black spruce was evaluated to be particularly undermapped in the final map possibly because it was also contained within jack pine and muskeg land coverages.

  10. Lead Detection and Mapping with Reference to Relationships Between Scale, Sensor Characteristics, Surface Conditions and Atmospheric Properties

    DTIC Science & Technology

    1993-10-01

    satellite-derived products and to understand in a more quantitative manner the benefits of different sensor systems . While there have been studies of...radiation balance of the surface/atmosphere system in the Arctic (Curry et al., 1990; Curry et al., 1989a; Curry et al., 1989b) and 4) high level cirrus...characteristics of the target or imaging system . In such a context it assumes that a given lead pixel is completely within the FOV of the satellite

  11. Atmospheric Modeling And Sensor Simulation (AMASS) study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1984-01-01

    The capabilities of the atmospheric modeling and sensor simulation (AMASS) system were studied in order to enhance them. This system is used in processing atmospheric measurements which are utilized in the evaluation of sensor performance, conducting design-concept simulation studies, and also in the modeling of the physical and dynamical nature of atmospheric processes. The study tasks proposed in order to both enhance the AMASS system utilization and to integrate the AMASS system with other existing equipment to facilitate the analysis of data for modeling and image processing are enumerated. The following array processors were evaluated for anticipated effectiveness and/or improvements in throughput by attachment of the device to the P-e: (1) Floating Point Systems AP-120B; (2) Floating Point Systems 5000; (3) CSP, Inc. MAP-400; (4) Analogic AP500; (5) Numerix MARS-432; and (6) Star Technologies, Inc. ST-100.

  12. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE PAGES

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  13. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  14. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  15. Mapping Atmospheric Ammonia Emissions Using a Mobile Quantum Cascade Laser-based Open-path Sensor

    NASA Astrophysics Data System (ADS)

    Sun, K.; Tao, L.; Miller, D. J.; Khan, M. A.; Zondlo, M. A.

    2012-12-01

    Ammonia (NH3) is a key precursor to atmospheric fine particulate matter, with strong implications for regional air quality and global climate change. Despite the importance of atmospheric ammonia, its spatial/temporal variation is poorly characterized, and the knowledge of its sources, sinks, and transport is severely limited. Existing measurements suggest that traffic exhaust may provide significant amounts of ammonia in urban areas, which cause greater impacts on particulate matter formation and urban air quality. To capture the spatial and temporal variation of ammonia emissions, a portable, low power sensor with high time resolution is necessary. We have developed a portable open-path ammonia sensor with a detection limit of 0.5 ppbv ammonia for 1 s measurements. The sensor has a power consumption of about 60 W and is capable of running on a car battery continuously for 24 hours. An additional laser has been coupled to the sensor to yield concurrent N2O and CO measurements as tracers for determining various sources. The overall sensor prototype fits on a 60 cm × 20 cm aluminum breadboard. Roadside measurements indicated NH3/CO emission ratios of 4.1±5.4 ppbv/ppmv from a fleet of 320 vehicles, which agree with existing on-ramp measurements. Urban measurements in the Baltimore and Washington, DC metropolitan areas have shown significant ammonia mixing ratios concurrent with carbon monoxide levels from the morning and evening rush hours. On-road measurements of our open-path sensor have also been performed continuously from the Midwest to Princeton, NJ including urban areas such as Pittsburgh, tunnels, and relatively clean conditions. The emission ratios of ammonia against CO and/or CO2 help identify the sources and amounts of both urban and agricultural ammonia emissions. Preliminary data from both spatial mapping, monitoring, and vehicle exhaust measurements suggest that urban ammonia emissions from fossil fuel combustion are significant and may provide an unrecognized source in the atmospheric ammonia budget. Ongoing efforts include spatial mapping of ammonia and other tracers in the New York City and Philadelphia metropolitan areas. Further comparison with TES satellite ammonia retrieval will help to put the measurements into a larger geographical and temporal context.

  16. Current and emerging laser sensors for greenhouse gas sensing and leak detection

    NASA Astrophysics Data System (ADS)

    Frish, Michael B.

    2014-05-01

    To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.

  17. Tier-scalable reconnaissance: the challenge of sensor optimization, sensor deployment, sensor fusion, and sensor interoperability

    NASA Astrophysics Data System (ADS)

    Fink, Wolfgang; George, Thomas; Tarbell, Mark A.

    2007-04-01

    Robotic reconnaissance operations are called for in extreme environments, not only those such as space, including planetary atmospheres, surfaces, and subsurfaces, but also in potentially hazardous or inaccessible operational areas on Earth, such as mine fields, battlefield environments, enemy occupied territories, terrorist infiltrated environments, or areas that have been exposed to biochemical agents or radiation. Real time reconnaissance enables the identification and characterization of transient events. A fundamentally new mission concept for tier-scalable reconnaissance of operational areas, originated by Fink et al., is aimed at replacing the engineering and safety constrained mission designs of the past. The tier-scalable paradigm integrates multi-tier (orbit atmosphere surface/subsurface) and multi-agent (satellite UAV/blimp surface/subsurface sensing platforms) hierarchical mission architectures, introducing not only mission redundancy and safety, but also enabling and optimizing intelligent, less constrained, and distributed reconnaissance in real time. Given the mass, size, and power constraints faced by such a multi-platform approach, this is an ideal application scenario for a diverse set of MEMS sensors. To support such mission architectures, a high degree of operational autonomy is required. Essential elements of such operational autonomy are: (1) automatic mapping of an operational area from different vantage points (including vehicle health monitoring); (2) automatic feature extraction and target/region-of-interest identification within the mapped operational area; and (3) automatic target prioritization for close-up examination. These requirements imply the optimal deployment of MEMS sensors and sensor platforms, sensor fusion, and sensor interoperability.

  18. Comparison of FLAASH and QUAC atmospheric correction methods for Resourcesat-2 LISS-IV data

    NASA Astrophysics Data System (ADS)

    Saini, V.; Tiwari, R. K.; Gupta, R. P.

    2016-05-01

    The LISS-IV sensor aboard Resourcesat-2 is a modern relatively high resolution multispectral sensor having immense potential for generation of good quality land use land cover maps. It generates data in high (10-bit) radiometric resolution and 5.8 m spatial resolution and has three bands in the visible-near infrared region. This is of particular importance to global community as the data are provided at highly competitive prices. However, no literature describing the atmospheric correction of Resourcesat-2-LISS-IV data could be found. Further, without atmospheric correction full radiometric potential of any remote sensing data remains underutilized. The FLAASH and QUAC module of ENVI software are highly used by researchers for atmospheric correction of popular remote sensing data such as Landsat, SPOT, IKONOS, LISS-I, III etc. This article outlines a methodology for atmospheric correction of Resourcesat-2-LISS-IV data. Also, a comparison of reflectance from different atmospheric correction modules (FLAASH and QUAC) with TOA and standard data has been made to determine the best suitable method for reflectance estimation for this sensor.

  19. Global radiation maps by satellite climatologies. Exploring their diversity, including impacts attributed to clouds and ancillary data.

    NASA Astrophysics Data System (ADS)

    Raschke, Ehrhard; Kinne, Stefan

    2010-05-01

    The monitoring of decadal change for solar and infrared broadband radiation maps at the top of the atmosphere (ToA) and at the Earth's surface is a desirable tool to assess the overall impact of atmospheric change on climate. Satellite data going back to 1984 have been combined and interpreted to provide such decadal maps as part of the ISCCP and SRB projects. In addition, for the last ten years also maps linked to broadband radiation measurements by the CERES sensor have become available. Samples of time series and seasonal and monthly data of multi-annual averages are compared among the three data-sets. While there is reasonable agreement at the top of the atmosphere, there is increased diversity at the surface, as it requires accurate knowledge about atmospheric and environmental properties. Differences are largely driven by the assumed cloud properties. For instance, CERES clouds seem to cool the atmosphere, while ISCCP and SRB tend to heat the atmosphere. However, not only assumed cloud-properties but also ancillary data (e.g. aerosol, surface properties) need to be revisited, especially in the context of the planned ISCCP reprocessing.

  20. Improved capabilities of the Multispectral Atmospheric Mapping Sensor (MAMS)

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Batson, K. Bryan; Atkinson, Robert J.; Moeller, Chris C.; Menzel, W. Paul; James, Mark W.

    1989-01-01

    The Multispectral Atmospheric Mapping Sensor (MAMS) is an airborne instrument being investigated as part of NASA's high altitude research program. Findings from work on this and other instruments have been important as the scientific justification of new instrumentation for the Earth Observing System (EOS). This report discusses changes to the instrument which have led to new capabilities, improved data quality, and more accurate calibration methods. In order to provide a summary of the data collected with MAMS, a complete list of flight dates and locations is provided. For many applications, registration of MAMS imagery with landmarks is required. The navigation of this data on the Man-computer Interactive Data Access System (McIDAS) is discussed. Finally, research applications of the data are discussed and specific examples are presented to show the applicability of these measurements to NASA's Earth System Science (ESS) objectives.

  1. MAMS: High resolution atmospheric moisture/surface properties

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Guillory, Anthony R.; Suggs, Ron; Atkinson, Robert J.; Carlson, Grant S.

    1991-01-01

    Multispectral Atmospheric Mapping Sensor (MAMS) data collected from a number of U2/ER2 aircraft flights were used to investigate atmospheric and surface (land) components of the hydrologic cycle. Algorithms were developed to retrieve surface and atmospheric geophysical parameters which describe the variability of atmospheric moisture, its role in cloud and storm development, and the influence of surface moisture and heat sources on convective activity. Techniques derived with MAMS data are being applied to existing satellite measurements to show their applicability to regional and large process studies and their impact on operational forecasting.

  2. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor.

    PubMed

    Kim, Heegwang; Park, Jinho; Park, Hasil; Paik, Joonki

    2017-12-09

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system.

  3. Iterative Refinement of Transmission Map for Stereo Image Defogging Using a Dual Camera Sensor

    PubMed Central

    Park, Jinho; Park, Hasil

    2017-01-01

    Recently, the stereo imaging-based image enhancement approach has attracted increasing attention in the field of video analysis. This paper presents a dual camera-based stereo image defogging algorithm. Optical flow is first estimated from the stereo foggy image pair, and the initial disparity map is generated from the estimated optical flow. Next, an initial transmission map is generated using the initial disparity map. Atmospheric light is then estimated using the color line theory. The defogged result is finally reconstructed using the estimated transmission map and atmospheric light. The proposed method can refine the transmission map iteratively. Experimental results show that the proposed method can successfully remove fog without color distortion. The proposed method can be used as a pre-processing step for an outdoor video analysis system and a high-end smartphone with a dual camera system. PMID:29232826

  4. Determination of technical readiness for an atmospheric carbon imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Mobilia, Joseph; Kumer, John B.; Palmer, Alice; Sawyer, Kevin; Mao, Yalan; Katz, Noah; Mix, Jack; Nast, Ted; Clark, Charles S.; Vanbezooijen, Roel; Magoncelli, Antonio; Baraze, Ronald A.; Chenette, David L.

    2013-09-01

    The geoCARB sensor uses a 4-channel push broom slit-scan infrared imaging grating spectrometer to measure the absorption spectra of sunlight reflected from the ground in narrow wavelength regions. The instrument is designed for flight at geostationary orbit to provide mapping of greenhouse gases over continental scales, several times per day, with a spatial resolution of a few kilometers. The sensor provides multiple daily maps of column-averaged mixing ratios of CO2, CH4, and CO over the regions of interest, which enables flux determination at unprecedented time, space, and accuracy scales. The geoCARB sensor development is based on our experience in successful implementation of advanced space deployed optical instruments for remote sensing. A few recent examples include the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) on the geostationary Solar Dynamics Observatory (SDO), the Space Based Infrared System (SBIRS GEO-1) and the Interface Region Imaging Spectrograph (IRIS), along with sensors under development, the Near Infared camera (NIRCam) for James Webb (JWST), and the Global Lightning Mapper (GLM) and Solar UltraViolet Imager (SUVI) for the GOES-R series. The Tropospheric Infrared Mapping Spectrometer (TIMS), developed in part through the NASA Instrument Incubator Program (IIP), provides an important part of the strong technological foundation for geoCARB. The paper discusses subsystem heritage and technology readiness levels for these subsystems. The system level flight technology readiness and methods used to determine this level are presented along with plans to enhance the level.

  5. Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea.

    PubMed

    Neukermans, Griet; Ruddick, Kevin; Bernard, Emilien; Ramon, Didier; Nechad, Bouchra; Deschamps, Pierre-Yves

    2009-08-03

    Geostationary ocean colour sensors have not yet been launched into space, but are under consideration by a number of space agencies. This study provides a proof of concept for mapping of Total Suspended Matter (TSM) in turbid coastal waters from geostationary platforms with the existing SEVIRI (Spinning Enhanced Visible and InfraRed Imager) meteorological sensor on the METEOSAT Second Generation platform. Data are available in near real time every 15 minutes. SEVIRI lacks sufficient bands for chlorophyll remote sensing but its spectral resolution is sufficient for quantification of Total Suspended Matter (TSM) in turbid waters, using a single broad red band, combined with a suitable near infrared band. A test data set for mapping of TSM in the Southern North Sea was obtained covering 35 consecutive days from June 28 until July 31 2006. Atmospheric correction of SEVIRI images includes corrections for Rayleigh and aerosol scattering, absorption by atmospheric gases and atmospheric transmittances. The aerosol correction uses assumptions on the ratio of marine reflectances and aerosol reflectances in the red and near-infrared bands. A single band TSM retrieval algorithm, calibrated by non-linear regression of seaborne measurements of TSM and marine reflectance was applied. The effect of the above assumptions on the uncertainty of the marine reflectance and TSM products was analysed. Results show that (1) mapping of TSM in the Southern North Sea is feasible with SEVIRI for turbid waters, though with considerable uncertainties in clearer waters, (2) TSM maps are well correlated with TSM maps obtained from MODIS AQUA and (3) during cloud-free days, high frequency dynamics of TSM are detected.

  6. Respirable particulate monitoring with remote sensors. (Public health ecology: Air pollution)

    NASA Technical Reports Server (NTRS)

    Severs, R. K.

    1974-01-01

    The feasibility of monitoring atmospheric aerosols in the respirable range from air or space platforms was studied. Secondary reflectance targets were located in the industrial area and near Galveston Bay. Multichannel remote sensor data were utilized to calculate the aerosol extinction coefficient and thus determine the aerosol size distribution. Houston Texas air sampling network high volume data were utilized to generate computer isopleth maps of suspended particulates and to establish the mass loading of the atmosphere. In addition, a five channel nephelometer and a multistage particulate air sampler were used to collect data. The extinction coefficient determined from remote sensor data proved more representative of wide areal phenomena than that calculated from on site measurements. It was also demonstrated that a significant reduction in the standard deviation of the extinction coefficient could be achieved by reducing the bandwidths used in remote sensor.

  7. Investigation of the infrasound produced by geophysical events such as volcanoes, thunder, and avalanches: the case for local infrasound monitoring (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, J. B.; Marcillo, O. E.; Arechiga, R. O.; Johnson, R.; Edens, H. E.; Marshall, H.; Havens, S.; Waite, G. P.

    2010-12-01

    Volcanoes, lightning, and mass wasting events generate substantial infrasonic energy that propagates for long distances through the atmosphere with generally low intrinsic attenuation. Although such sources are often studied with regional infrasound arrays that provide important records of their occurrence, position, and relative magnitudes these signals recorded at tens to hundreds of kilometers are often significantly affected by propagation effects. Complex atmospheric structure, due to heterogeneous winds and temperatures, and intervening topography can be responsible for multi-pathing, signal attenuation, and focusing or, alternatively, information loss (i.e., a shadow zone). At far offsets, geometric spreading diminishes signal amplitude requiring low noise recording sites and high fidelity microphones. In contrast recorded excess pressures at local distances are much higher in amplitude and waveforms are more representative of source phenomena. We report on recent studies of volcanoes, thunder, and avalanches made with networks and arrays of infrasound sensors deployed local (within a few km) to the source. At Kilauea Volcano (Hawaii) we deployed a network of ~50 infrasound sensitive sensors (flat from 50 s to 50 Hz) to track the coherence of persistent infrasonic tremor signals in the near-field (out to a few tens of kilometers). During periods of high winds (> 5-10 m/s) we found significant atmospheric influence for signals recorded at stations only a few kilometers from the source. Such observations have encouraged us to conduct a range of volcano, thunder, and snow avalanche studies with networks of small infrasound arrays (~30 m aperture) deployed close to the source region. We present results from local microphone deployments (12 sensors) at Santiaguito Volcano (Guatemala) where we are able to precisely (~10 m resolution) locate acoustic sources from explosions and rock falls. We also present results from our thunder mapping acoustic arrays (15 sensors) in the Magdalena Mountains of New Mexico capable of mapping lightning channels more than 10 km in extent whose positions are corroborated by the radio wave detecting lightning mapping array. We also discuss the recent implementation of a network of snow avalanche detection arrays (12 sensors) in Idaho that are used to monitor and track and map infrasound produced by moving sources. We contend that local infrasound deployment is analogous to local seismic monitoring in that it enables precision localization and interpretation of source phenomena.

  8. Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index

    PubMed Central

    Pu, Ruiliang; Gong, Peng; Yu, Qian

    2008-01-01

    In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) extracting spectral vegetation indices (VIs), spectral texture information and maximum noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI results with field validated photo-interpreted CC and LAI values. The experimental results indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 63.4%). This analysis demonstrates that the Hyperion sensor outperforms the other two sensors: ALI and ETM+. This is because of its high spectral resolution with rich subtle spectral information, of its short-wave infrared data for constructing optimal VIs that are slightly affected by the atmosphere, and of its more available MNFs than the other two sensors to be selected for establishing prediction models. Compared to ETM+ data, ALI data are better for mapping forest CC and LAI due to ALI data with more bands and higher signal-to-noise ratios than those of ETM+ data. PMID:27879906

  9. Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index.

    PubMed

    Pu, Ruiliang; Gong, Peng; Yu, Qian

    2008-06-06

    In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) extracting spectral vegetation indices (VIs), spectral texture information and maximum noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI results with field validated photo-interpreted CC and LAI values. The experimental results indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 63.4%). This analysis demonstrates that the Hyperion sensor outperforms the other two sensors: ALI and ETM+. This is because of its high spectral resolution with rich subtle spectral information, of its short-wave infrared data for constructing optimal VIs that are slightly affected by the atmosphere, and of its more available MNFs than the other two sensors to be selected for establishing prediction models. Compared to ETM+ data, ALI data are better for mapping forest CC and LAI due to ALI data with more bands and higher signal-to-noise ratios than those of ETM+ data.

  10. Building a time series of water vapour maps: A first step towards assimilation of Interferometric SAR data in forecasting models

    NASA Astrophysics Data System (ADS)

    Nico, Giovanni; Mateus, Pedro; Catalão, João.

    2010-05-01

    The knowledge of water vapor spatial distribution in the Earth's atmosphere at a given time is an important information for numerical forecasting. In fact this is the most varying atmospheric constituent both in space and in time. The water vapor is basically concentrated in the troposphere, the atmosphere layer where the most important phenomena related to weather occur. This layer is destabilized by radiative heating and vertical wind shear near the surfce. The accuracy of quantitative precipitation forecasting over a given region strongly depends on the knowledge of the temporal and spatial variations in the water vapor spatial distribution. Currently, measurements based on ground-based and upper-air sounding networks furnish water vapor distribution only at a coarse scales. This could not be enough to capture variations of the local concentrations of water vapor. Spaceborne radiometer observations can observe atmospheric layers above 3 km due to absorption by water vapor and in any case maps of vater vapour density are too coarse. Availability of GPS measurements of on a routine basis is improving numerical forecasting. However, the density of meuserements which can be obtained by a GPS network is too low to capture spatial variations of local concentrations of water vapor. Synthetic Aperture Radar (SAR) interferometry provides maps of temporal variations of the vertically integrated water vapor density with a horizontal resolution as fine as 10-20 m depending on the radar wavelength and over a swath typically 100 km wide. In the past, the availability of the tandem ERS-1/2 interferometric SAR data allowed to get maps of the vertically-integrated with a temporal baseline of 1 day. In those maps it was possible to recognize signature of a precipitating cumulonimbus cloud, the effects of a cold front and the phenomenon of horizontal convective rolls. Current interferometric spaceborne missions use SAR sensors working at different frequency bands: L (ALOS-PALSAR), C (ENVISAT-ASAR, RADARSAT) and X (TerraSAR, Cosmo-Sky-Med) and with a repetition cycle ranging from 11 (TerraSAR-X) to 35 days (ENVISAT-ASAR). From each SAR sensor, it can be obtained a map of the temporal changes of the IPW occurred between the two subsequent acquisitions by interferometrically processing the SAR data. The accuracy of these maps depends on the radar wavelength and on spatial filtering. A procedure to properly merge all these maps could give information about the temporal evolution of the IPW spatial distribution with a sampling period shorter than the revisiting times of each of the SAR sensors. The main difficulty of this operation is related to the fact that the integration of temporal changes of IPW is not direct when maps are obtained by different SAR sensors. The aim of this work is to describe a methodologiy to merge IPW maps obtained by the different SAR sensor based on the availbality of GPS time series measuring the IPW over the same area. The Lisbon region, Portugal, was chosen as a study area. This region is monitored by a network of 12 GPS permanent stations covering an area of about squared kilometers. A set of SAR interferograms were processed using data acquired by ENVISAT-ASAR and TerraSAR-X mission over the Lisbon region during the period from 2009 to 2010. A time series with GPS measurement of IPW was processed to cover the time interval between the first and last SAR acquisition. This time series is then used to integrate all maps of temporal changes of IPW obtained by the different interferometric SAR couples. This results in a time series giving with the information about the spatial distribution of the IPW.

  11. RadMAP: The Radiological Multi-sensor Analysis Platform

    NASA Astrophysics Data System (ADS)

    Bandstra, Mark S.; Aucott, Timothy J.; Brubaker, Erik; Chivers, Daniel H.; Cooper, Reynold J.; Curtis, Joseph C.; Davis, John R.; Joshi, Tenzing H.; Kua, John; Meyer, Ross; Negut, Victor; Quinlan, Michael; Quiter, Brian J.; Srinivasan, Shreyas; Zakhor, Avideh; Zhang, Richard; Vetter, Kai

    2016-12-01

    The variability of gamma-ray and neutron background during the operation of a mobile detector system greatly limits the ability of the system to detect weak radiological and nuclear threats. The natural radiation background measured by a mobile detector system is the result of many factors, including the radioactivity of nearby materials, the geometric configuration of those materials and the system, the presence of absorbing materials, and atmospheric conditions. Background variations tend to be highly non-Poissonian, making it difficult to set robust detection thresholds using knowledge of the mean background rate alone. The Radiological Multi-sensor Analysis Platform (RadMAP) system is designed to allow the systematic study of natural radiological background variations and to serve as a development platform for emerging concepts in mobile radiation detection and imaging. To do this, RadMAP has been used to acquire extensive, systematic background measurements and correlated contextual data that can be used to test algorithms and detector modalities at low false alarm rates. By combining gamma-ray and neutron detector systems with data from contextual sensors, the system enables the fusion of data from multiple sensors into novel data products. The data are curated in a common format that allows for rapid querying across all sensors, creating detailed multi-sensor datasets that are used to study correlations between radiological and contextual data, and develop and test novel techniques in mobile detection and imaging. In this paper we will describe the instruments that comprise the RadMAP system, the effort to curate and provide access to multi-sensor data, and some initial results on the fusion of contextual and radiological data.

  12. Comparison of in situ stratospheric ozone measurements obtained during the MAP/GLOBUS 1983 campaign

    NASA Technical Reports Server (NTRS)

    Aimedieu, P.; Matthews, W. A.; Attmannspacher, W.; Hartmannsgruber, R.; Cisneros, J.; Komhyr, W.; Robbins, D. E.

    1987-01-01

    Data from five types of in situ ozone sensors flown aboard ballons during the MAP/GLOBUS 1983 campaign were found to agree to within 5 percent uncertainty throughout the middle atmosphere. A description of the individual techniques and the error budget is given in addition to explanations for the discrepancies found at higher and lower altitudes. In comparison to UV photometry values, results from two electrochemical techniques were found to be greater in the lower atmosphere and to be lower in the upper atmosphere. In general, olefin chemiluminescence results were within 8 percent of the UV photometry results. Ozone column contents measured by the indigo colorization technique for two altitude regions of about 6 km height were greater than measurements from other techniques by 52 and 17 percent, respectively.

  13. Comparison of in situ stratospheric ozone measurements obtained during the MAP/GLOBUS 1983 campaign

    NASA Astrophysics Data System (ADS)

    Aimedieu, P.; Matthews, W. A.; Attmannspacher, W.; Hartmannsgruber, R.; Cisneros, J.; Komhyr, W.; Robbins, D. E.

    1987-05-01

    Data from five types of in situ ozone sensors flown aboard ballons during the MAP/GLOBUS 1983 campaign were found to agree to within 5 percent uncertainty throughout the middle atmosphere. A description of the individual techniques and the error budget is given in addition to explanations for the discrepancies found at higher and lower altitudes. In comparison to UV photometry values, results from two electrochemical techniques were found to be greater in the lower atmosphere and to be lower in the upper atmosphere. In general, olefin chemiluminescence results were within 8 percent of the UV photometry results. Ozone column contents measured by the indigo colorization technique for two altitude regions of about 6 km height were greater than measurements from other techniques by 52 and 17 percent, respectively.

  14. Characterization of Atmospheric Infrasound for Improved Weather Monitoring

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2016-11-01

    Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP) is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. A primary objective for this project is to create and demonstrate UAS capabilities needed to support UAS operating in extreme conditions, such as a tornado producing storm system. These storm systems emit infrasound (acoustic signals below human hearing, <20 Hz) up to 2 hours before tornadogenesis. Due to an acoustic ceiling and weak atmospheric absorption, infrasound can be detected from distances in excess of 300 miles. Thus infrasound could be used for long-range, passive monitoring and detection of tornadogenesis as well as directing UAS resources to high-decision-value-information. To achieve this the infrasonic signals with and without severe storms must be understood. This presentation will report findings from the first CLOUD MAP field demonstration, which acquired infrasonic signals while simultaneously sampling the atmosphere with UAS. Infrasonic spectra will be shown from a typical calm day, a continuous source (pulsed gas-combustion torch), singular events, and UAS flights as well as localization results from a controlled source and multiple microphones. This work was supported by NSF Grant 1539070: CLOUD MAP - Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics.

  15. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO)

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R. T.; Darlington, E. H.; Des Marais, D.; Espiritu, R.; Fort, D.; Green, R.; Guinness, E.; Hayes, J.; Hash, C.; Heffernan, K.; Hemmler, J.; Heyler, G.; Humm, D.; Hutcheson, J.; Izenberg, N.; Lee, R.; Lees, J.; Lohr, D.; Malaret, E.; Martin, T.; McGovern, J. A.; McGuire, P.; Morris, R.; Mustard, J.; Pelkey, S.; Rhodes, E.; Robinson, M.; Roush, T.; Schaefer, E.; Seagrave, G.; Seelos, F.; Silverglate, P.; Slavney, S.; Smith, M.; Shyong, W.-J.; Strohbehn, K.; Taylor, H.; Thompson, P.; Tossman, B.; Wirzburger, M.; Wolff, M.

    2007-05-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a hyperspectral imager on the Mars Reconnaissance Orbiter (MRO) spacecraft. CRISM consists of three subassemblies, a gimbaled Optical Sensor Unit (OSU), a Data Processing Unit (DPU), and the Gimbal Motor Electronics (GME). CRISM's objectives are (1) to map the entire surface using a subset of bands to characterize crustal mineralogy, (2) to map the mineralogy of key areas at high spectral and spatial resolution, and (3) to measure spatial and seasonal variations in the atmosphere. These objectives are addressed using three major types of observations. In multispectral mapping mode, with the OSU pointed at planet nadir, data are collected at a subset of 72 wavelengths covering key mineralogic absorptions and binned to pixel footprints of 100 or 200 m/pixel. Nearly the entire planet can be mapped in this fashion. In targeted mode the OSU is scanned to remove most along-track motion, and a region of interest is mapped at full spatial and spectral resolution (15-19 m/pixel, 362-3920 nm at 6.55 nm/channel). Ten additional abbreviated, spatially binned images are taken before and after the main image, providing an emission phase function (EPF) of the site for atmospheric study and correction of surface spectra for atmospheric effects. In atmospheric mode, only the EPF is acquired. Global grids of the resulting lower data volume observations are taken repeatedly throughout the Martian year to measure seasonal variations in atmospheric properties. Raw, calibrated, and map-projected data are delivered to the community with a spectral library to aid in interpretation.

  16. Neural Networks as a Tool for Constructing Continuous NDVI Time Series from AVHRR and MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Lary, David J.; Vrieling, Anton; Stathakis, Demetris; Mussa, Hamse

    2008-01-01

    The long term Advanced Very High Resolution Radiometer-Normalized Difference Vegetation Index (AVHRR-NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non-stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensor-specific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at one degree is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.

  17. Evaluation of the Sensor Data Record from the Nadir Instruments of the Ozone Mapping Profiler Suite (OMPS)

    NASA Technical Reports Server (NTRS)

    Wu, Xiangqian; Liu, Quanhua; Zeng, Jian; Grotenhuis, Michael; Qian, Haifeng; Caponi, Maria; Flynn, Larry; Jaross, Glen; Sen, Bhaswar; Buss, Richard H., Jr.; hide

    2014-01-01

    This paper evaluates the first 15 months of the Ozone Mapping and Profiler Suite (OMPS) Sensor Data Record (SDR) acquired by the nadir sensors and processed by the National Oceanic and Atmospheric Administration Interface Data Processing Segment. The evaluation consists of an inter-comparison with a similar satellite instrument, an analysis using a radiative transfer model, and an assessment of product stability. This is in addition to the evaluation of sensor calibration and the Environment Data Record product that are also reported in this Special Issue. All these are parts of synergetic effort to provide comprehensive assessment at every level of the products to ensure its quality. It is found that the OMPS nadir SDR quality is satisfactory for the current Provisional maturity. Methods used in the evaluation are being further refined, developed, and expanded, in collaboration with international community through the Global Space-based Inter-Calibration System, to support the upcoming long-term monitoring.

  18. Lunar plasma measurement by MAP-PACE onboard KAGUYA (SELENE)

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi

    Low energy charged particles around the Moon were vigorously observed by Moon orbiting satellites and plasma instrumentation placed on the lunar surface in 1960s and 1970s. Though there were some satellites that explored the Moon afterwards, most of them were dedicated to the global mapping of the lunar surface. KAGUYA(SELENE) is a Japanese lunar orbiter that studies the origin and evolution of the Moon by means of global mapping of element abundances, mineralogical composition, and surface geographical mapping from 100km altitude. KAGUYA was successfully launched on 14 September 2007 by HIIA launch vehicle from Tanegashima Space Center in Japan. KAGUYA was inserted into a circular lunar polar orbit of 100km altitude and started continuous observation in mid-December 2007. One of the fourteen science instruments MAP-PACE (MAgnetic field and Plasma experiment - Plasma energy Angle and Composition Experiment) was developed for the comprehensive three-dimensional plasma measurement around the Moon. MAP-PACE consists of 4 sensors: ESA (Electron Spectrum Analyzer)-S1, ESA-S2, IMA (Ion Mass Analyzer), and IEA (Ion Energy Analyzer). ESA-S1 and S2 measure the distribution function of low energy electrons below 15keV. IMA and IEA measure the distribution function of low energy ions below 28keV/q. IMA has an ability to discriminate the ion mass with high mass resolution. PACE sensors have been measuring solar wind, plasmas in the wake region of the Moon and plasmas in the Earth's magnetosphere. ESA sensors have discovered electron heating over magnetic anomalies on the lunar surface. ESA sensors have also observed electrons accelerated from the lunar surface in the wake region. PACE ion sensors have discovered new features of low energy ions around the Moon. IMA has discovered the existence of alkali ions that are originated from the lunar surface or lunar atmosphere and are picked up by the solar wind. IEA and IMA sensors discovered solar wind reflection by the Moon. PACE ion sensors also discovered that ions are rarefied over the magnetic anomaly on the lunar surface while electrons are heated. MAP-PACE has been revealing unexpectedly active plasma environment around the Moon.

  19. Atmospheric electricity/meteorology analysis

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Blakeslee, Richard; Buechler, Dennis

    1993-01-01

    This activity focuses on Lightning Imaging Sensor (LIS)/Lightning Mapper Sensor (LMS) algorithm development and applied research. Specifically we are exploring the relationships between (1) global and regional lightning activity and rainfall, and (2) storm electrical development, physics, and the role of the environment. U.S. composite radar-rainfall maps and ground strike lightning maps are used to understand lightning-rainfall relationships at the regional scale. These observations are then compared to SSM/I brightness temperatures to simulate LIS/TRMM multi-sensor algorithm data sets. These data sets are supplied to the WETNET project archive. WSR88-D (NEXRAD) data are also used as it becomes available. The results of this study allow us to examine the information content from lightning imaging sensors in low-earth and geostationary orbits. Analysis of tropical and U.S. data sets continues. A neural network/sensor fusion algorithm is being refined for objectively associating lightning and rainfall with their parent storm systems. Total lightning data from interferometers are being used in conjunction with data from the national lightning network. A 6-year lightning/rainfall climatology has been assembled for LIS sampling studies.

  20. Combining observations in the reflective solar and thermal domains for improved mapping of carbon, water and energy fluxes

    USDA-ARS?s Scientific Manuscript database

    The REGularized canopy reFLECtance (REGFLEC) modeling tool integrates leaf optics, canopy reflectance, and atmospheric radiative transfer model components, facilitating accurate retrieval of leaf area index (LAI) and leaf chlorophyll content (Cab) directly from at-sensor radiances in green, red and ...

  1. The GEOS-5 Neural Network Retrieval for AOD

    NASA Astrophysics Data System (ADS)

    Castellanos, P.; da Silva, A. M., Jr.

    2017-12-01

    One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.

  2. The GEOS-5 Neural Network Retrieval (NNR) for AOD

    NASA Technical Reports Server (NTRS)

    Castellanos, Patricia; Da Silva, Arlindo

    2017-01-01

    One of the difficulties in data assimilation is the need for multi-sensor data merging that can account for temporal and spatial biases between satellite sensors. In the Goddard Earth Observing System Model Version 5 (GEOS-5) aerosol data assimilation system, a neural network retrieval (NNR) is used as a mapping between satellite observed top of the atmosphere (TOA) reflectance and AOD, which is the target variable that is assimilated in the model. By training observations of TOA reflectance from multiple sensors to map to a common AOD dataset (in this case AOD observed by the ground based Aerosol Robotic Network, AERONET), we are able to create a global, homogenous, satellite data record of AOD from MODIS observations on board the Terra and Aqua satellites. In this talk, I will present the implementation of and recent updates to the GEOS-5 NNR for MODIS collection 6 data.

  3. Remote sensing of water vapor features

    NASA Technical Reports Server (NTRS)

    Fuelberg, Henry E.

    1993-01-01

    Water vapor plays a critical role in the atmosphere. It is an important medium of energy exchange between air, land, and water; it is a major greenhouse gas, providing a crucial radiative role in the global climate system; and it is intimately involved in many regional scale atmospheric processes. Our research has been aimed at improving satellite remote sensing of water vapor and better understanding its role in meteorological processes. Our early studies evaluated the current GOES VAS system for measuring water vapor and have used VAS-derived water vapor data to examine pre-thunderstorm environments. Much of that research was described at the 1991 Research Review. A second research component has considered three proposed sensors--the High resolution Interferometer Sounder (HIS), the Multispectral Atmospheric Mapping Sensor (MAMS), and the Advanced Microwave Sounding Unit (AMSU). We have focused on MAMS and AMSU research during the past year and the accomplishments made in this effort are presented.

  4. Recognition of Daily Activity in Living Space based on Indoor Ambient Atmosphere and Acquiring Localized Information for Improvement of Recognition Accuracy

    NASA Astrophysics Data System (ADS)

    Hirasawa, Kazuki; Sawada, Shinya; Saitoh, Atsushi

    The system watching over elder's life is very important in a super-aged society Japan. In this paper, we describe a method to recognize resident's daily activities by means of using the information of indoor ambient atmosphere changes. The measuring targets of environmental changes are of gas and smell, temperature, humidity, and brightness. Those changes have much relation with resident's daily activities. The measurement system with 7 sensors (4 gas sensors, a thermistor, humidity sensor, and CdS light sensor) was developed for getting indoor ambient atmosphere changes. Some measurements were done in a one-room type residential space. 21 dimensional activity vectors were composed for each daily activity from acquired data. Those vectors were classified into 9 categories that were main activities by using Self-Organizing Map (SOM) method. From the result, it was found that the recognition of main daily activities based on information on indoor ambient atmosphere changes is possible. Moreover, we also describe the method for getting information of local gas and smell environmental changes. Gas and smell environmental changes are related with daily activities, especially very important action, eating and drinking. And, local information enables the relation of the place and the activity. For such a purpose, a gas sensing module with the operation function that synchronizes with human detection signal was developed and evaluated. From the result, the sensor module had the ability to acquire and to emphasize local gas environment changes caused by the person's activity.

  5. The MM5 Numerical Model to Correct PSInSAR Atmospheric Phase Screen

    NASA Astrophysics Data System (ADS)

    Perissin, D.; Pichelli, E.; Ferretti, R.; Rocca, F.; Pierdicca, N.

    2010-03-01

    In this work we make an experimental analysis to research the capability of Numerical Weather Prediction (NWP) models as MM5 to produce high resolution (1km-500m) maps of Integrated Water Vapour (IWV) in the atmosphere to mitigate the well-known disturbances that affect the radar signal while travelling from the sensor to the ground and back. Experiments have been conducted over the area surrounding Rome using ERS data acquired during the three days phase in '94 and using Envisat data acquired in recent years. By means of the PS technique SAR data have been processed and the Atmospheric Phase Screen (APS) of Slave images with respect to a reference Master have been extracted. MM5 IWV maps have a much lower resolution than PSInSAR APS's: the turbulent term of the atmospheric vapour field cannot be well resolved by MM5, at least with the low resolution ECMWF inputs. However, the vapour distribution term that depends on the local topography has been found quite in accordance.

  6. Fast neutron background characterization with the Radiological Multi-sensor Analysis Platform (RadMAP)

    DOE PAGES

    Davis, John R.; Brubaker, Erik; Vetter, Kai

    2017-03-29

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. Furthermore, the expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate.more » Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. In the three areas we analyzed, San Francisco, Downtown Oakland, and Berkeley, all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.« less

  7. Determination of atmospheric moisture structure and infrared cooling rates from high resolution MAMS radiance data

    NASA Technical Reports Server (NTRS)

    Menzel, W. Paul; Moeller, Christopher C.; Smith, William L.

    1991-01-01

    This program has applied Multispectral Atmospheric Mapping Sensor (MAMS) high resolution data to the problem of monitoring atmospheric quantities of moisture and radiative flux at small spatial scales. MAMS, with 100-m horizontal resolution in its four infrared channels, was developed to study small scale atmospheric moisture and surface thermal variability, especially as related to the development of clouds, precipitation, and severe storms. High-resolution Interferometer Sounder (HIS) data has been used to develop a high spectral resolution retrieval algorithm for producing vertical profiles of atmospheric temperature and moisture. The results of this program are summarized and a list of publications resulting from this contract is presented. Selected publications are attached as an appendix.

  8. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  9. Remote Sensing of Multi-Level Wind Fields with High-Energy Airborne Scanning Coherent Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Olivier, Lisa D.; Banta, Robert M.; Hardesty, R. Michael; Howell, James N.; Cutten, Dean R.; Johnson, Steven C.; Menzies, Robert T.; Tratt, David M.

    1997-01-01

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the troposphere and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  10. Remote sensing of multi-level wind fields with high-energy airborne scanning coherent Doppler lidar.

    PubMed

    Rothermel, J; Olivier, L; Banta, R; Hardesty, R M; Howell, J; Cutten, D; Johnson, S; Menzies, R; Tratt, D M

    1998-01-19

    The atmospheric lidar remote sensing groups of NOAA Environmental Technology Laboratory, NASA Marshall Space Flight Center, and Jet Propulsion Laboratory have developed and flown a scanning, 1 Joule per pulse, CO2 coherent Doppler lidar capable of mapping a three-dimensional volume of atmospheric winds and aerosol backscatter in the planetary boundary layer, free troposphere, and lower stratosphere. Applications include the study of severe and non-severe atmospheric flows, intercomparisons with other sensors, and the simulation of prospective satellite Doppler lidar wind profilers. Examples of wind measurements are given for the marine boundary layer and near the coastline of the western United States.

  11. Uncertainty in cloud optical depth estimates made from satellite radiance measurements

    NASA Technical Reports Server (NTRS)

    Pincus, Robert; Szczodrak, Malgorzata; Gu, Jiujing; Austin, Philip

    1995-01-01

    The uncertainty in optical depths retrieved from satellite measurements of visible wavelength radiance at the top of the atmosphere is quantified. Techniques are briefly reviewed for the estimation of optical depth from measurements of radiance, and it is noted that these estimates are always more uncertain at greater optical depths and larger solar zenith angles. The lack of radiometric calibration for visible wavelength imagers on operational satellites dominates the uncertainty retrievals of optical depth. This is true for both single-pixel retrievals and for statistics calculated from a population of individual retrievals. For individual estimates or small samples, sensor discretization can also be significant, but the sensitivity of the retrieval to the specification of the model atmosphere is less important. The relative uncertainty in calibration affects the accuracy with which optical depth distributions measured by different sensors may be quantitatively compared, while the absolute calibration uncertainty, acting through the nonlinear mapping of radiance to optical depth, limits the degree to which distributions measured by the same sensor may be distinguished.

  12. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been successfully applied to large sets of heterogeneous imagery, including the adjustment of original sensor images prior to quality control and further processing as well as radiometric adjustment for ortho-image mosaic generation.

  13. Development of Rotary-Wing UAS for Use in Atmospheric Sensing of Near-Storm Environments

    NASA Astrophysics Data System (ADS)

    Greene, B. R.; Chilson, P. B.; Salazar-Cerreno, J.; Duthoit, S.; Doyle, B.; Wolf, B.; Segales, A.; Fiebrich, C. A.; Waugh, S.; Fredrickson, S.; Oncley, S.; Tudor, L.; Semmer, S.

    2017-12-01

    The capabilities of small unmanned aircraft systems (sUAS) to make atmospheric observations is rapidly being realized as a means to collect previously unobtainable observations in the lowest part of Earth's atmosphere. However, in order for these systems to provide meaningful kinematic and thermodynamic data, it is imperative to establish an understanding of the strengths and limitations of the sensors and retrieval algorithms implemented in both controlled and realistic conditions. This initial objective is comprised of two experimental stages, the first of which is calibration of thermodynamic sensors against references from the Oklahoma Mesonet and the National Center for Atmospheric Research in order to understand their quasi-ideal response characteristics. Furthermore, efforts have been made to calculate horizontal wind fields using Euler angles derived from the sUAS's autopilot. The second stage is validation of these sensor performances once mounted onto a rotary-wing sUAS by comparing measurements with instrumented towers, radiosondes, and other sUAS. It appears that these measurements are robust provided that instrument packages are mounted such that they receive adequate air flow and proper solar shielding. Moreover, experiments to locate this optimal location have been performed, and involved systematically displacing the sensors and wind probe underneath the rotor wash in an isolated chamber using a linear actuator. Once a platform's atmospheric sensing capabilities are optimized, its utility has been proven in applications from turbulence to providing forecasters with quasi-real time profiles in convective environments deemed by the Storm Prediction Center to be of highest risk for severe thunderstorms. After addressing the development of platforms operated by the University of Oklahoma, results from recent field campaigns, Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD-MAP) and Environmental Profiling and Initiation of Convection (EPIC), will be discussed. These campaigns demonstrated the potential for sUAS to improve forecasting abilities and our understanding of the atmosphere, and provide a bright outlook on the future of sUAS applications.

  14. Electric Field Sensor for Lightning Early Warning System

    NASA Astrophysics Data System (ADS)

    Premlet, B.; Mohammed, R.; Sabu, S.; Joby, N. E.

    2017-12-01

    Electric field mills are used popularly for atmospheric electric field measurements. Atmospheric Electric Field variation is the primary signature for Lightning Early Warning systems. There is a characteristic change in the atmospheric electric field before lightning during a thundercloud formation.A voltage controlled variable capacitance is being proposed as a method for non-contacting measurement of electric fields. A varactor based mini electric field measurement system is developed, to detect any change in the atmospheric electric field and to issue lightning early warning system. Since this is a low-cost device, this can be used for developing countries which are facing adversities. A network of these devices can help in forming a spatial map of electric field variations over a region, and this can be used for more improved atmospheric electricity studies in developing countries.

  15. Optimum thermal infrared bands for mapping general rock type and temperature from space

    NASA Technical Reports Server (NTRS)

    Holmes, Q. A.; Nueesch, D. R.; Vincent, R. K.

    1980-01-01

    A study was carried out to determine quantitatively the number and location of spectral bands required to perform general rock type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well-characterized homogeneous samples, a radiative transfer model was used to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account, analysis of these data revealed that three 1 micron wide spectral bands would permit independent estimations of rock type and sample temperature from a satellite infrared multispectral scanner. This study, which ignores the mixing of terrain elements within the instantaneous field of view of a satellite scanner, indicates that the location of three spectral bands at 8.1-9.1, 9.5-10.5, and 11.0-12.0 microns, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock type and temperature for a variety of atmospheric states and temperatures.

  16. Optimum thermal infrared bands for mapping general rock type and temperature from space

    NASA Technical Reports Server (NTRS)

    Holmes, Q. A.; Nuesch, D. R.

    1978-01-01

    A study was carried out to determine quantitatively the number and locations of spectral bands required to perform general rock-type discrimination from spaceborne imaging sensors using only thermal infrared measurements. Beginning with laboratory spectra collected under idealized conditions from relatively well characterized, homogeneous samples, a radiative transfer model was employed to transform ground exitance values into the corresponding spectral radiance at the top of the atmosphere. Taking sensor noise into account analysis of these data revealed that three 1 micrometer wide spectral bands would permit independent estimators of rock-type and sample temperature from a satellite infrared multispectral scanner. This study, indicates that the location of three spectral bands at 8.1-9.1 micrometers, 9.5-10.5 micrometers and 11.0-12.0 micrometers, and the employment of appropriate preprocessing to minimize atmospheric effects makes it possible to predict general rock-type and temperature for a variety of atmospheric states and temperatures.

  17. A long-term Northern Hemisphere snow cover extent product (JASMES) deriving from satellite-borne optical sensors using consistent objective criteria

    NASA Astrophysics Data System (ADS)

    Hori, M.; Sugiura, K.; Kobayashi, K.; Aoki, T.; Tanikawa, T.; Niwano, M.; Enomoto, H.

    2017-12-01

    A long-term Northern Hemisphere (NH) snow cover extent (SCE) product (JASMES SCE) was developed from the application of a consistent objective snow cover mapping algorithm to satellite-borne optical sensors (NOAA/AVHRR and NASA's optical sensor MODIS) from 1982 to the present. We estimated NH SCE from weekly composited snow cover maps and evaluated the accuracies of snow cover detection using in-situ snow data. As benchmark SCE product, we also evaluated the accuracy of SCE maps from the National Oceanic and Atmospheric Administration Climate Data Record (NOAA-CDR) product. The evaluation showed that JASMES SCE has more temporally stable accuracies. Seasonally averaged SCE derived from JASMES exhibited negative slopes in all seasons which is opposite to those of NOAA-CDR SCE in the fall and winter seasons. The spatial pattern of annual snow cover duration (SCD) trends exhibited noticeable asymmetric pattern between continents with the largest negative trends seen over western Eurasia. The NH SCE product will be connected to the data of the Japanese Earth Observing satellite named "Global Change Observation Mission for Climate (GCOM-C)" to be launched in late 2017.

  18. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, FL

    USGS Publications Warehouse

    Hu, Chuanmin; Chen, Zhiqiang; Clayton, Tonya D.; ,; Brock, John C.; Muller-Karger, Frank E.

    2004-01-01

    Using Tampa Bay, FL as an example, we explored the potential for using MODIS medium-resolution bands (250- and 500-m data at 469-, 555-, and 645-nm) for estuarine monitoring. Field surveys during 21–22 October 2003 showed that Tampa Bay has Case-II waters, in that for the salinity range of 24–32 psu, (a) chlorophyll concentration (11 to 23 mg m−3), (b) colored dissolved organic matter (CDOM) absorption coefficient at 400 nm (0.9 to 2.5 m−1), and (c) total suspended sediment concentration (TSS: 2 to 11 mg L−1) often do not co-vary. CDOM is the only constituent that showed a linear, inverse relationship with surface salinity, although the slope of the relationship changed with location within the bay. The MODIS medium-resolution bands, although designed for land use, are 4–5 times more sensitive than Landsat-7/ETM+ data and are comparable to or higher than those of CZCS. Several approaches were used to derive synoptic maps of water constituents from concurrent MODIS medium-resolution data. We found that application of various atmospheric-correction algorithms yielded no significant differences, due primarily to uncertainties in the sensor radiometric calibration and other sensor artifacts. However, where each scene could be groundtruthed, simple regressions between in situ observations of constituents and at-sensor radiances provided reasonable synoptic maps. We address the need for improvements of sensor calibration/characterization, atmospheric correction, and bio-optical algorithms to make operational and quantitative use of these medium-resolution bands.

  19. Analysing Forst Fores in China

    NASA Astrophysics Data System (ADS)

    Casanova, Jose-Luis; Sanz, Julia; Garcia, Miguel; Salvador, Pablo; Quin, Xianlin; Li, Zengyuan; Yin, Lingyu; Sun, Guifen; Goldammer, Johann

    2016-08-01

    Forest fires are a major concern in China because of the economical and biodiversity looses and because the emission of trace gases into the atmosphere. During 12 years LATUV has been working in the development of forest fires products, especially in North China. A catalogue of products has been generated like: forest fire detection, burnt area mapping, gas emissions, severity and burnt biomass.Forest fires can be detected by different platforms and sensor but the rate of false alarms is high because of industrial activity. The gas emissions are important, because of the forest fires inside China and because the forest fires between China and Russia that have a considerable impact in the atmosphere composition in China.The availability of new sensors on board sentinel 2 and sentinel 3 platforms will increase the product catalogue with new products more accurate and increasing the periodicity information.

  20. The Cooperative VAS Program with the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Menzel, W. Paul

    1988-01-01

    Work was divided between the analysis/forecast model development and evaluation of the impact of satellite data in mesoscale numerical weather prediction (NWP), development of the Multispectral Atmospheric Mapping Sensor (MAMS), and other related research. The Cooperative Institute for Meteorological Satellite Studies (CIMSS) Synoptic Scale Model (SSM) has progressed from a relatively basic analysis/forecast system to a package which includes such features as nonlinear vertical mode initialization, comprehensive Planetary Boundary Layer (PBL) physics, and the core of a fully four-dimensional data assimilation package. The MAMS effort has produced a calibrated visible and infrared sensor that produces imager at high spatial resolution. The MAMS was developed in order to study small scale atmospheric moisture variability, to monitor and classify clouds, and to investigate the role of surface characteristics in the production of clouds, precipitation, and severe storms.

  1. Remote sensing and human health: new sensors and new opportunities.

    PubMed

    Beck, L R; Lobitz, B M; Wood, B L

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Système Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  2. Remote sensing and human health: new sensors and new opportunities

    NASA Technical Reports Server (NTRS)

    Beck, L. R.; Lobitz, B. M.; Wood, B. L.

    2000-01-01

    Since the launch of Landsat-1 28 years ago, remotely sensed data have been used to map features on the earth's surface. An increasing number of health studies have used remotely sensed data for monitoring, surveillance, or risk mapping, particularly of vector-borne diseases. Nearly all studies used data from Landsat, the French Systeme Pour l'Observation de la Terre, and the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer. New sensor systems are in orbit, or soon to be launched, whose data may prove useful for characterizing and monitoring the spatial and temporal patterns of infectious diseases. Increased computing power and spatial modeling capabilities of geographic information systems could extend the use of remote sensing beyond the research community into operational disease surveillance and control. This article illustrates how remotely sensed data have been used in health applications and assesses earth-observing satellites that could detect and map environmental variables related to the distribution of vector-borne and other diseases.

  3. Solfatara Crater Seen Through Hyperspectral Dais Sensor Data In The Tir Region: Temperature Map and Spectral Emissivity Image For Mineralogical Species Identification.

    NASA Astrophysics Data System (ADS)

    Merucci, L.; Buongiorno, M. F.; Teggi, S.; Bogliolo, M. P.

    Temperature map and spectral emissivity have been retrieved by means of the TIR re- gion data collected by the DAIS airborne hyperspectral sensor on the Solfatara, Campi Flegrei, Italy, during the July 27, 1997 flight. During the 7915 DAIS flight a contem- poraneous field campaign was carried out in order to measure the surface temperature in the Solfatara crater and a radiosonde has been launched to measure the local at- mospheric profile. A normalized vegetation index filter has been used to select in the Solfatara crater scene the areas not covered by vegetation upon which the temperature and emissivity retrieval algorithms have been applied. The atmospheric contribute has been estimated by means of the MODTRAN radiative transfer code. The temperature map has been finally validated with the field measurements and the spectral emissivity image has been compared with the spectra available for the mineralogical species that cover the Solfatara crater.

  4. Remote sensing program

    NASA Technical Reports Server (NTRS)

    Liang, T.

    1973-01-01

    Research projects concerning the development and application of remote sensors are discussed. Some of the research projects conducted are as follows: (1) aerial photographic inventory of natural resources, (2) detection of buried river channels, (3) delineation of interconnected waterways, (4) plant indicators of atmospheric pollution, and (5) techniques for data transfer from photographs to base maps. On-going projects involving earth resources analyses are described.

  5. A Wind Tunnel Study on the Mars Pathfinder (MPF) Lander Descent Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Soriano, J. Francisco; Coquilla, Rachael V.; Wilson, Gregory R.; Seiff, Alvin; Rivell, Tomas

    2001-01-01

    The primary focus of this study was to determine the accuracy of the Mars Pathfinder lander local pressure readings in accordance with the actual ambient atmospheric pressures of Mars during parachute descent. In order to obtain good measurements, the plane of the lander pressure sensor opening should ideally be situated so that it is parallel to the freestream. However, due to two unfavorable conditions, the sensor was positioned in locations where correction factors are required. One of these disadvantages is due to the fact that the parachute attachment point rotated the lander's center of gravity forcing the location of the pressure sensor opening to be off tangent to the freestream. The second and most troublesome factor was that the lander descends with slight oscillations that could vary the amplitude of the sensor readings. In order to accurately map the correction factors required at each sensor position, an experiment simulating the lander descent was conducted in the Martian Surface Wind Tunnel at NASA Ames Research Center. Using a 115 scale model at Earth ambient pressures, the test settings provided the necessary Reynolds number conditions in which the actual lander was possibly subjected to during the descent. In the analysis and results of this experiment, the readings from the lander sensor were converted to the form of pressure coefficients. With a contour map of pressure coefficients at each lander oscillatory position, this report will provide a guideline to determine the correction factors required for the Mars Pathfinder lander descent pressure sensor readings.

  6. OMPS Sensor Performance and Algorithm Description

    NASA Astrophysics Data System (ADS)

    Branham, M. S.; Farrow, S. V.; Novicki, M.; Bhaswar, S.; Baker, B.

    2009-12-01

    The Ozone Mapping and Profiler Suite (OMPS), built by Ball Aerospace, is the next-generation U.S. ozone monitoring sensor suite, designed and built for the National Polar-orbiting Operational Environmental Satellite System (NPOESS), under contract to the Integrated Program Office, administered by the Air Force, National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA) under contract to Northrop Grumman. The first flight of an OMPS is scheduled for early 2011 on the NPOESS Preparatory Project (NPP) satellite. The OMPS sensor data will be used to generate the ozone calibrated sensor data and environmental data record (EDR) products. The final OMPS sensor performance and algorithms for NPP will be presented, now that the FM1 flight sensor suite has completed sell off and is integrated on the NPP spacecraft. Challenges requiring future development, and during intensive calibration/validation on orbit will be described. Also, an overview of the sensor suite, the FM1 measurement performance, and details of the retrieval algorithms will be provided in this presentation.

  7. OAST Space Theme Workshop. Volume 3: Working group summary. 3: Sensors (E-3). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2). D. Additional assessment

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Developments required to support the space power, SETI, solar system exploration and global services programs are identified. Instrumentation and calibration sensors (rather than scientific) are needed for the space power system. Highly sophisticated receivers for narrowband detection of microwave sensors and sensors for automated stellar cataloging to provide a mapping data base for SETI are needed. Various phases of solar system exploration require large area solid state imaging arrays from UV to IR; a long focal plane telescope; high energy particle detectors; advanced spectrometers; a gravitometer; and atmospheric distanalyzer; sensors for penetrometers; in-situ sensors for surface chemical analysis, life detection, spectroscopic and microscopic analyses of surface soils, and for meteorological measurements. Active and passive multiapplication sensors, advanced multispectral scanners with improved resolution in the UV and IR ranges, and laser techniques for advanced probing and oceanographic characterization will enhance for global services.

  8. Atmospheric radiance interpolation for the modeling of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Fuehrer, Perry; Healey, Glenn; Rauch, Brian; Slater, David; Ratkowski, Anthony

    2008-04-01

    The calibration of data from hyperspectral sensors to spectral radiance enables the use of physical models to predict measured spectra. Since environmental conditions are often unknown, material detection algorithms have emerged that utilize predicted spectra over ranges of environmental conditions. The predicted spectra are typically generated by a radiative transfer (RT) code such as MODTRAN TM. Such techniques require the specification of a set of environmental conditions. This is particularly challenging in the LWIR for which temperature and atmospheric constituent profiles are required as inputs for the RT codes. We have developed an automated method for generating environmental conditions to obtain a desired sampling of spectra in the sensor radiance domain. Our method provides a way of eliminating the usual problems encountered, because sensor radiance spectra depend nonlinearly on the environmental parameters, when model conditions are specified by a uniform sampling of environmental parameters. It uses an initial set of radiance vectors concatenated over a set of conditions to define the mapping from environmental conditions to sensor spectral radiance. This approach enables a given number of model conditions to span the space of desired radiance spectra and improves both the accuracy and efficiency of detection algorithms that rely upon use of predicted spectra.

  9. Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors.

    PubMed

    Qu, Chen; Bi, Du-Yan; Sui, Ping; Chao, Ai-Nong; Wang, Yun-Fei

    2017-09-22

    The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

  10. A Mobile Sensor Network to Map CO2 in Urban Environments

    NASA Astrophysics Data System (ADS)

    Lee, J.; Christen, A.; Nesic, Z.; Ketler, R.

    2014-12-01

    Globally, an estimated 80% of all fuel-based CO2 emissions into the atmosphere are attributable to cities, but there is still a lack of tools to map, visualize and monitor emissions to the scales at which emissions reduction strategies can be implemented - the local and urban scale. Mobile CO2 sensors, such as those attached to taxis and other existing mobile platforms, may be a promising way to observe and map CO2 mixing ratios across heterogenous urban environments with a limited number of sensors. Emerging modular open source technologies, and inexpensive compact sensor components not only enable rapid prototyping and replication, but also are allowing for the miniaturization and mobilization of traditionally fixed sensor networks. We aim to optimize the methods and technologies for monitoring CO2 in cities using a network of CO2 sensors deployable on vehicles and bikes. Our sensor technology is contained in a compact weather-proof case (35.8cm x 27.8cm x 11.8cm), powered independently by battery or by car, and includes the Li-Cor Li-820 infrared gas analyzer (Licor Inc, lincoln, NB, USA), Arduino Mega microcontroller (Arduino CC, Italy) and Adafruit GPS (Adafruit Technologies, NY, USA), and digital air temperature thermometer which measure CO2 mixing ratios (ppm), geolocation and speed, pressure and temperature, respectively at 1-second intervals. With the deployment of our sensor technology, we will determine if such a semi-autonomous mobile approach to monitoring CO2 in cities can determine excess urban CO2 mixing ratios (i.e. the 'urban CO2 dome') when compared to values measured at a fixed, remote background site. We present results from a pilot study in Vancouver, BC, where the a network of our new sensors was deployed both in fixed network and in a mobile campaign and examine the spatial biases of the two methods.

  11. Sensors for Food Safety and Security

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.

    Active packaging of food products is aimed at extending shelf life, preserving and improving quality, taste characteristics and appearance of a product. Modified atmosphere packaging (MAP) have become widely used with oxygen sensitive foods, as it enables to inhibit or delay undesirable processes inside packs such as oxidation of lipids and hemecontaining pigments, enzymatic degradation, microbial spoilage, etc. In MAP process, the package container with food is flushed with a mixture of CO2, N2, and O2 gases to replace air, and then sealed. The function of CO2 is to decrease the growth rate of micro-organisms, N2 displaces O2 and also prevents the packaging from collapsing when some of the CO2 is absorbed by moisture in the product1. The majority of MAP foods are packed under the atmosphere with considerably reduced oxygen levels, while products such as raw meat, fruit and vegetables require high concentration of oxygen to keep their appearance and/or shelf life.

  12. Multi-sensor data processing method for improved satellite retrievals

    NASA Astrophysics Data System (ADS)

    Fan, Xingwang

    2017-04-01

    Satellite remote sensing has provided massive data that improve the overall accuracy and extend the time series of environmental studies. In reflective solar bands, satellite data are related to land surface properties via radiative transfer (RT) equations. These equations generally include sensor-related (calibration coefficients), atmosphere-related (aerosol optical thickness) and surface-related (surface reflectance) parameters. It is an ill-posed problem to solve three parameters with only one RT equation. Even if there are two RT equations (dual-sensor data), the problem is still unsolvable. However, a robust solution can be obtained when any two parameters are known. If surface and atmosphere are known, sensor intercalibration can be performed. For example, the Advanced Very High Resolution Radiometer (AVHRR) was calibrated to the MODerate-resolution Imaging Spectroradiometer (MODIS) in Fan and Liu (2014) [Fan, X., and Liu, Y. (2014). Quantifying the relationship between intersensor images in solar reflective bands: Implications for intercalibration. IEEE Transactions on Geoscience and Remote Sensing, 52(12), 7727-7737.]. If sensor and surface are known, atmospheric data can be retrieved. For example, aerosol data were retrieved using tandem TERRA and AQUA MODIS images in Fan and Liu (2016a) [Fan, X., and Liu, Y. (2016a). Exploiting TERRA-AQUA MODIS relationship in the reflective solar bands for aerosol retrieval. Remote Sensing, 8(12), 996.]. If sensor and atmosphere are known, data consistency can be obtained. For example, Normalized Difference Vegetation Index (NDVI) data were intercalibrated among coarse-resolution sensors in Fan and Liu (2016b) [Fan, X., and Liu, Y. (2016b). A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS Journal of Photogrammetry and Remote Sensing, 121, 177-191.], and among fine-resolution sensors in Fan and Liu (2017) [Fan, X., and Liu, Y. (2017). A generalized model for intersensor NDVI calibration and its comparison with regression approaches. IEEE Transactions on Geoscience and Remote Sensing, 55(3), doi: 10.1109/TGRS.2016.2635802.]. These studies demonstrate the success of multi-sensor data and novel methods in the research domain of geoscience. These data will benefit remote sensing of terrestrial parameters in decadal timescales, such as soil salinity content in Fan et al. (2016) [Fan, X., Weng, Y., and Tao, J. (2016). Towards decadal soil salinity mapping using Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 52, 32-41.].

  13. Atmospheric Infrasound during a Large Wildfire

    NASA Astrophysics Data System (ADS)

    Vance, Alexis; Elbing, Brian

    2017-11-01

    Numerous natural and manmade sources generate infrasound, including tornado producing storms, human heart, hurricanes, and volcanoes. Infrasound is currently being studied as part of Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD MAP), which is a multi-university collaboration focused on development and implementation of unmanned aircraft systems (UAS) and integration with sensors for atmospheric measurements. To support this effort a fixed infrasonic microphone located in Stillwater, Oklahoma has been monitoring atmospheric emissions since September of 2016. While severe storm systems is the primary focus of this work, the system also captures a wide range of infrasonic sources from distances in excess of 300 miles due to an acoustic ceiling and weak atmospheric absorption. The current presentation will focus on atmospheric infrasound observations during a large wildfire on the Kansas-Oklahoma border that occurred between March 6-22, 2017. This work was supported by NSF Grant 1539070.

  14. Imaging through water turbulence with a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2016-09-01

    A plenoptic sensor can be used to improve the image formation process in a conventional camera. Through this process, the conventional image is mapped to an image array that represents the image's photon paths along different angular directions. Therefore, it can be used to resolve imaging problems where severe distortion happens. Especially for objects observed at moderate range (10m to 200m) through turbulent water, the image can be twisted to be entirely unrecognizable and correction algorithms need to be applied. In this paper, we show how to use a plenoptic sensor to recover an unknown object in line of sight through significant water turbulence distortion. In general, our approach can be applied to both atmospheric turbulence and water turbulence conditions.

  15. Trace Gas Quantification with Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Schuyler, T. J.; Guzman, M. I.; Bailey, S.; Jacob, J.

    2017-12-01

    Measurements of atmospheric composition are generally performed with advanced instrumentation from ground stations using tall towers and weather balloons or with manned aircraft. Unmanned aerial systems (UAS) are a promising technology for atmospheric monitoring of trace atmospheric gases as they can bridge the gap between the regions of the atmospheric boundary layer measured by ground stations and aircraft. However, in general, the sophisticated instrumentation required for these measurements are heavy, preventing its deployment with small UAS. In order to successfully detect and quantify these gases, sensor packages aboard UAS must be lightweight, have low-power consumption, and possess limits of detection on the ppm scale or below with reasonably fast response times. Thus, a new generation of portable instrument is being developed in this work to meet these requirements employing new sensing packages. The cross sensitivity of these sensors to several gases is examined through laboratory testing of the instrument under variable environmental conditions prior to performing field measurements. Datasets include timestamps with position, temperature, relative humidity, pressure, along with variable mixing ratio values of important greenhouse gases. The work will present an analysis of the results gathered during authorized flights performed during the second CLOUD-MAP§ field campaign held in June 2017. §CLOUD-MAP: Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics, a 4-year NSF funded effort.

  16. 3D Vegetation Mapping Using UAVSAR, LVIS, and LIDAR Data Acquisition Methods

    NASA Technical Reports Server (NTRS)

    Calderon, Denice

    2011-01-01

    The overarching objective of this ongoing project is to assess the role of vegetation within climate change. Forests capture carbon, a green house gas, from the atmosphere. Thus, any change, whether, natural (e.g. growth, fire, death) or due to anthropogenic activity (e.g. logging, burning, urbanization) may have a significant impact on the Earth's carbon cycle. Through the use of Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) and NASA's Laser Vegetation Imaging Sensor (LVIS), which are airborne Light Detection and Ranging (LIDAR) remote sensing technologies, we gather data to estimate the amount of carbon contained in forests and how the content changes over time. UAVSAR and LVIS sensors were sent all over the world with the objective of mapping out terrain to gather tree canopy height and biomass data; This data is in turn used to correlate vegetation with the global carbon cycle around the world.

  17. Automatic optimisation of gamma dose rate sensor networks: The DETECT Optimisation Tool

    NASA Astrophysics Data System (ADS)

    Helle, K. B.; Müller, T. O.; Astrup, P.; Dyve, J. E.

    2014-05-01

    Fast delivery of comprehensive information on the radiological situation is essential for decision-making in nuclear emergencies. Most national radiological agencies in Europe employ gamma dose rate sensor networks to monitor radioactive pollution of the atmosphere. Sensor locations were often chosen using regular grids or according to administrative constraints. Nowadays, however, the choice can be based on more realistic risk assessment, as it is possible to simulate potential radioactive plumes. To support sensor planning, we developed the DETECT Optimisation Tool (DOT) within the scope of the EU FP 7 project DETECT. It evaluates the gamma dose rates that a proposed set of sensors might measure in an emergency and uses this information to optimise the sensor locations. The gamma dose rates are taken from a comprehensive library of simulations of atmospheric radioactive plumes from 64 source locations. These simulations cover the whole European Union, so the DOT allows evaluation and optimisation of sensor networks for all EU countries, as well as evaluation of fencing sensors around possible sources. Users can choose from seven cost functions to evaluate the capability of a given monitoring network for early detection of radioactive plumes or for the creation of dose maps. The DOT is implemented as a stand-alone easy-to-use JAVA-based application with a graphical user interface and an R backend. Users can run evaluations and optimisations, and display, store and download the results. The DOT runs on a server and can be accessed via common web browsers; it can also be installed locally.

  18. Effects of paddy rice agriculture on the seasonal dynamics of atmospheric methane concentration

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Xiao, X.; Dong, J.; Zhang, Y.; Xin, F.; Zhou, Y.; Wang, J.; Wu, X.; Moore, B., III

    2017-12-01

    Methane (CH4) is an important greenhouse gas (GHG) and may account for 20 % of anticipated global warming. The atmospheric CH4 concentration was nearly constant from 1999 to 2006, following with a strong growth resumed since 2007. Previous study attributed the increase in CH4 to agriculture. Specifically, paddy rice agriculture is a significant source of CH4, but large uncertainty still exists on methane emission estimates from rice paddies, largely due to lack of detailed geospatial datasets of rice paddies. In this study, based on a pixel- and phenology-based image analysis system with multi-temporal MODIS imagery (MODIS-RICE), we generated the paddy rice map in 2005 to document the spatiotemporal pattern of paddy rice dynamics in Monsoon Asia, which accounts for more than 90% of the global rice production. Furthermore, we examined the effects of paddy rice agriculture on atmospheric CH4 concentration over Monsoon Asia, by comparing atmospheric CH4 concentration data from SCIAMACHY sensor and the paddy rice maps in 2005. We found a significant spatial consistency between spatial patterns of paddy rice and atmospheric CH4 concentration. Based on the high resolution paddy rice map, different seasonal dynamics of CH4 concentration, including single, double to triple peaks, were found based on the rice paddy distribution information. That suggests paddy rice agriculture contributes substantially to the spatial and seasonal pattern of atmospheric CH4 concentration in Monsoon Asia. This study provides satellite evidence for seasonal cycle of CH4 dynamics at regional scale, and suggests that shifting regime of paddy rice agriculture and cropping intensity could affect the seasonal dynamics and spatial pattern of atmospheric methane concentration.

  19. Distributed temperature sensing inside a 19-rod bundle

    DOE PAGES

    Lomperski, S.; Bremer, N.; Gerardi, C.

    2017-05-23

    The temperature field within a model of a sodium-cooled fast reactor fuel rod bundle was measured using Ø155 μm fiber optic distributed temperature sensors (DTS). The bundle consists of 19 electrically-heated rods Ø6.3 mm and 865 mm long. Working fluids were argon and air at atmospheric pressure and Reynolds numbers up to 300. A 20 m-long DTS was threaded through Ø1 mm capillaries wound around rods as wire-wraps. The sensor generated 173 measurements along each rod at 5 mm resolution for a total of 3300 data locations. A second DTS, 58 m long, was suspended between rods to provide 9300more » fluid temperature measurements at 20 mm resolution. Such data density makes it possible to construct 3D maps of the temperature field that are beyond the reach of traditional sensors such as thermocouples. This is illustrated through a series of steady-state and transient tests. As a result, the work demonstrates the feasibility of mapping temperature within the close confines of a rod bundle at resolutions suitable for validation of computational fluid dynamics codes.« less

  20. Mobile mapping and eddy covariance flux measurements of NH3 emissions from cattle feedlots with a portable laser-based open-path sensor

    NASA Astrophysics Data System (ADS)

    Tao, L.; Sun, K.; Pan, D.; Golston, L.; Stanton, L. G.; Ham, J. M.; Shonkwiler, K. B.; Nash, C.; Zondlo, M. A.

    2014-12-01

    Ammonia (NH3) is the dominant alkaline species in the atmosphere and an important compound in the global nitrogen cycle. There is a large uncertainty in NH3 emission inventory from agriculture, which is the largest source of NH3, including livestock farming and fertilizer applications. In recent years, a quantum cascade laser (QCL)-based open-path sensor has been developed to provide high-resolution, fast-response and high-sensitivity NH3 measurements. It has a detection limit of 150 pptv with a sample rate up to 20 Hz. This sensor has been integrated into a mobile platform mounted on the roof of a car to perform measurement of multiple trace gases. We have also used the sensor for eddy covariance (EC) flux measurements. The mobile sensing method provides high spatial resolution and fast mapping of measured gases. Meanwhile, the EC flux method offers accurate flux measurements and resolves the diurnal variability of NH3emissions. During the DISCOVER-AQ and FRAPPÉ field campaigns in 2014, this mobile platform was used to study NH3 emissions from cattle feedlot near Fort Morgan, Colorado. This specific feedlot was mapped multiple times in different days to study the variability of its plume characteristics. At the same time, we set up another open-path NH3 sensor with LICOR open-path sensors to perform EC flux measurements of NH3, CH4 and CO2 simultaneously in the same cattle feedlot as shown in Fig. 1. NH3/CH4 emission flux ratio show a strong temperature dependence from EC flux measurements. The median value of measured NH3 and CH4 emission flux ratio is 0.60 ppmv/ppmv. In contrast, the median value of ΔNH3/ΔCH4 ratios measured from mobile platform is 0.53 ppmv/ppmv for the same farm. The combination of mobile mapping and EC flux measurements with the same open-path sensors greatly improves understanding of NH3 emissions both spatially and temporally.

  1. The Nimbus satellites - Pioneering earth observers

    NASA Technical Reports Server (NTRS)

    White, Carolynne

    1990-01-01

    The many scientific achievements of the Nimbus series of seven satellites for low-altitude atmospheric research and global weather surveillance are reviewed. The series provides information on fishery resources, weather modeling, atmospheric pollution monitoring, earth's radiation budget, ozone monitoring, ocean dynamics, and the effects of cloudiness. Data produced by the forty-eight instruments and sensors flown on the satellites are applied in the fields of oceanography, hydrology, geology, geomorphology, geography, cartography, agriculture and meteorology. The instruments include the Coastal Zone Color Scanner (which depicts phytoplankton concentrations in coastal areas), the Scanning Multichannel Microwave Radiometer (which measures sea-surface temperatures and sea-surface wind-speed), and the Total Ozone Mapping Spectrometer (which provides information on total amounts of ozone in the earth's atmosphere).

  2. First laboratory results with the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Gaessler, Wolfgang; Conrad, Albert R; Bertram, Thomas; Arcidiacono, Carmelo; Herbst, Thomas M; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan; Schreiber, Laura; Ragazzoni, Roberto; Diolaiti, Emiliano

    2011-08-15

    In the field of adaptive optics, multi-conjugate adaptive optics (MCAO) can greatly increase the size of the corrected field of view (FoV) and also extend sky coverage. By applying layer oriented MCAO (LO-MCAO) [4], together with multiple guide stars (up to 20) and pyramid wavefront sensors [7], LINC-NIRVANA (L-N for short) [1] will provide two AO-corrected beams to a Fizeau interferometer to achieve 10 milliarcsecond angular resolution on the Large Binocular Telescope. This paper presents first laboratory results of the AO performance achieved with the high layer wavefront sensor (HWS). This sensor, together with its associated deformable mirror (a Xinetics-349), is being operated in one of the L-N laboratories. AO reference stars, spread across a 2 arc-minute FoV and with aberrations resulting from turbulence introduced at specific layers in the atmosphere, are simulated in this lab environment. This is achieved with the Multi-Atmosphere Phase screen and Stars (MAPS) [2] unit. From the wavefront data, the approximate residual wavefront error after correction has been calculated for different turbulent layer altitudes and wind speeds. Using a somewhat undersampled CCD, the FWHM of stars in the nearly 2 arc-minute FoV has also been measured. These test results demonstrate that the high layer wavefront sensor of LINC-NIRVANA will be able to achieve uniform AO correction across a large FoV. © 2011 Optical Society of America

  3. Daily High-Resolution Flood Maps of Africa: 1992-present with Near Real Time Updates

    NASA Astrophysics Data System (ADS)

    Picton, J.; Galantowicz, J. F.; Root, B.

    2016-12-01

    The ability to characterize past and current flood extents frequently, accurately, and at high resolution is needed for many applications including risk assessment, wetlands monitoring, and emergency management. However, remote sensing methods have not been capable of meeting all of these requirements simultaneously. Cloud cover too often obscures the surface for visual and infrared sensors and observations from radar sensors are too infrequent to create consistent historical databases or monitor evolving events. Lower-resolution (10-50 km) passive microwave sensors, such as SSM/I, AMSR-E, and AMSR2, are sensitive to water cover, acquire useful data during clear and cloudy conditions, have revisit periods of up to twice daily, and provide a continuous record of data from 1992 to the present. What they lack most is the resolution needed to map flood extent. We will present results from a flood mapping system capable of producing high-resolution (90-m) flood extent depictions from lower resolution microwave data. The system uses the strong sensitivity of microwave data to surface water coverage combined with land surface and atmospheric data to derive daily flooded fraction estimates on a sensor-footprint basis. The system downscales flooded fraction to make high-resolution Boolean flood extent depictions that are spatially continuous and consistent with the lower resolution data. The downscaling step is based on a relative floodability (RF) index derived from higher-resolution topographic and hydrological data. We process RF to create a flooded fraction threshold map that relates each 90-m grid point to the surrounding terrain at the microwave scale. We have derived daily, 90-m resolution flood maps for Africa covering 1992-present using SSM/I, AMSR-E, and AMSR2 data and we are now producing new daily maps in near real time. The flood maps are being used by the African Risk Capacity (ARC) Agency to underpin an intergovernmental river flood insurance program in Africa. We will present results showing daily flood extents during major events and discuss: validation of the flood maps against MODIS-derived maps; analyses of minimum detectable flood size; aggregate analyses of flood extent over time; flood map use in ARC's insurance model; and results applying the system to the Americas.

  4. A multi-sensor remote sensing approach for measuring primary production from space

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine

    1989-01-01

    It is proposed to develop a multi-sensor remote sensing method for computing marine primary productivity from space, based on the capability to measure the primary ocean variables which regulate photosynthesis. The three variables and the sensors which measure them are: (1) downwelling photosynthetically available irradiance, measured by the VISSR sensor on the GOES satellite, (2) sea-surface temperature from AVHRR on NOAA series satellites, and (3) chlorophyll-like pigment concentration from the Nimbus-7/CZCS sensor. These and other measured variables would be combined within empirical or analytical models to compute primary productivity. With this proposed capability of mapping primary productivity on a regional scale, we could begin realizing a more precise and accurate global assessment of its magnitude and variability. Applications would include supplementation and expansion on the horizontal scale of ship-acquired biological data, which is more accurate and which supplies the vertical components of the field, monitoring oceanic response to increased atmospheric carbon dioxide levels, correlation with observed sedimentation patterns and processes, and fisheries management.

  5. Complex wavefront sensing with a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.

    2016-09-01

    There are many techniques to achieve basic wavefront sensing tasks in the weak atmospheric turbulence regime. However, in strong and deep turbulence situations, the complexity of a propagating wavefront increases significantly. Typically, beam breakup will happen and various portions of the beam will randomly interfere with each other. Consequently, some conventional techniques for wavefront sensing turn out to be inaccurate and misleading. For example, a Shack-Hartmann sensor will be confused by multi-spot/zero-spot result in some cells. The curvature sensor will be affected by random interference patterns for both the image acquired before the focal plane and the image acquired after the focal plane. We propose the use of a plenoptic sensor to solve complex wavefront sensing problems. In fact, our results show that even for multiple beams (their wavelengths can be the same) passing through the same turbulent channel, the plenoptic sensor can reconstruct the turbulence-induced distortion accurately. In this paper, we will demonstrate the plenoptic mapping principle to analyze and reconstruct the complex wavefront of a distorted laser beam.

  6. Feasibility Study of LANDSAT-8 Imagery for Retrieving Sea Surface Temperature (case Study Persian Gulf)

    NASA Astrophysics Data System (ADS)

    Bayat, F.; Hasanlou, M.

    2016-06-01

    Sea surface temperature (SST) is one of the critical parameters in marine meteorology and oceanography. The SST datasets are incorporated as conditions for ocean and atmosphere models. The SST needs to be investigated for various scientific phenomenon such as salinity, potential fishing zone, sea level rise, upwelling, eddies, cyclone predictions. On the other hands, high spatial resolution SST maps can illustrate eddies and sea surface currents. Also, near real time producing of SST map is suitable for weather forecasting and fishery applications. Therefore satellite remote sensing with wide coverage of data acquisition capability can use as real time tools for producing SST dataset. Satellite sensor such as AVHRR, MODIS and SeaWIFS are capable of extracting brightness values at different thermal spectral bands. These brightness temperatures are the sole input for the SST retrieval algorithms. Recently, Landsat-8 successfully launched and accessible with two instruments on-board: (1) the Operational Land Imager (OLI) with nine spectral bands in the visual, near infrared, and the shortwave infrared spectral regions; and (2) the Thermal Infrared Sensor (TIRS) with two spectral bands in the long wavelength infrared. The two TIRS bands were selected to enable the atmospheric correction of the thermal data using a split window algorithm (SWA). The TIRS instrument is one of the major payloads aboard this satellite which can observe the sea surface by using the split-window thermal infrared channels (CH10: 10.6 μm to 11.2 μm; CH11: 11.5 μm to 12.5 μm) at a resolution of 30 m. The TIRS sensors have three main advantages comparing with other previous sensors. First, the TIRS has two thermal bands in the atmospheric window that provide a new SST retrieval opportunity using the widely used split-window (SW) algorithm rather than the single channel method. Second, the spectral filters of TIRS two bands present narrower bandwidth than that of the thermal band on board on previous Landsat sensors. Third, TIRS is one of the best space born and high spatial resolution with 30 m. in this regards, Landsat-8 can use the Split-Window (SW) algorithm for retrieving SST dataset. Although several SWs have been developed to use with other sensors, some adaptations are required in order to implement them for the TIRS spectral bands. Therefore, the objective of this paper is to develop a SW, adapted for use with Landsat-8 TIRS data, along with its accuracy assessment. In this research, that has been done for modelling SST using thermal Landsat 8-imagery of the Persian Gulf. Therefore, by incorporating contemporary in situ data and SST map estimated from other sensors like MODIS, we examine our proposed method with coefficient of determination (R2) and root mean square error (RMSE) on check point to model SST retrieval for Landsat-8 imagery. Extracted results for implementing different SW's clearly shows superiority of utilized method by R2 = 0.95 and RMSE = 0.24.

  7. Top-of-the-atmosphere shortwave flux estimation from satellite observations: an empirical neural network approach applied with data from the A-train constellation

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.

    2016-07-01

    Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within ±1 % of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.

  8. Top-of-the-Atmosphere Shortwave Flux Estimation from Satellite Observations: An Empirical Neural Network Approach Applied with Data from the A-Train Constellation

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Joiner, Joanna; Vasilkov, Alexander; Bhartia, Pawan K.

    2016-01-01

    Estimates of top-of-the-atmosphere (TOA) radiative flux are essential for the understanding of Earth's energy budget and climate system. Clouds, aerosols, water vapor, and ozone (O3) are among the most important atmospheric agents impacting the Earth's shortwave (SW) radiation budget. There are several sensors in orbit that provide independent information related to these parameters. Having coincident information from these sensors is important for understanding their potential contributions. The A-train constellation of satellites provides a unique opportunity to analyze data from several of these sensors. In this paper, retrievals of cloud/aerosol parameters and total column ozone (TCO) from the Aura Ozone Monitoring Instrument (OMI) have been collocated with the Aqua Clouds and Earth's Radiant Energy System (CERES) estimates of total reflected TOA outgoing SW flux (SWF). We use these data to develop a variety of neural networks that estimate TOA SWF globally over ocean and land using only OMI data and other ancillary information as inputs and CERES TOA SWF as the output for training purposes. OMI-estimated TOA SWF from the trained neural networks reproduces independent CERES data with high fidelity. The global mean daily TOA SWF calculated from OMI is consistently within 1% of CERES throughout the year 2007. Application of our neural network method to other sensors that provide similar retrieved parameters, both past and future, can produce similar estimates TOA SWF. For example, the well-calibrated Total Ozone Mapping Spectrometer (TOMS) series could provide estimates of TOA SWF dating back to late 1978.

  9. Evaluation of multi-resolution satellite sensors for assessing water quality and bottom depth of Lake Garda.

    PubMed

    Giardino, Claudia; Bresciani, Mariano; Cazzaniga, Ilaria; Schenk, Karin; Rieger, Patrizia; Braga, Federica; Matta, Erica; Brando, Vittorio E

    2014-12-15

    In this study we evaluate the capabilities of three satellite sensors for assessing water composition and bottom depth in Lake Garda, Italy. A consistent physics-based processing chain was applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat-8 Operational Land Imager (OLI) and RapidEye. Images gathered on 10 June 2014 were corrected for the atmospheric effects with the 6SV code. The computed remote sensing reflectance (Rrs) from MODIS and OLI were converted into water quality parameters by adopting a spectral inversion procedure based on a bio-optical model calibrated with optical properties of the lake. The same spectral inversion procedure was applied to RapidEye and to OLI data to map bottom depth. In situ measurements of Rrs and of concentrations of water quality parameters collected in five locations were used to evaluate the models. The bottom depth maps from OLI and RapidEye showed similar gradients up to 7 m (r = 0.72). The results indicate that: (1) the spatial and radiometric resolutions of OLI enabled mapping water constituents and bottom properties; (2) MODIS was appropriate for assessing water quality in the pelagic areas at a coarser spatial resolution; and (3) RapidEye had the capability to retrieve bottom depth at high spatial resolution. Future work should evaluate the performance of the three sensors in different bio-optical conditions.

  10. MicroMAPS: Leveraging Federal and Universities' Resources for Atmospheric Sciences Research and Education

    NASA Astrophysics Data System (ADS)

    Sandy, M.; Companion, J. A.; Connors, V. S.

    2007-05-01

    NASA Langley Research Center approached the Virginia Space Grant Consortium, a NASA-sponsored coalition of universities, NASA research centers and state agencies with the opportunity to develop a scientific mission and flight opportunities for an un-flown atmospheric composition remote sensor, MicroMAPS. The resulting partnership led to new life for this instrument from a space-borne carbon monoxide remote sensor to an high altitude airborne instrument that measures tropospheric carbon monoxide in the near infrared portion of the spectrum. The five year effort to date has leveraged the existing instrument with work by student teams overseen by faculty and NASA advisors, with both NASA and industry contributions. The result is a viable instrument system that has flown in four international scientific field campaigns aboard the Scaled Composites Proteus aircraft, generating 300 plus hours of CO data to date over North America, Italy, the Mediterranean, England, the North Sea, Darwin, Northern Australia, the Atlantic Ocean, the Indian Ocean, and the Pacific Ocean between Australia and California. A relatively small investment by NASA and contributions by 56 students and nine faculty members, both active and retired NASA engineers and scientists, as well as a Canadian aerospace research company (which designed and built the MicroMAPS instrument) yielded successful results that go well beyond the instrument and data retrieved. The effort provided a valuable educational research experience for students from three universities whose work included contributions in: 1) Development of the instrument system and pod design for the Proteus flights; 2) Development of assessment strategy and analysis of instrument performance; 3) Development of the operations and data management strategy; 4) Contributions to development of design, implementation, and analysis of sensor calibration at Resonance Ltd., Barrie, Canada 5) Development of a new data reduction strategy for the airborne configuration over northern mid-latitudes and tropical regions. 6) Development of the instrument system and pod design for possible flights on Altair (a unmanned airborne vehicle managed at the NASA Dryden Flight Center) and 7) Geo-referencing of MicroMAPS data. An overview of the MicroMAPS project partnership will be presented and the potential for collaboration between federal laboratories and industry with National Space Grant Consortia and their Space Grant universities on similar partnerships will be described.

  11. Monthly AOD maps combining strengths of remote sensing products

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2010-05-01

    The mid-visible aerosol optical depth (AOD) is the most prominent property to quantify aerosol amount the atmospheric column. Almost all aerosol retrievals of satellite sensors provide estimates for this property, however, often with limited success. As sensors differ in capabilities individual retrievals have local and regional strengths and weaknesses. Focusing on individual retrieval strengths a satellite based AOD composite has been constructed. Hereby, every retrieval performance has been assessed in statistical comparisons to ground-based sun-photometry, which provide highly accurate references though only at few globally distributed monitoring sites. Based on these comparisons, which consider bias as well as spatial patterns and seasonality, the regionally best performing satellite AOD products are combined. The resulting remote sensing AOD composite provide a general reference for the spatial and temporal AOD distribution on an (almost) global basis - solely tied to sensor data.

  12. 2011 Arctic ozone depletion as seen by ESA-ENVISAT Atmospheric-Chemistry sensors

    NASA Astrophysics Data System (ADS)

    Brizzi, G.; Niro, F.; Saavedra de Miguel, L.; Dehn, A.; Scarpino, G.; Fehr, T.; von Kuhlmann, R.

    2011-12-01

    Three Atmospheric-Chemistry sensors on-board the ENVISAT satellite (GOMOS, MIPAS, and SCIAMACHY) sound the Earth's atmosphere since about nine years and provide to the science community three separated, but complementary data sets of the most interesting atmospheric trace gases. These extended and coherent data sets, generated with ESA operational processors, give a historical overview over seasonal and long-term trends of geophysical parameters and allow investigating major atmospheric phenomena and natural events. During March 2011, ESA's satellite ENVISAT detected the severe ozone depletion above the Euro-Atlantic sector of the Northern Hemisphere. This record-breaking loss for the ozone layer over the North Pole was mainly caused by unusual polar vortex conditions characterized by very low temperatures in the Arctic stratosphere. This paper presents the chemical ozone depletion over the Arctic regions as detected by SCIAMACHY, MIPAS and GOMOS during spring of 2011. Global maps of total ozone column and vertical ozone profiles along the mission's lifetime clearly show the unprecedented Arctic ozone loss for 2011 with the subsequent migration of ozone depleted air masses towards lower latitudes. ENVISAT's atmospheric measurements reveal changes in the composition of the ozone-related chemical species and permit to point out the chemical correlations of the ozone distribution with nitrogen and chlorine compounds and with the evolution of stratospheric temperatures. The synergistic use of ESA operational data sets from the three instruments allows to closely monitor the occurrence and extension of seasonal ozone depletion events, and to draw a comprehensive picture of all chemistry processes involved in the full atmospheric range.

  13. The study of the martian atmosphere from top to bottom with SPICAM light on mars express

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Fonteyn, D.; Korablev, O.; Chassefière, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, B.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2000-10-01

    SPICAM Light is a small UV-IR instrument selected for Mars Express to recover most of the science that was lost with the demise of Mars 96, where the SPICAM set of sensors was dedicated to the study of the atmosphere of Mars (Spectroscopy for the investigation of the characteristics of the atmosphere of mars). The new configuration of SPICAM Light includes optical sensors and an electronics block. A UV spectrometer (118-320 nm, resolution 0.8 nm) is dedicated to Nadir viewing, limb viewing and vertical profiling by stellar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H 2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. An IR spectrometer (1.2- 4.8 μm, resolution 0.4-1 nm) is dedicated to vertical profiling during solar occultation of H 2O, CO 2, CO, aerosols and exploration of carbon compounds (3.5 kg). A nadir looking sensor for H 2O abundances (1.0- 1.7 μm, resolution 0.8 nm) is recently included in the package (0.8 kg). A simple data processing unit (DPU, 0.9 kg) provides the interface of these sensors with the spacecraft. In nadir orientation, SPICAM UV is essentially an ozone detector, measuring the strongest O 3 absorption band at 250 nm in the spectrum of the solar light scattered back from the ground. In the stellar occultation mode the UV Sensor will measure the vertical profiles of CO 2, temperature, O 3, clouds and aerosols. The density/temperature profiles obtained with SPICAM Light will constrain and aid in the development of the meteorological and dynamical atmospheric models, from the surface to 160 km in the atmosphere. This is essential for future missions that will rely on aerocapture and aerobraking. UV observations of the upper atmosphere will allow study of the ionosphere through the emissions of CO, CO +, and CO 2+, and its direct interaction with the solar wind. Also, it will allow a better understanding of escape mechanisms and estimates of their magnitude, crucial for insight into the long-term evolution of the atmosphere. The SPICAM Light IR sensor is inherited from the IR solar part of the SPICAM solar occultation instrument of Mars 96. Its main scientific objective is the global mapping of the vertical structure of H 2O, CO 2, CO, HDO, aerosols, atmospheric density, and temperature by the solar occultation. The wide spectral range of the IR spectrometer and its high spectral resolution allow an exploratory investigation addressing fundamental question of the possible presence of carbon compounds in the Martian atmosphere. Because of severe mass constraints this channel is still optional. An additional nadir near IR channel that employs a pioneering technology acousto-optical tuneable filter (AOTF) is dedicated to the measurement of water vapour column abundance in the IR simultaneously with ozone measured in the UV. It will be done at much lower telemetry budget compared to the other instrument of the mission, planetary fourier spectrometer (PFS).

  14. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  15. Design and Evaluation of a Balloon-Borne Electric Field Sensor

    DTIC Science & Technology

    1976-10-18

    on a Lume A? A.3 Total Induced Charge vs, Orientation AB APPENDIX B ELEMflUICS PACAE B.l Electrometer Amplifier BI B.Z2 Charge Aplifier Bl B.3...properties change with height? 3) How strongly are fields mapped between the ground and the ionosphere? Because of its ability to make accurate profile...then each conductor should reach the potential of the average atmospheric potential surrounding the probes. These probes probably are of limited use

  16. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques.

    PubMed

    Eugenio, Francisco; Marcello, Javier; Martin, Javier; Rodríguez-Esparragón, Dionisio

    2017-11-16

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones.

  17. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques

    PubMed Central

    Eugenio, Francisco; Marcello, Javier; Martin, Javier

    2017-01-01

    Remote multispectral data can provide valuable information for monitoring coastal water ecosystems. Specifically, high-resolution satellite-based imaging systems, as WorldView-2 (WV-2), can generate information at spatial scales needed to implement conservation actions for protected littoral zones. However, coastal water-leaving radiance arriving at the space-based sensor is often small as compared to reflected radiance. In this work, complex approaches, which usually use an accurate radiative transfer code to correct the atmospheric effects, such as FLAASH, ATCOR and 6S, have been implemented for high-resolution imagery. They have been assessed in real scenarios using field spectroradiometer data. In this context, the three approaches have achieved excellent results and a slightly superior performance of 6S model-based algorithm has been observed. Finally, for the mapping of benthic habitats in shallow-waters marine protected environments, a relevant application of the proposed atmospheric correction combined with an automatic deglinting procedure is presented. This approach is based on the integration of a linear mixing model of benthic classes within the radiative transfer model of the water. The complete methodology has been applied to selected ecosystems in the Canary Islands (Spain) but the obtained results allow the robust mapping of the spatial distribution and density of seagrass in coastal waters and the analysis of multitemporal variations related to the human activity and climate change in littoral zones. PMID:29144444

  18. The CAFADIS camera: a new tomographic wavefront sensor for Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, J. M.; Femenía, B.; Montilla, I.; Rodríguez-Ramos, L. F.; Marichal-Hernández, J. G.; Lüke, J. P.; López, R.; Díaz, J. J.; Martín, Y.

    The CAFADIS camera is a new wavefront sensor (WFS) patented by the Universidad de La Laguna. CAFADIS is a system based on the concept of plenoptic camera originally proposed by Adelson and Wang [Single lens stereo with a plenoptic camera, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992)] and its most salient feature is its ability to simultaneously measuring wavefront maps and distances to objects [Wavefront and distance measurements using the CAFADIS camera, in Astronomical telescopes, Marseille (2008)]. This makes of CAFADIS an interesting alternative for LGS-based AO systems as it is capable of measuring from an LGS-beacon the atmospheric turbulence wavefront and simultaneously the distance to the LGS beacon thus removing the need of a NGS defocus sensor to probe changes in distance to the LGS beacon due to drifts of the mesospheric Na layer. In principle, the concept can also be employed to recover 3D profiles of the Na Layer allowing for optimizations of the measurement of the distance to the LGS-beacon. Currently we are investigating the possibility of extending the plenoptic WFS into a tomographic wavefront sensor. Simulations will be shown of a plenoptic WFS when operated within an LGS-based AO system for the recovery of wavefront maps at different heights. The preliminary results presented here show the tomographic ability of CAFADIS.

  19. Evaluation of UAS for Atmospheric Boundary Layer Monitoring as Part of the 2017 CLOUD-MAP Flight Campaign

    NASA Astrophysics Data System (ADS)

    Jacob, J.; Chilson, P. B.; Houston, A. L.; Smith, S.

    2017-12-01

    CLOUD-MAP (Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics) is a 4 year, 4 university collaboration sponsored by the National Science Foundation to develop capabilities that will allow meteorologists and atmospheric scientists to use unmanned aircraft as a common, useful everyday measurement tool. Currently, we know that systems can be used for meteorological measurements, but they are far from being practical or robust for everyday field diagnostics by the average meteorologist or scientist. In particular, UAS are well suited for the lower atmosphere, namely the lower boundary layer that has a large impact on the atmosphere and where much of the weather phenomena begin. The 2016 and 2017 campaigns resulted in over 500 unmanned aircraft flights of over a dozen separate platforms collecting meteorological data at 3 different sites including Oklahoma Mesonet stations and the DOE Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The SGP atmospheric observatory was the first field measurement site established by the ARM Climate Research Facility and is the world's largest and most extensive climate research facility. Data from the SGP was used to validate observations from the various UAS. UAS operations consisted of both fixed and rotary platforms up to 3,000 AGL with thermodynamic, wind, and chemistry (viz., CO2 and CH4) sensors. ABL conditions were observed over a variety of conditions, particularly during the morning transition to evaluate the boundary layer dilution due to vertical mixing and changes in the wind patterns from diurnal variability.

  20. Distributed multimodal data fusion for large scale wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Ertin, Emre

    2006-05-01

    Sensor network technology has enabled new surveillance systems where sensor nodes equipped with processing and communication capabilities can collaboratively detect, classify and track targets of interest over a large surveillance area. In this paper we study distributed fusion of multimodal sensor data for extracting target information from a large scale sensor network. Optimal tracking, classification, and reporting of threat events require joint consideration of multiple sensor modalities. Multiple sensor modalities improve tracking by reducing the uncertainty in the track estimates as well as resolving track-sensor data association problems. Our approach to solving the fusion problem with large number of multimodal sensors is construction of likelihood maps. The likelihood maps provide a summary data for the solution of the detection, tracking and classification problem. The likelihood map presents the sensory information in an easy format for the decision makers to interpret and is suitable with fusion of spatial prior information such as maps, imaging data from stand-off imaging sensors. We follow a statistical approach to combine sensor data at different levels of uncertainty and resolution. The likelihood map transforms each sensor data stream to a spatio-temporal likelihood map ideally suitable for fusion with imaging sensor outputs and prior geographic information about the scene. We also discuss distributed computation of the likelihood map using a gossip based algorithm and present simulation results.

  1. Study of development and utilization of a multipurpose atmospheric corrosion sensor

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.; Raman, A.; Bhattacharya, P. K.

    1994-01-01

    There has been a critical need for analyzing various aspects of atmospheric corrosion and for the development of atmospheric corrosion microsensors. The project work has involved the following activities: (1) making of multielectrode corrosion monitors on dielectric substrates; (2) testing them in the laboratory for functional characteristics; (3) preparing a report on the state of the art of atmospheric corrosion sensor development around the world; and (4) corrosion testing of electrochemical changes of sensor specimens and related fog testing. The study included work on the subject of development and utilization of a multipurpose atmospheric corrosion sensor and this report is the annual report on work carried out on this research project. This has included studies on the development of sensors of two designs, stage 1 and stage 2, and with glass and alumina substrate, experimentation and development and characterization of the coating uniformity, aspects of corrosion monitoring, literature search on the corrosion sensors and their development. A state of the art report on atmospheric corrosion sensor development was prepared and submitted.

  2. HYTHIRM Radiance Modeling and Image Analyses in Support of STS-119, STS-125 and STS-128 Space Shuttle Hypersonic Re-entries

    NASA Technical Reports Server (NTRS)

    Gibson, David M.; Spisz, Thomas S.; Taylor, Jeff C.; Zalameda, Joseph N.; Horvath, Thomas J.; Tomek, Deborah M.; Tietjen, Alan B.; Tack, Steve; Bush, Brett C.

    2010-01-01

    We provide the first geometrically accurate (i.e., 3-D) temperature maps of the entire windward surface of the Space Shuttle during hypersonic reentry. To accomplish this task we began with estimated surface temperatures derived from CFD models at integral high Mach numbers and used them, the Shuttle's surface properties and reasonable estimates of the sensor-to-target geometry to predict the emitted spectral radiance from the surface (in units of W sr-1 m-2 nm-1). These data were converted to sensor counts using properties of the sensor (e.g. aperture, spectral band, and various efficiencies), the expected background, and the atmosphere transmission to inform the optimal settings for the near-infrared and midwave IR cameras on the Cast Glance aircraft. Once these data were collected, calibrated, edited, registered and co-added we formed both 2-D maps of the scene in the above units and 3-D maps of the bottom surface in temperature that could be compared with not only the initial inputs but also thermocouple data from the Shuttle itself. The 3-D temperature mapping process was based on the initial radiance modeling process. Here temperatures were guessed for each node in a well-resolved 3-D framework, a radiance model was produced and compared to the processed imagery, and corrections to the temperature were estimated until the iterative process converged. This process did very well in characterizing the temperature structure of the large asymmetric boundary layer transition the covered much of the starboard bottom surface of STS-119 Discovery. Both internally estimated accuracies and differences with CFD models and thermocouple measurements are at most a few percent. The technique did less well characterizing the temperature structure of the turbulent wedge behind the trip due to limitations in understanding the true sensor resolution. (Note: Those less inclined to read the entire paper are encouraged to read an Executive Summary provided at the end.)

  3. Optical sensors for application in intelligent food-packaging technology

    NASA Astrophysics Data System (ADS)

    McEvoy, Aisling K.; Von Bueltzingsloewen, Christoph; McDonagh, Colette M.; MacCraith, Brian D.; Klimant, Ingo; Wolfbeis, Otto S.

    2003-03-01

    Modified Atmosphere Packaged (MAP) food employs a protective gas mixture, which normally contains selected amounts of carbon dioxide (CO2) and oxygen (O2), in order to extend the shelf life of food. Conventional MAP analysis of package integrity involves destructive sampling of packages followed by carbon dioxide and oxygen detection. For quality control reasons, as well as to enhance food safety, the concept of optical on-pack sensors for monitoring the gas composition of the MAP package at different stages of the distribution process is very attractive. The objective of this work was to develop printable formulations of oxygen and carbon dioxide sensors for use in food packaging. Oxygen sensing is achieved by detecting the degree of quenching of a fluorescent ruthenium complex entrapped in a sol-gel matrix. In particular, a measurement technique based on the quenching of the fluorescence decay time, phase fluorometric detection, is employed. A scheme for detecting CO2 has been developed which is compatible with the oxygen detection scheme. It is fluorescence-based and uses the pH-sensitive 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) indicator dye encapsulated in an organically modified silica (ORMOSIL) glass matrix. Dual Luminophore Referencing (DLR) has been employed as an internal referencing scheme, which provides many of the advantages of lifetime-based fluorometric methods. Oxygen cross-sensitivity was minimised by encapsulating the reference luminophore in dense sol-gel microspheres. The sensor performance compared well with standard methods for both oxygen and carbon dioxide detection. The results of preliminary on-pack print trials are presented and a preliminary design of an integrated dual gas optical read-out device is discussed.

  4. Sensitivity of Aerosol Multi-Sensor Daily Data Intercomparison to the Level 3 Dataday Definition

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Lary, David; Shen, Suhung; Lynnes, Christopher

    2010-01-01

    Topics include: why people use Level 3 products, why someone might go wrong with Level 3 products, differences in L3 from different sensors, Level 3 data day definition, MODIS vs. MODIS, AOD MODIS Terra vs. Aqua in Pacific, AOD Aqua MODIS vs. MISR correlation map, MODIS vs MISR on Terra, MODIS atmospheric data day definition, orbit time difference for Terra and Aqua 2009-01-06, maximum time difference for Terra (Calendar day), artifact explains, data day definitions, local time distribution, spatial (local time) data day definition, maximum time difference between Terra and Aqua, Removing the artifact in 16-day AOD correlation, MODIS cloud top pressure, and MODIS Terra and Aqua vs. AIRS cloud top pressure.

  5. Real-time method for establishing a detection map for a network of sensors

    DOEpatents

    Nguyen, Hung D; Koch, Mark W; Giron, Casey; Rondeau, Daniel M; Russell, John L

    2012-09-11

    A method for establishing a detection map of a dynamically configurable sensor network. This method determines an appropriate set of locations for a plurality of sensor units of a sensor network and establishes a detection map for the network of sensors while the network is being set up; the detection map includes the effects of the local terrain and individual sensor performance. Sensor performance is characterized during the placement of the sensor units, which enables dynamic adjustment or reconfiguration of the placement of individual elements of the sensor network during network set-up to accommodate variations in local terrain and individual sensor performance. The reconfiguration of the network during initial set-up to accommodate deviations from idealized individual sensor detection zones improves the effectiveness of the sensor network in detecting activities at a detection perimeter and can provide the desired sensor coverage of an area while minimizing unintentional gaps in coverage.

  6. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  7. HATS (High Altitude Thermal Sounder): a passive sensor solution to 3D high-resolution mapping of upper atmosphere dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gordley, Larry; Marshall, Benjamin T.; Lachance, Richard L.

    2016-10-01

    This presentation introduces a High Altitude Thermal Sensor (HATS) that has the potential to resolve the thermal structure of the upper atmosphere (cloud top to 100km) with both horizontal and vertical resolution of 5-7 km or better. This would allow the complete characterization of the wave structures that carry weather signature from the underlying atmosphere. Using a novel gas correlation technique, an extremely high-resolution spectral scan is accomplished by measuring a Doppler modulated signal as the atmospheric thermal scene passes through the HATS 2D FOV. This high spectral resolution, difficult to impossible to achieve with any other passive technique, enables the separation of radiation emanating at high altitudes from that emanating at low altitudes. A principal component analysis of these modulation signals then exposes the complete thermal structure of the upper atmosphere. We show that nadir sounding from low earth orbit, using various branches of CO2 emission in the 17 to 15 micron region, with sufficient spectral resolution and spectral measurement range, can distinguish thermal energy that peaks at various altitudes. By observing the up-welling atmospheric emission through a low pressure (Doppler broadened) gas cell, as the scene passes through our FOV, a modulation signal is created as the atmospheric emission lines are shifted through the spectral position of the gas cell absorption lines. The modulation signal is shown to be highly correlated to the emission coming from the spectral location of the gas cell lines relative to the atmospheric emission lines. This effectively produces a scan of the atmospheric emission with a Doppler line resolution. Similar to thermal sounding of the troposphere, a principal component analysis of the modulation signal can be used to produce an altitude resolved profile, given a reasonable a priori temperature profile. It is then shown that with the addition of a limb observation with one CO2 broadband channel (similar to methods employed with sensors like LIMS on Nimbus 7, HIRDLS on Aura, and SABER on TIMED), a limb temperature profile can be retrieved and used as the a priori profile, nearly eliminating uncertainty due to a priori inaccuracy. Feasibility studies and proposed instrument designs are presented. A tutorial for a similar technique proposed for measuring winds and temperature with limb observations can be found at http://www.gats-inc.com/future_missions.html

  8. The Topographic Data Deluge - Collecting and Maintaining Data in a 21ST Century Mapping Agency

    NASA Astrophysics Data System (ADS)

    Holland, D. A.; Pook, C.; Capstick, D.; Hemmings, A.

    2016-06-01

    In the last few years, the number of sensors and data collection systems available to a mapping agency has grown considerably. In the field, in addition to total stations measuring position, angles and distances, the surveyor can choose from hand-held GPS devices, multi-lens imaging systems or laser scanners, which may be integrated with a laptop or tablet to capture topographic data directly in the field. These systems are joined by mobile mapping solutions, mounted on large or small vehicles, or sometimes even on a backpack carried by a surveyor walking around a site. Such systems allow the raw data to be collected rapidly in the field, while the interpretation of the data can be performed back in the office at a later date. In the air, large format digital cameras and airborne lidar sensors are being augmented with oblique camera systems, taking multiple views at each camera position and being used to create more realistic 3D city models. Lower down in the atmosphere, Unmanned Aerial Vehicles (or Remotely Piloted Aircraft Systems) have suddenly become ubiquitous. Hundreds of small companies have sprung up, providing images from UAVs using ever more capable consumer cameras. It is now easy to buy a 42 megapixel camera off the shelf at the local camera shop, and Canon recently announced that they are developing a 250 megapixel sensor for the consumer market. While these sensors may not yet rival the metric cameras used by today's photogrammetrists, the rapid developments in sensor technology could eventually lead to the commoditization of high-resolution camera systems. With data streaming in from so many sources, the main issue for a mapping agency is how to interpret, store and update the data in such a way as to enable the creation and maintenance of the end product. This might be a topographic map, ortho-image or a digital surface model today, but soon it is just as likely to be a 3D point cloud, textured 3D mesh, 3D city model, or Building Information Model (BIM) with all the data interpretation and modelling that entails. In this paper, we describe research/investigations into the developing technologies and outline the findings for a National Mapping Agency (NMA). We also look at the challenges that these new data collection systems will bring to an NMA, and suggest ways that we may work to meet these challenges and deliver the products desired by our users.

  9. Infrasonic Emissions From A Tornado

    NASA Astrophysics Data System (ADS)

    Petrin, Christopher; Elbing, Brian

    2017-11-01

    Tornadoes cause dozens of deaths and significant damage throughout the United States every year. Tornado-producing storm systems emit infrasound (sound at frequencies below human hearing) up to 2 hours before tornadogenesis. Weak atmospheric attenuation at these frequencies allows them to be detected hundreds of miles away. Hence, passive infrasonic monitoring may be used for long-range study of tornadogenesis. This requires characterization of infrasound during the life of a tornado and from other background sources. This is being accomplished as part of the Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics (CLOUD-MAP) project, a multi-university collaboration focused on the development and implementation of unmanned aerial systems (UAS) and their integration with sensors for atmospheric measurement. This presentation will report findings from a fixed infrasonic microphone that has been continuously monitoring the atmosphere since September 2, 2016. Infrasound from a tornado that occurred 19 km from the microphone on May 11, 2017 will be presented as well as an overview of other infrasonic observations. This work was supported by NSF Grant 1539070.

  10. Airborne lidar/radiometric measurements of cirrus cloud parameters and their application to LOWTRAN radiance evaluations

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.

    1990-01-01

    SRI has assembled an airborne lidar/radiometric instrumentation suite for mapping cirrus cloud distribution and analyzing cirrus cloud optical properties. Operation of upward viewing infrared radiometers from an airborne platform provides the optimum method of measuring high altitude cold cloud radiative properties with minimum interference from the thermal emission by the earth's surface and lower atmospheric components. Airborne installed sensors can also operate over large regional areas including water, urban, and mountain surfaces and above lower atmospheric convective clouds and haze layers. Currently available sensors installed on the SRI Queen Air aircraft are illustrated. Lidar and radiometric data records are processed for real time viewing on a color video screen. A cirrus cloud data example is presented as a black and white reproduction of a color display of data at the aircraft altitude of 12,000 ft, the 8 to 14 micron atmospheric radiation background was equivalent to a blackbody temperature of about -60 C and, therefore, the radiometer did not respond strongly to low density cirrus cloud concentrations detected by the lidar. Cloud blackbody temperatures (observed by radiometer) are shown plotted against midcloud temperatures (derived from lidar observed cloud heights and supporting temperature profiles) for data collected on 30 June and 28 July.

  11. SSULI/SSUSI UV Tomographic Images of Large-Scale Plasma Structuring

    NASA Astrophysics Data System (ADS)

    Hei, M. A.; Budzien, S. A.; Dymond, K.; Paxton, L. J.; Schaefer, R. K.; Groves, K. M.

    2015-12-01

    We present a new technique that creates tomographic reconstructions of atmospheric ultraviolet emission based on data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Special Sensor Ultraviolet Spectrographic Imager (SSUSI), both flown on the Defense Meteorological Satellite Program (DMSP) Block 5D3 series satellites. Until now, the data from these two instruments have been used independently of each other. The new algorithm combines SSULI/SSUSI measurements of 135.6 nm emission using the tomographic technique; the resultant data product - whole-orbit reconstructions of atmospheric volume emission within the satellite orbital plane - is substantially improved over the original data sets. Tests using simulated atmospheric emission verify that the algorithm performs well in a variety of situations, including daytime, nighttime, and even in the challenging terminator regions. A comparison with ALTAIR radar data validates that the volume emission reconstructions can be inverted to yield maps of electron density. The algorithm incorporates several innovative new features, including the use of both SSULI and SSUSI data to create tomographic reconstructions, the use of an inversion algorithm (Richardson-Lucy; RL) that explicitly accounts for the Poisson statistics inherent in optical measurements, and a pseudo-diffusion based regularization scheme implemented between iterations of the RL code. The algorithm also explicitly accounts for extinction due to absorption by molecular oxygen.

  12. Next Generation MODTRAN for Improved Atmospheric Correction of Spectral Imagery

    DTIC Science & Technology

    2016-01-29

    DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly referred...atmospheric correction process. Given the ever increasing capabilities of spectral sensors to quickly generate enormous quantities of data, combined...many DoD operational and research sensor and data processing systems, particularly those involving the removal of atmospheric effects, commonly

  13. Implementation of a rapid correction algorithm for adaptive optics using a plenoptic sensor

    NASA Astrophysics Data System (ADS)

    Ko, Jonathan; Wu, Chensheng; Davis, Christopher C.

    2016-09-01

    Adaptive optics relies on the accuracy and speed of a wavefront sensor in order to provide quick corrections to distortions in the optical system. In weaker cases of atmospheric turbulence often encountered in astronomical fields, a traditional Shack-Hartmann sensor has proved to be very effective. However, in cases of stronger atmospheric turbulence often encountered near the surface of the Earth, atmospheric turbulence no longer solely causes small tilts in the wavefront. Instead, lasers passing through strong or "deep" atmospheric turbulence encounter beam breakup, which results in interference effects and discontinuities in the incoming wavefront. In these situations, a Shack-Hartmann sensor can no longer effectively determine the shape of the incoming wavefront. We propose a wavefront reconstruction and correction algorithm based around the plenoptic sensor. The plenoptic sensor's design allows it to match and exceed the wavefront sensing capabilities of a Shack-Hartmann sensor for our application. Novel wavefront reconstruction algorithms can take advantage of the plenoptic sensor to provide a rapid wavefront reconstruction necessary for real time turbulence. To test the integrity of the plenoptic sensor and its reconstruction algorithms, we use artificially generated turbulence in a lab scale environment to simulate the structure and speed of outdoor atmospheric turbulence. By analyzing the performance of our system with and without the closed-loop plenoptic sensor adaptive optics system, we can show that the plenoptic sensor is effective in mitigating real time lab generated atmospheric turbulence.

  14. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Compiler)

    1972-01-01

    A variety of remote sensor data has aided geologic mapping in central Colorado. This report summarizes the application of sensor data to both regional and local geologic mapping and presents some conclusions on the practical use of remote sensing for solving geologic mapping problems. It is emphasized that this study was not conducted primarily to test or evaluate remote sensing systems or data, but, rather, to apply sensor data as an accessory tool for geologic mapping. The remote sensor data used were acquired by the NASA Earth Observations Aircraft Program. Conclusions reached on the utility of the various sensor data and interpretation techniques for geologic mapping were by-products of attempts to use them.

  15. Atmospheric correction for hyperspectral ocean color sensors

    NASA Astrophysics Data System (ADS)

    Ibrahim, A.; Ahmad, Z.; Franz, B. A.; Knobelspiesse, K. D.

    2017-12-01

    NASA's heritage Atmospheric Correction (AC) algorithm for multi-spectral ocean color sensors is inadequate for the new generation of spaceborne hyperspectral sensors, such as NASA's first hyperspectral Ocean Color Instrument (OCI) onboard the anticipated Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite mission. The AC process must estimate and remove the atmospheric path radiance contribution due to the Rayleigh scattering by air molecules and by aerosols from the measured top-of-atmosphere (TOA) radiance. Further, it must also compensate for the absorption by atmospheric gases and correct for reflection and refraction of the air-sea interface. We present and evaluate an improved AC for hyperspectral sensors beyond the heritage approach by utilizing the additional spectral information of the hyperspectral sensor. The study encompasses a theoretical radiative transfer sensitivity analysis as well as a practical application of the Hyperspectral Imager for the Coastal Ocean (HICO) and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensors.

  16. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  17. Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index Composites

    USGS Publications Warehouse

    ,

    2005-01-01

    The Advanced Very High Resolution Radiometer (AVHRR) is a broad-band scanner with four to six bands, depending on the model. The AVHRR senses in the visible, near-, middle-, and thermal- infrared portions of the electromagnetic spectrum. This sensor is carried on a series of National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), beginning with the Television InfraRed Observation Satellite (TIROS-N) in 1978. Since 1989, the United States Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) has been mapping the vegetation condition of the United States and Alaska using satellite information from the AVHRR sensor. The vegetation condition composites, more commonly called greenness maps, are produced every week using the latest information on the growth and condition of the vegetation. One of the most important aspects of USGS greenness mapping is the historical archive of information dating back to 1989. This historical stretch of information has allowed the USGS to determine a 'normal' vegetation condition. As a result, it is possible to compare the current week's vegetation condition with normal vegetation conditions. An above normal condition could indicate wetter or warmer than normal conditions, while a below normal condition could indicate colder or dryer than normal conditions. The interpretation of departure from normal will depend on the season and geography of a region.

  18. Wide area methane emissions mapping with airborne IPDA lidar

    NASA Astrophysics Data System (ADS)

    Bartholomew, Jarett; Lyman, Philip; Weimer, Carl; Tandy, William

    2017-08-01

    Methane emissions from natural gas production, storage, and transportation are potential sources of greenhouse gas emissions. Methane leaks also constitute revenue loss potential from operations. Since 2013, Ball Aerospace has been developing advanced airborne sensors using integrated path differential absorption (IPDA) LIDAR instrumentation to identify methane, propane, and longer-chain alkanes in the lowest region of the atmosphere. Additional funding has come from the U.S. Department of Transportation, Pipeline and Hazardous Materials Administration (PHMSA) to upgrade instrumentation to a broader swath coverage of up to 400 meters while maintaining high spatial sampling resolution and geolocation accuracy. Wide area coverage allows efficient mapping of emissions from gathering and distribution networks, processing facilities, landfills, natural seeps, and other distributed methane sources. This paper summarizes the benefits of advanced instrumentation for aerial methane emission mapping, describes the operating characteristics and design of this upgraded IPDA instrumentation, and reviews technical challenges encountered during development and deployment.

  19. Assessment of the Relative Accuracy of Hemispheric-Scale Snow-Cover Maps

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Kelly, Richard E.; Riggs, George A.; Chang, Alfred T. C.; Foster, James L.; Houser, Paul (Technical Monitor)

    2001-01-01

    There are several hemispheric-scale satellite-derived snow-cover maps available, but none has been fully validated. For the period October 23 - December 25, 2000, we compare snow maps of North America derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the National Oceanic and Atmospheric Administration (NOAA) National Operational Hydrologic Remote Sensing Center (NOHRSC), which both rely on satellite data from the visible and near-infrared parts of the spectrum; we also compare MODIS and Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) passive-microwave snow maps. The maps derived from visible and near-infrared data are more accurate for mapping snow cover than are the passive-microwave-derived maps, however discrepancies exist as to the location and extent of the snow cover among those maps. The large (approx. 30 km) footprint of the SSM/I data and the difficulty in distinguishing wet and shallow snow from wet or snow-free ground, reveal differences up to 5.32 million sq km in the amount of snow mapped using MODIS versus SSM/I data. Algorithms that utilize both visible and passive-microwave data, which would take advantage of the all-weather mapping ability of the passive-microwave data, will be refined following the launch of the Advanced Microwave Scanning Radiometer (AMSR) in the fall of 2001.

  20. Assessing the capabilities of hyperspectral remote sensing to map oil films on waters

    NASA Astrophysics Data System (ADS)

    Liu, Bingxin; Li, Ying; Zhu, Xueyuan

    2014-11-01

    The harm of oil spills has caused extensive public concern. Remote sensing technology has become one of the most effective means of monitoring oil spill. However, how to evaluate the information extraction capabilities of various sensors and choose the most effective one has become an important issue. The current evaluation of sensors to detect oil films was mainly using in-situ measured spectra as a reference to determine the favorable band, but ignoring the effects of environmental noise and spectral response function. To understand the precision and accuracy of environment variables acquired from remote sensing, it is important to evaluate the target detection sensitivity of the entire sensor-air-target system corresponding to the change of reflectivity. The measurement data associated with the evaluation is environmental noise equivalent reflectance difference (NEΔRE ), which depends on the instrument signal to noise ratio(SNR) and other image data noise (such as atmospheric variables, scattered sky light scattering and direct sunlight, etc.). Hyperion remote sensing data is taken as an example for evaluation of its oil spill detection capabilities with the prerequisite that the impact of the spatial resolution is ignored. In order to evaluate the sensor's sensitivity of the film of water, the reflectance spectral data of light diesel and crude oil film were used. To obtain Hyperion reflectance data, we used FLAASH to do the atmospheric correction. The spectral response functions of Hyperion sensor was used for filtering the measured reflectance of the oil films to the theoretic spectral response. Then, these spectral response spectra were normalized to NEΔRE, according to which, the sensitivity of the sensor in oil film detecting could be evaluated. For crude oil, the range for Hyperion sensor to identify the film is within the wavelength from 518nm to 610nm (Band 17 to Band 26 of Hyperion sensors), within which the thin film and thick film can also be distinguished. For light diesel oil film, the range for Hyperion sensor to identify the film is within the wavelength from 468nm to 752nm (Band 12 to Band 40 of Hyperion sensors).

  1. Spectral measurements and analyses of atmospheric effects on remote sensor data

    NASA Technical Reports Server (NTRS)

    Hulstrom, R. L.

    1975-01-01

    The radiance as measured by a satellite remote sensor is determined by a number of different factors, including the intervening atmosphere, the target reflectivity characteristics, the characteristics of the total incident solar irradiance, and the incident solar irradiance/sensor viewing geometry. Measurement techniques and instrumentation are considered, taking into account total and diffuse solar irradiance, target reflectance/radiance, atmospheric optical depth/transmittance, and atmospheric path radiance.

  2. Comparison of Calibration Techniques for Low-Cost Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Malings, C.; Ramachandran, S.; Tanzer, R.; Kumar, S. P. N.; Hauryliuk, A.; Zimmerman, N.; Presto, A. A.

    2017-12-01

    Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if high-quality but high-cost monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) sensor package has been developed at the Center for Atmospheric Particle Studies of Carnegie Mellon University, in collaboration with SenSevere LLC. This self-contained unit can measure up to five gases out of CO, SO2, NO, NO2, O3, VOCs, and CO2, along with temperature and relative humidity. Responses of individual gas sensors can vary greatly even when exposed to the same ambient conditions. Those of VOC sensors in particular were observed to vary by a factor-of-8, which suggests that each sensor requires its own calibration model. To this end, we apply and compare two different calibration methods to data collected by RAMP sensors collocated with a reference monitor station. The first method, random forest (RF) modeling, is a rule-based method which maps sensor responses to pollutant concentrations by implementing a trained sequence of decision rules. RF modeling has previously been used for other RAMP gas sensors by the group, and has produced precise calibrated measurements. However, RF models can only predict pollutant concentrations within the range observed in the training data collected during the collocation period. The second method, Gaussian process (GP) modeling, is a probabilistic Bayesian technique whereby broad prior estimates of pollutant concentrations are updated using sensor responses to generate more refined posterior predictions, as well as allowing predictions beyond the range of the training data. The accuracy and precision of these techniques are assessed and compared on VOC data collected during the summer of 2017 in Pittsburgh, PA. By combining pollutant data gathered by each RAMP sensor and applying appropriate calibration techniques, the potentially noisy or biased responses of individual sensors can be mapped to pollutant concentration values which are comparable to those of reference instruments.

  3. Interdisciplinary study of atmospheric processes and constituents of the mid-Atlantic coastal region.. [air pollution control studies in Virginia

    NASA Technical Reports Server (NTRS)

    Kindle, E. C.; Bandy, E. C.; Copeland, G.; Blais, R.; Levy, G.; Sonenshine, D.

    1975-01-01

    Past research projects for the year 1974-1975 are listed along with future research programs in the area of air pollution control, remote sensor analysis of smoke plumes, the biosphere component, and field experiments. A detailed budget analysis is presented. Attachments are included on the following topics: mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques, and use of LARS system for the quantitative determination of smoke plume lateral diffusion coefficients from ERTS images of Virginia.

  4. Sen2Cor for Sentinel-2

    NASA Astrophysics Data System (ADS)

    Main-Knorn, Magdalena; Pflug, Bringfried; Louis, Jerome; Debaecker, Vincent; Müller-Wilm, Uwe; Gascon, Ferran

    2017-10-01

    In the frame of the Copernicus programme, ESA has developed and launched the Sentinel-2 optical imaging mission that delivers optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. The Sentinel-2 mission is the constellation of two polar orbiting satellites Sentinel-2A and Sentinel-2B, each one equipped with an optical imaging sensor MSI (Multi-Spectral Instrument). Sentinel-2A was launched on June 23rd, 2015 and Sentinel-2B followed on March 7th, 2017. With the beginning of the operational phase the constellation of both satellites enable image acquisition over the same area every 5 days or less. To use unique potential of the Sentinel-2 data for land applications and ensure the highest quality of scientific exploitation, accurate correction of satellite images for atmospheric effects is required. Therefore the atmospheric correction processor Sen2Cor was developed by Telespazio VEGA Deutschland GmbH on behalf of ESA. Sen2Cor is a Level-2A processor which main purpose is to correct single-date Sentinel-2 Level-1C Top-Of-Atmosphere (TOA) products from the effects of the atmosphere in order to deliver a Level-2A Bottom-Of-Atmosphere (BOA) reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SCL) map with Quality Indicators for cloud and snow probabilities. Telespazio France and DLR have teamed up in order to provide the calibration and validation of the Sen2Cor processor. Here we provide an overview over the Sentinel-2 data, processor and products. It presents some processing examples of Sen2Cor applied to Sentinel-2 data, provides up-to-date information about the Sen2Cor release status and recent validation results at the time of the SPIE Remote Sensing 2017.

  5. Spectral reflectance and emissivity features of broad leaf plants: Prospects for remote sensing in the thermal infrared (8.0-14.0 μm)

    USGS Publications Warehouse

    Ribeiro da Luz, Beatriz; Crowley, James K.

    2007-01-01

    In contrast to visible and short-wave infrared data, thermal infrared spectra of broad leaf plants show considerable spectral diversity, suggesting that such data eventually could be utilized to map vegetation composition. However, remotely measuring the subtle emissivity features of leaves still presents major challenges. To be successful, sensors operating in the 8–14 μm atmospheric window must have high signal-to-noise and a small enough instantaneous field of view to allow measurements of only a few leaf surfaces. Methods for atmospheric compensation, temperature–emissivity separation, and spectral feature analysis also will need to be refined to allow the recognition, and perhaps, exploitation of leaf thermal infrared spectral properties.

  6. Cloud Retrieval Intercomparisons Between SEVIRI, MODIS and VIIRS with CHIMAERA PGE06 Data Collection 6 Products

    NASA Technical Reports Server (NTRS)

    Wind, Galina; Riedi, Jerome; Platnick, Steven; Heidinger, Andrew

    2014-01-01

    The Cross-platform HIgh resolution Multi-instrument AtmosphEric Retrieval Algorithms (CHIMAERA) system allows us to perform MODIS-like cloud top, optical and microphysical properties retrievals on any sensor that possesses a minimum set of common spectral channels. The CHIMAERA system uses a shared-core architecture that takes retrieval method out of the equation when intercomparisons are made. Here we show an example of such retrieval and a comparison of simultaneous retrievals done using SEVIRI, MODIS and VIIRS sensors. All sensor retrievals are performed using CLAVR-x (or CLAVR-x based) cloud top properties algorithm. SEVIRI uses the SAF_NWC cloud mask. MODIS and VIIRS use the IFF-based cloud mask that is a shared algorithm between MODIS and VIIRS. The MODIS and VIIRS retrievals are performed using a VIIRS branch of CHIMAERA that limits available MODIS channel set. Even though in that mode certain MODIS products such as multilayer cloud map are not available, the cloud retrieval remains fully equivalent to operational Data Collection 6.

  7. Middle Atmosphere Program. Handbook for MAP, Volume 17

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1985-01-01

    The Middle Atmosphere Program (MAP) handbook is divided into three parts. Part 1 consists of minutes of MAP steering committee meeting and MAP assembly. Part 2 consists of project and study group reports, such as: (1) Atmospheric Tides Middle Atmosphere Program (ATMAP), report of the Nov./Dec. 1981, and May 1982 observational campaigns; MAP/WINE experimenters meeting at Berlin, 1985; (3) MAP/WINE experimenters meeting at Loen, Norway, 1985; and (4) the penetration of ultraviolet solar radiation into the middle atmosphere. Part 3 consists of national reports.

  8. Design and application of star map simulation system for star sensors

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  9. Infrared and Passive Microwave Radiometric Sea Surface Temperatures and Their Relationships to Atmospheric Forcing

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.

    2004-01-01

    The current generation of infrared (IR) and passive microwave (MW) satellite sensors provides highly complementary information for monitoring sea surface temperature (SST). On the one hand, infrared sensors provide high resolution and high accuracy but are obscured by clouds. Microwave sensors on the other hand, provide coverage through non-precipitating clouds but have coarser resolution and generally poorer accuracy. Assuming that the satellite SST measurements do not have spatially variable biases, they can be blended combining the merits of both SST products. These factors have motivated recent work in blending the MW and IR data in an attempt to produce high-accuracy SST products with improved coverage in regions with persistent clouds. The primary sources of retrieval uncertainty are, however, different for the two sensors. The main uncertainty in the MW retrievals lies in the effects of wind-induced surface roughness and foam on emissivity, whereas the IR retrievals are more sensitive to the atmospheric water vapor and aerosol content. Average nighttime differences between the products for the month periods of January 1999 and June 2000 are shown. These maps show complex spatial and temporal differences as indicated by the strong spatially coherent features in the product differences and the changes between seasons. Clearly such differences need to be understood and accounted for if the products are to be combined. The overall goals of this project are threefold: (1) To understand the sources of uncertainty in the IR and MW SST retrievals and to characterize the errors affecting the two types of retrieval as a fiction of atmospheric forcing; (2) To demonstrate how representative the temperature difference between the two satellite products is of Delta T; (3) To apply bias adjustments and to device a comprehensive treatment of the behavior of the temperature difference across the oceanic skin layer to determine the best method for blending thermal infrared and passive microwave measurements of SSTs.

  10. Assessment, Validation, and Refinement of the Atmospheric Correction Algorithm for the Ocean Color Sensors. Chapter 19

    NASA Technical Reports Server (NTRS)

    Wang, Menghua

    2003-01-01

    The primary focus of this proposed research is for the atmospheric correction algorithm evaluation and development and satellite sensor calibration and characterization. It is well known that the atmospheric correction, which removes more than 90% of sensor-measured signals contributed from atmosphere in the visible, is the key procedure in the ocean color remote sensing (Gordon and Wang, 1994). The accuracy and effectiveness of the atmospheric correction directly affect the remotely retrieved ocean bio-optical products. On the other hand, for ocean color remote sensing, in order to obtain the required accuracy in the derived water-leaving signals from satellite measurements, an on-orbit vicarious calibration of the whole system, i.e., sensor and algorithms, is necessary. In addition, it is important to address issues of (i) cross-calibration of two or more sensors and (ii) in-orbit vicarious calibration of the sensor-atmosphere system. The goal of these researches is to develop methods for meaningful comparison and possible merging of data products from multiple ocean color missions. In the past year, much efforts have been on (a) understanding and correcting the artifacts appeared in the SeaWiFS-derived ocean and atmospheric produces; (b) developing an efficient method in generating the SeaWiFS aerosol lookup tables, (c) evaluating the effects of calibration error in the near-infrared (NIR) band to the atmospheric correction of the ocean color remote sensors, (d) comparing the aerosol correction algorithm using the singlescattering epsilon (the current SeaWiFS algorithm) vs. the multiple-scattering epsilon method, and (e) continuing on activities for the International Ocean-Color Coordinating Group (IOCCG) atmospheric correction working group. In this report, I will briefly present and discuss these and some other research activities.

  11. Particle trajectories and clearing times after mechanical door openings on the MSX satellite

    NASA Astrophysics Data System (ADS)

    Green, B. David; Galica, Gary E.; Mulhall, Phillip A.; Dyer, James S.; Uy, O. Manuel

    1996-11-01

    Particles generated from spacecraft surfaces will interfere with the remote sensing of emissions from objects in space, the earth, and its upper atmosphere. We have previously reviewed the sources, sizes, and composition of particles observed in local spacecraft environments and presented predictions of the optical signatures these particles would generate and presented predictions of the signatures of these nearfield particles as detected by spacecraft optical systems. Particles leaving spacecraft surfaces will be accelerated by atmospheric drag (and magnetic forces if charged). Velocities and accelerations relative to the spacecraft x,y,z, coordinate system allow the particle to move through the optical sensors' field-of-view after they leave the spacecraft surfaces. The particle's trajectory during the optical system integration time gives rise to a particle track in the detected image. Particles can be remotely detected across the UV-IR spectral region by their thermal emission, scattered sunlight, and earthshine. The spectral-bandpass-integrated signatures of these particles (dependent upon size and composition) is then mapped back onto the UV, visible, and IR sensor systems. At distances less than kilometers, these particles are out of focus for telescoped imaging systems. The image produced is blurred over several pixels. We present here data on the optical signatures observed after the mechanical doors covering the MSX primary optical sensors are removed. This data represents the first observations by these sensors on-orbit, and must be treated as preliminary until a more careful review and calibration is completed. Within these constraints, we have analyzed the data to derive preliminarily positions and trajectories.

  12. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    NASA Technical Reports Server (NTRS)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  13. CMOS Imaging Sensor Technology for Aerial Mapping Cameras

    NASA Astrophysics Data System (ADS)

    Neumann, Klaus; Welzenbach, Martin; Timm, Martin

    2016-06-01

    In June 2015 Leica Geosystems launched the first large format aerial mapping camera using CMOS sensor technology, the Leica DMC III. This paper describes the motivation to change from CCD sensor technology to CMOS for the development of this new aerial mapping camera. In 2002 the DMC first generation was developed by Z/I Imaging. It was the first large format digital frame sensor designed for mapping applications. In 2009 Z/I Imaging designed the DMC II which was the first digital aerial mapping camera using a single ultra large CCD sensor to avoid stitching of smaller CCDs. The DMC III is now the third generation of large format frame sensor developed by Z/I Imaging and Leica Geosystems for the DMC camera family. It is an evolution of the DMC II using the same system design with one large monolithic PAN sensor and four multi spectral camera heads for R,G, B and NIR. For the first time a 391 Megapixel large CMOS sensor had been used as PAN chromatic sensor, which is an industry record. Along with CMOS technology goes a range of technical benefits. The dynamic range of the CMOS sensor is approx. twice the range of a comparable CCD sensor and the signal to noise ratio is significantly better than with CCDs. Finally results from the first DMC III customer installations and test flights will be presented and compared with other CCD based aerial sensors.

  14. Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2017-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  15. Particle-based optical pressure sensors for 3D pressure mapping.

    PubMed

    Banerjee, Niladri; Xie, Yan; Chalaseni, Sandeep; Mastrangelo, Carlos H

    2015-10-01

    This paper presents particle-based optical pressure sensors for in-flow pressure sensing, especially for microfluidic environments. Three generations of pressure sensitive particles have been developed- flat planar particles, particles with integrated retroreflectors and spherical microballoon particles. The first two versions suffer from pressure measurement dependence on particles orientation in 3D space and angle of interrogation. The third generation of microspherical particles with spherical symmetry solves these problems making particle-based manometry in microfluidic environment a viable and efficient methodology. Static and dynamic pressure measurements have been performed in liquid medium for long periods of time in a pressure range of atmospheric to 40 psi. Spherical particles with radius of 12 μm and balloon-wall thickness of 0.5 μm are effective for more than 5 h in this pressure range with an error of less than 5%.

  16. Analytical design of sensors for measuring during terminal phase of atmospheric temperature planetary entry

    NASA Technical Reports Server (NTRS)

    Millard, J. P.; Green, M. J.; Sommer, S. C.

    1972-01-01

    An analytical study was conducted to develop a sensor for measuring the temperature of a planetary atmosphere from an entry vehicle traveling at supersonic speeds and having a detached shock. Such a sensor has been used in the Planetary Atmosphere Experiments Test Probe (PAET) mission and is planned for the Viking-Mars mission. The study specifically considered butt-welded thermocouple sensors stretched between two support posts; however, the factors considered are sufficiently general to apply to other sensors as well. This study included: (1) an investigation of the relation between sensor-measured temperature and free-stream conditions; (2) an evaluation of the effects of extraneous sources of heat; (3) the development of a computer program for evaluating sensor response during entry; and (4) a parametric study of sensor design characteristics.

  17. Middle atmosphere electrical structure, dynamics and coupling

    NASA Technical Reports Server (NTRS)

    Hale, L. C.

    1984-01-01

    The ram current to ion traps and the insensitivity of ion conductivity to compressibility provide the basis of robust techniques for middle atmosphere measurements. Gerdien condensers are more difficult to implement but provide more information. Mesospheric electrical conductivity shows many orders of magnitude variability, with depressions below gas phase model values indicating dominance by aerosol particles. The mobility of these ions has been directly measured and indicates particles of thousands of AMU. Large mesospheric fields have come into question, and diagnostic measurements show that many such measurements may be artifacts. However, some measurements of V/m fields with symmetrical and redundant sensors appear to be real. These fields complicate the 'mapping' picture of electrical coupling and may also modulate the transport of aerosol particles. They are probably related to neutral atmospheric dynamics and/or the aerosol particles. Lightning couples much more energy to the middle atmosphere and above than previously suspected, primarily in the ELF-UHF range. There are many important unanswered questions in this relatively unexplored frontier area which may be answered with low cost balloon and sounding rocket experiments.

  18. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    NASA Astrophysics Data System (ADS)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  19. On-the-go mapping of soil mechanical resistance using a linear depth effect model.

    USDA-ARS?s Scientific Manuscript database

    An instrumented blade sensor was developed to map soil mechanical resistance as well as its change with depth. The sensor has become a part of the Integrated Soil Physical Properties Mapping System (ISPPMS), which also includes an optical and a capacitor-based sensor. The instrumented blade of the...

  20. On the soil moisture estimate at basin scale in Mediterranean basins with the ASAR sensor: the Mulargia basin case study

    NASA Astrophysics Data System (ADS)

    Fois, Laura; Montaldo, Nicola

    2017-04-01

    Soil moisture plays a key role in water and energy exchanges between soil, vegetation and atmosphere. For water resources planning and managementthesoil moistureneeds to be accurately and spatially monitored, specially where the risk of desertification is high, such as Mediterranean basins. In this sense active remote sensors are very attractive for soil moisture monitoring. But Mediterranean basinsaretypicallycharacterized by strong topography and high spatial variability of physiographic properties, and only high spatial resolution sensorsare potentially able to monitor the strong soil moisture spatial variability.In this regard the Envisat ASAR (Advanced Synthetic Aperture Radar) sensor offers the attractive opportunity ofsoil moisture mapping at fine spatial and temporal resolutions(up to 30 m, every 30 days). We test the ASAR sensor for soil moisture estimate in an interesting Sardinian case study, the Mulargia basin withan area of about 70 sq.km. The position of the Sardinia island in the center of the western Mediterranean Sea basin, its low urbanization and human activity make Sardinia a perfect reference laboratory for Mediterranean hydrologic studies. The Mulargia basin is a typical Mediterranean basinin water-limited conditions, and is an experimental basin from 2003. For soil moisture mapping23 satellite ASAR imagery at single and dual polarization were acquired for the 2003-2004period.Satellite observationsmay bevalidated through spatially distributed soil moisture ground-truth data, collected over the whole basin using the TDR technique and the gravimetric method, in days with available radar images. The results show that ASAR sensor observations can be successfully used for soil moisture mapping at different seasons, both wet and dry, but an accurate calibration with field data is necessary. We detect a strong relationship between the soil moisture spatial variability and the physiographic properties of the basin, such as soil water storage capacity, deep and texture of soils, type and density of vegetation, and topographic parameters. Finally we demonstrate that the high resolution ASAR imagery are an attractive tool for estimating surface soil moisture at basin scale, offering a unique opportunity for monitoring the soil moisture spatial variability in typical Mediterranean basins.

  1. Assessment and Prediction of Natural Hazards from Satellite Imagery

    PubMed Central

    Gillespie, Thomas W.; Chu, Jasmine; Frankenberg, Elizabeth; Thomas, Duncan

    2013-01-01

    Since 2000, there have been a number of spaceborne satellites that have changed the way we assess and predict natural hazards. These satellites are able to quantify physical geographic phenomena associated with the movements of the earth’s surface (earthquakes, mass movements), water (floods, tsunamis, storms), and fire (wildfires). Most of these satellites contain active or passive sensors that can be utilized by the scientific community for the remote sensing of natural hazards over a number of spatial and temporal scales. The most useful satellite imagery for the assessment of earthquake damage comes from high-resolution (0.6 m to 1 m pixel size) passive sensors and moderate resolution active sensors that can quantify the vertical and horizontal movement of the earth’s surface. High-resolution passive sensors have been used to successfully assess flood damage while predictive maps of flood vulnerability areas are possible based on physical variables collected from passive and active sensors. Recent moderate resolution sensors are able to provide near real time data on fires and provide quantitative data used in fire behavior models. Limitations currently exist due to atmospheric interference, pixel resolution, and revisit times. However, a number of new microsatellites and constellations of satellites will be launched in the next five years that contain increased resolution (0.5 m to 1 m pixel resolution for active sensors) and revisit times (daily ≤ 2.5 m resolution images from passive sensors) that will significantly improve our ability to assess and predict natural hazards from space. PMID:25170186

  2. Atlas of Seasonal Means Simulated by the NSIPP 1 Atmospheric GCM. Volume 17

    NASA Technical Reports Server (NTRS)

    Suarez, Max J. (Editor); Bacmeister, Julio; Pegion, Philip J.; Schubert, Siegfried D.; Busalacchi, Antonio J. (Technical Monitor)

    2000-01-01

    This atlas documents the climate characteristics of version 1 of the NASA Seasonal-to-Interannual Prediction Project (NSIPP) Atmospheric General Circulation Model (AGCM). The AGCM includes an interactive land model (the Mosaic scheme), and is part of the NSIPP coupled atmosphere-land-ocean model. The results presented here are based on a 20-year (December 1979-November 1999) "ANIIP-style" integration of the AGCM in which the monthly-mean sea-surface temperature and sea ice are specified from observations. The climate characteristics of the AGCM are compared with the National Centers for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasting (ECMWF) reanalyses. Other verification data include Special Sensor Microwave/Imager (SSNM) total precipitable water, the Xie-Arkin estimates of precipitation, and Earth Radiation Budget Experiment (ERBE) measurements of short and long wave radiation. The atlas is organized by season. The basic quantities include seasonal mean global maps and zonal and vertical averages of circulation, variance/covariance statistics, and selected physics quantities.

  3. Geospatial Analysis and Remote Sensing from Airplanes and Satellites for Cultural Resources Management

    NASA Technical Reports Server (NTRS)

    Giardino, Marco J.; Haley, Bryan S.

    2005-01-01

    Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously unknown features. All of these applications are pertinent to the goals of site discovery and assessment in cultural resource management.

  4. Spaceborne imaging radar research in the 90's

    NASA Technical Reports Server (NTRS)

    Elachi, Charles

    1986-01-01

    The imaging radar experiments on SEASAT and on the space shuttle (SIR-A and SIR-B) have led to a wide interest in the use of spaceborne imaging radars in Earth and planetary sciences. The radar sensors provide unique and complimentary information to what is acquired with visible and infrared imagers. This includes subsurface imaging in arid regions, all weather observation of ocean surface dynamic phenomena, structural mapping, soil moisture mapping, stereo imaging and resulting topographic mapping. However, experiments up to now have exploited only a very limited range of the generic capability of radar sensors. With planned sensor developments in the late 80's and early 90's, a quantum jump will be made in our ability to fully exploit the potential of these sensors. These developments include: multiparameter research sensors such as SIR-C and X-SAR, long-term and global monitoring sensors such as ERS-1, JERS-1, EOS, Radarsat, GLORI and the spaceborne sounder, planetary mapping sensors such as the Magellan and Cassini/Titan mappers, topographic three-dimensional imagers such as the scanning radar altimeter and three-dimensional rain mapping. These sensors and their associated research are briefly described.

  5. Atmospheric transformation of multispectral remote sensor data. [Great Lakes

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Principal Investigator)

    1977-01-01

    The author has identified the following significant results. The effects of earth's atmosphere were accounted for, and a simple algorithm, based upon a radiative transfer model, was developed to determine the radiance at earth's surface free of atmospheric effects. Acutal multispectral remote sensor data for Lake Erie and associated optical thickness data were used to demonstrate the effectiveness of the atmospheric transformation algorithm. The basic transformation was general in nature and could be applied to the large scale processing of multispectral aircraft or satellite remote sensor data.

  6. New atmospheric sensor analysis study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1989-01-01

    The functional capabilities of the ESAD Research Computing Facility are discussed. The system is used in processing atmospheric measurements which are used in the evaluation of sensor performance, conducting design-concept simulation studies, and also in modeling the physical and dynamical nature of atmospheric processes. The results may then be evaluated to furnish inputs into the final design specifications for new space sensors intended for future Spacelab, Space Station, and free-flying missions. In addition, data gathered from these missions may subsequently be analyzed to provide better understanding of requirements for numerical modeling of atmospheric phenomena.

  7. Validation of CERES/TERRA Data

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Wieliski, Bruce A.; Smith, G. Louis; Lee, Robert B.; Priestley, Kory J.; Charlock, Thomas P.; Kratz, David P.

    2000-01-01

    There are 2 CERES scanning radiometer instruments aboard the TERRA spacecraft, one for mapping the solar radiation reflected from the Earth and the outgoing longwave radiation and the other for measuring the anisotropy of the radiation. Each CERES instrument has on-board calibration devices, which have demonstrated that from ground to orbit the broadband total and shortwave sensor responses maintained their ties to the International Temperature Scale of 1990 at precisions approaching radiances have been validated in orbit to +/- 0.3 % (0.3 W/sq m sr). Top of atmosphere fluxes are produced by use of the CERES data alone. By including data from other instruments, surface radiation fluxes and radiant fluxes within the atmosphere and at its top, shortwave and longwave, for both up and down components, are derived. Validation of these data products requires ground and aircraft measurements of fluxes and of cloud properties.

  8. Depth map generation using a single image sensor with phase masks.

    PubMed

    Jang, Jinbeum; Park, Sangwoo; Jo, Jieun; Paik, Joonki

    2016-06-13

    Conventional stereo matching systems generate a depth map using two or more digital imaging sensors. It is difficult to use the small camera system because of their high costs and bulky sizes. In order to solve this problem, this paper presents a stereo matching system using a single image sensor with phase masks for the phase difference auto-focusing. A novel pattern of phase mask array is proposed to simultaneously acquire two pairs of stereo images. Furthermore, a noise-invariant depth map is generated from the raw format sensor output. The proposed method consists of four steps to compute the depth map: (i) acquisition of stereo images using the proposed mask array, (ii) variational segmentation using merging criteria to simplify the input image, (iii) disparity map generation using the hierarchical block matching for disparity measurement, and (iv) image matting to fill holes to generate the dense depth map. The proposed system can be used in small digital cameras without additional lenses or sensors.

  9. High resolution hybrid optical and acoustic sea floor maps (Invited)

    NASA Astrophysics Data System (ADS)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final hybrid map retains the strengths of both sensors and shows improvement over the single modality maps and a naively assembled multi-modal map where all the data points are included and averaged. Results will be presented from marine geological and archaeological applications using a 1350 kHz BlueView multibeam sonar and 1.3 megapixel digital still cameras.

  10. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  11. SpecTIR and SEBASS analysis of the National Mining District, Humboldt County, Nevada

    NASA Astrophysics Data System (ADS)

    Morken, Todd O.

    The purpose of this study was to evaluate the minerals and materials that could be uniquely identified and mapped from measurements made with airborne hyperspectral SpecTIR VNIR/SWIR and SEBASS TIR sensors over areas in the National Mining District. SpecTIR Corporation and Aerospace Corporation acquired Hyperspectral measurements on June 26, 2008 using their ProSpecTIR and SEBASS sensors respectively. In addition the effects of vegetation, elevation, the atmosphere on spectral measurements were evaluated to determine their impact upon the data analysis and target identification. The National Mining District is located approximately 75 miles northeast of Winnemucca, Nevada at the northern end of the Santa Rosa Mountains. Precious metal mining has been dormant in this area since the 1940's, however with increased metal prices over the last decade economic interest in the region has increased substantially. Buckskin Mountain has a preserved alteration assemblage that is exposed in topographically steep terrain, ideal for exploring what hydrothermal alteration products can be identified and mapped in these datasets. These Visible Near Infrared (VNIR), Short Wave Infrared (SWIR), and Long Wave Infrared (LWIR) hyperspectral datasets were used to identify and map kaolinite, alunite, quartz, opal, and illite/muscovite, all of which are useful exploration target identifiers and can indicate regions of alteration. These mapping results were then combined with and compared to other geospatial data in a geographic information systems (GIS) database. The TIR hyperspectral data provided significant additional information that can benefit geologic exploration and demonstrated its usefulness as an additional tool for geological exploration.

  12. EIT-based fabric pressure sensing.

    PubMed

    Yao, A; Yang, C L; Seo, J K; Soleimani, M

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results.

  13. AURORA: The Next Generation Space Weather Sensor for NPOESS

    NASA Astrophysics Data System (ADS)

    Paxton, L.; Morrison, D.; Santo, A.; Ogorzalek, B.; Goldsten, J.; Boldt, J.; Kil, H.; Zhang, Y.; Demajistre, R.; Wolven, B.; Meng, C.

    2005-12-01

    The AURORA sensor slated for flight on the NPOESS satellites represents the culmination of over 20 years of experience at JHU/APL in the design, manufacture, flight, operation and analysis of compact, cost-effective far ultraviolet sensors for space weather data collection. The far ultraviolet covers the spectral range from about 115 to 185 nm. This region is ideal for observations of the upper atmosphere because, at these wavelengths, the lower atmosphere and Earth's surface are black. AURORA will observe the mid- and low-latitude F-region ionosphere, the auroral E-region ionosphere, the day thermosphere composition, auroral energy deposition and map ionospheric irregularities. AURORA implements the flight-proven design derived from SSUSI on the DMSP Block 5D spacecraft and GUVI on the NASA TIMED spacecraft. These instruments have provided the instrument and algorithm heritage for NPOESS/AURORA. In this talk the performance capabilities of the AURORA instrument will be summarized along with the design of the instrument and algorithms. Example products will be shown for each of the measurement regimes. We acknowldge support from DMSP and NASA and the collaboration with our science colleagues at the Aerospace Corporation (Paul Straus, Jim Hecht, Dave McKenzie, and Andy Christensen) and Computational Physics (Doug Strickland, Hal Knight, and Scott Evans) and Naval Research Laboratory (Robert Meier, Mike Picone, Stefan Thonnard, Pat Dandenault, and Andy Stefan) and our colleagues at APL (Michele Weiss, Doug Holland, Bill Wood, and Jim Eichert) among others.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, John R.; Brubaker, Erik; Vetter, Kai

    In an effort to characterize the fast neutron radiation background, 16 EJ-309 liquid scintillator cells were installed in the Radiological Multi-sensor Analysis Platform (RadMAP) to collect data in the San Francisco Bay Area. Each fast neutron event was associated with specific weather metrics (pressure, temperature, absolute humidity) and GPS coordinates. Furthermore, the expected exponential dependence of the fast neutron count rate on atmospheric pressure was demonstrated and event rates were subsequently adjusted given the measured pressure at the time of detection. Pressure adjusted data was also used to investigate the influence of other environmental conditions on the neutron background rate.more » Using National Oceanic and Atmospheric Administration (NOAA) coastal area lidar data, an algorithm was implemented to approximate sky-view factors (the total fraction of visible sky) for points along RadMAPs route. In the three areas we analyzed, San Francisco, Downtown Oakland, and Berkeley, all demonstrated a suppression in the background rate of over 50% for the range of sky-view factors measured. This effect, which is due to the shielding of cosmic-ray produced neutrons by surrounding buildings, was comparable to the pressure influence which yielded a 32% suppression in the count rate over the range of pressures measured.« less

  15. First Retrieval of Surface Lambert Albedos From Mars Reconnaissance Orbiter CRISM Data

    NASA Astrophysics Data System (ADS)

    McGuire, P. C.; Arvidson, R. E.; Murchie, S. L.; Wolff, M. J.; Smith, M. D.; Martin, T. Z.; Milliken, R. E.; Mustard, J. F.; Pelkey, S. M.; Lichtenberg, K. A.; Cavender, P. J.; Humm, D. C.; Titus, T. N.; Malaret, E. R.

    2006-12-01

    We have developed a pipeline-processing software system to convert radiance-on-sensor for each of 72 out of 544 CRISM spectral bands used in global mapping to the corresponding surface Lambert albedo, accounting for atmospheric, thermal, and photoclinometric effects. We will present and interpret first results from this software system for the retrieval of Lambert albedos from CRISM data. For the multispectral mapping modes, these pipeline-processed 72 spectral bands constitute all of the available bands, for wavelengths from 0.362-3.920 μm, at 100-200 m/pixel spatial resolution, and ~ 0.006\\spaceμm spectral resolution. For the hyperspectral targeted modes, these pipeline-processed 72 spectral bands are only a selection of all of the 544 spectral bands, but at a resolution of 15-38 m/pixel. The pipeline processing for both types of observing modes (multispectral and hyperspectral) will use climatology, based on data from MGS/TES, in order to estimate ice- and dust-aerosol optical depths, prior to the atmospheric correction with lookup tables based upon radiative-transport calculations via DISORT. There is one DISORT atmospheric-correction lookup table for converting radiance-on-sensor to Lambert albedo for each of the 72 spectral bands. The measurements of the Emission Phase Function (EPF) during targeting will not be employed in this pipeline processing system. We are developing a separate system for extracting more accurate aerosol optical depths and surface scattering properties. This separate system will use direct calls (instead of lookup tables) to the DISORT code for all 544 bands, and it will use the EPF data directly, bootstrapping from the climatology data for the aerosol optical depths. The pipeline processing will thermally correct the albedos for the spectral bands above ~ 2.6 μm, by a choice between 4 different techniques for determining surface temperature: 1) climatology, 2) empirical estimation of the albedo at 3.9 μm from the measured albedo at 2.5 μm, 3) a physical thermal model (PTM) based upon maps of thermal inertia from TES and coarse-resolution surface slopes (SS) from MOLA, and 4) a photoclinometric extension to the PTM that uses CRISM albedos at 0.41 μm to compute the SS at CRISM spatial resolution. For the thermal correction, we expect that each of these 4 different techniques will be valuable for some fraction of the observations.

  16. Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1988-01-01

    The focus of the workshop was the assessment of data quality by the AVIRIS project. Summaries of 16 of the presentations are published. The AVIRIS performance evaluation period began in June 87 with flight data collection in the eastern U.S., and continued in the west until Oct. 87, after which the instrument was returned for post flight calibration. At the beginning, the sensor met all of the spatial, spectral and radiometric performance requirements except in spectrometer D, where the signal to noise ratio was below the required value. By the end, sensor performance had deteriorated due to failure of 2 critical parts and to some design deficiences. The independent assessment by the NASA investigators confirmed the assessment by the AVIRIS project. Some scientific results were derived and are presented. These include the mapping of the spatial variation of atmospheric precipitable water, detection of shift in chlorophyll red, and mineral identification.

  17. Middle Atmosphere Program. Handbook for MAP, volume 11

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1984-01-01

    An overview is presented of the research activities and objectives of the middle atmosphere program (MAP). Status reports are presented of projects underway in the area of middle atmosphere climatology and atmospheric chemistry condensed minutes of MAP steering committee meetings are contained in this volume. Research recommendations for increased U.S. participation in the middle atmosphere program are given.

  18. Atmospheric Dynamics on Venus, Jupiter, and Saturn: An Observational and Analytical Study

    NASA Technical Reports Server (NTRS)

    Bridger, Alison; Magalhaes, Julio A.; Young, Richard E.

    2000-01-01

    Determining the static stability of Jupiter's atmosphere below the visible cloud levels is important for understanding the dynamical modes by which energy and momentum are transported through Jupiter's deep troposphere. The Galileo Probe Atmospheric Structure Investigation (ASI) employed pressure and temperature sensors to directly measure these state variables during the parachute-descent phase, which started at a pressure (p) of 0.4 bars and ended at p= 22 bars. The internal temperature of the probe underwent large temperature fluctuations which significantly exceeded design specifications. Corrections for these anomalous interior temperatures have been evaluated based on laboratory data acquired after the mission using the flight spare hardware. The corrections to the pressure sensor readings was particularly large and the uncertainties in the atmospheric pressures derived from the p sensor measurements may still be significant. We have sought to estimate the formal uncertainties in the static stability derived from the p and T sensor measurements directly and to devise means of assessing the static stability of Jupiter's atmosphere which do not rely on the p sensor data.

  19. Coral Reef Remote Sensing Using Simulated VIIRS and LDCM Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.; Blonski, Slawomir; Moore, Roxzana

    2008-01-01

    The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems-the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM)- might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA s ICON/CREWS DST.

  20. Coral Reef Remote Sensing using Simulated VIIRS and LDCM Imagery

    NASA Technical Reports Server (NTRS)

    Estep, Leland; Spruce, Joseph P.

    2007-01-01

    The Rapid Prototyping Capability (RPC) node at NASA Stennis Space Center, MS, was used to simulate NASA next-generation sensor imagery over well-known coral reef areas: Looe Key, FL, and Kaneohe Bay, HI. The objective was to assess the degree to which next-generation sensor systems the Visible/Infrared Imager/Radiometer Suite (VIIRS) and the Landsat Data Continuity Mission (LDCM) might provide key input to the National Oceanographic and Atmospheric Administration (NOAA) Integrated Coral Observing Network (ICON)/Coral Reef Early Warning System (CREWS) Decision Support Tool (DST). The DST data layers produced from the simulated imagery concerned water quality and benthic classification map layers. The water optical parameters of interest were chlorophyll (Chl) and the absorption coefficient (a). The input imagery used by the RPC for simulation included spaceborne (Hyperion) and airborne (AVIRIS) hyperspectral data. Specific field data to complement and aid in validation of the overflight data was used when available. The results of the experiment show that the next-generation sensor systems are capable of providing valuable data layer resources to NOAA's ICON/CREWS DST.

  1. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots

    PubMed Central

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-01-01

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed. PMID:29186843

  2. A 2.5D Map-Based Mobile Robot Localization via Cooperation of Aerial and Ground Robots.

    PubMed

    Nam, Tae Hyeon; Shim, Jae Hong; Cho, Young Im

    2017-11-25

    Recently, there has been increasing interest in studying the task coordination of aerial and ground robots. When a robot begins navigation in an unknown area, it has no information about the surrounding environment. Accordingly, for robots to perform tasks based on location information, they need a simultaneous localization and mapping (SLAM) process that uses sensor information to draw a map of the environment, while simultaneously estimating the current location of the robot on the map. This paper aims to present a localization method based in cooperation between aerial and ground robots in an indoor environment. The proposed method allows a ground robot to reach accurate destination by using a 2.5D elevation map built by a low-cost RGB-D (Red Green and Blue-Depth) sensor and 2D Laser sensor attached onto an aerial robot. A 2.5D elevation map is formed by projecting height information of an obstacle using depth information obtained by the RGB-D sensor onto a grid map, which is generated by using the 2D Laser sensor and scan matching. Experimental results demonstrate the effectiveness of the proposed method for its accuracy in location recognition and computing speed.

  3. A methodology for luminance map retrieval using airborne hyperspectral and photogrammetric data

    NASA Astrophysics Data System (ADS)

    Pipia, Luca; Alamús, Ramon; Tardà, Anna; Pérez, Fernando; Palà, Vicenç; Corbera, Jordi

    2014-10-01

    This paper puts forward a methodology developed at the Institut Cartogràfic i Geològic de Catalunya (ICGC) to quantify upwelling light flux using hyperspectral and photogrammetric airborne data. The work was carried out in the frame of a demonstrative study requested by the municipality of Sant Cugat del Vallès, in the vicinity of Barcelona (Spain), and aimed to envisage a new approach to assess artificial lighting policies and actions as alternative to field campaigns. Hyperspectral and high resolution multispectral/panchromatic data were acquired simultaneously over urban areas. In order to avoid moon light contributions, data were acquired during the first days of new moon phase. Hyperspectral data were radiometrically calibrated. Then, National Center for Environmental Prediction (NCEP) atmospheric profiles were employed to estimate the actual Column Water Vapor (CWV) to be passed to ModTran5.0 for the atmospheric transmissivity τ calculation. At-the-ground radiance was finally integrated using the photopic sensitivity curve to generate a luminance map (cdm-2) of the flown area by mosaicking the different flight tracks. In an attempt to improve the spatial resolution and enhance the dynamic range of the luminance map, a sensor-fusion strategy was finally looked into. DMC Photogrammetric data acquired simultaneously to hyperspectral information were converted into at-the-ground radiance and upscaled to CASI spatial resolution. High-resolution (HR) luminance maps with enhanced dynamic range were finally generated by linearly fitting up-scaled DMC mosaics to the CASI-based luminance information. In the end, a preliminary assessment of the methodology is carried out using non-simultaneous in-situ measurements.

  4. Effect of Humid Aging on the Oxygen Adsorption in SnO₂ Gas Sensors.

    PubMed

    Suematsu, Koichi; Ma, Nan; Watanabe, Ken; Yuasa, Masayoshi; Kida, Tetsuya; Shimanoe, Kengo

    2018-01-16

    To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO₂ particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO₂ resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants ( K ₁; for O - adsorption, K ₂; for O 2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K ₁ and K ₂ in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O - and O 2- . These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO₂ resistive-type gas sensors in dry and wet atmospheres.

  5. Tomographic wavefront retrieval by combined use of geometric and plenoptic sensors

    NASA Astrophysics Data System (ADS)

    Trujillo-Sevilla, J. M.; Rodríguez-Ramos, L. F.; Fernández-Valdivia, Juan J.; Marichal-Hernández, José G.; Rodríguez-Ramos, J. M.

    2014-05-01

    Modern astronomic telescopes take advantage of multi-conjugate adaptive optics, in which wavefront sensors play a key role. A single sensor capable of measuring wavefront phases at any angle of observation would be helpful when improving atmospheric tomographic reconstruction. A new sensor combining both geometric and plenoptic arrangements is proposed, and a simulation demonstrating its working principle is also shown. Results show that this sensor is feasible, and also that single extended objects can be used to perform tomography of atmospheric turbulence.

  6. Middle Atmosphere Program. Handbook for MAP, volume 6

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1982-01-01

    A directory of scientists associated with the Middle Atmosphere Program (MAP) is presented. The MAP steering committee, the standing committees, MAP study groups, and MAP projects are mentioned along with the MAP secretariat and regional consultative group.

  7. Precision Mapping of the California Connected Vehicle Testbed Corridor

    DOT National Transportation Integrated Search

    2015-11-01

    In this project the University of California Riverside mapping sensor hardware was successfully mounted on an instrumented vehicle to map a segment of the California Connected Vehicle testbed corridor on State Route 82. After calibrating the sensor p...

  8. Technology needs assessment of an atmospheric observation system for tropospheric research missions, part 1

    NASA Technical Reports Server (NTRS)

    Alvarado, D. R.; Bortner, M. H.; Grenda, R. N.; Frippel, G. G.; Halsey, H.; Neste, S. L.; Kritikos, H.; Keafer, L. S.; Deryder, L. J.

    1982-01-01

    The technology advancements needed to implement the atmospheric observation satellite systems for air quality research were identified. Tropospheric measurements are considered. The measurements and sensors are based on a model of knowledge objectives in atmospheric science. A set of potential missions and attendant spacecraft and sensors is postulated. The results show that the predominant technology needs will be in passive and active sensors for accurate and frequent global measurements of trace gas concentration profiles.

  9. Development of a Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation and in situ Sensors in a Sensor Web Based Approach

    PubMed Central

    Kooistra, Lammert; Bergsma, Aldo; Chuma, Beatus; de Bruin, Sytze

    2009-01-01

    This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model. This paper presents the vegetation productivity model, the sensor data sources and the implementation of the automated processing facility. Finally, an evaluation is made of the opportunities and limitations of sensor web based approaches for the development of web services which combine both satellite and in situ sensor sources. PMID:22574019

  10. Development of a sensor platform for roadway mapping : part b - mapping the road fog lines : final report.

    DOT National Transportation Integrated Search

    2015-04-01

    Our objective is the development and evaluation of a low-cost, vehicle-mounted sensor suite capable of generating : map data with lane and road boundary information accurate to the 10 cm (4 in) level. Such a map could be used for : a number of differ...

  11. AVIRIS calibration using the cloud-shadow method

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Reinersman, P.; Chen, R. F.

    1993-01-01

    More than 90 percent of the signal at an ocean-viewing, satellite sensor is due to the atmosphere, so a 5 percent sensor-calibration error viewing a target that contributes but 10 percent of the signal received at the sensor may result in a target-reflectance error of more than 50 percent. Since prelaunch calibration accuracies of 5 percent are typical of space-sensor requirements, recalibration of the sensor using ground-base methods is required for low-signal target. Known target reflectance or water-leaving radiance spectra and atmospheric correction parameters are required. In this article we describe an atmospheric-correction method that uses cloud shadowed pixels in combination with pixels in a neighborhood region of similar optical properties to remove atmospheric effects from ocean scenes. These neighboring pixels can then be used as known reflectance targets for validation of the sensor calibration and atmospheric correction. The method uses the difference between water-leaving radiance values for these two regions. This allows nearly identical optical contributions to the two signals (e.g., path radiance and Fresnel-reflected skylight) to be removed, leaving mostly solar photons backscattered from beneath the sea to dominate the residual signal. Normalization by incident solar irradiance reaching the sea surface provides the remote-sensing reflectance of the ocean at the location of the neighbor region.

  12. Dust storms and their impact on ocean and human health: dust in Earth's atmosphere

    USGS Publications Warehouse

    Griffin, Dale W.; Kellog, Christina A.

    2004-01-01

    Satellite imagery has greatly influenced our understanding of dust activity on a global scale. A number of different satellites such as NASA's Earth-Probe Total Ozone Mapping Spectrometer (TOMS) and Se-viewing Field-of-view Sensor (SeaWiFS) acquire daily global-scale data used to produce imagery for monitoring dust storm formation and movement. This global-scale imagery has documented the frequent transmission of dust storm-derived soils through Earth's atmosphere and the magnitude of many of these events. While various research projects have been undertaken to understand this normal planetary process, little has been done to address its impact on ocean and human health. This review will address the ability of dust storms to influence marine microbial population densities and transport of soil-associated toxins and pathogenic microorganisms to marine environments. The implications of dust on ocean and human health in this emerging scientific field will be discussed.

  13. Implementation and testing of a sensor-netting algorithm for early warning and high confidence C/B threat detection

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Grim, Larry; Fauth, Ryan; Tercha, Brian; Powell, Chris; Steinhardt, Kristin

    2011-05-01

    Large networks of disparate chemical/biological (C/B) sensors, MET sensors, and intelligence, surveillance, and reconnaissance (ISR) sensors reporting to various command/display locations can lead to conflicting threat information, questions of alarm confidence, and a confused situational awareness. Sensor netting algorithms (SNA) are being developed to resolve these conflicts and to report high confidence consensus threat map data products on a common operating picture (COP) display. A data fusion algorithm design was completed in a Phase I SBIR effort and development continues in the Phase II SBIR effort. The initial implementation and testing of the algorithm has produced some performance results. The algorithm accepts point and/or standoff sensor data, and event detection data (e.g., the location of an explosion) from various ISR sensors (e.g., acoustic, infrared cameras, etc.). These input data are preprocessed to assign estimated uncertainty to each incoming piece of data. The data are then sent to a weighted tomography process to obtain a consensus threat map, including estimated threat concentration level uncertainty. The threat map is then tested for consistency and the overall confidence for the map result is estimated. The map and confidence results are displayed on a COP. The benefits of a modular implementation of the algorithm and comparisons of fused / un-fused data results will be presented. The metrics for judging the sensor-netting algorithm performance are warning time, threat map accuracy (as compared to ground truth), false alarm rate, and false alarm rate v. reported threat confidence level.

  14. EIT-Based Fabric Pressure Sensing

    PubMed Central

    Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M.

    2013-01-01

    This paper presents EIT-based fabric sensors that aim to provide a pressure mapping using the current carrying and voltage sensing electrodes attached to the boundary of the fabric patch. Pressure-induced shape change over the sensor area makes a change in the conductivity distribution which can be conveyed to the change of boundary current-voltage data. This boundary data is obtained through electrode measurements in EIT system. The corresponding inverse problem is to reconstruct the pressure and deformation map from the relationship between the applied current and the measured voltage on the fabric boundary. Taking advantage of EIT in providing dynamical images of conductivity changes due to pressure induced shape change, the pressure map can be estimated. In this paper, the EIT-based fabric sensor was presented for circular and rectangular sensor geometry. A stretch sensitive fabric was used in circular sensor with 16 electrodes and a pressure sensitive fabric was used in a rectangular sensor with 32 electrodes. A preliminary human test was carried out with the rectangular sensor for foot pressure mapping showing promising results. PMID:23533538

  15. The NASA Applied Sciences Program: Volcanic Ash Observations and Applications

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Fairlie, Duncan; Green, David; Haynes, John; Krotkov, Nickolai; Meyer, Franz; Pavolonis, Mike; Trepte, Charles; Vernier, Jean-Paul

    2016-01-01

    Since 2000, the NASA Applied Sciences Program has been actively transitioning observations and research to operations. Particular success has been achieved in developing applications for NASA Earth Observing Satellite (EOS) sensors, integrated observing systems, and operational models for volcanic ash detection, characterization, and transport. These include imager applications for sensors such as the MODerate resolution Imaging SpectroRadiometer (MODIS) on NASA Terra and Aqua satellites, and the Visible Infrared Imaging Radiometer Suite (VIIRS) on the NASA/NOAA Suomi NPP satellite; sounder applications for sensors such as the Atmospheric Infrared Sounder (AIRS) on Aqua, and the Cross-track Infrared Sounder (CrIS) on Suomi NPP; UV applications for the Ozone Mapping Instrument (OMI) on the NASA Aura Satellite and the Ozone Mapping Profiler Suite (OMPS) on Suomi NPP including Direct readout capabilities from OMI and OMPS in Alaska (GINA) and Finland (FMI):; and lidar applications from the Caliop instrument coupled with the imaging IR sensor on the NASA/CNES CALIPSO satellite. Many of these applications are in the process of being transferred to the Washington and Alaska Volcanic Ash Advisory Centers (VAAC) where they support operational monitoring and advisory services. Some have also been accepted, transitioned and adapted for direct, onboard, automated product production in future U.S. operational satellite systems including GOES-R, and in automated volcanic cloud detection, characterization and alerting tools at the VAACs. While other observations and applications remain to be developed for the current constellation of NASA EOS sensors and integrated with observing and forecast systems, future requirements and capabilities for volcanic ash observations and applications are also being developed. Many of these are based on technologies currently being tested on NASA aircraft, Unmanned Aerial Systems (UAS) and balloons. All of these efforts and the potential advances that will be realized by integrating them are shared in this presentation.

  16. Proteus - A Free and Open Source Sensor Observation Service (SOS) Client

    NASA Astrophysics Data System (ADS)

    Henriksson, J.; Satapathy, G.; Bermudez, L. E.

    2013-12-01

    The Earth's 'electronic skin' is becoming ever more sophisticated with a growing number of sensors measuring everything from seawater salinity levels to atmospheric pressure. To further the scientific application of this data collection effort, it is important to make the data easily available to anyone who wants to use it. Making Earth Science data readily available will allow the data to be used in new and potentially groundbreaking ways. The US National Science and Technology Council made this clear in its most recent National Strategy for Civil Earth Observations report, when it remarked that Earth observations 'are often found to be useful for additional purposes not foreseen during the development of the observation system'. On the road to this goal the Open Geospatial Consortium (OGC) is defining uniform data formats and service interfaces to facilitate the discovery and access of sensor data. This is being done through the Sensor Web Enablement (SWE) stack of standards, which include the Sensor Observation Service (SOS), Sensor Model Language (SensorML), Observations & Measurements (O&M) and Catalog Service for the Web (CSW). End-users do not have to use these standards directly, but can use smart tools that leverage and implement them. We have developed such a tool named Proteus. Proteus is an open-source sensor data discovery client. The goal of Proteus is to be a general-purpose client that can be used by anyone for discovering and accessing sensor data via OGC-based services. Proteus is a desktop client and supports a straightforward workflow for finding sensor data. The workflow takes the user through the process of selecting appropriate services, bounding boxes, observed properties, time periods and other search facets. NASA World Wind is used to display the matching sensor offerings on a map. Data from any sensor offering can be previewed in a time series. The user can download data from a single sensor offering, or download data in bulk from all matching sensor offerings. Proteus leverages NASA World Wind's WMS capabilities and allow overlaying sensor offerings on top of any map. Specific search criteria (i.e. user discoveries) can be saved and later restored. Proteus is supports two user types: 1) the researcher/scientist interested in discovering and downloading specific sensor data as input to research processes, and 2) the data manager responsible for maintaining sensor data services (e.g. SOSs) and wants to ensure proper data and metadata delivery, verify sensor data, and receive sensor data alerts. Proteus has a Web-based companion product named the Community Hub that is used to generate sensor data alerts. Alerts can be received via an RSS feed, viewed in a Web browser or displayed directly in Proteus via a Web-based API. To advance the vision of making Earth Science data easily discoverable and accessible to end-users, professional or laymen, Proteus is available as open-source on GitHub (https://github.com/intelligentautomation/proteus).

  17. Applications of Skylab data to land use and climatological analysis

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Lewis, J. E., Jr.; Lins, H. F., Jr.; Jenner, C. B.; Outcalt, S. I.; Pease, R. W.

    1976-01-01

    The author has identified the following significant results. Skylab study in Central Atlantic Regional Ecological Test Site encompassed two separate but related tasks: (1) evaluation of photographic sensors S190A and B as sources of land use data for planning and managing land resources in major metropolitan regions, and (2) evaluation of the multispectral scanner S192 used in conjunction with associated data and analytical techniques as a data source on urban climates and the surface energy balance. Photographs from the Skylab S190B earth terrain camera were of greatest interest in the land use analysis task; they were of sufficiently high resolution to identify and map many level 2 and 3 land use categories. After being corrected to allow for atmosphere effects, output from thermal and visible bands of the S192 was employed in constructing computer map plots of albedo and surface temperature.

  18. Airborne Remote Earth Sensing (ARES) Program: an operational airborne MWIR imaging spectrometer and applications

    NASA Astrophysics Data System (ADS)

    Bishop, Kevin D.; Diestel, Michael J.

    1996-11-01

    Since 1993, the Airborne Remote Earth Sensing (ARES) Program has collected a wide variety of mid-wave infrared hyperspectral data on an interesting assortment of atmospheric, geologic, urban and chemical emission/absorption features. Flown in NASA's high altitude WB-57F aircraft, the ARES sensor is a 75 channel cryo-cooled prism spectrometer covering the 2 - 6 micrometers spectral region, and is capable of up or down-looking measurements over a wide range of collection geometries. Sensor characteristics, pointing capabilities, and overall performance are discussed. Highlights from some of the recent data collections, such as the 1993 and 95 thermal mapping of the active lava flow areas from the Kilauea volcano; the 1993 collection of the direct solar specular reflection off high altitude (ice) cloud layers over West Texas; upper atmospheric H2O vapor sounding using the 6 micrometers solar absorption spectra; Sulfur Dioxide detection from a coal burning power plant in Page, AZ (SO2 in emission) and from the Pu'u O'o vent of the Kilauea volcano (SO2 in absorption); and MWIR imagery from various terrestrial and urban background scenes, including West Los Angeles, and the Capitol area of Washington, D.C. Supporting spectral analysis and radiometric modeling are presented.

  19. Monitoring of leaked CO2 through sediment, water column and atmosphere in sub-seabed CCS experiment

    NASA Astrophysics Data System (ADS)

    Shitashima, K.; Sakamoto, A.; Maea, Y.

    2013-12-01

    CO2 capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a feasible option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, entitled 'Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS)', took place in Ardmucknish Bay, Oban, in May-July 2012. We applied the in-situ pH/pCO2/ORP sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The on-line sensor that was connected by 400m of RS422 cable was deployed close to the CO2 leakage (bubbling) point, and the fluctuations of pH, pCO2 and ORP were monitored in real-time in a observation van on land. Three sets of off-line sensors were also placed on seafloor in respective points (release point, and two low impacted regions at 25m and 75m distant) for three months. The long-term monitoring of pH in sediment at 50cm depth under the seafloor was conducted. The spear type electrode was stabbed into sediment by diver near the CO2 leakage point. Wide-area mapping surveys of pH, pCO2 and ORP in seawater around the leakage point were carried out by AUV (REMUS-100) that some chemical sensors were installed in. The AUV cruised along the grid line in two layers of 4m and 2m above the seafloor during both of periods of low tide and high tide. Atmospheric CO2 in sea surface above the leakage point was observed by the LI-COR CO2 Analyzer. The analyzer was attached to the bow of ship, and the ship navigated a wide-area along a grid observation line during both of periods of low tide and high tide.

  20. Electrochemical Measurement of Atmospheric Corrosion

    NASA Technical Reports Server (NTRS)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  1. Aircraft and satellite thermographic systems for wildfire mapping and assessment

    NASA Technical Reports Server (NTRS)

    Brass, J. A.; Arvesen, J. C.; Ambrosia, V. G.; Riggan, P. J.; Myers, J. S.

    1987-01-01

    Two complementary sensors, the DAEDALUS DEI-1260 Multispectral Scanner aboard the NASA U-2 aircraft and the Advanced Very High Resolution Radiometer aboard National Oceanographic and Atmospheric Administration orbiting satellites were tested for their applicability in monitoring and predicting parameters such as fire location, temperature and rate of spread, soil heating and cooling rates, and plume characteristics and dimensions. In addition, the satellite system was tested for its ability to extend the relationships found between fire characteristics and biospheric consequences to regional and global scales. An overall system design is presented, and special requirements are documented for the application of this system for fire research and management.

  2. Laser Signature Prediction Using The VALUE Computer Program

    NASA Astrophysics Data System (ADS)

    Akerman, Alexander; Hoffman, George A.; Patton, Ronald

    1989-09-01

    A variety of enhancements are being made to the 1976-vintage LASERX computer code. These include: - Surface characterization with BDRF tabular data - Specular reflection from transparent surfaces - Generation of glint direction maps - Generation of relative range imagery - Interface to the LOWTRAN atmospheric transmission code - Interface to the LEOPS laser sensor code - User friendly menu prompting for easy setup Versions of VALUE have been written for both VAX/VMS and PC/DOS computer environments. Outputs have also been revised to be user friendly and include tables, plots, and images for (1) intensity, (2) cross section,(3) reflectance, (4) relative range, (5) region type, and (6) silhouette.

  3. Configuration and Specifications of AN Unmanned Aerial Vehicle for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J. M.; Ruiz, L. A.

    2016-06-01

    Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.

  4. An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine.

    PubMed

    Liu, Zhiyuan; Wang, Changhui

    2015-10-23

    In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method.

  5. Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps.

    PubMed

    Riaz, Bushra; Pfeiffer, Christoph; Schneiderman, Justin F

    2017-08-01

    While commercial magnetoencephalography (MEG) systems are the functional neuroimaging state-of-the-art in terms of spatio-temporal resolution, MEG sensors have not changed significantly since the 1990s. Interest in newer sensors that operate at less extreme temperatures, e.g., high critical temperature (high-T c ) SQUIDs, optically-pumped magnetometers, etc., is growing because they enable significant reductions in head-to-sensor standoff (on-scalp MEG). Various metrics quantify the advantages of on-scalp MEG, but a single straightforward one is lacking. Previous works have furthermore been limited to arbitrary and/or unrealistic sensor layouts. We introduce spatial information density (SID) maps for quantitative and qualitative evaluations of sensor arrays. SID-maps present the spatial distribution of information a sensor array extracts from a source space while accounting for relevant source and sensor parameters. We use it in a systematic comparison of three practical on-scalp MEG sensor array layouts (based on high-T c SQUIDs) and the standard Elekta Neuromag TRIUX magnetometer array. Results strengthen the case for on-scalp and specifically high-T c SQUID-based MEG while providing a path for the practical design of future MEG systems. SID-maps are furthermore general to arbitrary magnetic sensor technologies and source spaces and can thus be used for design and evaluation of sensor arrays for magnetocardiography, magnetic particle imaging, etc.

  6. Distributed Sensor Fusion for Scalar Field Mapping Using Mobile Sensor Networks.

    PubMed

    La, Hung Manh; Sheng, Weihua

    2013-04-01

    In this paper, autonomous mobile sensor networks are deployed to measure a scalar field and build its map. We develop a novel method for multiple mobile sensor nodes to build this map using noisy sensor measurements. Our method consists of two parts. First, we develop a distributed sensor fusion algorithm by integrating two different distributed consensus filters to achieve cooperative sensing among sensor nodes. This fusion algorithm has two phases. In the first phase, the weighted average consensus filter is developed, which allows each sensor node to find an estimate of the value of the scalar field at each time step. In the second phase, the average consensus filter is used to allow each sensor node to find a confidence of the estimate at each time step. The final estimate of the value of the scalar field is iteratively updated during the movement of the mobile sensors via weighted average. Second, we develop the distributed flocking-control algorithm to drive the mobile sensors to form a network and track the virtual leader moving along the field when only a small subset of the mobile sensors know the information of the leader. Experimental results are provided to demonstrate our proposed algorithms.

  7. Biomagnetic Monitoring of Atmospheric Pollution: A Review of Magnetic Signatures from Biological Sensors.

    PubMed

    Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland

    2017-06-20

    Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.

  8. Integrated multi-sensor fusion for mapping and localization in outdoor environments for mobile robots

    NASA Astrophysics Data System (ADS)

    Emter, Thomas; Petereit, Janko

    2014-05-01

    An integrated multi-sensor fusion framework for localization and mapping for autonomous navigation in unstructured outdoor environments based on extended Kalman filters (EKF) is presented. The sensors for localization include an inertial measurement unit, a GPS, a fiber optic gyroscope, and wheel odometry. Additionally a 3D LIDAR is used for simultaneous localization and mapping (SLAM). A 3D map is built while concurrently a localization in a so far established 2D map is estimated with the current scan of the LIDAR. Despite of longer run-time of the SLAM algorithm compared to the EKF update, a high update rate is still guaranteed by sophisticatedly joining and synchronizing two parallel localization estimators.

  9. Mapping and Visualization of The Deepwater Horizon Oil Spill Using Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Ferreira Pichardo, E.

    2017-12-01

    Satellites are man-made objects hovering around the Earth's orbit and are essential for Earth observation, i.e. the monitoring and gathering of data about the Earth's vital systems. Environmental Satellites are used for atmospheric research, weather forecasting, and warning as well as monitoring extreme weather events. These satellites are categorized into Geosynchronous and Low Earth (Polar) orbiting satellites. Visualizing satellite data is critical to understand the Earth's systems and changes to our environment. The objective of this research is to examine satellite-based remotely sensed data that needs to be processed and rendered in the form of maps or other forms of visualization to understand and interpret the satellites' observations to monitor the status, changes and evolution of the mega-disaster Deepwater Horizon Spill that occurred on April 20, 2010 in the Gulf of Mexico. In this project, we will use an array of tools and programs such as Python, CSPP and Linux. Also, we will use data from the National Oceanic and Atmospheric Administration (NOAA): Polar-Orbiting Satellites Terra Earth Observing System AM-1 (EOS AM-1), and Aqua EOS PM-1 to investigate the mega-disaster. Each of these satellites carry a variety of instruments, and we will use the data obtained from the remote sensor Moderate-Resolution Imaging Spectroradiometer (MODIS). Ultimately, this study shows the importance of mapping and visualizing data such as satellite data (MODIS) to understand the extents of environmental impacts disasters such as the Deepwater Horizon Oil spill.

  10. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.

    PubMed

    Ko, Jonathan; Davis, Christopher C

    2017-05-01

    Adaptive optics has been successfully used for decades in the field of astronomy to correct for atmospheric turbulence. A well-developed example involves sensing the slightly distorted wavefronts with a Shack-Hartmann sensor and then correcting them with a phase conjugate device. While the Shack-Hartmann sensor has proven effective for astronomical purposes, it has been less successful for use in deep turbulence conditions often found in ground-to-ground-based optical systems. We have studied an alternative way to sense and correct distorted wavefronts using a plenoptic sensor. We review the design of the plenoptic sensor and directly compare it with the well-known Shack-Hartmann sensor. An experimental comparison of the plenoptic sensor and the Shack-Hartmann sensor is performed to highlight their differences in real-world atmospheric turbulence conditions.

  11. A Framework for Mapping Global Evapotranspiration using 375-m VIIRS LST

    NASA Astrophysics Data System (ADS)

    Hain, C.; Anderson, M. C.; Schull, M. A.; Neale, C. M. U.

    2017-12-01

    As the world's water resources come under increasing tension due to dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. Remote sensing methods for monitoring consumptive water use are becoming increasingly important, especially in areas of food insecurity. One method to estimate ET from satellite-based methods, the Atmosphere Land Exchange Inverse (ALEXI) model uses the change in morning land surface temperature to estimate the partitioning of sensible/latent heat fluxes which are then used to estimate daily ET. This presentation will outline several recent enhancements to the ALEXI modeling system, with a focus on global ET and drought monitoring. Until recently, ALEXI has been limited to areas with high resolution temporal sampling of geostationary sensors. The use of geostationary sensors makes global mapping a complicated process, especially for real-time applications, as data from as many as five different sensors are required to be ingested and harmonized to create a global mosaic. However, our research team has developed a new and novel method of using twice-daily observations from polar-orbiting sensors such as MODIS and VIIRS to estimate the mid-morning rise in LST that is used to drive the energy balance estimations within ALEXI. This allows the method to be applied globally using a single sensor rather than a global compositing of all available geostationary data. Other advantages of this new method include the higher spatial resolution provided by MODIS and VIIRS and the increased sampling at high latitudes where oblique view angles limit the utility of geostationary sensors. Improvements to the spatial resolution of the thermal infrared wavelengths on the VIIRS instrument, as compared to MODIS (375-m VIIRS vs. 1-km MODIS), allows for a much higher resolution ALEXI product than has been previously available. Therefore, recent developments have been to generate 375-m ALEXI ET products over several pilot regions (e.g. western US and the MENA region). The monitoring of consumptive water use over regions where significant groundwater pumping for irrigation is employed is important to accurately quantify the efficiency of water use in the region.

  12. EAARL submarine topography: Florida Keys National Marine Sanctuary

    USGS Publications Warehouse

    Brock, John C.; Wright, C. Wayne; Nayegandhi, Amar; Woolard, Jason; Patterson, Matt; Wilson, Iris; Travers, Laurinda J.

    2007-01-01

    This Web site contains 46 Lidar-derived submarine topography maps and GIS files for the Florida Keys National Marine Sanctuary. These Lidar-derived submarine topographic maps were produced as a collaborative effort between the U.S. Geological Survey (USGS) Coastal and Marine Geology Program, FISC St. Petersburg, Florida, the National Oceanic and Atmospheric Administration (NOAA), Remote Sensing Division, the National Park Service (NPS) South Florida/Caribbean Network Inventory and Monitoring Program, and the National Aeronautics and Space Administration (NASA) Wallops Flight Facility. One objective of this research is to create techniques to survey coral reefs and barrier islands for the purposes of geomorphic change studies, habitat mapping, ecological monitoring, change detection, and event assessment. As part of this project, data from an innovative instrument under development at the NASA Wallops Flight Facility, the NASA Experimental Airborne Advanced Research Lidar (EAARL) are being used. This sensor has the potential to make significant contributions in this realm for measuring subaerial and submarine topography within cross-environment surveys. High spectral resolution, water-column correction, and low costs were found to be key factors in providing accurate and affordable imagery to coastal resource managers.

  13. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  14. Fusion of sensor geometry into additive strain fields measured with sensing skin

    NASA Astrophysics Data System (ADS)

    Downey, Austin; Sadoughi, Mohammadkazem; Laflamme, Simon; Hu, Chao

    2018-07-01

    Recently, numerous studies have been conducted on flexible skin-like membranes for the cost effective monitoring of large-scale structures. The authors have proposed a large-area electronic consisting of a soft elastomeric capacitor (SEC) that transduces a structure’s strain into a measurable change in capacitance. Arranged in a network configuration, SECs deployed onto the surface of a structure could be used to reconstruct strain maps. Several regression methods have been recently developed with the purpose of reconstructing such maps, but all these algorithms assumed that each SEC-measured strain located at its geometric center. This assumption may not be realistic since an SEC measures the average strain value of the whole area covered by the sensor. One solution is to reduce the size of each SEC, but this would also increase the number of required sensors needed to cover the large-scale structure, therefore increasing the need for the power and data acquisition capabilities. Instead, this study proposes an algorithm that accounts for the sensor’s strain averaging feature by adjusting the strain measurements and constructing a full-field strain map using the kriging interpolation method. The proposed algorithm fuses the geometry of an SEC sensor into the strain map reconstruction in order to adaptively adjust the average kriging-estimated strain of the area monitored by the sensor to the signal. Results show that by considering the sensor geometry, in addition to the sensor signal and location, the proposed strain map adjustment algorithm is capable of producing more accurate full-field strain maps than the traditional spatial interpolation method that considered only signal and location.

  15. An FP7 "Space" project: Aphorism "Advanced PRocedures for volcanic and Seismic Monitoring"

    NASA Astrophysics Data System (ADS)

    Di Iorio, A., Sr.; Stramondo, S.; Bignami, C.; Corradini, S.; Merucci, L.

    2014-12-01

    APHORISM project proposes the development and testing of two new methods to combine Earth Observation satellite data from different sensors, and ground data. The aim is to demonstrate that this two types of data, appropriately managed and integrated, can provide new improved GMES products useful for seismic and volcanic crisis management. The first method, APE - A Priori information for Earthquake damage mapping, concerns the generation of maps to address the detection and estimate of damage caused by a seism. The use of satellite data to investigate earthquake damages is not an innovative issue. We can find a wide literature and projects concerning such issue, but usually the approach is only based on change detection techniques and classifications algorithms. The novelty of APE relies on the exploitation of a priori information derived by InSAR time series to measure surface movements, shake maps obtained from seismological data, and vulnerability information. This a priori information is then integrated with change detection map to improve accuracy and to limit false alarms. The second method deals with volcanic crisis management. The method, MACE - Multi-platform volcanic Ash Cloud Estimation, concerns the exploitation of GEO (Geosynchronous Earth Orbit) sensor platform, LEO (Low Earth Orbit) satellite sensors and ground measures to improve the ash detection and retrieval and to characterize the volcanic ash clouds. The basic idea of MACE consists of an improvement of volcanic ash retrievals at the space-time scale by using both the LEO and GEO estimations and in-situ data. Indeed the standard ash thermal infrared retrieval is integrated with data coming from a wider spectral range from visible to microwave. The ash detection is also extended in case of cloudy atmosphere or steam plumes. APE and MACE methods have been defined in order to provide products oriented toward the next ESA Sentinels satellite missions.The project is funded under the European Union FP7 program and the Kick-Off meeting has been held at INGV premises in Rome on 18th December 2013.

  16. Real-Time Mapping: Contemporary Challenges and the Internet of Things as the Way Forward

    NASA Astrophysics Data System (ADS)

    Bęcek, Kazimierz

    2016-12-01

    The Internet of Things (IoT) is an emerging technology that was conceived in 1999. The key components of the IoT are intelligent sensors, which represent objects of interest. The adjective `intelligent' is used here in the information gathering sense, not the psychological sense. Some 30 billion sensors that `know' the current status of objects they represent are already connected to the Internet. Various studies indicate that the number of installed sensors will reach 212 billion by 2020. Various scenarios of IoT projects show sensors being able to exchange data with the network as well as between themselves. In this contribution, we discuss the possibility of deploying the IoT in cartography for real-time mapping. A real-time map is prepared using data harvested through querying sensors representing geographical objects, and the concept of a virtual sensor for abstract objects, such as a land parcel, is presented. A virtual sensor may exist as a data record in the cloud. Sensors are identified by an Internet Protocol address (IP address), which implies that geographical objects through their sensors would also have an IP address. This contribution is an updated version of a conference paper presented by the author during the International Federation of Surveyors 2014 Congress in Kuala Lumpur. The author hopes that the use of the IoT for real-time mapping will be considered by the mapmaking community.

  17. STS-68 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.

  18. Space Shuttle Projects

    NASA Image and Video Library

    1994-02-25

    This STS-68 patch was designed by artist Sean Collins. Exploration of Earth from space is the focus of the design of the insignia, the second flight of the Space Radar Laboratory (SRL-2). SRL-2 was part of NASA's Mission to Planet Earth (MTPE) project. The world's land masses and oceans dominate the center field, with the Space Shuttle Endeavour circling the globe. The SRL-2 letters span the width and breadth of planet Earth, symbolizing worldwide coverage of the two prime experiments of STS-68: The Shuttle Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) instruments; and the Measurement of Air Pollution from Satellites (MAPS) sensor. The red, blue, and black colors of the insignia represent the three operating wavelengths of SIR-C/X-SAR, and the gold band surrounding the globe symbolizes the atmospheric envelope examined by MAPS. The flags of international partners Germany and Italy are shown opposite Endeavour. The relationship of the Orbiter to Earth highlights the usefulness of human space flights in understanding Earth's environment, and the monitoring of its changing surface and atmosphere. In the words of the crew members, the soaring Orbiter also typifies the excellence of the NASA team in exploring our own world, using the tools which the Space Program developed to explore the other planets in the solar system.

  19. Range estimation of passive infrared targets through the atmosphere

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Seo, Doochun; Choi, Seokweon

    2013-04-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat systems. However, jamming signals tremendously degrade the performance of such active sensor devices. We introduce a simple target range estimation method and the fundamental limits of the proposed method based on the atmosphere propagation model. Since passive infrared (IR) sensors measure IR signals radiating from objects in different wavelengths, this method has robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and various attenuation factors (i.e., the distance between sensor and target and atmosphere environment parameters). MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the results from MODTRAN and atmosphere propagation-based modeling, the target range can be estimated. To analyze the proposed method's performance statistically, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao lower bound (CRLB) via the probability density function of measured radiance. We also compare CRLB and the variance of MLE using Monte-Carlo simulation.

  20. Big data; sensor networks and remotely-sensed data for mapping; feature extraction from lidar

    NASA Astrophysics Data System (ADS)

    Tlhabano, Lorato

    2018-05-01

    Unmanned aerial vehicles (UAVs) can be used for mapping in the close range domain, combining aerial and terrestrial photogrammetry and now the emergence of affordable platforms to carry these technologies has opened up new opportunities for mapping and modeling cadastral boundaries. At the current state mainly low cost UAVs fitted with sensors are used in mapping projects with low budgets, the amount of data produced by the UAVs can be enormous hence the need for big data techniques' and concepts. The past couple of years have witnessed the dramatic rise of low-cost UAVs fitted with high tech Lidar sensors and as such the UAVS have now reached a level of practical reliability and professionalism which allow the use of these systems as mapping platforms. UAV based mapping provides not only the required accuracy with respect to cadastral laws and policies as well as requirements for feature extraction from the data sets and maps produced, UAVs are also competitive to other measurement technologies in terms of economic aspects. In the following an overview on how the various technologies of UAVs, big data concepts and lidar sensor technologies can work together to revolutionize cadastral mapping particularly in Africa and as a test case Botswana in particular will be used to investigate these technologies. These technologies can be combined to efficiently provide cadastral mapping in difficult to reach areas and over large areas of land similar to the Land Administration Procedures, Capacity and Systems (LAPCAS) exercise which was recently undertaken by the Botswana government, we will show how the uses of UAVS fitted with lidar sensor and utilizing big data concepts could have reduced not only costs and time for our government but also how UAVS could have provided more detailed cadastral maps.

  1. An LPV Adaptive Observer for Updating a Map Applied to an MAF Sensor in a Diesel Engine

    PubMed Central

    Liu, Zhiyuan; Wang, Changhui

    2015-01-01

    In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method. PMID:26512675

  2. Multi-Sensor Integration to Map Odor Distribution for the Detection of Chemical Sources.

    PubMed

    Gao, Xiang; Acar, Levent

    2016-07-04

    This paper addresses the problem of mapping odor distribution derived from a chemical source using multi-sensor integration and reasoning system design. Odor localization is the problem of finding the source of an odor or other volatile chemical. Most localization methods require a mobile vehicle to follow an odor plume along its entire path, which is time consuming and may be especially difficult in a cluttered environment. To solve both of the above challenges, this paper proposes a novel algorithm that combines data from odor and anemometer sensors, and combine sensors' data at different positions. Initially, a multi-sensor integration method, together with the path of airflow was used to map the pattern of odor particle movement. Then, more sensors are introduced at specific regions to determine the probable location of the odor source. Finally, the results of odor source location simulation and a real experiment are presented.

  3. Rugged, no-moving-parts windspeed and static pressure probe designs for measurements in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Bedard, A. J., Jr.; Nishiyama, R. T.

    1993-01-01

    Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.

  4. A carbon dioxide radiance model of the earth planet using the conical earth sensor data

    NASA Astrophysics Data System (ADS)

    Deng, Loulou; Mei, Zhiwu; Tu, Zhijun; Yuan, Jun; He, Ting; Wei, Yi

    2013-10-01

    Climate Modeling results show that about 50% of the Earth's outgoing radiation and 75% of the atmospheric outgoing radiation are contained in the far infrared. Generally the earth is considered as a 220~230 K blackbody, and the peak breadth of the Earth's outgoing radiation is around the wavelength of 10 micron. The atmospheric outgoing radiation are contained with five spectral intervals: the water vapor band from 6.33 to 6.85 microns, the ozone band from 8.9 to 10.1microns, the atmospheric window from 10.75 to 11.75 microns, the carbon dioxide band from 14 to 16 microns, and finally the rotational water vapor band from 21 to 125 microns. The properties of the carbon dioxide band is stable than other bands which has been chosen for the work Spectrum of the earth sensors. But the radiation energy of carbon dioxide band is variety and it is a function of latitude, season and weather conditions. Usually the luminance of the Earth's radiation (14 to 16 μm) is from 3 to 7 W/m2Sr. Earth sensor is an important instrument of the Attitude and Orbit Control System (AOCS), and it is sensitive to the curve of the earth's and atmospheric outgoing radiation profile to determine the roll and pitch angles of satellite which are relative to nadir vector. Most earth sensors use profile data gathered form Project Scanner taken in August and December 1966. The earth sensor referred in this paper is the conical scanning earth sensor which is mainly used in the LEO (Low Earth Orbit) satellite. A method to determine the luminance of earth's and atmospheric outgoing radiation (carbon dioxide) using the earth sensor is discussed in this paper. When the conical scanning sensor scan form the space to the earth, a pulse is produced and the pulse breadth is scale with the infrared radiation luminance. Then the infrared radiation luminance can be calculated. A carbon dioxide radiance model of the earth's and atmospheric outgoing radiation is obtained according the luminance data about with different latitudes and seasons which are measured form the conical scanning earth sensors of ZY-1 satellite. When the carbon dioxide radiance model has been collected, it can be fed directly to the earth sensors to improve their accuracy. It also can be supplied for the research of the content and distribution of carbon dioxide in the atmosphere.

  5. Stray-Light Correction of the Marine Optical Buoy

    NASA Technical Reports Server (NTRS)

    Brown, Steven W.; Johnson, B. Carol; Flora, Stephanie J.; Feinholz, Michael E.; Yarbrough, Mark A.; Barnes, Robert A.; Kim, Yong Sung; Lykke, Keith R.; Clark, Dennis K.

    2003-01-01

    In ocean-color remote sensing, approximately 90% of the flux at the sensor originates from atmospheric scattering, with the water-leaving radiance contributing the remaining 10% of the total flux. Consequently, errors in the measured top-of-the atmosphere radiance are magnified a factor of 10 in the determination of water-leaving radiance. Proper characterization of the atmosphere is thus a critical part of the analysis of ocean-color remote sensing data. It has always been necessary to calibrate the ocean-color satellite sensor vicariously, using in situ, ground-based results, independent of the status of the pre-flight radiometric calibration or the utility of on-board calibration strategies. Because the atmosphere contributes significantly to the measured flux at the instrument sensor, both the instrument and the atmospheric correction algorithm are simultaneously calibrated vicariously. The Marine Optical Buoy (MOBY), deployed in support of the Earth Observing System (EOS) since 1996, serves as the primary calibration station for a variety of ocean-color satellite instruments, including the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Japanese Ocean Color Temperature Scanner (OCTS) , and the French Polarization and Directionality of the Earth's Reflectances (POLDER). MOBY is located off the coast of Lanai, Hawaii. The site was selected to simplify the application of the atmospheric correction algorithms. Vicarious calibration using MOBY data allows for a thorough comparison and merger of ocean-color data from these multiple sensors.

  6. Multi-Mission Remote Sensing of Suspended Particulate Matter and Diffuse Attenuation Coefficient in the Yangtze Estuarine and Coastal Waters

    NASA Astrophysics Data System (ADS)

    Yu, X.; Salama, S.; Shen, F.

    2016-08-01

    During the Dragon-3 project (ID: 10555) period, we developed and improved the atmospheric correction algorithms (AC) and retrieval models of suspended sediment concentration ( ) and diffuse attenuation coefficient ( ) for the Yangtze estuarine and coastal waters. The developed models were validated by measurements with consistently stable and fairly accurate estimations, reproducing reasonable distribution maps of and over the study area. Spatial-temporal variations of were presented and the mechanisms of the sediment transport were discussed. We further examined the compatibility of the developed AC algorithms and retrieval model and the consistency of satellite products for multi-sensor such as MODIS/Terra/Aqua, MERIS/Envisat, MERSI/ FY-3 and GOCI. The inter-comparison of multi- sensor suggested that different satellite products can be combined to increase revisit frequency and complement a temporal gap of time series satellites that may exist between on-orbit and off- orbit, facilitating a better monitor on the spatial- temporal dynamics of .

  7. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  8. Imaging the atmosphere using volcanic infrasound recorded on a dense local sensor network

    NASA Astrophysics Data System (ADS)

    Marcillo, O. E.; Johnson, J. B.; Johnson, R.

    2010-12-01

    We deployed a 47-node infrasound sensor network around Kilauea’s Halemaumau Vent to image the atmospheric conditions of the near-surface. This active vent is a persistent radiator of energetic infrasound enabling us to probe atmospheric winds and temperatures. This research builds upon a previous experiment that recorded infrasound on a three-node network, to determine relative phase delay and invert for atmospheric wind. The technique developed for this previous analysis assumed the intrinsic sound speed and was able to track the evolution of the average wind field in a large area (around 10 km2) and was largely insensitive to local meteorological effects, caused by topography and vegetation. The results of this previous experiment showed the potential of this technique for atmospheric studies and called for a following experiment with a denser sensor network over a larger area. During the summer 2010, we returned to Kilauea and deployed a 47-sensor network in three different configurations around Kilauea summit and down the volcano’s flanks. Persistent infrasonic tremor was ‘loud’ with excess pressures up to 10 Pa (when scaled to 1 km) and periods of high acoustic emissions that lasted from hours to days. The instrumentation for this experiment was composed of single-channel RefTek RT125A Texan digitizers and InfraNMT infrasound sensors. The Texan digitizers provide high-resolution 24-bit analog to digital conversion and can operate continuously for approximately five days with two D-cell batteries. The InfraNMT sensor is based on a piezo-electric transducer and was developed at the Infrasound Laboratory at New Mexico Tech. This sensor features low power (< 3 mA at 9 V) and flat response between 0.02 to 50 Hz. Three different network topologies were tested during this two-week experiment. For the first and second topologies, the sensors were deployed along established roads on two almost perpendicular sensor lines centered at the Halema’uma’u crater. The furthest sensors were located at ~24 km and ~10 km from the vent respectively. Numerical analysis indicates that these two configurations will be able to probe the atmospheric conditions up to 2 km above the ground. The third topology featured most of the sensors on the summit crater at similar radial distances (2-4 km) and different azimuths. The data collected with the third topology is expected to provide detailed information of the very-local infrasonic field. Each configuration was on the ground and operational for around 84 hours. This full dataset will provide an opportunity to investigate source phenomenology and/or propagation effects of the infrasonic field. Tomographic studies of the atmosphere are expected to provide meteorological data that will be of value for ash and gas propagation models.

  9. Pressure mapping at orthopaedic joint interfaces with fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Mohanty, Lipi; Tjin, Swee Chuan

    2006-02-01

    We present the concept of a fiber-optic sensor that can be used for pressure mapping at the prosthetic knee joint, in vitro and in vivo. An embedded array of fiber Bragg gratings is used to measure the load on the tibial spacer. The sensor gives the magnitude and the location of the applied load. The effect of material properties on the sensitivity of each subgrating is presented. The wavelength-shift maps show the malalignment of implants and demonstrate the potential of this sensor for use during total knee arthroplasty.

  10. Platform for a Hydrocarbon Exhaust Gas Sensor Utilizing a Pumping Cell and a Conductometric Sensor

    PubMed Central

    Biskupski, Diana; Geupel, Andrea; Wiesner, Kerstin; Fleischer, Maximilian; Moos, Ralf

    2009-01-01

    Very often, high-temperature operated gas sensors are cross-sensitive to oxygen and/or they cannot be operated in oxygen-deficient (rich) atmospheres. For instance, some metal oxides like Ga2O3 or doped SrTiO3 are excellent materials for conductometric hydrocarbon detection in the rough atmosphere of automotive exhausts, but have to be operated preferably at a constant oxygen concentration. We propose a modular sensor platform that combines a conductometric two-sensor-setup with an electrochemical pumping cell made of YSZ to establish a constant oxygen concentration in the ambient of the conductometric sensor film. In this paper, the platform is introduced, the two-sensor-setup is integrated into this new design, and sensing performance is characterized. Such a platform can be used for other sensor principles as well. PMID:22423212

  11. The Pilatus Unmanned Aircraft System for Lower Atmospheric Research

    NASA Technical Reports Server (NTRS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; hide

    2016-01-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.

  12. The pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, G.; Palo, S.; Argrow, B.; LoDolce, G.; Mack, J.; Gao, R.-S.; Telg, H.; Trussel, C.; Fromm, J.; Long, C. N.; Bland, G.; Maslanik, J.; Schmid, B.; Hock, T.

    2015-11-01

    This paper presents details of the University of Colorado (CU) Pilatus unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take off weight of 25 kg and is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and it's orientation to the upward looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research grade lower tropospheric measurement missions.

  13. The Pilatus unmanned aircraft system for lower atmospheric research

    NASA Astrophysics Data System (ADS)

    de Boer, Gijs; Palo, Scott; Argrow, Brian; LoDolce, Gabriel; Mack, James; Gao, Ru-Shan; Telg, Hagen; Trussel, Cameron; Fromm, Joshua; Long, Charles N.; Bland, Geoff; Maslanik, James; Schmid, Beat; Hock, Terry

    2016-04-01

    This paper presents details of the University of Colorado (CU) "Pilatus" unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. In order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.

  14. Model-Data Fusion and Adaptive Sensing for Large Scale Systems: Applications to Atmospheric Release Incidents

    NASA Astrophysics Data System (ADS)

    Madankan, Reza

    All across the world, toxic material clouds are emitted from sources, such as industrial plants, vehicular traffic, and volcanic eruptions can contain chemical, biological or radiological material. With the growing fear of natural, accidental or deliberate release of toxic agents, there is tremendous interest in precise source characterization and generating accurate hazard maps of toxic material dispersion for appropriate disaster management. In this dissertation, an end-to-end framework has been developed for probabilistic source characterization and forecasting of atmospheric release incidents. The proposed methodology consists of three major components which are combined together to perform the task of source characterization and forecasting. These components include Uncertainty Quantification, Optimal Information Collection, and Data Assimilation. Precise approximation of prior statistics is crucial to ensure performance of the source characterization process. In this work, an efficient quadrature based method has been utilized for quantification of uncertainty in plume dispersion models that are subject to uncertain source parameters. In addition, a fast and accurate approach is utilized for the approximation of probabilistic hazard maps, based on combination of polynomial chaos theory and the method of quadrature points. Besides precise quantification of uncertainty, having useful measurement data is also highly important to warranty accurate source parameter estimation. The performance of source characterization is highly affected by applied sensor orientation for data observation. Hence, a general framework has been developed for the optimal allocation of data observation sensors, to improve performance of the source characterization process. The key goal of this framework is to optimally locate a set of mobile sensors such that measurement of textit{better} data is guaranteed. This is achieved by maximizing the mutual information between model predictions and observed data, given a set of kinetic constraints on mobile sensors. Dynamic Programming method has been utilized to solve the resulting optimal control problem. To complete the loop of source characterization process, two different estimation techniques, minimum variance estimation framework and Bayesian Inference method has been developed to fuse model forecast with measurement data. Incomplete information regarding the distribution of associated noise signal in measurement data, is another major challenge in the source characterization of plume dispersion incidents. This frequently happens in data assimilation of atmospheric data by using the satellite imagery. This occurs due to the fact that satellite imagery data can be polluted with noise, depending on weather conditions, clouds, humidity, etc. Unfortunately, there is no accurate procedure to quantify the error in recorded satellite data. Hence, using classical data assimilation methods in this situation is not straight forward. In this dissertation, the basic idea of a novel approach has been proposed to tackle these types of real world problems with more accuracy and robustness. A simple example demonstrating the real-world scenario is presented to validate the developed methodology.

  15. Decision-level fusion of SAR and IR sensor information for automatic target detection

    NASA Astrophysics Data System (ADS)

    Cho, Young-Rae; Yim, Sung-Hyuk; Cho, Hyun-Woong; Won, Jin-Ju; Song, Woo-Jin; Kim, So-Hyeon

    2017-05-01

    We propose a decision-level architecture that combines synthetic aperture radar (SAR) and an infrared (IR) sensor for automatic target detection. We present a new size-based feature, called target-silhouette to reduce the number of false alarms produced by the conventional target-detection algorithm. Boolean Map Visual Theory is used to combine a pair of SAR and IR images to generate the target-enhanced map. Then basic belief assignment is used to transform this map into a belief map. The detection results of sensors are combined to build the target-silhouette map. We integrate the fusion mass and the target-silhouette map on the decision level to exclude false alarms. The proposed algorithm is evaluated using a SAR and IR synthetic database generated by SE-WORKBENCH simulator, and compared with conventional algorithms. The proposed fusion scheme achieves higher detection rate and lower false alarm rate than the conventional algorithms.

  16. Direct determination of surface albedos from satellite imagery

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  17. Monitoring Air Pollution from Satellites (MAPS). Volume 1: Technical report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Performance tests on an electro-optical model of an infrared sensor for remote measurements of trace atmospheric gases are detailed; the instrument utilized a sample of the gas to be measured as spectral filter. Also reported is the development of radiometric calibration equipment that determines responses to simulated pollution effects. Results show excellent agreement with theoretical performance predictions with the exception of nonuniform radiance responses. Balance stability to an accuracy better than the rms noise level was demonstrated for the EOM in both the NH3 and CO modes for a period of two days under laboratory conditions. Flight test results show that the temperature range of the absorption cell is restricted to 255 K or higher.

  18. Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring

    NASA Astrophysics Data System (ADS)

    Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.

    2017-12-01

    While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.

  19. Atmospheric turbulence and sensor system effects on biometric algorithm performance

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Leonard, Kevin R.; Byrd, Kenneth A.; Potvin, Guy

    2015-05-01

    Biometric technologies composed of electro-optical/infrared (EO/IR) sensor systems and advanced matching algorithms are being used in various force protection/security and tactical surveillance applications. To date, most of these sensor systems have been widely used in controlled conditions with varying success (e.g., short range, uniform illumination, cooperative subjects). However the limiting conditions of such systems have yet to be fully studied for long range applications and degraded imaging environments. Biometric technologies used for long range applications will invariably suffer from the effects of atmospheric turbulence degradation. Atmospheric turbulence causes blur, distortion and intensity fluctuations that can severely degrade image quality of electro-optic and thermal imaging systems and, for the case of biometrics technology, translate to poor matching algorithm performance. In this paper, we evaluate the effects of atmospheric turbulence and sensor resolution on biometric matching algorithm performance. We use a subset of the Facial Recognition Technology (FERET) database and a commercial algorithm to analyze facial recognition performance on turbulence degraded facial images. The goal of this work is to understand the feasibility of long-range facial recognition in degraded imaging conditions, and the utility of camera parameter trade studies to enable the design of the next generation biometrics sensor systems.

  20. Operations and Maintenance Manual, Atmospheric Contaminant Sensor, Revision B.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams…

  1. FirefOx Design Reference fO2 Sensor for Hot, Deep Atmospheres

    NASA Astrophysics Data System (ADS)

    Izenberg, N.; Papadakis, S.; Deglau, D.; Francomacaro, A. S.

    2016-12-01

    Understanding the composition of the lowest portion of Venus' atmosphere is critical to knowing the stable mineralogy of the rocks there. Oxygen gas is a critical trace component, with fugacity, or partial pressure, estimated in the range of 10-19 to 10-22 from early probe measurements down to 22km altitude (Pioneer Venus, Venera), chemical equilibrium measurements, and other modeling. "FirefOx" is a simple oxygen fugacity sensor with the express purpose of determining the partial pressure of oxygen in the lowest scale heights of the Venus atmosphere, and especially the lowest hundreds of meters; the surface atmosphere interface, where the atmosphere and surface move to thermodynamic equilibrium. Knowledge of the fO2 at the surface atmosphere interface is crucial to determining the stable mineralogy of surface materials (e.g. magnetite vs. hematite) and gas chemistry in the near-surface atmosphere FirefOx is a Metal/Metal Oxide oxygen fugacity sensor intended to be mounted on the outside of a Venus descent probe, with electronics housed inside a thermally controlled environment. The sole sensor capability is the precise, accurate detection of the partial pressure of oxygen gas (fO2) in the near-surface environment of Venus, at up to 95-bar pressure (predominantly CO2. Surface temperatures at mean planetary elevation are near 735 K, thus a required operational temperature range of 710-740 K covers a range of near-surface elevations. FirefOx system requirements are low ( 100-200 grams, mass, milliwatt power, several kilobytes total science data). A design reference sensor, composed of custom, Yittria-ZrO ceramic electrolyte, with an encapsulated Pd/PdO standard and patterned Pt electrodes has demonstrated scientifically useful signal-to-noise millivolt level potential at temperatures as low as 620 K, relatable to fO2 by a Nernst equation E = RT/4F ln(PO2/PrefO2) where E = open circuit potential across the sensor electrolyte, R = universal gas constant, T = temperature, F = Faraday constant, PrefO2 = reference oxygen pressure, and PO2 = unknown oxygen pressure of the outside environment. The FirefOx sensor shows promise for direct fO2 measurement on potential upcoming Venus in situ and other deep atmosphere probes.

  2. Climate Suite Study for the National Polar-Orbiting Operational Environmental Satellite System Internal Concepts Study. Part A; Ozone Sensors

    NASA Technical Reports Server (NTRS)

    Lucke, R. L.; Planet, Walter G.; Hudson, R. D.

    1995-01-01

    Our recommendations to NPOESS for the sensors it should adopt to meet threshold requirements for global monitoring of ozone and, to some extent, of aerosols and of atmospheric temperature, pressure, and water vapor content are summarized in this report. The degree to which these sensors fulfill other NPOESS requirements than ozone is also summarized. The number of sensors that should be in the constellation is discussed in terms of desired reliability, continuity of coverage, and the ability to cross-calibrate successive sensors. Our recommendations for specific ozone measurement requirements, IORD item 4.1.6.2.28, are given. We make the case that the monitoring of three minor constituents in the upper atmosphere (N20, ClO or ClONO2, and HNO3) should be added to the list of NPOESS requirements because of their importance to long-term ozone studies and the small additional cost required (ozone sensors are already designed to measure them). Specific measurement requirements, which should be regarded as supplementary to the ozone requirement, are given here. The necessity of using two types of sensors, nadir-viewers and limb-scanners, for atmospheric studies is discussed.

  3. The ABLE ACE wavefront sensor

    NASA Astrophysics Data System (ADS)

    Butts, Robert R.

    1997-08-01

    A low noise, high resolution Shack-Hartmann wavefront sensor was included in the ABLE-ACE instrument suite to obtain direct high resolution phase measurements of the 0.53 micrometers pulsed laser beam propagated through high altitude atmospheric turbulence. The wavefront sensor employed a Fired geometry using a lenslet array which provided approximately 17 sub-apertures across the pupil. The lenslets focused the light in each sub-aperture onto a 21 by 21 array of pixels in the camera focal plane with 8 pixels in the camera focal plane with 8 pixels across the central lobe of the diffraction limited spot. The goal of the experiment was to measure the effects of the turbulence in the free atmosphere on propagation, but the wavefront sensor also detected the aberrations induced by the aircraft boundary layer and the receiver aircraft internal beam path. Data analysis methods used to extract the desired atmospheric contribution to the phase measurements from the data corrupted by non-atmospheric aberrations are described. Approaches which were used included a reconstruction of the phase as a linear combination of Zernike polynomials coupled with optical estimator sand computation of structure functions of the sub-aperture slopes. The theoretical basis for the data analysis techniques is presented. Results are described, and comparisons with theory and simulations are shown. Estimates of average turbulence strength along the propagation path from the wavefront sensor showed good agreement with other sensor. The Zernike spectra calculated from the wavefront sensor data were consistent with the standard Kolmogorov model of turbulence.

  4. Passive optical sensing of atmospheric polarization for GPS denied operations

    NASA Astrophysics Data System (ADS)

    Aycock, Todd; Lompado, Art; Wolz, Troy; Chenault, David

    2016-05-01

    There is a rapidly growing need for position, navigation, and timing (PNT) capability that remains effective when GPS is degraded or denied. Naturally occurring sky polarization was used as long ago as the Vikings for navigation purposes. With current polarimetric sensors, the additional polarization information measured by these sensors can be used to increase the accuracy and the availability of this technique. The Sky Polarization Azimuth Sensing System (SkyPASS) sensor measures this naturally occurring sky polarization to give absolute heading information to less than 0.1° and offers significant performance enhancement over digital compasses and sun sensors. SkyPASS has been under development for some time for terrestrial applications, but use above the atmosphere may be possible and the performance specifications and SWAP are attractive for use as an additional pose sensor on a satellite. In this paper, we will describe the phenomenology, the sensor performance, and the latest test results of terrestrial SkyPASS; we will also discuss the potential for use above the atmosphere and the expected benefits and limitations.

  5. Measuring phenological variability from satellite imagery

    USGS Publications Warehouse

    Reed, Bradley C.; Brown, Jesslyn F.; Vanderzee, D.; Loveland, Thomas R.; Merchant, James W.; Ohlen, Donald O.

    1994-01-01

    Vegetation phenological phenomena are closely related to seasonal dynamics of the lower atmosphere and are therefore important elements in global models and vegetation monitoring. Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite sensor offer a means of efficiently and objectively evaluating phenological characteristics over large areas. Twelve metrics linked to key phenological events were computed based on time-series NDVI data collected from 1989 to 1992 over the conterminous United States. These measures include the onset of greenness, time of peak NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI. Measures of central tendency and variability of the measures were computed and analyzed for various land cover types. Results from the analysis showed strong coincidence between the satellite-derived metrics and predicted phenological characteristics. In particular, the metrics identified interannual variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands, and established the phenological consistency of deciduous and coniferous forests. These results have implications for large- area land cover mapping and monitoring. The utility of re- motely sensed data as input to vegetation mapping is demonstrated by showing the distinct phenology of several land cover types. More stable information contained in ancillary data should be incorporated into the mapping process, particularly in areas with high phenological variability. In a regional or global monitoring system, an increase in variability in a region may serve as a signal to perform more detailed land cover analysis with higher resolution imagery.

  6. Evaluating the ASTER sensor for mapping and characterizing forest fire fuels in northern Idaho

    Treesearch

    Michael J. Falkowski; Paul Gessler; Penelope Morgan; Alistair M. S. Smith; Andrew T. Hudak

    2004-01-01

    Land managers need cost-effective methods for mapping and characterizing fire fuels quickly and accurately. The advent of sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the Advanced Spaceborne Thermal Emission and Reflection...

  7. Observation of The Top of The Atmosphere Outgoing Longwave Radiation Using The Geostationary Earth Radiation Budget Sensor

    NASA Astrophysics Data System (ADS)

    Spencer, G.; Llewellyn-Jones, D.

    In the summer of 2002 the Meteosat Second Generation (MSG) satellite is due to be launched. On board the MSG satellite is the Geostationary Earth Radiation Budget (GERB) sensor. This is a new radiometer that will be able to observe and measure the outgoing longwave radiation from the top of the atmosphere for the whole ob- served Earth disc, due to its unique position in geostationary orbit. Every 15 minutes the GERB sensor will make a full Earth disc observation, centred on the Greenwich meridian. Thus, the GERB sensor will provide unprecedented coupled temporal and spatial resolution of the outgoing longwave radiation (4.0 to 30.0 microns), by first measuring the broadband radiation (0.32 to 30.0 microns) and then subtracting the measured reflected shortwave solar radiation (0.32 to 4.0 microns), from the earth- atmosphere system. The GERB sensor is able to make measurements to within an accuracy of 1 W/sq. m. A forward model is being developed at Leicester to simulate the data from the GERB sensor for representative geophysical scenes and to investigate key parameters and processes that will affect the top of the atmosphere signal. At the heart of this model is a line-by-line radiative transfer model, the Oxford Reference Forward Model (RFM) that is to be used with model atmospheres generated from ECMWF analysis data. When MSG is launched, cloud data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), also on board, is to be used in conjunction with GERB data.

  8. Development of an intelligent interface for adding spatial objects to a knowledge-based geographic information system

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Goettsche, Craig

    1989-01-01

    Earth Scientists lack adequate tools for quantifying complex relationships between existing data layers and studying and modeling the dynamic interactions of these data layers. There is a need for an earth systems tool to manipulate multi-layered, heterogeneous data sets that are spatially indexed, such as sensor imagery and maps, easily and intelligently in a single system. The system can access and manipulate data from multiple sensor sources, maps, and from a learned object hierarchy using an advanced knowledge-based geographical information system. A prototype Knowledge-Based Geographic Information System (KBGIS) was recently constructed. Many of the system internals are well developed, but the system lacks an adequate user interface. A methodology is described for developing an intelligent user interface and extending KBGIS to interconnect with existing NASA systems, such as imagery from the Land Analysis System (LAS), atmospheric data in Common Data Format (CDF), and visualization of complex data with the National Space Science Data Center Graphics System. This would allow NASA to quickly explore the utility of such a system, given the ability to transfer data in and out of KBGIS easily. The use and maintenance of the object hierarchies as polymorphic data types brings, to data management, a while new set of problems and issues, few of which have been explored above the prototype level.

  9. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2016-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (<12° at the equator) and optimized for characterization of the Jovian dynamo. Such close passages are sensitive to small spatial scale variations in the magnetic field and therefore many such passes are required to bring the magnetic field into focus. Nevertheless, after only 8 orbits, low-degree spherical harmonics can be extracted from a partial solution to a much more complicated representation (e.g., 20 degree/order), providing the first new information about Jupiter's magnetic field in decades. Juno is equipped with two magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  10. Jupiter's Magnetic Field and Magnetosphere after Juno's First 8 Orbits

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Oliversen, R. J.; Espley, J. R.; Gruesbeck, J.; Kotsiaros, S.; DiBraccio, G. A.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Denver, T.; Benn, M.; Bjarno, J. B.; Malinnikova Bang, A.; Bloxham, J.; Moore, K.; Bolton, S. J.; Levin, S.; Gershman, D. J.

    2017-12-01

    The Juno spacecraft entered polar orbit about Jupiter on July 4, 2016, embarking upon an ambitious mission to map Jupiter's magnetic and gravitational potential fields and probe its deep atmosphere, in search of clues to the planet's formation and evolution. Juno is also instrumented to conduct the first exploration of the polar magnetosphere and to acquire images and spectra of its polar auroras and atmosphere. Juno's 53.5-day orbit trajectory carries her science instruments from pole to pole in approximately 2 hours, with a closest approach to within 1.05 Rj of the center of the planet (one Rj = 71,492 km, Jupiter's equatorial radius), just a few thousand km above the clouds. Repeated periapsis passes will eventually encircle the planet with a dense net of observations equally spaced in longitude (<12° at the equator) and optimized for characterization of the Jovian dynamo. Such close passages are sensitive to small spatial scale variations in the magnetic field and therefore many such passes are required to bring the magnetic field into focus. Nevertheless, after only 8 orbits, low-degree spherical harmonics can be extracted from a partial solution to a much more complicated representation (e.g., 20 degree/order), providing the first new information about Jupiter's magnetic field in decades. Juno is equipped with two magnetometer sensor suites, located 10 and 12 m from the center of the spacecraft at the end of one of Juno's three solar panel wings. Each contains a vector fluxgate magnetometer (FGM) sensor and a pair of co-located non-magnetic star tracker camera heads, providing accurate attitude determination for the FGM sensors. We present an overview of the magnetometer observations obtained during Juno's first year in orbit in context with prior observations and those acquired by Juno's other science instruments.

  11. (Un)Natural Disasters: The Electoral Cycle Outweighs the Hydrologic Cycle in Drought Declaration in Northeast Brazil

    NASA Astrophysics Data System (ADS)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2016-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  12. Comparison of Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and Earth Observing One (EO-1) Advanced Land Imager

    NASA Technical Reports Server (NTRS)

    Pedelty, Jeffrey A.; Morisette, Jeffrey T.; Smith, James A.

    2004-01-01

    We compare images from the Enhanced Thematic Mapper Plus (ETM+) sensor on Landsat-7 and the Advanced Land Imager (ALI) instrument on Earth Observing One (EO-1) over a test site in Rochester, New York. The site contains a variety of features, ranging from water of varying depths, deciduous/coniferous forest, and grass fields, to urban areas. Nearly coincident cloud-free images were collected one minute apart on 25 August 2001. We also compare images of a forest site near Howland, Maine, that were collected on 7 September, 2001. We atmospherically corrected each pair of images with the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) atmosphere model, using aerosol optical thickness and water vapor column density measured by in situ Cimel sun photometers within the Aerosol Robotic Network (AERONET), along with ozone density derived from the Total Ozone Mapping Spectrometer (TOMS) on the Earth Probe satellite. We present true-color composites from each instrument that show excellent qualitative agreement between the multispectral sensors, along with grey-scale images that demonstrate a significantly improved ALI panchromatic band. We quantitatively compare ALI and ETM+ reflectance spectra of a grassy field in Rochester and find < or equal to 6% differences in the visible/near infrared and approx. 2% differences in the short wave infrared. Spectral comparisons of forest sites in Rochester and Howland yield similar percentage agreement except for band 1, which has very low reflectance. Principal component analyses and comparison of normalized difference vegetation index histograms for each sensor indicate that the ALI is able to reproduce the information content in the ETM+ but with superior signal-to-noise performance due to its increased 12-bit quantization.

  13. Launching a Tethered Balloon in the Artic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-08-14

    Sandia atmospheric scientist Dari Dexheimer regularly flies tethered balloons out of Sandia’s dedicated Arctic airspace on Oliktok Point, the northernmost point of Alaska’s Prudhoe Bay. These 13-foot-tall balloons carry distributed temperature sensors to collect Arctic atmospheric temperature profiles, or the temperature of the air at different heights above the ground, among other atmospheric sensors. The data Sandia collects is critical for understanding Arctic clouds to inform global climate models.

  14. Operations and maintenance manual, atmospheric contaminant sensor, revision B

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams are included.

  15. Characterization techniques for incorporating backgrounds into DIRSIG

    NASA Astrophysics Data System (ADS)

    Brown, Scott D.; Schott, John R.

    2000-07-01

    The appearance of operation hyperspectral imaging spectrometers in both solar and thermal regions has lead to the development of a variety of spectral detection algorithms. The development and testing of these algorithms requires well characterized field collection campaigns that can be time and cost prohibitive. Radiometrically robust synthetic image generation (SIG) environments that can generate appropriate images under a variety of atmospheric conditions and with a variety of sensors offers an excellent supplement to reduce the scope of the expensive field collections. In addition, SIG image products provide the algorithm developer with per-pixel truth, allowing for improved characterization of the algorithm performance. To meet the needs of the algorithm development community, the image modeling community needs to supply synthetic image products that contain all the spatial and spectral variability present in real world scenes, and that provide the large area coverage typically acquired with actual sensors. This places a heavy burden on synthetic scene builders to construct well characterized scenes that span large areas. Several SIG models have demonstrated the ability to accurately model targets (vehicles, buildings, etc.) Using well constructed target geometry (from CAD packages) and robust thermal and radiometry models. However, background objects (vegetation, infrastructure, etc.) dominate the percentage of real world scene pixels and utilizing target building techniques is time and resource prohibitive. This paper discusses new methods that have been integrated into the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model to characterize backgrounds. The new suite of scene construct types allows the user to incorporate both terrain and surface properties to obtain wide area coverage. The terrain can be incorporated using a triangular irregular network (TIN) derived from elevation data or digital elevation model (DEM) data from actual sensors, temperature maps, spectral reflectance cubes (possible derived from actual sensors), and/or material and mixture maps. Descriptions and examples of each new technique are presented as well as hybrid methods to demonstrate target embedding in real world imagery.

  16. Review of infrared technology in The Netherlands

    NASA Astrophysics Data System (ADS)

    de Jong, Arie N.

    1993-11-01

    The use of infrared sensors in the Netherlands is substantial. Users can be found in a variety of disciplines, military as well as civil. This need for IR sensors implied a long history on IR technology and development. The result was a large technological-capability allowing the realization of IR hardware: specialized measuring equipment, engineering development models, prototype and production sensors for different applications. These applications range from small size, local radiometry up to large space-borne imaging. Large scale production of IR sensors has been realized for army vehicles. IR sensors have been introduced now in all of the armed forces. Facilities have been built to test the performance of these sensors. Models have been developed to predict the performance of a new sensor. A great effort has been spent on atmospheric research, leading to knowledge upon atmospheric- and background limitations of IR sensors.

  17. Further development of the dynamic gas temperature measurement system. Volume 1: Technical efforts

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1986-01-01

    A compensated dynamic gas temperature thermocouple measurement method was experimentally verified. Dynamic gas temperature signals from a flow passing through a chopped-wheel signal generator and an atmospheric pressure laboratory burner were measured by the dynamic temperature sensor and other fast-response sensors. Compensated data from dynamic temperature sensor thermoelements were compared with fast-response sensors. Results from the two experiments are presented as time-dependent waveforms and spectral plots. Comparisons between compensated dynamic temperature sensor spectra and a commercially available optical fiber thermometer compensated spectra were made for the atmospheric burner experiment. Increases in precision of the measurement method require optimization of several factors, and directions for further work are identified.

  18. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    PubMed

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  19. A Backpack-Mounted Omnidirectional Camera with Off-the-Shelf Navigation Sensors for Mobile Terrestrial Mapping: Development and Forest Application

    PubMed Central

    Prol, Fabricio dos Santos; El Issaoui, Aimad; Hakala, Teemu

    2018-01-01

    The use of Personal Mobile Terrestrial System (PMTS) has increased considerably for mobile mapping applications because these systems offer dynamic data acquisition with ground perspective in places where the use of wheeled platforms is unfeasible, such as forests and indoor buildings. PMTS has become more popular with emerging technologies, such as miniaturized navigation sensors and off-the-shelf omnidirectional cameras, which enable low-cost mobile mapping approaches. However, most of these sensors have not been developed for high-accuracy metric purposes and therefore require rigorous methods of data acquisition and data processing to obtain satisfactory results for some mapping applications. To contribute to the development of light, low-cost PMTS and potential applications of these off-the-shelf sensors for forest mapping, this paper presents a low-cost PMTS approach comprising an omnidirectional camera with off-the-shelf navigation systems and its evaluation in a forest environment. Experimental assessments showed that the integrated sensor orientation approach using navigation data as the initial information can increase the trajectory accuracy, especially in covered areas. The point cloud generated with the PMTS data had accuracy consistent with the Ground Sample Distance (GSD) range of omnidirectional images (3.5–7 cm). These results are consistent with those obtained for other PMTS approaches. PMID:29522467

  20. Advancing an In situ Laser Spectrometer for Carbon Isotope Analyses in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Michel, A.; Wankel, S. D.; Kapit, J.; Girguis, P. R.

    2016-02-01

    Development of in situ chemical sensors is critical for improving our understanding of deep-ocean biogeochemistry and recent advances in chemical sensors are already expanding the breadth and depth of deep sea/seafloor exploration and research. Although initially developed for high sensitivity measurements of atmospheric gases, laser-based spectroscopic sensors are now being developed for research in the deep sea by incorporating the use of semi-permeable membranes. Here we present on recent deep-sea deployments of an in situ laser-based analyzer of carbon isotopes of methane (δ13CH4), highlighting several advances including a new capability for also measuring δ13C of DIC or CO2 by incorporating a second laser and an in line acidification module. A bubble trapping approach was designed and implemented for the collection and analysis of both CH4 and CO2 from deep-sea bubbles. The newly advanced laser spectrometer was deployed at both Kick `Em Jenny volcano off of the island of Grenada and in a brine pool in the western Gulf of Mexico ("The Jacuzzi of Despair") using the E/V Nautilus and the ROV Hercules. At Kick `Em Jenny, seafloor measurements were made of both emanating fluids and bubbles from within and around the crater - revealing high levels of magmatic CO2 with minor amounts of CH4 and hydrogen sulfide. At the brine pool, spot measurements and depth profile measurements into the brine pool were made for chemical mapping, revealing fluids that were saturated with respect to methane. New technologies such as the laser spectrometer will enable us to obtain high resolution and near real-time, in situ chemical and isotopic data and to make geochemical maps over a range of spatial and temporal scales.

  1. Sensors and OBIA synergy for operational monitoring of surface water

    NASA Astrophysics Data System (ADS)

    Masson, Eric; Thenard, Lucas

    2010-05-01

    This contribution will focus on combining Object Based Image Analysis (i.e. OBIA with e-Cognition 8) and recent sensors (i.e. Spot 5 XS, Pan and ALOS Prism, Avnir2, Palsar) to address the technical feasibility for an operational monitoring of surface water. Three cases of river meandering (India), flood mapping (Nepal) and dam's seasonal water level monitoring (Morocco) using recent sensors will present various application of surface water monitoring. The operational aspect will be demonstrated either by sensor properties (i.e. spatial resolution and bandwidth), data acquisition properties (i.e. multi sensor, return period and near real-time acquisition) but also with OBIA algorithms (i.e. fusion of multi sensors / multi resolution data and batch processes). In the first case of river meandering (India) we will address multi sensor and multi date satellite acquisition to monitor the river bed mobility within a floodplain using an ALOS dataset. It will demonstrate the possibility of an operational monitoring system that helps the geomorphologist in the analysis of fluvial dynamic and sediment budget for high energy rivers. In the second case of flood mapping (Nepal) we will address near real time Palsar data acquisition at high spatial resolution to monitor and to map a flood extension. This ALOS sensor takes benefit both from SAR and L band properties (i.e. atmospheric transparency, day/night acquisition, low sensibility to surface wind). It's a real achievement compared to optical imagery or even other high resolution SAR properties (i.e. acquisition swath, bandwidth and data price). These advantages meet the operational needs set by crisis management of hydrological disasters but also for the implementation of flood risk management plans. The last case of dam surface water monitoring (Morocco) will address an important issue of water resource management in countries affected by water scarcity. In such countries water users have to cope with over exploitation, frequent drought period and now with foreseen climate change impacts. This third case will demonstrate the efficiency of SPOT 5 programming in synergy with OBIA methodology to assess the evolution of dam surface water within a complete water cycle (i.e. 2008-09). In all those three cases image segmentation and classification algorithms developed with e-Cognition 8 software allow an easy to use implementation of simple to highly sophisticate OBIA rulsets fully operational in batch processes. Finally this contribution foresees the new opportunity of integration of Worldview 2 multispectral imagery (i.e. 8 bands) including its "coastal" band that will also find an application in continental surface water bathymetry. Worldview 2 is a recently launch satellite (e.g. October 2009) that starts to collect earth observation data since January 2010. It is therefore a promising new remote sensing tool to develop operational hydrology in combination high resolution SAR imagery and OBIA methodology. This contribution will conclude on the strong potential for operationalisation in hydrology and water resources management that recent and future sensors and image analysis methodologies are offering to water management and decision makers.

  2. Mapping Palm Swamp Wetland Ecosystems in the Peruvian Amazon: a Multi-Sensor Remote Sensing Approach

    NASA Astrophysics Data System (ADS)

    Podest, E.; McDonald, K. C.; Schroeder, R.; Pinto, N.; Zimmerman, R.; Horna, V.

    2012-12-01

    Wetland ecosystems are prevalent in the Amazon basin, especially in northern Peru. Of specific interest are palm swamp wetlands because they are characterized by constant surface inundation and moderate seasonal water level variation. This combination of constantly saturated soils and warm temperatures year-round can lead to considerable methane release to the atmosphere. Because of the widespread occurrence and expected sensitivity of these ecosystems to climate change, it is critical to develop methods to quantify their spatial extent and inundation state in order to assess their carbon dynamics. Spatio-temporal information on palm swamps is difficult to gather because of their remoteness and difficult accessibility. Spaceborne microwave remote sensing is an effective tool for characterizing these ecosystems since it is sensitive to surface water and vegetation structure and allows monitoring large inaccessible areas on a temporal basis regardless of atmospheric conditions or solar illumination. We developed a remote sensing methodology using multi-sensor remote sensing data from the Advanced Land Observing Satellite (ALOS) Phased Array L-Band Synthetic Aperture Radar (PALSAR), Shuttle Radar Topography Mission (SRTM) DEM, and Landsat to derive maps at 100 meter resolution of palm swamp extent and inundation based on ground data collections; and combined active and passive microwave data from AMSR-E and QuikSCAT to derive inundation extent at 25 kilometer resolution on a weekly basis. We then compared information content and accuracy of the coarse resolution products relative to the high-resolution datasets. The synergistic combination of high and low resolution datasets allowed for characterization of palm swamps and assessment of their flooding status. This work has been undertaken partly within the framework of the JAXA ALOS Kyoto & Carbon Initiative. PALSAR data have been provided by JAXA. Portions of this work were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  3. Localization in Self-Healing Autonomous Sensor Networks (SASNet): Studies on Cooperative Localization of Sensor Nodes using Distributed Maps

    DTIC Science & Technology

    2008-01-01

    CCA-MAP algorithm are analyzed. Further, we discuss the design considerations of the discussed cooperative localization algorithms to compare and...MAP and CCA-MAP to compare and evaluate their performance. Then a preliminary design analysis is given to address the implementation requirements and...plus précis, avec un nombre inférieur de nœuds ancres, comparativement aux autres types de schémas de localisation. En réalité, les algorithmes de

  4. Middle Atmosphere Program. Handbook for MAP, volume 27

    NASA Technical Reports Server (NTRS)

    Edwards, Belva (Editor)

    1989-01-01

    The proceedings are presented from the MAP program of July 1988. It is intended to be a quick synopsis of the symposium. General topics include: New International Equatorial Observatory; Dynamics of the Middle Atmosphere in Winter (DYNAMICS); Global Budget of Stratospheric Trace Constituents (GLOBUS); Gravity Waves and Turbulence in the Middle Atmosphere Program (GRATMAP); Middle Atmosphere Electrodynamics (MAE); Winter in Northern Europe (WINE); Atmospheric Tides Middle Atmosphere Program (ATMAP); and many others.

  5. Framework of passive millimeter-wave scene simulation based on material classification

    NASA Astrophysics Data System (ADS)

    Park, Hyuk; Kim, Sung-Hyun; Lee, Ho-Jin; Kim, Yong-Hoon; Ki, Jae-Sug; Yoon, In-Bok; Lee, Jung-Min; Park, Soon-Jun

    2006-05-01

    Over the past few decades, passive millimeter-wave (PMMW) sensors have emerged as useful implements in transportation and military applications such as autonomous flight-landing system, smart weapons, night- and all weather vision system. As an efficient way to predict the performance of a PMMW sensor and apply it to system, it is required to test in SoftWare-In-the-Loop (SWIL). The PMMW scene simulation is a key component for implementation of this simulator. However, there is no commercial on-the-shelf available to construct the PMMW scene simulation; only there have been a few studies on this technology. We have studied the PMMW scene simulation method to develop the PMMW sensor SWIL simulator. This paper describes the framework of the PMMW scene simulation and the tentative results. The purpose of the PMMW scene simulation is to generate sensor outputs (or image) from a visible image and environmental conditions. We organize it into four parts; material classification mapping, PMMW environmental setting, PMMW scene forming, and millimeter-wave (MMW) sensorworks. The background and the objects in the scene are classified based on properties related with MMW radiation and reflectivity. The environmental setting part calculates the following PMMW phenomenology; atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Then, PMMW raw images are formed with surface geometry. Finally, PMMW sensor outputs are generated from PMMW raw images by applying the sensor characteristics such as an aperture size and noise level. Through the simulation process, PMMW phenomenology and sensor characteristics are simulated on the output scene. We have finished the design of framework of the simulator, and are working on implementation in detail. As a tentative result, the flight observation was simulated in specific conditions. After implementation details, we plan to increase the reliability of the simulation by data collecting using actual PMMW sensors. With the reliable PMMW scene simulator, it will be more efficient to apply the PMMW sensor to various applications.

  6. University of Pennsylvania MAGIC 2010 Final Report

    DTIC Science & Technology

    2011-01-10

    and mapping ( SLAM ) techniques are employed to build a local map of the environment surrounding the robot. Readings from the two complementary LIDAR sen...IMU, LIDAR , Cameras Localization Disrupter UGV Local Navigation Sensors: GPS, IMU, LIDAR , Cameras Laser Control Localization Task Planner Strategy/Plan...various components shown in Figure 2. This is comprised of the following subsystems: • Sensor UGV: Mobile UGVs with LIDAR and camera sensors, GPS, and

  7. Long-Term Simultaneous Localization and Mapping in Dynamic Environments

    DTIC Science & Technology

    2015-01-01

    core competencies required for autonomous mobile robotics is the ability to use sensors to perceive the environment. From this noisy sensor data, the...and mapping (SLAM), is a prerequisite for almost all higher-level autonomous behavior in mobile robotics. By associating the robot???s sensory...distributed stochastic neighbor embedding x ABSTRACT One of the core competencies required for autonomous mobile robotics is the ability to use sensors

  8. Performance Analysis for Lateral-Line-Inspired Sensor Arrays

    DTIC Science & Technology

    2011-06-01

    found to affect numerous aspects of behavior including maneuvering in complex fluid environments, schooling, prey tracking, and environment mapping...190 5-29 Maps of the cost function for a reflected vortex model with an increasing array length but constant sensor spacing . The x at...length but constant sensor spacing . The x in each image denotes the true location of the vortex. The black lines correspond to level sets generated by the

  9. Sensor System Performance Evaluation and Benefits from the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I)

    NASA Technical Reports Server (NTRS)

    Larar, A.; Zhou, D.; Smith, W.

    2009-01-01

    Advanced satellite sensors are tasked with improving global-scale measurements of the Earth's atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring, and environmental change detection. Validation of the entire measurement system is crucial to achieving this goal and thus maximizing research and operational utility of resultant data. Field campaigns employing satellite under-flights with well-calibrated FTS sensors aboard high-altitude aircraft are an essential part of this validation task. The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed-Interferometer (NAST-I) has been a fundamental contributor in this area by providing coincident high spectral/spatial resolution observations of infrared spectral radiances along with independently-retrieved geophysical products for comparison with like products from satellite sensors being validated. This paper focuses on some of the challenges associated with validating advanced atmospheric sounders and the benefits obtained from employing airborne interferometers such as the NAST-I. Select results from underflights of the Aqua Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) obtained during recent field campaigns will be presented.

  10. Ningaloo Reef: Shallow Marine Habitats Mapped Using a Hyperspectral Sensor

    PubMed Central

    Kobryn, Halina T.; Wouters, Kristin; Beckley, Lynnath E.; Heege, Thomas

    2013-01-01

    Research, monitoring and management of large marine protected areas require detailed and up-to-date habitat maps. Ningaloo Marine Park (including the Muiron Islands) in north-western Australia (stretching across three degrees of latitude) was mapped to 20 m depth using HyMap airborne hyperspectral imagery (125 bands) at 3.5 m resolution across the 762 km2 of reef environment between the shoreline and reef slope. The imagery was corrected for atmospheric, air-water interface and water column influences to retrieve bottom reflectance and bathymetry using the physics-based Modular Inversion and Processing System. Using field-validated, image-derived spectra from a representative range of cover types, the classification combined a semi-automated, pixel-based approach with fuzzy logic and derivative techniques. Five thematic classification levels for benthic cover (with probability maps) were generated with varying degrees of detail, ranging from a basic one with three classes (biotic, abiotic and mixed) to the most detailed with 46 classes. The latter consisted of all abiotic and biotic seabed components and hard coral growth forms in dominant or mixed states. The overall accuracy of mapping for the most detailed maps was 70% for the highest classification level. Macro-algal communities formed most of the benthic cover, while hard and soft corals represented only about 7% of the mapped area (58.6 km2). Dense tabulate coral was the largest coral mosaic type (37% of all corals) and the rest of the corals were a mix of tabulate, digitate, massive and soft corals. Our results show that for this shallow, fringing reef environment situated in the arid tropics, hyperspectral remote sensing techniques can offer an efficient and cost-effective approach to mapping and monitoring reef habitats over large, remote and inaccessible areas. PMID:23922921

  11. MWIR imaging spectrometer with digital time delay integration for remote sensing and characterization of solar system objects

    NASA Astrophysics Data System (ADS)

    Kendrick, Stephen E.; Harwit, Alex; Kaplan, Michael; Smythe, William D.

    2007-09-01

    An MWIR TDI (Time Delay and Integration) Imager and Spectrometer (MTIS) instrument for characterizing from orbit the moons of Jupiter and Saturn is proposed. Novel to this instrument is the planned implementation of a digital TDI detector array and an innovative imaging/spectroscopic architecture. Digital TDI enables a higher SNR for high spatial resolution surface mapping of Titan and Enceladus and for improved spectral discrimination and resolution at Europa. The MTIS imaging/spectroscopic architecture combines a high spatial resolution coarse wavelength resolution imaging spectrometer with a hyperspectral sensor to spectrally decompose a portion of the data adjacent to the data sampled in the imaging spectrometer. The MTIS instrument thus maps with high spatial resolution a planetary object while spectrally decomposing enough of the data that identification of the constituent materials is highly likely. Additionally, digital TDI systems have the ability to enable the rejection of radiation induced spikes in high radiation environments (Europa) and the ability to image in low light levels (Titan and Enceladus). The ability to image moving objects that might be missed utilizing a conventional TDI system is an added advantage and is particularly important for characterizing atmospheric effects and separating atmospheric and surface components. This can be accomplished with on-orbit processing or collecting and returning individual non co-added frames.

  12. Automated Wildfire Detection Through Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Miller, Jerry; Borne, Kirk; Thomas, Brian; Huang, Zhenping; Chi, Yuechen

    2005-01-01

    Wildfires have a profound impact upon the biosphere and our society in general. They cause loss of life, destruction of personal property and natural resources and alter the chemistry of the atmosphere. In response to the concern over the consequences of wildland fire and to support the fire management community, the National Oceanic and Atmospheric Administration (NOAA), National Environmental Satellite, Data and Information Service (NESDIS) located in Camp Springs, Maryland gradually developed an operational system to routinely monitor wildland fire by satellite observations. The Hazard Mapping System, as it is known today, allows a team of trained fire analysts to examine and integrate, on a daily basis, remote sensing data from Geostationary Operational Environmental Satellite (GOES), Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensors and generate a 24 hour fire product for the conterminous United States. Although assisted by automated fire detection algorithms, N O M has not been able to eliminate the human element from their fire detection procedures. As a consequence, the manually intensive effort has prevented NOAA from transitioning to a global fire product as urged particularly by climate modelers. NASA at Goddard Space Flight Center in Greenbelt, Maryland is helping N O M more fully automate the Hazard Mapping System by training neural networks to mimic the decision-making process of the frre analyst team as well as the automated algorithms.

  13. Atmospherical wavefront phases using the plenoptic sensor (real data)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ramos, L. F.; Montilla, I.; Lüke, J. P.; López, R.; Marichal-Hernández, J. G.; Trujillo-Sevilla, J.; Femenía, B.; López, M.; Fernández-Valdivia, J. J.; Puga, M.; Rosa, F.; Rodríguez-Ramos, J. M.

    2012-06-01

    Plenoptic cameras have been developed the last years as a passive method for 3d scanning, allowing focal stack capture from a single shot. But data recorded by this kind of sensors can also be used to extract the wavefront phases associated to the atmospheric turbulence in an astronomical observation. The terrestrial atmosphere degrades the telescope images due to the diffraction index changes associated to the turbulence. Na artificial Laser Guide Stars (Na-LGS, 90km high) must be used to obtain the reference wavefront phase and the Optical Transfer Function of the system, but they are affected by defocus because of the finite distance to the telescope. Using the telescope as a plenoptic camera allows us to correct the defocus and to recover the wavefront phase tomographically, taking advantage of the two principal characteristics of the plenoptic sensors at the same time: 3D scanning and wavefront sensing. Then, the plenoptic sensors can be studied and used as an alternative wavefront sensor for Adaptive Optics, particularly relevant when Extremely Large Telescopes projects are being undertaken. In this paper, we will present the first observational wavefront phases extracted from real astronomical observations, using punctual and extended objects, and we show that the restored wavefronts match the Kolmogorov atmospheric turbulence.

  14. MAPS development for the ALICE ITS upgrade

    NASA Astrophysics Data System (ADS)

    Yang, P.; Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Gao, C.; Hillemanns, H.; Junique, A.; Kofarago, M.; Keil, M.; Kugathasan, T.; Kim, D.; Kim, J.; Lattuca, A.; Marin Tobon, C. A.; Marras, D.; Mager, M.; Martinengo, P.; Mazza, G.; Mugnier, H.; Musa, L.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Snoeys, W.; Siddhanta, S.; Usai, G.; van Hoorne, J. W.; Yi, J.

    2015-03-01

    Monolithic Active Pixel Sensors (MAPS) offer the possibility to build pixel detectors and tracking layers with high spatial resolution and low material budget in commercial CMOS processes. Significant progress has been made in the field of MAPS in recent years, and they are now considered for the upgrades of the LHC experiments. This contribution will focus on MAPS detectors developed for the ALICE Inner Tracking System (ITS) upgrade and manufactured in the TowerJazz 180 nm CMOS imaging sensor process on wafers with a high resistivity epitaxial layer. Several sensor chip prototypes have been developed and produced to optimise both charge collection and readout circuitry. The chips have been characterised using electrical measurements, radioactive sources and particle beams. The tests indicate that the sensors satisfy the ALICE requirements and first prototypes with the final size of 1.5 × 3 cm2 have been produced in the first half of 2014. This contribution summarises the characterisation measurements and presents first results from the full-scale chips.

  15. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE PAGES

    de Boer, Gijs; Palo, Scott; Argrow, Brian; ...

    2016-04-28

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.« less

  16. The Pilatus unmanned aircraft system for lower atmospheric research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Boer, Gijs; Palo, Scott; Argrow, Brian

    This study presents details of the University of Colorado (CU) “Pilatus” unmanned research aircraft, assembled to provide measurements of aerosols, radiation and thermodynamics in the lower troposphere. This aircraft has a wingspan of 3.2 m and a maximum take-off weight of 25 kg, and it is powered by an electric motor to reduce engine exhaust and concerns about carburetor icing. It carries instrumentation to make measurements of broadband up- and downwelling shortwave and longwave radiation, aerosol particle size distribution, atmospheric temperature, relative humidity and pressure and to collect video of flights for subsequent analysis of atmospheric conditions during flight. Inmore » order to make the shortwave radiation measurements, care was taken to carefully position a high-quality compact inertial measurement unit (IMU) and characterize the attitude of the aircraft and its orientation to the upward-looking radiation sensor. Using measurements from both of these sensors, a correction is applied to the raw radiometer measurements to correct for aircraft attitude and sensor tilt relative to the sun. The data acquisition system was designed from scratch based on a set of key driving requirements to accommodate the variety of sensors deployed. Initial test flights completed in Colorado provide promising results with measurements from the radiation sensors agreeing with those from a nearby surface site. Additionally, estimates of surface albedo from onboard sensors were consistent with local surface conditions, including melting snow and bright runway surface. Aerosol size distributions collected are internally consistent and have previously been shown to agree well with larger, surface-based instrumentation. Finally the atmospheric state measurements evolve as expected, with the near-surface atmosphere warming over time as the day goes on, and the atmospheric relative humidity decreasing with increased temperature. No directional bias on measured temperature, as might be expected due to uneven heating of the sensor housing over the course of a racetrack pattern, was detected. The results from these flights indicate that the CU Pilatus platform is capable of performing research-grade lower tropospheric measurement missions.« less

  17. Inferring the most probable maps of underground utilities using Bayesian mapping model

    NASA Astrophysics Data System (ADS)

    Bilal, Muhammad; Khan, Wasiq; Muggleton, Jennifer; Rustighi, Emiliano; Jenks, Hugo; Pennock, Steve R.; Atkins, Phil R.; Cohn, Anthony

    2018-03-01

    Mapping the Underworld (MTU), a major initiative in the UK, is focused on addressing social, environmental and economic consequences raised from the inability to locate buried underground utilities (such as pipes and cables) by developing a multi-sensor mobile device. The aim of MTU device is to locate different types of buried assets in real time with the use of automated data processing techniques and statutory records. The statutory records, even though typically being inaccurate and incomplete, provide useful prior information on what is buried under the ground and where. However, the integration of information from multiple sensors (raw data) with these qualitative maps and their visualization is challenging and requires the implementation of robust machine learning/data fusion approaches. An approach for automated creation of revised maps was developed as a Bayesian Mapping model in this paper by integrating the knowledge extracted from sensors raw data and available statutory records. The combination of statutory records with the hypotheses from sensors was for initial estimation of what might be found underground and roughly where. The maps were (re)constructed using automated image segmentation techniques for hypotheses extraction and Bayesian classification techniques for segment-manhole connections. The model consisting of image segmentation algorithm and various Bayesian classification techniques (segment recognition and expectation maximization (EM) algorithm) provided robust performance on various simulated as well as real sites in terms of predicting linear/non-linear segments and constructing refined 2D/3D maps.

  18. Huygens Atmospheric Structure Instrument (HASI) test by a stratospheric balloon experiment

    NASA Astrophysics Data System (ADS)

    Fulchignoni, M.; Gaborit, V.; Aboudam, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Lion Stoppato, P.

    2002-09-01

    We developped a series of balloon experiments parachuting a 1:1 scale mock up of the Huygens probe from an altitude larger than 30 km in order to simulate at planetary scale the final part of the descent of the probe in the Titan atmosphere. The Earth atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, with the exception of temperature. A first balloon experiment has been carried out in June 2001 and the results have been reported at the last DPS (V. Gaborit et al., BAAS 33, 38.03) The mock up of the probe descending in the Titan atmosphere for the Huygens Cassini Mission has been successfully launched with stratospheric balloon from Italian Space Agency Base "Luigi Broglio" in Sicily and recovered on May 30th 2002. The probe has been lifted at 32 km altitude and then released to perform a 45 minutes descent decelerated by parachute, to simulate Huygens mission at Titan. Preliminary aerodynamics study of the probe has focused on the achievement of a descent velocity profile and a spin rate profile, satisfying the Huygens mission to Titan requirements. The descent velocity and spin rate have been calculated by solving a system of ODE describing the translational and rotational motion of the probe trough the earth atmosphere during parachute aided descent Results of these calculations have driven the choice of an appropriate angle of attack of the blades in the bottom of the probe and ballast weight during flight. The probe is hosting spares of HASI sensors, housekeeping sensors and other dedicated sensors, Beagle II UV Sensors and Huygens SSP Tilt Sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. Main goals are i) to verify sensor performance and perform a realistic functional test in dynamical and environmental conditions similar to those during the descent in Titan atmosphere; ii) to investigate impact at ground to check the impact detection sequence of HASI accelerometer and HASI in the surface phase; iii) to test the codes developped to perfor the descent trajectory reconstruction of the Huygens probe in the Titan atmosphere. An integrated data acquisition and instrument control system has been developed, based on PC architecture and soft-real-time application. Sensors channels have been sampled at the nominal HASI data rates, with a max rate of 1 kHz. Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy.

  19. Persistent regional carbon dioxide anomalies driven by land use

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    Researchers have traditionally used measurements from remote locations, such as Hawaii's Mauna Loa Observatory and other isolated stations, to determine atmospheric carbon dioxide (CO2) concentrations and estimate the strengths of various carbon sources and sinks. The prevailing wisdom was that attempts to measure regional differences in CO2 over land would end up with signals that were either so small that they were undetectable or that were dominated by high-frequency variability due to atmospheric turbulence or weather. Measurements drawn from a moderately dense network of atmospheric gas composition sensors distributed across the upper midwestern United States, however, showed that large regional variations in tropospheric CO2 are readily observable. Drawing on measurements made at nine sensors spread over 400,000 square kilometers between 2007 and 2009, Miles et al. found that seasonal variations in atmospheric CO2 depend strongly on the type of ecosystem lying at the foot of each sensor tower.

  20. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    PubMed Central

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  1. A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion.

    PubMed

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-07-12

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes.

  2. Atmospheric moisture and cloud structure determined from SSM/I and global gridpoint analyses. [Special Sensor Microwave Imager

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Huang, Huo-Jin

    1989-01-01

    Data from the Special Sensor Microwave Imager/I on the DMSP satellite are used to study atmospheric moisture and cloud structure. Column-integrated water vapor and total liquid water retrievals are obtained using an algorithm based on a radiative model for brightness temperature (Wentz, 1983). The results from analyzing microwave and IR measurements are combined with independent global gridpoint analyses to study the distribution and structure of atmospheric moisture over oceanic regions.

  3. Design and implementation of atmospheric multi-parameter sensor for UAVs

    NASA Astrophysics Data System (ADS)

    Yu, F.; Zhao, Y.; Chen, G.; Liu, Y.; Han, Y.

    2017-12-01

    With the rapid development of industry and the increase of cars in developing countries, air pollutants have caused a series of environmental issues such as haze and smog. However, air pollution is a process of surface-to-air mass exchange, and various kinds of atmospheric factors have close association with aerosol concentration, such as temperature, humidity, etc. Vertical distributions of aerosol in the region provide an important clue to reveal the exchange mechanism in the atmosphere between atmospheric boundary layer and troposphere. Among the various kinds of flying platforms, unmanned aerial vehicles (UAVs) shows more advantages in vertical measurement of aerosol owned to its flexibility and low cost. However, only few sensors could be mounted on the UAVs because of the limited size and power requirement. Here, a light-weight, low-power atmospheric multi-parameter sensor (AMPS) is proposed and could be mounted on several kinds of UAV platforms. The AMPS integrates multi-sensors, which are the laser aerosol particle sensor, the temperature probe, the humidity probe and the pressure probe, in order to simultaneously sample the vertical distribution characters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. The data from the sensors are synchronized by a proposed communication mechanism based on GPS. Several kinds of housing are designed to accommodate the different payload requirements of UAVs in size and weight. The experiments were carried out with AMPS mounted on three kinds of flying platforms. The results shows that the power consumption is less than 1.3 W, with relatively high accuracy in temperature (±0.1°C), relative humidity (±0.8%RH), PM2.5 (<20%) and PM10 (<20%). Vertical profiles of PM2.5 and PM10 concentrations were observed simultaneously by the AMPS three times every day in five days. The results revealed the significant correlation between the aerosol particle concentration and atmospheric parameters. With low cost and flexibility, AMPS for UAVs provides an effective way to explore the properties of aerosol vertical distribution, and to monitor air pollutants flexibly.

  4. GEOScan: A GEOScience Facility From Space

    NASA Astrophysics Data System (ADS)

    Dyrud, L. P.; Fentzke, J. T.; Anderson, B. J.; Bishop, R. L.; Bust, G. S.; Cahoy, K.; Erlandson, R. E.; Fish, C. S.; Gunter, B. C.; Hall, F. G.; Hilker, T.; Lorentz, S. R.; Mazur, J. E.; Murphy, S. D.; Mustard, J. F.; O'Brien, P. P.; Slagowski, S.; Trenberth, K. E.; Wiscombe, W. J.

    2012-12-01

    GEOScan is a proposed globally networked orbiting facility that will provide revolutionary, massively dense global geosciences observations. Major scientific research projects are typically conducted using two approaches: community facilities, or investigator led focused missions. GEOScan is a new concept in space science, blending the PI mission and community facility models: it is PI-led, but it carries sensors that are the result of a grass-roots competition, and, uniquely, it preserves open slots for sensors which are purposely not yet decided. The goal is threefold: first, to select sensors that maximize science value for the greatest number of scientific disciplines, second, to target science questions that cannot be answered without simultaneous global space-based measurements, and third to reap the cost advantages of scale manufacturing for space instrumentation. The relatively small size, mass, and power requirements of the GEOScan sensor suite would make it an ideal hosted payload aboard a global constellation of communication satellites, such as Iridium NEXT's 66-satellite constellation or as hosted small-sat payload. Each GEOScan sensor suite consists of 6 instruments: a Radiometer to measure Earth's total outgoing radiation; a GPS Compact Total Electron Content Sensor to image Earth's plasma environment and gravity field; a MicroCam Multispectral Imager to provide the first uniform, instantaneous image of Earth and measure global cloud cover, vegetation, land use, and bright aurora; a Radiation Belt Mapping System (dosimeter) to measure energetic electron and proton distributions; a Compact Earth Observing Spectrometer to measure aerosol-atmospheric composition and vegetation; and MEMS Accelerometers to deduce non-conservative forces aiding gravity and neutral drag studies. These instruments, employed in a constellation, can provide major breakthroughs in Earth and Geospace science, as well as offering a low-cost technology demonstration for operational weather, climate, and land-imaging.

  5. Development and Validation of a UAV Based System for Air Pollution Measurements

    PubMed Central

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-01-01

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection. PMID:28009820

  6. Development and Validation of a UAV Based System for Air Pollution Measurements.

    PubMed

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-12-21

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO₂, CO, NO₂ and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

  7. Learning and diagnosing faults using neural networks

    NASA Technical Reports Server (NTRS)

    Whitehead, Bruce A.; Kiech, Earl L.; Ali, Moonis

    1990-01-01

    Neural networks have been employed for learning fault behavior from rocket engine simulator parameters and for diagnosing faults on the basis of the learned behavior. Two problems in applying neural networks to learning and diagnosing faults are (1) the complexity of the sensor data to fault mapping to be modeled by the neural network, which implies difficult and lengthy training procedures; and (2) the lack of sufficient training data to adequately represent the very large number of different types of faults which might occur. Methods are derived and tested in an architecture which addresses these two problems. First, the sensor data to fault mapping is decomposed into three simpler mappings which perform sensor data compression, hypothesis generation, and sensor fusion. Efficient training is performed for each mapping separately. Secondly, the neural network which performs sensor fusion is structured to detect new unknown faults for which training examples were not presented during training. These methods were tested on a task of fault diagnosis by employing rocket engine simulator data. Results indicate that the decomposed neural network architecture can be trained efficiently, can identify faults for which it has been trained, and can detect the occurrence of faults for which it has not been trained.

  8. CAOS: the nested catchment soil-vegetation-atmosphere observation platform

    NASA Astrophysics Data System (ADS)

    Weiler, Markus; Blume, Theresa

    2016-04-01

    Most catchment based observations linking hydrometeorology, ecohydrology, soil hydrology and hydrogeology are typically not integrated with each other and lack a consistent and appropriate spatial-temporal resolution. Within the research network CAOS (Catchments As Organized Systems), we have initiated and developed a novel and integrated observation platform in several catchments in Luxembourg. In 20 nested catchments covering three distinct geologies the subscale processes at the bedrock-soil-vegetation-atmosphere interface are being monitored at 46 sensor cluster locations. Each sensor cluster is designed to observe a variety of different fluxes and state variables above and below ground, in the saturated and unsaturated zone. The numbers of sensors are chosen to capture the spatial variability as well the average dynamics. At each of these sensor clusters three soil moisture profiles with sensors at different depths, four soil temperature profiles as well as matric potential, air temperature, relative humidity, global radiation, rainfall/throughfall, sapflow and shallow groundwater and stream water levels are measured continuously. In addition, most sensors also measure temperature (water, soil, atmosphere) and electrical conductivity. This setup allows us to determine the local water and energy balance at each of these sites. The discharge gauging sites in the nested catchments are also equipped with automatic water samplers to monitor water quality and water stable isotopes continuously. Furthermore, water temperature and electrical conductivity observations are extended to over 120 locations distributed across the entire stream network to capture the energy exchange between the groundwater, stream water and atmosphere. The measurements at the sensor clusters are complemented by hydrometeorological observations (rain radar, network of distrometers and dense network of precipitation gauges) and linked with high resolution meteorological models. In this presentation, we will highlight the potential of this integrated observation platform to estimate energy and water exchange between the terrestrial and aquatic systems and the atmosphere, to trace water flow pathways in the unsaturated and saturated zone, and to understand the organization of processes and fluxes and thus runoff generation at different temporal and spatial scales.

  9. Near-Surface Geophysical Mapping of the Hydrological Response to an Intense Rainfall Event at the Field Scale

    NASA Astrophysics Data System (ADS)

    Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.

    2009-12-01

    Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind of distribution could not be shown using MRD differences since they come from standardized distributions. Field-extend time-lapse ECa maps can provide useful images of the hydrological response of agricultural fields which can be used to evaluate different soil management strategies or to aid the assessment of biogeochemical fluxes at the field scale.

  10. Localization and Mapping Using Only a Rotating FMCW Radar Sensor

    PubMed Central

    Vivet, Damien; Checchin, Paul; Chapuis, Roland

    2013-01-01

    Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523

  11. Localization and mapping using only a rotating FMCW radar sensor.

    PubMed

    Vivet, Damien; Checchin, Paul; Chapuis, Roland

    2013-04-08

    Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed.

  12. AQUARIUS: A Passive/Active Microwave Sensor to Monitor Sea Surface Salinity Globally from Space

    NASA Technical Reports Server (NTRS)

    LeVine, David; Lagerloef, Gary S. E.; Colomb, F. Raul; Chao, Yi

    2004-01-01

    Salinity is important for understanding ocean dynamics, energy exchange with the atmosphere and the global water cycle. Existing data is limited and much of the ocean has never even been sampled. Sea surface salinity can be measured remotely by satellite and a three year mission for this purpose called AquariudSAC-D has recently been selected by NASA's Earth System Science Pathfinder (ESSP) program. The objective is to map the salinity field globally with a spatial resolution of 100 km and a monthly average accuracy of 0.2 psu. The mission, scheduled for launch in 2008, is a partnership of the United States National Aeronautics and Space Agency (NASA) and the Argentine Comision National de Actividades Epaciales (CONAE).

  13. Wildfire and MAMS data from STORMFEST

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Carlson, G. S.

    1993-01-01

    Early in 1992, NASA participated in an inter-agency field program called STORMFEST. The STORM-Fronts Experiment Systems Test (STORMFEST) was designed to test various systems critical to the success of STORM 1 in a very focused experiment. The field effort focused on winter storms in order to investigate the structure and evolution of fronts and associated mesoscale phenomena in the central United States. This document describes the data collected from two instruments onboard a NASA ER2 aircraft which was deployed out of Ellington Field in Houston, Texas from February 13 through March 15, 1992, in support of this experiment. The two instruments were the Wildfire (a.k.a. the moderate resolution imaging spectrometer-nadir (MODIS-N) Airborne Simulation (MAS)) and the Multispectral Atmospheric Mapping Sensor (MAMS).

  14. GaAs/Ge Solar Powered Aircraft

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Brinker, David J.

    1998-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration aircraft. Due to the weight, speed, and altitude constraints imposed on such an aircraft, solar array generated electric power can be a viable alternative to air-breathing engines for certain missions. Development of such an aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) has built a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office.

  15. Atmospheric correction of ocean color sensors: analysis of the effects of residual instrument polarization sensitivity.

    PubMed

    Gordon, H R; Du, T; Zhang, T

    1997-09-20

    We provide an analysis of the influence of instrument polarization sensitivity on the radiance measured by spaceborne ocean color sensors. Simulated examples demonstrate the influence of polarization sensitivity on the retrieval of the water-leaving reflectance rho(w). A simple method for partially correcting for polarization sensitivity--replacing the linear polarization properties of the top-of-atmosphere reflectance with those from a Rayleigh-scattering atmosphere--is provided and its efficacy is evaluated. It is shown that this scheme improves rho(w) retrievals as long as the polarization sensitivity of the instrument does not vary strongly from band to band. Of course, a complete polarization-sensitivity characterization of the ocean color sensor is required to implement the correction.

  16. The Solar Spectrum: An Atmospheric Remote Sensing Perspective

    NASA Technical Reports Server (NTRS)

    Toon, Geoff

    2013-01-01

    The solar spectrum not only contains information about the composition and structure of the sun, it also provides a bright and stable continuum source for earth remote sensing (atmosphere and surface). Many types of remote sensors use solar radiation. While high-resolution spaceborne sensors (e.g. ACE) can largely remove the effects of the solar spectrum by exo-atmospheric calibration, this isn't an option for sub-orbital sensors, such as the FTIR spectrometers used in the NDACC and TCCON networks. In this case the solar contribution must be explicitly included in the spectral analysis. In this talk the methods used to derive the solar spectrum are presented, and the underlying solar physics are discussed. Implication for remote sensing are described.

  17. Lightweight dew-/frost-point hygrometer based on a surface-acoustic-wave sensor for balloon-borne atmospheric water vapor profile sounding

    NASA Astrophysics Data System (ADS)

    Hansford, Graeme M.; Freshwater, Ray A.; Eden, Louise; Turnbull, Katharine F. V.; Hadaway, David E.; Ostanin, Victor P.; Jones, Roderic L.

    2006-01-01

    The design of a very lightweight dew-/frost-point hygrometer for balloon-borne atmospheric water vapor profiling is described. The instrument is based on a surface-acoustic-wave sensor. The low instrument weight is a key feature, allowing flights on meteorological balloons which brings many more flight opportunities. The hygrometer shows consistently good performance in the troposphere and while water vapor measurements near the tropopause and in the stratosphere are possible with the current instrument, the long-time response in these regions hampers realistic measurements. The excellent intrinsic sensitivity of the surface-acoustic-wave sensor should permit considerable improvement in the hygrometer performance in the very dry regions of the atmosphere.

  18. The Use of Color Sensors for Spectrographic Calibration

    NASA Astrophysics Data System (ADS)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  19. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  20. Atmosphere Mitigation in Precise Point Positioning Ambiguity Resolution for Earthquake Early Warning in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Geng, J.; Bock, Y.; Reuveni, Y.

    2014-12-01

    Earthquake early warning (EEW) is a time-critical system and typically relies on seismic instruments in the area around the source to detect P waves (or S waves) and rapidly issue alerts. Thanks to the rapid development of real-time Global Navigation Satellite Systems (GNSS), a good number of sensors have been deployed in seismic zones, such as the western U.S. where over 600 GPS stations are collecting 1-Hz high-rate data along the Cascadia subduction zone, San Francisco Bay area, San Andreas fault, etc. GNSS sensors complement the seismic sensors by recording the static offsets while seismic data provide highly-precise higher frequency motions. An optimal combination of GNSS and accelerometer data (seismogeodesy) has advantages compared to GNSS-only or seismic-only methods and provides seismic velocity and displacement waveforms that are precise enough to detect P wave arrivals, in particular in the near source region. Robust real-time GNSS and seismogeodetic analysis is challenging because it requires a period of initialization and continuous phase ambiguity resolution. One of the limiting factors is unmodeled atmospheric effects, both of tropospheric and ionospheric origin. One mitigation approach is to introduce atmospheric corrections into precise point positioning with ambiguity resolution (PPP-AR) of clients/stations within the monitored regions. NOAA generates hourly predictions of zenith troposphere delays at an accuracy of a few centimeters, and 15-minute slant ionospheric delays of a few TECU (Total Electron Content Unit) accuracy from both geodetic and meteorological data collected at hundreds of stations across the U.S. The Scripps Orbit and Permanent Array Center (SOPAC) is experimenting with a regional ionosphere grid using a few hundred stations in southern California, and the International GNSS Service (IGS) routinely estimates a Global Ionosphere Map using over 100 GNSS stations. With these troposphere and ionosphere data as additional observations, we can shorten the initialization period and improve the ambiguity resolution efficiency of PPP-AR. We demonstrate this with data collected by a cluster of Real-Time Earthquake Analysis for Disaster mItigation (READI) network stations in southern California operated by UNAVCO/PBO and SOPAC.

  1. Atmospheric radiation model for water surfaces

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Gaskill, D. W.; Lierzer, J. R.

    1982-01-01

    An atmospheric correction model was extended to account for various atmospheric radiation components in remotely sensed data. Components such as the atmospheric path radiance which results from singly scattered sky radiation specularly reflected by the water surface are considered. A component which is referred to as the virtual Sun path radiance, i.e. the singly scattered path radiance which results from the solar radiation which is specularly reflected by the water surface is also considered. These atmospheric radiation components are coded into a computer program for the analysis of multispectral remote sensor data over the Great Lakes of the United States. The user must know certain parameters, such as the visibility or spectral optical thickness of the atmosphere and the geometry of the sensor with respect to the Sun and the target elements under investigation.

  2. Operational support for Upper Atmosphere Research Satellite (UARS) attitude sensors

    NASA Technical Reports Server (NTRS)

    Lee, M.; Garber, A.; Lambertson, M.; Raina, P.; Underwood, S.; Woodruff, C.

    1994-01-01

    The Upper Atmosphere Research Satellite (UARS) has several sensors that can provide observations for attitude determination: star trackers, Sun sensors (gimbaled as well as fixed), magnetometers, Earth sensors, and gyroscopes. The accuracy of these observations is important for mission success. Analysts on the Flight Dynamics Facility (FDF) UARS Attitude task monitor these data to evaluate the performance of the sensors taking corrective action when appropriate. Monitoring activities range from examining the data during real-time passes to constructing long-term trend plots. Increasing residuals (differences) between the observed and expected quantities is a prime indicator of sensor problems. Residual increases may be due to alignment shifts and/or degradation in sensor output. Residuals from star tracker data revealed and anomalous behavior that contributes to attitude errors. Compensating for this behavior has significantly reduced the attitude errors. This paper discusses the methods used by the FDF UARS attitude task for maintenance of the attitude sensors, including short- and long-term monitoring, trend analysis, and calibration methods, and presents the results obtained through corrective action.

  3. Estimation of Soil Moisture Content from the Spectral Reflectance of Bare Soils in the 0.4–2.5 μm Domain

    PubMed Central

    Fabre, Sophie; Briottet, Xavier; Lesaignoux, Audrey

    2015-01-01

    This work aims to compare the performance of new methods to estimate the Soil Moisture Content (SMC) of bare soils from their spectral signatures in the reflective domain (0.4–2.5 μm) in comparison with widely used spectral indices like Normalized Soil Moisture Index (NSMI) and Water Index SOIL (WISOIL). Indeed, these reference spectral indices use wavelengths located in the water vapour absorption bands and their performance are thus very sensitive to the quality of the atmospheric compensation. To reduce these limitations, two new spectral indices are proposed which wavelengths are defined using the determination matrix tool by taking into account the atmospheric transmission: Normalized Index of Nswir domain for Smc estimatiOn from Linear correlation (NINSOL) and Normalized Index of Nswir domain for Smc estimatiOn from Non linear correlation (NINSON). These spectral indices are completed by two new methods based on the global shape of the soil spectral signatures. These methods are the Inverse Soil semi-Empirical Reflectance model (ISER), using the inversion of an existing empirical soil model simulating the soil spectral reflectance according to soil moisture content for a given soil class, and the convex envelope model, linking the area between the envelope and the spectral signature to the SMC. All these methods are compared using a reference database built with 32 soil samples and composed of 190 spectral signatures with five or six soil moisture contents. Half of the database is used for the calibration stage and the remaining to evaluate the performance of the SMC estimation methods. The results show that the four new methods lead to similar or better performance than the one obtained by the reference indices. The RMSE is ranging from 3.8% to 6.2% and the coefficient of determination R2 varies between 0.74 and 0.91 with the best performance obtained with the ISER model. In a second step, simulated spectral radiances at the sensor level are used to analyse the sensitivity of these methods to the sensor spectral resolution and the water vapour content knowledge. The spectral signatures of the database are then used to simulate the signal at the top of atmosphere with a radiative transfer model and to compute the integrated incident signal representing the spectral radiance measurements of the HYMAP airborne hyperspectral instrument. The sensor radiances are then corrected from the atmosphere by an atmospheric compensation tool to retrieve the surface reflectances. The SMC estimation methods are then applied on the retrieve spectral reflectances. The adaptation of the spectral index wavelengths to the HyMap sensor spectral bands and the application of the convex envelope and ISER models to boarder spectral bands lead to an error on the SMC estimation. The best performance is then obtained with the ISER model (RMSE of 2.9% and R2 of 0.96) while the four other methods lead to quite similar RMSE (from 6.4% to 7.8%) and R2 (between 0.79 and 0.83) values. In the atmosphere compensation processing, an error on the water vapour content is introduced. The most robust methods to water vapour content variations are WISOIL, NINSON, NINSOL and ISER model. The convex envelope model and NSMI index require an accurate estimation of the water vapour content in the atmosphere. PMID:25648710

  4. Middle Atmosphere Program. Handbook for MAP, volume 4

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1982-01-01

    Topics include winter in the Northern Hemisphere, temperature measurement, geopotential heights, wind measurement, atmospheric motions, photochemical reactions, solar spectral irradiance, trace constituents, tides, gravity waves, and turbulence. Highlights from the Map Steering Committee and a Map Open Meeting including organizational structure are also given.

  5. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  6. Middle Atmosphere Program. Handbook for MAP, volume 25

    NASA Technical Reports Server (NTRS)

    Roper, R. G. (Editor)

    1987-01-01

    GLOBMET (the Global Meteor Observation System) was first proposed by the Soviet Geophysical Committee and was accepted by the Middle Atmosphere Program Steering Committee in 1982. While the atmospheric dynamics data from the system are of primary interest to MAP, GLOBMET also encompasses the astronomical radio and optical observations of meteoroids, and the physics of their interaction with the Earth's atmosphere. These astronomical observations and interactional physics with the Earth's atmosphere are discussed in detail.

  7. Sensor-Web Operations Explorer

    NASA Technical Reports Server (NTRS)

    Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard

    2008-01-01

    Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.

  8. Radiance and atmosphere propagation-based method for the target range estimation

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan

    2012-06-01

    Target range estimation is traditionally based on radar and active sonar systems in modern combat system. However, the performance of such active sensor devices is degraded tremendously by jamming signal from the enemy. This paper proposes a simple range estimation method between the target and the sensor. Passive IR sensors measures infrared (IR) light radiance radiating from objects in dierent wavelength and this method shows robustness against electromagnetic jamming. The measured target radiance of each wavelength at the IR sensor depends on the emissive properties of target material and is attenuated by various factors, in particular the distance between the sensor and the target and atmosphere environment. MODTRAN is a tool that models atmospheric propagation of electromagnetic radiation. Based on the result from MODTRAN and measured radiance, the target range is estimated. To statistically analyze the performance of proposed method, we use maximum likelihood estimation (MLE) and evaluate the Cramer-Rao Lower Bound (CRLB) via the probability density function of measured radiance. And we also compare CRLB and the variance of and ML estimation using Monte-Carlo.

  9. A multi-scale approach to monitor urban carbon-dioxide emissions in the atmosphere over Vancouver, Canada

    NASA Astrophysics Data System (ADS)

    Christen, A.; Crawford, B.; Ketler, R.; Lee, J. K.; McKendry, I. G.; Nesic, Z.; Caitlin, S.

    2015-12-01

    Measurements of long-lived greenhouse gases in the urban atmosphere are potentially useful to constrain and validate urban emission inventories, or space-borne remote-sensing products. We summarize and compare three different approaches, operating at different scales, that directly or indirectly identify, attribute and quantify emissions (and uptake) of carbon dioxide (CO2) in urban environments. All three approaches are illustrated using in-situ measurements in the atmosphere in and over Vancouver, Canada. Mobile sensing may be a promising way to quantify and map CO2 mixing ratios at fine scales across heterogenous and complex urban environments. We developed a system for monitoring CO2 mixing ratios at street level using a network of mobile CO2 sensors deployable on vehicles and bikes. A total of 5 prototype sensors were built and simultaneously used in a measurement campaign across a range of urban land use types and densities within a short time frame (3 hours). The dataset is used to aid in fine scale emission mapping in combination with simultaneous tower-based flux measurements. Overall, calculated CO2 emissions are realistic when compared against a spatially disaggregated scale emission inventory. The second approach is based on mass flux measurements of CO2 using a tower-based eddy covariance (EC) system. We present a continuous 7-year long dataset of CO2 fluxes measured by EC at the 28m tall flux tower 'Vancouver-Sunset'. We show how this dataset can be combined with turbulent source area models to quantify and partition different emission processes at the neighborhood-scale. The long-term EC measurements are within 10% of a spatially disaggregated scale emission inventory. Thirdly, at the urban scale, we present a dataset of CO2 mixing ratios measured using a tethered balloon system in the urban boundary layer above Vancouver. Using a simple box model, net city-scale CO2 emissions can be determined using measured rate of change of CO2 mixing ratios, estimated CO2 advection and entrainment fluxes. Daily city-scale emissions totals predicted by the model are within 32% of a spatially scaled municipal greenhouse gas inventory. In summary, combining information from different approaches and scales is a promising approach to establish long-term emission monitoring networks in cities.

  10. Satellite-based peatland mapping: potential of the MODIS sensor.

    Treesearch

    D. Pflugmacher; O.N. Krankina; W.B. Cohen

    2006-01-01

    Peatlands play a major role in the global carbon cycle but are largely overlooked in current large-scale vegetation mapping efforts. In this study, we investigated the potential of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to capture extent and distribution of peatlands in the St. Petersburg region of Russia.

  11. Surface acoustic impediography: a new technology for fingerprint mapping and biometric identification: a numerical study

    NASA Astrophysics Data System (ADS)

    Schmitt, Rainer M.; Scott, W. Guy; Irving, Richard D.; Arnold, Joe; Bardons, Charles; Halpert, Daniel; Parker, Lawrence

    2004-09-01

    A new type of fingerprint sensor is presented. The sensor maps the acoustic impedance of the fingerprint pattern by estimating the electrical impedance of its sensor elements. The sensor substrate, made of 1-3 piezo-ceramic, which is fabricated inexpensively at large scales, can provide a resolution up to 50 μm over an area of 20 x 25 mm2. Using FE modeling the paper presents the numerical validation of the basic principle. It evaluates an optimized pillar aspect ratio, estimates spatial resolution and the point spread function for a 100 μm and 50 μm pitch model. In addition, first fingerprints obtained with the prototype sensor are presented.

  12. Can direct electron detectors outperform phosphor-CCD systems for TEM?

    NASA Astrophysics Data System (ADS)

    Moldovan, G.; Li, X.; Kirkland, A.

    2008-08-01

    A new generation of imaging detectors is being considered for application in TEM, but which device architectures can provide the best images? Monte Carlo simulations of the electron-sensor interaction are used here to calculate the expected modulation transfer of monolithic active pixel sensors (MAPS), hybrid active pixel sensors (HAPS) and double sided Silicon strip detectors (DSSD), showing that ideal and nearly ideal transfer can be obtained using DSSD and MAPS sensors. These results highly recommend the replacement of current phosphor screen and charge coupled device imaging systems with such new directly exposed position sensitive electron detectors.

  13. Advancing Glaciological Applications of Remote Sensing with EO-1: (1) Mapping Snow Grain Size and Albedo on the Greenland Ice Sheet Using an Imaging Spectrometer, and (2) ALI Evaluation for Subtle Surface Topographic Mapping via Shape-from Shading

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Hyperion sensor, onboard NASA's Earth Observing-1 (EO-1) satellite,is an imaging spectroradiometer with 220 spectral bands over the spectral range from 0.4 - 2.5 microns. Over the course of summer 2001, the instrument acquired numerous images over the Greenland ice sheet. Our main motivation is to develop an accurate and robust approach for measuring the broadband albedo of snow from satellites. Satellite-derived estimates of broadband have typically been plagued with three problems: errors resulting from inaccurate atmospheric correction, particularly in the visible wavelengths from the conversion of reflectance to albedo (accounting for snow BRDE); and errors resulting from regression-based approaches used to convert narrowband albedo to broadband albedo. A typerspectral method has been developed that substantially reduces these three main sources of error and produces highly accurate estimates of snow albedo. This technique uses hyperspectral data from 0.98 - 1.06 microns, spanning a spectral absorption feature centered at 1.03 microns. A key aspect of this work is that this spectral range is within an atmospheric transmission window and reflectances are largely unaffected by atmospheric aerosols, water vapor, or ozone. In this investigation, we make broadband albedo measurements at four sites on the Greenland ice sheet: Summit, a high altitude station in central Greenland; the ETH/CU camp, a camp on the equilibrium line in western Greenland; Crawford Point, a site located between Summit and the ETH/CU camp; and Tunu, a site located in northeastern Greenland at 2000 m. altitude. Each of these sites has an automated weather station (AWS) that continually measures broadband albedo thereby providing validation data.

  14. TRMM 3-Year Anniversary

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Ever wonder about the rain? Beyond the practicality of needing an umbrella, climate researchers have wondered about the science of rainfall for a long time. But it's only in the past few years that they've begun to roll back some of its secrets. One of their tools for doing so is a powerful satellite called the Tropical Rainfall Measuring Mission, or TRMM. Now, after three years of continual operation, project scientists have released dramatic new maps of rainfall patterns gathered across a wide band of the Earth. And with measurements from one of the satellite's advanced sensors, meteorologists are now able to calibrate ground-based rain monitoring systems with greater precision than ever before. A complete accounting of the world's total rainfall has long been a major goal of climate researchers. Rain acts as the atmosphere's fundamental engine for heat exchange; every time a raindrop falls, the atmosphere gets churned up and latent heat flows back into the total climate system. Considering that rainfall is the primary driving force of heat in the atmosphere, and that two thirds of all rain falls in the tropics, these measurements are significant for our understanding of overall climate. The above image shows a one month average of rainfall measurements taken by the TRMM's unique precipitation radar during January of 1998. Areas of low rainfall are colored light blue, while regions with heavy rainfal are colored orange and red. TRMM began collecting data in December of 1997, and continues today. For more information about TRMM's 3-year anniversary, read Maps of Falling Water To learn more about the TRMM mission or order TRMM data, see the TRMM Home Page. Image courtesy TRMM Science team and the NASA GSFC Scientific Visualization Studio.

  15. Test evaluation of potential heatshield contamination of an outer planet probe's gas sampling system

    NASA Technical Reports Server (NTRS)

    Kessler, W. C.

    1975-01-01

    The feasibility of retaining the heat shield for outer planet probes was investigated as a potential source of atmospheric sample contamination by outgassing. The onboard instruments which are affected by the concept are the pressure sensor, temperature sensor, IR detector, nephelometer, and gas sampling instruments. It was found that: (1) The retention of the charred heatshield and the baseline atmospheric sampling concepts are compatible with obtaining noncontaminated atmospheric samples. (2) Increasing the sampling tube length so that it extends beyond the viscous boundary layer eliminates contamination of the atmospheric sample. (3) The potential for contamination increases with angle of attack.

  16. Galactic and zodiacal light surface brightness measurements with the Atmosphere Explorer satellites

    NASA Technical Reports Server (NTRS)

    Abreu, V. J.; Hays, P. B.; Yee, J. H.

    1982-01-01

    Galactic and zodiacal light surface maps based on the Atmosphere Explorer-C, -D, and -E satellite data are presented at 7320, 6300, 5577, 5200, and 4278 A. A procedure used to generate these maps, which involves separation of the individual stars and diffuse starlight from the zodiacal light, is described in detail. The maps can be used in atmospheric emission studies to correct for galactic emissions which contaminate satellite as well as ground-based photometric observations. The zodiacal light maps show enhanced features which are important for understanding the nature of interplanetary dust.

  17. NASA/MSFC FY88 Global Scale Atmospheric Processes Research Program Review

    NASA Technical Reports Server (NTRS)

    Wilson, Greg S. (Editor); Leslie, Fred W. (Editor); Arnold, J. E. (Editor)

    1989-01-01

    Interest in environmental issues and the magnitude of the environmental changes continues. One way to gain more understanding of the atmosphere is to make measurements on a global scale from space. The Earth Observation System is a series of new sensors to measure globally atmospheric parameters. Analysis of satellite data by developing algorithms to interpret the radiance information improves the understanding and also defines requirements for these sensors. One measure of knowledge of the atmosphere lies in the ability to predict its behavior. Use of numerical and experimental models provides a better understanding of these processes. These efforts are described in the context of satellite data analysis and fundamental studies of atmospheric dynamics which examine selected processes important to the global circulation.

  18. Electron-bombarded CCD detectors for ultraviolet atmospheric remote sensing

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1983-01-01

    Electronic image sensors based on charge coupled devices operated in electron-bombarded mode, yielding real-time, remote-readout, photon-limited UV imaging capability are being developed. The sensors also incorporate fast-focal-ratio Schmidt optics and opaque photocathodes, giving nearly the ultimate possible diffuse-source sensitivity. They can be used for direct imagery of atmospheric emission phenomena, and for imaging spectrography with moderate spatial and spectral resolution. The current state of instrument development, laboratory results, planned future developments and proposed applications of the sensors in space flight instrumentation is described.

  19. Space-based infrared sensors of space target imaging effect analysis

    NASA Astrophysics Data System (ADS)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  20. Materials, methods and devices to detect and quantify water vapor concentrations in an atmosphere

    DOEpatents

    Allendorf, Mark D; Robinson, Alex L

    2014-12-09

    We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.

  1. Calibration and Validation Plan for the L2A Processor and Products of the SENTINEL-2 Mission

    NASA Astrophysics Data System (ADS)

    Main-Knorn, M.; Pflug, B.; Debaecker, V.; Louis, J.

    2015-04-01

    The Copernicus programme, is a European initiative for the implementation of information services based on observation data received from Earth Observation (EO) satellites and ground based information. In the frame of this programme, ESA is developing the Sentinel-2 optical imaging mission that will deliver optical data products designed to feed downstream services mainly related to land monitoring, emergency management and security. To ensure the highest quality of service, ESA sets up the Sentinel-2 Mission Performance Centre (MPC) in charge of the overall performance monitoring of the Sentinel-2 mission. TPZ F and DLR have teamed up in order to provide the best added-value support to the MPC for calibration and validation of the Level-2A processor (Sen2Cor) and products. This paper gives an overview over the planned L2A calibration and validation activities. Level-2A processing is applied to Top-Of-Atmosphere (TOA) Level-1C ortho-image reflectance products. Level-2A main output is the Bottom-Of-Atmosphere (BOA) corrected reflectance product. Additional outputs are an Aerosol Optical Thickness (AOT) map, a Water Vapour (WV) map and a Scene Classification (SC) map with Quality Indicators for cloud and snow probabilities. Level-2A BOA, AOT and WV outputs are calibrated and validated using ground-based data of automatic operating stations and data of in-situ campaigns. Scene classification is validated by the visual inspection of test datasets and cross-sensor comparison, supplemented by meteorological data, if available. Contributions of external in-situ campaigns would enlarge the reference dataset and enable extended validation exercise. Therefore, we are highly interested in and welcome external contributors.

  2. Airborne Remote Observations of L-Band Radio Frequency Interference and Implications for Satellite Missions

    NASA Technical Reports Server (NTRS)

    Laymon, Charles; Srinivasan, Karthik; Limaye, Ashutosh

    2011-01-01

    Passive remote sensing of the Earth s surface and atmosphere from space has significant importance in operational and research environmental studies, in particular for the scientific understanding, monitoring and prediction of climate change and its impacts. Passive remote sensing requires the measurement of naturally occurring radiations, usually of very low power levels, which contain essential information on the physical process under investigation. As such, these sensed radio frequency bands are a unique natural resource enabling space borne passive sensing of the atmosphere and the Earth s surface that deserves adequate allocation to the Earth Exploration Satellite Service and absolute protection from interference. Unfortunately, radio frequency interference (RFI) is an increasing problem for Earth remote sensing, particularly for passive observations of natural emissions. Because these natural signals tend to be very weak, even low levels of interference received by a passive sensor may degrade the fidelity of scientific data. The characteristics of RFI (low-level interference and radar-pulse noise) are not well known because there has been no systematic surveillance, spectrum inventory or mapping of RFI. While conducting a flight experiment over central Tennessee in May 2010, RFI, a concern for any instrument operating in the passive L band frequency, was observed across 16 subbands between 1402-1427 MHz. Such a survey provides rare characterization data from which to further develop mitigation technologies as well as to identify bandwidths to avoid in future sensor formulation.

  3. Energy and Power Spectra of Thunder in the Magdalena Mountains, Central New Mexico

    NASA Astrophysics Data System (ADS)

    Johnson, R. L.; Johnson, J. B.; Arechiga, R. O.; Michnovicz, J. C.; Edens, H. E.; Rison, W.

    2011-12-01

    Thunder is generated primarily by heating and expansion of the atmosphere around a lightning channel and by charge relaxation within a cloud. Broadband acoustic studies are important for inferring dynamic charge behavior during and after lightning events. During the Summer monsoon seasons of 2009-2011, we deployed networks of 3-5 stations consisting of broadband (0.01 to 500 Hz) acoustic arrays and audio microphones in the Magdalena Mountains in central New Mexico. We utilize Lightning Mapping Array (LMA) data for accurate timing of lightning events within a 10 km radius of our network. Unlike the LMA, which detects VHF signals from breakdown processes, thunder signals may be used to observe charge dynamics and thermal shocking of the atmosphere. Previous investigations show that thunder spectral content may distinguish between electrostatic and thermal heating processes. We collected extensive datasets in terms of number of independent broadband sensors (up to 20), number of observed flashes (hundreds from multiple storms), and available coincident LMA data. We use infrasound and audio data to quantify total acoustic energy produced at lightning sources in various frequency bands. We attribute the spectral content and intensity of thunder signals to source characteristics, sensor locations, propagation effects, and noise. We observe variations in acoustic energy for both entire storm systems and individual lightning flashes. We propose that some variations may be related to the type of lightning flash and that spectral content is important for distinguishing between thunder generation mechanisms.

  4. What we can learn from measurements of air electric conductivity in 222Rn-rich atmosphere

    NASA Astrophysics Data System (ADS)

    Seran, E.; Godefroy, M.; Pili, E.; Michielsen, N.; Bondiguel, S.

    2017-02-01

    Electric conductivity of air is an important characteristic of the electric properties of an atmosphere. Testing instruments to measure electric conductivity ranging from 10-13 to 10-9 S m-1 in natural conditions found in the Earth atmosphere is not an easy task. One possibility is to use stratospheric balloon flights; another (and a simpler one) is to look for terrestrial environments with significant radioactive decay. In this paper we present measurements carried out with different types of conductivity sensors in two 222Rn-rich environments, i.e., in the Roselend underground tunnel (French Alps) and in the Institute of Radioprotection and Nuclear Safety BACCARA (BAnC de CAllibrage du RAdon) chamber. The concept of the conductivity sensor is based on the classical time relaxation method. New elements in our design include isolation of the sensor sensitive part (electrode) from the external electric field and sensor miniaturization. This greatly extends the application domain of the sensor and permits to measure air electric conductivity when the external electric field is high and varies from few tens of V m-1 to up to few tens of kV m-1. This is suitable to propose the instrument for a planetary mission. Two-fold objectives were attained as the outcome of these tests and their analysis. First was directly related to the performances of the conductivity sensors and the efficiency of the conductivity sensor design to shield the external electric field. Second objective aimed at understanding the decay mechanisms of 222Rn and its progeny in atmosphere and the impact of the enclosed space on the efficiency of gas ionization.

  5. Detection of Atmospheric Water Deposits in Porous Media Using the TDR Technique

    PubMed Central

    Nakonieczna, Anna; Kafarski, Marcin; Wilczek, Andrzej; Szypłowska, Agnieszka; Janik, Grzegorz; Albert, Małgorzata; Skierucha, Wojciech

    2015-01-01

    Investigating the intensity of atmospheric water deposition and its diurnal distribution is essential from the ecological perspective, especially regarding dry geographic regions. It is also important in the context of monitoring the amount of moisture present within building materials in order to protect them from excessive humidity. The objective of this study was to test a constructed sensor and determine whether it could detect and track changes in the intensity of atmospheric water deposition. An operating principle of the device is based on the time-domain reflectometry technique. Two sensors of different plate volumes were manufactured. They were calibrated at several temperatures and tested during field measurements. The calibration turned out to be temperature independent. The outdoor measurements indicated that the upper limits of the measurement ranges of the sensors depended on the volumes of the plates and were equal to 1.2 and 2.8 mm H2O. The respective sensitivities were equal to 3.2 × 10−3 and 7.5 × 10−3 g·ps−1. The conducted experiments showed that the construction of the designed device and the time-domain reflectometry technique were appropriate for detecting and tracing the dynamics of atmospheric water deposition. The obtained outcomes were also collated with the readings taken in an actual soil sample. For this purpose, an open container sensor, which allows investigating atmospheric water deposition in soil, was manufactured. It turned out that the readings taken by the porous ceramic plate sensor reflected the outcomes of the measurements performed in a soil sample. PMID:25871717

  6. Acquisition, calibration, and performance of airborne high-resolution ADS40 SH52 sensor data for monitoring the Colorado River below Glen Canyon Dam

    NASA Astrophysics Data System (ADS)

    Davis, P. A.; Cagney, L. E.; Kohl, K. A.; Gushue, T. M.; Fritzinger, C.; Bennett, G. E.; Hamill, J. F.; Melis, T. S.

    2010-12-01

    Periodically, the Grand Canyon Monitoring and Research Center of the U.S. Geological Survey collects and interprets high-resolution (20-cm), airborne multispectral imagery and digital surface models (DSMs) to monitor the effects of Glen Canyon Dam operations on natural and cultural resources of the Colorado River in Grand Canyon. We previously employed the first generation of the ADS40 in 2000 and the Zeiss-Imaging Digital Mapping Camera (DMC) in 2005. Data from both sensors displayed band-image misregistration owing to multiple sensor optics and image smearing along abrupt scarps due to errors in image rectification software, both of which increased post-processing time, cost, and errors from image classification. Also, the near-infrared gain on the early, 8-bit ADS40 was not properly set and its signal was saturated for the more chlorophyll-rich vegetation, which limited our vegetation mapping. Both sensors had stereo panchromatic capability for generating a DSM. The ADS40 performed to specifications; the DMC failed. In 2009, we employed the new ADS40 SH52 to acquire 11-bit multispectral data with a single lens (20-cm positional accuracy), as well as stereo panchromatic data that provided a 1-m cell DSM (40-cm root-mean-square vertical error at one sigma). Analyses of the multispectral data showed near-perfect registration of its four band images at our 20-cm resolution, a linear response to ground reflectance, and a large dynamic range and good sensitivity (except for the blue band). Data were acquired over a 10-day period for the 450-km-long river corridor in which acquisition time and atmospheric conditions varied considerably during inclement weather. We received 266 orthorectified flightlines for the corridor, choosing to calibrate and mosaic the data ourselves to ensure a flawless mosaic with consistent, realistic spectral information. A linear least-squares cross-calibration of overlapping flightlines for the corridor showed that the dominate factors in inter-flightline variability were solar zenith angle and atmospheric scattering, which respectively affect the slope and intercept of the calibration. The inter-flightline calibration slopes were consistently close to the square of the ratio of the cosines of the zenith angles of each pair of overlapping flightlines. Our results corroborate previous observations that the cosine of solar zenith angle is a good approximation for atmospheric transmission and the use of its square in radiometric calibrations may compensate for that effect and the effect of non-nadir sun angle on surface reflectance. It was more expedient to acquire imagery for each sub-linear river segment by collecting 5-6 parallel flightlines; river sinuosity caused us to use 2-3 flightlines for each segment. Surfaces near flightline edges were often smeared and replaced with adjacent, more nadir-viewed flightline data. Eliminating surface smearing was the most time consuming aspect of creating a flawless image mosaic for the river corridor, but its removal will increase the efficiency and accuracy of image analyses of monitoring parameters of interest to river managers.

  7. Neural networks for satellite remote sensing and robotic sensor interpretation

    NASA Astrophysics Data System (ADS)

    Martens, Siegfried

    Remote sensing of forests and robotic sensor fusion can be viewed, in part, as supervised learning problems, mapping from sensory input to perceptual output. This dissertation develops ARTMAP neural networks for real-time category learning, pattern recognition, and prediction tailored to remote sensing and robotics applications. Three studies are presented. The first two use ARTMAP to create maps from remotely sensed data, while the third uses an ARTMAP system for sensor fusion on a mobile robot. The first study uses ARTMAP to predict vegetation mixtures in the Plumas National Forest based on spectral data from the Landsat Thematic Mapper satellite. While most previous ARTMAP systems have predicted discrete output classes, this project develops new capabilities for multi-valued prediction. On the mixture prediction task, the new network is shown to perform better than maximum likelihood and linear mixture models. The second remote sensing study uses an ARTMAP classification system to evaluate the relative importance of spectral and terrain data for map-making. This project has produced a large-scale map of remotely sensed vegetation in the Sierra National Forest. Network predictions are validated with ground truth data, and maps produced using the ARTMAP system are compared to a map produced by human experts. The ARTMAP Sierra map was generated in an afternoon, while the labor intensive expert method required nearly a year to perform the same task. The robotics research uses an ARTMAP system to integrate visual information and ultrasonic sensory information on a B14 mobile robot. The goal is to produce a more accurate measure of distance than is provided by the raw sensors. ARTMAP effectively combines sensory sources both within and between modalities. The improved distance percept is used to produce occupancy grid visualizations of the robot's environment. The maps produced point to specific problems of raw sensory information processing and demonstrate the benefits of using a neural network system for sensor fusion.

  8. Assimilation of optical and radar remote sensing data in 3D mapping of soil properties over large areas.

    PubMed

    Poggio, Laura; Gimona, Alessandro

    2017-02-01

    Soil is very important for many land functions. To achieve sustainability it is important to understand how soils vary over space in the landscape. Remote sensing data can be instrumental in mapping and spatial modelling of soil properties, resources and their variability. The aims of this study were to compare satellite sensors (MODIS, Landsat, Sentinel-1 and Sentinel-2) with varying spatial, temporal and spectral resolutions for Digital Soil Mapping (DSM) of a set of soil properties in Scotland, evaluate the potential benefits of adding Sentinel-1 data to DSM models, select the most suited mix of sensors for DSM to map the considered set of soil properties and validate the results of topsoil (2D) and whole profile (3D) models. The results showed that the use of a mixture of sensors proved more effective to model and map soil properties than single sensors. The use of radar Sentinel-1 data proved useful for all soil properties, improving the prediction capability of models with only optical bands. The use of MODIS time series provided stronger relationships than the use of temporal snapshots. The results showed good validation statistics with a RMSE below 20% of the range for all considered soil properties. The RMSE improved from previous studies including only MODIS sensor and using a coarser prediction grid. The performance of the models was similar to previous studies at regional, national or continental scale. A mix of optical and radar data proved useful to map soil properties along the profile. The produced maps of soil properties describing both lateral and vertical variability, with associated uncertainty, are important for further modelling and management of soil resources and ecosystem services. Coupled with further data the soil properties maps could be used to assess soil functions and therefore conditions and suitability of soils for a range of purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Optimizing remote sensing and GIS tools for mapping and managing the distribution of an invasive mangrove (Rhizophora mangle) on South Molokai, Hawaii

    USGS Publications Warehouse

    D'Iorio, M.; Jupiter, S.D.; Cochran, S.A.; Potts, D.C.

    2007-01-01

    In 1902, the Florida red mangrove, Rhizophora mangle L., was introduced to the island of Molokai, Hawaii, and has since colonized nearly 25% of the south coast shoreline. By classifying three kinds of remote sensing imagery, we compared abilities to detect invasive mangrove distributions and to discriminate mangroves from surrounding terrestrial vegetation. Using three analytical techniques, we compared mangrove mapping accuracy for various sensor-technique combinations. ANOVA of accuracy assessments demonstrated significant differences among techniques, but no significant differences among the three sensors. We summarize advantages and disadvantages of each sensor and technique for mapping mangrove distributions in tropical coastal environments.

  10. Direct Temperature Measurements during Netlander Descent on Mars

    NASA Astrophysics Data System (ADS)

    Colombatti, G.; Angrilli, F.; Ferri, F.; Francesconi, A.; Fulchignoni, M.; Lion Stoppato, P. F.; Saggi, B.

    1999-09-01

    A new design for a platinum thermoresistance temperature sensor has been developed and tested in Earth's atmosphere and stratosphere. It will be one of the sensors equipping the scientific package ATMIS (Atmospheric and Meteorology Instrument System), which will be devoted to the measurement of the meteorological parameters during both the entry/descent phase and the surface phase, aboard the Netlanders. In particular vertical profiles of temperature, density and pressure will allow the resolution of vertical gradients to investigate the atmospheric structure and dynamics. In view of the future missions to Mars, Netlander represents a unique chance to increase significantly the climate record both in time and in space, doubling the current knowledge of the atmospheric parameters. Furthermore is the only opportunity to conduct direct measurement of temperature and pressure (outside the boundary layer of the airbags used for the landing). The temperature sensor proposed is a platinum thermoresistance, enhancement of HASI TEM (Cassini/Huygens Mission); a substantial improvement of the performances, i.e. a faster dynamic response, has been obtained. Two different prototypes of new design sensor have been built, laboratory test are proceeding and the second one has been already flown aboard a stratospheric balloon.

  11. a Conceptual Framework for Indoor Mapping by Using Grammars

    NASA Astrophysics Data System (ADS)

    Hu, X.; Fan, H.; Zipf, A.; Shang, J.; Gu, F.

    2017-09-01

    Maps are the foundation of indoor location-based services. Many automatic indoor mapping approaches have been proposed, but they rely highly on sensor data, such as point clouds and users' location traces. To address this issue, this paper presents a conceptual framework to represent the layout principle of research buildings by using grammars. This framework can benefit the indoor mapping process by improving the accuracy of generated maps and by dramatically reducing the volume of the sensor data required by traditional reconstruction approaches. In addition, we try to present more details of partial core modules of the framework. An example using the proposed framework is given to show the generation process of a semantic map. This framework is part of an ongoing research for the development of an approach for reconstructing semantic maps.

  12. Expected Improvements in the Quantitative Remote Sensing of Optically Complex Waters with the Use of an Optically Fast Hyperspectral Spectrometer—A Modeling Study

    PubMed Central

    Moses, Wesley J.; Bowles, Jeffrey H.; Corson, Michael R.

    2015-01-01

    Using simulated data, we investigated the effect of noise in a spaceborne hyperspectral sensor on the accuracy of the atmospheric correction of at-sensor radiances and the consequent uncertainties in retrieved water quality parameters. Specifically, we investigated the improvement expected as the F-number of the sensor is changed from 3.5, which is the smallest among existing operational spaceborne hyperspectral sensors, to 1.0, which is foreseeable in the near future. With the change in F-number, the uncertainties in the atmospherically corrected reflectance decreased by more than 90% across the visible-near-infrared spectrum, the number of pixels with negative reflectance (caused by over-correction) decreased to almost one-third, and the uncertainties in the retrieved water quality parameters decreased by more than 50% and up to 92%. The analysis was based on the sensor model of the Hyperspectral Imager for the Coastal Ocean (HICO) but using a 30-m spatial resolution instead of HICO’s 96 m. Atmospheric correction was performed using Tafkaa. Water quality parameters were retrieved using a numerical method and a semi-analytical algorithm. The results emphasize the effect of sensor noise on water quality parameter retrieval and the need for sensors with high Signal-to-Noise Ratio for quantitative remote sensing of optically complex waters. PMID:25781507

  13. Water-level measurements in Dauphin Island, Alabama, from the 2013 Hurricane Season

    USGS Publications Warehouse

    Dickhudt, Patrick J.; Sherwood, Christopher R.; DeWitt, Nancy T.

    2015-01-01

    This report describes the instrumentation, field measurements, and processing methods used by the U.S. Geological Survey to measure atmospheric pressure, water levels, and waves on Dauphin Island, Alabama, in 2013 at part of the Barrier Island Evolution Research project. Simple, inexpensive pressure sensors mounted in shallow wells were buried in the beach and left throughout the hurricane season. Additionally, an atmospheric pressure sensor was mounted on the porch of a private residence to provide a local atmospheric pressure measurement for correcting the submerged pressure records.

  14. Atmospheric Condensation in the Mars Phoenix TECP and MET Data

    NASA Technical Reports Server (NTRS)

    Zent, A. P.

    2015-01-01

    A new calibration function for the humidity sensor in the Thermal and Electrical Conductivity Probe (TECP), a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) on the Phoenix Mars mission has been developed. The data is now cast in terms of Frost Point (T(sub f)) and some flight data, taken when the atmosphere is independently known to be saturated, is included in the calibration data set. Combined with data from the Meteorology Mast air temperature sensors, a very sensitive detection of atmospheric saturation becomes possible (Figure 1).

  15. Evaluation of aircraft microwave data for locating zones for well stimulation and enhanced gas recovery. [Arkansas Arkoma Basin

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W.; Elachi, C.; Babcock, R.; Konig, R.; Gattis, J.; Borengasser, M.; Tolman, D.

    1980-01-01

    Imaging radar was evaluated as an adjunct to conventional petroleum exploration techniques, especially linear mapping. Linear features were mapped from several remote sensor data sources including stereo photography, enhanced LANDSAT imagery, SLAR radar imagery, enhanced SAR radar imagery, and SAR radar/LANDSAT combinations. Linear feature maps were compared with surface joint data, subsurface and geophysical data, and gas production in the Arkansas part of the Arkoma basin. The best LANDSAT enhanced product for linear detection was found to be a winter scene, band 7, uniform distribution stretch. Of the individual SAR data products, the VH (cross polarized) SAR radar mosaic provides for detection of most linears; however, none of the SAR enhancements is significantly better than the others. Radar/LANDSAT merges may provide better linear detection than a single sensor mapping mode, but because of operator variability, the results are inconclusive. Radar/LANDSAT combinations appear promising as an optimum linear mapping technique, if the advantages and disadvantages of each remote sensor are considered.

  16. Differential Measurement Periodontal Structures Mapping System

    NASA Technical Reports Server (NTRS)

    Companion, John A. (Inventor)

    1998-01-01

    This invention relates to a periodontal structure mapping system employing a dental handpiece containing first and second acoustic sensors for locating the Cemento-Enamel Junction (CEJ) and measuring the differential depth between the CEJ and the bottom of the periodontal pocket. Measurements are taken at multiple locations on each tooth of a patient, observed, analyzed by an optical analysis subsystem, and archived by a data storage system for subsequent study and comparison with previous and subsequent measurements. Ultrasonic transducers for the first and second acoustic sensors are contained within the handpiece and in connection with a control computer. Pressurized water is provided for the depth measurement sensor and a linearly movable probe sensor serves as the sensor for the CEJ finder. The linear movement of the CEJ sensor is obtained by a control computer actuated by the prober. In an alternate embodiment, the CEJ probe is an optical fiber sensor with appropriate analysis structure provided therefor.

  17. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France)

    PubMed Central

    Baghdadi, Nicolas; Aubert, Maelle; Cerdan, Olivier; Franchistéguy, Laurent; Viel, Christian; Martin, Eric; Zribi, Mehrez; Desprats, Jean François

    2007-01-01

    Soil moisture is a key parameter in different environmental applications, such as hydrology and natural risk assessment. In this paper, surface soil moisture mapping was carried out over a basin in France using satellite synthetic aperture radar (SAR) images acquired in 2006 and 2007 by C-band (5.3 GHz) sensors. The comparison between soil moisture estimated from SAR data and in situ measurements shows good agreement, with a mapping accuracy better than 3%. This result shows that the monitoring of soil moisture from SAR images is possible in operational phase. Moreover, moistures simulated by the operational Météo-France ISBA soil-vegetation-atmosphere transfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moisture estimates to validate its pertinence. The difference between ISBA simulations and radar estimates fluctuates between 0.4 and 10% (RMSE). The comparison between ISBA and gravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally, these results are very encouraging. Results show also that the soil moisture estimated from SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE) at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones. PMID:28903238

  18. Validation of a mapping and prediction model for human fasciolosis transmission in Andean very high altitude endemic areas using remote sensing data.

    PubMed

    Fuentes, M V; Malone, J B; Mas-Coma, S

    2001-04-27

    The present paper aims to validate the usefulness of the Normalized Difference Vegetation Index (NDVI) obtained by satellite remote sensing for the development of local maps of risk and for prediction of human fasciolosis in the Northern Bolivian Altiplano. The endemic area, which is located at very high altitudes (3800-4100 m) between Lake Titicaca and the valley of the city of La Paz, presents the highest prevalences and intensities of fasciolosis known in humans. NDVI images of 1.1 km resolution from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board the National Oceanic and Atmospheric Administration (NOAA) series of environmental satellites appear to provide adequate information for a study area such as that of the Northern Bolivian Altiplano. The predictive value of the remotely sensed map based on NDVI data appears to be better than that from forecast indices based only on climatic data. A close correspondence was observed between real ranges of human fasciolosis prevalence at 13 localities of known prevalence rates and the predicted ranges of fasciolosis prevalence using NDVI maps. However, results based on NDVI map data predicted zones as risk areas where, in fact, field studies have demonstrated the absence of lymnaeid populations during snail surveys, corroborated by the absence of the parasite in humans and livestock. NDVI data maps represent a useful data component in long-term efforts to develop a comprehensive geographical information system control program model that accurately fits real epidemiological and transmission situations of human fasciolosis in high altitude endemic areas in Andean countries.

  19. Mapping of submerged vegetation using remote sensing technology

    NASA Technical Reports Server (NTRS)

    Savastano, K. J.; Faller, K. H.; Mcfadin, L. W.; Holley, H.

    1981-01-01

    Techniques for mapping submerged sea grasses using aircraft supported remote sensors are described. The 21 channel solid state array spectroradiometer was successfully used as a remote sensor in the experiment in that the system operated without problem and obtained data. The environmental conditions of clear water, bright sandy bottom and monospecific vegetation (Thalassia) were ideal.

  20. Water-level and wave measurements in the Chandeleur Islands, Louisiana, 2012 and 2013

    USGS Publications Warehouse

    Dickhudt, Patrick J.; Sherwood, Christopher R.; DeWitt, Nancy T.

    2015-01-01

    This report documents measurements of atmospheric pressure, water levels, and waves made by the U.S. Geological Survey in the Chandeleur Islands, Louisiana, during 2012 and 2013 as part of the Barrier Island Evolution Research project. Simple, inexpensive pressure sensors mounted in shallow wells were buried in the beach and left for one hurricane season and one winter-storm season. Gauges with rapid-sampling pressure sensors that provided nondirectional wave data and water-level data were mounted on rugged mounts on the Chandeleur Sound side and at the base of a tower at the northern end of the island chain. Additionally, an atmospheric pressure sensor was mounted on the tower to provide a local atmospheric pressure measurement for correcting the submerged pressure records.

  1. Geostationary Microwave Sounders: Science, Applications and the Geostar Instrument Concept

    NASA Technical Reports Server (NTRS)

    Lambrigtsen, Bjorn; Gaier, Todd; Kangaslahti, Pekka; Lim, Boon; Tanner, Alan

    2011-01-01

    Microwave atmospheric sounders have long provided some of the most imporant data for use in numerical weather prediction (NWP) and have played an important role in atmospheric weather and climate research. With 7 US satellites now carrying such sensors, we are in a 'golden age' of microwave remote sensing of the atmosphere. However, as this fleet ages and is replaced by a smaller number of new sensors in the coming yars, the main shortcoming of sensors in low Earth orbit -i.e. poor spacial and temporal converage and sampling - will become more apparent. Placing such sensors on geostationary satellites, enabling time-continuous views of large portions of the Earth disc, would solve this problem. but the GEO orbit is approximately 40 times higher than a typical LEO orbit, which requires antenna apertures also about 40 times larger than for LEO systems to maintain spatial resolution, and it has not been feasible to develop such systems. Recently, a solution to this problem has appeared in the form of aperture synthesis.

  2. Atmospheric CH₄ and N₂O measurements near Greater Houston area landfills using a QCL-based QEPAS sensor system during DISCOVER-AQ 2013.

    PubMed

    Jahjah, Mohammad; Jiang, Wenzhe; Sanchez, Nancy P; Ren, Wei; Patimisco, Pietro; Spagnolo, Vincenzo; Herndon, Scott C; Griffin, Robert J; Tittel, Frank K

    2014-02-15

    A quartz-enhanced photoacoustic absorption spectroscopy (QEPAS)-based gas sensor was developed for methane (CH₄) and nitrous-oxide (N₂O) detection. The QEPAS-based sensor was installed in a mobile laboratory operated by Aerodyne Research, Inc. to perform atmospheric CH₄ and N₂O detection around two urban waste-disposal sites located in the northeastern part of the Greater Houston area, during DISCOVER-AQ, a NASA Earth Venture during September 2013. A continuous wave, thermoelectrically cooled, 158 mW distributed feedback quantum cascade laser emitting at 7.83 μm was used as the excitation source in the QEPAS gas sensor system. Compared to typical ambient atmospheric mixing ratios of CH₄ and N₂O of 1.8 ppmv and 323 ppbv, respectively, significant increases in mixing ratios were observed when the mobile laboratory was circling two waste-disposal sites in Harris County and when waste disposal trucks were encountered.

  3. Estimation of Visual Maps with a Robot Network Equipped with Vision Sensors

    PubMed Central

    Gil, Arturo; Reinoso, Óscar; Ballesta, Mónica; Juliá, Miguel; Payá, Luis

    2010-01-01

    In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM) problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment. PMID:22399930

  4. Estimation of visual maps with a robot network equipped with vision sensors.

    PubMed

    Gil, Arturo; Reinoso, Óscar; Ballesta, Mónica; Juliá, Miguel; Payá, Luis

    2010-01-01

    In this paper we present an approach to the Simultaneous Localization and Mapping (SLAM) problem using a team of autonomous vehicles equipped with vision sensors. The SLAM problem considers the case in which a mobile robot is equipped with a particular sensor, moves along the environment, obtains measurements with its sensors and uses them to construct a model of the space where it evolves. In this paper we focus on the case where several robots, each equipped with its own sensor, are distributed in a network and view the space from different vantage points. In particular, each robot is equipped with a stereo camera that allow the robots to extract visual landmarks and obtain relative measurements to them. We propose an algorithm that uses the measurements obtained by the robots to build a single accurate map of the environment. The map is represented by the three-dimensional position of the visual landmarks. In addition, we consider that each landmark is accompanied by a visual descriptor that encodes its visual appearance. The solution is based on a Rao-Blackwellized particle filter that estimates the paths of the robots and the position of the visual landmarks. The validity of our proposal is demonstrated by means of experiments with a team of real robots in a office-like indoor environment.

  5. Tethered Balloon Operations at ARM AMF3 Site at Oliktok Point, AK

    NASA Astrophysics Data System (ADS)

    Dexheimer, D.; Lucero, D. A.; Helsel, F.; Hardesty, J.; Ivey, M.

    2015-12-01

    Oliktok Point has been the home of the Atmospheric Radiation Measurement Program's (ARM) third ARM Mobile Facility, or AMF3, since October 2013. The AMF3 is operated through Sandia National Laboratories and hosts instrumentation collecting continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. The Arctic region is warming more quickly than any other region due to climate change and Arctic sea ice is declining to record lows. Sparsity of atmospheric data from the Arctic leads to uncertainty in process comprehension, and atmospheric general circulation models (AGCM) are understood to underestimate low cloud presence in the Arctic. Increased vertical resolution of meteorological properties and cloud measurements will improve process understanding and help AGCMs better characterize Arctic clouds. SNL is developing a tethered balloon system capable of regular operation at AMF3 in order to provide increased vertical resolution atmospheric data. The tethered balloon can be operated within clouds at altitudes up to 7,000' AGL within DOE's R-2204 restricted area. Pressure, relative humidity, temperature, wind speed, and wind direction are recorded at multiple altitudes along the tether. These data were validated against stationary met tower data in Albuquerque, NM. The altitudes of the sensors were determined by GPS and calculated using a line counter and clinometer and compared. Wireless wetness sensors and supercooled liquid water content sensors have also been deployed and their data has been compared with other sensors. This presentation will provide an overview of the balloons, sensors, and test flights flown, and will provide a preliminary look at data from sensor validation campaigns and test flights.

  6. Sensor-Motor Maps for Describing Linear Reflex Composition in Hopping.

    PubMed

    Schumacher, Christian; Seyfarth, André

    2017-01-01

    In human and animal motor control several sensory organs contribute to a network of sensory pathways modulating the motion depending on the task and the phase of execution to generate daily motor tasks such as locomotion. To better understand the individual and joint contribution of reflex pathways in locomotor tasks, we developed a neuromuscular model that describes hopping movements. In this model, we consider the influence of proprioceptive length (LFB), velocity (VFB) and force feedback (FFB) pathways of a leg extensor muscle on hopping stability, performance and efficiency (metabolic effort). Therefore, we explore the space describing the blending of the monosynaptic reflex pathway gains. We call this reflex parameter space a sensor-motor map . The sensor-motor maps are used to visualize the functional contribution of sensory pathways in multisensory integration. We further evaluate the robustness of these sensor-motor maps to changes in tendon elasticity, body mass, segment length and ground compliance. The model predicted that different reflex pathway compositions selectively optimize specific hopping characteristics (e.g., performance and efficiency). Both FFB and LFB were pathways that enable hopping. FFB resulted in the largest hopping heights, LFB enhanced hopping efficiency and VFB had the ability to disable hopping. For the tested case, the topology of the sensor-motor maps as well as the location of functionally optimal compositions were invariant to changes in system designs (tendon elasticity, body mass, segment length) or environmental parameters (ground compliance). Our results indicate that different feedback pathway compositions may serve different functional roles. The topology of the sensor-motor map was predicted to be robust against changes in the mechanical system design indicating that the reflex system can use different morphological designs, which does not apply for most robotic systems (for which the control often follows a specific design). Consequently, variations in body mechanics are permitted with consistent compositions of sensory feedback pathways. Given the variability in human body morphology, such variations are highly relevant for human motor control.

  7. Radiation damage caused by cold neutrons in boron doped CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Linnik, B.; Bus, T.; Deveaux, M.; Doering, D.; Kudejova, P.; Wagner, F. M.; Yazgili, A.; Stroth, J.

    2017-05-01

    CMOS Monolithic Active Pixel Sensors (MAPS) are considered as an emerging technology in the field of charged particle tracking. They will be used in the vertex detectors of experiments like STAR, CBM and ALICE and are considered for the ILC and the tracker of ATLAS. In those applications, the sensors are exposed to sizeable radiation doses. While the tolerance of MAPS to ionizing radiation and fast hadrons is well known, the damage caused by low energy neutrons was not studied so far. Those slow neutrons may initiate nuclear fission of 10B dopants found in the B-doped silicon active medium of MAPS. This effect was expected to create an unknown amount of radiation damage beyond the predictions of the NIEL (Non Ionizing Energy Loss) model for pure silicon. We estimate the impact of this effect by calculating the additional NIEL created by this fission. Moreover, we show first measured data for CMOS sensors which were irradiated with cold neutrons. The empirical results contradict the prediction of the updated NIEL model both, qualitatively and quantitatively: the sensors irradiated with slow neutrons show an unexpected and strong acceptor removal, which is not observed in sensors irradiated with MeV neutrons.

  8. Detection of Atmospheric Methyl Mercaptan Using Wavelength Modulation Spectroscopy with Multicomponent Spectral Fitting

    PubMed Central

    Du, Zhenhui; Wan, Jiaxin; Li, Jinyi; Luo, Gang; Gao, Hong; Ma, Yiwen

    2017-01-01

    Detection of methyl mercaptan (CH3SH) is essential for environmental atmosphere assessment and exhaled-breath analysis. This paper presents a sensitive CH3SH sensor based on wavelength modulation spectroscopy (WMS) with a mid-infrared distributed feedback interband cascade laser (DFB-ICL). Multicomponent spectral fitting was used not only to enhance the sensitivity of the sensor but also to determine the concentration of interferents (atmospheric water and methane). The results showed that the uncertainties in the measurement of CH3SH, H2O, and CH4 were less than 1.2%, 1.7% and 2.0%, respectively, with an integration time of 10 s. The CH3SH detection limit was as low as 7.1 ppb with an integration time of 295 s. Overall, the reported sensor, boasting the merits of high sensitivity, can be used for atmospheric methyl mercaptan detection, as well as multiple components detection of methyl mercaptan, water, and methane, simultaneously. PMID:28212311

  9. Battery-free, wireless sensors for full-body pressure and temperature mapping

    PubMed Central

    Han, Seungyong; Kim, Jeonghyun; Won, Sang Min; Ma, Yinji; Kang, Daeshik; Xie, Zhaoqian; Lee, Kyu-Tae; Chung, Ha Uk; Banks, Anthony; Min, Seunghwan; Heo, Seung Yun; Davies, Charles R.; Lee, Jung Woo; Lee, Chi-Hwan; Kim, Bong Hoon; Li, Kan; Zhou, Yadong; Wei, Chen; Feng, Xue; Huang, Yonggang; Rogers, John A.

    2018-01-01

    Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers. PMID:29618561

  10. Effect of modified atmosphere packaging (MAP) on quality of Sea Buckthorn during postharvest storage

    USDA-ARS?s Scientific Manuscript database

    Modified atmosphere packaging (MAP) has been used to retain the quality of postharvest produce. In the present study the effect of MAP on quality of berry fruit of Sea buckthorn (Hippophae rhamnoides L., a hardy, deciduous shrub, native to Asia) during refrigerated storage was investigated. Sea buck...

  11. Low cost, multiscale and multi-sensor application for flooded area mapping

    NASA Astrophysics Data System (ADS)

    Giordan, Daniele; Notti, Davide; Villa, Alfredo; Zucca, Francesco; Calò, Fabiana; Pepe, Antonio; Dutto, Furio; Pari, Paolo; Baldo, Marco; Allasia, Paolo

    2018-05-01

    Flood mapping and estimation of the maximum water depth are essential elements for the first damage evaluation, civil protection intervention planning and detection of areas where remediation is needed. In this work, we present and discuss a methodology for mapping and quantifying flood severity over floodplains. The proposed methodology considers a multiscale and multi-sensor approach using free or low-cost data and sensors. We applied this method to the November 2016 Piedmont (northwestern Italy) flood. We first mapped the flooded areas at the basin scale using free satellite data from low- to medium-high-resolution from both the SAR (Sentinel-1, COSMO-Skymed) and multispectral sensors (MODIS, Sentinel-2). Using very- and ultra-high-resolution images from the low-cost aerial platform and remotely piloted aerial system, we refined the flooded zone and detected the most damaged sector. The presented method considers both urbanised and non-urbanised areas. Nadiral images have several limitations, in particular in urbanised areas, where the use of terrestrial images solved this limitation. Very- and ultra-high-resolution images were processed with structure from motion (SfM) for the realisation of 3-D models. These data, combined with an available digital terrain model, allowed us to obtain maps of the flooded area, maximum high water area and damaged infrastructures.

  12. Analysis of airborne Doppler lidar, Doppler radar and tall tower measurements of atmospheric flows in quiescent and stormy weather

    NASA Technical Reports Server (NTRS)

    Bluestein, H. B.; Doviak, R. J.; Eilts, M. D.; Mccaul, E. W.; Rabin, R.; Sundara-Rajan, A.; Zrnic, D. S.

    1986-01-01

    The first experiment to combine airborne Doppler Lidar and ground-based dual Doppler Radar measurements of wind to detail the lower tropospheric flows in quiescent and stormy weather was conducted in central Oklahoma during four days in June-July 1981. Data from these unique remote sensing instruments, coupled with data from conventional in-situ facilities, i.e., 500-m meteorological tower, rawinsonde, and surface based sensors, were analyzed to enhance understanding of wind, waves and turbulence. The purposes of the study were to: (1) compare winds mapped by ground-based dual Doppler radars, airborne Doppler lidar, and anemometers on a tower; (2) compare measured atmospheric boundary layer flow with flows predicted by theoretical models; (3) investigate the kinematic structure of air mass boundaries that precede the development of severe storms; and (4) study the kinematic structure of thunderstorm phenomena (downdrafts, gust fronts, etc.) that produce wind shear and turbulence hazardous to aircraft operations. The report consists of three parts: Part 1, Intercomparison of Wind Data from Airborne Lidar, Ground-Based Radars and Instrumented 444 m Tower; Part 2, The Structure of the Convective Atmospheric Boundary Layer as Revealed by Lidar and Doppler Radars; and Part 3, Doppler Lidar Observations in Thunderstorm Environments.

  13. Spectral atmospheric observations at Nantucket Island, May 7-14, 1981

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Poole, L. R.

    1981-01-01

    An experiment was conducted by the National Langley Research Center to measure atmospheric optical conditions using a 10-channel solar spectral photometer system. This experiment was part of a larger series of multidisciplinary experiments performed in the area of Nantucket Shoals aimed at studying the dynamics of phytoplankton production processes. Analysis of the collected atmospheric data yield total and aerosol optical depths, transmittances, normalized sky radiance distributions, and total and sky irradiances. Results of this analysis may aid in atmospheric corrections of remote sensor data obtained by several sensors overflying the Nantucket Shoals area. Recommendations are presented concerning future experiments using the described solar photometer system and calibration and operational deficiencies uncovered during the experiment.

  14. Mapping with Small UAS: A Point Cloud Accuracy Assessment

    NASA Astrophysics Data System (ADS)

    Toth, Charles; Jozkow, Grzegorz; Grejner-Brzezinska, Dorota

    2015-12-01

    Interest in using inexpensive Unmanned Aerial System (UAS) technology for topographic mapping has recently significantly increased. Small UAS platforms equipped with consumer grade cameras can easily acquire high-resolution aerial imagery allowing for dense point cloud generation, followed by surface model creation and orthophoto production. In contrast to conventional airborne mapping systems, UAS has limited ground coverage due to low flying height and limited flying time, yet it offers an attractive alternative to high performance airborne systems, as the cost of the sensors and platform, and the flight logistics, is relatively low. In addition, UAS is better suited for small area data acquisitions and to acquire data in difficult to access areas, such as urban canyons or densely built-up environments. The main question with respect to the use of UAS is whether the inexpensive consumer sensors installed in UAS platforms can provide the geospatial data quality comparable to that provided by conventional systems. This study aims at the performance evaluation of the current practice of UAS-based topographic mapping by reviewing the practical aspects of sensor configuration, georeferencing and point cloud generation, including comparisons between sensor types and processing tools. The main objective is to provide accuracy characterization and practical information for selecting and using UAS solutions in general mapping applications. The analysis is based on statistical evaluation as well as visual examination of experimental data acquired by a Bergen octocopter with three different image sensor configurations, including a GoPro HERO3+ Black Edition, a Nikon D800 DSLR and a Velodyne HDL-32. In addition, georeferencing data of varying quality were acquired and evaluated. The optical imagery was processed by using three commercial point cloud generation tools. Comparing point clouds created by active and passive sensors by using different quality sensors, and finally, by different commercial software tools, provides essential information for the performance validation of UAS technology.

  15. Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles.

    PubMed

    Chiappini, Ciro; Campagnolo, Paola; Almeida, Carina S; Abbassi-Ghadi, Nima; Chow, Lesley W; Hanna, George B; Stevens, Molly M

    2015-09-16

    Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide-based Cathepsin B cleavable sensor over a large array of nano-needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cassini atmospheric chemistry mapper. Volume 1. Investigation and technical plan

    NASA Technical Reports Server (NTRS)

    Smith, William Hayden; Baines, Kevin Hays; Drossart, Pierre; Fegley, Bruce; Orton, Glenn; Noll, Keith; Reitsema, Harold; Bjoraker, Gordon L.

    1990-01-01

    The Cassini Atmospheric Chemistry Mapper (ACM) enables a broad range of atmospheric science investigations for Saturn and Titan by providing high spectral and spatial resolution mapping and occultation capabilities at 3 and 5 microns. ACM can directly address the major atmospheric science objectives for Saturn and for Titan, as defined by the Announcement of Opportunity, with pivotal diagnostic measurements not accessible to any other proposed Cassini instrument. ACM determines mixing ratios for atmospheric molecules from spectral line profiles for an important and extensive volume of the atmosphere of Saturn (and Jupiter). Spatial and vertical profiles of disequilibrium species abundances define Saturn's deep atmosphere, its chemistry, and its vertical transport phenomena. ACM spectral maps provide a unique means to interpret atmospheric conditions in the deep (approximately 1000 bar) atmosphere of Saturn. Deep chemistry and vertical transport is inferred from the vertical and horizontal distribution of a series of disequilibrium species. Solar occultations provide a method to bridge the altitude range in Saturn's (and Titan's) atmosphere that is not accessible to radio science, thermal infrared, and UV spectroscopy with temperature measurements to plus or minus 2K from the analysis of molecular line ratios and to attain an high sensitivity for low-abundance chemical species in the very large column densities that may be achieved during occultations for Saturn. For Titan, ACM solar occultations yield very well resolved (1/6 scale height) vertical mixing ratios column abundances for atmospheric molecular constituents. Occultations also provide for detecting abundant species very high in the upper atmosphere, while at greater depths, detecting the isotopes of C and O, constraining the production mechanisms, and/or sources for the above species. ACM measures the vertical and horizontal distribution of aerosols via their opacity at 3 microns and, particularly, at 5 microns. ACM recovers spatially-resolved atmospheric temperatures in Titan's troposphere via 3- and 5-microns spectral transitions. Together, the mixing ratio profiles and the aerosol distributions are utilized to investigate the photochemistry of the stratosphere and consequent formation processes for aerosols. Finally, ring opacities, observed during solar occultations and in reflected sunlight, provide a measurement of the particle size and distribution of ring material. ACM will be the first high spectral resolution mapping spectrometer on an outer planet mission for atmospheric studies while retaining a high resolution spatial mapping capability. ACM, thus, opens an entirely new range of orbital scientific studies of the origin, physio-chemical evolution and structure of the Saturn and Titan atmospheres. ACM provides high angular resolution spectral maps, viewing nadir and near-limb thermal radiation and reflected sunlight; sounds planetary limbs, spatially resolving vertical profiles to several atmospheric scale heights; and measures solar occultations, mapping both atmospheres and rings. ACM's high spectral and spatial resolution mapping capability is achieved with a simplified Fourier Transform spectrometer with a no-moving parts, physically compact design. ACM's simplicity guarantees an inherent stability essential for reliable performance throughout the lengthy Cassini Orbiter mission.

  17. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  18. Modified artificial fish school algorithm for free space optical communication with sensor-less adaptive optics system

    NASA Astrophysics Data System (ADS)

    Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun

    2017-11-01

    The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.

  19. Point Cloud Refinement with a Target-Free Intrinsic Calibration of a Mobile Multi-Beam LIDAR System

    NASA Astrophysics Data System (ADS)

    Nouiraa, H.; Deschaud, J. E.; Goulettea, F.

    2016-06-01

    LIDAR sensors are widely used in mobile mapping systems. The mobile mapping platforms allow to have fast acquisition in cities for example, which would take much longer with static mapping systems. The LIDAR sensors provide reliable and precise 3D information, which can be used in various applications: mapping of the environment; localization of objects; detection of changes. Also, with the recent developments, multi-beam LIDAR sensors have appeared, and are able to provide a high amount of data with a high level of detail. A mono-beam LIDAR sensor mounted on a mobile platform will have an extrinsic calibration to be done, so the data acquired and registered in the sensor reference frame can be represented in the body reference frame, modeling the mobile system. For a multibeam LIDAR sensor, we can separate its calibration into two distinct parts: on one hand, we have an extrinsic calibration, in common with mono-beam LIDAR sensors, which gives the transformation between the sensor cartesian reference frame and the body reference frame. On the other hand, there is an intrinsic calibration, which gives the relations between the beams of the multi-beam sensor. This calibration depends on a model given by the constructor, but the model can be non optimal, which would bring errors and noise into the acquired point clouds. In the litterature, some optimizations of the calibration parameters are proposed, but need a specific routine or environment, which can be constraining and time-consuming. In this article, we present an automatic method for improving the intrinsic calibration of a multi-beam LIDAR sensor, the Velodyne HDL-32E. The proposed approach does not need any calibration target, and only uses information from the acquired point clouds, which makes it simple and fast to use. Also, a corrected model for the Velodyne sensor is proposed. An energy function which penalizes points far from local planar surfaces is used to optimize the different proposed parameters for the corrected model, and we are able to give a confidence value for the calibration parameters found. Optimization results on both synthetic and real data are presented.

  20. Data annotation, recording and mapping system for the US open skies aircraft

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, B.W.; Goede, W.F.; Farmer, R.G.

    1996-11-01

    This paper discusses the system developed by Northrop Grumman for the Defense Nuclear Agency (DNA), US Air Force, and the On-Site Inspection Agency (OSIA) to comply with the data annotation and reporting provisions of the Open Skies Treaty. This system, called the Data Annotation, Recording and Mapping System (DARMS), has been installed on the US OC-135 and meets or exceeds all annotation requirements for the Open Skies Treaty. The Open Skies Treaty, which will enter into force in the near future, allows any of the 26 signatory countries to fly fixed wing aircraft with imaging sensors over any of themore » other treaty participants, upon very short notice, and with no restricted flight areas. Sensor types presently allowed by the treaty are: optical framing and panoramic film cameras; video cameras ranging from analog PAL color television cameras to the more sophisticated digital monochrome and color line scanning or framing cameras; infrared line scanners; and synthetic aperture radars. Each sensor type has specific performance parameters which are limited by the treaty, as well as specific annotation requirements which must be achieved upon full entry into force. DARMS supports U.S. compliance with the Opens Skies Treaty by means of three subsystems: the Data Annotation Subsytem (DAS), which annotates sensor media with data obtained from sensors and the aircraft`s avionics system; the Data Recording System (DRS), which records all sensor and flight events on magnetic media for later use in generating Treaty mandated mission reports; and the Dynamic Sensor Mapping Subsystem (DSMS), which provides observers and sensor operators with a real-time moving map displays of the progress of the mission, complete with instantaneous and cumulative sensor coverages. This paper will describe DARMS and its subsystems in greater detail, along with the supporting avionics sub-systems. 7 figs.« less

  1. CONTINUOUS SPATIAL MAPPING FROM VESSELS: RESULTS AND EXPERIENCE USING VARIOUS SENSORS FOR WATER AND SEDIMENTS IN THE GREAT LAKES

    EPA Science Inventory

    U.S. EPA research has been exploring the use of vessel-towed sensor and underway acoustic technologies in an effort to develop spatial mapping tools and insights for a next generation of Great Lakes monitoring. Technologies allow fine-scale (meters) to meso-scale (100s of kilome...

  2. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    NASA Astrophysics Data System (ADS)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  3. Study of the use of Metal-Oxide-Silicon (MOS) devices for particulate detection and monitoring in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Brooks, A. D.; Monteith, L. K.; Wortman, J. J.; Mulligan, J. C.

    1974-01-01

    A metal-oxide-silicon (MOS) capacitor-type particulate sensor was evaluated for use in atmospheric measurements. An accelerator system was designed and tested for the purpose of providing the necessary energy to trigger the MOS-type sensor. The accelerator system and the MOS sensor were characterized as a function of particle size and velocity. Diamond particles were used as particulate sources in laboratory tests. Preliminary tests were performed in which the detector was mounted on an aircraft and flown in the vicinity of coal-fired electric generating plants.

  4. Monitoring and evaluation of rowing performance using mobile mapping data

    NASA Astrophysics Data System (ADS)

    Mpimis, A.; Gikas, V.

    2011-12-01

    Traditionally, the term mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Historically, this process was mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. However, the recent advances in mapping sensor and telecommunication technologies create the opportunity that, completely new, emergent application areas of mobile mapping to evolve rapidly. This article examines the potential of mobile mapping technology (MMT) in sports science and in particular in competitive rowing. Notably, in this study the concept definition of mobile mapping somehow differs from the traditional one in a way that, the end result is not relevant to the geospatial information acquired as the moving platform travels in space. In contrast, the interest is placed on the moving platform (rowing boat) itself and on the various subsystems which are also in continuous motion.

  5. A simulator for airborne laser swath mapping via photon counting

    NASA Astrophysics Data System (ADS)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  6. Travel guidance system for vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takanabe, K.; Yamamoto, M.; Ito, K.

    1987-02-24

    A travel guidance system is described for vehicles including: a heading sensor for detecting a direction of movement of a vehicle; a distance sensor for detecting a distance traveled by the vehicle; a map data storage medium preliminarily storing map data; a control unit for receiving a heading signal from the heading sensor and a distance signal from the distance sensor to successively compute a present position of the vehicle and for generating video signals corresponding to display data including map data from the map data storage medium and data of the present position; and a display having first andmore » second display portions and responsive to the video signals from the control unit to display on the first display portion a map and a present portion mark, in which: the map data storage medium comprises means for preliminarily storing administrative division name data and landmark data; and the control unit comprises: landmark display means for: (1) determining a landmark closest to the present position, (2) causing a position of the landmark to be displayed on the map and (3) retrieving a landmark massage concerning the landmark from the storage medium to cause the display to display the landmark message on the second display portion; division name display means for retrieving the name of an administrative division to which the present position belongs from the storage medium and causing the display to display a division name message on the second display portion; and selection means for selectively actuating at least one of the landmark display means and the division name display means.« less

  7. Contrails of Small and Very Large Optical Depth

    NASA Technical Reports Server (NTRS)

    Atlas, David; Wang, Zhien

    2010-01-01

    This work deals with two kinds of contrails. The first comprises a large number of optically thin contrails near the tropopause. They are mapped geographically using a lidar to obtain their height and a camera to obtain azimuth and elevation. These high-resolution maps provide the local contrail geometry and the amount of optically clear atmosphere. The second kind is a single trail of unprecedentedly large optical thickness that occurs at a lower height. The latter was observed fortuitously when an aircraft moving along the wind direction passed over the lidar, thus providing measurements for more than 3 h and an equivalent distance of 620 km. It was also observed by Geostationary Operational Environmental Satellite (GOES) sensors. The lidar measured an optical depth of 2.3. The corresponding extinction coefficient of 0.023 per kilometer and ice water content of 0.063 grams per cubic meter are close to the maximum values found for midlatitude cirrus. The associated large radar reflectivity compares to that measured by ultrasensitive radar, thus providing support for the reality of the large optical depth.

  8. Towards decadal soil salinity mapping using Landsat time series data

    NASA Astrophysics Data System (ADS)

    Fan, Xingwang; Weng, Yongling; Tao, Jinmei

    2016-10-01

    Salinization is one of the major soil problems around the world. However, decadal variation in soil salinization has not yet been extensively reported. This study exploited thirty years (1985-2015) of Landsat sensor data, including Landsat-4/5 TM (Thematic Mapper), Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Operational Land Imager), for monitoring soil salinity of the Yellow River Delta, China. The data were initially corrected for atmospheric effects, and then matched the spectral bands of EO-1 (Earth Observing One) ALI (Advanced Land Imager). Subsequently, soil salinity maps were derived with a previously developed PLSR (Partial Least Square Regression) model. On intra-annual scale, the retrievals showed that soil salinity increased in February, stabilized in March, and decreased in April. On inter-annual scale, soil salinity decreased within 1985-2000 (-0.74 g kg-1/10a, p < 0.001), and increased within 2000-2015 (0.79 g kg-1/10a, p < 0.001). Our study presents a new perspective for use of multiple Landsat data in soil salinity retrieval, and further the understanding of soil salinization development over the Yellow River Delta.

  9. A multidisciplinary study of earth resources imagery of Australia, Antarctica and Papua, New Guinea

    NASA Technical Reports Server (NTRS)

    Fisher, N. H. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. A thirteen category recognition map was prepared, showing forest, water, grassland, and exposed rock types. Preliminary assessment of classification accuracies showed that water, forest, meadow, and Niobrara shale were the most accurately mapped classes. Unsatisfactory results, were obtained in an attempt to discrimate sparse forest cover over different substrates. As base elevation varied from 7,000 to 13,000 ft, with an atmospheric visibility of 48 km, no changes in water and forest recognition were observed. Granodiorite recognition accuracy decreased monotonically as base elevation increased, even though the training set location was at 10,000 ft elevation. For snow varying in base elevation from 9400 to 8420 ft, recognition decreases from 99% at the 9400 ft training set elevation to 88% at 8420 ft. Calculations of expected radiance at the ERTS sensor from snow reflectance measured at the site and from Turner model calculations of irradiance, transmission and path radiance, reveal that snow signals should not be clipped, assuming that calculations and ERTS calibration constants were correct.

  10. The Multispectral Atmospheric Mapping Sensor (MAMS): Instrument description, calibration and data quality

    NASA Technical Reports Server (NTRS)

    Jedlovec, G. J.; Menzel, W. P.; Atkinson, R.; Wilson, G. S.; Arvesen, J.

    1986-01-01

    A new instrument has been developed to produce high resolution imagery in eight visible and three infared spectral bands from an aircraft platform. An analysis of the data and calibration procedures has shown that useful data can be obtained at up to 50 m resolution with a 2.5 milliradian aperture. Single sample standard errors for the measurements are 0.5, 0.2, and 0.9 K for the 6.5, 11.1, and 12.3 micron spectral bands, respectively. These errors are halved when a 5.0 milliradian aperture is used to obtain 100 m resolution data. Intercomparisons with VAS and AVHRR measurements show good relative calibration. MAMS development is part of a larger program to develop multispectral Earth imaging capabilities from space platforms during the 1990s.

  11. Evaluating Radiometric Sensitivity of LandSat 8 Over Coastal-Inland Waters

    NASA Technical Reports Server (NTRS)

    Pahlevan, Nima; Wei, Jian-Wei; Shaaf, Crystal B.; Schott, John R.

    2014-01-01

    The operational Land Imager (OLI) aboard Landsat 8 was launched in February 2013 to continue the Landsat's mission of monitoring earth resources at relatively high spatial resolution. Compared to Landsat heritage sensors, OLI has an additional 443-nm band (termed coastal/aerosol (CA) band), which extends its potential for mapping/monitoring water quality in coastal/inland waters. In addition, OLI's pushbroom design allows for longer integration time and, as a result, higher signal-to-noise ratio (SNR). Using a series of radiative transfer simulations, we provide insights into the radiometric sensitivity of OLI when studying coastal/inland waters. This will address how the changes in water constituents manifest at top-of-atmosphere (TOA) and whether the changes are resolvable at TOA (focal plane) relative to OLI's overall noise.

  12. Hubble’s Global View of Jupiter During the Juno Mission

    NASA Astrophysics Data System (ADS)

    Simon, Amy A.; Wong, Michael H.; Orton, Glenn S.; Cosentino, Richard; Tollefson, Joshua; Johnson, Perianne

    2017-10-01

    With two observing programs designed for mapping clouds and hazes in Jupiter's atmosphere during the Juno mission, the Hubble Space Telescope is acquiring an unprecedented set of global maps for study. The Outer Planet Atmospheres Legacy program (OPAL, PI: Simon) and the Wide Field Coverage for Juno program (WFCJ, PI: Wong) are designed to enable frequent multi-wavelength global mapping of Jupiter, with many maps timed specifically for Juno’s perijove passes. Filters span wavelengths from 212 to 894 nm. Besides offering global views for Juno observation context, they also reveal a wealth of information about interesting atmospheric dynamical features. We will summarize the latest findings from these global mapping programs, including changes in the Great Red Spot, zonal wind profile analysis, and persistent cyclone-generated waves in the North Equatorial Belt.

  13. Spectral Reconstruction Based on Svm for Cross Calibration

    NASA Astrophysics Data System (ADS)

    Gao, H.; Ma, Y.; Liu, W.; He, H.

    2017-05-01

    Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor's passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  14. The Shale Hills Sensorium for Embedded Sensors, Simulation, & Visualization: A Prototype for Land-Vegetation-Atmosphere Interactions

    NASA Astrophysics Data System (ADS)

    Duffy, C.

    2008-12-01

    The future of environmental observing systems will utilize embedded sensor networks with continuous real- time measurement of hydrologic, atmospheric, biogeochemical, and ecological variables across diverse terrestrial environments. Embedded environmental sensors, benefitting from advances in information sciences, networking technology, materials science, computing capacity, and data synthesis methods, are undergoing revolutionary change. It is now possible to field spatially-distributed, multi-node sensor networks that provide density and spatial coverage previously accessible only via numerical simulation. At the same time, computational tools are advancing rapidly to the point where it is now possible to simulate the physical processes controlling individual parcels of water and solutes through the complete terrestrial water cycle. Our goal for the Penn State Critical Zone Observatory is to apply environmental sensor arrays, integrated hydrologic models, and state-of-the-art visualization deployed and coordinated at a testbed within the Penn State Experimental Forest. The Shale Hills Hydro_Sensorium prototype proposed here is designed to observe land-atmosphere interactions in four-dimensional (space and time). The term Hydro_Sensorium implies the totality of physical sensors, models and visualization tools that allow us to perceive the detailed space and time complexities of the water and energy cycle for a watershed or river basin for all physical states and fluxes (groundwater, soil moisture, temperature, streamflow, latent heat, snowmelt, chemistry, isotopes etc.). This research will ultimately catalyze the study of complex interactions between the land surface, subsurface, biological and atmospheric systems over a broad range of scales. The sensor array would be real-time and fully controllable by remote users for "computational steering" and data fusion. Presently fully-coupled physical models are being developed that link the atmosphere-land-vegetation-subsurface system into a fully-coupled distributed system. During the last 5 years the Penn State Integrated Hydrologic Modeling System has been under development as an open-source community modeling project funded by NSF EAR/GEO and NSF CBET/ENG. PIHM represents a strategy for the formulation and solution of fully-coupled process equations at the watershed and river basin scales, and includes a tightly coupled GIS tool for data handling, domain decomposition, optimal unstructured grid generation, and model parameterization. The sensor and simulation system has the following elements: 1) extensive, spatially-distributed, non- invasive, smart sensor networks to gather massive geologic, hydrologic, and geochemical data; 2) stochastic information fusion methods; 3) spatially-explicit multiphysics models/solutions of the land-vegetation- atmosphere system; and 4) asynchronous, parallel/distributed, adaptive algorithms for rapidly simulating the states of a basin at high resolution, 5) signal processing tools for data mining and parameter estimation, and 6) visualization tools. The prototype proposed sensor array and simulation system proposed here will offer a coherent new approach to environmental predictions with a fully integrated observing system design. We expect that the Shale Hills Hydro_Sensorium may provide the needed synthesis of information and conceptualization necessary to advance predictive understanding in complex hydrologic systems.

  15. Application of Hymap image in the environmental survey in Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Pan, Wei; Yang, Xiaomao; Chen, Xuejiao; Feng, Ping

    2017-10-01

    Hyperspectral HyMap image with synchronous in-situ spectral data were used to survey the environmental condition in Shenzhen of South China. HyMap image was measured with 3.5m spatial resolution and 15nm spectral resolution from 0.44μm-2.5μm and corrected with Modtran5 model and synchronous solar illuminance and atmospheric visibility to the ground. The spectra of rocks, soils, water and vegetation were obtained by ASD spectrometer in reflectance. Both the fresh granite and eroded sandy soil was found with absorption at 2200nm+/-in-situ spectra, but the weathered granite and sandy soil have another absorption at 880nm 940 nm. Polluted water with high ammonia nitrogen and phosphorous and BOD5 get the strongest reflectance at 550 570nm, while polluted water of high CODcr and heavy metal ions content get the peak reflectance at 450 490nm. The in-situ spectra was resampled in wavelength range and spectral resolution to that of Hymap sensor for image classification with SAM algorithm, the unpaved granite among cement the paved mine pits , the newly excavated land surface and the eroded soil was mapped out with the accuracy over 95%. We also discriminate the artificial forest from the natural with the spectral endmember extracted from the image.

  16. Compositional mapping of planetary moons by mass spectrometry of dust ejecta

    NASA Astrophysics Data System (ADS)

    Postberg, Frank; Grün, Eberhard; Horanyi, Mihaly; Kempf, Sascha; Krüger, Harald; Schmidt, Jürgen; Spahn, Frank; Srama, Ralf; Sternovsky, Zoltan; Trieloff, Mario

    2011-11-01

    Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This 'dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.

  17. Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps.

    PubMed

    Moya, José M; Araujo, Alvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier

    2009-01-01

    The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals.

  18. Improving Security for SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps

    PubMed Central

    Moya, José M.; Araujo, Álvaro; Banković, Zorana; de Goyeneche, Juan-Mariano; Vallejo, Juan Carlos; Malagón, Pedro; Villanueva, Daniel; Fraga, David; Romero, Elena; Blesa, Javier

    2009-01-01

    The reliable operation of modern infrastructures depends on computerized systems and Supervisory Control and Data Acquisition (SCADA) systems, which are also based on the data obtained from sensor networks. The inherent limitations of the sensor devices make them extremely vulnerable to cyberwarfare/cyberterrorism attacks. In this paper, we propose a reputation system enhanced with distributed agents, based on unsupervised learning algorithms (self-organizing maps), in order to achieve fault tolerance and enhanced resistance to previously unknown attacks. This approach has been extensively simulated and compared with previous proposals. PMID:22291569

  19. Atmospheric aerosol measurements by employing a polarization scheimpflug lidar system

    NASA Astrophysics Data System (ADS)

    Mei, Liang; Guan, Peng; Yang, Yang

    2018-04-01

    A polarization Scheimpflug lidar system based on the Scheimpflug principle has been developed by employing a compact 808-nm multimode highpower laser diode and two highly integrated CMOS sensors in Dalian University of Technology (DLUT), Dalian, China. The parallel and orthogonal polarized backscattering signal are recorded by two 45 degree tilted image sensors, respectively. Atmospheric particle measurements were carried out by employing the polarization Scheimpflug lidar system.

  20. Impact of Aerosols on Scene Collection and Scene Correction

    DTIC Science & Technology

    2009-03-01

    the atmosphere on the way to the satellite. In order for a satellite- borne sensor to distinguish a target from its background, the difference between...the target and background top of the atmosphere radiance ( TLΔ ) must be greater than the sensor radiance sensitivity ( sLΔ ). The difference ...northwesterly, with prevailing surface visibilities between four and seven miles in dust, sand, or haze. Stronger flow over northern Saudi Arabia can loft

  1. Learning from concurrent Lightning Imaging Sensor and Lightning Mapping Array observations in preparation for the MTG-LI mission

    NASA Astrophysics Data System (ADS)

    Defer, Eric; Bovalo, Christophe; Coquillat, Sylvain; Pinty, Jean-Pierre; Farges, Thomas; Krehbiel, Paul; Rison, William

    2016-04-01

    The upcoming decade will see the deployment and the operation of French, European and American space-based missions dedicated to the detection and the characterization of the lightning activity on Earth. For instance the Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) mission, with an expected launch in 2018, is a CNES mission dedicated to the study of impulsive energy transfers between the atmosphere of the Earth and the space environment. It will carry a package of Micro Cameras and Photometers (MCP) to detect and locate lightning flashes and triggered Transient Luminous Events (TLEs). At the European level, the Meteosat Third Generation Imager (MTG-I) satellites will carry in 2019 the Lightning Imager (LI) aimed at detecting and locating the lightning activity over almost the full disk of Earth as usually observed with Meteosat geostationary infrared/visible imagers. The American community plans to operate a similar instrument on the GOES-R mission for an effective operation in early 2016. In addition NASA will install in 2016 on the International Space Station the spare version of the Lightning Imaging Sensor (LIS) that has proved its capability to optically detect the tropical lightning activity from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. We will present concurrent observations recorded by the optical space-borne Lightning Imaging Sensor (LIS) and the ground-based Very High Frequency (VHF) Lightning Mapping Array (LMA) for different types of lightning flashes. The properties of the cloud environment will also be considered in the analysis thanks to coincident observations of the different TRMM cloud sensors. The characteristics of the optical signal will be discussed according to the nature of the parent flash components and the cloud properties. This study should provide some insights not only on the expected optical signal that will be recorded by LI, but also on the definition of the validation strategy of LI, and on the synergetic use of LI and ground-based VHF mappers like the SAETTA LMA network in Corsica for operational and research activities. Acknowledgements: this study is part of the SOLID-PREVALS project and is supported by CNES-TOSCA.

  2. The wildfire experiment (WIFE): observations with airborne remote sensors

    Treesearch

    L.F. Radke; T.L. Clark; J.L. Coen; C.A. Walther; R.N. Lockwood; P.J. Riggan; J.A. Brass; R.G. Higgins

    2000-01-01

    Airborne remote sensors have long been a cornerstone of wildland fire research, and recently three-dimensional fire behaviour models fully coupled to the atmosphere have begun to show a convincing level of verisimilitude. The WildFire Experiment (WiFE) attempted the marriage of airborne remote sensors, multi-sensor observations together with fire model development and...

  3. Remote sensing sensors and applications in environmental resources mapping and modeling

    USGS Publications Warehouse

    Melesse, Assefa M.; Weng, Qihao; Thenkabail, Prasad S.; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling.

  4. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  5. Distributed coaxial cable crack sensors for crack mapping in RC

    NASA Astrophysics Data System (ADS)

    Greene, Gary G.; Belarbi, Abdeldjelil; Chen, Genda; McDaniel, Ryan

    2005-05-01

    New type of distributed coaxial cable sensors for health monitoring of large-scale civil infrastructure was recently proposed and developed by the authors. This paper shows the results and performance of such sensors mounted on near surface of two flexural beams and a large scale reinforced concrete box girder that was subjected to twenty cycles of combined shear and torsion. The main objectives of this health monitoring study was to correlate the sensor's response to strain in the member, and show that magnitude of the signal's reflection coefficient is related to increases in applied load, repeated cycles, cracking, crack mapping, and yielding. The effect of multiple adjacent cracks, and signal loss was also investigated.

  6. Quality attributes of farmed eel (Anguilla anguilla) stored under air, vacuum and modified atmosphere packaging at 0 degrees C.

    PubMed

    Arkoudelos, John; Stamatis, Nikolaos; Samaras, Fotis

    2007-01-01

    The shelf life of fresh eel in various packaging conditions of atmospheric air, vacuum and modified atmosphere packaging (MAP) (40% CO(2), 30% N(2) and 30% O(2)) at 0 degrees C was investigated. All raw eel samples received acceptable sensory scores during the first 11+/-1 days of storage in atmospheric air, 11+/-1 days of storage in vacuum and finally 18+/-1 days of storage in MAP conditions. Using the microbial quality indicators the shelf life of eel packed in air, vacuum and MAP was estimated to be more than 18, 28 and 34 days, respectively. The main spoilage microorganisms under MAP conditions were lactic acid producing bacteria followed by Shewanella spp., pseudomonads, Enterobacteriaceae and yeasts. Chemical data revealed that pH, ammonia, glucose and lactate examinations might not be useful for monitoring eel quality differences.

  7. Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.

    Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less

  8. Thermal effects of an ICL-based mid-infrared CH4 sensor within a wide atmospheric temperature range

    NASA Astrophysics Data System (ADS)

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; Girija, Aswathy V.; He, Qixin; Zheng, Huadan; Griffin, Robert J.; Tittel, Frank K.

    2018-03-01

    The thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ∼25 °C was measured for 5 h and its Allan deviation was ∼2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to minimize these effects. An environmental test chamber was employed to investigate the thermal effects that occur in the sensor system with variation of the test chamber temperature between 10 and 30 °C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH4 standard gas sample. Indoor/outdoor CH4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.

  9. Thermal effects of an ICL-based mid-infrared CH 4 sensor within a wide atmospheric temperature range

    DOE PAGES

    Ye, Weilin; Zheng, Chuantao; Sanchez, Nancy P.; ...

    2018-01-31

    Here, thermal effects of an interband cascade laser (ICL) based mid-infrared methane (CH 4) sensor that uses long-path absorption spectroscopy were studied. The sensor performance in the laboratory at a constant temperature of ~ 25°C was measured for 5 hours and its Allan deviation was ~ 2 ppbv with a 1 s averaging time. A LabVIEW-based simulation program was developed to study thermal effects on infrared absorption and a temperature compensation technique was developed to control such effects. An environmental test chamber was employed to investigate thermal effects that occur in the sensor system with variation of the test chambermore » temperature between 10 and 30°C. The thermal response of the sensor in a laboratory setting was observed using a 2.1 ppm CH 4 standard gas sample. indoor/outdoor CH 4 measurements were conducted to evaluate the sensor performance within a wide atmospheric temperature range.« less

  10. Low-cost photonic sensors for carbon dioxide exchange rate measurement

    NASA Astrophysics Data System (ADS)

    Bieda, Marcin S.; Sobotka, Piotr; Lesiak, Piotr; Woliński, Tomasz R.

    2017-10-01

    Carbon dioxide (CO2) measurement has an important role in atmosphere monitoring. Usually, two types of measurements are carried out. The first one is based on gas concentration measurement while the second involves gas exchange rate measurement between earth surface and atmosphere [1]. There are several methods which allow gas concentration measurement. However, most of them require expensive instrumentation or large devices (i.e. gas chambers). In order to precisely measure either CO2 concentration or CO2 exchange rate, preferably a sensors network should be used. These sensors must have small dimensions, low power consumption, and they should be cost-effective. Therefore, this creates a great demand for a robust low-power and low-cost CO2 sensor [2,3]. As a solution, we propose a photonic sensor that can measure CO2 concentration and also can be used to measure gas exchange by using the Eddy covariance method [1].

  11. Atmospheric deposition maps for the Rocky Mountains

    USGS Publications Warehouse

    Nanus, L.; Campbell, D.H.; Ingersoll, G.P.; Clow, D.W.; Mast, M.A.

    2003-01-01

    Variability in atmospheric deposition across the Rocky Mountains is influenced by elevation, slope, aspect, and precipitation amount and by regional and local sources of air pollution. To improve estimates of deposition in mountainous regions, maps of average annual atmospheric deposition loadings of nitrate, sulfate, and acidity were developed for the Rocky Mountains by using spatial statistics. A parameter-elevation regressions on independent slopes model (PRISM) was incorporated to account for variations in precipitation amount over mountainous regions. Chemical data were obtained from the National Atmospheric Deposition Program/National Trends Network and from annual snowpack surveys conducted by the US Geological Survey and National Park Service, in cooperation with other Federal, State and local agencies. Surface concentration maps were created by ordinary kriging in a geographic information system, using a local trend and mathematical model to estimate the spatial variance. Atmospheric-deposition maps were constructed at 1-km resolution by multiplying surface concentrations from the kriged grid and estimates of precipitation amount from the PRISM model. Maps indicate an increasing spatial trend in concentration and deposition of the modeled constituents, particularly nitrate and sulfate, from north to south throughout the Rocky Mountains and identify hot-spots of atmospheric deposition that result from combined local and regional sources of air pollution. Highest nitrate (2.5-3.0kg/ha N) and sulfate (10.0-12.0kg/ha SO4) deposition is found in northern Colorado.

  12. Principles and techniques of polarimetric mapping.

    NASA Technical Reports Server (NTRS)

    Halajian, J.; Hallock, H.

    1973-01-01

    This paper introduces the concept and potential value of polarimetric maps and the techniques for generating these maps in operational remote sensing. The application-oriented polarimetric signature analyses in the literature are compiled, and several optical models are illustrated to bring out requirements of a sensor system for polarimetric mapping. By use of the concepts of Stokes parameters the descriptive specification of one sensor system is refined. The descriptive specification for a multichannel digital photometric-polarimetric mapper is based upon our experience with the present single channel device which includes the generation of polarimetric maps and pictures. High photometric accuracy and stability coupled with fast, accurate digital output has enabled us to overcome the handicap of taking sequential data from the same terrain.

  13. Marker-Based Multi-Sensor Fusion Indoor Localization System for Micro Air Vehicles.

    PubMed

    Xing, Boyang; Zhu, Quanmin; Pan, Feng; Feng, Xiaoxue

    2018-05-25

    A novel multi-sensor fusion indoor localization algorithm based on ArUco marker is designed in this paper. The proposed ArUco mapping algorithm can build and correct the map of markers online with Grubbs criterion and K-mean clustering, which avoids the map distortion due to lack of correction. Based on the conception of multi-sensor information fusion, the federated Kalman filter is utilized to synthesize the multi-source information from markers, optical flow, ultrasonic and the inertial sensor, which can obtain a continuous localization result and effectively reduce the position drift due to the long-term loss of markers in pure marker localization. The proposed algorithm can be easily implemented in a hardware of one Raspberry Pi Zero and two STM32 micro controllers produced by STMicroelectronics (Geneva, Switzerland). Thus, a small-size and low-cost marker-based localization system is presented. The experimental results show that the speed estimation result of the proposed system is better than Px4flow, and it has the centimeter accuracy of mapping and positioning. The presented system not only gives satisfying localization precision, but also has the potential to expand other sensors (such as visual odometry, ultra wideband (UWB) beacon and lidar) to further improve the localization performance. The proposed system can be reliably employed in Micro Aerial Vehicle (MAV) visual localization and robotics control.

  14. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  15. Atrial fibrillation and sudden cardiac death: catheter-based sensor and mapping system of the heart

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Kumar, Prashanth S.; Varadan, Vijay K.

    2017-04-01

    Ventricular arrhythmias in the heart and the rapid heartbeat of ventricular tachycardia can lead to sudden cardiac death. This is a major health issue worldwide. What is needed is to develop a catheter based sensor and mapping approach which will provide the mechanisms of ventricular arrhythmia, and effectively prevent and treat the same, potentially save life.

  16. Application of remote sensor data to geologic analysis of the Bonanza test site, Colorado

    NASA Technical Reports Server (NTRS)

    Lee, K. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. The Hayden Pass (Orient mine area) includes 60 sq miles of the northern Sangre de Cristo Mountains and San Luis Valley in south-central Colorado. Based on interpretation of the remote sensor data, a geologic map was prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives an indication of the usefulness and reliability of the remote sensor data. The relative utility of color and color infrared photography was tested. The photography was used successfully to locate 75% of all faults in a portion of the geologically complex Bonanza volcanic center and to map and correctly identify 93% of all quaternary deposits and 62% of all areas of tertiary volcanic outcrop. Using a filter wheel photometer, more than 8,600 measurements of band reflectance of several sedimentary rocks were performed. The following conclusions were drawn: (1) the typical spectral reflectance curve shows a gradual increase with increasing wavelength; (2) the average band reflectance is about 0.20; and (3) within a formation, the minimum natural variation is about 0.04, or about 20% of the mean band reflectance.

  17. Certainty grids for mobile robots

    NASA Technical Reports Server (NTRS)

    Moravec, H. P.

    1987-01-01

    A numerical representation of uncertain and incomplete sensor knowledge called Certainty Grids has been used successfully in several mobile robot control programs, and has proven itself to be a powerful and efficient unifying solution for sensor fusion, motion planning, landmark identification, and many other central problems. Researchers propose to build a software framework running on processors onboard the new Uranus mobile robot that will maintain a probabilistic, geometric map of the robot's surroundings as it moves. The certainty grid representation will allow this map to be incrementally updated in a uniform way from various sources including sonar, stereo vision, proximity and contact sensors. The approach can correctly model the fuzziness of each reading, while at the same time combining multiple measurements to produce sharper map features, and it can deal correctly with uncertainties in the robot's motion. The map will be used by planning programs to choose clear paths, identify locations (by correlating maps), identify well-known and insufficiently sensed terrain, and perhaps identify objects by shape. The certainty grid representation can be extended in the same dimension and used to detect and track moving objects.

  18. Passive Infrared (PIR)-Based Indoor Position Tracking for Smart Homes Using Accessibility Maps and A-Star Algorithm.

    PubMed

    Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua

    2018-01-24

    Indoor occupants' positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans' position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization.

  19. Passive Infrared (PIR)-Based Indoor Position Tracking for Smart Homes Using Accessibility Maps and A-Star Algorithm

    PubMed Central

    Yang, Dan; Xu, Bin; Rao, Kaiyou; Sheng, Weihua

    2018-01-01

    Indoor occupants’ positions are significant for smart home service systems, which usually consist of robot service(s), appliance control and other intelligent applications. In this paper, an innovative localization method is proposed for tracking humans’ position in indoor environments based on passive infrared (PIR) sensors using an accessibility map and an A-star algorithm, aiming at providing intelligent services. First the accessibility map reflecting the visiting habits of the occupants is established through the integral training with indoor environments and other prior knowledge. Then the PIR sensors, which placement depends on the training results in the accessibility map, get the rough location information. For more precise positioning, the A-start algorithm is used to refine the localization, fused with the accessibility map and the PIR sensor data. Experiments were conducted in a mock apartment testbed. The ground truth data was obtained from an Opti-track system. The results demonstrate that the proposed method is able to track persons in a smart home environment and provide a solution for home robot localization. PMID:29364188

  20. Farm scale application of EMI and FDR sensors to measuring and mapping soil water content

    NASA Astrophysics Data System (ADS)

    Rallo, Giovanni; Provenzano, Giuseppe

    2017-04-01

    Soil water content (SWC) controls most water exchange processes within and between the soil-plants-atmosphere continuum and can therefore be considered as a practical variable for irrigation farmer choices. A better knowledge of spatial SWC patterns could improve farmer's awareness about critical crop water status conditions and enhance their capacity to characterize their behavior at the field or farm scale. However, accurate soil moisture measurement across spatial and temporal scales is still a challenging task and, specifically at intermediate spatial (0.1-100 ha) and temporal (minutes to days) scales, a data gap remains that limits our understanding over reliability of the SWC spatial measurements and its practical applicability in irrigation scheduling. In this work we compare the integrated EM38 (Geonics Ltd. Canada) response, collected at different sensor positions above ground to that obtained by integrating the depth profile of volumetric SWC measured with Diviner 2000 (Sentek) in conjunction with the depth response function of the EM38 when operated in both horizontal and vertical dipole configurations. On a 1.0-ha Olive grove site in Sicliy (Italy), 200 data points were collected before and after irrigation or precipitation events following a systematic sampling grid with focused measurements around the tree. Inside two different zone of the field, characterized from different soil physical properties, two Diviner 2000 access tube (1.2 m) were installed and used for the EM38 calibration. After calibration, the work aimed to propose the combined use of the FDR and EMI sensors to measuring and mapping root zone soil water content. We found strong correlations (R2 = 0.66) between Diviner 2000 SWC averaged to a depth of 1.2 m and ECa from an EM38 held in the vertical mode above the soil surface. The site-specific relationship between FDR-based SWC and ECa was linear for the purposes of estimating SWC over the explored range of ECa monitored at field levels. Volumetric SWC changes in the root zone were observed by differencing the maps, where differences in the observed ECa are primarily the result of changes in soil water status. As with the data showed in the research, more structured patterns occur after wetting event, indicating the presence of subsurface flow or root water uptake paths. A vision for the future at hydrological watershed scale is to combine EMI measurements with FDR-based sensor networks, the last with the scope to constrain calibration of the EMI measurements.

  1. The Performance of a Tight Ins/gnss/photogrammetric Integration Scheme for Land Based MMS Applications in Gnss Denied Environments

    NASA Astrophysics Data System (ADS)

    Chu, Chien-Hsun; Chiang, Kai-Wei

    2016-06-01

    The early development of mobile mapping system (MMS) was restricted to applications that permitted the determination of the elements of exterior orientation from existing ground control. Mobile mapping refers to a means of collecting geospatial data using mapping sensors that are mounted on a mobile platform. Research works concerning mobile mapping dates back to the late 1980s. This process is mainly driven by the need for highway infrastructure mapping and transportation corridor inventories. In the early nineties, advances in satellite and inertial technology made it possible to think about mobile mapping in a different way. Instead of using ground control points as references for orienting the images in space, the trajectory and attitude of the imager platform could now be determined directly. Cameras, along with navigation and positioning sensors are integrated and mounted on a land vehicle for mapping purposes. Objects of interest can be directly measured and mapped from images that have been georeferenced using navigation and positioning sensors. Direct georeferencing (DG) is the determination of time-variable position and orientation parameters for a mobile digital imager. The most common technologies used for this purpose today are satellite positioning using the Global Navigation Satellite System (GNSS) and inertial navigation using an Inertial Measuring Unit (IMU). Although either technology used along could in principle determine both position and orientation, they are usually integrated in such a way that the IMU is the main orientation sensor, while the GNSS receiver is the main position sensor. However, GNSS signals are obstructed due to limited number of visible satellites in GNSS denied environments such as urban canyon, foliage, tunnel and indoor that cause the GNSS gap or interfered by reflected signals that cause abnormal measurement residuals thus deteriorates the positioning accuracy in GNSS denied environments. This study aims at developing a novel method that uses ground control points to maintain the positioning accuracy of the MMS in GNSS denied environments. At last, this study analyses the performance of proposed method using about 20 check-points through DG process.

  2. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate

    PubMed Central

    Hay, S. I.; Lennon, J. J.

    2012-01-01

    Summary This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration’s (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme’s (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy. PMID:10203175

  3. Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate.

    PubMed

    Hay, S I; Lennon, J J

    1999-01-01

    This paper presents the results of an investigation into the utility of remote sensing (RS) using meteorological satellites sensors and spatial interpolation (SI) of data from meteorological stations, for the prediction of spatial variation in monthly climate across continental Africa in 1990. Information from the Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic and Atmospheric Administration's (NOAA) polar-orbiting meteorological satellites was used to estimate land surface temperature (LST) and atmospheric moisture. Cold cloud duration (CCD) data derived from the High Resolution Radiometer (HRR) on-board the European Meteorological Satellite programme's (EUMETSAT) Meteosat satellite series were also used as a RS proxy measurement of rainfall. Temperature, atmospheric moisture and rainfall surfaces were independently derived from SI of measurements from the World Meteorological Organization (WMO) member stations of Africa. These meteorological station data were then used to test the accuracy of each methodology, so that the appropriateness of the two techniques for epidemiological research could be compared. SI was a more accurate predictor of temperature, whereas RS provided a better surrogate for rainfall; both were equally accurate at predicting atmospheric moisture. The implications of these results for mapping short and long-term climate change and hence their potential for the study and control of disease vectors are considered. Taking into account logistic and analytical problems, there were no clear conclusions regarding the optimality of either technique, but there was considerable potential for synergy.

  4. Fixed-Wing Micro Aerial Vehicle for Accurate Corridor Mapping

    NASA Astrophysics Data System (ADS)

    Rehak, M.; Skaloud, J.

    2015-08-01

    In this study we present a Micro Aerial Vehicle (MAV) equipped with precise position and attitude sensors that together with a pre-calibrated camera enables accurate corridor mapping. The design of the platform is based on widely available model components to which we integrate an open-source autopilot, customized mass-market camera and navigation sensors. We adapt the concepts of system calibration from larger mapping platforms to MAV and evaluate them practically for their achievable accuracy. We present case studies for accurate mapping without ground control points: first for a block configuration, later for a narrow corridor. We evaluate the mapping accuracy with respect to checkpoints and digital terrain model. We show that while it is possible to achieve pixel (3-5 cm) mapping accuracy in both cases, precise aerial position control is sufficient for block configuration, the precise position and attitude control is required for corridor mapping.

  5. Simulating optoelectronic systems for remote sensing with SENSOR

    NASA Astrophysics Data System (ADS)

    Boerner, Anko

    2003-04-01

    The consistent end-to-end simulation of airborne and spaceborne remote sensing systems is an important task and sometimes the only way for the adaptation and optimization of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software ENvironment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. It allows the simulation of a wide range of optoelectronic systems for remote sensing. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. Part three consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimization requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and examples of its use are given. The verification of SENSOR is demonstrated.

  6. Electrospray-printed nanostructured graphene oxide gas sensors.

    PubMed

    Taylor, Anthony P; Velásquez-García, Luis F

    2015-12-18

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors' response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ∼5 × 10(-4) T) at ∼1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  7. A FPGA-based Cluster Finder for CMOS Monolithic Active Pixel Sensors of the MIMOSA-26 Family

    NASA Astrophysics Data System (ADS)

    Li, Qiyan; Amar-Youcef, S.; Doering, D.; Deveaux, M.; Fröhlich, I.; Koziel, M.; Krebs, E.; Linnik, B.; Michel, J.; Milanovic, B.; Müntz, C.; Stroth, J.; Tischler, T.

    2014-06-01

    CMOS Monolithic Active Pixel Sensors (MAPS) demonstrated excellent performances in the field of charged particle tracking. Among their strong points are an single point resolution few μm, a light material budget of 0.05% X0 in combination with a good radiation tolerance and high rate capability. Those features make the sensors a valuable technology for vertex detectors of various experiments in heavy ion and particle physics. To reduce the load on the event builders and future mass storage systems, we have developed algorithms suited for preprocessing and reducing the data streams generated by the MAPS. This real-time processing employs remaining free resources of the FPGAs of the readout controllers of the detector and complements the on-chip data reduction circuits of the MAPS.

  8. Monitoring the bending and twist of morphing structures

    NASA Astrophysics Data System (ADS)

    Smoker, J.; Baz, A.

    2008-03-01

    This paper presents the development of the theoretical basis for the design of sensor networks for determining the 2-dimensioal shape of morphing structures by monitoring simultaneously the bending and twist deflections. The proposed development is based on the non-linear theory of finite elements to extract the transverse linear and angular deflections of a plate-like structure. The sensors outputs are wirelessly transmitted to the command unit to simultaneously compute maps of the linear and angular deflections and maps of the strain distribution of the entire structure. The deflection and shape information are required to ascertain that the structure is properly deployed and that its surfaces are operating wrinkle-free. The strain map ensures that the structure is not loaded excessively to adversely affect its service life. The developed theoretical model is validated experimentally using a prototype of a variable cambered span morphing structure provided with a network of distributed sensors. The structure/sensor network system is tested under various static conditions to determine the response characteristics of the proposed sensor network as compared to other conventional sensor systems. The presented theoretical and experimental techniques can have a great impact on the safe deployment and effective operation of a wide variety of morphing and inflatable structures such as morphing aircraft, solar sails, inflatable wings, and large antennas.

  9. Sulfur dioxide estimations in the planetary boundary layer using dispersion models and satellite retrievals

    NASA Astrophysics Data System (ADS)

    Zarauz, Jorge V.

    The health and environmental conditions in the Central Andes city La Oroya, Peru, have been seriously damaged by the heavy metal mining activities in the region. The situation has been exacerbated by the complex topography, which prevents proper mixing and dissolution of particles and gases released into the atmosphere. Understanding how pollutants are dispersed in populated regions, especially in complex terrain, would help to create mitigation strategies. The present study uses CALPUFF and HYSPLIT dispersion/deposition models to estimate sulfur dioxide (SO2) dispersion from the main stack of the La Oroya metallurgical plant. Due to the lack of meteorological data in the area, the Weather Research and Forecasting model (WRF) is used with observational nudging for temperature, relative humidity, and wind fields of three surface meteorological stations specifically installed for the study. The pollutant dispersion models are sensitive to a precise estimation of the turbulent vertical transport of mass, energy and moisture in the low atmosphere; therefore, two planetary boundary layer (PBL) schemes are tested, the Mellor-Yamada-Janjic and Yonsei University models. The dispersion models are run and results compared with field measurements at La Oroya, and Huancayo. The observation-nudging and YSU scheme considerably improved the prognostic variables. CALPUFF and HYSPLIT models showed similar patterns; however, HYSPLIT overestimated SO2 concentrations for low PBLs. Moreover, recent enhancements on spectral, spatial and temporal resolution of atmospheric scanning sensors of chemical constituents from the space, have led to detecting trace gases of anthropogenic origin in the lower troposphere. This contribution also explores the SO2 level 2 dataset from Ozone Mapping Instrument (OMI), in conjunction with atmospheric optical depth and Angstrom coefficient data products, extracted from MODerate Resolution Imaging Spectroradiometer (MODIS) to estimate SO2 loads in the PBL for clear and turbid atmospheric conditions. A narrow temporal sampling (three days) with no clear atmospheres and best sensor viewing geometry are examined and compared with a pollutant dispersion and deposition model (CALPUFF) and field observations. The efficacy of the developed method is further examined incorporating synchronous wind vectors, and daily accumulated precipitation derived from Tropical Rainfall Measuring Mission (TRMM) data. The source and trajectories of SO2 concentrations are detected by satellite based observations, and the pollutant plume is correctly traced downwind. Then, the spatial patterns of SO2 loads are analyzed for clear atmospheres and optimal viewing conditions (for 55 samples found in 467 days) and compared with field measurements. A logarithmic model is found between in situ observations and OMI estimations. The correlation can be increased when Angstrom exponents are between 0.7 and 1 and a linear relationship obtained when very high SO2 loads are extracted. Results show that the spatio-temporal dynamics of SO2 as monitored from space is in agreement with both field measurements and CALPUFF, which takes into account topography and wind field patterns. The study concludes that anthropogenic pollutants, i.e., SO2, and its trajectory can be monitored from OMI sensor even for turbid sky conditions. Findings of the research have great potential in public health managements and predictions.

  10. Geologic remote sensing study of the Hayden pass-Orient Mine Area, Northern Sangre de Cristo Mountains, Colorado

    NASA Technical Reports Server (NTRS)

    Wychgram, D. C.

    1972-01-01

    Remote sensor data from a NASA Convair 990 radar flight and Mission 101 and 105 have been interpreted and evaluated. Based on interpretation of the remote sensor data, a geologic map has been prepared and compared with a second geologic map, prepared from interpretation of both remote sensor data and field data. Comparison of the two maps gives one indication of the usefulness and reliability of the remote sensor data. Color and color infrared photography provided the largest amount of valuable information. Multiband photography was of lesser value and side-looking radar imagery provided no new information that was not available on small scale photography. Thermal scanner imagery proved to be a very specialized remote sensing tool that should be applied to areas of low relief and sparse vegetation where geologic features produce known or suspected thermal contrast. Low sun angle photography may be a good alternative to side-looking radar imagery but must be flown with critical timing.

  11. Secure chaotic map based block cryptosystem with application to camera sensor networks.

    PubMed

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.

  12. Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks

    PubMed Central

    Guo, Xianfeng; Zhang, Jiashu; Khan, Muhammad Khurram; Alghathbar, Khaled

    2011-01-01

    Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network. PMID:22319371

  13. Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping.

    PubMed

    Wang, Xiandi; Zhang, Hanlu; Dong, Lin; Han, Xun; Du, Weiming; Zhai, Junyi; Pan, Caofeng; Wang, Zhong Lin

    2016-04-20

    A triboelectric sensor matrix (TESM) can accurately track and map 2D tactile sensing. A self-powered, high-resolution, pressure-sensitive, flexible and durable TESM with 16 × 16 pixels is fabricated for the fast detection of single-point and multi-point touching. Using cross-locating technology, a cross-type TESM with 32 × 20 pixels is developed for more rapid tactile mapping, which significantly reduces the addressing lines from m × n to m + n. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  15. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  16. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  17. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  18. 30 CFR 57.22301 - Atmospheric monitoring systems (I-A, II-A, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... when methane at any sensor reaches 0.5 percent or more, and when power to a sensor is interrupted... determined by MSHA to be intrinsically safe under 30 CFR part 18, when methane at any sensor reaches— (i) 1.0...

  19. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation

    PubMed Central

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B. Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth’s land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies’ scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized1. PMID:26601030

  20. Optical Passive Sensor Calibration for Satellite Remote Sensing and the Legacy of NOAA and NIST Cooperation.

    PubMed

    Datla, Raju; Weinreb, Michael; Rice, Joseph; Johnson, B Carol; Shirley, Eric; Cao, Changyong

    2014-01-01

    This paper traces the cooperative efforts of scientists at the National Oceanic and Atmospheric Administration (NOAA) and the National Institute of Standards and Technology (NIST) to improve the calibration of operational satellite sensors for remote sensing of the Earth's land, atmosphere and oceans. It gives a chronological perspective of the NOAA satellite program and the interactions between the two agencies' scientists to address pre-launch calibration and issues of sensor performance on orbit. The drive to improve accuracy of measurements has had a new impetus in recent years because of the need for improved weather prediction and climate monitoring. The highlights of this cooperation and strategies to achieve SI-traceability and improve accuracy for optical satellite sensor data are summarized.

  1. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.

    PubMed

    Marino, Jose; Wöger, Friedrich

    2014-02-01

    Solar multiconjugate adaptive optics systems rely on several wavefront sensors, which measure the incoming turbulent phase along several field directions to produce a tomographic reconstruction of the turbulent phase. In this paper, we explore an alternative wavefront sensing approach that attempts to directly measure the turbulent phase present at a particular height in the atmosphere: a layer-oriented cross-correlating Shack-Hartmann wavefront sensor (SHWFS). In an experiment at the Dunn Solar Telescope, we built a prototype layer-oriented cross-correlating SHWFS system conjugated to two separate atmospheric heights. We present the data obtained in the observations and complement these with ray-tracing computations to achieve a better understanding of the instrument's performance and limitations. The results obtained in this study strongly indicate that a layer-oriented cross-correlating SHWFS is not a practical design to measure the wavefront at a high layer in the atmosphere.

  2. Water Quality Monitoring for Lake Constance with a Physically Based Algorithm for MERIS Data.

    PubMed

    Odermatt, Daniel; Heege, Thomas; Nieke, Jens; Kneubühler, Mathias; Itten, Klaus

    2008-08-05

    A physically based algorithm is used for automatic processing of MERIS level 1B full resolution data. The algorithm is originally used with input variables for optimization with different sensors (i.e. channel recalibration and weighting), aquatic regions (i.e. specific inherent optical properties) or atmospheric conditions (i.e. aerosol models). For operational use, however, a lake-specific parameterization is required, representing an approximation of the spatio-temporal variation in atmospheric and hydrooptic conditions, and accounting for sensor properties. The algorithm performs atmospheric correction with a LUT for at-sensor radiance, and a downhill simplex inversion of chl-a, sm and y from subsurface irradiance reflectance. These outputs are enhanced by a selective filter, which makes use of the retrieval residuals. Regular chl-a sampling measurements by the Lake's protection authority coinciding with MERIS acquisitions were used for parameterization, training and validation.

  3. Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): Complete Flight Data Set

    NASA Technical Reports Server (NTRS)

    Cheatwood, F. McNeil; Bose, Deepak; Karlgaard, Christopher D.; Kuhl, Christopher A.; Santos, Jose A.; Wright, Michael J.

    2014-01-01

    The Mars Science Laboratory (MSL) entry vehicle (EV) successfully entered the Mars atmosphere and landed the Curiosity rover safely on the surface of the planet in Gale crater on August 6, 2012. MSL carried the MSL Entry, Descent, and Landing (EDL) Instrumentation (MEDLI). MEDLI delivered the first in-depth understanding of the Mars entry environments and the response of the entry vehicle to those environments. MEDLI was comprised of three major subsystems: the Mars Entry Atmospheric Data System (MEADS), the MEDLI Integrated Sensor Plugs (MISP), and the Sensor Support Electronics (SSE). Ultimately, the entire MEDLI sensor suite consisting of both MEADS and MISP provided measurements that were used for trajectory reconstruction and engineering validation of aerodynamic, atmospheric, and thermal protection system (TPS) models in addition to Earth-based systems testing procedures. This report contains in-depth hardware descriptions, performance evaluation, and data information of the three MEDLI subsystems.

  4. Use of Optical Oxygen Sensors in Non-Destructively Determining the Levels of Oxygen Present in Combined Vacuum and Modified Atmosphere Packaged Pre-Cooked Convenience-Style Foods and the Use of Ethanol Emitters to Extend Product Shelf-Life.

    PubMed

    Hempel, Andreas W; Papkovsky, Dmitri B; Kerry, Joseph P

    2013-11-18

    O₂ sensors were used to non-destructively monitor O₂ levels in commercially packed pre-cooked, convenience modified atmosphere packaging (MAP) foods. A substantial level of O₂ (>15%) was present in packs resulting in a shorter than expected shelf-life, where the primary spoilage mechanism was found to be mould. Various combinations of vacuum (0-0.6 MPa) and gas flush (0.02-0.03 MPa) (30% CO₂/70% N₂) settings were assessed as treatments that result in the desired shelf-life (28 days). This was achieved using the combined treatment of vacuum 0.35 MPa and gas flush 0.02 MPa which resulted in a reduction of 6%-9% O 2 in all three samples (battered sausages (BS), bacon slices (BA), and meat and potato pies (PP)). Reduced O₂ levels reflect the microbial quality of products, which has been successfully reduced. Duplicate samples of all product packs were produced using ethanol emitters (EE) to see if shelf-life could be further extended. Results showed a further improvement in shelf-life to 35 days. Sensory analysis showed that ethanol flavour and aroma was not perceived by panellists in two of the three products assessed. This study demonstrates how smart packaging technologies, both intelligent and active, can be used to assist in the modification of conventional packaging systems in order to enhance product quality and safety and through the extension of product shelf-life.

  5. Improvements and Extensions for Joint Polar Satellite System Algorithms

    NASA Astrophysics Data System (ADS)

    Grant, K. D.

    2016-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of the old POES system managed by NOAA. JPSS satellites carry sensors designed to collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is the Common Ground System (CGS), and provides command, control, and communications (C3), data processing and product delivery. CGS's data processing capability provides environmental data products (Sensor Data Records (SDRs) and Environmental Data Records (EDRs)) to the NOAA Satellite Operations Facility. The first satellite in the JPSS constellation, S-NPP, was launched in October 2011. The second satellite, JPSS-1, is scheduled for launch in January 2017. During a satellite's calibration and validation (Cal/Val) campaign, numerous algorithm updates occur. Changes identified during Cal/Val become available for implementation into the operational system for both S-NPP and JPSS-1. In addition, new capabilities, such as higher spectral and spatial resolution, will be exercised on JPSS-1. This paper will describe changes to current algorithms and products as a result of S-NPP Cal/Val and related initiatives for improved capabilities. Improvements include Cross Track Infrared Sounder high spectral processing, extended spectral and spatial ranges for Ozone Mapping and Profiler Suite ozone Total Column and Nadir Profiles, and updates to Vegetation Index, Snow Cover, Active Fires, Suspended Matter, and Ocean Color. Updates will include Sea Surface Temperature, Cloud Mask, Cloud Properties, and other improvements.

  6. Detecting subtle environmental change: a multi-temporal airborne imaging spectroscopy approach

    NASA Astrophysics Data System (ADS)

    Yule, Ian J.; Pullanagari, Reddy R.; Kereszturi, G.

    2016-10-01

    Airborne and satellite hyperspectral remote sensing is a key technology to observe finite change in ecosystems and environments. The role of such sensors will improve our ability to monitor and mitigate natural and agricultural environments on a much larger spatial scale than can be achieved using field measurements such as soil coring or proximal sensors to estimate the chemistry of vegetation. Hyperspectral sensors for commentarial and scientific activities are increasingly available and cost effective, providing a great opportunity to measure and detect changes in the environment and ecosystem. This can be used to extract critical information to develop more advanced management practices. In this research, we provide an overview of the data acquisition, processing and analysis of airborne, full-spectrum hyperspectral imagery from a small-scale aerial mapping project in hill-country farms in New Zealand, using an AISA Fenix sensor (Specim, Finland). The imagery has been radiometrically and atmospherically corrected, georectified and mosaicked. The hyperspectral data cube was then spectrally and spatially smoothed using Savitzky-Golay and median filter, respectively. The mosaicked imagery used to calculate bio-chemical properties of surface vegetation, such as pasture. Ground samples (n = 200) were collected a few days after the over-flight are used to develop a calibration model using partial least squares regression method. In-leaf nitrogen, potassium and phosphorous concentration were calculated using the reflectance values from the airborne hyperspectral imagery. In total, three surveys of an example property have been acquired that show changes in the pattern of availability of a major element in vegetation canopy, in this case nitrogen.

  7. Analysis of regional vegetation changes with medium and high resolution imagery

    NASA Astrophysics Data System (ADS)

    Marcello, J.; Eugenio, F.; Medina, A.

    2012-09-01

    The singular characteristics of the Canarian archipelago (Spain) and, in particular, of the Gran Canaria island have allowed the development of a unique biological richness. Almost half of its territory is protected to preserve the natural environment and, in consequence, the monitoring of vegetated regions plays an important role for regional administrations which aim to develop the corresponding policies for the conservation of such ecosystems. The Normalized Difference Vegetation Index (NDVI) is a common index applied for vegetation studies. It is important to emphasize that NDVI is sensor-dependent, and changes are affected by soil background, irradiance, solar position, atmospheric attenuation, season, hydric situation and climate of the area. So, a fixed threshold cannot be set, even for the same sensor or season, to properly segment vegetated areas. In this context, a robust methodology has been applied to ensure a reliable estimation of changes using the same sensor in multiple dates or different sensors. To that respect, a supervised procedure is presented consisting on the selection of different regions within each image to precisely map each cover with its associated NDVI values and, in consequence, obtain for each individual image the optimal threshold to properly segment vegetation without the need to perform the complex preprocessing required to estimate the ground reflectivity. On the other hand, fires are an important aspect of an ecosystem and their study, a fundamental task to perform a complete assessment of the environmental and economic damage. In our work we have also analyzed in detail the fire occurring during 2007 and precisely assessed the results.

  8. Millimeter-wave data acquisition for terrain mapping, obstacle detection, and dust penetrating capability testing

    NASA Astrophysics Data System (ADS)

    Schmerwitz, S.; Doehler, H.-U.; Ellis, K.; Jennings, S.

    2011-06-01

    The DLR project ALLFlight (Assisted Low Level Flight and Landing on Unprepared Landing Sites) is devoted to demonstrating and evaluating the characteristics of sensors for helicopter operations in degraded visual environments. Millimeter wave radar is one of the many sensors considered for use in brown-out. It delivers a lower angular resolution compared to other sensors, however it may provide the best dust penetration capabilities. In cooperation with the NRC, flight tests on a Bell 205 were conducted to gather sensor data from a 35 GHz pencil beam radar for terrain mapping, obstacle detection and dust penetration. In this paper preliminary results from the flight trials at NRC are presented and a description of the radars general capability is shown. Furthermore, insight is provided into the concept of multi-sensor fusion as attempted in the ALLFlight project.

  9. Navigation and Elctro-Optic Sensor Integration Technology for Fusion of Imagery and Digital Mapping Products

    DTIC Science & Technology

    1999-08-01

    Electro - Optic Sensor Integration Technology (NEOSIT) software application. The design is highly modular and based on COTS tools to facilitate integration with sensors, navigation and digital data sources already installed on different host

  10. Drag-Free Control and Drag Force Recovery of Small Satellites

    NASA Technical Reports Server (NTRS)

    Nguyen, Anh N.; Conklin, John W.

    2017-01-01

    Drag-free satellites provide autonomous precision orbit determination, accurately map the static and time varying components of Earth's mass distribution, aid in our understanding of the fundamental force of gravity, and will ultimately open up a new window to our universe through the detection and observation of gravitational waves. At the heart of this technology is a gravitational reference sensor, which (a) contains and shields a free-floating proof mass from all non-gravitational forces, and (b) precisely measures the position of the test mass inside the sensor. Thus, both test mass and spacecraft follow a pure geodesic in spacetime. By tracking the position of a low Earth orbiting drag-free satellite we can directly determine the detailed shape of geodesics and through analysis, the higher order harmonics of the Earths geopotential. This paper explores two different drag-free control systems on small satellites. The first drag-free control system is a continuously compensated single thruster 3-unit CubeSat with a suspension-free spherical proof-mass. A feedback control system commands the thruster and Attitude and Determination Control System to fly the tender spacecraft with respect to the test mass. The spheres position is sensed with a LED-based differential optical shadow sensor, its electric charge controlled by photoemission using UV LEDs, and the spacecraft position is maintained with respect to the sphere using an ion electrospray propulsion system. This configuration is the most fuel-efficient drag-free system possible today. The second drag-free control system is an electro-statically suspended cubical proof-mass that is operated with a low duty cycle, limiting suspension force noise over brief, known time intervals on a small GRACE-II -like satellite. The readout is performed using a laser interferometer, which is immune to the dynamic range limitations of voltage references. This system eliminates the need for a thruster, enabling drag-free control systems for passive satellites. In both cases, the test mass position, GPS tracking data, and commanded actuation, either thrust or suspension system, can be analyzed to estimate the 3-axis drag forces acting on the satellite. The data produces the most precise maps of upper atmospheric drag forces and with additional information, detailed models that describe the dynamics of the upper atmosphere and its impact on all satellites that orbit the Earth. This paper highlights the history, applications, design, laboratory technology development and highly detailed simulation results of each control system.

  11. Japanese contributions to MAP

    NASA Technical Reports Server (NTRS)

    Kato, S.

    1989-01-01

    Japan contributed much to MAP in many branches. The MU (middle and upper atmosphere) radar, in operation during the MAP period, produced various novel possibilities in observations of middle atmosphere dynamics; possibilities which were fairly well realized. Gravity wave saturation and its spectrum in the mesosphere were observed successfully. Campaign observations by radars between Kyoto and Adelaide were especially significant in tidal and planetary wave observations. In Antarctica, middle atmosphere observation of the dramatic behavior of aerosols in winter is well elucidated together with the ozone hole. Theoretical and numerical studies have been progressing actively since a time much earlier than MAP. Now it is pointed out that gravity waves play an important role in producing the weak wind region in the stratosphere as well as the mesosphere.

  12. Linking Fuel Inventories With Atmospheric Data for Assessment of Fire Danger

    Treesearch

    Christopher W. Woodall; Joseph Charney; Greg Liknes; Brian Potter

    2006-01-01

    Combining forest fuel maps and real-time atmospheric data may enable creation of more dynamic and comprehensive fire danger assessments. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the U.S. Department of Agriculture Forest Service, with real-time atmospheric data to create a more dynamic index...

  13. What's the fire danger now? Linking fuel inventories with atmospheric data

    Treesearch

    Christopher W. Woodall; Joseph J. Charney; Greg C. Liknes; Brian E. Potter

    2005-01-01

    The combination of forest fuel maps with real-time atmospheric data may enable the creation of more dynamic and comprehensive assessments of fire danger. The goal of this study was to combine fuel maps, based on data from the Forest Inventory and Analysis (FIA) program of the USDA Forest Service, with real-time atmospheric data for the creation of a more dynamic index...

  14. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.

    PubMed

    Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A

    2012-12-17

    A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.

  15. 75 FR 71371 - Airworthiness Directives; Thielert Aircraft Engines GmbH Models TAE 125-01, TAE 125-02-99, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... permeability is not always recognized as fault by the FADEC. The MAP value measured by the sensor may be lower... channel B manifold air pressure (MAP) sensor hose permeability is not always recognized as fault by the... between the national Government and the States, or on the distribution of power and responsibilities among...

  16. ARC-1990-A91-2001

    NASA Image and Video Library

    1990-02-19

    Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.

  17. ARC-1990-A91-2002

    NASA Image and Video Library

    1990-02-10

    Range : 60,000 miles These images are two versions of a near-infrafed map of lower-level clouds on the night side of Venus, obtained by the Near Infrared Mapping Spectrometer aboard the Galileo spacecraft.The map shows the turbulent, cloudy middle atmosphere some 30-33 miles above the surface, 6-10 miles below the visible cloudtops. The image to the left shows the radiant heat from the lower atmosphere (about 400 degrees F) ahining through the sulfuric acid clouds, which appear as much as 10 times darker than the bright gaps between clouds. This cloud layer is at about 170 degrees F, at a pressure about 1/2 Earth's atmospheric pressure. About 2/3 of the dark hemisphere is visible, centered on longitude 350 West, with bright slsivers of daylit high clouds visible at top and bottom left. The right image, a modified negative, represents what scientists believe would be the visual appearance of this mid-level cloud deck in daylight, with the clouds reflecting sunlight instead of clocking out infrared from the hot planet and lower atmosphere. Near the equator, the clouds appear fluffy and clocky; farther north, they are stretched out into East-West filaments by winds estimated at more than 150 mph, while the poles are capped by thick clouds at this altitude. The Near Infrared Mapping Spectrometer (NIMS) on the Galileo is a combined mapping (imaging) and spectral instrument. It can sense 408 contiguous wavelengths from 0.7 microns (deep red) to 5.2 microns, and can construct a map or image by mechanical scanning. It can spectroscopic-ally analyze atmospheres and surfaces and construct thermal and chemical maps.

  18. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in... methane concentration at any sensor reaches the alarm level as specified in § 75.351(i). These signals...

  19. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in... methane concentration at any sensor reaches the alarm level as specified in § 75.351(i). These signals...

  20. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in... methane concentration at any sensor reaches the alarm level as specified in § 75.351(i). These signals...

  1. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and type of AMS sensor at each location, and the intended air flow direction at these locations. This... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in...

  2. 30 CFR 75.351 - Atmospheric monitoring systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and type of AMS sensor at each location, and the intended air flow direction at these locations. This... methane concentration at any sensor reaches the alert level as specified in § 75.351(i). These signals... carbon monoxide, smoke, or methane concentration at any sensor reaches the alarm level as specified in...

  3. Global Atmosphere Watch Workshop on Measurement-Model ...

    EPA Pesticide Factsheets

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  4. Application of Commercial Non-Dispersive Infrared Spectroscopy Sensors for Sub-Ambient Carbon Dioxide Detection

    NASA Technical Reports Server (NTRS)

    Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig

    2012-01-01

    Monitoring carbon dioxide (CO2) concentration within a spacecraft or spacesuit is critically important to ensuring the safety of the crew. Carbon dioxide uniquely absorbs light at wavelengths of 3.95 micrometers and 4.26 micrometers. As a result, non-dispersive infrared (NDIR) spectroscopy can be employed as a reliable and inexpensive method for the quantification of CO2 within the atmosphere. A multitude of commercial off-the-shelf (COTS) NDIR sensors exist for CO2 quantification. The COTS sensors provide reasonable accuracy as long as the measurements are attained under conditions close to the calibration conditions of the sensor (typically 21.1 C (70.0 F) and 1 atmosphere). However, as pressure deviates from atmospheric to the pressures associated with a spacecraft (8.0{10.2 pounds per square inch absolute (psia)) or spacesuit (4.1{8.0 psia), the error in the measurement grows increasingly large. In addition to pressure and temperature dependencies, the infrared transmissivity through a volume of gas also depends on the composition of the gas. As the composition is not known a priori, accurate sub-ambient detection must rely on iterative sensor compensation techniques. This manuscript describes the development of recursive compensation algorithms for sub-ambient detection of CO2 with COTS NDIR sensors. In addition, the source of the exponential loss in accuracy is developed theoretically. The basis of the loss can be explained through thermal, Doppler, and Lorentz broadening effects that arise as a result of the temperature, pressure, and composition of the gas mixture under analysis. This manuscript provides an approach to employing COTS sensors at sub-ambient conditions and may also lend insight into designing future NDIR sensors for aerospace application.

  5. The state of technology in electromagnetic (RF) sensors (for lightning detection)

    NASA Technical Reports Server (NTRS)

    Shumpert, T. H.; Honnell, M. A.

    1979-01-01

    A brief overview of the radio-frequency sensors which were applied to the detection, isolation, and/or identification of the transient electromagnetic energy (sferics) radiated from one or more lightning discharges in the atmosphere is presented. Radio frequency (RF) characteristics of lightning discharges, general RF sensor (antenna) characteristics, sensors and systems previously used for sferic detection, electromagnetic pulse sensors are discussed. References containing extensive bibliographies concerning lightning are presented.

  6. Hybrid optical acoustic seafloor mapping

    NASA Astrophysics Data System (ADS)

    Inglis, Gabrielle

    The oceanographic research and industrial communities have a persistent demand for detailed three dimensional sea floor maps which convey both shape and texture. Such data products are used for archeology, geology, ship inspection, biology, and habitat classification. There are a variety of sensing modalities and processing techniques available to produce these maps and each have their own potential benefits and related challenges. Multibeam sonar and stereo vision are such two sensors with complementary strengths making them ideally suited for data fusion. Data fusion approaches however, have seen only limited application to underwater mapping and there are no established methods for creating hybrid, 3D reconstructions from two underwater sensing modalities. This thesis develops a processing pipeline to synthesize hybrid maps from multi-modal survey data. It is helpful to think of this processing pipeline as having two distinct phases: Navigation Refinement and Map Construction. This thesis extends existing work in underwater navigation refinement by incorporating methods which increase measurement consistency between both multibeam and camera. The result is a self consistent 3D point cloud comprised of camera and multibeam measurements. In map construction phase, a subset of the multi-modal point cloud retaining the best characteristics of each sensor is selected to be part of the final map. To quantify the desired traits of a map several characteristics of a useful map are distilled into specific criteria. The different ways that hybrid maps can address these criteria provides justification for producing them as an alternative to current methodologies. The processing pipeline implements multi-modal data fusion and outlier rejection with emphasis on different aspects of map fidelity. The resulting point cloud is evaluated in terms of how well it addresses the map criteria. The final hybrid maps retain the strengths of both sensors and show significant improvement over the single modality maps and naively assembled multi-modal maps.

  7. Mobile Wireless Sensor Networks for Advanced Soil Sensing and Ecosystem Monitoring

    NASA Astrophysics Data System (ADS)

    Mollenhauer, Hannes; Schima, Robert; Remmler, Paul; Mollenhauer, Olaf; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter; Bumberger, Jan

    2015-04-01

    For an adequate characterization of ecosystems it is necessary to detect individual processes with suitable monitoring strategies and methods. Due to the natural complexity of all environmental compartments, single point or temporally and spatially fixed measurements are mostly insufficient for an adequate representation. The application of mobile wireless sensor networks for soil and atmosphere sensing offers significant benefits, due to the simple adjustment of the sensor distribution, the sensor types and the sample rate (e.g. by using optimization approaches or event triggering modes) to the local test conditions. This can be essential for the monitoring of heterogeneous and dynamic environmental systems and processes. One significant advantage in the application of mobile ad-hoc wireless sensor networks is their self-organizing behavior. Thus, the network autonomously initializes and optimizes itself. Due to the localization via satellite a major reduction in installation and operation costs and time is generated. In addition, single point measurements with a sensor are significantly improved by measuring at several optimized points continuously. Since performing analog and digital signal processing and computation in the sensor nodes close to the sensors a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of nodes. Furthermore, the miniaturization of the nodes and energy harvesting are current topics under investigation. First results of field measurements are given to present the potentials and limitations of this application in environmental science. In particular, collected in-situ data with numerous specific soil and atmosphere parameters per sensor node (more than 25) recorded over several days illustrates the high performance of this system for advanced soil sensing and soil-atmosphere interaction monitoring. Moreover, investigations of biotic and abiotic process interactions and optimization of sensor positioning for measuring soil moisture are scopes of this work and initial results of these issues will be presented.

  8. Microwave remote sensing: Active and passive. Volume 1 - Microwave remote sensing fundamentals and radiometry

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Moore, R. K.; Fung, A. K.

    1981-01-01

    The three components of microwave remote sensing (sensor-scene interaction, sensor design, and measurement techniques), and the applications to geoscience are examined. The history of active and passive microwave sensing is reviewed, along with fundamental principles of electromagnetic wave propagation, antennas, and microwave interaction with atmospheric constituents. Radiometric concepts are reviewed, particularly for measurement problems for atmospheric and terrestrial sources of natural radiation. Particular attention is given to the emission by atmospheric gases, clouds, and rain as described by the radiative transfer function. Finally, the operation and performance characteristics of radiometer receivers are discussed, particularly for measurement precision, calibration techniques, and imaging considerations.

  9. A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI)

    NASA Astrophysics Data System (ADS)

    Fulchignoni, M.; Aboudan, A.; Angrilli, F.; Antonello, M.; Bastianello, S.; Bettanini, C.; Bianchini, G.; Colombatti, G.; Ferri, F.; Flamini, E.; Gaborit, V.; Ghafoor, N.; Hathi, B.; Harri, A.-M.; Lehto, A.; Lion Stoppato, P. F.; Patel, M. R.; Zarnecki, J. C.

    2004-08-01

    We developed a series of balloon experiments parachuting a 1:1 scale mock-up of the Huygens probe from an altitude just over 30 km to simulate at planetary scale the final part of the descent of the probe through Titan's lower atmosphere. The terrestrial atmosphere represents a natural laboratory where most of the physical parameters meet quite well the bulk condition of Titan's environment, in terms of atmosphere composition, pressure and mean density ranges, though the temperature range will be far higher. The probe mock-up consists of spares of the HASI sensor packages, housekeeping sensors and other dedicated sensors, and also incorporates the Huygens Surface Science Package (SSP) Tilt sensor and a modified version of the Beagle 2 UV sensor, for a total of 77 acquired sensor channels, sampled during ascent, drift and descent phase. An integrated data acquisition and instrument control system, simulating the HASI data-processing unit (DPU), has been developed, based on PC architecture and soft-real-time application. Sensor channels were sampled at the nominal HASI data rates, with a maximum rate of 1 kHz. Software has been developed for data acquisition, onboard storage and telemetry transmission satisfying all requests for real-time monitoring, diagnostic and redundancy. The mock-up of the Huygens probe mission was successfully launched for the second time (first launch in summer 2001, see Gaborit et al., 2001) with a stratospheric balloon from the Italian Space Agency Base "Luigi Broglio" in Sicily on May 30, 2002, and recovered with all sensors still operational. The probe was lifted to an altitude of 32 km and released to perform a parachuted descent lasting 53 min, to simulate the Huygens mission at Titan. Preliminary aerodynamic study of the probe has focused upon the achievement of a descent velocity profile reproducing the expected profile of Huygens probe descent into Titan. We present here the results of this experiment discussing their relevance in the analysis of the data which will be obtained during the Huygens mission at Titan.

  10. BAID: The Barrow Area Information Database - an interactive web mapping portal and cyberinfrastructure for scientific activities in the vicinity of Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Cody, R. P.; Kassin, A.; Gaylord, A. G.; Tweedie, C. E.

    2013-12-01

    In 2013, the Barrow Area Information Database (BAID, www.baid.utep.edu) project resumed field operations in Barrow, AK. The Barrow area of northern Alaska is one of the most intensely researched locations in the Arctic. BAID is a cyberinfrastructure (CI) that details much of the historic and extant research undertaken within in the Barrow region in a suite of interactive web-based mapping and information portals (geobrowsers). The BAID user community and target audience for BAID is diverse and includes research scientists, science logisticians, land managers, educators, students, and the general public. BAID contains information on more than 11,000 Barrow area research sites that extend back to the 1940's and more than 640 remote sensing images and geospatial datasets. In a web-based setting, users can zoom, pan, query, measure distance, and save or print maps and query results. Data are described with metadata that meet Federal Geographic Data Committee standards and are archived at the University Corporation for Atmospheric Research Earth Observing Laboratory (EOL) where non-proprietary BAID data can be freely downloaded. Highlights for the 2013 season include the addition of more than 2000 additional research sites, providing differential global position system (dGPS) support to visiting scientists, surveying over 80 miles of coastline to document rates of erosion, training of local GIS personal, deployment of a wireless sensor network, and substantial upgrades to the BAID website and web mapping applications.

  11. Hyperheat: a thermal signature model for super- and hypersonic missiles

    NASA Astrophysics Data System (ADS)

    van Binsbergen, S. A.; van Zelderen, B.; Veraar, R. G.; Bouquet, F.; Halswijk, W. H. C.; Schleijpen, H. M. A.

    2017-10-01

    In performance prediction of IR sensor systems for missile detection, apart from the sensor specifications, target signatures are essential variables. Very often, for velocities up to Mach 2-2.5, a simple model based on the aerodynamic heating of a perfect gas was used to calculate the temperatures of missile targets. This typically results in an overestimate of the target temperature with correspondingly large infrared signatures and detection ranges. Especially for even higher velocities, this approach is no longer accurate. Alternatives like CFD calculations typically require more complex sets of inputs and significantly more computing power. The MATLAB code Hyperheat was developed to calculate the time-resolved skin temperature of axisymmetric high speed missiles during flight, taking into account the behaviour of non-perfect gas and proper heat transfer to the missile surface. Allowing for variations in parameters like missile shape, altitude, atmospheric profile, angle of attack, flight duration and super- and hypersonic velocities up to Mach 30 enables more accurate calculations of the actual target temperature. The model calculates a map of the skin temperature of the missile, which is updated over the flight time of the missile. The sets of skin temperature maps are calculated within minutes, even for >100 km trajectories, and can be easily converted in thermal infrared signatures for further processing. This paper discusses the approach taken in Hyperheat. Then, the thermal signature of a set of typical missile threats is calculated using both the simple aerodynamic heating model and the Hyperheat code. The respective infrared signatures are compared, as well as the difference in the corresponding calculated detection ranges.

  12. Remote Sensing Sensors and Applications in Environmental Resources Mapping and Modelling

    PubMed Central

    Melesse, Assefa M.; Weng, Qihao; S.Thenkabail, Prasad; Senay, Gabriel B.

    2007-01-01

    The history of remote sensing and development of different sensors for environmental and natural resources mapping and data acquisition is reviewed and reported. Application examples in urban studies, hydrological modeling such as land-cover and floodplain mapping, fractional vegetation cover and impervious surface area mapping, surface energy flux and micro-topography correlation studies is discussed. The review also discusses the use of remotely sensed-based rainfall and potential evapotranspiration for estimating crop water requirement satisfaction index and hence provides early warning information for growers. The review is not an exhaustive application of the remote sensing techniques rather a summary of some important applications in environmental studies and modeling. PMID:28903290

  13. Atmospheric Correction of High-Spatial-Resolution Commercial Satellite Imagery Products Using MODIS Atmospheric Products

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert E.; Vaughan, Ronand; Russell, Jeff; Prados, Don; Stanley, Thomas

    2005-01-01

    Remotely sensed ground reflectance is the foundation of any interoperability or change detection technique. Satellite intercomparisons and accurate vegetation indices, such as the Normalized Difference Vegetation Index (NDVI), require the generation of accurate reflectance maps (NDVI is used to describe or infer a wide variety of biophysical parameters and is defined in terms of near-infrared (NIR) and red band reflectances). Accurate reflectance-map generation from satellite imagery relies on the removal of solar and satellite geometry and of atmospheric effects and is generally referred to as atmospheric correction. Atmospheric correction of remotely sensed imagery to ground reflectance has been widely applied to a few systems only. The ability to obtain atmospherically corrected imagery and products from various satellites is essential to enable widescale use of remotely sensed, multitemporal imagery for a variety of applications. An atmospheric correction approach derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) that can be applied to high-spatial-resolution satellite imagery under many conditions was evaluated to demonstrate a reliable, effective reflectance map generation method. Additional information is included in the original extended abstract.

  14. Changes in the microbiota of lamb packaged in a vacuum and in modified atmospheres during chilled storage analysed by high-throughput sequencing.

    PubMed

    Wang, Taojun; Zhao, Liang; Sun, Yanan; Ren, Fazheng; Chen, Shanbin; Zhang, Hao; Guo, Huiyuan

    2016-11-01

    Changes in the microbiota of lamb were investigated under vacuum packaging (VP) and under 20% CO2/80% N2 (LC), 60% CO2/40% N2 (MC), and 100% CO2 (HC) modified atmosphere packaging (MAP) during chilled storage. Viable counts were monitored, and the total microbial communities were assessed by high-throughput sequencing. The starting community had the highest microbial diversity, after which Lactococcus and Carnobacterium spp. outcompeted during the 28-day storage. The relative abundances of Brochothrix spp. in the LC atmosphere were much higher than those of the other groups on days 7 and 28. The bacterial inhibiting effect of the MAP environments on microbial growth was positively correlated with the CO2 concentration. The HC atmosphere inhibited microbial growth and delayed changes in the microbial community composition, extending the lamb's shelf life by approximately 7days compared with the VP atmosphere. Lamb packaged in the VP atmosphere had a more desirable colour but a higher weight loss than lamb packaged in the MAP atmospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Accuracy Assessment of Professional Grade Unmanned Systems for High Precision Airborne Mapping

    NASA Astrophysics Data System (ADS)

    Mostafa, M. M. R.

    2017-08-01

    Recently, sophisticated multi-sensor systems have been implemented on-board modern Unmanned Aerial Systems. This allows for producing a variety of mapping products for different mapping applications. The resulting accuracies match the traditional well engineered manned systems. This paper presents the results of a geometric accuracy assessment project for unmanned systems equipped with multi-sensor systems for direct georeferencing purposes. There are a number of parameters that either individually or collectively affect the quality and accuracy of a final airborne mapping product. This paper focuses on identifying and explaining these parameters and their mutual interaction and correlation. Accuracy Assessment of the final ground object positioning accuracy is presented through real-world 8 flight missions that were flown in Quebec, Canada. The achievable precision of map production is addressed in some detail.

  16. Crosscutting Airborne Remote Sensing Technologies for Oil and Gas and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Aubrey, A. D.; Frankenberg, C.; Green, R. O.; Eastwood, M. L.; Thompson, D. R.; Thorpe, A. K.

    2015-01-01

    Airborne imaging spectroscopy has evolved dramatically since the 1980s as a robust remote sensing technique used to generate 2-dimensional maps of surface properties over large spatial areas. Traditional applications for passive airborne imaging spectroscopy include interrogation of surface composition, such as mapping of vegetation diversity and surface geological composition. Two recent applications are particularly relevant to the needs of both the oil and gas as well as government sectors: quantification of surficial hydrocarbon thickness in aquatic environments and mapping atmospheric greenhouse gas components. These techniques provide valuable capabilities for petroleum seepage in addition to detection and quantification of fugitive emissions. New empirical data that provides insight into the source strength of anthropogenic methane will be reviewed, with particular emphasis on the evolving constraints enabled by new methane remote sensing techniques. Contemporary studies attribute high-strength point sources as significantly contributing to the national methane inventory and underscore the need for high performance remote sensing technologies that provide quantitative leak detection. Imaging sensors that map spatial distributions of methane anomalies provide effective techniques to detect, localize, and quantify fugitive leaks. Airborne remote sensing instruments provide the unique combination of high spatial resolution (<1 m) and large coverage required to directly attribute methane emissions to individual emission sources. This capability cannot currently be achieved using spaceborne sensors. In this study, results from recent NASA remote sensing field experiments focused on point-source leak detection, will be highlighted. This includes existing quantitative capabilities for oil and methane using state-of-the-art airborne remote sensing instruments. While these capabilities are of interest to NASA for assessment of environmental impact and global climate change, industry similarly seeks to detect and localize leaks of both oil and methane across operating fields. In some cases, higher sensitivities desired for upstream and downstream applications can only be provided by new airborne remote sensing instruments tailored specifically for a given application. There exists a unique opportunity for alignment of efforts between commercial and government sectors to advance the next generation of instruments to provide more sensitive leak detection capabilities, including those for quantitative source strength determination.

  17. The recondite intricacies of Zeeman Doppler mapping

    NASA Astrophysics Data System (ADS)

    Stift, M. J.; Leone, F.; Cowley, C. R.

    2012-02-01

    We present a detailed analysis of the reliability of abundance and magnetic maps of Ap stars obtained by Zeeman Doppler mapping (ZDM). It is shown how they can be adversely affected by the assumption of a mean stellar atmosphere instead of appropriate 'local' atmospheres corresponding to the actual abundances in a given region. The essence of the difficulties was already shown by Chandrasekhar's picket-fence model. The results obtained with a suite of Stokes codes written in the ADA programming language and based on modern line-blanketed atmospheres are described in detail. We demonstrate that the high metallicity values claimed to have been found in chemically inhomogeneous (horizontally and vertically) Ap star atmospheres would lead to local temperature structures, continuum and line intensities, and line shapes that differ significantly from those predicted by a mean stellar atmosphere. Unfortunately, past applications of ZDM have consistently overlooked the intricate aspects of metallicity with their all-pervading effects. The erroneous assumption of a mean atmosphere for a spotted star can lead to phase-dependent errors of uncomfortably large proportions at varying wavelengths both in the Stokes I and V profiles, making precise mapping of abundances and magnetic field vectors largely impossible. The relation between core and wings of the Hβ line changes, too, with possible repercussions on the determination of gravity and effective temperature. Finally, a ZDM analysis of the synthetic Stokes spectra of a spotted star reveals the disturbing differences between the respective abundance maps based on a mean atmosphere on the one hand, and on appropriate 'local' atmospheres on the other. We then discuss what this all means for published ZDM results. Our discussion makes it clear that realistic local atmospheres must be used, especially if credible small-scale structures are to be obtained. Recondite: dealing with very profound, difficult or abstruse subject matter; requiring special knowledge to be understood ().

  18. Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS.

    PubMed

    Höll, Linda; Behr, Jürgen; Vogel, Rudi F

    2016-12-01

    Modified atmosphere packaging (MAP) is widely used in food industry to extend the microbiological shelf-life of meat. Typically, poultry meat has been packaged in a CO2/N2 atmosphere (with residual low O2). Recently, some producers use high O2 MAP for poultry meat to empirically reach comparable shelf lifes. In this work, we compared spoilage microbiota of skinless chicken breast in high (80% O2, 20% CO2) and low O2 MAP (65% N2 and 35% CO2). Two batches of meat were incubated in each atmosphere for 14 days at 4 °C and 10 °C. Atmospheric composition of each pack and colony forming units (25 °C, 48 h, BHI agar) of poultry samples were determined at seven timepoints. Identification of spoilage organisms was carried out by MALDI-TOF MS. Brochothrix thermosphacta, Carnobacterium sp. and Pseudomonas sp. were the main organisms found after eight days at 4 °C and 10 °C in high O2 MAP. In low O2 MAP, the main spoilage microbiota was represented by species Hafnia alvei at 10 °C, and genera Carnobacterium sp., Serratia sp., and Yersinia sp. at 4 °C. High O2 MAP is suggested as preferential gas because were less detrimental and pathogens like Yersinia were not observed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Comparison of diverse methods for the correction of atmospheric effects on LANDSAT and SKYLAB images. [radiometric correction in Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camara, G.; Dias, L. A. V.; Mascarenhas, N. D. D.; Desouza, R. C. M.; Pereira, A. E. C.

    1982-01-01

    Earth's atmosphere reduces a sensors ability in currently discriminating targets. Using radiometric correction to reduce the atmospheric effects may improve considerably the performance of an automatic image interpreter. Several methods for radiometric correction from the open literature are compared leading to the development of an atmospheric correction system.

  20. Middle Atmosphere Program. Handbook for MAP, Volume 7

    NASA Technical Reports Server (NTRS)

    Sechrist, C. F., Jr. (Editor)

    1982-01-01

    Completed and proposed research relating to the Middle Atmosphere Program is discussed. Emphasis is given to the winters in the Northern Hemisphere, the equatorial atmosphere, meteor observation, solar irradiance, atmospheric temperature, geopotential height, atmospheric circulation, and electrodynamics.

  1. Integrated Georeferencing of Stereo Image Sequences Captured with a Stereovision Mobile Mapping System - Approaches and Practical Results

    NASA Astrophysics Data System (ADS)

    Eugster, H.; Huber, F.; Nebiker, S.; Gisi, A.

    2012-07-01

    Stereovision based mobile mapping systems enable the efficient capturing of directly georeferenced stereo pairs. With today's camera and onboard storage technologies imagery can be captured at high data rates resulting in dense stereo sequences. These georeferenced stereo sequences provide a highly detailed and accurate digital representation of the roadside environment which builds the foundation for a wide range of 3d mapping applications and image-based geo web-services. Georeferenced stereo images are ideally suited for the 3d mapping of street furniture and visible infrastructure objects, pavement inspection, asset management tasks or image based change detection. As in most mobile mapping systems, the georeferencing of the mapping sensors and observations - in our case of the imaging sensors - normally relies on direct georeferencing based on INS/GNSS navigation sensors. However, in urban canyons the achievable direct georeferencing accuracy of the dynamically captured stereo image sequences is often insufficient or at least degraded. Furthermore, many of the mentioned application scenarios require homogeneous georeferencing accuracy within a local reference frame over the entire mapping perimeter. To achieve these demands georeferencing approaches are presented and cost efficient workflows are discussed which allows validating and updating the INS/GNSS based trajectory with independently estimated positions in cases of prolonged GNSS signal outages in order to increase the georeferencing accuracy up to the project requirements.

  2. A Little Sensor That Packs a Wallop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A gas sensor originally built for NASA to measure the composition of the atmosphere of Earth and Mars has been commercialized by SpectraSensors. The commercial tunable diode laser (TDL) gas sensor can be used for oil and gas pipeline monitoring, aircraft safety, environmental monitoring and medicine. The TDL technology is good at detecting low levels of gases from parts-per-million to parts-per-billion.

  3. Quality changes of cuttlefish stored under various atmosphere modifications and vacuum packaging.

    PubMed

    Bouletis, Achilleas D; Arvanitoyannis, Ioannis S; Hadjichristodoulou, Christos; Neofitou, Christos; Parlapani, Foteini F; Gkagtzis, Dimitrios C

    2016-06-01

    Seafood preservation and its shelf life prolongation are two of the main issues in the seafood industry. As a result, and in view of market globalization, research has been triggered in this direction by applying several techniques such as modified atmosphere packaging (MAP), vacuum packaging (VP) and active packaging (AP). However, seafood such as octopus, cuttlefish and others have not been thoroughly investigated up to now. The aim of this research was to determine the optimal conditions of modified atmosphere under which cuttlefish storage time and consequently shelf life time could be prolonged without endangering consumer safety. It was found that cuttlefish shelf life reached 2, 2, 4, 8 and 8 days for control, VP, MAP 1, MAP 2 and MAP 3 (20% CO2 -80% N2 , 50% CO2 -50% N2 and 70% CO2 -30% N2 for MAP 1, 2 and 3, respectively) samples, respectively, judging by their sensorial attributes. Elevated CO2 levels had a strong microbiostatic effect, whereas storage under vacuum did not offer significant advantages. All physicochemical attributes of MAP-treated samples were better preserved compared to control. Application of high CO2 atmospheres such as MAP 2 and MAP 3 proved to be an effective strategy toward preserving the characteristics and prolonging the shelf life of fresh cuttlefish and thereby improving its potential in the market. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  4. Extraction of incident irradiance from LWIR hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Lahaie, Pierre

    2014-10-01

    The atmospheric correction of thermal hyperspectral imagery can be separated in two distinct processes: Atmospheric Compensation (AC) and Temperature and Emissivity separation (TES). TES requires for input at each pixel, the ground leaving radiance and the atmospheric downwelling irradiance, which are the outputs of the AC process. The extraction from imagery of the downwelling irradiance requires assumptions about some of the pixels' nature, the sensor and the atmosphere. Another difficulty is that, often the sensor's spectral response is not well characterized. To deal with this unknown, we defined a spectral mean operator that is used to filter the ground leaving radiance and a computation of the downwelling irradiance from MODTRAN. A user will select a number of pixels in the image for which the emissivity is assumed to be known. The emissivity of these pixels is assumed to be smooth and that the only spectrally fast varying variable in the downwelling irradiance. Using these assumptions we built an algorithm to estimate the downwelling irradiance. The algorithm is used on all the selected pixels. The estimated irradiance is the average on the spectral channels of the resulting computation. The algorithm performs well in simulation and results are shown for errors in the assumed emissivity and for errors in the atmospheric profiles. The sensor noise influences mainly the required number of pixels.

  5. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  6. Occupancy mapping and surface reconstruction using local Gaussian processes with Kinect sensors.

    PubMed

    Kim, Soohwan; Kim, Jonghyuk

    2013-10-01

    Although RGB-D sensors have been successfully applied to visual SLAM and surface reconstruction, most of the applications aim at visualization. In this paper, we propose a noble method of building continuous occupancy maps and reconstructing surfaces in a single framework for both navigation and visualization. Particularly, we apply a Bayesian nonparametric approach, Gaussian process classification, to occupancy mapping. However, it suffers from high-computational complexity of O(n(3))+O(n(2)m), where n and m are the numbers of training and test data, respectively, limiting its use for large-scale mapping with huge training data, which is common with high-resolution RGB-D sensors. Therefore, we partition both training and test data with a coarse-to-fine clustering method and apply Gaussian processes to each local clusters. In addition, we consider Gaussian processes as implicit functions, and thus extract iso-surfaces from the scalar fields, continuous occupancy maps, using marching cubes. By doing that, we are able to build two types of map representations within a single framework of Gaussian processes. Experimental results with 2-D simulated data show that the accuracy of our approximated method is comparable to previous work, while the computational time is dramatically reduced. We also demonstrate our method with 3-D real data to show its feasibility in large-scale environments.

  7. Improving the Accuracy of Direct Geo-referencing of Smartphone-Based Mobile Mapping Systems Using Relative Orientation and Scene Geometric Constraints.

    PubMed

    Alsubaie, Naif M; Youssef, Ahmed A; El-Sheimy, Naser

    2017-09-30

    This paper introduces a new method which facilitate the use of smartphones as a handheld low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter and are quickly closing the gap between computers and portable tablet devices. The current generation of smartphones are equipped with low-cost GPS receivers, high-resolution digital cameras, and micro-electro mechanical systems (MEMS)-based navigation sensors (e.g., accelerometers, gyroscopes, magnetic compasses, and barometers). These sensors are in fact the essential components for a MMS. However, smartphone navigation sensors suffer from the poor accuracy of global navigation satellite System (GNSS), accumulated drift, and high signal noise. These issues affect the accuracy of the initial Exterior Orientation Parameters (EOPs) that are inputted into the bundle adjustment algorithm, which then produces inaccurate 3D mapping solutions. This paper proposes new methodologies for increasing the accuracy of direct geo-referencing of smartphones using relative orientation and smartphone motion sensor measurements as well as integrating geometric scene constraints into free network bundle adjustment. The new methodologies incorporate fusing the relative orientations of the captured images and their corresponding motion sensor measurements to improve the initial EOPs. Then, the geometric features (e.g., horizontal and vertical linear lines) visible in each image are extracted and used as constraints in the bundle adjustment procedure which correct the relative position and orientation of the 3D mapping solution.

  8. Improving the Accuracy of Direct Geo-referencing of Smartphone-Based Mobile Mapping Systems Using Relative Orientation and Scene Geometric Constraints

    PubMed Central

    Alsubaie, Naif M.; Youssef, Ahmed A.; El-Sheimy, Naser

    2017-01-01

    This paper introduces a new method which facilitate the use of smartphones as a handheld low-cost mobile mapping system (MMS). Smartphones are becoming more sophisticated and smarter and are quickly closing the gap between computers and portable tablet devices. The current generation of smartphones are equipped with low-cost GPS receivers, high-resolution digital cameras, and micro-electro mechanical systems (MEMS)-based navigation sensors (e.g., accelerometers, gyroscopes, magnetic compasses, and barometers). These sensors are in fact the essential components for a MMS. However, smartphone navigation sensors suffer from the poor accuracy of global navigation satellite System (GNSS), accumulated drift, and high signal noise. These issues affect the accuracy of the initial Exterior Orientation Parameters (EOPs) that are inputted into the bundle adjustment algorithm, which then produces inaccurate 3D mapping solutions. This paper proposes new methodologies for increasing the accuracy of direct geo-referencing of smartphones using relative orientation and smartphone motion sensor measurements as well as integrating geometric scene constraints into free network bundle adjustment. The new methodologies incorporate fusing the relative orientations of the captured images and their corresponding motion sensor measurements to improve the initial EOPs. Then, the geometric features (e.g., horizontal and vertical linear lines) visible in each image are extracted and used as constraints in the bundle adjustment procedure which correct the relative position and orientation of the 3D mapping solution. PMID:28973958

  9. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Technical Reports Server (NTRS)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced terms of motion not needed on Venus. When the Galileo Probe encountered Jupiter, analysis and interpretation of data commenced. The early contributions of the experiment were to define (1) the basic structure of the deep atmosphere, (2) the stability of the atmosphere, (3) the upper atmospheric profiles of density, pressure, and temperature. The next major task in the Galileo Probe project was to refine, verify and extend the analysis of the data. It was the verified, and corrected data, which indicated a dry abiabatic atmosphere within measurement accuracy. Temperature in the thermosphere was measured at 900 K. Participation in the Mars atmospheric research included: (1) work as a team member of the Mars Atmosphere Working Group, (2) contribution to the Mars Exobiology Instrument workshop, (3) asssistance in planning the Mars global network and (4) assitance in planning the Soviet-French Mars mission in 1994. This included a return to the Viking Lander parachute data to refine and improve the definition of winds between 1.5 and 4 kilometer altitude at the two entry sites. The variability of the structure of Mars atmosphere was addressed, which is known to vary with season, latitude, hemisphere and dust loading of the atmosphere. This led to work on the Pathfinder project. The probe had a deployable meteorology mast that had three temperature sensors, and a wind sensor at the tip of the mast. Work on the Titan atmospheric probe was also accomplished. This included developing an experiment proposal to the European Space Agency (ESA), which was not selected. However, as an advisor in the design and preparation of the selected experiment the researcher interacted with scientist on the Huygens Probe Atmosphere Structure Experiment. The researcher also participated in the planning for the Venus Chemical Probe. The science objectives of the probe were to resolve unanswered questions concerning the minor species chemistry of Venus' atmosphere that control cloud formation, greenhouse effectiveness, and the thermal structure. The researcher also reviewed problems with the Pioneer Venus Probe, that caused anomalies which occurred on the Probes at and below 12.5 km level of the Venus' atmosphere. He convened and participated in a workshop that concluded the most likely hardware cause was insulation failure in the electrical harness outside the Probes' pressure vessels. It was discovered that the shrink tubing material failed at 600K. This failure could explain the anomalies experienced by the probes. The descent data of the Pioneer probes, and the Soviet Vega Lander was analyzed to evaluate the presence of small scale gravity waves in and below the Venus cloud layer.

  10. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

    PubMed Central

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I.

    2008-01-01

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer) and compared to the available measuring sensitivity of the sensor (NEΔLλsensor). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions. PMID:27879801

  11. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing.

    PubMed

    Seidel, Felix; Schläpfer, Daniel; Nieke, Jens; Itten, Klaus I

    2008-03-18

    This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD) by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτ λ aer ) and compared to the available measuring sensitivity of the sensor (NE ΔL λ sensor ). This is done for multiple signal-to-noise ratios (SNR) and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  12. Winter risk estimations through infrared cameras an principal component analysis

    NASA Astrophysics Data System (ADS)

    Marchetti, M.; Dumoulin, J.; Ibos, L.

    2012-04-01

    Thermal mapping has been implemented since the late eighties to measure road pavement temperature along with some other atmospheric parameters to establish a winter risk describing the susceptibility of road network to ice occurrence. Measurements are done using a vehicle circulating on the road network in various road weather conditions. When the dew point temperature drops below road surface temperature a risk of ice occurs and therefore a loss of grip risk for circulating vehicles. To avoid too much influence of the sun, and to see the thermal behavior of the pavement enhanced, thermal mapping is usually done before dawn during winter time. That is when the energy accumulated by the road during daytime is mainly dissipated (by radiation, by conduction and by convection) and before the road structure starts a new cycle. This analysis is mainly done when a new road network is built, or when some major pavement changes are made, or when modifications in the road surroundings took place that might affect the thermal heat balance. This helps road managers to install sensors to monitor road status on specific locations identified as dangerous, or simply to install specific road signs. Measurements are anyhow time-consuming. Indeed, a whole road network can hardly be analysed at once, and has to be partitioned in stretches that could be done in the open time window to avoid temperature artefacts due to a rising sun. The LRPC Nancy has been using a thermal mapping vehicle with now two infrared cameras. Road events were collected by the operator to help the analysis of the network thermal response. A conventional radiometer with appropriate performances was used as a reference. The objective of the work was to compare results from the radiometer and the cameras. All the atmospheric parameters measured by the different sensors such as air temperature and relative humidity were used as input parameters for the infrared camera when recording thermal images. Road thermal heterogeneities were clearly identified, while usually missed by a conventional radiometer. In the case presented here, the two lanes of the road could be properly observed. Promising perspectives appeared to increase the measurement rate. Furthermore, to cope with the climatic constraints of the winter measurements as to build a dynamic winter risk, a multivariate data analysis approach was implemented. Principal component analysis was performed and enabled to set up of dynamic thermal signature with a great agreement between statistical results and field measurements.

  13. Battery-free, wireless sensors for full-body pressure and temperature mapping.

    PubMed

    Han, Seungyong; Kim, Jeonghyun; Won, Sang Min; Ma, Yinji; Kang, Daeshik; Xie, Zhaoqian; Lee, Kyu-Tae; Chung, Ha Uk; Banks, Anthony; Min, Seunghwan; Heo, Seung Yun; Davies, Charles R; Lee, Jung Woo; Lee, Chi-Hwan; Kim, Bong Hoon; Li, Kan; Zhou, Yadong; Wei, Chen; Feng, Xue; Huang, Yonggang; Rogers, John A

    2018-04-04

    Thin, soft, skin-like sensors capable of precise, continuous measurements of physiological health have broad potential relevance to clinical health care. Use of sensors distributed over a wide area for full-body, spatiotemporal mapping of physiological processes would be a considerable advance for this field. We introduce materials, device designs, wireless power delivery and communication strategies, and overall system architectures for skin-like, battery-free sensors of temperature and pressure that can be used across the entire body. Combined experimental and theoretical investigations of the sensor operation and the modes for wireless addressing define the key features of these systems. Studies with human subjects in clinical sleep laboratories and in adjustable hospital beds demonstrate functionality of the sensors, with potential implications for monitoring of circadian cycles and mitigating risks for pressure-induced skin ulcers. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Combining Radar and Optical Data for Forest Disturbance Studies

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Smith, David E. (Technical Monitor)

    2002-01-01

    Disturbance is an important factor in determining the carbon balance and succession of forests. Until the early 1990's researchers have focused on using optical or thermal sensors to detect and map forest disturbances from wild fires, logging or insect outbreaks. As part of a NASA Siberian mapping project, a study evaluated the capability of three different radar sensors (ERS, JERS and Radarsat) and an optical sensor (Landsat 7) to detect fire scars, logging and insect damage in the boreal forest. This paper describes the data sets and techniques used to evaluate the use of remote sensing to detect disturbance in central Siberian forests. Using images from each sensor individually and combined an assessment of the utility of using these sensors was developed. Transformed Divergence analysis and maximum likelihood classification revealed that Landsat data was the single best data type for this purpose. However, the combined use of the three radar and optical sensors did improve the results of discriminating these disturbances.

  15. Cloud detection method for Chinese moderate high resolution satellite imagery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zhong, Bo; Chen, Wuhan; Wu, Shanlong; Liu, Qinhuo

    2016-10-01

    Cloud detection of satellite imagery is very important for quantitative remote sensing research and remote sensing applications. However, many satellite sensors don't have enough bands for a quick, accurate, and simple detection of clouds. Particularly, the newly launched moderate to high spatial resolution satellite sensors of China, such as the charge-coupled device on-board the Chinese Huan Jing 1 (HJ-1/CCD) and the wide field of view (WFV) sensor on-board the Gao Fen 1 (GF-1), only have four available bands including blue, green, red, and near infrared bands, which are far from the requirements of most could detection methods. In order to solve this problem, an improved and automated cloud detection method for Chinese satellite sensors called OCM (Object oriented Cloud and cloud-shadow Matching method) is presented in this paper. It firstly modified the Automatic Cloud Cover Assessment (ACCA) method, which was developed for Landsat-7 data, to get an initial cloud map. The modified ACCA method is mainly based on threshold and different threshold setting produces different cloud map. Subsequently, a strict threshold is used to produce a cloud map with high confidence and large amount of cloud omission and a loose threshold is used to produce a cloud map with low confidence and large amount of commission. Secondly, a corresponding cloud-shadow map is also produced using the threshold of near-infrared band. Thirdly, the cloud maps and cloud-shadow map are transferred to cloud objects and cloud-shadow objects. Cloud and cloud-shadow are usually in pairs; consequently, the final cloud and cloud-shadow maps are made based on the relationship between cloud and cloud-shadow objects. OCM method was tested using almost 200 HJ-1/CCD images across China and the overall accuracy of cloud detection is close to 90%.

  16. Winter in Northern Europe (WINE) Project

    NASA Technical Reports Server (NTRS)

    Vonzahn, U.

    1982-01-01

    The scientific aims, work plan, and organization of the Middle Atmosphere Program winter in northern Europe (MAP/WINE) are described. Proposed contributions to the MAP/WINE program from various countries are enumerated. Specific atmospheric parameters to be examined are listed along with the corresponding measurement technique.

  17. Scanning Electron Microanalysis and Analytical Challenges of Mapping Elements in Urban Atmospheric Particles

    EPA Science Inventory

    Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in q...

  18. Fault Tolerant Computer Network Study

    DTIC Science & Technology

    1980-04-01

    2. 1.2. 2 Air Data The air data function processes air pressures, temperature , and angle- of-attack measurements, and provides calibrated airspeed...attitude direction indicator. 2.1.5.2 Fixtaking Sensors used for fixtaking include the radar (in ground map mode), head- up display (for visual...VFR interdiction mission. The radar (ground map mode) is also the primary sensor at night and in adverse weather if the target presents a

  19. Develop Measures of Effectiveness and Deployment Optimization Rules for Networked Ground Micro-Sensors

    DTIC Science & Technology

    2001-05-01

    types and total #) Ø Control of Sensors ( Scheduling ) Ø Coverage (Time & Area) Uncontrollable Inputs ØWeather Ø Atmospheric Effects Ø Equipment...are widely scattered and used to cue or wakeup other higher-level sensors. Trip line sensors consist of some combination of acoustic, seismic and...Employ a mix if different sensor types in order to increase detection probability 4.4.4.2 Minimize Battery Power • Set schedule turn on and off

  20. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-12-05

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  1. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  2. SENSOR: a tool for the simulation of hyperspectral remote sensing systems

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Wiest, Lorenz; Keller, Peter; Reulke, Ralf; Richter, Rolf; Schaepman, Michael; Schläpfer, Daniel

    The consistent end-to-end simulation of airborne and spaceborne earth remote sensing systems is an important task, and sometimes the only way for the adaptation and optimisation of a sensor and its observation conditions, the choice and test of algorithms for data processing, error estimation and the evaluation of the capabilities of the whole sensor system. The presented software simulator SENSOR (Software Environment for the Simulation of Optical Remote sensing systems) includes a full model of the sensor hardware, the observed scene, and the atmosphere in between. The simulator consists of three parts. The first part describes the geometrical relations between scene, sun, and the remote sensing system using a ray-tracing algorithm. The second part of the simulation environment considers the radiometry. It calculates the at-sensor radiance using a pre-calculated multidimensional lookup-table taking the atmospheric influence on the radiation into account. The third part consists of an optical and an electronic sensor model for the generation of digital images. Using SENSOR for an optimisation requires the additional application of task-specific data processing algorithms. The principle of the end-to-end-simulation approach is explained, all relevant concepts of SENSOR are discussed, and first examples of its use are given. The verification of SENSOR is demonstrated. This work is closely related to the Airborne PRISM Experiment (APEX), an airborne imaging spectrometer funded by the European Space Agency.

  3. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1990

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.

  4. An atlas of monthly mean distributions of SSMI surface wind speed, ARGOS buoy drift, AVHRR/2 sea surface temperature, and ECMWF surface wind components during 1991

    NASA Technical Reports Server (NTRS)

    Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.

    1993-01-01

    The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.

  5. Design of a GaAs/Ge Solar Array for Unmanned Aerial Vehicles

    NASA Technical Reports Server (NTRS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-01-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  6. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Scheiman, David A.; Brinker, David J.; Bents, David J.; Colozza, Anthony J.

    1995-03-01

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  7. The extent of burning in African savanna

    NASA Technical Reports Server (NTRS)

    Cahoon, D. R. JR.; Levine, J. S.; Cofer, W. R. Iii; Stocks, B. J.

    1994-01-01

    The temporal and spatial distribution of African savanna grassland fires has been examined, and the areal extent of these fires has been estimated for the subequatorial African continent. African savanna fires have been investigated using remote sensing techniques and imagery collected by low-light sensors on Defense Meteorological Satellite Program (DMSP) satellites and by the Advanced Very High Resolution Radiometer (AVHRR) which is aboard polar orbiting National Oceanic and Atmospheric Administration (NOAA) satellites. DMSP imagery has been used to map the evolution of savanna burning over all of the African continent and the analysis of AVHRR imagery has been used to estimate the areal extent of the burning in the southern hemispheric African savannas. The work presented primarily reflects the analysiscompleted for the year 1987. However, comparisons have been made with other years and the representativeness of the 1987 analysis is discussed.

  8. BOREAS Level-1B MAS Imagery At-sensor Radiance, Relative X and Y Coordinates

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Strub, Richard; Newcomer, Jeffrey A.; Ungar, Stephen

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS), the MODIS Airborne Simulator (MAS) images, along with the other remotely sensed data, were collected to provide spatially extensive information over the primary study areas. This information includes detailed land cover and biophysical parameter maps such as fraction of Photosynthetically Active Radiation (fPAR) and Leaf Area Index (LAI). Collection of the MAS images occurred over the study areas during the 1994 field campaigns. The level-1b MAS data cover the dates of 21-Jul-1994, 24-Jul-1994, 04-Aug-1994, and 08-Aug-1994. The data are not geographically/geometrically corrected; however, files of relative X and Y coordinates for each image pixel were derived by using the C-130 INS data in a MAS scan model. The data are provided in binary image format files.

  9. BOREAS Level-3s Landsat TM Imagery Scaled At-sensor Radiance in LGSOWG Format

    NASA Technical Reports Server (NTRS)

    Nickeson, Jaime; Knapp, David; Newcomer, Jeffrey A.; Cihlar, Josef; Hall, Forrest G. (Editor)

    2000-01-01

    For BOReal Ecosystem-Atmosphere Study (BOREAS),the level-3s Landsat Thematic Mapper (TM) data, along with the other remotely sensed images,were collected in order to provide spatially extensive information over the primary study areas. This information includes radiant energy,detailed land cover, and biophysical parameter maps such as Fraction of Photosynthetically Active Radiation (FPAR) and Leaf area Index (LAI). CCRS collected and supplied the level-3s images to BOREAS for use in the remote sensing research activities. Geographically,the bulk of the level-3s images cover the BOREAS Northern Study Area (NSA) and Southern Study Area (SSA) with a few images covering the area between the NSA and SSA. Temporally,the images cover the period of 22-Jun-1984 to 30-Jul-1996. The images are available in binary,image-format files.

  10. Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere

    NASA Astrophysics Data System (ADS)

    Gegout, P.; Biancale, R.; Soudarin, L.

    2011-10-01

    The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.

  11. ShakeMapple : tapping laptop motion sensors to map the felt extents of an earthquake

    NASA Astrophysics Data System (ADS)

    Bossu, Remy; McGilvary, Gary; Kamb, Linus

    2010-05-01

    There is a significant pool of untapped sensor resources available in portable computer embedded motion sensors. Included primarily to detect sudden strong motion in order to park the disk heads to prevent damage to the disks in the event of a fall or other severe motion, these sensors may also be tapped for other uses as well. We have developed a system that takes advantage of the Apple Macintosh laptops' embedded Sudden Motion Sensors to record earthquake strong motion data to rapidly build maps of where and to what extent an earthquake has been felt. After an earthquake, it is vital to understand the damage caused especially in urban environments as this is often the scene for large amounts of damage caused by earthquakes. Gathering as much information from these impacts to determine where the areas that are likely to be most effected, can aid in distributing emergency services effectively. The ShakeMapple system operates in the background, continuously saving the most recent data from the motion sensors. After an earthquake has occurred, the ShakeMapple system calculates the peak acceleration within a time window around the expected arrival and sends that to servers at the EMSC. A map plotting the felt responses is then generated and presented on the web. Because large-scale testing of such an application is inherently difficult, we propose to organize a broadly distributed "simulated event" test. The software will be available for download in April, after which we plan to organize a large-scale test by the summer. At a specified time, participating testers will be asked to create their own strong motion to be registered and submitted by the ShakeMapple client. From these responses, a felt map will be produced representing the broadly-felt effects of the simulated event.

  12. Polar research from satellites

    NASA Technical Reports Server (NTRS)

    Thomas, Robert H.

    1991-01-01

    In the polar regions and climate change section, the topics of ocean/atmosphere heat transfer, trace gases, surface albedo, and response to climate warming are discussed. The satellite instruments section is divided into three parts. Part one is about basic principles and covers, choice of frequencies, algorithms, orbits, and remote sensing techniques. Part two is about passive sensors and covers microwave radiometers, medium-resolution visible and infrared sensors, advanced very high resolution radiometers, optical line scanners, earth radiation budget experiment, coastal zone color scanner, high-resolution imagers, and atmospheric sounding. Part three is about active sensors and covers synthetic aperture radar, radar altimeters, scatterometers, and lidar. There is also a next decade section that is followed by a summary and recommendations section.

  13. Electrospray-printed nanostructured graphene oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Taylor, Anthony P.; Velásquez-García, Luis F.

    2015-12-01

    We report low-cost conductometric gas sensors that use an ultrathin film made of graphene oxide (GO) nanoflakes as transducing element. The devices were fabricated by lift-off metallization and near-room temperature, atmospheric pressure electrospray printing using a shadow mask. The sensors are sensitive to reactive gases at room temperature without requiring any post heat treatment, harsh chemical reduction, or doping with metal nanoparticles. The sensors’ response to humidity at atmospheric pressure tracks that of a commercial sensor, and is linear with changes in humidity in the 10%-60% relative humidity range while consuming <6 μW. Devices with GO layers printed by different deposition recipes yielded nearly identical response characteristics, suggesting that intrinsic properties of the film control the sensing mechanism. The gas sensors successfully detected ammonia at concentrations down to 500 ppm (absolute partial pressure of ˜5 × 10-4 T) at ˜1 T pressure, room temperature conditions. The sensor technology can be used in a great variety of applications including air conditioning and sensing of reactive gas species in vacuum lines and abatement systems.

  14. Fusion of mobile in situ and satellite remote sensing observations of chemical release emissions to improve disaster response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, Ira; Melton, Christopher; Frash, Jason

    Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less

  15. The Future of Carbon Monoxide Measurements from Space

    NASA Astrophysics Data System (ADS)

    Drummond, J.

    It is now over 20 years since the Measurements of Air Pollution from Space MAPS instrument made the first measurements of tropospheric carbon monoxide from the shuttle Since that time a number of instruments have flown including the Measurements Of Pollution In The Troposphere MOPITT Tropospheric Emission Spectrometer TES and SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY SCIAMCHY to name only three of many Each of these instruments has a unique observing method and unique mission characteristics It is accepted that measurements of carbon monoxide provide a useful proxy of the pollution of the troposphere and contribute significantly to studies of various phenomena in the atmosphere and atmosphere-surface interactions These measurements should therefore be continued -- but in what form Technology has progresses significantly since the current generation of instruments was designed and our ability to interpret the data from such instrumentation has likewise expanded It is therefore fruitful to consider what is the best set of measurements that can be made which parameters should be emphasized and which compromised on the way to the next generation of sensors The Measurements of Air Pollution Levels in the Environment MAPLE instrument is a study financed by the Canadian Space Agency to design a next-generation instrument and since instrument spacecraft and mission are now intimately linked a consideration of the whole mission is appropriate This talk will outline some potential developments in the hardware

  16. Aerosol retrieval for APEX airborne imaging spectrometer: a preliminary analysis

    NASA Astrophysics Data System (ADS)

    Seidel, Felix; Nieke, Jens; Schläpfer, Daniel; Höller, Robert; von Hoyningen-Huene, Wolfgang; Itten, Klaus

    2005-10-01

    In order to achieve quantitative measurements of the Earth's surface radiance and reflectance, it is important to determine the aerosol optical thickness (AOT) to correct for the optical influence of atmospheric particles. An advanced method for aerosol detection and quantification is required, which is not strongly dependant on disturbing effects due to surface reflectance, gas absorption and Rayleigh scattering features. A short review of existing applicable methods to the APEX airborne imaging spectrometer (380nm to 2500nm), leads to the suggested aerosol retrieval method here in this paper. It will measure the distinct radiance change between two near-UV spectral bands (385nm & 412nm) due to aerosol induced scattering and absorption features. Atmospheric radiation transfer model calculations have been used to analyze the AOT retrieval capability and accuracy of APEX. The noise-equivalent differential AOT is presented along with the retrieval sensitivity to various input variables. It is shown, that the suggested method will be able to identify different aerosol model types and measure AOT and columnar size distribution. The proposed accurate AOT determination will lead to a unique opportunity of two-dimensional pixel-wise mapping of aerosol properties at a high spatial resolution. This will be helpful especially for regional climate studies, atmospheric pollution monitoring and for the improvement of aerosol dispersion models and the validation of aerosol algorithms on spaceborne sensors.

  17. Intercalibration of Mars Global Surveyor Datasets

    NASA Technical Reports Server (NTRS)

    Houben, Howard; Bergstrom, R. W.; Hollingsworth, J.; Smith, M.; Martin, T.; Hinson, D.; DeVincenizi, D. (Technical Monitor)

    2002-01-01

    The calibration and validation of satellite soundings of atmospheric variables is always a difficult prospect, but this difficulty is greatly magnified when the measurements are made at a different planet, whose meteorology is poorly known and poorly constrained, and for which there are virtually no prospects of obtaining ground truth. The Mars Global Surveyor which has been circling Mars in its mapping orbit since early 1999 includes a variety of instruments capable of making atmospheric observations: the Thermal Emission Spectrometer (TES) which takes more than 100,000 nadir-view infrared spectra per day (although these observations are confined to the 2am - 2pm time of the sun-fixed orbit); much less frequent TES limb scans (still only at 2am and 2pm); the Mars Horizon Sensor Assembly measures side-looking broadband 15 micrometer radiation; Radio Science occultations at favorable seasons give high resolution temperature profiles; the Mars orbiter Camera and Mars Orbiter Laser Altimeter have made water, dust, and carbon dioxide cloud detections. These observations are now being supplemented by high-resolution 15 micron measurements by THEMIS on Mars Odyssey. Thus, all of these observations are made at different times and places. Data assimilation techniques are being used to fuse this vast array of observations into a single dataset that best represents our understanding of the Martian atmosphere, its current meteorological state, and the relevant instrumental properties.

  18. Fusion of mobile in situ and satellite remote sensing observations of chemical release emissions to improve disaster response

    DOE PAGES

    Leifer, Ira; Melton, Christopher; Frash, Jason; ...

    2016-09-22

    Chemical release disasters have serious consequences, disrupting ecosystems, society, and causing significant loss of life. Mitigating the destructive impacts relies on identification and mapping, monitoring, and trajectory forecasting. Improvements in sensor capabilities are enabling airborne and space-based remote sensing to support response activities. Key applications are improving transport models in complex terrain and improved disaster response. Understanding urban atmospheric transport in the Los Angeles Basin, where topographic influences on transport patterns are significant, was improved by leveraging the Aliso Canyon leak as an atmospheric tracer. Plume characterization data was collected by the AutoMObile trace Gas (AMOG) Surveyor, a commuter carmore » modified for science. Mobile surface in situ CH 4 and winds were measured by AMOG Surveyor under Santa Ana conditions to estimate an emission rate of 365±30% Gg yr -1. Vertical profiles were collected by AMOG Surveyor by leveraging local topography for vertical profiling to identify the planetary boundary layer at ~700 m. Topography significantly constrained plume dispersion by up to a factor of two. The observed plume trajectory was used to validate satellite aerosol optical depth-inferred atmospheric transport, which suggested the plume first was driven offshore, but then veered back towards land. Numerical long-range transport model predictions confirm this interpretation. Lastly, this study demonstrated a novel application of satellite aerosol remote sensing for disaster response.« less

  19. Damage mapping in structural health monitoring using a multi-grid architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathews, V. John

    2015-03-31

    This paper presents a multi-grid architecture for tomography-based damage mapping of composite aerospace structures. The system employs an array of piezo-electric transducers bonded on the structure. Each transducer may be used as an actuator as well as a sensor. The structure is excited sequentially using the actuators and the guided waves arriving at the sensors in response to the excitations are recorded for further analysis. The sensor signals are compared to their baseline counterparts and a damage index is computed for each actuator-sensor pair. These damage indices are then used as inputs to the tomographic reconstruction system. Preliminary damage mapsmore » are reconstructed on multiple coordinate grids defined on the structure. These grids are shifted versions of each other where the shift is a fraction of the spatial sampling interval associated with each grid. These preliminary damage maps are then combined to provide a reconstruction that is more robust to measurement noise in the sensor signals and the ill-conditioned problem formulation for single-grid algorithms. Experimental results on a composite structure with complexity that is representative of aerospace structures included in the paper demonstrate that for sufficiently high sensor densities, the algorithm of this paper is capable of providing damage detection and characterization with accuracy comparable to traditional C-scan and A-scan-based ultrasound non-destructive inspection systems quickly and without human supervision.« less

  20. Repurposing Radiosonde Sensors for UAV Integration

    NASA Astrophysics Data System (ADS)

    Clowney, F. A.

    2015-12-01

    Radiosondes provide accurate, high-resolution meteorological data for a variety of purposes but are inefficient for studying the atmospheric boundary layer. Tethered balloons can provide greater temporal resolution but are difficult to acquire, hard to manage and limited in vertical resolution. UAVs appear to offer a more cost-effective method for gathering low-level meteorological data in situ, with a strong possibility of adding atmospheric chemistry. This potential is enhanced by the availability of new generations of small sensors along with dramatic advances in low-cost UAVs, especially rotary-wing. InterMet is using its experience in radiosonde design and manufacturing to develop sensor packages for fixed and rotary-wing UAVs, with the goal of delivering high-quality data at low cost. The challenge is to adapt affordable, high-accuracy sensors to the different UAV flight modes. Equally important is learning from the research community what is required for this data to have useful scientific value. Specific topics to be covered include data sampling and output rates, sensor response times, calibration, sensor placement, data storage and transfer, power consumption, integration with flight management systems and wind calculations. Beta test results for the iMet-XQ and iMet-XF sensor packages will be presented if available.

  1. SeaWiFS Postlaunch Calibration and Validation Analyses

    NASA Technical Reports Server (NTRS)

    Hooker, Stanford B. (Editor); Firestone, Elaine (Editor); McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Franz, Bryan A.; Hsu, N. Christina; Patt, Frederick S.; Pietras, Christophe M.; Robinson, Wayne D.

    2000-01-01

    The effort to resolve data quality issues and improve on the initial data evaluation methodologies of the SeaWiFS Project was an extensive one. These evaluations have resulted, to date, in three major reprocessings of the entire data set where each reprocessing addressed the data quality issues that could be identified up to the time of the reprocessing. Three volumes of the SeaWiFS Postlaunch Technical Report Series (Volumes 9, 10, and 11) are needed to document the improvements implemented since launch. Volume 10 continues the sequential presentation of postlaunch data analysis and algorithm descriptions begun in Volume 9. Chapter 1 of Volume 10 describes an absorbing aerosol index, similar to that produced by the Total Ozone Mapping Spectrometer (TOMS) Project, which is used to flag pixels contaminated by absorbing aerosols, such as, dust and smoke. Chapter 2 discusses the algorithm being used to remove SeaWiFS out-of-band radiance from the water-leaving radiances. Chapter 3 provides an itemization of all significant changes in the processing algorithms for each of the first three reprocessings. Chapter 4 shows the time series of global clear water and deep-water (depths greater than 1,000m) bio-optical and atmospheric properties (normalized water-leaving radiances, chlorophyll, atmospheric optical depth, etc.) based on the eight-day composites as a check on the sensor calibration stability. Chapter 5 examines the variation in the derived products with scan angle using high resolution data around Hawaii to test for residual scan modulation effects and atmospheric correction biases. Chapter 6 provides a methodology for evaluating the atmospheric correction algorithm and atmospheric derived products using ground-based observations. Similarly, Chapter 7 presents match-up comparisons of coincident satellite and in situ data to determine the accuracy of the water-leaving radiances, chlorophyll a, and K(490) products.

  2. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    NASA Technical Reports Server (NTRS)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  3. Remote sensing at the NASA Kennedy Space Center: a perspective from the ground up

    NASA Astrophysics Data System (ADS)

    Huddleston, Lisa H.; Roeder, William P.; Morabito, David D.; D'Addario, Larry R.; Morgan, Jennifer G.; Barbré, Robert E.; Decker, Ryan K.; Geldzahler, Barry; Seibert, Mark A.; Miller, Michael J.

    2014-10-01

    This paper provides an overview of ground based operational remote sensing activities that enable a broad range of missions at the Eastern Range (ER), which includes the National Aeronautics and Space Administration (NASA) Kennedy Space Center (KSC) and U.S. Air Force Cape Canaveral Air Force Station (CCAFS). Many types of sensors are in use by KSC and across the ER. We examine remote sensors for winds, lightning and electric fields, precipitation and storm hazards. These sensors provide data that are used in real-time to evaluate launch commit criteria during space launches, major ground processing operations in preparation for space launches, issuing weather warnings/watches/advisories to protect over 25,000 people and facilities worth over $20 billion, and routine weather forecasts. The data from these sensors are archived to focus NASA launch vehicle design studies, to develop forecast techniques, and for incident investigation. The wind sensors include the 50-MHz and 915-MHz Doppler Radar Wind Profilers (DRWP) and the Doppler capability of the weather surveillance radars. The atmospheric electricity sensors include lightning aloft detectors, cloud-to-ground lightning detectors, and surface electric field mills. The precipitation and storm hazards sensors include weather surveillance radars. Next, we discuss a new type of remote sensor that may lead to better tracking of near-Earth asteroids versus current capabilities. The Ka Band Objects Observation and Monitoring (KaBOOM) is a phased array of three 12 meter (m) antennas being built as a technology demonstration for a future radar system that could be used to track deep-space objects such as asteroids. Transmissions in the Ka band allow for wider bandwidth than at lower frequencies, but the signals are also far more susceptible to de-correlation from turbulence in the troposphere, as well as attenuation due to water vapor, which is plentiful in the Central Florida atmosphere. If successful, KaBOOM will have served as the pathfinder for a larger and more capable instrument that will enable tracking 15 m asteroids up to 72 million kilometers (km) away, about half the distance to the Sun and five times further than we can track today. Finally, we explore the use of Site Test Interferometers (STI) as atmospheric sensors. The STI antennas continually observe signals emitted by geostationary satellites and produce measurements of the phase difference between the received signals. STIs are usually located near existing or candidate antenna array sites to statistically characterize atmospheric phase delay fluctuation effects for the site. An STI measures the fluctuations in the difference of atmospheric delay from an extraterrestrial source to two or more points on the Earth. There is a three-element STI located at the KaBOOM site at KSC.

  4. Modified atmosphere packaging for fresh-cut 'Kent' mango

    USDA-ARS?s Scientific Manuscript database

    A modified atmosphere package (MAP) was designed to optimize the quality and shelf-life of fresh-cut ‘Kent’ mango during exposure to common retail display conditions. Synergism of the MAP system with an antioxidant treatment (calcium ascorbate + citric acid) was also investigated. Mango slices in tr...

  5. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System

    PubMed Central

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-01-01

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated. PMID:28327513

  6. Indoor Positioning System Using Magnetic Field Map Navigation and an Encoder System.

    PubMed

    Kim, Han-Sol; Seo, Woojin; Baek, Kwang-Ryul

    2017-03-22

    In the indoor environment, variation of the magnetic field is caused by building structures, and magnetic field map navigation is based on this feature. In order to estimate position using this navigation, a three-axis magnetic field must be measured at every point to build a magnetic field map. After the magnetic field map is obtained, the position of the mobile robot can be estimated with a likelihood function whereby the measured magnetic field data and the magnetic field map are used. However, if only magnetic field map navigation is used, the estimated position can have large errors. In order to improve performance, we propose a particle filter system that integrates magnetic field map navigation and an encoder system. In this paper, multiple magnetic sensors and three magnetic field maps (a horizontal intensity map, a vertical intensity map, and a direction information map) are used to update the weights of particles. As a result, the proposed system estimates the position and orientation of a mobile robot more accurately than previous systems. Also, when the number of magnetic sensors increases, this paper shows that system performance improves. Finally, experiment results are shown from the proposed system that was implemented and evaluated.

  7. Organization of the 1993 Optical Remote Sensing Topical Meeteing held in Salt Lake City, UT, 8-12 Mar 1993

    DTIC Science & Technology

    1994-06-01

    S.C. 1992. Simulated Retrieval of Atmospheric Ozone from Aircraft ,A Interferometer Observations. Masters 7.5 thesis . University of Wisconsin...laser-based sensor system for long-path ab- presented. (p. 72) sorption measurements of atmospheric concentration and near-ir molecular spectral...performance of satellite- borne lidar-based wind sensors. (p. 247) 2:30 pm-3:00 pm COFFEE BREAK 11:20 am WB5 Simulation of space-based Doppler lidar wind SALON

  8. Use of MODIS Satellite Data to Evaluate Juniperus spp. Pollen Phenology to Support a Pollen Dispersal Model, PREAM, to Support Public Health Allergy Alerts

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W.; Levetin, E.; Huete, A.; Nickovic, S.; Pejanovic, G. A.; Vukovic, A.; VandeWater, P.; Budge, A.; Hudspeth, W.; hide

    2012-01-01

    Juniperus spp. pollen is a significant aeroallergen that can be transported 200-600 km from the source. Local observations of Juniperus spp. phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. Methods: The Dust REgional Atmospheric Model (DREAM)is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust. We successfully modified the DREAM model to incorporate pollen transport (PREAM) and used MODIS satellite images to develop Juniperus ashei pollen input source masks. The Pollen Release Potential Source Map, also referred to as a source mask in model applications, may use different satellite platforms and sensors and a variety of data sets other than the USGS GAP data we used to map J. ashei cover type. MODIS derived percent tree cover is obtained from MODIS Vegetation Continuous Fields (VCF) product (collection 3 and 4, MOD44B, 500 and 250 m grid resolution). We use updated 2010 values to calculate pollen concentration at source (J. ashei ). The original MODIS derived values are converted from native approx. 250 m to 990m (approx. 1 km) for the calculation of a mask to fit the model (PREAM) resolution. Results: The simulation period is chosen following the information that in the last 2 weeks of December 2010. The PREAM modeled near-surface concentrations (Nm-3) shows the transport patterns of J. ashei pollen over a 5 day period (Fig. 2). Typical scales of the simulated transport process are regional.

  9. Microwave Atmospheric-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  10. Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, E.

    2014-02-01

    The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA)more » and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.« less

  11. Autonomous Wheeled Robot Platform Testbed for Navigation and Mapping Using Low-Cost Sensors

    NASA Astrophysics Data System (ADS)

    Calero, D.; Fernandez, E.; Parés, M. E.

    2017-11-01

    This paper presents the concept of an architecture for a wheeled robot system that helps researchers in the field of geomatics to speed up their daily research on kinematic geodesy, indoor navigation and indoor positioning fields. The presented ideas corresponds to an extensible and modular hardware and software system aimed at the development of new low-cost mapping algorithms as well as at the evaluation of the performance of sensors. The concept, already implemented in the CTTC's system ARAS (Autonomous Rover for Automatic Surveying) is generic and extensible. This means that it is possible to incorporate new navigation algorithms or sensors at no maintenance cost. Only the effort related to the development tasks required to either create such algorithms needs to be taken into account. As a consequence, change poses a much small problem for research activities in this specific area. This system includes several standalone sensors that may be combined in different ways to accomplish several goals; that is, this system may be used to perform a variety of tasks, as, for instance evaluates positioning algorithms performance or mapping algorithms performance.

  12. AFGL Fiscal Year 1984 Air Force Technical Objectives Document.

    DTIC Science & Technology

    1982-11-01

    the near term, to design the performance characteristics of sensors operating from the Shuttle. In the long term, these sensors will provide the...atmosphere are determined from sensors on rockets and satellites. These data, which are used to develop tailored analytic and predictive models for...toward increasing the flight time of the various vehicles. Future research and test- ing of advanced sensors will require rockets with increased

  13. Climate Change Mitigation: Can the U.S. Intelligence Community Help?

    DTIC Science & Technology

    2013-06-01

    satellite sensors to establish the concentration of atmospheric CO2 parts per million (ppm mole fraction) in samples collected at multiple...measurements. Spatial sampling density, the number of sensors or—in the case of satellite imagery the number and resolution of the images—likewise influences...Somewhat paradoxically, sensor accuracy from either remote ( satellites ) or in situ sensors is an important consideration, but it must also be evaluated

  14. Acoustic/seismic signal propagation and sensor performance modeling

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Marlin, David H.; Mackay, Sean

    2007-04-01

    Performance, optimal employment, and interpretation of data from acoustic and seismic sensors depend strongly and in complex ways on the environment in which they operate. Software tools for guiding non-expert users of acoustic and seismic sensors are therefore much needed. However, such tools require that many individual components be constructed and correctly connected together. These components include the source signature and directionality, representation of the atmospheric and terrain environment, calculation of the signal propagation, characterization of the sensor response, and mimicking of the data processing at the sensor. Selection of an appropriate signal propagation model is particularly important, as there are significant trade-offs between output fidelity and computation speed. Attenuation of signal energy, random fading, and (for array systems) variations in wavefront angle-of-arrival should all be considered. Characterization of the complex operational environment is often the weak link in sensor modeling: important issues for acoustic and seismic modeling activities include the temporal/spatial resolution of the atmospheric data, knowledge of the surface and subsurface terrain properties, and representation of ambient background noise and vibrations. Design of software tools that address these challenges is illustrated with two examples: a detailed target-to-sensor calculation application called the Sensor Performance Evaluator for Battlefield Environments (SPEBE) and a GIS-embedded approach called Battlefield Terrain Reasoning and Awareness (BTRA).

  15. In-flight measurement of the National Oceanic and Atmospheric Administration (NOAA)-10 static Earth sensor error

    NASA Technical Reports Server (NTRS)

    Harvie, E.; Filla, O.; Baker, D.

    1993-01-01

    Analysis performed in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD) measures error in the static Earth sensor onboard the National Oceanic and Atmospheric Administration (NOAA)-10 spacecraft using flight data. Errors are computed as the difference between Earth sensor pitch and roll angle telemetry and reference pitch and roll attitude histories propagated by gyros. The flight data error determination illustrates the effect on horizon sensing of systemic variation in the Earth infrared (IR) horizon radiance with latitude and season, as well as the effect of anomalies in the global IR radiance. Results of the analysis provide a comparison between static Earth sensor flight performance and that of scanning Earth sensors studied previously in the GSFC/FDD. The results also provide a baseline for evaluating various models of the static Earth sensor. Representative days from the NOAA-10 mission indicate the extent of uniformity and consistency over time of the global IR horizon. A unique aspect of the NOAA-10 analysis is the correlation of flight data errors with independent radiometric measurements of stratospheric temperature. The determination of the NOAA-10 static Earth sensor error contributes to realistic performance expectations for missions to be equipped with similar sensors.

  16. Correlated Observations of Epithermal Neutrons and Polar Illumination for Orbital Neutron Detectors

    NASA Technical Reports Server (NTRS)

    McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Malakhov, A.; Livengood, T.; hide

    2012-01-01

    We correlate Lunar Reconnaisance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and the Lunar Prospector Neutron Spectrometer's (LPNS) orbital epithermal neutron maps of the Lunar high-latitudes with co-registered illumination maps derived from the Lunar Orbiter Laser Altimeter (LOLA) topography. Epithermal neutron count rate maps were derived from the LEND: 1) Collimated Sensor for Epithermal Neutrons, CSETNI-4 2) Uncollimated Sensor for Epithermal Neutrons, SETN and the Uncollimated Lunar Prospector: 3) Low-altitude and 4) High-altitude mapping phases. In this abstract we illustrate 1) and 3) and include 2) and 4) in our presentation. The correlative study provides unique perspectives on the regional epithermal neutron fluences from the Lunar polar regions under different detector and altitude configurations.

  17. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an absence of surface water ice deposits, which is consistent with Viking Mars atmospheric water detector (MAWD) measurements which show low atmospheric water vapor abundances throughout the summer season.

  18. Development of lidar sensor for cloud-based measurements during convective conditions

    NASA Astrophysics Data System (ADS)

    Vishnu, R.; Bhavani Kumar, Y.; Rao, T. Narayana; Nair, Anish Kumar M.; Jayaraman, A.

    2016-05-01

    Atmospheric convection is a natural phenomena associated with heat transport. Convection is strong during daylight periods and rigorous in summer months. Severe ground heating associated with strong winds experienced during these periods. Tropics are considered as the source regions for strong convection. Formation of thunder storm clouds is common during this period. Location of cloud base and its associated dynamics is important to understand the influence of convection on the atmosphere. Lidars are sensitive to Mie scattering and are the suitable instruments for locating clouds in the atmosphere than instruments utilizing the radio frequency spectrum. Thunder storm clouds are composed of hydrometers and strongly scatter the laser light. Recently, a lidar technique was developed at National Atmospheric Research Laboratory (NARL), a Department of Space (DOS) unit, located at Gadanki near Tirupati. The lidar technique employs slant path operation and provides high resolution measurements on cloud base location in real-time. The laser based remote sensing technique allows measurement of atmosphere for every second at 7.5 m range resolution. The high resolution data permits assessment of updrafts at the cloud base. The lidar also provides real-time convective boundary layer height using aerosols as the tracers of atmospheric dynamics. The developed lidar sensor is planned for up-gradation with scanning facility to understand the cloud dynamics in the spatial direction. In this presentation, we present the lidar sensor technology and utilization of its technology for high resolution cloud base measurements during convective conditions over lidar site, Gadanki.

  19. Surface reflectance retrieval from satellite and aircraft sensors - Results of sensors and algorithm comparisons during FIFE

    NASA Technical Reports Server (NTRS)

    Markham, B. L.; Halthore, R. N.; Goetz, S. J.

    1992-01-01

    Visible to shortwave infrared radiometric data collected by a number of remote sensing instruments on aircraft and satellite platforms were compared over common areas in the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE) site on August 4, 1989, to assess their radiometric consistency and the adequacy of atmospheric correction algorithms. The instruments in the study included the Landsat 5 Thematic Mapper (TM), the SPOT 1 high-resolution visible (HRV) 1 sensor, the NS001 Thematic Mapper simulator, and the modular multispectral radiometers (MMRs). Atmospheric correction routines analyzed were an algorithm developed for FIFE, LOWTRAN 7, and 5S. A comparison between corresponding bands of the SPOT 1 HRV 1 and the Landsat 5 TM sensors indicated that the two instruments were radiometrically consistent to within about 5 percent. Retrieved surface reflectance factors using the FIFE algorithm over one site under clear atmospheric conditions indicated a capability to determine near-nadir surface reflectance factors to within about 0.01 at a reflectance of 0.06 in the visible (0.4-0.7 microns) and about 0.30 in the near infrared (0.7-1.2 microns) for all but the NS001 sensor. All three atmospheric correction procedures produced absolute reflectances to within 0.005 in the visible and near infrared. In the shortwave infrared (1.2-2.5 microns) region the three algorithms differed in the retrieved surface reflectances primarily owing to differences in predicted gaseous absorption. Although uncertainties in the measured surface reflectance in the shortwave infrared precluded definitive results, the 5S code appeared to predict gaseous transmission marginally more accurately than LOWTRAN 7.

  20. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

Top