Science.gov

Sample records for atmospheric material particles

  1. The atmosphere as particle detector

    NASA Technical Reports Server (NTRS)

    Stanev, Todor

    1990-01-01

    The possibility of using an inflatable, gas-filled balloon as a TeV gamma-ray detector on the moon is considered. By taking an atmosphere of Xenon gas there, or by extracting it on the moon, a layman's detector design is presented. In spite of its shortcomings, the exercise illustrates several of the novel features offered by particle physics on the moon.

  2. Atmospheric discharges and particle fluxes

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Chilingaryan, S.; Reymers, A.

    2015-07-01

    Fluxes of the electrons, gamma rays, and neutrons observed by particle detectors located on the Earth's surface during thunderstorms originate so-called Thunderstorm Ground Enhancements (TGEs). The relativistic runaway electron avalanches giving rise to TGEs originate in the thundercloud's lower dipole between the main negatively charged region in the middle of the thundercloud and transient lower positively charged region. Acceleration of electrons in the upper dipole between main negative and main positive charge regions leads to initiation of the terrestrial gamma flashes (TGFs) intensive researched during the last two decades by orbiting gamma ray observatories. TGFs are exceptionally intense, submillisecond bursts of electromagnetic radiation directed to the open space from the thunderstorm atmosphere. Unlike visible lightning, TGF beams do not create a hot plasma channel and optical flash; hence, in the literature they got name "dark lightning." We investigate the TGEs development in 1 min and 1 s time series of particle detector count rates. Synchronized time series of the near-surface electric field and lightning occurrences allows interconnecting two atmospheric phenomena. Registration of the Extensive Air Showers allows approaching problems of relation of the lightning occurrences and particle fluxes.

  3. Energetic Particle Influence on the Earth's Atmosphere

    NASA Astrophysics Data System (ADS)

    Mironova, Irina A.; Aplin, Karen L.; Arnold, Frank; Bazilevskaya, Galina A.; Harrison, R. Giles; Krivolutsky, Alexei A.; Nicoll, Keri A.; Rozanov, Eugene V.; Turunen, Esa; Usoskin, Ilya G.

    2015-11-01

    This manuscript gives an up-to-date and comprehensive overview of the effects of energetic particle precipitation (EPP) onto the whole atmosphere, from the lower thermosphere/mesosphere through the stratosphere and troposphere, to the surface. The paper summarizes the different sources and energies of particles, principally galactic cosmic rays (GCRs), solar energetic particles (SEPs) and energetic electron precipitation (EEP). All the proposed mechanisms by which EPP can affect the atmosphere are discussed, including chemical changes in the upper atmosphere and lower thermosphere, chemistry-dynamics feedbacks, the global electric circuit and cloud formation. The role of energetic particles in Earth's atmosphere is a multi-disciplinary problem that requires expertise from a range of scientific backgrounds. To assist with this synergy, summary tables are provided, which are intended to evaluate the level of current knowledge of the effects of energetic particles on processes in the entire atmosphere.

  4. Atmospheric Tar Balls: Particles From Biomass and Biofuel Burning

    NASA Astrophysics Data System (ADS)

    Posfai, M.; Gelencser, A.; Simonics, R.; Arato, K.; Li, J.; Hobbs, P. V.; Buseck, P. R.

    2003-12-01

    'Tar balls,' amorphous carbonaceous spherules that are locally abundant in the tropospheric aerosol through biomass and biofuel burning, form a distinct group of particles, readily identifiable with electron microscopy. They differ from soot in lacking a turbostratic microstructure, and their morphology and composition (~90 mol% carbon) renders them distinct from other carbonaceous particles. Tar balls are abundant in slightly aged (minutes to hours) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. Although the material of tar balls is initially hygroscopic, the particles become largely insoluble through free radical polymerization of their organic molecules. Tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When they coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may slightly absorb sunlight. They are a widespread and previously unrecognized type of carbonaceous (organic) atmospheric particle.

  5. Morphology, composition, and atmospheric processing of soot particles

    NASA Astrophysics Data System (ADS)

    Slowik, Jay G.

    Combustion-generated soot aerosols play an important role in climate forcing due to their strong light-absorbing properties. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. The task is further complicated because of the lack of an unambiguous chemical definition of the material. Here we present the development and application of a new technique for determining particle morphology and composition. Simultaneous measurements of mobility diameter, vacuum aerodynamic diameter, and non-refractory composition were used to determine the particle mass, volume, density, composition, dynamic shape factor, and fractal dimension. Under certain conditions, particle surface area and the number and size of the primary spherules composing the soot fractal aggregates were also determined. The particle characterization technique described above was applied to the following four studies: (1) Characterization of flame-generated soot particles. Depending on flame conditions, either fractal or near-spherical particles were generated and their properties interpreted in terms of the mechanism for soot formation. (2) Coating and denuding experiments were performed on soot particles. The results yielded information about morphology changes to the entire soot particle and to the internal black carbon structure due to atmospheric processing. The denuding experiments also provided particle surface area, which was used to determine the atmospheric lifetime of fractal soot particles relative to spheres. (3) An inter-comparison study of instruments measuring the black carbon content of soot particles was conducted. The detailed characterization of soot particles enabled a number of assumptions about the operation of the selected instruments to be tested. (4) Ambient particles were sampled in Mexico City. In the early morning, ambient particles were detected with a fractal morphology similar to that of diesel

  6. Vapor scavenging by atmospheric aerosol particles

    SciTech Connect

    Andrews, E.

    1996-05-01

    Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

  7. Particle Size Distributions in Atmospheric Clouds

    DTIC Science & Technology

    2003-12-01

    UNCLASSIFIED Center for Turbulence Research 39 Annual Research Briefs 2003 Particle size distributions in atmospheric clouds By Roberto Paoli & Karim...atmospheric turbulence is an important, though complex, problem in cloud physics ( Shaw 2003). From a computational point of view, two major factors...contribute to this complexity. First is the very high turbulence Reynolds number and the large range of spatial scales (Vaillancourt & Yau 2000; Shaw 2003

  8. Particle Size Distributions in Atmospheric Clouds

    NASA Technical Reports Server (NTRS)

    Paoli, Roberto; Shariff, Karim

    2003-01-01

    In this note, we derive a transport equation for a spatially integrated distribution function of particles size that is suitable for sparse particle systems, such as in atmospheric clouds. This is done by integrating a Boltzmann equation for a (local) distribution function over an arbitrary but finite volume. A methodology for evolving the moments of the integrated distribution is presented. These moments can be either tracked for a finite number of discrete populations ('clusters') or treated as continuum variables.

  9. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  10. Laser plasma emission of small particles in different gas atmospheres

    NASA Astrophysics Data System (ADS)

    Andreev, Alexander A.; Ueda, Toshitsugu; Wakamatsu, Muneaki

    2002-06-01

    The problem of laser pulse interaction with small solid particles in a gas atmosphere when detecting its parameters is a serous one in industrial and environmental applications. Previous investigations have shown the possibility of using the laser induced breakdown method. This method is very sensitive, but for a particle size of less than 0.1 micrometers the damage threshold of the solid target is very close to the breakdown point of pure gas. At breakdown, a small volume of dense hot plasma emits radiation by which the size and material of particles can be detected. We used an analytical model, simulation code and experiments to analyze this radiation and found that the emitted intensity varied with laser, gas and particle parameters. The increased dependence of SSP plasma emission rate on initial particle volume permits this method to be used for measuring small particle size by using emitted line spectrum at the late time stage.

  11. Genotoxicity of organic extracts from atmospheric particles

    SciTech Connect

    Courtois, Y.A.; Min, S.; Lachenal, C.; Jacquot-Deschamps, J.M.; Callais, F.; Festy, B.

    1988-01-01

    Experiments to evaluate the genotoxic potentialities of urban air particles sampled in Paris (France) after organic solvent extraction have been carried out using four in vitro genotoxicity tests. The two bacterial tests (the Ames test and the SOS Chromotest) demonstrate the genotoxicity of the organic extracts of atmospheric particles; two additional tests (induction of 6-thioguanine mutants and sister chromatid exchanges), carried out on V79 Chinese hamster cells, also confirm these potentialities. These results show clearly that particulate organic extracts induce point mutations in both bacteria and mammalian cells, or the cellular response (SOS repair) to these mutations in bacteria; likewise, they are responsible for clastogenic effects in mammalian cells. Genotoxicity is due either to direct genotoxic chemicals or to active metabolic products of the action of microsomal enzymes. The optimalization of testing procedures is discussed in order to appreciate the contribution of genotoxicity tests to the study of atmospheric pollution.

  12. Particle Suspension Mechanisms - Supplemental Material

    SciTech Connect

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  13. A marine biogenic source of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Ladino, Luis A.; Alpert, Peter A.; Breckels, Mark N.; Brooks, Ian M.; Browse, Jo; Burrows, Susannah M.; Carslaw, Kenneth S.; Huffman, J. Alex; Judd, Christopher; Kilthau, Wendy P.; Mason, Ryan H.; McFiggans, Gordon; Miller, Lisa A.; Nájera, Juan J.; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L.; Si, Meng; Temprado, Jesús Vergara; Whale, Thomas F.; Wong, Jenny P. S.; Wurl, Oliver; Yakobi-Hancock, Jacqueline D.; Abbatt, Jonathan P. D.; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-01

    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean.

  14. A marine biogenic source of atmospheric ice-nucleating particles.

    PubMed

    Wilson, Theodore W; Ladino, Luis A; Alpert, Peter A; Breckels, Mark N; Brooks, Ian M; Browse, Jo; Burrows, Susannah M; Carslaw, Kenneth S; Huffman, J Alex; Judd, Christopher; Kilthau, Wendy P; Mason, Ryan H; McFiggans, Gordon; Miller, Lisa A; Nájera, Juan J; Polishchuk, Elena; Rae, Stuart; Schiller, Corinne L; Si, Meng; Temprado, Jesús Vergara; Whale, Thomas F; Wong, Jenny P S; Wurl, Oliver; Yakobi-Hancock, Jacqueline D; Abbatt, Jonathan P D; Aller, Josephine Y; Bertram, Allan K; Knopf, Daniel A; Murray, Benjamin J

    2015-09-10

    The amount of ice present in clouds can affect cloud lifetime, precipitation and radiative properties. The formation of ice in clouds is facilitated by the presence of airborne ice-nucleating particles. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice. Sea-spray aerosol contains large amounts of organic material that is ejected into the atmosphere during bubble bursting at the organically enriched sea-air interface or sea surface microlayer. Here we show that organic material in the sea surface microlayer nucleates ice under conditions relevant for mixed-phase cloud and high-altitude ice cloud formation. The ice-nucleating material is probably biogenic and less than approximately 0.2 micrometres in size. We find that exudates separated from cells of the marine diatom Thalassiosira pseudonana nucleate ice, and propose that organic material associated with phytoplankton cell exudates is a likely candidate for the observed ice-nucleating ability of the microlayer samples. Global model simulations of marine organic aerosol, in combination with our measurements, suggest that marine organic material may be an important source of ice-nucleating particles in remote marine environments such as the Southern Ocean, North Pacific Ocean and North Atlantic Ocean.

  15. Images reveal that atmospheric particles can undergo liquid-liquid phase separations

    NASA Astrophysics Data System (ADS)

    Bertram, A. K.; You, Y.; Renbaum-Wolff, L.; Carreras-Sospedra, M.; Hiranuma, N.; Smith, M.; Zhang, X.; Weber, R.; Shilling, J. E.; Dabdub, D.; Martin, S. T.

    2012-12-01

    A large fraction of submicron atmospheric particles contain both organic material and inorganic salts. As the relative humidity cycles in the atmosphere, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semi-volatile organic compounds, the scattering and absorption of solar radiation, and the uptake of reactive gas species on atmospheric particles may be affected. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two non-crystalline phases in particles generated from samples collected on multiple days in Atlanta, Georgia, and in particles generated in the laboratory using simulated atmospheric conditions. These results show that atmospheric particles can undergo liquid-liquid phase separations.

  16. Atmospheric tar balls: Particles from biomass and biofuel burning

    NASA Astrophysics Data System (ADS)

    Pósfai, MiháLy; GelencséR, AndráS.; Simonics, RenáTa; Arató, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2004-03-01

    "Tar balls" are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (˜90 mol % carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

  17. Atmospheric Tar Balls: Particles from Biomass and Biofuel Burning

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Gelencser, Andras; Simonics, Renata; Arato, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2004-01-01

    Tar balls are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (approximately 90 mol% carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

  18. Nucleation and Growth of Atmospheric Particles

    SciTech Connect

    McMurry, P.; Kuang, C.; Barsanti, K.; Eisele, F.; Friedli, H.; Scheckman, J.; Titcombe, M.; Williams, B.; Zhao, J.; Smith, J.

    2010-03-15

    New particle formation (NPF) in the atmospheric is a two-step process: Nucleation leads to the birth of stable nuclei that subsequently grow to sizes that can be detected and affect the atmosphere’s radiative properties. Our group is studying both of these processes. Our nucleation research is largely supported by NSF and involves measurements of neutral molecular clusters formed by nucleation with a new custom-designed mass spectrometer (the Cluster-CIMS) and measurements of nanoparticle size distributions as small as 1 nm with a new aerosol spectrometer (the DEG SMPS). These measurements are providing new insights into aspects of cluster behavior that affect nucleation rates. The U.S. DOE supports our research on nanoparticle growth rates. This research couples physical and chemical measurements of aerosol properties and behavior. The TDCIMS, which enables real-time measurements of composition for freshly nucleated particles as small as 8 nm and was developed with support from DOE, is the most important tool in this work. Our most important discoveries about processes that affect growth rates are summarized in a recent PNAS article (doi:10.1073/pnas.0912127107). In short, this work has shown that alkylammonium-carboxylate salts, formed, for example, by reactions between amines and carboxylic acids, account for 20–50% of the mass of freshly nucleated particles in locations that include Atlanta, Mexico City, Boulder, and Hyytiälä, while sulfates account for only about 10%. These newly discovered compounds help to explain the high growth rates of freshly nucleated particles that have been observed around the globe and help to explain why nucleation is an important atmospheric process, not just a scientific curiosity. Our poster will provide an overview of this work.

  19. Chemical mechanisms governing atmospheric new particle formation

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan Richard

    The goal of this dissertation is to understand the chemistry that governs new particle formation, a ubiquitous and important atmospheric process. New particle formation occurs when gas phase precursors condense to create small molecular clusters on the order of 1 nm diameter. Those clusters must then grow rapidly and ultimately may serve as the seeds for cloud droplets. However, modelers have substantial difficulty predicting the frequency and efficiency of new particle formation. This predictive difficulty is an important contributor to the uncertainty in aerosol effects on global climate and therefore also contributes to the large uncertainty in anthropogenic effects on climate. To reduce these uncertainties, a more precise understanding of how particles nucleate and grow in the atmospheric is required. In this dissertation, mass spectrometry is used to determine the chemical processes involved in new particle formation. Gas phase species such as sulfuric acid, ammonia, amines, and organic matter are contributors but exactly how and how much each contributes to the growth of nanoparticles is not well understood. Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and Nano Aerosol Mass Spectrometry (NAMS) are used to study the chemical composition and reactivity of clusters < 3 nm diameter and nanoparticles 10-20 nm diameter, respectively. The FTICR-MS studies are laboratory based, whereas the NAMS studies are field based. Measurements of cluster composition and reactivity using FTICR-MS permit prediction of the composition of ambient molecular clusters. For ambient molecular clusters to become relevant to climate by serving as cloud condensation nuclei, they must grow rapidly. NAMS measurements at 20 nm diameter permit determination of nanoparticle growth pathways. This dissertation shows that sulfuric acid adds to both clusters and nanoparticles in a collision limited manner. On the other hand, ammonia uptake in both size regimes may not

  20. Atmospheric and environmental impacts of volcanic ash particle emissions

    NASA Astrophysics Data System (ADS)

    Durant, Adam

    2010-05-01

    Globally, at any one time, there may be 20 volcanoes erupting that collectively emit a constant flux of gases and aerosol, including silicate particles (tephra), to the atmosphere which influences processes including cloud microphysics, heterogeneous chemistry and radiative balance. The nature and impact of atmospheric volcanic particle fluxes depend on total mass erupted, emission rate, emission source location, physical and chemical properties of the particles, and the location and residence time of the particles in the atmosphere. Removal of ash particles from the atmosphere through sedimentation is strongly influenced by particle aggregation through hydrometeor formation, and convective instabilities such as mammatus. I will address the following questions: What are the atmospheric impacts of volcanic ash emissions? What controls the residence time of volcanic particles in the atmosphere? What affects particle accumulation at the surface? And what are the human and environmental impacts of ash fallout?

  1. Nanoporous Materials in Atmosphere Revitalization. Chapter 1

    NASA Technical Reports Server (NTRS)

    Hernandez-Maldonado, J.; Ishikawa, Yasuyuki; Luna, Bernadette; Junaedi, Christian; Mulloth, Lila; Perry, Jay L.; Raptis, Raphael G.; Roychoudhury, Subir

    2012-01-01

    Atmospheric Revitalization (AR) is the term the National Aeronautics and Space Administration (NASA) uses to encompass the engineered systems that maintain a safe, breathable gaseous atmosphere inside a habitable space cabin. An AR subsystem is a key part of the Environmental Control and Life Support (ECLS) system for habitable space cabins. The ultimate goal for AR subsystem designers is to 'close the loop', that is, to capture gaseous human metabolic products, specifically water vapor (H2O) and Carbon dioxide (CO2), for maximal Oxygen (o2) recovery and to make other useful resources from these products. The AR subsystem also removes trace chemical contaminants from the cabin atmosphere to preserve cabin atmospheric quality, provides O2 and may include instrumentation to monitor cabin atmospheric quality. Long duration crewed space exploration missions require advancements in AR process technologies in order to reduce power consumption and mass and to increase reliability compared to those used for shorter duration missions that are typically limited to Low Earth Orbit. For example, current AR subsystems include separate processors and process air flow loops for removing metabolic CO2 and volatile organic tract contaminants (TCs). Physical adsorbents contained in fixed, packed beds are employed in these processors. Still, isolated pockets of high carbon dioxide have been suggested as a trigger for crew headaches and concern persists about future cabin ammonia (NH3) levels as compared with historical flights. Developers are already focused on certain potential advancements. ECLS systems engineers envision improving the AR subsystem by combining the functions of TC control and CO2 removal into a single regenerable process and moving toward structured sorbents - monoliths - instead of granular material. Monoliths present a lower pressure drop and eliminate particle attrition problems that result from bed containment. New materials and configurations offer promise for

  2. A marine biogenic source of atmospheric ice-nucleating particles

    SciTech Connect

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  3. A marine biogenic source of atmospherically relevant ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Wilson, Theodore W.; Ladino, Luis A.; Alpert, Peter A.; Chance, Rosie; Whale, Thomas F.; Vergara Temprado, Jesús; Burrows, Susannah M.; Breckels, Mark N.; Kilthau, Wendy P.; Browse, Jo; Bertram, Allan K.; Miller, Lisa A.; Carpenter, Lucy J.; Hamilton, Jacqui F.; Carslaw, Kenneth S.; Brooks, Ian M.; Abbatt, Jonathan P. D.; Aller, Josephine Y.; Knopf, Daniel A.; Murray, Benjamin J.

    2016-04-01

    There are limited observations describing marine sources of ice nucleating particles (INPs), despite sea spray aerosol being one of the dominant sources of atmospheric particles globally. Evidence indicates that some marine aerosol particles act as INPs, but the source of these particles is unclear. The sea surface microlayer is enriched in surface active organic material representative of that found in sub-micron sea-spray aerosol. We show that the sea surface microlayer is enriched in INPs that nucleate ice under conditions pertinent to both high-altitude ice clouds and low to mid-altitude mixed-phase clouds. The INPs pass through 0.2 μm pore filters, are heat sensitive and spectroscopic analysis indicates the presence of material consistent with phytoplankton exudates. Mass spectrometric analysis of solid phase extracted dissolved organic material from microlayer and sub-surface water samples showed that the relative abundance of certain ions correlated with microlayer ice nucleation activity. However, these ions were not themselves directly responsible for ice nucleation. We propose that material associated with phytoplankton exudates is a candidate for the observed activity of the microlayer samples. We show that laboratory produced exudate from a ubiquitous marine diatom contains INPs despite its separation from diatom cells. Finally we use a parameterisation of our field data to estimate the atmospheric INP contribution from primary marine organic emissions using a global model and test the model against existing INP measurements in the remote oceans. We find that biogenic marine INPs can be dominant in remote marine environments, such as the Southern Ocean.

  4. Sea salt particles react with organic acids in atmosphere

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-10-01

    Sea salt, or sodium chloride (NaCl), particles lofted into the atmosphere by the motion of ocean waves affect atmospheric chemistry; these particles can undergo reactions with trace atmospheric gases and internal mixing with anthropogenic pollutants depositing on particle surface. Several studies have found that NaCl particles in the atmosphere are depleted in chloride and have attributed this to reactions with inorganic acids. However, reactions with inorganic acids do not fully account for the observed chloride depletion in some locations; it has been suggested that organic acids, likely of anthropogenic origin, may also play a role in chloride depletion, but results have been uncertain.

  5. Progress in the analysis of complex atmospheric particles

    SciTech Connect

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; Wang, Bingbing; China, Swarup

    2016-06-01

    This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

  6. Progress in the Analysis of Complex Atmospheric Particles

    SciTech Connect

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; Wang, Bingbing; China, Swarup

    2016-06-16

    This manuscript presents an overview on recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surfaces interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multi-modal chemical characterization of particles with both molecular and lateral specificity. When combined, they provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore environmental effects of air-surface interactions.

  7. Progress in the Analysis of Complex Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; Wang, Bingbing; China, Swarup

    2016-06-01

    This article presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecular and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.

  8. Catching Comet's Particles in the Earth's Atmosphere by Using Balloons

    NASA Astrophysics Data System (ADS)

    Potashko, Oleksandr; Viso, Michel

    The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use

  9. A global view of atmospheric ice particle complexity

    NASA Astrophysics Data System (ADS)

    Schmitt, Carl G.; Heymsfield, Andrew J.; Connolly, Paul; Järvinen, Emma; Schnaiter, Martin

    2016-11-01

    Atmospheric ice particles exist in a variety of shapes and sizes. Single hexagonal crystals like common hexagonal plates and columns are possible, but more frequently, atmospheric ice particles are much more complex. Ice particle shapes have a substantial impact on many atmospheric processes through fall speed, affecting cloud lifetime, to radiative properties, affecting energy balance to name a few. This publication builds on earlier work where a technique was demonstrated to separate single crystals and aggregates of crystals using particle imagery data from aircraft field campaigns. Here data from 10 field programs have been analyzed and ice particle complexity parameterized by cloud temperature for arctic, midlatitude (summer and frontal), and tropical cloud systems. Results show that the transition from simple to complex particles can be as small as 80 µm or as large as 400 µm depending on conditions. All regimes show trends of decreasing transition size with decreasing temperature.

  10. Multifractal analysis of atmospheric sub-micron particle data

    NASA Astrophysics Data System (ADS)

    Arizabalo, Rubén Darío; González-Ávalos, Eugenio; Korvin, Gabor

    2015-03-01

    Multifractal analysis was used to describe air pollution by sub-micrometric atmospheric particles. Atmospheric particle concentrations were studied from March 31 to April 21, 2006, as part of the MILAGRO campaign at the Jasso Station by means of an SMPS. Sixteen campaign days were selected to carry out the multifractal analysis of the experimental data through Singularity Spectra f(α). In this work, the roughness/smoothness feature of atmospheric particle distributions was studied by means of the Hölder exponent (α), which can be associated with the intensity of particle emissions through time and the randomness of the external emission sources. Multifractal analysis has been found to be a useful tool to establish intensity fluctuations of atmospheric data.

  11. Can lipids form crystalline films on atmospheric particles?

    NASA Astrophysics Data System (ADS)

    Aumann, E.; Cabrera, J.; Tabazadeh, A.

    2006-12-01

    Many studies assume that fatty acids or lipids can readily form films on aqueous particles in the atmosphere since fatty acids are known to be very strong film forming agents. Specifically, stearic acid is often used in laboratory and modeling studies to mimic the composition of particle surfaces in the atmosphere. For most industrial and engineering purposes, lipid films are spread over aqueous surfaces by first dissolving the lipid in an organic solvent, such as hexane. When hexane evaporates from the lipid/hexane mixture, a crystalline lipid film is left behind on the aqueous surface. Lipids in atmospheric particles, like stearic acid, are primarily emitted as oil drops that form crystals when cooled. In the atmosphere, lipid crystalline particulate matter can coagulate with aqueous particles to produce mixed aerosols, containing lipids in aqueous solutions. We used laboratory measurements to determine the rate of stearic acid crystal spreading on water in the absence of on organic solvent. From these measurements, we show that the time required to spread a lipid crystal on an aqueous surface to produce a film is much longer than a typical 2-week lifetime of an atmospheric particle. Therefore, we suggest that lipids, capable of forming crystalline, impermeable films on particle surfaces, are most likely tied up in a crystalline phase during their lifecycle in the atmosphere.

  12. Progress in the analysis of complex atmospheric particles

    DOE PAGES

    Laskin, Alexander; Gilles, Mary K.; Knopf, Daniel A.; ...

    2016-06-01

    This study presents an overview of recent advances in field and laboratory studies of atmospheric particles formed in processes of environmental air-surface interactions. The overarching goal of these studies is to advance predictive understanding of atmospheric particle composition, particle chemistry during aging, and their environmental impacts. The diversity between chemical constituents and lateral heterogeneity within individual particles adds to the chemical complexity of particles and their surfaces. Once emitted, particles undergo transformation via atmospheric aging processes that further modify their complex composition. We highlight a range of modern analytical approaches that enable multimodal chemical characterization of particles with both molecularmore » and lateral specificity. When combined, these approaches provide a comprehensive arsenal of tools for understanding the nature of particles at air-surface interactions and their reactivity and transformations with atmospheric aging. We discuss applications of these novel approaches in recent studies and highlight additional research areas to explore the environmental effects of air-surface interactions.« less

  13. Measurement of the nucleation of atmospheric aerosol particles.

    PubMed

    Kulmala, Markku; Petäjä, Tuukka; Nieminen, Tuomo; Sipilä, Mikko; Manninen, Hanna E; Lehtipalo, Katrianne; Dal Maso, Miikka; Aalto, Pasi P; Junninen, Heikki; Paasonen, Pauli; Riipinen, Ilona; Lehtinen, Kari E J; Laaksonen, Ari; Kerminen, Veli-Matti

    2012-09-01

    The formation of new atmospheric aerosol particles and their subsequent growth have been observed frequently at various locations all over the world. The atmospheric nucleation rate (or formation rate) and growth rate (GR) are key parameters to characterize the phenomenon. Recent progress in measurement techniques enables us to measure atmospheric nucleation at the size (mobility diameter) of 1.5 (±0.4) nm. The detection limit has decreased from 3 to 1 nm within the past 10 years. In this protocol, we describe the procedures for identifying new-particle-formation (NPF) events, and for determining the nucleation, formation and growth rates during such events under atmospheric conditions. We describe the present instrumentation, best practices and other tools used to investigate atmospheric nucleation and NPF at a certain mobility diameter (1.5, 2.0 or 3.0 nm). The key instruments comprise devices capable of measuring the number concentration of the formed nanoparticles and their size, such as a suite of modern condensation particle counters (CPCs) and air ion spectrometers, and devices for characterizing the pre-existing particle number concentration distribution, such as a differential mobility particle sizer (DMPS). We also discuss the reliability of the methods used and requirements for proper measurements and data analysis. The time scale for realizing this procedure is 1 year.

  14. [Distribution of atmospheric ultrafine particles during haze weather in Hangzhou].

    PubMed

    Chen, Qiu-Fang; Sun, Zai; Xie, Xiao-Fang

    2014-08-01

    Atmospheric ultrafine particles (UFPs) were monitored with fast mobility particle sizer (FMPS) in continuous haze weather and the haze fading process during December 6 to 11, 2013 in Hangzhou. Particle concentration and size distribution were studied associated with meteorological factors. The results showed that number concentrations were the highest at night and began to reduce in the morning. There was a small peak at 8 o'clock in the morning and 18 o'clock in the afternoon. It showed an obvious peak traffic source, which indicated that traffic emissions played a great role in the atmospheric pollution. During haze weather, the highest number concentration of UFPs reached 8 x 10(4) cm(-3). Particle size spectrum distribution was bimodal, the peak particle sizes were 15 nm and 100 nm respectively. Majority of UFPs were Aitken mode and Accumulation mode and the size of most particles concentrated near 100 nm. Average CMD(count medium diameter) was 85.89 nm. During haze fading process, number concentration and particles with size around 100 nm began to reduce and peak size shifted to small size. Nuclear modal particles increased and were more than accumulation mode. Average CMD was 58.64 nm. Meteorological factors such as the visibility and wind were negatively correlated with the particle number concentration. Correlation coefficient R were -0.225 and - 0.229. The humidity was correlated with number concentration. Correlation coefficient R was 0.271. The atmosphere was stable in winter and the level temperature had small correlation with number concentration. Therefore, study on distribution of atmospheric ultrafine particles during haze weather had the significance on the formation mechanism and control of haze weather.

  15. Particle Rebound and Phase State of Secondary Organic Material

    NASA Astrophysics Data System (ADS)

    Bateman, A.; Bertram, A. K.; Martin, S. T.

    2014-12-01

    Secondary organic material (SOM) is produced in the atmosphere from the oxidation of volatile organic compounds emitted from anthropogenic and biogenic sources. Aerosol particles, composed in part of SOM, play important roles in climate and air quality by scattering/absorbing radiation and serving as cloud condensation nuclei (CCN). The magnitude of climate-relevant perturbations depends on particle chemical composition, hygroscopic growth, and phase state, among other factors. Herein, the hygroscopic influence on particle rebound and the phase state of particles composed of isoprene, toluene, and α-pinene secondary organic material (SOM) was studied. Particle rebound measurements were obtained from 5 to 95% RH using a three-arm impaction apparatus. The experimentally determined rebound fractions were compared with results from a model of the rebound process that took into account the particle kinetic energy, van der Waals forces, and RH-dependent capillary forces. Comparison of the experimental and modeled indicated particles softened due to water uptake. For low RH values, the model explained the rebound behavior for all studied SOMs. At higher RH values specific to each SOM, however, particle rebound was no longer observed, and the model did not capture this behavior. Calibration experiments using sucrose particles of variable known viscosities showed the transition from non-rebounding to rebounding particles occurred for viscosity values from 100 to 1 Pa s, corresponding to a transition from semisolid to liquid material. The implication of the differing RH-dependent behaviors among the SOMs is that each SOM has a specific and quantitatively different interaction with water. A linear correlation between rebound fraction and hygroscopic growth factor was demonstrated, implying that absorbed water volume is the governing factor of viscosity for the studied classes of SOM. The findings of this study suggest that both the chemical composition and the ambient

  16. Impact of particle formation on atmospheric ions and particle number concentrations in an urban environment

    NASA Astrophysics Data System (ADS)

    Cheung, H. C.; Chou, C. C.-K.; Jayaratne, E. R.; Morawska, L.

    2015-04-01

    A measurement campaign was conducted from 3 to 19 December 2012 at an urban site of Brisbane, Australia. Size distribution of ions and particle number concentrations were measured to investigate the influence of particle formation and biomass burning on atmospheric ion and particle concentrations. Overall ion and particle number concentrations during the measurement period were found to be (- 1.2 × 103 cm- 3 | + 1.6 × 103 cm- 3) and 4.4 × 103, respectively. The results of correlation analysis between concentrations of ions and nitrogen oxides indicated that positive and negative ions originated from similar sources, and that vehicle exhaust emissions had a more significant influence on intermediate/large ions, while cluster ions rapidly attached to larger particles once emitted into the atmosphere. Diurnal variations in ion concentration suggested the enrichment of intermediate and large ions on new particle formation event days, indicating that they were involved in the particle formation processes. Elevated total ions, particularly larger ions, and particle number concentrations were found during biomass burning episodes. This could be due to the attachment of cluster ions onto accumulation mode particles or production of charged particles from biomass burning, which were in turn transported to the measurement site. The results of this work enhance scientific understanding of the sources of atmospheric ions in an urban environment, as well as their interactions with particles during particle formation processes.

  17. Biological particles capable of triggering ice nucleation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Felgitsch, Laura; Bichler, Magdalena; Vogel, André; Häusler, Thomas; Grothe, Hinrich

    2016-04-01

    Ice-nucleating particles (INPs) have a huge impact on atmospheric processes, since they can trigger ice cloud formation. In general, ice clouds interfere with the radiation balance of planet Earth effectively at high altitudes. Since ambient matter of biological origin tends to have rather large aerodynamic diameters, it exhibits a fast sinking velocity and can only reach limited altitudes. Therefore, research focused on materials found in higher quantities in the upper atmosphere. However, recent findings indicate that the role of biological INPs has been underestimated in the past. In 2012 Pummer and colleagues found that the INPs from birch pollen can be washed off and constitute of macromolecules in the size-range of a few nanometres. With such a small diameter, they show a much longer life span in the upper atmosphere than expected. Further, Huffman and colleagues showed in 2013 a burst of biological INPs over woodlands triggered by rain events, which matches the finding of Pummer et al. well. Plants originating from the northern timberline experience harsh conditions with night frost even during the warm seasons. To prevent frost damages, those plants developed coping mechanisms. Many plant species, which are domestic in cold weather zones, exhibit ice nucleation activity. Therefore, it is important to examine those plants to understand the scale at which biological INPs can be emitted. For the presented results we focus on two types of samples: Berries and tree pollen. Both belong to plants domestic at the northern timberline. With our results we are able to show that INPs are spread vastly throughout different species. Furthermore, all those INPs show certain similarities to each other, most importantly, all of the found INPs seem to be associated to macromolecules in the nano-particulate size range. We examined the INPs from birch pollen more closely. Results indicate that proteins play a major role. Pummer, B., Bauer, H., Bernardi, J., Bleicher, S

  18. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  19. The effect of atmospheric pollution on building materials

    NASA Astrophysics Data System (ADS)

    Grossi, C. M.; Brimblecombe, P.

    2002-11-01

    This chapter surveys main effects of atmospheric pollution on building materials. It summarises these effects on stone, bricks, mortar, concrete, glass, metals (iron, zinc, copper, bronze, aluminium, lead and silver), polymers, paints and timber. Special attention is paid to stone because of its extensive use as building material in the cultural heritage. In general, main damaging agent is sulfur dioxide which leads to sulfation of many materials, particularly carbonate-bearing stones. However, the decline of sulfur dioxide in cities means that the recognition of the prime role of this pollutant presents something of a dilemma. It is increasingly necessary to consider other substances that can contribute to material decay e.g. nitrogen oxides, chlorides and ozone, either acting as synergistic to the sulfation reaction or as main decay agents, such as the case of aluminium and polymers. Particulate matter often from diesel vehicles can also accelerate the oxidation of SO2 on the surface (traditionally sulfur dioxide with Fe-rich particles) and blacken the materials surface in the case of soot. These processes contribute to the formation of black-crusts when embedded in the gypsum layer resulting from the material sulfation, but again the rate in the modem atmosphere is a matter of much research.

  20. Evaluation of energetic particle effects on BUV data and atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Herman, J. R.

    1977-01-01

    To aid investigations of energetic particle effects on the backscattered ultraviolet (BUV) instrumentation aboard Nimbus 4, solar proton events characterized as polar cap absorption events occurring in the period April 1970 to April 1976 were summarized. Energetic particle effects on total ozone above the 4 mb pressure level measured by Nimbus 4 were analyzed. Proceedings of a workshop meeting of operation aurorozone are included as background material for possible effects of bremsstrahlung on atmospheric ozone.

  1. Meteoric Material: An Important Component of Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Grebowsky, Joseph M.; Moses, Julianne I.; Pesnell, W. Dean; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Interplanetary dust particles (IDPs) interact with all planetary atmospheres and leave their imprint as perturbations of the background atmospheric chemistry and structure. They lead to layers of metal ions that can become the dominant positively charged species in lower ionospheric regions. Theoretical models and radio occultation measurements provide compelling evidence that such layers exist in all planetary atmospheres. In addition IDP ablation products can affect neutral atmospheric chemistry, particularly at the outer planets where the IDPs supply oxygen compounds like water and carbon dioxide to the upper atmospheres. Aerosol or smoke particles from incomplete ablation or recondensation of ablated IDP vapors may also have a significant impact on atmospheric properties.

  2. Heterogeneous oxidation of carbonyl sulfide on atmospheric particles and alumina.

    PubMed

    He, Hong; Liu, Junfeng; Mu, Yujing; Yu, Yunbo; Chen, Meixue

    2005-12-15

    Heterogeneous oxidation of carbonyl sulfide (OCS) on atmospheric particles and alumina (Al2O3) was investigated in a closed system and a flowed system using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). At room temperature, OCS could be catalytically oxidized on the surface of atmospheric particles and Al2O3 to form gas-phase CO2 and surface sulfate (SO4(2-)), sulfite (HSO3-), and hydrogen carbonate (HCO3-) species. The real atmospheric particles were characterized using X-ray fluorescence (XRF) and the Brunauer-Emmett-Teller (BET) method. As a simplified model, Al2O3 was used to study the reaction mechanism of heterogeneous oxidation of OCS. The hydrogen thiocarbonate surface (HSCO2-) species, an intermediate formed in the reaction of OCS with surface hydroxyl (OH), could only be observed on the prereduced Al2O3 sample. The experimental results also indicate that surface oxygen containing species on the atmospheric particle sample and the Al2O3 sample might be the key reactant for OCS oxidation. A reaction mechanism of heterogeneous oxidation of OCS on Al2O3 surface is discussed.

  3. Power Spectral Densities of Atmospheric Aerosol Particle Counts

    DTIC Science & Technology

    2010-01-01

    directly by absorbing and scattering radiation and indirectly by acting as cloud condensation nuclei (CCN). They are also important in atmospheric...are generated photochemically from vapor-phase terpenes emitted by plants; and combustion-generated particles from vehicular traffic, biomass

  4. Optical properties, morphology and elemental composition of atmospheric particles at T1 supersite on MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2012-03-01

    Atmospheric particles were sampled at T1 supersite during MILAGRO campaign, in March 2006. T1 was located at the north of Mexico City (MC). Aerosol sampling was done by placing copper grids for Transmission Electron Microscope (TEM) on the last five of an 8-stage MOUDI cascade impactor. Samples were obtained at different periods to observe possible variations on morphology. Absorption and scattering coefficients, as well as particle concentrations (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PSAP absorption photometer, a portable integrating nephelometer, and a CPC particle counter. Particle images were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system, and then calculated the border-based fractal dimension. Also, Energy Dispersive X-Ray Spectroscopy (EDS) was used to determine the elemental composition of particles. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension to relate it to the other particle properties, because T1-generated particles have optical, morphological and chemical properties different from those transported by the MC plume. Particles sampled under MC pollution influence showed not much variability, suggesting that more spherical particles (border-based fractal dimension close to 1.0) are more common in larger sizes (d50 = 1.8 μm), which may be attributed to aerosol aging and secondary aerosol formation. Between 06:00 and 09:00 a.m., smaller particles (d50 = 0.18 μm) had more irregular shapes resulting in higher border-based fractal dimensions (1.2-1.3) for samples with more local influence. EDS analysis in d50 = 0.18 μm particles showed high contents of carbonaceous material, Si, Fe, K, and Co. Perhaps, this indicates an impact from industrial and vehicle emissions on atmospheric particles at T1.

  5. Particle precipitation: How the spectrum fit impacts atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wissing, J. M.; Nieder, H.; Yakovchouk, O. S.; Sinnhuber, M.

    2016-11-01

    Particle precipitation causes atmospheric ionization. Modeled ionization rates are widely used in atmospheric chemistry/climate simulations of the upper atmosphere. As ionization rates are based on particle measurements some assumptions concerning the energy spectrum are required. While detectors measure particles binned into certain energy ranges only, the calculation of a ionization profile needs a fit for the whole energy spectrum. Therefore the following assumptions are needed: (a) fit function (e.g. power-law or Maxwellian), (b) energy range, (c) amount of segments in the spectral fit, (d) fixed or variable positions of intersections between these segments. The aim of this paper is to quantify the impact of different assumptions on ionization rates as well as their consequences for atmospheric chemistry modeling. As the assumptions about the particle spectrum are independent from the ionization model itself the results of this paper are not restricted to a single ionization model, even though the Atmospheric Ionization Module OSnabrück (AIMOS, Wissing and Kallenrode, 2009) is used here. We include protons only as this allows us to trace changes in the chemistry model directly back to the different assumptions without the need to interpret superposed ionization profiles. However, since every particle species requires a particle spectrum fit with the mentioned assumptions the results are generally applicable to all precipitating particles. The reader may argue that the selection of assumptions of the particle fit is of minor interest, but we would like to emphasize on this topic as it is a major, if not the main, source of discrepancies between different ionization models (and reality). Depending on the assumptions single ionization profiles may vary by a factor of 5, long-term calculations may show systematic over- or underestimation in specific altitudes and even for ideal setups the definition of the energy-range involves an intrinsic 25% uncertainty for the

  6. Study on polarization features of carbonaceous particles in atmosphere pollutants

    NASA Astrophysics Data System (ADS)

    Li, Da; Zeng, Nan; Wang, Yunfei; Chen, Dongsheng; Chen, Yuerong; Ma, Hui

    2016-09-01

    The carbonaceous particles are the main source of the light absorption in atmospheric aerosol. Different from the case in tissue-like turbid media, the light absorption in atmospheric environments can be described as an inherent attribute on scatterers rather than an interstitial propagation effect. In this paper, we simulated the optical absorption due to carbonaceous scatterers and analyzed the influence of various parameters on their polarization properties, such as the imaginary part refractive index, the size and shape. Also we compare these results with our previous research work on absorption effect in ambient medium. For the single scattering, the polarization scattering angular distribution implies the potential of distinguishing different carbonaceous particles with different structural and absorption parameters. In the other hand, for the week scattering case of suspension system, using the backward Mueller matrix polar decomposition method, we can find out that the additional absorption effect on carbonaceous particles can enhance their depolarization and moreover produce more diattenuation and linear retardance for those anisotropic particles. The subsequent experiments of standard samples show a good agreement with simulation results. The paper further studies the phase function of single scattering and the distribution of scattering numbers, which can explain these unique polarization scattering phenomena. We hope these fundamental results can help to investigate how to identify the carbonaceous particles and characterize their optical features from the atmospheric hybrid suspension system.

  7. Observation of nitrate coatings on atmospheric mineral dust particles

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Shao, L. Y.

    2009-03-01

    Nitrate compounds have received much attention because of their ability to alter the hygroscopic properties and cloud condensation nuclei (CCN) activity of mineral dust particles in the atmosphere. However, very little is known about specific characteristics of ambient nitrate-coated mineral particles on an individual particle scale. In this study, sample collection was conducted during brown haze and dust episodes between 24 May and 21 June 2007 in Beijing, northern China. Sizes, morphologies, and compositions of 332 mineral dust particles together with their coatings were analyzed using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX) microanalyses. Structures of some mineral particles were verified using selected-area electron diffraction (SAED). TEM observation indicates that approximately 90% of the collected mineral particles are covered by visible coatings in haze samples whereas only 5% are coated in the dust sample. 92% of the analyzed mineral particles are covered with Ca-, Mg-, and Na-rich coatings, and 8% are associated with K- and S-rich coatings. The majority of coatings contain Ca, Mg, O, and N with minor amounts of S and Cl, suggesting that they are possibly nitrates mixed with small amounts of sulfates and chlorides. These nitrate coatings are strongly correlated with the presence of alkaline mineral components (e.g., calcite and dolomite). CaSO4 particles with diameters from 10 to 500 nm were also detected in the coatings including Ca(NO3)2 and Mg(NO3)2. Our results indicate that mineral particles in brown haze episodes were involved in atmospheric heterogeneous reactions with two or more acidic gases (e.g., SO2, NO2, HCl, and HNO3). Mineral particles that acquire hygroscopic nitrate coatings tend to be more spherical and larger, enhancing their light scattering and CCN activity, both of which have cooling effects on the climate.

  8. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2011-11-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  9. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  10. Atmospheric Condensational Properties of Ultrafine Chain and Fractal Aerosol Particles

    NASA Technical Reports Server (NTRS)

    Marlow, William H.

    1997-01-01

    The purpose for the research sponsored by this grant was to lay the foundations for qualitative understanding and quantitative description of the equilibrium vapor pressure of water vapor over the irregularly shaped, carbonaceous particles that are present in the atmosphere. This work apparently was the first systematic treatment of the subject. Research was conducted in two complementary components: 1. Calculations were performed of the equilibrium vapor pressure of water over particles comprised of aggregates of spheres in the 50-200 nm radius range. The purposes of this work were two-fold. First, since no systematic treatment of this subject had previously been conducted, its availability would be directly useful for quantitative treatment for a limited range of atmospheric aerosols. Second, it would provide qualitative indications of the effects of highly irregular particle shape on equilibrium vapor pressure of aggregates comprised of smaller spheres.

  11. Materials characterisation with the associated particle technique

    SciTech Connect

    Perot, Bertrand; Carasco, Cedric; Deyglun, Clement; Eleon, Cyrille; Mariani, Alain; Ma, Jean-Luc

    2012-07-01

    Since the last past years, the Nuclear Measurement Laboratory of CEA Cadarache, France, together with Partners from European and National projects, has been studying the application of fast neutron interrogation with the Associated Particle Technique for material identification in different areas of homeland and maritime security, and for the characterisation of the materials constituting radioactive waste. Fast 14 MeV neutrons are produced from the H-3(H-2,n)alpha fusion reaction in a sealed tube neutron generator embedding an alpha detector. The alpha particle is used to tag neutron direction and emission time, thus allowing the electronic selection of neutron-induced gamma spectra in the voxels of interest. Gamma rays emitted by tagged neutron interactions on the present nuclei (C, O, N, Fe, Al, Si, Cl, etc.) are recorded with spectroscopic detectors and analysed to determine elemental proportions, thus allowing material identification. Investigations have been conducted for the detection of explosives, illicit drugs and contraband materials in cargo containers, for the inspection of objects lying on the sea floor suspected to contain explosives like mines, bombs, torpedoes, etc., for the recognition of an improvised chemical device, and for material identification in radioactive waste packages. Recently the detection of special nuclear materials is being investigated using time correlation analysis between induced fission particles, instead of gamma-ray spectroscopy. The paper presents an overview of these studies and last results. (authors)

  12. Global atmospheric particle formation from CERN CLOUD measurements.

    PubMed

    Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S

    2016-12-02

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

  13. Global atmospheric particle formation from CERN CLOUD measurements

    NASA Astrophysics Data System (ADS)

    Dunne, Eimear M.; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K.; Pringle, Kirsty J.; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M.; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J.; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L. S.; Riccobono, Francesco; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N.; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E.; Wimmer, Daniela; Winkler, Paul M.; Worsnop, Douglas R.; Carslaw, Kenneth S.

    2016-12-01

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

  14. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  15. The atmospheric radiation response to solar-particle-events.

    PubMed

    O'Brien, K; Sauer, H H

    2003-01-01

    High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude.

  16. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  17. Atmospheric cosmic rays and solar energetic particles at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Sauer, H H; Smart, D F

    1996-01-01

    Galactic cosmic rays, which are thought to be produced and accelerated by a variety of mechanisms in the Milky Way galaxy, interact with the solar wind, the earth's magnetic field, and its atmosphere to produce hadron, lepton, and photon fields at aircraft altitudes that are quite unlike anything produced in the laboratory. The energy spectra of these secondary particles extend from the lowest possible energy to energies over an EeV. In addition to cosmic rays, energetic particles, generated on the sun by solar flares or coronal mass ejections, bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as cosmic rays. The authors have calculated atmospheric cosmic-ray angular fluxes, spectra, scalar fluxes, and ionization, and compared them with experimental data. Agreement with these data is seen to be good. These data have been used to calculate equivalent doses in a simplified human phantom at aircraft altitudes and the estimated health risks to aircraft crews. The authors have also calculated the radiation doses from several large solar energetic particle events (known as GLEs, or Ground Level Events), which took place in 1989, including the very large event known as GLE 42, which took place on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory. Unfortunately, there are essentially no experimental data with which to compare these calculations.

  18. [Relationship between atmospheric particles and rain water chemistry character].

    PubMed

    Huo, Ming-Qun; Sun, Qian; Xie, Peng; Bai, Yu-Hua; Liu, Zhao-Rong; Li, Ji-Long; Lu, Si-Hua

    2009-11-01

    Rain and atmospheric particle samples were collected in the rural area of Taian and Shenzhen in 2007, respectively. Rain sampling was carried out during the precipitation process and several samples were got from the beginning of one precipitation to the end. The chemical character changes during precipitation and the changes of concentration of particles before and after rain were studied in this research to understand the contribution of particles on the rain chemical character and the rain-out effect for particles. The volume-weighted mean pH of rainwater in Taian was 5.97 and the total concentration of ions was 1 187.96 microeq x L(-1). The mass concentration of PM10 in Taian was 131.76 microg/m3 and that of PM2.5 was 103.84 microg/m3. The volume-weighted mean pH of rainwater in Shenzhen was 4.72 and the total concentration of ions was 175.89 microeq x L(-1). The mass concentration of PM10 in Shenzhen was 56.66 microg/m3 and that of PM2.5 was 41.52 microg/m3. During precipitation process pH and ion concentration of rain decrease and it is shown the neutralizing effect happens. The difference between rainwater of Taian and Shenzhen is due to cloud water acidity, atmospheric particles character and atmospheric acid-basic gases concentration. The clean-up effect of Na+ and Ca2+ by rain is high and which of NH4+ and NO3- is low. The clean-up effect for mass concentration, ions concentration and element concentration of particles by rain are significant.

  19. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state

    NASA Astrophysics Data System (ADS)

    Liu, Dantong; Whitehead, James; Alfarra, M. Rami; Reyes-Villegas, Ernesto; Spracklen, Dominick V.; Reddington, Carly L.; Kong, Shaofei; Williams, Paul I.; Ting, Yu-Chieh; Haslett, Sophie; Taylor, Jonathan W.; Flynn, Michael J.; Morgan, William T.; McFiggans, Gordon; Coe, Hugh; Allan, James D.

    2017-02-01

    Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black-carbon materials to black-carbon particles may enhance the particles’ light absorption by 50 to 60% by refracting and reflecting light. Real-world experimental evidence for this `lensing’ effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black-carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black-carbon particles with a ratio greater than 3, which is typical of biomass-burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalized hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black-carbon particles is determined by the particles’ mass ratio of non-black carbon to black carbon.

  20. Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Guohua; Han, Bingxue; Bi, Xinhui; Dai, Shouhui; Huang, Wei; Chen, Duohong; Wang, Xinming; Sheng, Guoying; Fu, Jiamo; Zhou, Zhen

    2015-02-01

    Continuous ambient measurement of atmospheric aerosols was performed with a single particle aerosol mass spectrometer (SPAMS) in Guangzhou during summer of 2012. The aerosols mainly consisted of carbonaceous particles as major compositions in submicrometer range, including K-rich (29.8%), internally mixed organics and elemental carbon (ECOC, 13.5%), organic carbon-rich (OC, 18.5%), elemental carbon (EC, 12.3%) and high molecular OC (HMOC, 3.2%), and inorganic types (e.g., Na-rich Na-K, Fe-rich, V-rich, and Cu-rich) as major ones in supermicrometer range. Results show that carbonaceous particles were commonly internally mixed with sulfate and nitrate through atmospheric processing, in particular, with sulfate; inorganic types were dominantly internally mixed with nitrate rather than sulfate, indicative of different evolution processes for carbonaceous and inorganic particles in the atmosphere. It was observed that variations of these particle types were significantly influenced by air mass back trajectories (BTs). Under the influence of continental BTs, carbonaceous types were prevalent, while Na-K and Na-rich types considerably increased when the BTs originated from south marine regions. Number fraction of carbonaceous types exhibited obvious diurnal variation throughout the sampling period, which reflects their relatively stable emission and atmospheric processes. Two EC particle types LC-EC and NaK-EC showed different diurnal distributions, suggesting their different origins. The obtained information on the mixing state and the temporal variation of particle types is essential for developing an understanding on the origin and evolution processes of atmospheric aerosols.

  1. Source contributions to atmospheric fine carbon particle concentrations

    NASA Astrophysics Data System (ADS)

    Andrew Gray, H.; Cass, Glen R.

    A Lagrangian particle-in-cell air quality model has been developed that facilitates the study of source contributions to atmospheric fine elemental carbon and fine primary total carbon particle concentrations. Model performance was tested using spatially and temporally resolved emissions and air quality data gathered for this purpose in the Los Angeles area for the year 1982. It was shown that black elemental carbon (EC) particle concentrations in that city were dominated by emissions from diesel engines including both on-highway and off-highway applications. Fine primary total carbon particle concentrations (TC=EC+organic carbon) resulted from the accumulation of small increments from a great variety of emission source types including both gasoline and diesel powered highway vehicles, stationary source fuel oil and gas combustion, industrial processes, paved road dust, fireplaces, cigarettes and food cooking (e.g. charbroilers). Strategies for black elemental carbon particle concentration control will of necessity need to focus on diesel engines, while controls directed at total carbon particle concentrations will have to be diversified over a great many source types.

  2. Morphology and mixing state of atmospheric particles: Links to optical properties and cloud processing

    NASA Astrophysics Data System (ADS)

    China, Swarup

    Atmospheric particles are ubiquitous in Earth's atmosphere and impact the environment and the climate while affecting human health and Earth's radiation balance, and degrading visibility. Atmospheric particles directly affect our planet's radiation budget by scattering and absorbing solar radiation, and indirectly by interacting with clouds. Single particle morphology (shape, size and internal structure) and mixing state (coating by organic and inorganic material) can significantly influence the particle optical properties as well as various microphysical processes, involving cloud-particle interactions and including heterogeneous ice nucleation and water uptake. Conversely, aerosol cloud processing can affect the morphology and mixing of the particles. For example, fresh soot has typically an open fractal-like structure, but aging and cloud processing can restructure soot into more compacted shapes, with different optical and ice nucleation properties. During my graduate research, I used an array of electron microscopy and image analysis tools to study morphology and mixing state of a large number of individual particles collected during several field and laboratory studies. To this end, I investigated various types of particles such as tar balls (spherical carbonaceous particles emitted during biomass burning) and dust particles, but with a special emphasis on soot particles. In addition, I used the Stony Brook ice nucleation cell facility to investigate heterogeneous ice nucleation and water uptake by long-range transported particles collected at the Pico Mountain Observatory, in the Archipelago of the Azores. Finally, I used ice nucleation data from the SAAS (Soot Aerosol Aging Study) chamber study at the Pacific Northwest National Laboratory to understand the effects that ice nucleation and supercooled water processing has on the morphology of residual soot particles. Some highlights of our findings and implications are discussed next. We found that the

  3. Field and Laboratory Studies of Reactions between Atmospheric Water Soluble Organic Acids and Inorganic Particles

    SciTech Connect

    Wang, Bingbing; Kelly, Stephen T.; Sellon, Rachel E.; Shilling, John E.; Tivanski, Alexei V.; Moffet, Ryan C.; Gilles, Mary K.; Laskin, Alexander

    2013-06-25

    Atmospheric inorganic particles undergo complex heterogeneous reactions that change their physicochemical properties. Depletion of chloride in sea salt particles was reported in previous field studies and was attributed to the acid displacement of chlorides with inorganic acids, such as nitric and sulfuric acids [1-2]. Recently, we showed that NaCl can react with water soluble organic acids (WSOA) and release gaseous hydrochloric acid (HCl) resulting in formation of organic salts [3]. A similar mechanism is also applicable to mixed WSOA/nitrate particles where multi-phase reactions are driven by the volatility of nitric acid. Furthermore, secondary organic material, which is a complex mixture of carboxylic acids, exhibits the same reactivity towards chlorides and nitrates. Here, we present a systematic study of reactions between atmospheric relevant WSOA, SOM, and inorganic salts including NaCl, NaNO3, and Ca(NO3)2 using complementary micro-spectroscopy analysis.

  4. Meta-material for nuclear particle detection

    NASA Astrophysics Data System (ADS)

    Merlo, V.; Salvato, M.; Lucci, M.; Ottaviani, I.; Cirillo, M.; Scherillo, A.; Schooneveld, E. M.; Vannozzi, A.; Celentano, G.; Pietropaolo, A.

    2017-02-01

    Superconducting strips coated with boron were engineered with a view to subnuclear particle detection. Combining the characteristics of boron as a generator of α-particles (as a consequence of neutron absorption) and the ability of superconducting strips to act as resistive switches, it is shown that fabricated Nb-boron and NbN-boron strips represent a promising basis for implementing neutron detection devices. In particular, the superconducting transition of boron-coated NbN strips generates voltage outputs of the order of a few volts thanks to the relatively higher normal state resitivity of NbN with respect to Nb. This result, combined with the relatively high transition temperature of NbN (of the order of 16 K for the bulk material), is an appealing prospect for future developments. The coated strips are meta-devices since their constituting material does not exist in nature and it is engineered to accomplish a specific task, i.e. generate an output voltage signal upon α-particle irradiation.

  5. Parameters of Dust Particles in the Martian Atmosphere

    NASA Astrophysics Data System (ADS)

    Dlugach, Zh. M.; Morozhenko, A. V.

    2001-11-01

    A critical analysis of the methods and results of estimating the optical thickness of the dust component in the Martian atmosphere τ_0, the particle size r_0, and the imaginary part of the refractive index n_ihas shown the following. (1) Observational data on the brightness distribution over the Martian disk as well as the phase dependences of diffusely reflected light and the azimuthal dependences of diffusely transmitted light are most appropriate to use only for verifying the reliability of the aerosol parameters determined by other methods. (2) If the morning and evening fogs in the atmosphere are disregarded, the Bouguer-Lambert-Beer method used to analyze the solar-brightness attenuation measured on the planetary surface yields overestimated extraatmospheric solar intensity I_0and atmospheric optical depth τ_0. At the Viking 1landing site, I_0and τ_0could be overestimated by a factor of 1.7 and by 0.35, respectively. (3) The aerosol size determined by analyzing measurements of the azimuthal dependences for the Martian sky brightness at low elevations of the Sun most likely corresponds to the fog particles. (4) If overestimated values of I_0were used to standardize the observations of the solar radiation transmitted by the Martian atmosphere, then n_iwere also overestimated; using overestimated τ_0also affected the reliability of the latter. (5) The problem of reliability of the available τ_0and r_0estimates for periods of high atmospheric transparency is yet to be solved. For the highest activity of the dust storm in 1971, it was found that 4.5 <= r_0<= 7.5 μm for the lognormal particle size distribution with σ^2= 0.2 and the optical thickness of a dust cloud τ_0>= 15. (6) The spectral values of the apparent albedo of Mars measured in October 1971 at a phase angle of 42° in the spectral range 0.250 <= λ <= 0.717 allowed the imaginary part of the refractive index to be estimated in terms of a model of a dust cloud composed of spherical particles with

  6. Direct observation of ice nucleation events on individual atmospheric particles

    SciTech Connect

    Wang, Bingbing; Knopf, Daniel A.; China, Swarup; Arey, Bruce W.; Harder, Tristan H.; Gilles, Mary K.; Laskin, Alexander

    2016-01-01

    Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and the applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood. This is in part due to the lack of experimental methods capable of in situ visualization of ice formation over nucleating substrates with microscopically characterized morphology and composition. We present development, validation and first applications of a novel electron microscopy platform allowing observation of individual ice nucleation events at temperature and relative humidity (RH) relevant for ice formation in a broad range of environmental and applied technology processes. The approach utilizes a custom-built ice nucleation cell, interfaced with an Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system allows dynamic observations of individual ice formation events over particles of atmospheric relevance and determination of the ice nucleation mechanisms. Additional IN-ESEM experiments allow examination of the location of ice formation on the surface of individual particles and micro-spectroscopy analysis of the ice nucleating particles (INPs). This includes elemental composition detected by the energy dispersed analysis of X-rays (EDX), speciation of the organic content in particles using scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS), and Helium ion microscopy (HeIM). The capabilities of the IN-ESEM experimental platform are demonstrated first on laboratory standards and then by chemical imaging of INPs using a complex sample of ambient particles.

  7. Ignition of a Combustible Atmosphere by Incandescent Carbon Wear Particles

    NASA Technical Reports Server (NTRS)

    Buckley, Donald H.; Swikert, Max A.; Johnson, Robert L.

    1960-01-01

    A study was made to determine whether carbon wear particles from carbon elements in sliding contact with a metal surface were sufficiently hot to cause ignition of a combustible atmosphere. In some machinery, electric potential differences and currents may appear at the carbon-metal interface. For this reason the effect of these voltages and currents on the ability of carbon wear particles to cause ignition was evaluated. The test specimens used in the investigation were carbon vanes taken from a fuel pump and flat 21-inch-diameter 2 metal disks (440-C stainless steel) representing the pump housing. During each experiment a vane was loaded against a disk with a 0.5-pound force, and the disk was rotated to give a surface speed of 3140 feet per minute. The chamber of the apparatus that housed the vane and the disk was filled with a combustible mixture of air and propane. Various voltages and amperages were applied across the vane-disk interface. Experiments were conducted at temperatures of 75, 350, 400, and 450 F. Fires were produced by incandescent carbon wear particles obtained at conditions of electric potential as low as 106 volts and 0.3 ampere at 400 F. Ignitions were obtained only with carbon wear particles produced with an electric potential across the carbon-vane-disk interface. No ignitions were obtained with carbon wear particles produced in the absence of this potential; also, the potential difference produced no ignitions in the absence of carbon wear particles. A film supplement showing ignition by incandescent wear particles is available.

  8. Energy deposition rates by charged particles. [in upper atmosphere

    NASA Technical Reports Server (NTRS)

    Torkar, K. M.; Urban, A.; Bjordal, J.; Lundblad, J. A.; Soraas, F.; Smith, L. G.; Dumbs, A.; Grandal, B.; Ulwick, J. C.; Vancour, R. P.

    1985-01-01

    A summary of measurements of the precipitation of electrons and positive ions (in the keV-MeV range) detected aboard eight rockets launched within the Energy Budget Campaign from Northern Scandinavia is given, together with corresponding satellite data. In some cases strong temporal variations of the downgoing integral fluxes were observed. The fluxes provide the background for the calculated ion production rates and altitude profiles of the energy deposition into the atmosphere at different levels of geomagnetic disturbance and cosmic noise absorption. The derived ion production rates by eneretic particles are compared to other night-time ionisation sources.

  9. Chemistry of background atmospheric particles collected at Mauna Loa Observatory, Hawaii

    SciTech Connect

    Parrington, J.R.

    1984-01-01

    Mauna Loa Observatory, Hawaii, was selected as a remote northern hemisphere site from which to collect atmospheric particles for chemical analyses of background aerosols in the free troposphere of the northern hemisphere. An automatic digital sampling controller was designed and installed at this site to aid in the isolation of uncontaminated particles of the free troposphere, based on wind direction and speed, time-of-day and particle characteristics at the observatory. The three primary components measured on these background particles between 1979 and 1982 were sulfates, continentally derived crustal material and marine particles with average geometric mean concentrations of 240 ng/m/sup 3/, and 15 ng/m/sup 3/, respectively, during the months of July to mid-February. Other months showed a ten-fold increase in continental crustal material, geometric avg = 730 ng/m/sup 3/, (which has been traced to Asian deserts) and doubling of sulfate mass to 480 ng/m/sup 3/ while the marine mass showed no significant changes. The average geometric mean concentration of local basalt was determined to be 15 ng/m/sup 3/ in down-slope winds and, thus, does not represent a major interference to most studies at MLO as a majority of the crustal dust in the atmosphere, even in relatively clean periods, is transported over thousands of kilometers to the islands from continents surrounding the Pacific Ocean.

  10. Particle acceleration and transport in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Kontar, Eduard

    2016-07-01

    During periods of sporadic flare activity, the Sun releases energy stored in the magnetic field into the plasma of the solar atmosphere. This is an extremely efficient process, with a large fraction of the magnetic energy going into plasma particles. The solar flares are accompanied by prompt electromagnetic emission virtually over the entire electromagnetic spectrum from gamma-rays down to radio frequencies. The Sun, through its activity, also plays a driving role in the Sun-Earth system that substantially influences geophysical space. Solar flare energetic particles from the Sun are detected in interplanetary space by in-situ measurements making them a vital component of the single Sun-Earth system. Although a qualitative picture is generally agreed upon, many processes solar flare processes are poorly understood. Specifically, the processes of acceleration and propagation of energetic particles interacting on various physical scales remain major challenges in solar physics and basic plasma physics. In the talk, I will review the current understanding of solar flare energetic particles focusing on recent observational progress, which became possible due to the numerous spacecraft and ground-based observations.

  11. Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation.

    PubMed

    Kulmala, M; Petäjä, T; Ehn, M; Thornton, J; Sipilä, M; Worsnop, D R; Kerminen, V-M

    2014-01-01

    The recent development in measurement techniques and theoretical understanding has enabled us to study atmospheric vapor, cluster and nanoparticle concentrations, dynamics, and their connection to atmospheric nucleation. Here we present a summary of the chemistry of atmospheric clustering, growing nanoparticles, and their precursors. In this work, we focus particularly on atmospheric gas-to-particle conversion and recent progress in its understanding.

  12. Biomonitoring of atmospheric pollution: a novel approach for the evaluation of natural and anthropogenic contribution to atmospheric aerosol particles.

    PubMed

    Caggiano, Rosa; Calamita, Giuseppe; Sabia, Serena; Trippetta, Serena

    2017-02-13

    The investigation of the potential natural and anthropogenic contribution to atmospheric aerosol particles by using lichen-bag technique was performed in the Agri Valley (Basilicata region, southern Italy). This is an area of international concern since it houses one of the largest European on-shore reservoirs and the biggest oil/gas pre-treatment plant (i.e., Centro Olio Val d'Agri (COVA)) within an anthropized context. In particular, the concentrations of 17 trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Ti, and Zn) were measured in lichen bags exposed in 59 selected monitoring points over periods of 6 months (from October 2011 to April 2012) and 12 months (from October 2011 to October 2012). The general origin of the main air masses affecting the sampling site during the study period was assessed by the back trajectories clustering calculated using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results allowed the identification and characterization of the crustal material, smoke, sea salt, sulfate, and anthropogenic trace element contributions to the atmospheric aerosol particles in the study area. Finally, the application of the trend surface analysis (TSA) allowed the study of the spatial distribution of the considered contributions highlighting the existence of a continuous broad variation of these contributions in the area of interest.

  13. Water and acid soluble trace metals in atmospheric particles

    NASA Technical Reports Server (NTRS)

    Lindberg, S. E.; Harriss, R. C.

    1983-01-01

    Continental aerosols are collected above a deciduous forest in eastern Tennessee and subjected to selective extractions to determine the water-soluble and acid-leachable concentrations of Cd, Mn, Pb, and Zn. The combined contributions of these metals to the total aerosol mass is 0.5 percent, with approximately 70 percent of this attributable to Pb alone. A substantial fraction (approximately 50 percent or more) of the acid-leachable metals is soluble in distilled water. In general, this water-soluble fraction increases with decreasing particle size and with increasing frequency of atmospheric water vapor saturation during the sampling period. The pattern of relative solubilities (Zn being greater than Mn, which is approximately equal to Cd, which is greater than Pb) is found to be similar to the general order of the thermodynamic solubilities of the most probable salts of these elements in continental aerosols with mixed fossil fuel and soil sources.

  14. Particle deposition and clearance of atmospheric particles in the human respiratory tract during LACE 98

    NASA Astrophysics Data System (ADS)

    Bundke, U.; Hänel, G.

    2003-04-01

    During the LACE 98footnote{Lindenberg Aerosol Characterization Experiment, (Germany) 1998} experiment microphysical, chemical and optical properties of atmospheric particles were measured by several groups. (Bundke et al.). The particle deposition and clearance of the particles in the human respiratory tract was calculated using the ICRP (International Commission on Radiological Protection) deposition and clearance model (ICRP 1994). Particle growth as function of relative humidity outside the body was calculated from measurement data using the model introduced by Bundke et al.. Particle growth inside the body was added using a non-equilibrium particle growth model. As a result of the calculations, time series of the total dry particle mass and -size distribution were obtained for all compartments of the human respiratory tract defined by ICRP 1994. The combined ICRP deposition and clearance model was initialized for different probationers like man, woman, children of different ages and several circumstances like light work, sitting, sleeping etc. Keeping the conditions observed during LACE 98 constant a approximation of the aerosol burdens of the different compartments was calculated up to 4 years of exposure and compared to the results from Snipes et al. for the "Phoenix" and "Philadelphia" aerosol. References: footnotesize{ Bundke, U. et al.,it{Aerosol Optical Properties during the Lindenberg Aerosol Characterization Experiment (LACE 98)} ,10.1029/2000JD000188, JGR, 2002 ICRP,it{Human Respiratory Tract Model for Radiological Protection, Bd. ICRP Publication 66}, Annals of the ICRP, 24,1-3, Elsevier Science, Ocford, 1994 Snipes et al. ,it{The 1994 ICRP66 Human Respiratory Tract Model as a Tool for predicting Lung Burdens from Exposure to Environmental Aerosols}, Appl. Occup. Environ. Hyg., 12, 547-553,1997}

  15. Emerging materials for lowering atmospheric carbon

    SciTech Connect

    Barkakaty, Balaka; Sumpter, Bobby G.; Ivanov, Ilia N.; Potter, Matthew E.; Jones, Christopher W.; Lokitz, Bradley S.

    2016-12-08

    CO2 emissions from anthropogenic sources and the rate at which they increase could have deep global ramifications such as irreversible climate change and increased natural disasters. Because greater than 50% of anthropogenic CO2 emissions come from small, distributed sectors such as homes, offices, and transportation sources, most renewable energy systems and on-site carbon capture technologies for reducing future CO2 emissions cannot be effectively utilized. This problem might be mediated by considering novel materials and technologies for directly capturing/removing CO2 from air. But, compared to materials for capturing CO2 at on-site emission sources, materials for capturing CO2 directly from air must be more selective to CO2, and should operate and be stable at near ambient conditions. Here, we briefly summarize the recent developments in materials for capturing carbon dioxide directly from air. Furthermore, we discuss the challenges in this field and offer a perspective for developing the current state-of-art and also highlight the potential of a few recent discoveries in materials science that show potential for advanced application of air capture technology.

  16. Emerging materials for lowering atmospheric carbon

    DOE PAGES

    Barkakaty, Balaka; Sumpter, Bobby G.; Ivanov, Ilia N.; ...

    2016-12-08

    CO2 emissions from anthropogenic sources and the rate at which they increase could have deep global ramifications such as irreversible climate change and increased natural disasters. Because greater than 50% of anthropogenic CO2 emissions come from small, distributed sectors such as homes, offices, and transportation sources, most renewable energy systems and on-site carbon capture technologies for reducing future CO2 emissions cannot be effectively utilized. This problem might be mediated by considering novel materials and technologies for directly capturing/removing CO2 from air. But, compared to materials for capturing CO2 at on-site emission sources, materials for capturing CO2 directly from air mustmore » be more selective to CO2, and should operate and be stable at near ambient conditions. Here, we briefly summarize the recent developments in materials for capturing carbon dioxide directly from air. Furthermore, we discuss the challenges in this field and offer a perspective for developing the current state-of-art and also highlight the potential of a few recent discoveries in materials science that show potential for advanced application of air capture technology.« less

  17. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    SciTech Connect

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.

  18. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: insight into particle origin and chemistry

    DOE PAGES

    Ghosal, Sutapa; Weber, Peter K.; Laskin, Alexander

    2014-01-14

    Knowledge of the spatially resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry and understanding particle reactivity and the potential environmental impact. Here, we demonstrate the application of nanometer-scale secondary ion mass spectrometry (CAMECA NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad range of particle sizes. We have used this technique to probe the spatially resolved composition of ambient particles collected during amore » field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth-resolved chemical imaging in ambient particle research. The particles that we examined in our study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location before the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen, and chlorine at the particle surface. We also observed the surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas–particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insight into their chemical history.« less

  19. Spatially resolved chemical imaging of individual atmospheric particles using nanoscale imaging mass spectrometry: Insights into particle origin and chemistry

    NASA Astrophysics Data System (ADS)

    Ghosal, S.; Weber, P. K.; Laskin, A.

    2014-12-01

    Knowledge of the spatially-resolved composition of atmospheric particles is essential for differentiating between their surface versus bulk chemistry, understanding particle reactivity and the potential environmental impact. We demonstrate the application of nanometer-scale secondary ion mass spectrometry (Cameca NanoSIMS 50 ion probe) for 3D chemical imaging of individual atmospheric particles without any sample pre-treatment, such as the sectioning of particles. Use of NanoSIMS depth profile analysis enables elemental mapping of particles with nanometer spatial resolution over a broad of range of particle sizes. We have used this technique to probe spatially resolved composition of ambient particles collected during a field campaign in Mexico City. Particles collected during this campaign have been extensively characterized in the past using other particle analysis techniques and hence offer a unique opportunity for exploring the utility of depth resolved chemical imaging in ambient particle research. Particles examined in this study include those collected during a pollution episode related to urban waste incineration as well as background particles from the same location prior to the episode. Particles from the pollution episode show substantial intra-particle compositional variability typical of particles resulting from multiple emission sources. In contrast, the background particles have relatively homogeneous compositions with enhanced presence of nitrogen, oxygen and chlorine at the particle surface. The observed surface enhancement of nitrogen and oxygen species is consistent with the presence of surface nitrates resulting from gas-particle heterogeneous interactions and is indicative of atmospheric ageing of the particles. The results presented here illustrate 3D characterization of ambient particles for insights into their chemical history.

  20. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  1. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  2. Seasonal differences of the atmospheric particle size distribution in a metropolitan area in Japan.

    PubMed

    Fujitani, Yuji; Kumar, Prashant; Tamura, Kenji; Fushimi, Akihiro; Hasegawa, Shuich; Takahashi, Katsuyuki; Tanabe, Kiyoshi; Kobayashi, Shinji; Hirano, Seishiro

    2012-10-15

    We compared the effect of ambient temperature observed in two different seasons on the size distribution and particle number concentration (PNC) as a function of distance (up to ~250 m) from a major traffic road (25% of the vehicles are heavy-duty diesel vehicles). The modal particle diameter was found between 10 and 30 nm at the roadside in the winter. However, there was no peak for this size range in the summer, even at the roadside. Ambient temperature affects both the atmospheric dilution ratio (DR) and the evaporation rate of particles, thus it affects the decay rate of PNC. We corrected the DR effect in order to focus on the effect of particle evaporation on PNC decay. The decay rate of PNC with DR was found to depend on the season and particle diameter. During the winter, the decay rate for smaller particles (<30 nm) was much higher (i.e., the concentration decreased significantly against DR), whereas it was low during the summer. In contrast, for particles >30 nm in diameter, the decay rate was nearly the same during both seasons. This distinction between particles less than or greater than 30 nm in diameter reflects differences in particle volatility properties. Mass-transfer theory was used to estimate evaporation rates of C20-C36 n-alkane particles, which are the major n-alkanes in diesel exhaust particles. The C20-C28 n-alkanes of 30-nm particles completely evaporate at 31.2 °C (summer), and their lifetime is shorter than the transport time of air masses in our region of interest. Absence of the peak at 10-30 nm and the low decay rate of PNC <30 nm in diameter in the summer were likely due to the evaporation of compounds of similar volatilities comparable to the C20-C36 n-alkanes from particles near the exhaust pipes of vehicles, and complete evaporation of semivolatile materials before they reached the roadside. These results suggest that the lifetime of particles <30 nm in diameter depends on the ambient temperature, which differs between seasons

  3. Particle emission from artificial cometary materials

    NASA Technical Reports Server (NTRS)

    Koelzer, Gabriele; Kochan, Hermann; Thiel, Klaus

    1992-01-01

    During KOSI (comet simulation) experiments, mineral-ice mixtures are observed in simulated space conditions. Emission of ice-/dust particles from the sample surface is observed by means of different devices. The particle trajectories are recorded with a video system. In the following analysis we extracted the parameters: particle count rate, spatial distribution of starting points on the sample surface, and elevation angle and particle velocity at distances up to 5 cm from the sample surface. Different kinds of detectors are mounted on a frame in front of the sample to register the emitted particles and to collect their dust residues. By means of these instruments the particle count rates, the particle sizes and the composition of the particles can be correlated. The results are related to the gas flux density and the temperature on the sample surface during the insolation period. The particle emission is interpreted in terms of phenomena on the sample surface, e.g., formation of a dust mantle.

  4. Atmospheric Black Carbon: Chemical Bonding and Structural Information of Individual Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Gilles, M. K.; Tivanski, A. V.; Hopkins, R. J.; Marten, B. D.

    2006-12-01

    The formation of aerosols from both natural and anthropogenic sources affects the Earth's temperature and climate by altering the radiative properties of the atmosphere. Aerosols containing black carbon (BC) that are released into the atmosphere from the burning of biomass, natural fires and the combustion of coals, diesel and jet fuels, contribute a large positive component to this radiative forcing, thus causing a heating of the atmosphere. A distinct type of biomass burn aerosol referred to as "tar balls" has recently been reported in the literature and is characterized by a spherical morphology, high carbon content and ability to efficiently scatter and absorb light. At present, very little is known about the exact nature and variation of the range of BC aerosols in the atmosphere with regards to optical, chemical and physical properties. Additionally, the similarity of these aerosols to surrogates used in the laboratory as atmospheric mimics remains unclear. The local chemical bonding, structural ordering and carbon-to-oxygen ratios of a plethora of black carbon standard reference materials (BC SRMs), high molecular mass humic-like substances (HULIS) and atmospheric aerosols from a variety of sources are examined using scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STXM/NEXAFS enables single aerosol particles of diameter upwards of 100 nm to be studied, which allows the diversity of atmospheric aerosol collected during a variety of field missions to be assessed. We apply a semi-quantitative peak fitting method to the recorded NEXAFS spectral fingerprints allowing comparison of BC SRMs and HULIS to BC aerosol originating from anthropogenic combustion and biomass burning events. This method allows us to distinguish between anthropogenic combustion and biomass burn aerosol using both chemical bonding and structural ordering information. The STXM/NEXAFS technique has also been utilized to

  5. Multiscale Modeling of Metallic Materials Containing Embedded Particles

    NASA Technical Reports Server (NTRS)

    Phillips, Dawn R.; Iesulauro, Erin; Glaessgen, Edward H.

    2004-01-01

    Multiscale modeling at small length scales (10(exp -9) to 10(exp -3) m) is discussed for aluminum matrices with embedded particles. A configuration containing one particle surrounded by about 50 grains and subjected to uniform tension and lateral constraint is considered. The analyses are performed to better understand the effects of material configuration on the initiation and progression of debonding of the particles from the surrounding aluminum matrix. Configurational parameters considered include particle aspect ratio and orientation within the surrounding matrix. Both configurational parameters are shown to have a significant effect on the behavior of the materials as a whole. For elliptical particles with the major axis perpendicular to the direction of loading, a particle with a 1:1 aspect ratio completely debonds from the surrounding matrix at higher loads than particles with higher aspect ratios. As the particle major axis is aligned with the direction of the applied load, increasing amounts of load are required to completely debond the particles.

  6. Recreational atmospheric pollution episodes: Inhalable metalliferous particles from firework displays

    NASA Astrophysics Data System (ADS)

    Moreno, Teresa; Querol, Xavier; Alastuey, Andrés; Cruz Minguillón, Mari; Pey, Jorge; Rodriguez, Sergio; Vicente Miró, José; Felis, Carles; Gibbons, Wes

    The use of fireworks creates an unusual and distinctive anthropogenic atmospheric pollution event. We report on aerosol samples collected during Las Fallas in Valencia, a 6-day celebration famous for its firework displays, and add comparative data on firework- and bonfire-contaminated atmospheric aerosol samples collected from elsewhere in Spain (Barcelona, L'Alcora, and Borriana) and during the Guy Fawkes celebrations in London. Specific high-profile official firework events during Las Fallas included the afternoon Mascletà and the nightly aerial displays (especially in the climactic final 2 days of the fiesta) and were accompanied by pollution spikes in suspended particles, NO, SO 2, and the creation and dispersal of an aerosol cloud enriched in a range of metallic elements. Notable metal aerosol concentration increases recorded during Las Fallas were potassium (from 500 to 5900 ng m -3), aluminium (as Al 2O 3 from around 600 to 2200 ng m -3), titanium (from 200 to 700 ng m -3), magnesium (from 100 to 500 ng m -3), lead (from 17 to 379 ng m -3), barium (from 39 to 322 ng m -3), strontium (from 3 to 112 ng m -3), copper (from 12 to 71 ng m -3), and antimony (from 1 to 52 ng m -3). Firework-contaminated aerosols of similarly metalliferous composition were also identified at the other monitoring sites, although different sites show variations attributable to other sources such as bonfires and local industry. Unusual levels of the trace elements Ba, Sr and (to a lesser extent) Cu, always in proportions with Ba dominant, along with strongly enhanced K, Pb, and Sb, are identified as being particularly characteristic of firework aerosols. Although firework-related recreational pollution episodes are transient in nature, they are highly concentrated, contribute significantly to total annual metal emissions, and are on average fine enough to be easily inhaled and a health risk to susceptible individuals.

  7. Fragmentation Energetics of Clusters Relevant to Atmospheric New Particle Formation

    SciTech Connect

    Bzdek, Bryan R.; Depalma, Joseph W.; Ridge, Douglas P.; Laskin, Julia; Johnston, Murray V.

    2013-02-27

    The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation, but basic species such as ammonia are also important. However, few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation (FTICR-SID) to investigate time- and collision energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/Quasi-Equilibrium Theory (RRKM/QET) modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: 1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and 2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e. diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.

  8. Fragmentation energetics of clusters relevant to atmospheric new particle formation.

    PubMed

    Bzdek, Bryan R; DePalma, Joseph W; Ridge, Douglas P; Laskin, Julia; Johnston, Murray V

    2013-02-27

    The exact mechanisms by which small clusters form and grow in the atmosphere are poorly understood, but this process may significantly impact cloud condensation nuclei number concentrations and global climate. Sulfuric acid is the key chemical component to new particle formation (NPF), but basic species such as ammonia are also important. Few laboratory experiments address the kinetics or thermodynamics of acid and base incorporation into small clusters. This work utilizes a Fourier transform ion cyclotron resonance mass spectrometer equipped with surface-induced dissociation to investigate time- and collision-energy-resolved fragmentation of positively charged ammonium bisulfate clusters. Critical energies for dissociation are obtained from Rice-Ramsperger-Kassel-Marcus/quasi-equilibrium theory modeling of the experimental data and are compared to quantum chemical calculations of the thermodynamics of cluster dissociation. Fragmentation of ammonium bisulfate clusters occurs by two pathways: (1) a two-step pathway whereby the cluster sequentially loses ammonia followed by sulfuric acid and (2) a one-step pathway whereby the cluster loses an ammonium bisulfate molecule. Experimental critical energies for loss of an ammonia molecule and loss of an ammonium bisulfate molecule are higher than the thermodynamic values. If cluster growth is considered the reverse of cluster fragmentation, these results require the presence of an activation barrier to describe the incorporation of ammonia into small acidic clusters and suggest that kinetically (i.e., diffusion) limited growth should not be assumed. An important corollary is that models of atmospheric NPF should be revised to consider activation barriers to individual chemical steps along the growth pathway.

  9. Mixing state of particles with secondary species by single particle aerosol mass spectrometer in an atmospheric pollution event

    NASA Astrophysics Data System (ADS)

    Xu, Lingling; Chen, Jinsheng

    2016-04-01

    Single particle aerosol mass spectrometer (SPAMS) was used to characterize size distribution, chemical composition, and mixing state of particles in an atmospheric pollution event during 20 Oct. - 5 Nov., 2015 in Xiamen, Southeast China. A total of 533,012 particle mass spectra were obtained and clustered into six groups, comprising of industry metal (4.5%), dust particles (2.6%), carbonaceous species (70.7%), K-Rich particles (20.7%), seasalt (0.6%) and other particles (0.9%). Carbonaceous species were further divided into EC (70.6%), OC (28.5%), and mixed ECOC (0.9%). There were 61.7%, 58.3%, 4.0%, and 14.6% of particles internally mixed with sulfate, nitrate, ammonium and C2H3O, respectively, indicating that these particles had undergone significant aging processing. Sulfate was preferentially mixed with carbonaceous particles, while nitrate tended to mix with metal-containing and dust particles. Compared to clear days, the fractions of EC-, metal- and dust particles remarkably increased, while the fraction of OC-containing particles decreased in pollution days. The mixing state of particles, excepted for OC-containing particles with secondary species was much stronger in pollution days than that in clear days, which revealed the significant influence of secondary particles in atmospheric pollution. The different activity of OC-containing particles might be related to their much smaller aerodynamic diameter. These results could improve our understanding of aerosol characteristics and could be helpful to further investigate the atmospheric process of particles.

  10. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    SciTech Connect

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; Tsouris, Costas

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequent effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.

  11. Charging and coagulation of radioactive and nonradioactive particles in the atmosphere

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Nenes, Athanasios; ...

    2016-01-01

    Charging and coagulation influence one another and impact the particle charge and size distributions in the atmosphere. However, few investigations to date have focused on the coagulation kinetics of atmospheric particles accumulating charge. This study presents three approaches to include mutual effects of charging and coagulation on the microphysical evolution of atmospheric particles such as radioactive particles. The first approach employs ion balance, charge balance, and a bivariate population balance model (PBM) to comprehensively calculate both charge accumulation and coagulation rates of particles. The second approach involves a much simpler description of charging, and uses a monovariate PBM and subsequentmore » effects of charge on particle coagulation. The third approach is further simplified assuming that particles instantaneously reach their steady-state charge distributions. It is found that compared to the other two approaches, the first approach can accurately predict time-dependent changes in the size and charge distributions of particles over a wide size range covering from the free molecule to continuum regimes. The other two approaches can reliably predict both charge accumulation and coagulation rates for particles larger than about 0.04 micrometers and atmospherically relevant conditions. These approaches are applied to investigate coagulation kinetics of particles accumulating charge in a radioactive neutralizer, the urban atmosphere, and an atmospheric system containing radioactive particles. Limitations of the approaches are discussed.« less

  12. Measuring Mass-Based Hygroscopicity of Atmospheric Particles through in situ Imaging

    SciTech Connect

    Piens, Dominique` Y.; Kelly, Stephen T.; Harder, Tristan; Petters, Markus D.; O'Brien, Rachel; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state determined for 158 particles broadly agreed with those of the humidified particles, indicating the potential to infer the atmospheric hygroscopic behavior from a selected subset of particles. These methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicron atmospheric particles.

  13. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    SciTech Connect

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; Petters, Markus D.; O’Brien, Rachel E.; Wang, Bingbing; Teske, Ken; Dowell, Pat; Laskin, Alexander; Gilles, Mary K.

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental composition of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.

  14. Measuring mass-based hygroscopicity of atmospheric particles through in situ imaging

    DOE PAGES

    Piens, Dominique S.; Kelly, Stephen T.; Harder, Tristan H.; ...

    2016-04-18

    Quantifying how atmospheric particles interact with water vapor is critical for understanding the effects of aerosols on climate. We present a novel method to measure the mass-based hygroscopicity of particles while characterizing their elemental and carbon functional group compositions. Since mass-based hygroscopicity is insensitive to particle geometry, it is advantageous for probing the hygroscopic behavior of atmospheric particles, which can have irregular morphologies. Combining scanning electron microscopy with energy dispersive X-ray analysis (SEM/EDX), scanning transmission X-ray microscopy (STXM) analysis, and in situ STXM humidification experiments, this method was validated using laboratory-generated, atmospherically relevant particles. Then, the hygroscopicity and elemental compositionmore » of 15 complex atmospheric particles were analyzed by leveraging quantification of C, N, and O from STXM, and complementary elemental quantification from SEM/EDX. We found three types of hygroscopic responses, and correlated high hygroscopicity with Na and Cl content. The mixing state of 158 other particles from the sample broadly agreed with those of the humidified particles, indicating the potential to infer atmospheric hygroscopic behavior from a selected subset of particles. As a result, these methods offer unique quantitative capabilities to characterize and correlate the hygroscopicity and chemistry of individual submicrometer atmospheric particles.« less

  15. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  16. Atmospheric giant particles (iberulites) from African desert soils and human health

    NASA Astrophysics Data System (ADS)

    Párraga, Jesús; Delgado, Gabriel; Bech, Jaume; Martín-García, Juan Manuel; Delgado, Rafael

    2013-04-01

    Earth is twice as dusty as in 19th century. The amount of soil dust in the Earth's atmosphere has doubled over the last century. The circum-Mediterranean area has one of the highest dust accretion rates in the world. The larger deserts (Sahara, Gobi, Badai Jaran, etc.) are the primary sources of mobilized desert-dust top soil that move great distances through the troposphere each year. Erosion, atmospheric transport, and dust-sized soil particles deposition to earth's surface are important process in aeolian environments. Atmospheric dust is associated to global climate change. Iberulites are giant microspherulitic particles (87.9 × 27.6 µm) rounded and reddish, generated in the atmosphere (troposphere) by coalescence of smaller particles, finally falling to the earth's surface. The name comes from the Iberian Peninsula where they were discovered. An iberulite is a co-association with axial geometry, consisting of well-defined mineral grains, together with non-crystalline compounds, structured around a coarse-grained core with a smectite rind, only one vortex and pinkish color formed in the troposphere by complex aerosol-water-gas interactions. Sedimentable dust ("dry deposition") in the city of Granada (Spain) for 17 African dust intrusion events occurring in the summer months of 2010 has been studied. In all samples were detected (SEM, stereomicroscope) iberulites. Total dust and the iberulites are composed mainly by mineral particles of different nature (XRD and SEM-EDX) and size less than 10µm (laser technique), implying dangerousness by inhalation. In the total dust the dominant mineral is dolomite [CaMg(CO3)2], abundant in the surroundings of the city; in the iberulites dominates the quartz (SiO2), which indicates Saharan origin. The iberulites and the total dust are associated with metals (ICP-MS) that have a capacity to transport electrons with a high toxic potential in the body. The concentration of Cu and Pb in total dust were 5 and 2.5 times higher

  17. PD-FiTE - an efficient method for calculating gas / liquid equilibria in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Topping, D.; Lowe, D.; McFiggans, G.; Barley, M.

    2009-04-01

    Assessing the impact of atmospheric aerosol particles on the environment requires adequate representation of appropriate key processes within large scale models. In the absence of primary particulate material, interactions between the atmospheric gaseous components and particles means that the chemical nature of the particles is largely determined by the availability of condensable gaseous material, such as sulphuric and nitric acids, and by the ambient environmental conditions. Gas to particle mass transfer of semi-volatile components,driven by a difference in equilibrium and actual partial pressures above an aerosol particle, is an important factor in determining the evolving chemical composition of the particle and is necessary for predicting aerosol loading and composition. The design of an appropriate framework required for parameterizations of key variables is challenging. These thermodynamic frameworks are often numerically very complex, resulting in significant computational expense. Three dimensional chemical and aerosol transport models demand that computational expense be kept at a minimum,resulting in a trade-off between accuracy and efficiency. To calculate the equilibrium vapour pressure above a solution requires treatment of solution nonideality. This is manifest through activity coefficients of components pertinent to each condensing specie. However, activity coefficients are complex functions of the solution composition. Parameterisation of activity coefficients provides the main focus of this work largely because reducing the numerical complexity whilst retaining a good level of accuracy is very challenging. The approach presented here, the hybrid Partial Derivative Fitted Taylor Expansion (PDFiTE) (Topping et al 2008), builds on previously reported work, with an aim to derive parameters for an accurate and computationally efficient framework through coupling with a complex thermodynamic model. Such a reduction in complexity is important as it is

  18. Direct night-time ejection of particle-phase reduced biogenic sulfur compounds from the ocean to the atmosphere.

    PubMed

    Gaston, Cassandra J; Furutani, Hiroshi; Guazzotti, Sergio A; Coffee, Keith R; Jung, Jinyoung; Uematsu, Mitsuo; Prather, Kimberly A

    2015-04-21

    The influence of oceanic biological activity on sea spray aerosol composition, clouds, and climate remains poorly understood. The emission of organic material and gaseous dimethyl sulfide (DMS) from the ocean represents well-documented biogenic processes that influence particle chemistry in marine environments. However, the direct emission of particle-phase biogenic sulfur from the ocean remains largely unexplored. Here we present measurements of ocean-derived particles containing reduced sulfur, detected as elemental sulfur ions (e.g., (32)S(+), (64)S2(+)), in seven different marine environments using real-time, single particle mass spectrometry; these particles have not been detected outside of the marine environment. These reduced sulfur compounds were associated with primary marine particle types and wind speeds typically between 5 and 10 m/s suggesting that these particles themselves are a primary emission. In studies with measurements of seawater properties, chlorophyll-a and atmospheric DMS concentrations were typically elevated in these same locations suggesting a biogenic source for these sulfur-containing particles. Interestingly, these sulfur-containing particles only appeared at night, likely due to rapid photochemical destruction during the daytime, and comprised up to ∼67% of the aerosol number fraction, particularly in the supermicrometer size range. These sulfur-containing particles were detected along the California coast, across the Pacific Ocean, and in the southern Indian Ocean suggesting that these particles represent a globally significant biogenic contribution to the marine aerosol burden.

  19. Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

    PubMed

    Riccobono, Francesco; Schobesberger, Siegfried; Scott, Catherine E; Dommen, Josef; Ortega, Ismael K; Rondo, Linda; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Downard, Andrew; Dunne, Eimear M; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Hansel, Armin; Junninen, Heikki; Kajos, Maija; Keskinen, Helmi; Kupc, Agnieszka; Kürten, Andreas; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud P; Santos, Filipe D; Schallhart, Simon; Seinfeld, John H; Sipilä, Mikko; Spracklen, Dominick V; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjö; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Wimmer, Daniela; Carslaw, Kenneth S; Curtius, Joachim; Donahue, Neil M; Kirkby, Jasper; Kulmala, Markku; Worsnop, Douglas R; Baltensperger, Urs

    2014-05-16

    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.

  20. Large area nuclear particle detectors using ET materials

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The purpose of this SBIR Phase 1 feasibility effort was to demonstrate the usefulness of Quantex electron-trapping (ET) materials for spatial detection of nuclear particles over large areas. This demonstration entailed evaluating the prompt visible scintillation as nuclear particles impinged on films of ET materials, and subsequently detecting the nuclear particle impingement information pattern stored in the ET material, by means of the visible-wavelength luminescence produced by near-infrared interrogation. Readily useful levels of scintillation and luminescence outputs are demonstrated.

  1. Doped luminescent materials and particle discrimination using same

    DOEpatents

    Doty, F. Patrick; Allendorf, Mark D; Feng, Patrick L

    2014-10-07

    Doped luminescent materials are provided for converting excited triplet states to radiative hybrid states. The doped materials may be used to conduct pulse shape discrimination (PSD) using luminescence generated by harvested excited triplet states. The doped materials may also be used to detect particles using spectral shape discrimination (SSD).

  2. Polarimetric assist to HSI atmospheric compensation and material identification

    NASA Astrophysics Data System (ADS)

    Gibney, Mark

    2016-05-01

    In this effort, we investigated how polarimetric HyperSpectral Imaging (pHSI) data might benefit specified Material Identification of diffuse materials in the VNIR. The experiment compared paint reflectivities extracted from polarimetric hyperspectral data acquired in the field to a database of truth reflectivities measured in the lab. Both the polarimetric hyperspectral data and the reflectivities were acquired using an Ocean Optics spectrometer which was polarized using a fast filter wheel loaded with high extinction polarizers. During the experiment, we discovered that the polarized spectra from the polarimetric hyper spectral data could be used to estimate the relative spectral character of the field source (the exo-atmospheric sun plus the atmosphere). This benefit, which strongly parallels the QUAC atmospheric correction method, relies on the natural spectral flatness of the polarized spectrum that originates in the spectral flatness of the index of refraction in the reflective regime. Using this estimate of the field source, excellent estimates of the paint reflectivities (matching 10 paint reflectivities to <= 0.5% RSS) were obtained. The impact of atmospheric upwell on performance was then investigated using these ground based polarimetric hyper spectral data in conjunction with modeled atmospheric path effects. The path effects were modeled using the high fidelity Polarimetry Phenomenology Simulation (PPS) plate model developed by AFRL, which includes polarized Modtran. We conclude with a discussion of actual and potential applications of this method, and how best to convert an existing VNIR HSI sensor into a pHSI sensor for an airborne Proof Of Concept experiment.

  3. Particle size effect for metal pollution analysis of atmospherically deposited dust

    NASA Astrophysics Data System (ADS)

    Al-Rajhi, M. A.; Al-Shayeb, S. M.; Seaward, M. R. D.; Edwards, H. G. M.

    The metallic compositions of 231 atmospherically deposited dust samples obtained from widely-differing environments in Riyadh city, Saudi Arabia, have been investigated in relation to the particle size distributions. Sample data are presented which show that particle size classification is very important when analysing dust samples for atmospheric metal pollution studies. By cross-correlation and comparison, it was found that the best way to express the results of the metal concentration trend was as an average of particle ratios. Correlations between the six metals studied, namely Pb, Cr, Ni, Cu, Zn and Li, were found for every particle size (eight categories) and reveal that the metal concentrations increased as the particle size decreased. On the basis of this work, it is strongly recommended that future international standards for metal pollutants in atmospherically deposited dusts should be based on particle size fractions.

  4. Atmospheric gas-particle partitioning versus gaseous/particle-bound deposition of SVOCs: Why they are not equivalent

    NASA Astrophysics Data System (ADS)

    Glüge, Juliane; Bogdal, Christian; Scheringer, Martin; Hungerbühler, Konrad

    2015-08-01

    Semi-volatile organic compounds (SVOCs) can be particle-bound or in the gas phase in the atmosphere, depending on the (temperature dependent) gas-particle partitioning of the chemicals and the fraction of particles in air. Several studies linked gas-particle partitioning of SVOCs in the atmosphere directly to the gaseous/particle-bound deposition of these chemicals, i.e. in cases of compounds occurring mainly in the gas phase, the deposition was also assumed to be mainly in gaseous form. In this study, we apply a multi-media fate model to point out that gas-particle partitioning of SVOCs in air and gaseous/particle-bound deposition of SVOCs are driven by different mechanism and, thus, cannot be deduced from each other. We apply our calculations to polychlorinated biphenyls (PCBs), as model SVOCs. We show that the fraction of particle-bound deposition to deciduous forest is 1.5-190 times higher in winter and between 5 and 1000 times higher in summer than the particle-bound fraction of these chemicals in air. The fraction of particle-bound deposition to coniferous forest is 1.5-172 times higher in winter and between 5 and 1000 times higher in summer than the particle-bound fraction of PCBs in air. In addition to the fractions of particle-bound SVOCs in air and particle-bound deposition, we recalculated particle-bound and gaseous deposition velocities to coniferous and deciduous forest for PCBs. The deposition velocities obtained for dry gaseous deposition (<1 m/h) are much lower than the existing values in the literature (10-200 m/h) because earlier studies assumed that for PCBs occurring predominantly in the gas phase, interception was also completely due to dry gaseous deposition.

  5. Status and potential of atmospheric plasma processing of materials

    SciTech Connect

    Pappas, Daphne

    2011-03-15

    This paper is a review of the current status and potential of atmospheric plasma technology for materials processing. The main focus is the recent developments in the area of dielectric barrier discharges with emphasis in the functionalization of polymers, deposition of organic and inorganic coatings, and plasma processing of biomaterials. A brief overview of both the equipment being used and the physicochemical reactions occurring in the gas phase is also presented. Atmospheric plasma technology offers major industrial, economic, and environmental advantages over other conventional processing methods. At the same time there is also tremendous potential for future research and applications involving both the industrial and academic world.

  6. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    1993-01-01

    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra

  7. Generation of nano roughness on fibrous materials by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Kulyk, I.; Scapinello, M.; Stefan, M.

    2012-12-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  8. Secondary Cosmic Ray Particles Due to GCR Interactions in the Earth's Atmosphere

    SciTech Connect

    Battistoni, G.; Cerutti, F.; Fasso, A.; Ferrari, A.; Garzelli, M.V.; Lantz, M.; Muraro, S. Pinsky, L.S.; Ranft, J.; Roesler, S.; Sala, P.R.; /Milan U. /INFN, Milan

    2009-06-16

    Primary GCR interact with the Earth's atmosphere originating atmospheric showers, thus giving rise to fluxes of secondary particles in the atmosphere. Electromagnetic and hadronic interactions interplay in the production of these particles, whose detection is performed by means of complementary techniques in different energy ranges and at different depths in the atmosphere, down to the Earth's surface. Monte Carlo codes are essential calculation tools which can describe the complexity of the physics of these phenomena, thus allowing the analysis of experimental data. However, these codes are affected by important uncertainties, concerning, in particular, hadronic physics at high energy. In this paper we shall report some results concerning inclusive particle fluxes and atmospheric shower properties as obtained using the FLUKA transport and interaction code. Some emphasis will also be given to the validation of the physics models of FLUKA involved in these calculations.

  9. Understanding bulk behavior of particulate materials from particle scale simulations

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoliang

    Particulate materials play an increasingly significant role in various industries, such as pharmaceutical manufacturing, food, mining, and civil engineering. The objective of this research is to better understand bulk behaviors of particulate materials from particle scale simulations. Packing properties of assembly of particles are investigated first, focusing on the effects of particle size, surface energy, and aspect ratio on the coordination number, porosity, and packing structures. The simulation results show that particle sizes, surface energy, and aspect ratio all influence the porosity of packing to various degrees. The heterogeneous force networks within particle assembly under external compressive loading are investigated as well. The results show that coarse-coarse contacts dominate the strong network and coarse-fine contacts dominate the total network. Next, DEM models are developed to simulate the particle dynamics inside a conical screen mill (comil) and magnetically assisted impaction mixer (MAIM), both are important particle processing devices. For comil, the mean residence time (MRT), spatial distribution of particles, along with the collision dynamics between particles as well as particle and vessel geometries are examined as a function of the various operating parameters such as impeller speed, screen hole size, open area, and feed rate. The simulation results can help better understand dry coating experimental results using comil. For MAIM system, the magnetic force is incorporated into the contact model, allowing to describe the interactions between magnets. The simulation results reveal the connections between homogeneity of mixture and particle scale variables such as size of magnets and surface energy of non-magnets. In particular, at the fixed mass ratio of magnets to non-magnets and surface energy the smaller magnets lead to better homogeneity of mixing, which is in good agreement with previously published experimental results. Last but not

  10. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  11. Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

    1990-01-01

    As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

  12. An alpha particle experiment for chemical analysis of the Martian surface and atmosphere.

    NASA Technical Reports Server (NTRS)

    Economou, T. E.; Turkevich, A. L.; Patterson, J. H.

    1973-01-01

    An alpha particle experiment similar to the one performed successfully on the Surveyor lunar missions is described. It is designed to provide a chemical analysis of the Martian surface and atmosphere. Analyses of rocks of known and unknown compositions have been made under simulated Martian conditions. The accuracies attained are generally comparable to those of the Surveyor lunar analyses. Improvements have been achieved in determining carbon and oxygen, so that a few per cent of water or carbonates in rocks can be detected. Some aspects of the integration of such an experiment with the spacecraft, a possible mission profile, and some other problems associated with a soft-landing mission to Mars are discussed. The importance of such a chemical analysis experiment in answering current questions about the nature and history of Martian surface material and its suitability for life processes is presented.

  13. Study on angular variation of cosmic ray secondary particles with atmospheric depth using CORSIKA code

    NASA Astrophysics Data System (ADS)

    Patgiri, P.; Kalita, D.; Boruah, K.

    2017-04-01

    The distribution of the secondary cosmic ray charged particles in the atmosphere as a function of zenith angle of the primary particle depends on various factors such as atmospheric depth, latitude and longitude of the place of observation and possibly other atmospheric conditions. This work is focussed on the investigation of atmospheric attenuation of an Extensive Air Shower using the zenith angle distribution of the secondary charged particles, at different atmospheric depths for pure primary compositions (gamma, proton and iron nucleus) and mixed compositions employing the Monte Carlo Simulation code CORSIKA (versions 6.990 and 7.3500) in the energy range 10 TeV-1 PeV. The secondary charged particles in different zenith angle bins are fitted with a differential distribution dN sp /dθ = A(X)sinθcos n(X)θ, where the power index n(X) is a function of atmospheric depth X. For a given zenith angle θ, the frequency of the showers with secondary charged particle intensity higher than a threshold is also fitted with a relation F(θ,X0) = F(0,X0)exp[-X0(secθ - 1)/λ], where X0 is the vertical atmospheric depth and λ is the attenuation length. Further, the angular distribution parameter n(X) and attenuation co-efficients (λ) from our simulation result for different primaries are compared with available experimental data.

  14. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  15. Differential aerosolization of algal and cyanobacterial particles in the atmosphere.

    PubMed

    Sharma, Naveen K; Singh, Surendra

    2010-10-01

    Aeroalgal sampling at short height (2.5 m) over natural aquatic and terrestrial algal sources revealed that despite of being similar in size (<1 mm), algal groups vary in their atmospheric abundance. Cyanobacteria were the most abundant, while chlorophytes and bacillariophytes though present, but rare. Statistical analysis (Akaike Information Criterion) showed that climatic factors (temperature, relative humidity, rainfall, wind velocity and sunshine hours) acted in concert, and mainly affected the release and subsequent vertical movement (aerosolization) of algae from natural sources. Variation in aerosolization may affect the atmospheric abundance of algae. These findings have important implication as dispersal limitation may influence the biogeography and biodiversity of microbial algae.

  16. Shear-induced segregation of particles by material density.

    PubMed

    Fan, Yi; Hill, K M

    2015-08-01

    Recently, shear rate gradients and associated gradients in velocity fluctuations (e.g., granular temperatures or kinetic stresses) have been shown to drive segregation of different-sized particles in a manner that reverses at relatively high solids fractions (〈f〉>0.50). Here we investigate these effects in mixtures of particles differing in material density through computational and theoretical studies of particles sheared in a vertical chute where we vary the solids fraction from 〈f〉=0.2 to 0.6. We find that in sparse flows, 〈f〉=0.2 to 0.4, the heavier (denser) particles segregate to lower shear rates similarly to the heavier (larger) particles in mixtures of particles differing only in size. However, there is no segregation reversal at high f in mixtures of particles differing in density. At all solids fractions, heavier (denser) particles segregate to regions of lower shear rates and lower granular temperatures, in contrast with segregation of different-sized particles at high f, where the heavier (larger) particles segregate to the region of higher shear rates. Kinetic theory predicts well the segregation for both types of systems at low f but breaks down at higher f's. Our recently proposed mixture theory for high f granular mixtures captures the segregation trends well via the independent partitioning of kinetic and contact stresses between the two species. In light of these results, we discuss possible directions forward for a model framework that encompasses segregation effects more broadly in these systems.

  17. Thermal conductivity measurements of particulate materials: 5. Effect of bulk density and particle shape

    NASA Astrophysics Data System (ADS)

    Presley, Marsha A.; Christensen, Philip R.

    2010-07-01

    Thermal conductivities were measured with a line-heat source for three particulate materials with different particle shapes under low pressures of a carbon dioxide atmosphere and various bulk densities. Less than 2 μm kaolinite exhibited a general decrease in thermal conductivity with increasing bulk density. For the range of atmospheric pressures appropriate for Mars, a reduction in porosity of 24% decreased the thermal conductivity by 24%. Kaolinite manifests considerable anisotropy with respect to thermal conductivity. As the particles align the bulk thermal conductivity measured increasingly reflects the thermal conductivity of the short axis. When kyanite is crushed, it forms blady particles that will also tend to align with increasing bulk density. Without any intrinsic anisotropy, however, kyanite particles, like other particulates exhibit an increase in thermal conductivity with increasing bulk density. Under Martian atmospheric pressures, a reduction in porosity of 30% produces a 30% increase in thermal conductivity. Diatomaceous earth maintains a very low bulk density due to the highly irregular shape of the individual particles. A decrease in porosity of 17% produces an increase in thermal conductivity of 27%. The trends in thermal conductivity with bulk density, whether increasing or decreasing, are often not smooth. Whether oscillations in the trends presented in this paper and elsewhere have any physical significance or whether they are merely artifacts of the precision error is unclear. Clarification of this question may not be possible without higher-precision measurements from future laboratories and further development of theoretical modeling.

  18. Health Risk of Exposure to Atmospheric Pollutant Particles

    EPA Science Inventory

    In relation to multi-component mixture nature of atmospheric PM, this presentation will discuss methods for estimating the respiratory internal dose by experiment and mathematical modeling, limitations of each method and interpretations of the results in the context of health ris...

  19. Scanning Electron Microanalysis and Analytical Challenges of Mapping Elements in Urban Atmospheric Particles

    EPA Science Inventory

    Elemental mapping with energy-dispersive X-ray spectroscopy (EDX) associated with scanning electron microscopy is highly useful for studying internally mixed atmospheric particles. Presented is a study of individual particles from urban airsheds and the analytical challenges in q...

  20. Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics.

    PubMed

    Wang, Jing-Tao; Wang, Juan; Han, Jun-Jie

    2011-07-04

    Recent advances in the fabrication of complex particles and particle-based materials assisted by droplet-based microfluidics are reviewed. Monodisperse particles with expected internal structures, morphologies, and sizes in the range of nanometers to hundreds of micrometers have received a good deal of attention in recent years. Due to the capability of generating monodisperse emulsions and of executing precise control and operations on the suspended droplets inside the microchannels, droplet-based microfluidic devices have become powerful tools for fabricating complex particles with desired properties. Emulsions and multiple-emulsions generated in the microfluidic devices can be composed of a variety of materials including aqueous solutions, gels, polymers and solutions containing functional nanoparticles. They are ideal microreactors or fine templates for synthesizing advanced particles, such as polymer particles, microcapsules, nanocrystals, and photonic crystal clusters or beads by further chemical or physical operations. These particles are promising materials that may be applicable for many fields, such as photonic materials, drug delivery systems, and bio-analysis. From simple to complex, from spherical to nonspherical, from polymerization and reaction crystallization to self-assembly, this review aims to help readers be aware of the many aspects of this field.

  1. [Size distributions of organic carbon (OC) and elemental carbon (EC) in Shanghai atmospheric particles].

    PubMed

    Wang, Guang-Hua; Wei, Nan-Nan; Liu, Wei; Lin, Jun; Fan, Xue-Bo; Yao, Jian; Geng, Yan-Hong; Li, Yu-Lan; Li, Yan

    2010-09-01

    Size distributions of organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC) in atmospheric particles with size range from < 0.49, 0.49-0.95, 0.95-1.50, 1.50-3.00, 3.00-7.20, > 7.20 microm, collected in Jiading District, Shanghai were determined. For estimating size distribution of SOC in these atmospheric particles, a method of determining (OC/EC)(pri) in atmospheric particles with different sizes was discussed and developed, with which SOC was estimated. According to the correlation between OC and EC, main sources of the particles were also estimated roughly. The size distributions of OC and SOC showed a bi-modal with peaks in the particles with size of < 0.49 microm and > 3.0 microm, respectively. EC showed both of a bi-modal and tri-modal. Compared with OC, EC was preferably enriched in particles with size of < 0.49 microm. Mass concentrations of OC and EC in fine particles (< 3.00 microm) accounted for 59.8%-80.0% and 58.1%-82.4% of those in total suspended particles. OC and EC were preferably enriched in fine particles (< 3.00 microm). The concentrations of SOC in the particles with different sizes accounted for 15.7%-79.1% of OC in the particles with corresponding size. Concentrations of SOC in fine aerosols (< 3.00 microm) and coarse aerosols (> 3.00 microm) accounted for 41.4% and 43.5% of corresponding OC. Size distributions of OC, EC and SOC showed time-dependence. The correlation between OC and EC showed that the main contribution to atmospheric particles in Jiading District derived from light petrol vehicles exhaust.

  2. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    SciTech Connect

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  3. Investigation of the Importance of Atmospheric Dust Content on Particle Spectra on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Appel, J.; Lohf, H.; Guo, J.; Kohler, J.; Wimmer-Schweingruber, R. F.; Ehresmann, B.; Zeitlin, C. J.; Rafkin, S. C.; Matthiae, D.; Hassler, D.; Burmeister, S.; Boehm, E.; Boettcher, S.; Brinza, D.; Martin, C.; Reitz, G.

    2013-12-01

    The Mars Science Laboratory mission successfully landed the Curiosity Rover inside Gale Crater on the surface of Mars on August 6, 2012. The mission's science goals are to determine the past and present habitability of Mars, to search for the building blocks of life, to investigate the surface composition and long-term surface and atmospheric processes and to analyze the Martian radiation environment. For analyzing the radiation environment, Curiosity carries the Radiation Assessment Detector. Its goals are to measure the energetic particle spectra on the surface of Mars, to determine dose and dose equivalent rate, to determine radiation hazard and mutagenic influence, to determine chemical and isotopic effects of energetic particles and to enable validation of atmospheric transmission models. In order to fully understand the influence of the highly variable Martian climate, we simulate the process of particle transportation through the Martian atmosphere. We have applied different atmospheric models available through a climate database which include a widely varying range of conditions. This enables us to study the the effect of atmospheric variables such as air density and dust content on the particle spectra at the surface of Mars. We present a comparison of particle spectra resulting from different atmospheric conditions. The results are discussed and the implications in the context of the MSL mission and possible future missions are presented.

  4. Effect of annealing atmospheres on cobalt ferrite nono-particles and their applications

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Pant, R. P.; Jain, V. K.; Yadav, M. S.

    2008-12-01

    Cobalt ferrite nano-particles have been synthesized by co-precipitation and annealed in air and in an inert atmosphere. Change in the physical properties has been analyzed by various analytical techniques like XRD, TEM, VSM, etc. A significant change in the physical properties like structural, particle shape, size, magnetization and microwave absorption has been observed. The effect of annealing on other properties like Curie temperature, electrical conductivity is also investigated. Particles unannealed and annealed in air and in an inert atmosphere are studied for electromagnetic wave interference. Tables 3, Figs 3, Refs 18.

  5. Discrete Particle Swarm Optimization with Scout Particles for Library Materials Acquisition

    PubMed Central

    Lin, Bertrand M. T.

    2013-01-01

    Materials acquisition is one of the critical challenges faced by academic libraries. This paper presents an integer programming model of the studied problem by considering how to select materials in order to maximize the average preference and the budget execution rate under some practical restrictions including departmental budget, limitation of the number of materials in each category and each language. To tackle the constrained problem, we propose a discrete particle swarm optimization (DPSO) with scout particles, where each particle, represented as a binary matrix, corresponds to a candidate solution to the problem. An initialization algorithm and a penalty function are designed to cope with the constraints, and the scout particles are employed to enhance the exploration within the solution space. To demonstrate the effectiveness and efficiency of the proposed DPSO, a series of computational experiments are designed and conducted. The results are statistically analyzed, and it is evinced that the proposed DPSO is an effective approach for the studied problem. PMID:24072983

  6. Discrete particle swarm optimization with scout particles for library materials acquisition.

    PubMed

    Wu, Yi-Ling; Ho, Tsu-Feng; Shyu, Shyong Jian; Lin, Bertrand M T

    2013-01-01

    Materials acquisition is one of the critical challenges faced by academic libraries. This paper presents an integer programming model of the studied problem by considering how to select materials in order to maximize the average preference and the budget execution rate under some practical restrictions including departmental budget, limitation of the number of materials in each category and each language. To tackle the constrained problem, we propose a discrete particle swarm optimization (DPSO) with scout particles, where each particle, represented as a binary matrix, corresponds to a candidate solution to the problem. An initialization algorithm and a penalty function are designed to cope with the constraints, and the scout particles are employed to enhance the exploration within the solution space. To demonstrate the effectiveness and efficiency of the proposed DPSO, a series of computational experiments are designed and conducted. The results are statistically analyzed, and it is evinced that the proposed DPSO is an effective approach for the studied problem.

  7. Atmospheric budget of different elements in aerosol particles over Hungary

    NASA Astrophysics Data System (ADS)

    Molnár, A.; Mészáros, E.; Polyák, K.; Borbély-Kiss, I.; Koltay, E.; Szabó, Gy.; Horváth, Zs.

    The aim of this paper is to present the budget of seven elements (Cd, Cu, Mn, Ni, Pb, V and Zn) in the atmospheric aerosol over Hungary. The dry deposition is estimated on the basis of concentration and size distribution measurements and on dry deposition velocities available in the literature. The dry deposition velocity of two elements is obtained by transport model calculations. Wet deposition rates are determined by analyzing precipitation samples. The emissions of different elements necessary for budgeting are calculated by using statistical data on fossil fuel and gasoline burning, metallurgy, cement industry and waste incineration as well as on emission factors given by Pacyna (1984, Atmospheric Environment18, 41-50). It is found that the country is a net source for elements produced mostly by fossil fuel combustion while it is a net sink for elements released during industrial processes and automotive transport.

  8. Optical properties of particles in planetary atmospheres - Laboratory studies

    NASA Technical Reports Server (NTRS)

    Williams, D.

    1974-01-01

    The laboratory techniques employed for the determination of optical constants are discussed briefly. The values obtained for the real n and imaginary k parts of the refractive indices of water, ice, and liquid ammonia are presented graphically. Work currently in progress on solid ammonia and on sulphuric acid is discussed. Other approaches to studies of the properties of aerosols in planetary atmospheres are presented briefly.

  9. Under What Conditions Can Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere?

    PubMed

    Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H

    2015-10-06

    The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.

  10. On the emission of amines from terrestrial vegetation in the context of atmospheric new particle formation

    NASA Astrophysics Data System (ADS)

    Neftel, Albrecht; Sintermann, Jörg

    2015-04-01

    Airborne amines, specifically methylamines (MAs), play a key role in atmospheric new particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NFP events observed in remote regions. High MA contents as well as emissions by plants have already been described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions, and the decomposition of organic material could constitute another source for airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited and thus it is also an open question how Global Change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  11. Decreasing particle number concentrations in a warming atmosphere and implications

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.; Turco, R. P.; Ogren, J. A.; Yantosca, R. M.

    2011-10-01

    New particle formation contributes significantly to the number concentration of condensation nuclei (CN) as well as cloud CN (CCN), a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends consistent with these predictions. The analysis also suggests, owing to larger observed CN reductions at remote sites than can be explained by the basic nucleation mechanism, that dimethylsulphide (DMS) emissions may be decreasing worldwide with increasing global temperatures, implying a positive DMS-based cloud feedback forcing of the climate ("CLAW"). The combined effects of rising temperatures on aerosol nucleation rates, and possibly on DMS emissions, may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

  12. Decreasing particle number concentrations in a warming atmosphere and implications

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.; Turco, R. P.; Ogren, J. A.; Yantosca, R. M.

    2012-03-01

    New particle formation contributes significantly to the number concentration of condensation nuclei (CN) as well as cloud CN (CCN), a key factor determining aerosol indirect radiative forcing of the climate system. Using a physics-based nucleation mechanism that is consistent with a range of field observations of aerosol formation, it is shown that projected increases in global temperatures could significantly inhibit new particle, and CCN, formation rates worldwide. An analysis of CN concentrations observed at four NOAA ESRL/GMD baseline stations since the 1970s and two other sites since 1990s reveals long-term decreasing trends that are consistent in sign with, but are larger in magnitude than, the predicted temperature effects. The possible reasons for larger observed long-term CN reductions at remote sites are discussed. The combined effects of rising temperatures on aerosol nucleation rates and other chemical and microphysical processes may imply substantial decreases in future tropospheric particle abundances associated with global warming, delineating a potentially significant feedback mechanism that increases Earth's climate sensitivity to greenhouse gas emissions. Further research is needed to quantify the magnitude of such a feedback process.

  13. Optical properties, morphology and elemental chemical composition of atmospheric particles at T1 supersite on MILAGRO campaign

    NASA Astrophysics Data System (ADS)

    Carabali, G.; Mamani-Paco, R.; Castro, T.; Peralta, O.; Herrera, E.; Trujillo, B.

    2011-05-01

    Atmospheric particles were sampled at T1 supersite (19°43' N latitude, 98°58' W longitude, and 2340 m above sea level) during MILAGRO campaign. T1 was located at the north of Mexico City Metropolitan Area (MCMA). Aerosol sampling was done by placing transmission electron microscope (TEM) copper grids on the last 5 stages of an 8-stage MOUDI cascade impactor (d50 = 1.8, 1.0, 0.56, 0.32, and 0.18 μm). Samples were obtained at morning (06:00-09:00), noon (11:00-14:00), afternoon (16:00-19:00) and evening (21:00-24:00) local time. Absorption and scattering coefficients, and particles concentration (0.01-3 μm aerodynamic diameter) were measured simultaneously using a PASP absorption photometer (operated at 550 nm), a portable integrating nephelometer (at 530 nm) and a CNI particle counter. TEM images of particles were acquired at different magnifications using a CM 200 Phillips TEM-EDAX system. The morphology of atmospheric particles for two aerodynamic diameters (0.18 and 1.8 μm) was compared using border-based fractal dimension. Particles sampled under Mexico City pollution influence showed not much variability, suggesting the presence of more compact particles in smaller sizes (d50 = 1.8 μm) at the site. The presence of higher numbers of compact particles can be attributed to aerosol aging and secondary aerosol formation, among others. Under early morning conditions, smaller particles (d50 = 0.18 μm) had more irregular features resulting in a higher average fractal dimension. Energy dispersive X-ray spectroscopy (EDS) was used to determine the elemental composition of particles. EDS analysis in particles with d50 = 0.18 μm showed a higher content of carbonaceous material and relevant amounts of Si, Fe, K, and Co. This may indicate an impact from industrial and vehicle's emissions on atmospheric particles.

  14. Powder densification. 1. Particle-particle basis for incorporation of viscoelastic material properties.

    PubMed

    Lum, S K; Duncan-Hewitt, W C

    1999-02-01

    The present investigation was undertaken to examine the basic unit of densification: the particle-particle indentation. The true interparticle contact area that is established during densification ultimately determines the quality of the tablet compact. By examining the interfacial contact between mutually indenting viscoelastic particles, the process of contact evolution may be represented in mathematical form through extension of the classical Hertzian elastic contact description to encompass material viscoelastic terms. In this way, the time-dependent response of materials to applied loads may be addressed explicitly. The effects of rates of applied loading and maximum load levels were also considered. This analysis was based on viscoelastic stress data collected using an instrumented Instron analyzer during the densification of PMMA/coMMA, a pharmaceutical polymeric coating material. A crossed cylinder matrix compaction geometry was used to simulate the geometry of two mutually indenting spherical particles. Numerical and graphical solutions delineating the relationship between contact area evolution and the prescribed loading force are presented. This particle-particle description of the contacting interface serves as a unit basis for describing the entire powder bed. The powder bed may ultimately be modeled as a collection of these particles in contact.

  15. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry.

    PubMed

    Almeida, S M; Lage, J; Fernández, B; Garcia, S; Reis, M A; Chaves, P C

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM10 levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM2.5 and PM2.5-10 were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM10 were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM10. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH4(+), K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%).

  16. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    NASA Astrophysics Data System (ADS)

    Bao, L. M.; Zhang, G. L.; Lei, Q. T.; Li, Y.; Li, X. L.; Hwu, Y. K.; Yi, J. M.

    2015-09-01

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  17. Genesis Concentrator Target Particle Contamination Mapping and Material Identification

    NASA Technical Reports Server (NTRS)

    Calaway, Michael J.; Rodriquez, M. C.; Allton, J. H.

    2007-01-01

    The majority of surface particles were found to be < 5 microns in diameter with increasing numbers close to the optical resolution limit of 0.3 microns. Acceleration grid EDS results show that the majority of materials appear to be from the SRC shell and SLA materials which include carbon-carbon fibers and Si-rich microspheres in a possible silicone binder. Other major debris material from the SRC included white paint, kapton, collector array fragments, and Al. Image analysis also revealed that SRC materials were also found mixed with the Utah mud and salt deposits. The EDS analysis of the acceleration grid showed that particles < 1 m where generally carbon based particles. Chemical cleaning techniques with Xylene and HF in an ultrasonic bath are currently being investigated for removal of small particles by the Genesis science team as well as ultra-pure water megasonic cleaning by the JSC team [4]. Removal of organic contamination from target materials is also being investigated by the science team with the use of UV-ozone cleaning devices at JSC and Open University [5]. In preparation for solar wind oxygen analyses at UCLA and Open University [1, 2], surface particle contamination on three Genesis concentrator targets was closely examined to evaluate cleaning strategies. Two silicon carbide (Genesis sample # 60001 and 60003) and one chemical vapor deposited (CVD) 13C concentrator target (60002) were imaged and mosaic mapped with optical microscopes. The resulting full target mosaic images and particle feature maps were subsequently compared with non-flight, but flight-like, concentrator targets and sample return capsule (SRC) materials. Contamination found on the flown concentrator acceleration grid was further examined using a scanning electron microscope (SEM). Energy dispersive X-ray spectroscopy (EDS) for particle identification was subsequently compared with the optical images from the flown targets. Figure 1 show that all three targets imaged in this report

  18. Characterization of atmospheric particles in Seoul, Korea using SEM-EDX.

    PubMed

    Kang, Eunha; Park, Inji; Lee, Young Jae; Lee, Meehye

    2012-07-01

    Atmospheric particles in Seoul, Korea were investigated by scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX). Particles were identified and characterized by their morphology and elemental compositions. The morphology of particles was closely coupled with elemental compositions, which provided information on sources and transport processes of aerosols. There were various types of combustion-derived particles identified such as fly ashes, soot, organic matters, tar balls, chars, and sulfur-containing particles. These anthropogenic particles mainly have spherical shape with nano- to micro-meter size. Char was, however, distinguished by irregular shape with varying size up to several micrometers. The sulfur-containing aggregates show a wide range of size, shape, and elemental composition. In addition, bioaerosol and mineral dust were the most abundant particles from natural sources.

  19. Isotopic composition for source identification of mercury in atmospheric fine particles

    NASA Astrophysics Data System (ADS)

    Huang, Qiang; Chen, Jiubin; Huang, Weilin; Fu, Pingqing; Guinot, Benjamin; Feng, Xinbin; Shang, Lihai; Wang, Zhuhong; Wang, Zhongwei; Yuan, Shengliu; Cai, Hongming; Wei, Lianfang; Yu, Ben

    2016-09-01

    The usefulness of mercury (Hg) isotopes for tracing the sources and pathways of Hg (and its vectors) in atmospheric fine particles (PM2.5) is uncertain. Here, we measured Hg isotopic compositions in 30 potential source materials and 23 PM2.5 samples collected in four seasons from the megacity Beijing (China) and combined the seasonal variation in both mass-dependent fractionation (represented by the ratio 202Hg / 198Hg, δ202Hg) and mass-independent fractionation of isotopes with odd and even mass numbers (represented by Δ199Hg and Δ200Hg, respectively) with geochemical parameters and meteorological data to identify the sources of PM2.5-Hg and possible atmospheric particulate Hg transformation. All PM2.5 samples were highly enriched in Hg and other heavy metals and displayed wide ranges of both δ202Hg (-2.18 to 0.51 ‰) and Δ199Hg (-0.53 to 0.57 ‰), as well as small positive Δ200Hg (0.02 to 0.17 ‰). The results indicated that the seasonal variation in Hg isotopic composition (and elemental concentrations) was likely derived from variable contributions from anthropogenic sources, with continuous input due to industrial activities (e.g., smelting, cement production and coal combustion) in all seasons, whereas coal combustion dominated in winter and biomass burning mainly found in autumn. The more positive Δ199Hg of PM2.5-Hg in spring and early summer was likely derived from long-range-transported Hg that had undergone extensive photochemical reduction. The study demonstrated that Hg isotopes may be potentially used for tracing the sources of particulate Hg and its vectors in the atmosphere.

  20. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  1. Particles, environments, and possible ecologies in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.; Salpeter, E. E.

    1976-01-01

    The possible existence of indigenous Jovian organisms is investigated by characterizing the relevant physical environment of Jupiter, discussing the chromophores responsible for the observed coloration of the planet, and analyzing some permissible ecological niches of hypothetical organisms. Values of the eddy diffusion coefficent are estimated separately for the convective troposphere and the more stable mesosphere, and equilibrium condensation is studied for compounds containing Na, Cl, or both. The photoproduction of chromophores and nonequilibrium organic molecules is analyzed, and the motion of hypothetical organisms is examined along with the diffusion of metabolites and the consequent growth of organisms. Four kinds of organisms are considered: primary photosynthetic autotrophs ('sinkers'), larger autotrophs or heterotrophs that actively maintain their pressure level ('floaters'), organisms that seek out others ('hunters'), and organisms that live at almost pyrolytic depths ('scavengers'). It is concluded that ecological niches for sinkers, floaters, and hunters appear to exist in the Jovian atmosphere.

  2. Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles

    NASA Technical Reports Server (NTRS)

    Dillard, J. G.; Seals, R. D.; Wightman, J. P.

    1979-01-01

    The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.

  3. Method and apparatus for making articles from particle based materials

    DOEpatents

    Moorhead, A.J.; Menchhofer, P.A.

    1995-12-19

    A method and apparatus are disclosed for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product. 10 figs.

  4. Method and apparatus for making articles from particle based materials

    DOEpatents

    Moorhead, Arthur J.; Menchhofer, Paul A.

    1995-01-01

    A method and apparatus for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with the invention, a thermally settable slurry containing a relatively high concentration of the particles is conveyed through an elongate flow area having a desired cross-sectional configuration. The slurry is heated as it is advanced through the flow area causing the slurry to set or harden in a shape which conforms to the cross-sectional configuration of the flow area. The material discharges from the flow area as a self-supporting solid of near net final dimensions. The article may then be sintered to consolidate the particles and provide a high density product.

  5. Exoelectronic emission of particles of lunar surface material

    NASA Technical Reports Server (NTRS)

    Mints, R. I.; Alimov, V. I.; Melekhin, V. P.; Milman, I. I.; Kryuk, V. I.; Kunin, L. L.; Tarasov, L. S.

    1974-01-01

    A secondary electron multiplier was used to study the thermostimulated exoelectronic emission of particles of lunar surface material returned by the Soviet Luna 16 automatic station. The natural exoemission from fragments of slag, glass, anorthosite, and a metallic particle was recorded in the isochronic and isothermal thermostimulation regimes. The temperature of emission onset depended on the type of regolith fragment. For the first three particles the isothermal drop in emission is described by first-order kinetic equations. For the anorthosite fragment, exoemission at constant temperature is characterized by a symmetric curve with a maximum. These data indicate the presence of active surface defects, whose nature can be due to the prehistory of the particles.

  6. Non-silica aerogels as hypervelocity particle capture materials

    NASA Astrophysics Data System (ADS)

    Jones, Steven M.

    2010-01-01

    The Stardust sample return mission to the comet Wild 2 used silica aerogel as the principal cometary and interstellar particle capture and return medium. However, since both cometary dust and interstellar grains are composed largely of silica, using a silica collector complicates the science that can be accomplished with these particles. The use of non-silica aerogel in future extra-terrestrial particle capture and return missions would expand the scientific value of these missions. Alumina, titania, germania, zirconia, tin oxide, and resorcinol/formaldehyde aerogels were produced and impact tested with 20, 50, and 100μm glass microspheres to determine the suitability of different non-silica aerogels as hypervelocity particle capture mediums. It was found that non-silica aerogels do perform as efficient hypervelocity capture mediums, with alumina, zirconia, and resorcinol/formaldehyde aerogels proving to be the best of the materials tested.

  7. Origin of nitrocatechols and alkylated-nitrocatechols in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Marchand, Nicolas; Sylvestre, Alexandre; Ravier, Sylvain; Detournay, Anais; Bruns, Emily; Temime-Roussel, Brice; Slowik, Jay; El Haddad, Imad; Prevot, Andre

    2013-04-01

    Biomass burning constitutes one of the major sources of aerosol particles in most of the environments during winter. If a lot of information is available in the literature on the primary fraction of biomass burning aerosol particles, almost nothing is known regarding the formation of Secondary Organic Aerosol (SOA) from the chemical mixture emitted by this source. Recently methylated nitrocatechol have been identified in atmospheric particles collected in winter. These compounds are strongly associated with biomass burning tracers such as levoglucosan and are suspected to be of secondary origin since they can be formed through the oxidation of cresol significantly emitted by biomass burning. However, nitrocatechols are particularly difficult to analyze using classical techniques like HPLC-MS or GC-MS. In the present study, we adopt a new analytical approach. Direct analysis in real time (DART), introduced by Cody et al. (2005), allows direct analysis of gases, liquids, solids and materials on surfaces. Thus, for particles collected onto filters, the sample preparation step is simplified as much as possible, avoiding losses and reducing to the minimum the analytical procedure time. Two analytic modes can be used. In positive mode, [MH]+ ions are formed by proton transfer reaction ; whereas in negative ionization mode, [MH]-, M- and [MO2]- ions are formed. DART source enables soft ionization and produces simple mass spectra suitable for analysis of complex matrices, like organic aerosol, in only a few seconds. For this study, the DART source was coupled to a Q-ToF mass spectrometer (Synapt G2 HDMS, Waters), with a mass resolution up to 40 000. The analysis of atmospheric aerosol samples, collected in Marseille during winter 2011 (APICE project), with the DART/Q-ToF approach highlighted the abundance of nitrocatechols and alkylated nitrocatechols. Their temporal trends were also very similar to those of levoglucosan or dihydroabietic acid well known tracers of biomass

  8. The atmospheric cosmic- and solar energetic particle radiation environment at aircraft altitudes.

    PubMed

    O'Brien, K; Friedberg, W; Smart, D F; Sauer, H H

    1998-01-01

    Galactic cosmic rays interact with the solar wind, the earth's magnetic field and hadron, lepton and photon fields at aircraft altitudes. In addition to cosmic rays, energetic particles generated by solar activity bombard the earth from time to time. These particles, while less energetic than cosmic rays, also produce radiation fields at aircraft altitudes which have qualitatively the same properties as atmospheric cosmic rays. We have used a code based on transport theory to calculate atmospheric cosmic-ray quantities and compared them with experimental data. Agreement with these data is seen to be good. We have then used this code to calculate equivalent doses to aircraft crews. We have also used the code to calculate radiation doses from several large solar energetic particle events which took place in 1989, including the very large event that occurred on September 29th and 30th of that year. The spectra incident on the atmosphere were determined assuming diffusive shock theory.

  9. Mathematical modeling of atmospheric fine particle-associated primary organic compound concentrations

    NASA Astrophysics Data System (ADS)

    Rogge, Wolfgang F.; Hildemann, Lynn M.; Mazurek, Monica A.; Cass, Glen R.; Simoneit, Bernd R. T.

    1996-08-01

    An atmospheric transport model has been used to explore the relationship between source emissions and ambient air quality for individual particle phase organic compounds present in primary aerosol source emissions. An inventory of fine particulate organic compound emissions was assembled for the Los Angeles area in the year 1982. Sources characterized included noncatalyst- and catalyst-equipped autos, diesel trucks, paved road dust, tire wear, brake lining dust, meat cooking operations, industrial oil-fired boilers, roofing tar pots, natural gas combustion in residential homes, cigarette smoke, fireplaces burning oak and pine wood, and plant leaf abrasion products. These primary fine particle source emissions were supplied to a computer-based model that simulates atmospheric transport, dispersion, and dry deposition based on the time series of hourly wind observations and mixing depths. Monthly average fine particle organic compound concentrations that would prevail if the primary organic aerosol were transported without chemical reaction were computed for more than 100 organic compounds within an 80 km × 80 km modeling area centered over Los Angeles. The monthly average compound concentrations predicted by the transport model were compared to atmospheric measurements made at monitoring sites within the study area during 1982. The predicted seasonal variation and absolute values of the concentrations of the more stable compounds are found to be in reasonable agreement with the ambient observations. While model predictions for the higher molecular weight polycyclic aromatic hydrocarbons (PAH) are in agreement with ambient observations, lower molecular weight PAH show much higher predicted than measured atmospheric concentrations in the particle phase, indicating atmospheric decay by chemical reactions or evaporation from the particle phase. The atmospheric concentrations of dicarboxylic acids and aromatic polycarboxylic acids greatly exceed the contributions that

  10. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K.; Kupiainen-Määttä, Oona; Praplan, Arnaud P.; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M.; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N.; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J.; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D.; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H.; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E.; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S.; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R.; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-01

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  11. Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.

    PubMed

    Almeida, João; Schobesberger, Siegfried; Kürten, Andreas; Ortega, Ismael K; Kupiainen-Määttä, Oona; Praplan, Arnaud P; Adamov, Alexey; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Donahue, Neil M; Downard, Andrew; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Henschel, Henning; Jokinen, Tuija; Junninen, Heikki; Kajos, Maija; Kangasluoma, Juha; Keskinen, Helmi; Kupc, Agnieszka; Kurtén, Theo; Kvashin, Alexander N; Laaksonen, Ari; Lehtipalo, Katrianne; Leiminger, Markus; Leppä, Johannes; Loukonen, Ville; Makhmutov, Vladimir; Mathot, Serge; McGrath, Matthew J; Nieminen, Tuomo; Olenius, Tinja; Onnela, Antti; Petäjä, Tuukka; Riccobono, Francesco; Riipinen, Ilona; Rissanen, Matti; Rondo, Linda; Ruuskanen, Taina; Santos, Filipe D; Sarnela, Nina; Schallhart, Simon; Schnitzhofer, Ralf; Seinfeld, John H; Simon, Mario; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Vaattovaara, Petri; Viisanen, Yrjo; Virtanen, Annele; Vrtala, Aron; Wagner, Paul E; Weingartner, Ernest; Wex, Heike; Williamson, Christina; Wimmer, Daniela; Ye, Penglin; Yli-Juuti, Taina; Carslaw, Kenneth S; Kulmala, Markku; Curtius, Joachim; Baltensperger, Urs; Worsnop, Douglas R; Vehkamäki, Hanna; Kirkby, Jasper

    2013-10-17

    Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere. It is thought that amines may enhance nucleation, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid-amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid-dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.

  12. Topical Issue on Optical Particle Characterization and Remote Sensing of the Atmosphere: Part I

    NASA Technical Reports Server (NTRS)

    Videen, Gorden; Kocifaj, Miroslav; Sun, Wenbo; Kai, Kenji; Kawamoto, Kazuaki; Horvath, Helmuth; Mishchenko, Michael

    2015-01-01

    Increasing our understanding of the Earth-atmosphere system has been a scientific and political priority for the last few decades. This system not only touches on environmental science, but it has applicability to our broader understanding of planetary atmospheres in general. While this issue focuses primarily on electromagnetics, other fundamental fields of science, including fluid and thermodynamics play major roles. In recent years, significant research efforts have led to advances in the fields of radiative transfer and electromagnetic scattering from irregularly shaped particles. Recently, several workshops and small conferences have taken place to promote the fusion of these efforts. Late in 2013, for instance, two such meetings took place. The Optical Characterization of Atmospheric Aerosols (OCAA) meeting took place in Smolenice, Slovakia to promote a better understanding of microphysical properties of aerosol particles, and the characterization of such atmospheric particles using optical techniques. A complementary conference was organized in Nagoya, Japan, the 3rd International Symposium on Atmospheric Light Scattering and Remote Sensing (ISALSaRS), whose goal is to fuse the advances achieved in particle characterization with remote-sensing techniques. While the focus of these meetings is slightly different, they represent the same aspects of this rapidly growing field. This Topical Issue is the first of two parts. Within this issue we analyze different aspects of the problem of atmospheric characterization and present a broad overview of the topical area. Research includes theory and experiment, ranging from fundamental microphysical properties of individual aerosol particles to broad characterizations of atmospheric properties. Since this is an active field, we also have encouraged the submission of ideas for new methodologies that may represent the future of the field.

  13. Physicochemical Properties of 'Particle Brush'-Based Materials: Using Polymer Graft Modification to Tailor Particle Interactions

    NASA Astrophysics Data System (ADS)

    Schmitt, Michael D.

    particles are softened using graft modification with the chemical confinement of surface-grafted chains inducing tunable hybridization gaps in solid assemblies fabricated by facile methods. Particle brushes offer a unique opportunity to form complex, functional material systems from simple building blocks that demonstrate a range of unique, tunable properties pertinent to applications from optical computing to phononics and lighting.

  14. Characterizing Biological Particles in the Atmosphere at two Sites in Colorado

    NASA Astrophysics Data System (ADS)

    Garcia, E.; Prenni, A. J.; Prenni, J.; Rivest, J.; Demott, P. J.; Kreidenweis, S. M.

    2010-12-01

    The composition and distribution of primary biological aerosol particles (PBAPs) in the atmosphere is constantly changing due to both natural and anthropogenic activities. In this presentation, we will describe measurements aimed at better characterizing this population at Manitou Experimental Forest, in Pike National Forest in Colorado and in Fort Collins, CO. This work is part of the larger Biosphere-atmosphere Exchange of Aerosols within Cloud, Carbon and Hydrologic cycles, including Organics and Nitrogen (BEACHON) field study program, which is aimed at studying the connections between the biogeochemical cycling of carbon and water in semi-arid regions of the Western U.S. To this end, we are collecting PBAP with SKC impingers into water, which are subsequently analyzed by flow cytometery to determine the atmospheric biological particle concentration. Further, we are generating a gene library of the small subunit RNA genes to speciate the PBAPs in our collected samples using Sanger sequencing. These experiments are performed throughout the year to better understand seasonal variability of atmospheric microbial communities at the selected sites. A small handful of PBAPs have been found to be some of the best ice nucleators in the atmosphere, inducing ice nucleation as high as -2oC; these particles may play pivotal roles in influencing ice formation in cold clouds and, thereby, climate. Preliminary data will be presented aimed at better characterizing this important subset of biological particles.

  15. Microbiology and atmospheric processes: the role of biological particles in cloud physics

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Demott, P. J.; Vali, G.; Levin, Z.

    2007-12-01

    As part of a series of papers on the sources, distribution and potential impact of biological particles in the atmosphere, this paper introduces and summarizes the potential role of biological particles in atmospheric clouds. Biological particles like bacteria or pollen may be active as both cloud condensation nuclei (CCN) and heterogeneous ice nuclei (IN) and thereby can contribute to the initial cloud formation stages and the development of precipitation through giant CCN and IN processes. The paper gives an introduction to aerosol-cloud processes involving CCN and IN in general and provides a short summary of previous laboratory, field and modelling work which investigated the CCN and IN activity of bacterial cells and pollen. Recent measurements of atmospheric ice nuclei with a continuous flow diffusion chamber (CFDC) and of the heterogeneous ice nucleation efficiency of bacterial cells are also briefly discussed. As a main result of this overview paper we conclude that a proper assessment of the impact of biological particles on tropospheric clouds needs new laboratory, field and modelling work on the abundance of biological particles in the atmosphere and their CCN and heterogeneous IN properties.

  16. Microbiology and atmospheric processes: the role of biological particles in cloud physics

    NASA Astrophysics Data System (ADS)

    Möhler, O.; Demott, P. J.; Vali, G.; Levin, Z.

    2007-08-01

    As part of a series of papers on the sources, distribution and potential impact of biological particles in the atmosphere, this paper introduces and summarizes the potential role of biological particles in atmospheric clouds. Biological particles like bacteria or pollen may be active as both cloud condensation nuclei (CCN) and heterogeneous ice nuclei (IN) and thereby can contribute to the initial cloud formation stages and the development of precipitation through giant CCN and IN processes. The paper gives an introduction to aerosol-cloud processes like CCN and IN in general and provides a short summary of previous laboratory, field and modelling work investigating the CCN and IN activity of bacterial cells and pollen. Recent measurements of atmospheric ice nuclei with a continuous flow diffusion chamber (CFDC) and of the heterogeneous ice nucleation efficiency of bacterial cells are also briefly discussed. As a main result of this overview paper we conclude that a proper assessment of the impact of biological particles on tropospheric clouds needs new laboratory, field and modelling work investigating the abundance of biological particles in the atmosphere and their CCN and heterogeneous IN properties.

  17. The Interior Analysis and 3-D Reconstruction of Internally-Mixed Light-Absorbing Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Collins, S. M.; Anderson, I.; Herzing, A.

    2010-12-01

    Carbon-containing atmospheric particles may either absorb solar or outgoing long-wave radiation or scatter solar radiation, and thus, affect Earth’s radiative balance in multiple ways. Light-absorbing carbon that is common in urban air particles such as industrial coke dust, road dust, and diesel soot, often exists in the same particle with other phases that contain, for example, aluminum, calcium, iron, and sulfur. While the optical properties of atmospheric particles in general depend on overall particle size and shape, the inhomogeneity of chemical phases within internally-mixed particles may also greatly affect particle optical properties. In this study, a series of microscopic approaches were used to identify individual light-absorbing coarse-mode particles and to assess their interior structure and composition. Particle samples were collected in 2004 from one of the U.S. EPA’s Los Angeles Particulate Matter Supersites, and were likely affected substantially by road dust and construction dust. First, bright-field and dark-field light microscopy and computer-controlled scanning electron microscopy (SEM) with energy-dispersive x-ray spectroscopy (EDX) were used to distinguish predominantly light-absorbing carbonaceous particles from other particle types such as mineral dust, sea salt, and brake wear. Second, high-resolution SEM-EDX elemental mapping of individual carbonaceous particles was used to select particles with additional elemental phases that exhibited spatial inhomogeneity. Third, focused ion-beam SEM (FIB-SEM) with EDX was used to slice through selected particles to expose interior surfaces and to determine the spatial distribution of element phases throughout the particles. Fourth, study of the interior phases of a particle was augmented by the transmission electron microscopy (TEM) of a thin section of the particle prepared by FIB-SEM. Here, electron energy loss spectroscopy with TEM was used to study chemical bonding in the carbonaceous phase

  18. Atmospheric fate of oil matter adsorbed on sea salt particles under UV light

    NASA Astrophysics Data System (ADS)

    Vaitilingom, M.; Avij, P.; Huang, H.; Valsaraj, K. T.

    2014-12-01

    The presence of liquid petroleum hydrocarbons at the sea water surface is an important source of marine pollution. An oil spill in sea-water will most likely occur due to an involuntary accident from tankers, offshore platforms, etc. However, a large amount of oil is also deliberately spilled in sea-water during the clean-out process of tank vessels (e.g. for the Mediterranean Sea, 490,000 tons/yr). Moreover, the pollution caused by an oil spill does not only affect the aquatic environment but also is of concern for the atmospheric environment. A portion of the oil matter present at the sea-water surface is transported into the atmosphere viaevaporation and adsorption at the surface of sea spray particles. Few studies are related to the presence of oil matter in airborne particles resulting from their adsorption on sea salt aerosols. We observed that the non-volatile oil matter was adsorbed at the surface of sea-salt crystals (av. size of 1.1 μm). Due to their small size, these particles can have a significant residence time in the atmosphere. The hydrocarbon matter adsorbed at the surface of these particles can also be transformed by catalyzers present in the atmosphere (i.e. UV, OH, O3, ...). In this work, we focused on the photo-oxidation rates of the C16 to C30alkanes present in these particles. We utilized a bubble column reactor, which produced an abundance of small sized bubbles. These bubbles generated droplets upon bursting at the air-salt water interface. These droplets were then further dried up and lifted to the top of the column where they were collected as particles. These particles were incubated in a controlled reactor in either dark conditions or under UV-visible light. The difference of alkane content analyzed by GC-MS between the particles exposed to UV or the particles not exposed to UV indicated that up to 20% in mass was lost after 20 min of light exposure. The degradation kinetics varied for each range of alkanes (C16-20, C21-25, C26

  19. Search for fractional-charge particles in meteoritic material.

    PubMed

    Kim, Peter C; Lee, Eric R; Lee, Irwin T; Perl, Martin L; Halyo, Valerie; Loomba, Dinesh

    2007-10-19

    We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5 microm with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth's surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3 x 10(-21) particles per nucleon in the meteoritic material and less than 1.9 x 10(-23) particles per nucleon in the mineral oil.

  20. Search for Fractional-Charge Particles in Meteoritic Material

    NASA Astrophysics Data System (ADS)

    Kim, Peter C.; Lee, Eric R.; Lee, Irwin T.; Perl, Martin L.; Halyo, Valerie; Loomba, Dinesh

    2007-10-01

    We have used an automated Millikan oil drop method to search for free fractional-charge particles in a sample containing in total 3.9 mg of pulverized Allende meteorite suspended in 259 mg of mineral oil. The average diameter of the drops was 26.5μm with the charge on about 42 500 000 drops being measured. This search was motivated by the speculation that isolatable, fractional-charge particles produced in the early Universe and present in our Solar System are more likely to be accumulated in asteroids than on Earth‘s surface. No evidence for fractional-charge particles was found. With 95% confidence, the concentration of particles with fractional-charge more than 0.25 e (e being the magnitude of the electron charge) from the nearest integer charge is less than 1.3×10-21 particles per nucleon in the meteoritic material and less than 1.9×10-23 particles per nucleon in the mineral oil.

  1. Source apportionment of atmospheric particles in the UK and Pakistan

    SciTech Connect

    Smith, D.J.T.; Harrison, R.M.; Luhana, L.

    1995-12-31

    Intensive seasonal sampling was undertaken at urban and rural locations throughout Birmingham (UK). Dichotomous Stacked Filter Units (DSFUS) were run simultaneously with hi-vol samplers. DSFU filters were analyzed for nineteen metal species, ammonium and various anions. Hi-vol samplers were modified in order to collect particulate and vapor phase PAHs by means of filter papers and polyurethane foam plugs. Eighteen PAH species were determined by reversed-phase HPLC. Filter portions were forwarded to the University of Aveiro for analysis of elemental and organic carbon. Hi-vol air sampling equipment was run at three sites in Lahore (Pakistan) for over a year. Selected metals, anions and ammonium were quantified, along with eighteen species of particle-associated PAH. Chemical source apportionment of both the Birmingham and Lahore aerosol loads was completed using multivariate analysis. Metals and anionic data were utilized, along with organic concentrations and meteorological data. This technique typically enabled six major air pollution source categories to be identified, along with the quantitative contributions of pollutant species to each source group. The combination of measurements of PAH and inorganic pollutants proved to be a far more powerful tracer of emission sources than PAH data alone. The largest contribution to aerosol mass in the coarse sized fraction in Birmingham was observed to be soil. Whereas in the fine sized fraction major contributors are vehicular/road dust followed by secondary aerosol formation plus oil combustion. Multivariate analysis of the Lahore data revealed similar source categories to those found in Birmingham. The largest contribution to aerosol mass at all three Punjabi sites was soil. This source is followed by metallurgical processes, vehicular emissions and refuse burning.

  2. Identification of the typical metal particles among haze, fog, and clear episodes in the Beijing atmosphere.

    PubMed

    Hu, Yunjie; Lin, Jun; Zhang, Suanqin; Kong, Lingdong; Fu, Hongbo; Chen, Jianmin

    2015-04-01

    For a better understanding of metal particle morphology and behaviors in China, atmospheric aerosols were sampled in the summer of 2012 in Beijing. The single-particle analysis shows various metal-bearing speciations, dominated by oxides, sulfates and nitrates. A large fraction of particles is soluble. Sources of Fe-bearing particles are mainly steel industries and oil fuel combustion, whereas Zn- and Pb-bearing particles are primarily contributed by waste incineration, besides industrial combustion. Other trace metal particles play a minor rule, and may come from diverse origins. Mineral dust and anthropogenic source like vehicles and construction activities are of less importance to metal-rich particles. Statistics of 1173 analyzed particles show that Fe-rich particles (48.5%) dominate the metal particles, followed by Zn-rich particles (34.9%) and Pb-rich particles (15.6%). Compared with the abundances among clear, haze and fog conditions, a severe metal pollution is identified in haze and fog episodes. Particle composition and elemental correlation suggest that the haze episodes are affected by the biomass burning in the southern regions, and the fog episodes by the local emission with manifold particle speciation. Our results show the heterogeneous reaction accelerated in the fog and haze episodes indicated by more zinc nitrate or zinc sulfate instead of zinc oxide or carbonate. Such information is useful in improving our knowledge of fine airborne metal particles on their morphology, speciation, and solubility, all of which will help the government introduce certain control to alleviate metal pollution.

  3. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires

    NASA Astrophysics Data System (ADS)

    McCluskey, Christina S.; DeMott, Paul J.; Prenni, Anthony J.; Levin, Ezra J. T.; McMeeking, Gavin R.; Sullivan, Amy P.; Hill, Thomas C. J.; Nakao, Shunsuke; Carrico, Christian M.; Kreidenweis, Sonia M.

    2014-09-01

    An improved understanding of atmospheric ice nucleating particles (INP), including sources and atmospheric abundance, is needed to advance our understanding of aerosol-cloud-climate interactions. This study examines diverse biomass burning events to better constrain our understanding of how fires impact populations of INP. Sampling of prescribed burns and wildfires in Colorado and Georgia, U.S.A., revealed that biomass burning leads to the release of particles that are active as condensation/immersion freezing INP at temperatures from -32 to -12°C. During prescribed burning of wiregrass, up to 64% of INP collected during smoke-impacted periods were identified as soot particles via electron microscopy analyses. Other carbonaceous types and mineral-like particles dominated INP collected during wildfires of ponderosa pine forest in Colorado. Total measured nINP and the excess nINP associated with smoke-impacted periods were higher during two wildfires compared to the prescribed burns. Interferences from non-smoke sources of INP, including long-range transported mineral dust and local contributions of soils and plant materials lofted from the wildfires themselves, presented challenges in using the observations to develop a smoke-specific nINP parameterization. Nevertheless, these field observations suggest that biomass burning may serve as an important source of INP on a regional scale, particularly during time periods that lack other robust sources of INP such as long-range transported mineral dust.

  4. Single particle size and fluorescence spectra from emissions of burning materials in a tube furnace to simulate burn pits

    NASA Astrophysics Data System (ADS)

    Pan, Yong-Le; Houck, Joshua D. T.; Clark, Pamela A.; Pinnick, Ronald G.

    2013-08-01

    A single-particle fluorescence spectrometer (SPFS) and an aerodynamic particle sizer were used to measure the fluorescence spectra and particle size distribution from the particulate emissions of 12 different burning materials in a tube furnace to simulate open-air burning of garbage. Although the particulate emissions are likely dominated by particles <1 μm diameter, only the spectra of supermicron particles were measured here. The overall fluorescence spectral profiles exhibit either one or two broad bands peaked around 300-450 nm within the 280-650 nm spectral range, when the particles are illuminated with a 263-nm laser. Different burning materials have different profiles, some of them (cigarette, hair, uniform, paper, and plastics) show small changes during the burning process, and while others (beef, bread, carrot, Styrofoam, and wood) show big variations, which initially exhibit a single UV peak (around 310-340 nm) and a long shoulder in visible, and then gradually evolve into a bimodal spectrum with another visible peak (around 430-450 nm) having increasing intensity during the burning process. These spectral profiles could mainly derive from polycyclic aromatic hydrocarbons with the combinations of tyrosine-like, tryptophan-like, and other humic-like substances. About 68 % of these single-particle fluorescence spectra can be grouped into 10 clustered spectral templates that are derived from the spectra of millions of atmospheric aerosol particles observed in three locations; while the others, particularly these bimodal spectra, do not fall into any of the 10 templates. Therefore, the spectra from particulate emissions of burning materials can be easily discriminated from that of common atmospheric aerosol particles. The SFFS technology could be a good tool for monitoring burning pit emissions and possibly for distinguishing them from atmospheric aerosol particles.

  5. Behaviour of advanced materials impacted by high energy particle beams

    NASA Astrophysics Data System (ADS)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  6. Surface modification of polymeric materials by cold atmospheric plasma jet

    NASA Astrophysics Data System (ADS)

    Kostov, K. G.; Nishime, T. M. C.; Castro, A. H. R.; Toth, A.; Hein, L. R. O.

    2014-09-01

    In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source - the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40° in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure.

  7. How salt lakes affect atmospheric new particle formation: A case study in Western Australia.

    PubMed

    Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A

    2016-12-15

    New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh(-1). The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to

  8. The role of biogenic, biomass burning and urban pollution aerosol particles in controlling key atmospheric processes in Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Ferreira De Brito, J.; Barbosa, H. M.; Rizzo, L. V.; Sena, E. T.; Cirino, G.; Arana, A.; Yanez-Serrano, A. M.

    2013-05-01

    As part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment, a research program run in the last 10 years had help to understand critical atmospheric processes in Amazonia. The vegetation in Amazonia is a direct source of aerosol particles to the atmosphere as well as a source of biogenic trace gases that generates particles trough gas-to-particle conversion. Biomass burning is also a large source of particles and trace gases to the atmosphere. Over the last 10 years, the LBA experiment has unveiled several key processes that control Amazonian composition and influence regional climate. A significant fraction (60-80%) of airborne particles can act as Cloud Condensation Nuclei (CCN), influencing cloud formation and development. The radiation balance is strongly influenced by biomass burning particles, and surface radiative forcing up to -250 w/m2 is measured. A network of 8 sites with AERONET sunphotometers measures aerosol optical depth (AOD) and derive aerosol size distribution and optical properties. Aerosols are composed of more than 70% of organic material, with significant absorption characteristics. The aerosol radiative forcing during the biomass burning season can reach very high values, and the increase in diffuse radiation increases the carbon uptake by the forest for AOD values smaller than 1.2 at 500nm. For large AOD, the solar flux is strongly reduced making the carbon uptake approach zero for AOD larger than 3.0. The composition of aerosols is mostly organic, with contribution of K, Ca, Si, and other trace elements. The aerosol has high capability to serve as Cloud Condensation Nuclei (CCN), contributing with high water vapor amounts to the significant cloud cover over the region. In the last 20 years, an urbanization process took over for most of the Amazonian region, increasing urban pollution that interacts with forest emissions to produce a quite unique pattern of aerosols and pollutants around large urban areas such

  9. Particle size distribution and gas-particle partitioning of polychlorinated biphenyls in the atmosphere in Beijing, China.

    PubMed

    Zhu, Qingqing; Zheng, Minghui; Liu, Guorui; Zhang, Xian; Dong, Shujun; Gao, Lirong; Liang, Yong

    2017-01-01

    Size-fractionated samples of urban particulate matter (PM; ≤1.0, 1.0-2.5, 2.5-10, and >10 μm) and gaseous samples were simultaneously obtained to study the distribution of polychlorinated biphenyls (PCBs) in the atmosphere in Beijing, China. Most recent investigations focused on the analysis of gaseous PCBs, and much less attention has been paid to the occurrence of PCBs among different PM fractions. In the present study, the gas-particle partitioning and size-specific distribution of PCBs in atmosphere were investigated. The total concentrations (gas + particle phase fractions) of Σ12 dioxin-like PCBs, Σ7 indicator PCBs, and ΣPCBs were 1.68, 42.1, and 345 pg/m(3), respectively. PCBs were predominantly in the gas phase (86.8-99.0 % of the total concentrations). The gas-particle partition coefficients (K p ) of PCBs were found to be a significant linear correlated with the subcooled liquid vapor pressures (P L(0)) (R (2) = 0.83, P < 0.01). The slope (m r ) implied that the gas-particle partitioning of PCBs was affected both by the mechanisms of adsorption and absorption. In addition, the concentrations of PCBs increased as the particle size decreased (>10, 2.5-10, 1.0-2.5, and ≤1.0 μm), with most of the PCBs contained in the fraction of ≤1.0 μm (53.4 % of the total particulate concentrations). Tetra-CBs were the main homolog in the air samples in the gas phase and PM fractions, followed by tri-CBs. This work will contribute to the knowledge of PCBs among different PM fractions and fill the gap of the size distribution of particle-bound dioxin-like PCBs in the air.

  10. Morphology and Chemical composition of Atmospheric Particles over Semi-Arid region (Jaipur, Rajasthan) of India

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Agnihotri, R.; Yadav, P.; Singh, S.; Tawale, J. S.; Rashmi, R.; Prasad, M.; Arya, B. C.; Mishra, N.

    2012-12-01

    Uncertainties associated with the radiative forcing of atmospheric dust particles is highest, owing to lack of region-specific dust morphology (particle shape, size) and mineralogy (chemical composition) database, needed for modeling their optical properties (Mishra and Tripathi, 2008). To fill this gap for the Indian region, we collected atmospheric particles (with aerodynamic size <5um, PM5 and a few bulk particles; TSP) from seven sites of Jaipur and nearby locales (semi-arid region, in the vicinity of Thar Desert of Rajasthan) at varying altitude, during late winters of ca. 2012. PM5 particles were collected on Teflon filters (for bulk chemical analyses), while pure Tin substrates (~1×1 mm2) were used for investigating individual particle morphology. Using Scanning Electron Microscope equipped with Energy Dispersive X ray (SEM-EDX) facility at NPL, images of individual particles were recorded and the morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001), whereas chemical compositions of individual particles were determined by EDX and bulk samples by X ray fluorescence (XRF). The geometrical size distributions of atmospheric particles were generated for each site. Based on NIST (National Institute of Standard and Technology, USA) morphology database, the site-specific individual particle shapes reveal predominance of "Layered" (calcite and quartz rich), "Angular" structures (quartz rich) and "Flattened" particles over all the sites. Particles were found to be highly non-spherical with irregular shapes (CIR varying from 1 to 0.22 with median value ~0.76; AR varying from 1 to 5.4 with median value ~1.64). Noteworthy to mention, that unit values of AR and CIR represent spherical particles. Chemical analyses of PM5 particles revealed dominance of crustal elements e.g. Si, Al, Fe, Ca, Mg, in general. Particles over Kukas Hill (27.027° N, 75.919° E; ~800 MAGL) showed highest Fe mass fractions (~43

  11. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

    PubMed Central

    Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

    2013-01-01

    Particles composed of secondary organic material (SOM) are abundant in the lower troposphere. The viscosity of these particles is a fundamental property that is presently poorly quantified yet required for accurate modeling of their formation, growth, evaporation, and environmental impacts. Using two unique techniques, namely a “bead-mobility” technique and a “poke-flow” technique, in conjunction with simulations of fluid flow, the viscosity of the water-soluble component of SOM produced by α-pinene ozonolysis is quantified for 20- to 50-μm particles at 293–295 K. The viscosity is comparable to that of honey at 90% relative humidity (RH), similar to that of peanut butter at 70% RH, and at least as viscous as bitumen at ≤30% RH, implying that the studied SOM ranges from liquid to semisolid or solid across the range of atmospheric RH. These data combined with simple calculations or previous modeling studies are used to show the following: (i) the growth of SOM by the exchange of organic molecules between gas and particle may be confined to the surface region of the particles for RH ≤ 30%; (ii) at ≤30% RH, the particle-mass concentrations of semivolatile and low-volatility organic compounds may be overpredicted by an order of magnitude if instantaneous equilibrium partitioning is assumed in the bulk of SOM particles; and (iii) the diffusivity of semireactive atmospheric oxidants such as ozone may decrease by two to five orders of magnitude for a drop in RH from 90% to 30%. These findings have possible consequences for predictions of air quality, visibility, and climate. PMID:23620520

  12. Fine particle receptor modeling in the atmosphere of Mexico City.

    PubMed

    Vega, Elizabeth; Lowenthal, Douglas; Ruiz, Hugo; Reyes, Elizabeth; Watson, John G; Chow, Judith C; Viana, Mar; Querol, Xavier; Alastuey, Andrés

    2009-12-01

    Source apportionment analyses were carried out by means of receptor modeling techniques to determine the contribution of major fine particulate matter (PM2.5) sources found at six sites in Mexico City. Thirty-six source profiles were determined within Mexico City to establish the fingerprints of particulate matter sources. Additionally, the profiles under the same source category were averaged using cluster analysis and the fingerprints of 10 sources were included. Before application of the chemical mass balance (CMB), several tests were carried out to determine the best combination of source profiles and species used for the fitting. CMB results showed significant spatial variations in source contributions among the six sites that are influenced by local soil types and land use. On average, 24-hr PM2.5 concentrations were dominated by mobile source emissions (45%), followed by secondary inorganic aerosols (16%) and geological material (17%). Industrial emissions representing oil combustion and incineration contributed less than 5%, and their contribution was higher at the industrial areas of Tlalnepantla (11%) and Xalostoc (8%). Other sources such as cooking, biomass burning, and oil fuel combustion were identified at lower levels. A second receptor model (principal component analysis, [PCA]) was subsequently applied to three of the monitoring sites for comparison purposes. Although differences were obtained between source contributions, results evidence the advantages of the combined use of different receptor modeling techniques for source apportionment, given the complementary nature of their results. Further research is needed in this direction to reach a better agreement between the estimated source contributions to the particulate matter mass.

  13. Electrostatic Characteristics of Materials Exposed to Martian Simulant Dust Particles

    NASA Astrophysics Data System (ADS)

    Calle, C. I.; Kim, H. S.; Young, S.; Jackson, D.; Lombardi, A. J.

    1998-11-01

    The Pathfinder mission to Mars identified Andesitic rock as the primary type of rock at the landing site. Several experiments were designed at NASA/Kennedy Space Center to determine the charging characteristics of common space materials exposed to small particles derived from those rocks. MARS-1, a Martian soil simulant prepared from Andesitic rocks by NASA/JSC was used in this work. Characterization of this simulant was made using scanning electron microscopy and inductively coupled argon plasma spectroscopy coupled with a carbon-sulfur detector. These results were compared to the Alpha Proton X-Ray Spectrometer analysis on Pathfinder. The simulant was found to be a suitable substitute for Martian soil for our purposes. Two experimental designs and methods to simulate the exposure of different materials to wind-blown dust were made. These designs permit dust particle delivery to samples at different speeds. Initial experiments made with these designs to determine their viability were promising.

  14. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  15. Materials for Active Engagement in Nuclear and Particle Physics Courses

    NASA Astrophysics Data System (ADS)

    Loats, Jeff; Schwarz, Cindy; Krane, Ken

    2013-04-01

    Physics education researchers have developed a rich variety of research-based instructional strategies that now permeate many introductory courses. Carrying these active-engagement techniques to upper-division courses requires effort and is bolstered by experience. Instructors interested in these methods thus face a large investment of time to start from scratch. This NSF-TUES grant, aims to develop, test and disseminate active-engagement materials for nuclear and particle physics topics. We will present examples of these materials, including: a) Conceptual discussion questions for use with Peer Instruction; b) warm-up questions for use with Just in Time Teaching, c) ``Back of the Envelope'' estimation questions and small-group case studies that will incorporate use of nuclear and particle databases, as well as d) conceptual exam questions.

  16. Large-eddy simulation of particle-laden atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Ilie, Marcel; Smith, Stefan Llewellyn

    2008-11-01

    Pollen dispersion in the atmospheric boundary layer (ABL) is numerically investigated using a hybrid large-eddy simulation (LES) Lagrangian approach. Interest in prediction of pollen dispersion stems from two reasons, the allergens in the pollen grains and increasing genetic manipulation of plants leading to the problem of cross pollination. An efficient Eulerian-Lagrangian particle dispersion algorithm for the prediction of pollen dispersion in the atmospheric boundary layer is outlined. The volume fraction of the dispersed phase is assumed to be small enough such that particle-particle collisions are negligible and properties of the carrier flow are not modified. Only the effect of turbulence on particle motion has to be taken into account (one-way coupling). Hence the continuous phase can be treated separate from the particulate phase. The continuous phase is determined by LES in the Eulerian frame of reference whereas the dispersed phase is simulated in a Lagrangian frame of reference. Numerical investigations are conducted for the convective, neutral and stable boundary layer as well different topographies. The results of the present study indicate that particles with small diameter size follow the flow streamlines, behaving as tracers, while particles with large diameter size tend to follow trajectories which are independent of the flow streamlines. Particles of ellipsoidal shape travel faster than the ones of spherical shape.

  17. UV polarization lidar for remote sensing new particles formation in the atmosphere.

    PubMed

    David, Grégory; Thomas, Benjamin; Dupart, Yoan; D'Anna, Barbara; George, Christian; Miffre, Alain; Rairoux, Patrick

    2014-05-05

    Understanding new particles formation in the free troposphere is key for air quality and climate change, but requires accurate observation tools. Here, we discuss on the optical requirements ensuring a backscattering device, such as a lidar, to remotely observe nucleation events promoted by nonspherical desert dust or volcanic ash particles. By applying the Mie theory and the T-matrix code, we numerically simulated the backscattering coefficient of spherical freshly nucleated particles and nonspherical particles. We hence showed that, to remotely observe such nucleation events with an elastic lidar device, it should operate in the UV spectral range and be polarization-resolved. Two atmospheric case studies are proposed, on nucleation events promoted by desert dust, or volcanic ash particles. This optical pathway might be useful for climate, geophysical and fundamental purposes, by providing a range-resolved remote observation of nucleation events.

  18. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.

    PubMed

    Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A

    2015-07-21

    Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  19. Estimation of atmospheric sea salt dry deposition: Wind speed and particle size dependence

    NASA Astrophysics Data System (ADS)

    McDonald, R. L.; Unni, C. K.; Duce, R. A.

    1982-02-01

    Cascade impactor and bulk filter samples of atmospheric sea salt were collected at wind speeds from 3.4 to 10 m/s at coastal tower sites in the Florida Keys and Enewetak Atoll as part of the SEAREX (Sea Air Exchange) Program. Simultaneous dry deposition measurements were made to polyethylene plates. The samples were analyzed for Na as an indicator of sea salt. If the observed atmospheric sea salt particle mass distributions are corrected for the reduced collection efficiency of large particles, the observed dry deposition rates agree well with rates estimated from atmospheric sea salt particle concentrations and theoretical particle deposition velocities derived from gravitational settling velocities or from the equations of Slinn and Slinn (1980, 1981) for deposition to smooth, solid surfaces as well as natural water surfaces. The results emphasize the fact that even though large particles may represent only a small fraction of the total mass of sea salt over the ocean, they can dominate the dry deposition rates of the sea salt aerosol.

  20. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  1. Assembling and properties of the polymer-particle nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  2. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  3. Investigation of the evolution of atmospheric particles with integration of the stochastic particle-resolved model partmc-mosaic and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Tian, Jian

    With the recently-developed particle-resolved model PartMC-MOSAIC, the mixing state and other physico-chemical properties of individual aerosol particles can be tracked as the particles undergo aerosol aging processes. However, existing PartMC-MOSAIC applications have mainly been based on idealized scenarios, and a link to real atmospheric measurement has not yet been established. In this thesis, we extend the capability of PartMC-MOSAIC and apply the model framework to three distinct scenarios with different environmental conditions to investigate the physical and chemical aging of aerosols in those environments. The first study is to investigate the evolution of particle mixing state and cloud condensation nuclei (CCN) activation properties in a ship plume. Comparisons of our results with observations from the QUANTIFY Study in 2007 in the English channel and the Gulf of Biscay showed that the model was able to reproduce the observed evolution of total number concentration and the vanishing of the nucleation mode consisting of sulfate particles. Further process analysis revealed that during the first hour after emission, dilution reduced the total number concentration by four orders of magnitude, while coagulation reduced it by an additional order of magnitude. Neglecting coagulation resulted in an overprediction of more than one order of magnitude in the number concentration of particles smaller than 40 nm at a plume age of 100 s. Coagulation also significantly altered the mixing state of the particles, leading to a continuum of internal mixtures of sulfate and black carbon. The impact of condensation on CCN concentrations depended on the supersaturation threshold at which CCN activity was evaluated. Nucleation was observed to have a limited impact on the CCN concentration in the ship plume we studied, but was sensitive to formation rates of secondary aerosol. For the second study we adapted PartMC to represent the aerosol evolution in an aerosol chamber, with

  4. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA

  5. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, B. J.; Zhang, Y.; Zuo, X.; Martinez, R. E.; Walker, M. J.; Kreisberg, N. M.; Goldstein, A. H.; Docherty, K. S.; Jimenez, J. L.

    2015-12-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG

  6. Generation of volatile organic compounds by alpha particle degradation of WIPP plastic and rubber material

    SciTech Connect

    Reed, D.T.; Molecke, M.A.

    1993-12-31

    The generation of volatile organic compounds (VOCs), hydrogen, and carbon oxides due to alpha particle irradiation of polyethylene, polyvinylchloride, hypalon, and neoprene, is being investigated. A wide diversity of VOCs was found including alkenes, alkanes, alcohols, ketones, benzene derivatives, and nitro compounds. Their yields however, were quite low. The relative amounts of these compounds depended on the material, atmosphere present, and the absorbed dose. This investigation will help evaluate the effect of ionizing radiation on the long-term performance assessment and regulatory compliance issues related to the Waste Isolation Pilot Plant (WIPP).

  7. Contact efflorescence as a pathway for crystallization of atmospherically relevant particles

    PubMed Central

    Davis, Ryan D.; Lance, Sara; Gordon, Joshua A.; Ushijima, Shuichi B.; Tolbert, Margaret A.

    2015-01-01

    Inadequate knowledge of the phase state of atmospheric particles represents a source of uncertainty in global climate and air quality models. Hygroscopic aqueous inorganic particles are often assumed to remain liquid throughout their atmospheric lifetime or only (re)crystallize at low relative humidity (RH) due to the kinetic limitations of efflorescence (salt crystal nucleation and growth from an aqueous solution). Here we present experimental observations of a previously unexplored heterogeneous nucleation pathway that we have termed “contact efflorescence,” which describes efflorescence initiated by an externally located solid particle coming into contact with the surface of a metastable aqueous microdroplet. This study demonstrates that upon a single collision, contact efflorescence is a pathway for crystallization of atmospherically relevant aqueous particles at high ambient RH (≤80%). Soluble inorganic crystalline particles were used as contact nuclei to induce efflorescence of aqueous ammonium sulfate [(NH4)2SO4], sodium chloride (NaCl), and ammonium nitrate (NH4NO3), with efflorescence being observed in several cases close to their deliquescence RH values (80%, 75%, and 62%, respectively). To our knowledge, these observations represent the highest reported efflorescence RH values for microdroplets of these salts. These results are particularly important for considering the phase state of NH4NO3, where the contact efflorescence RH (∼20–60%) is in stark contrast to the observation that NH4NO3 microdroplets do not homogeneously effloresce, even when exposed to extremely arid conditions (<1% RH). Considering the occurrence of particle collisions in the atmosphere (i.e., coagulation), these observations of contact efflorescence challenge many assumptions made about the phase state of inorganic aerosol. PMID:26668396

  8. Effect of atmospheric conditions on operation of terahertz systems for remote detection of ionizing materials

    SciTech Connect

    Nusinovich, Gregory S.; Kashyn, Dmytro G.; Tatematsu, Yoshinori; Idehara, Toshitaka

    2014-01-15

    This study was motivated by a new concept of remote detection of concealed radioactive materials by using a high power terahertz (THz) wave beam, which can be focused in a small spot where the wave electric field exceeds the breakdown threshold. In the presence of seed electrons in such a volume, this focusing can initiate the avalanche breakdown. Typically, an ambient density of free electrons is assumed to be at the level of one particle per cubic centimeter. So, when a breakdown-prone volume is smaller than 1 cm{sup 3}, there should be significant difference between the breakdown rates in the case of presence of additional sources of ionization versus its absence. Since the flux density of gamma rays emitted by radioactive materials rapidly falls with the distance from the source, while the intensity of THz waves also decreases with the distance due to wave attenuation in the atmosphere, it is important to find an optimal location of the breakdown to be initiated for a given distance between a radioactive material and a THz antenna. This problem is analyzed in a given paper with the account for not only atmospheric attenuation of THz waves but also the air turbulence.

  9. Improved characterization of gas-particle partitioning for per- and polyfluoroalkyl substances in the atmosphere using annular diffusion denuder samplers.

    PubMed

    Ahrens, Lutz; Harner, Tom; Shoeib, Mahiba; Lane, Douglas A; Murphy, Jennifer G

    2012-07-03

    Gas-phase perfluoroalkyl carboxylic acids (PFCAs) sorb strongly on filter material (i.e., GFF, QFF) used in conventional high volume air samplers, which results in an overestimation of the particle-phase concentration. In this study, we investigated an improved technique for measuring the gas-particle partitioning of per- and polyfluoroalkyl substances (PFASs) using an annular diffusion denuder sampler. Samples were analyzed for 7 PFAS classes [i.e., PFCAs, perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)]. The measured particulate associated fraction (Φ') using the diffusion denuder sampler generally followed the trend FTACs (0%) < FTOHs (~8%) < FOSAs (~21%) < PFSAs (~29%) < FOSEs (~66%), whereas the Φ' of the C(8)-C(18) PFCAs increased with carbon chain length, and ranged from 6% to 100%. The ionizability of some PFASs, when associated with particles, is an important consideration when calculating the gas-particle partitioning coefficient as both ionic and neutral forms can be present in the particles. Here we differentiate between a gas-particle partitioning coefficient for neutral species, K(p), and one that accounts for both ionic and neutral species of a compound, K(p)'. The measured K(p)' for PFSAs and PFCAs was 4-5 log units higher compared to the interpolated K(p) for the neutral form only. The measured K(p)' can be corrected (to apply to the neutral form only) with knowledge of the pK(a) of the chemical and the pH of the condensed medium ("wet" particle or aqueous aerosol). The denuder-based sampling of PFASs has yielded a robust data set that demonstrates the importance of atmospheric pH and chemical pK(a) values in determining gas-particle partitioning of PFASs.

  10. The role of low-volatility organic compounds in initial particle growth in the atmosphere.

    PubMed

    Tröstl, Jasmin; Chuang, Wayne K; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James N; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-05-26

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10

  11. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    NASA Astrophysics Data System (ADS)

    Tröstl, Jasmin; Chuang, Wayne K.; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S.; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M.; Miettinen, Pasi; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James N.; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Carslaw, Kenneth S.; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R.; Donahue, Neil M.; Baltensperger, Urs

    2016-05-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10-4.5 micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10-4.5 to 10

  12. Hydrostatic Simulation of Earth's Atmospheric Gas Using Multi-particle Collision Dynamics

    NASA Astrophysics Data System (ADS)

    Pattisahusiwa, Asis; Purqon, Acep; Viridi, Sparisoma

    2016-01-01

    Multi-particle collision dynamics (MPCD) is a mesoscopic simulation method to simulate fluid particle-like flows. MPCD has been widely used to simulate various problems in condensed matter. In this study, hydrostatic behavior of gas in the Earth's atmospheric layer is simulated by using MPCD method. The simulation is carried out by assuming the system under ideal state and is affected only by gravitational force. Gas particles are homogeneous and placed in 2D box. Interaction of the particles with the box is applied through implementation of boundary conditions (BC). Periodic BC is applied on the left and the right side, specular reflection on the top side, while bounce-back on the bottom side. Simulation program is executed in Arch Linux and running in notebook with processor Intel i5 @2700 MHz with 10 GB DDR3 RAM. The results show behaviors of the particles obey kinetic theory for ideal gas when gravitational acceleration value is proportional to the particle mass. Density distribution as a function of altitude also meets atmosphere's hydrostatic theory.

  13. Characterization of Atmospheric Aerosol Particles from a Mining City in Southwest China Using Electron Probe microanalysis

    NASA Astrophysics Data System (ADS)

    Cheng, X.; Huang, Y.; Lu, H., III; Liu, Z., IV; Wang, N. V.

    2015-12-01

    Xin Cheng1, Yi Huang1*, Huilin Lu2, Zaidong Liu2, Ningming Wang21 Key Laboratory of Geological Nuclear Technology of Sichuan Province, College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; E-mail:chengxin_cdut@163.com 2 College of Earth Science, Chengdu University of Technology, Chengdu 610059, China. ; *Corresponding author: E-mail: huangyi@cdut.cn Panzhihua is a mining city located at Pan-Xi Rift valley, southwest China. It has a long industrial history of vanadium-titanium magnetite mining, iron and steel smelting, and coal-fired power plants. Atomospheric environment has been seriously contaminated with airborne paticles, which is threatening human health.The harmful effects of aerosols are dependent on certain characteristics such as microphysical properties. However, few studsies have been carried out on morphological information contained on single atmospheric particles in this area. In this study, we provide a detailed morphologically and chemically characterization of airborne particles collected at Panzhihua city in October, 2014, using a quantitative single particle analysis based on EPXMA. The results indicate that based on their chemical composition, five major types of particles were identified. Among these, aluminosilicate particles have typical spherical shapes and are produced during the high-temperature combustion; Fe-containing particles contains high level of Mn, and more likely originated from mineralogical and steel industry; Si-containing particles can originate from mineralogical source; V-Ti-Mn-containing particles are also produced by steel industry; Ca-containing particles,these particles are CaCO3, mainly from the mining of limestone mine. The results help us on tracing and partitioning different sources of atomospheric particles in the industrial area. Fig.1 Fe-rich shperical particles

  14. Processing of atmospheric particles caught in the act via STXM/NEXAFS

    NASA Astrophysics Data System (ADS)

    Steimer, S.; Lampimäki, M.; Grzinic, G.; Coz, E.; Watts, B.; Raabe, J.; Ammann, M.

    2012-12-01

    Atmospheric aerosols are an important focus of environmental research due to their effect on climate and human health. Among their main constituents are mineral dust and organic particles. Both types of particles directly and indirectly affect our climate through scattering and absorption of radiation and through acting as cloud condensation nuclei respectively. Organic particles are also of significant concern with respect to their health effects. Mineral dust particles in addition serve as a primary external iron source to the open ocean and the bioavailability of iron from these particles is highly dependent on the oxidation state of the metal. The environmental impact of atmospheric particles depends on their physical and chemical properties, which might change upon chemical ageing. In this study we therefore investigated the changes in chemical composition and morphology of mineral dust and organic particle proxies (Arizona test dust and shikimic acid, respectively) upon in situ exposure to ozone or nitrogen oxides in presence of humidity. This was achieved by monitoring changes at the C and O K-edges as well as the metal L-edges via scanning transmission X-ray microscopy (STXM) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Measurements were conducted at the PolLux beamline at Swiss Light Source. All experiments were conducted in an environmental micro reactor, designed specifically for the end station, to enable the investigation in situ. We observed oxidation of shikimic acid particles in situ during exposure to ozone at different humidities, whereby humidity was found to be a critical factor controlling the rate of the reaction. We also obtained well resolved iron distribution maps from the individual submicrometer size mineral dust particles before and after exposure to nitrogen oxides.

  15. Soil-derived sulfate in atmospheric dust particles at Taklimakan desert

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Zhang, Daizhou; Cao, Junji; Xu, Hongmei; An, Zhisheng

    2012-12-01

    Dust-associated sulfate is believed to be a key species which can alter the physical and chemical properties of dust particles in the atmosphere. Its occurrence in the particles has usually been considered to be the consequence of particles' aging in the air although it is present in some crustal minerals. Our observation at the north and south edge of Taklimakan desert, one of the largest dust sources in the Northern Hemisphere, during a dust episode in April 2008 revealed that sulfate in atmospheric dust samples most likely originated directly from surface soil. Its TSP, PM10 and PM2.5 content was proportional to samples' mass and comprised steadily about 4% in the differently sized samples, the ratio of elemental sulfur to iron was approximately constant 0.3, and no demonstrable influence of pollutants from fossil fuel combustion and biomass burning was detected. These results suggest that sulfate could be substantially derived from surface soil at the desert area and the lack of awareness of this origin may impede accurate results in any investigation of atmospheric sulfur chemistry associated with Taklimakan dust and its subsequent local, regional and global effects on the atmosphere.

  16. Extractive Electrospray Ionization Mass Spectrometry of Heterogeneous Particles: Implications for Applications to Complex Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Longin, T.; Waring-Kidd, C.; Wingen, L. M.; Lyster, K.; Anderson, C.; Kumbhani, S.; Finlayson-Pitts, B. J.

    2015-12-01

    Extractive electrospray ionization mass spectrometry (EESI-MS) is a direct, real time technique for obtaining mass spectra of gases, liquid droplets, solid particles, and aerosols with little sample processing. EESI-MS involves the interaction of charged electrospray droplets with a separate spray containing the analyte of interest, but the exact mechanism by which the solvent droplets extract analyte from the sample is unclear. Possible mechanisms include complete coalescence of the sample particle with the solvent droplet in which all of the analyte is incorporated into the solvent or a more temporary interaction such that only some of the analyte is transferred to the solvent. Previous studies of the mechanism of EESI-MS on homogeneous particles indicate that both mechanisms are possible. We studied the behavior of EESI-MS toward heterogeneous particles created by coating NaCl particles with various thicknesses of organic diacids. Our results indicate that the signal strength depends on the solubility of the organic acid in the electrospray solvent, in agreement with previous studies, and also that the outer 10-15 nm of the particles are most susceptible to extraction into the electrospray droplets. Our results combined with those of previous studies suggest that the mass spectra obtained with EESI will not necessarily reflect the overall particle composition, especially for particles that are spatially inhomogeneous, and hence caution in interpretation of the data is advised for application to complex atmospheric aerosol.

  17. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    PubMed Central

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-01-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about −0.5 W m−2 pan-Arctic-mean cooling), exceeding −1 W m−2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological–chemical processes may be susceptible to Arctic warming and industrialization. PMID:27845764

  18. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect

    NASA Astrophysics Data System (ADS)

    Croft, B.; Wentworth, G. R.; Martin, R. V.; Leaitch, W. R.; Murphy, J. G.; Murphy, B. N.; Kodros, J. K.; Abbatt, J. P. D.; Pierce, J. R.

    2016-11-01

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m-2 pan-Arctic-mean cooling), exceeding -1 W m-2 near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  19. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect.

    PubMed

    Croft, B; Wentworth, G R; Martin, R V; Leaitch, W R; Murphy, J G; Murphy, B N; Kodros, J K; Abbatt, J P D; Pierce, J R

    2016-11-15

    The Arctic region is vulnerable to climate change and able to affect global climate. The summertime Arctic atmosphere is pristine and strongly influenced by natural regional emissions, which have poorly understood climate impacts related to atmospheric particles and clouds. Here we show that ammonia from seabird-colony guano is a key factor contributing to bursts of newly formed particles, which are observed every summer in the near-surface atmosphere at Alert, Nunavut, Canada. Our chemical-transport model simulations indicate that the pan-Arctic seabird-influenced particles can grow by sulfuric acid and organic vapour condensation to diameters sufficiently large to promote pan-Arctic cloud-droplet formation in the clean Arctic summertime. We calculate that the resultant cooling tendencies could be large (about -0.5 W m(-2) pan-Arctic-mean cooling), exceeding -1 W m(-2) near the largest seabird colonies due to the effects of seabird-influenced particles on cloud albedo. These coupled ecological-chemical processes may be susceptible to Arctic warming and industrialization.

  20. Brighter material on Deimos - A particle size effect in a carbonaceous material?

    NASA Technical Reports Server (NTRS)

    French, L. M.; Veverka, J.; Thomas, P.

    1988-01-01

    The values obtained for brightness ratios between contiguous bright and dark areas on Deimos from Viking Orbiter images, together with the lack of a significant wavelength dependence of these ratios in the 0.4-0.6-micron range, are presently noted to be consistent with particle size fraction measurements of the Murchison CM meteorite. These data, and a near-coincidence of Deimos absolute reflectances with those of laboratory samples, render the present data consistent with both brighter and darker materials on Deimos being akin to carbonaceous chondrites; the material with smaller average particle size is associated with the brighter patches.

  1. Gas and particle size distributions of polychlorinated naphthalenes in the atmosphere of Beijing, China.

    PubMed

    Zhu, Qingqing; Zhang, Xian; Dong, Shujun; Gao, Lirong; Liu, Guorui; Zheng, Minghui

    2016-05-01

    Polychlorinated naphthalenes (PCNs) were listed as persistent organic pollutants in the Stockholm Convention in 2015. Despite numerous studies on PCNs, little is known about their occurrence in atmospheric particulate matter of different sizes. In this study, 49 PCN congeners were investigated for their concentrations and size-specific distributions in an urban atmosphere, and preliminary exposure assessments were conducted. Ambient air samples were collected using a high-volume cascade impactor for division into a gas fraction and four particle size fractions. Samples were collected from October 2013 to June 2014 at an urban site in Beijing, China. The concentration range for PCNs in the atmosphere (gas + particle fractions) was 6.77-25.90 pg/m(3) (average 16.28 pg/m(3)). The particle-bound concentration range was 0.17-2.78 pg/m(3) (average 1.73 pg/m(3)). Therefore, PCNs were mainly found in the gas phase. The concentrations of PCNs in a fraction increased as the particle size decreased (dae > 10 μm, 10 μm ≥ dae > 2.5 μm, 2.5 μm ≥ dae > 1.0 μm and dae ≤ 1.0 μm). Consequently, PCNs were ubiquitous in inhalable fine particles, and the ΣPCNs associated with PM1.0 and PM2.5 reached 68.4% and 84.3%, respectively. Tetra-CNs and penta-CNs (the lower chlorinated homologues) predominated in the atmosphere. The homologue profiles in different size particles were almost similar, but the particulate profiles were different from those in the gas phase. Among the individual PCNs identified, CN38/40, CN52/60 and CN75 were the dominant compounds in the atmosphere. CN66/67 and CN73 collectively accounted for most of the total dioxin-like TEQ concentrations of the PCNs. Exposure to toxic compounds, such as PCNs present in PM1.0 or PM2.5, may affect human health. This work presents the first data on size-specific distributions of PCNs in the atmosphere.

  2. Characterization of Organic Coatings on Hygroscopic Salt Particles and their Atmospheric Impacts

    SciTech Connect

    Zelenyuk, Alla; Ezell, Michael J.; Perraud, Veronique; Johnson, Stanley N.; Bruns, Emily; Yu, Yong; Imre, D.; Alexander, M. L.; Finlayson-Pitts, Barbara J.

    2010-03-30

    The photooxidation of α-pinene in the presence of NO2, with and without added NaNO3 seed particles, has been studied in a large diameter flow tube. Particles formed by homogeneous nucleation and by condensation on the pre-existing seeds were sampled at various stages of the reaction, dried using four diffusion dryers, size selected at different mobility diameters (dm) using a differential mobility analyzer (DMA), and characterized with a single particle mass spectrometer (SPLAT II). It was found that homogeneously nucleated particles are spherical, have a density (ρ) of 1.25 ± 0.02 g cm-3 (± 2 σ) and contain a significant amount of organic nitrates. The mass spectra of the low volatility products condensed on the NaNO3 seed particles were found to be virtually the same as in the case of homogeneous nucleation. The data show that the presence of even a submonolayer of organics on the NaNO3 particles causes water retention that leads to a decrease in particle density and that the amount of water retained increases with organic coating thickness. Thicker coatings appear to inhibit water evaporation from the particle seeds altogether. This suggests that in the atmosphere, where low volatility organics are plentiful, some hygroscopic salts will retain water and have different densities and refractive indices than expected in the absence of the organic coating. This water retention combined with the organic shell on the particles can potentially impact light scattering by these particles and activity as cloud condensation nuclei (CCN), as well as heterogeneous chemistry and photochemistry on the particles.

  3. Ablation and Chemical Alteration of Cosmic Dust Particles during Entry into the Earth’s Atmosphere

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Shyam Prasad, M.; Dey, S.; Plane, J. M. C.; Feng, W.; Carrillo-Sánchez, J. D.; Fernandes, D.

    2016-12-01

    Most dust-sized cosmic particles undergo ablation and chemical alteration during atmospheric entry, which alters their original properties. A comprehensive understanding of this process is essential in order to decipher their pre-entry characteristics. The purpose of the study is to illustrate the process of vaporization of different elements for various entry parameters. The numerical results for particles of various sizes and various zenith angles are treated in order to understand the changes in chemical composition that the particles undergo as they enter the atmosphere. Particles with large sizes (> few hundred μm) and high entry velocities (>16 km s-1) experience less time at peak temperatures compared to those that have lower velocities. Model calculations suggest that particles can survive with an entry velocity of 11 km s-1 and zenith angles (ZA) of 30°-90°, which accounts for ˜66% of the region where particles retain their identities. Our results suggest that the changes in chemical composition of MgO, SiO2, and FeO are not significant for an entry velocity of 11 km s-1 and sizes <300 μm, but the changes in these compositions become significant beyond this size, where FeO is lost to a major extent. However, at 16 km s-1 the changes in MgO, SiO2, and FeO are very intense, which is also reflected in Mg/Si, Fe/Si, Ca/Si, and Al/Si ratios, even for particles with a size of 100 μm. Beyond 400 μm particle sizes at 16 km s-1, most of the major elements are vaporized, leaving the refractory elements, Al and Ca, suspended in the troposphere.

  4. Dynamics of Space Particles and Spacecrafts Passing by the Atmosphere of the Earth

    PubMed Central

    Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth. PMID:24396298

  5. Dynamics of space particles and spacecrafts passing by the atmosphere of the Earth.

    PubMed

    Gomes, Vivian Martins; Prado, Antonio Fernando Bertachini de Almeida; Golebiewska, Justyna

    2013-01-01

    The present research studies the motion of a particle or a spacecraft that comes from an orbit around the Sun, which can be elliptic or hyperbolic, and that makes a passage close enough to the Earth such that it crosses its atmosphere. The idea is to measure the Sun-particle two-body energy before and after this passage in order to verify its variation as a function of the periapsis distance, angle of approach, and velocity at the periapsis of the particle. The full system is formed by the Sun, the Earth, and the particle or the spacecraft. The Sun and the Earth are in circular orbits around their center of mass and the motion is planar for all the bodies involved. The equations of motion consider the restricted circular planar three-body problem with the addition of the atmospheric drag. The initial conditions of the particle or spacecraft (position and velocity) are given at the periapsis of its trajectory around the Earth.

  6. Nano- and Microscale Particles in Vortex Motions in Earth's Atmosphere and Ionosphere

    SciTech Connect

    Popel, S. I.; Izvekova, Yu. N.; Shukla, P. K.

    2010-12-14

    Vortex motions in the atmosphere are shown to be closely connected with dynamics of the dust nano- and microscale particles. The mechanism by which nano- and microscale particles are transported from the troposphere into the lower stratosphere by synoptic-scale vortices, simulated by the soliton solutions to the Charney-Obukhov equations (Rossby vortices), is described. Redistribution of dust particles in the ionosphere as a result of vortical motions is discussed. It is shown that excitation of acoustic-gravitational vortices at altitudes of 110-130 km as a result of development of acoustic-gravitational wave instability, associated with nonzero balance of heat fluxes, owing to solar radiation, water vapors condensation, infrared emission of the atmosphere, and thermal conductivity, leads to a substantial transportation of dust particles and their mixing at altitudes of 110-120 km. One of the ways of transportation of dust particles in the ionosphere is shown to be vertical flows (streamers), which are generated by dust vortices as a result of development of parametric instability.

  7. Force models for particle-dynamics simulations of granular materials

    SciTech Connect

    Walton, O.R.

    1994-12-01

    Engineering-mechanics contact models are utilized to describe the inelastic, frictional interparticle forces acting in dry granular systems. Simple analyses based on one-dimensional chains are utilized to illustrate wave propagation phenomena in dense and dilute discrete particulates. The variation of restitution coefficient with impact velocity is illustrated for a variety of viscous and hysteretic normal force models. The effects of interparticle friction on material strength in discrete-particle simulations are much closer to measured values than are theories that do not allow article rotations.

  8. Small scale variations of the atmosphere and their implications for the size of noctilucent cloud particles

    NASA Astrophysics Data System (ADS)

    Baumgarten, Gerd; Fiedler, Jens; Lübken, Franz-Josef; Ridder, Christine

    2016-04-01

    Noctilucent clouds (NLC) in the summer mesopause region (about 83 km altitude) are well known since more than 130 years. They are primarily made of ice particles of a few tens of nanometers and thus much smaller than the wavelength of visible light. Nevertheless, lidar measurements allow calculating particle size and inferring particle shape when combined with optical and microphysical modeling of non-spherical ice particles. We use the ALOMAR RMR-lidar, located in Northern Norway at 69°N, that is able to measure NLC with sub-second resolution. The signal levels at three widely separated wavelengths from 335 nm to 1064 nm allow deriving particle sizes with a temporal resolution of two minutes. We will use lidar observations between 2008 and 2014 to investigate the shape of the size distribution. The fundamental question of the shape of the size distribution is a link to the microphysics but also to atmospheric variability by turbulence and waves. Due to large sounding volumes (compared to the lidar sounding volume) this shape of the size distribution is of essential importance for most optical remote sensing methods that depend on assumptions about the width of the size distribution when retrieving mean particle sizes. The actual shape of the size distribution is of essential importance for most optical remote sensing methods (which have larger sounding volumes than the lidar) that depend on assumptions about the width of the size distribution when retrieving mean particle sizes.

  9. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Arangio, Andrea M.; Tong, Haijie; Socorro, Joanna; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-10-01

    Fine particulate matter plays a central role in the adverse health effects of air pollution. Inhalation and deposition of aerosol particles in the respiratory tract can lead to the release of reactive oxygen species (ROS), which may cause oxidative stress. In this study, we have detected and quantified a wide range of particle-associated radicals using electron paramagnetic resonance (EPR) spectroscopy. Ambient particle samples were collected using a cascade impactor at a semi-urban site in central Europe, Mainz, Germany, in May-June 2015. Concentrations of environmentally persistent free radicals (EPFR), most likely semiquinone radicals, were found to be in the range of (1-7) × 1011 spins µg-1 for particles in the accumulation mode, whereas coarse particles with a diameter larger than 1 µm did not contain substantial amounts of EPFR. Using a spin trapping technique followed by deconvolution of EPR spectra, we have also characterized and quantified ROS, including OH, superoxide (O2-) and carbon- and oxygen-centered organic radicals, which were formed upon extraction of the particle samples in water. Total ROS amounts of (0.1-3) × 1011 spins µg-1 were released by submicron particle samples and the relative contributions of OH, O2-, C-centered and O-centered organic radicals were ˜ 11-31, ˜ 2-8, ˜ 41-72 and ˜ 0-25 %, respectively, depending on particle sizes. OH was the dominant species for coarse particles. Based on comparisons of the EPR spectra of ambient particulate matter with those of mixtures of organic hydroperoxides, quinones and iron ions followed by chemical analysis using liquid chromatography mass spectrometry (LC-MS), we suggest that the particle-associated ROS were formed by decomposition of organic hydroperoxides interacting with transition metal ions and quinones contained in atmospheric humic-like substances (HULIS).

  10. Solar wind and high energy particle effects in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Lastovicka, Jan

    1989-01-01

    The solar wind variability and high energy particle effects in the neutral middle atmosphere are not much known. These factors are important in the high latitude upper mesosphere, lower thermosphere energy budget. They influence temperature, composition (minor constituents of nitric oxide, ozone), circulation (wind system) and airflow. The vertical and latitudinal structures of such effects, mechanisms of downward penetration of energy and questions of energy abundance are largely to be solved. The most important recent finding seems to be the discovery of the role of highly relativistic electrons in the middle atmosphere at L = 3 - 8 (Baker et al., 1987). The solar wind and high energy particle flux variability appear to form a part of the chain of possible Sun-weather (climate) relationships. The importance of such studies in the nineties is emphasized by their role in big international programs STEP and IGBP - Global Change.

  11. EXPERIMENTAL STUDIES ON PARTICLE IMPACTION AND BOUNCE: EFFECTS OF SUBSTRATE DESIGN AND MATERIAL. (R825270)

    EPA Science Inventory

    This paper presents an experimental investigation of the effects of impaction substrate designs and material in reducing particle bounce and reentrainment. Particle collection without coating by using combinations of different impaction substrate designs and surface materials was...

  12. Reports of workshops on Probe Measurements of Particles and Radiation in the Atmosphere of Titan

    NASA Technical Reports Server (NTRS)

    Ragent, Boris (Compiler); Swenson, Byron L. (Compiler)

    1990-01-01

    The planned 1995 joint ESA-NASA Cassini mission to the Saturnian system will include an atmospheric probe to be dropped into the atmosphere of Titan for in situ measurements during descent. Because of the unique properties of the Titan atmosphere it is necessary to consider the peculiar requirements for such measurements and applicable techniques. The proceedings of two workshops dealing with the measurement of particles and radiation in the atmosphere of Titan are presented in two parts. The first part dealt with the measurement of particulate matter in the atmosphere of Titan. The second part dealt with the measurement of radiation in the atmosphere of Titan. The proceedings were first published and distributed informally, and are presented with only minor editorial changes. In the report of the particulate matter workshop, discussions of the mission background, the importance of the measurements, and descriptions of the desired information are followed by a description of appropriate measurement techniques and conclusions and recommendations. The proceeding for the workshop on radiation measurement and imaging contains a discussion of the importance of radiation measurements and imaging, and presents a summary of participants' experience with such measurements made from entry probes. This is followed by a description of appropriate measurement techniques and conclusions and recommendations.

  13. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    NASA Astrophysics Data System (ADS)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2016-02-01

    This study presents a comparison of seasonal variation, gas-particle partitioning, and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. Major differences were found in the atmospheric distribution of OCPs and CUPs. The atmospheric concentrations of CUPs were driven by agricultural activities while secondary sources such as volatilization from surfaces governed the atmospheric concentrations of OCPs. Moreover, clear differences were observed in gas-particle partitioning; CUP partitioning was influenced by adsorption onto mineral surfaces while OCPs were mainly partitioning to aerosols through absorption. A predictive method for estimating the gas-particle partitioning has been derived and is proposed for polar and non-polar pesticides. Finally, while OCPs and the majority of CUPs were largely found on fine particles, four CUPs (carbendazim, isoproturon, prochloraz, and terbuthylazine) had higher concentrations on coarse particles ( > 3.0 µm), which may be related to the pesticide application technique. This finding is particularly important and should be further investigated given that large particles result in lower risks from inhalation (regardless the toxicity of the pesticide) and lower potential for long-range atmospheric transport.

  14. Estimating Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics

    SciTech Connect

    Burrows, Susannah M.; Rayner, Perter; Butler, T.; Lawrence, M.

    2013-06-04

    Model-simulated transport of atmospheric trace components can be combined with observed concentrations to obtain estimates of ground-based sources using various inversion techniques. These approaches have been applied in the past primarily to obtain source estimates for long-lived trace gases such as CO2. We consider the application of similar techniques to source estimation for atmospheric aerosols, by using as a case study the estimation of bacteria emissions from different ecosystem regions in the global atmospheric chemistry and climate model ECHAM5/MESSy-Atmospheric Chemistry (EMAC). Simulated particle concentrations in the tropopause region and at high latitudes, as well as transport of particles to tundra and land ice regions are shown to be highly sensitive to scavenging in mixed-phase clouds, which is poorly characterized in most global climate models. This may be a critical uncertainty in correctly simulating the transport of aerosol particles to the Arctic. Source estimation via Monte Carlo Markov Chain is applied to a suite of sensitivity simulations and the global mean emissions are estimated. We present an analysis of the partitioning of uncertainties in the global mean emissions that are attributable to particle size, CCN activity, the ice nucleation scavenging ratios for mixed-phase and cold clouds, and measurement error. Uncertainty due to CCN activity or to a 1 um error in particle size is typically between 10% and 40% of the uncertainty due to data uncertainty, as measured by the 5%-ile to 95%-ile range of the Monte Carlo ensemble. Uncertainty attributable to the ice nucleation scavenging ratio in mized-phase clouds is as high as 10% to 20% of the data uncertainty. Taken together, the four model 20 parameters examined contribute about half as much to the uncertainty in the estimated emissions as do the measurements. This was a surprisingly large contribution from model uncertainty in light of the substantial data uncertainty, which ranges from 81

  15. COMPASS - COMparative Particle formation in the Atmosphere using Simulation chamber Study techniques

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Sun, S.; Haunold, W.; Sitals, R.; van Beesel, E.; dos Santos, L.; Nillius, B.; Jacobi, S.

    2013-06-01

    The anthropogenic influence on climate and environment has increased strongly since industrialization about 150 yr ago. The consequences for the atmosphere became more and more apparent and nowadays affect our life quality on Earth progressively. Because of that it is very important to understand the atmospheric processes, on which these effects are based on, in detail. In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes such as particle formation online and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically with a residence time (xT (COMPASS 1) = 26.5 ± 0.3 min and xT (COMPASS 2) = 26.6 ± 0.4 min) at a typical flow rate of 15 L min-1 and a deposition rate (1.6 ± 0.8) × 10-5 s-1. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system a set of experiments was conducted at different conditions, i.e. urban and remote, enhancing ozone and terpenes as well as reducing sunlight. In the ozone enhanced ambient particle number and volume increased substantially at urban and remote conditions in a different strength. Solar radiation displayed a clear positive effect on particle number as well as terpene addition did at remote conditions. Therefore the system is a useful tool to investigate local precursors, the details of ambient particle formation at surface locations as well as future feedback processes.

  16. Novel particle and radiation sources and advanced materials

    NASA Astrophysics Data System (ADS)

    Mako, Frederick

    2016-03-01

    The influence Norman Rostoker had on the lives of those who had the pleasure of knowing him is profound. The skills and knowledge I gained as a graduate student researching collective ion acceleration has fueled a career that has evolved from particle beam physics to include particle and radiation source development and advanced materials research, among many other exciting projects. The graduate research performed on collective ion acceleration was extended by others to form the backbone for laser driven plasma ion acceleration. Several years after graduate school I formed FM Technologies, Inc., (FMT), and later Electron Technologies, Inc. (ETI). Currently, as the founder and president of both FMT and ETI, the Rostoker influence can still be felt. One technology that we developed is a self-bunching RF fed electron gun, called the Micro-Pulse Gun (MPG). The MPG has important applications for RF accelerators and microwave tube technology, specifically clinically improved medical linacs and "green" klystrons. In addition to electron beam and RF source research, knowledge of materials and material interactions gained indirectly in graduate school has blossomed into breakthroughs in materials joining technologies. Most recently, silicon carbide joining technology has been developed that gives robust helium leak tight, high temperature and high strength joints between ceramic-to-ceramic and ceramic-to-metal. This joining technology has the potential to revolutionize the ethylene production, nuclear fuel and solar receiver industries by finally allowing for the practical use of silicon carbide as furnace coils, fuel rods and solar receptors, respectively, which are applications that have been needed for decades.

  17. Lidar remote sensing of laser-induced incandescence on light absorbing particles in the atmosphere.

    PubMed

    Miffre, Alain; Anselmo, Christophe; Geffroy, Sylvain; Fréjafon, Emeric; Rairoux, Patrick

    2015-02-09

    Carbon aerosol is now recognized as a major uncertainty on climate change and public health, and specific instruments are required to address the time and space evolution of this aerosol, which efficiently absorbs light. In this paper, we report an experiment, based on coupling lidar remote sensing with Laser-Induced-Incandescence (LII), which allows, in agreement with Planck's law, to retrieve the vertical profile of very low thermal radiation emitted by light-absorbing particles in an urban atmosphere over several hundred meters altitude. Accordingly, we set the LII-lidar formalism and equation and addressed the main features of LII-lidar in the atmosphere by numerically simulating the LII-lidar signal. We believe atmospheric LII-lidar to be a promising tool for radiative transfer, especially when combined with elastic backscattering lidar, as it may then allow a remote partitioning between strong/less light absorbing carbon aerosols.

  18. Phase considerations in the gas/particle partitioning of organic amines in the atmosphere

    NASA Astrophysics Data System (ADS)

    Pankow, James F.

    2015-12-01

    Amines in the atmosphere are of interest because of their likely role in new particle formation, and because of anthropogenic emissions of amines at post-combustion carbon capture (PCCC) facilities. A conceptual framework for considering the partitioning of a monobasic amine (Am = unprotonated, "free-base form") from the gas phase to atmospheric particulate matter (PM) is presented for cases when the PM may be composed of multiple liquid phases. Three types of liquid phases are considered as being individually or simultaneously possible for absorptive uptake of atmospheric amines: w) a mostly water phase; α) a mostly (by mass) organic phase that has at least some polarity (e.g., predominantly secondary organic aerosol (SOA), may contain significant water on a mole fraction basis); and β) a mostly organic phase that is less polar than an α phase (e.g., predominantly primary organic aerosol (POA), containing little water). That one or more salts may contain the aminium ion AmH+ (formed by protonation of Am) is subject to the fact that the trace levels of individual amines in the atmosphere make formation of a pure solid such as AmHHSO4(s) exceedingly unlikely: when solid salts of AmH+ are indeed present, by far the most likely form is as a solid solution, e.g., (NH4+)1-y (AmH+)y HSO4(s)- where y << 1. Neglecting dissolution in solid salts, and considering only partitioning to liquid phases, the overall gas/particle partitioning constant is Kp,tot(m3μg-1) = cp,tot /cg = ∑θfθ Kp,fbθ/αfbθ. The quantity cp,tot (μg μg-1) is the total Am concentration (Am + AmH+) in the PM as summed over all phases using the index θ (= w, α, β); cg is the gas-phase concentration of Am; fθ is the mass fraction of the total PM that is the θ phase; Kp,fbθ is the gas/particle partitioning constant for the free-base (Am) form to the θ phase; and 0 < αfbθ < 1 is the fraction of the amine in the θ phase that is in the free-base form. To date, most treatments of the

  19. Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cao, J. J.; Li, Y. K.; Jiang, T.; Hu, G.

    2015-06-01

    Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits, and analysed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometres in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should be assessed.

  20. Sulfur-containing particles emitted by concealed sulfide ore deposits: an unknown source of sulfur-containing particles in the atmosphere

    NASA Astrophysics Data System (ADS)

    Cao, J.; Li, Y.; Jiang, T.; Hu, G.

    2014-11-01

    Sources of sulfur dioxide, sulfates, and organic sulfur compounds, such as fossil fuels, volcanic eruptions, and animal feeding operations, have attracted considerable attention. In this study, we collected particles carried by geogas flows ascending through soil, geogas flows above the soil that had passed through the soil, and geogas flows ascending through deep faults of concealed sulfide ore deposits and analyzed them using transmission electron microscopy. Numerous crystalline and amorphous sulfur-containing particles or particle aggregations were found in the ascending geogas flows. In addition to S, the particles contained O, Ca, K, Mg, Fe, Na, Pb, Hg, Cu, Zn, As, Ti, Sr, Ba, Si, etc. Such particles are usually a few to several hundred nanometers in diameter with either regular or irregular morphology. The sulfur-containing particles originated from deep-seated weathering or faulting products of concealed sulfide ore deposits. The particles suspended in the ascending geogas flow migrated through faults from deep-seated sources to the atmosphere. This is a previously unknown source of the atmospheric particles. This paper reports, for the first time, the emission of sulfur-containing particles into the atmosphere from concealed sulfide ore deposits. The climatic and ecological influences of these sulfur-containing particles and particle aggregations should to be assessed.

  1. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  2. Organic films on atmospheric aerosol particles, fog droplets, cloud droplets, raindrops, and snowflakes

    NASA Astrophysics Data System (ADS)

    Gill, P. S.; Graedel, T. E.; Weschler, C. J.

    1983-05-01

    If surface-active organic molecules are present as surface films, the transfer of gases into the atmospheric water system could be impeded, evaporation could be slowed, and the aqueous chemical reactions could be influenced. The results of new measurements of the surface tension of aqueous solutions of common atmospheric organic compounds (beta-pinene, n-hexanol, eugenol, and anethole) are reported, and it is shown that the compounds produce films with properties similar to those of the better known surfactants. It is concluded that organic films are probably common on atmospheric aerosol particles and that they may occur under certain circumstances on fog droplets, cloud droplets, and snowflakes. If they are present, they will increase the lifetimes of aerosol particles, fog droplets, and cloud droplets, both by inhibiting water vapor evaporation and by reducing the efficiency with which these atmospheric components are scavenged. It is thought likely that the transport of gaseous molecules into and out of the aqueous solution will be impeded by factors of several hundred or more when organic films are present.

  3. Atmospheric Effects of Solar Energetic Particle Events In Magnetized and Non-Magnetized Regions of Mars

    NASA Astrophysics Data System (ADS)

    Jolitz, R.; Dong, C.; Lillis, R. J.; Curry, S.; Brain, D. A.; Larson, D. E.

    2015-12-01

    Solar and shock-accelerated heliospheric energetic charged particles represent an important if irregular source of energy to the Martian upper atmosphere. A Monte Carlo code has been developed to track a population of protons in an atmosphere and account for energy loss to collisional processes including heating, ionization, excitation, and charge transfer. The model framework is open to multiple planetary-specific inputs (e.g. three-dimensional neutral densities, electric and magnetic fields) and uses an adaptive trace algorithm to accurately model collisions in dense and sparse atmospheric regions. Applying 3-D models of electric and magnetic fields from the Michigan Mars MHD code and 1-D neutral densities from the Mars Global Thermosphere Ionosphere Model (M-GITM), we use this model to calculate volume rates of relevant proton-mediated energy loss processes in the Martian upper atmosphere. The model will be improved to generate ionization and heating rates in areas of strong and weak crustal magnetic fields for solar energetic particle events observed by the SEP instrument on MAVEN. Ultimately this will form part of a comprehensive model of solar wind interactions with Mars.

  4. Novel applications of atmospheric pressure plasma on textile materials

    NASA Astrophysics Data System (ADS)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  5. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    SciTech Connect

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, Joao; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Maatta, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petaja, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Trostl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamaki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.

  6. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles

    NASA Astrophysics Data System (ADS)

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-05-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  7. Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Pan, Jie; Li, Li; Wang, Yunuan; Xiu, Xianwu; Wang, Chao; Song, Yuzhi

    2016-11-01

    Atmospheric-pressure argon plasmas have received increasing attention due to their high potential in many industrial and biomedical applications. In this paper, a 1-D fluid model is used for studying the particle density characteristics of the argon plasmas generated by the pulsed dielectric barrier discharges. The temporal evolutions of the axial particle density distributions are illustrated, and the influences of changing the main discharge conditions on the averaged particle densities are researched by independently varying the various discharge conditions. The calculation results show that the electron density and the ion density reach two peaks near the momentary cathodes during the rising and the falling edges of the pulsed voltage. Compared with the charged particle densities, the densities of the resonance state atom Arr and the metastable state atom Arm have more uniform axial distributions, reach higher maximums and decay more slowly. During the platform of the pulsed voltage and the time interval between the pulses, the densities of the excited state atom Ar* are far lower than those of the Arr or the Arm. The averaged particle densities of the different considered particles increase with the increases of the amplitude and the frequency of the pulsed voltage. Narrowing the discharge gap and increasing the relative dielectric constant of the dielectric also contribute to the increase of the averaged particle densities. The effects of reducing the discharge gap distance on the neutral particle densities are more significant than the influences on the charged particle densities. supported by Natural Science Foundation of Shandong Province, China (No. ZR2015AQ008), and Project of Shandong Province Higher Educational Science and Technology Program of China (No. J15LJ04)

  8. Atmospheric Solids Analysis Probe Mass Spectrometry: A New Approach for Airborne Particle Analysis

    SciTech Connect

    Bruns, Emily A.; Perraud, Veronique M.; Greaves, John; Finlayson-Pitts, Barbara J.

    2010-07-15

    Secondary organic aerosols (SOA) formed in the atmosphere from the condensation of semivolatile oxidation products are a significant component of airborne particles which have deleterious effects on health, visibility, and climate. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS) is applied for the first time to the identification of organics in particles from laboratory systems as well as from ambient air. SOA were generated in the laboratory from the ozonolysis of r-pinene and isoprene, as well as from NO3 oxidation of r-pinene, and ambient air was sampled at forested and suburban sites. Particles were collected by impaction on ZnSe disks, analyzed by Fourier transform-infrared spectroscopy (FT-IR) and then transferred to an ASAP-MS probe for further analysis. ASAP-MS data for the laboratory-generated samples show peaks from wellknown products of these reactions, and higher molecular weight oligomers are present in both laboratory and ambient samples. Oligomeric products are shown to be present in the NO3 reaction products for the first time. A major advantage of this technique is that minimal sample preparation is required, and complementary information from nondestructive techniques such as FT-IR can be obtained on the same samples. In addition, a dedicated instrument is not required for particle analysis. This work establishes that ASAP-MS will be useful for identification of organic components of SOA in a variety of field and laboratory studies.

  9. Influence of radioactivity on surface charging and aggregation kinetics of particles in the atmosphere.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Lee, Ida; McFarlane, Joanna; Tsouris, Costas

    2014-01-01

    Radioactivity can influence surface interactions, but its effects on particle aggregation kinetics have not been included in transport modeling of radioactive particles. In this research, experimental and theoretical studies have been performed to investigate the influence of radioactivity on surface charging and aggregation kinetics of radioactive particles in the atmosphere. Radioactivity-induced charging mechanisms have been investigated at the microscopic level, and heterogeneous surface potential caused by radioactivity is reported. The radioactivity-induced surface charging is highly influenced by several parameters, such as rate and type of radioactive decay. A population balance model, including interparticle forces, has been employed to study the effects of radioactivity on particle aggregation kinetics in air. It has been found that radioactivity can hinder aggregation of particles because of similar surface charging caused by the decay process. Experimental and theoretical studies provide useful insights into the understanding of transport characteristics of radioactive particles emitted from severe nuclear events, such as the recent accident of Fukushima or deliberate explosions of radiological devices.

  10. Study of nitro-polycyclic aromatic hydrocarbons in fine and coarse atmospheric particles

    NASA Astrophysics Data System (ADS)

    Teixeira, Elba Calesso; Garcia, Karine Oliveira; Meincke, Larissa; Leal, Karen Alam

    2011-08-01

    The purpose of the present study was to evaluate six nitro-polycyclic aromatic hydrocarbons (NPAHs) in fine (< 2.5 μm) and coarse (2.5-10 μm) atmospheric particles in an urban and industrial area located in the Metropolitan Area of Porto Alegre (MAPA), RS, Brazil. The method used was of NPAHs isolation and derivatization, and subsequent gas chromatography by electron capture detection (CG/ECD). Results revealed a higher concentration of NPAHs, especially 3-nitrofluoranthene and 1-nitropyrene, in fine particles in the sampling sites studied within the MAPA. The diagnostic ratios calculated for PAHs and NPAHs identified the influence of heavy traffic, mainly of diesel emissions. The correlation of NPAHs with other pollutants (NO x, NO 2, NO and O 3) evidence the influence of vehicular emissions in the MAPA. The seasonal variation evidenced higher NPAHs concentrations in the fine particles during winter for most compounds studied.

  11. Evidences for New Particle Formation in the Arctic as a Part of TOPSE Atmospheric Nucleation Event

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Kanawade, V. P.

    2005-12-01

    Simultaneous measurements of ultrafine particles and precursor gases show evidences of new particle formation over a wide range of latitude in the free tropospheric Arctic region. However, the exact mechanism of new particle formation is uncertain. In this study, in-situ measurements taken during deployment 3 (Flight 16, March 7, 2000, Churchill-Churchill, 13:25-18:33 GMT) as a part of Tropospheric Ozone Production about Spring Equinox (TOPSE) experiment, over Western Canada were used for comparison with the model predictions. Using a combination of satellite derived brightness temperature, air parcel backward trajectory information, in-situ measurements of aerosol and precursor gases and aerosol microphysical model [Tripathi et al., 2004] driven by parameterized ion induced nucleation [Modgil et al., 2005], we have investigated the plausible mechanism responsible for, and factors leading to, new particle formation in the middle to upper troposphere during TOPSE atmospheric nucleation event. The reasonable agreement between model predicted and observed ultrafine particles of diameter 3 to 4 nm and 3 to 8 nm suggest that new particle formation is likely to occur by ion induced nucleation mechanism during TOPSE nucleation event. A significant finding is that the lowering of pre-existing particle surface, in the region of cloud outflow, triggered particle nucleation in this region. These studies indicate that, at typical middle to upper tropospheric conditions of Arctic, ion mechanism is an important source of ultrafine particles and these freshly particles can grow to act as cloud condensation nuclei (CCN), which have implications for cloud radiative properties. References Modgil, M. S., Sanjeev Kumar, S. N. Tripathi, and E. R. Lovejoy, A parameterization of ion-induced nucleation of sulfuric acid and water for atmospheric conditions, J. Geophys. Res., In press, 2005. Tripathi, S. N., X. P. Vancassel, R. G. Grainger, and H. L. Rogers, A Fast Stratospheric Aerosol

  12. Light Induced Degradation of Eight Commonly Used Pesticides Adsorbed on Atmospheric Particles: Kinetics and Product Study

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Durand, A.; Gligorovski, S.; Wortham, H.; Quivet, E.

    2014-12-01

    Pesticides are widely used all over the world whether in agricultural production or in non-agricultural settings. They may pose a potential human health effects and environmental risks due to their physico-chemical properties and their extensive use which is growing every year. Pesticides are found in the atmosphere removed from the target area by volatilization or wind erosion, and carried over long distances. These compounds are partitioned between the gaseous and particulate atmospheric phases. The increasingly used pesticides are semi-volatile compounds which are usually adsorbed on the surface of the atmospheric particles. These pesticides may undergo chemical and photo-chemical transformation. New compounds may then be formed that could be more hazardous than the primary pesticides. The atmospheric fate and lifetime of adsorbed pesticides on particles are controlled by the these (photo)chemical processes. However, there is a lack of kinetic data regarding the pesticides in the particle phase. This current work focuses on the photolytic degradation of commonly used pesticides in particulate phase. It aims at estimating the photolytic rates and thus the lifetimes of pesticides adsorbed on silica particles as a proxy of atmospheric particles. The following eight commonly used pesticides, cyprodinil, deltamethrin, difenoconazole, fipronil, oxadiazon, pendimethalin, permethrin, tetraconazole, were chosen because of their physico-chemical properties. The photolysis rates of tetraconazole and permethrin were extremely slow ≤ 1.2 · 10-6 s-1. The photolysis rates for the other pesticides were determined in the range of: (5.9 ± 0.3) · 10-6 < k < (1.7 ± 0.1) · 10-4 s-1 from slowest to the fastest: pendimethalin < cyprodinil < deltamethrin < difenoconazole < oxadiazon < fipronil. Finally, the identification of the surface products upon light irradiation was performed, using GC-(QqQ)-MS/MS and LC-(Q-IMS-ToF)-MS/MS. The potentially formed gas-phase products during

  13. Volatility of mixed atmospheric humic-like substances and ammonium sulfate particles

    NASA Astrophysics Data System (ADS)

    Nie, Wei; Hong, Juan; Häme, Silja A. K.; Ding, Aijun; Li, Yugen; Yan, Chao; Hao, Liqing; Mikkilä, Jyri; Zheng, Longfei; Xie, Yuning; Zhu, Caijun; Xu, Zheng; Chi, Xuguang; Huang, Xin; Zhou, Yang; Lin, Peng; Virtanen, Annele; Worsnop, Douglas R.; Kulmala, Markku; Ehn, Mikael; Yu, Jianzhen; Kerminen, Veli-Matti; Petäjä, Tuukka

    2017-03-01

    The volatility of organic aerosols remains poorly understood due to the complexity of speciation and multiphase processes. In this study, we extracted humic-like substances (HULIS) from four atmospheric aerosol samples collected at the SORPES station in Nanjing, eastern China, and investigated the volatility behavior of particles at different sizes using a Volatility Tandem Differential Mobility Analyzer (VTDMA). In spite of the large differences in particle mass concentrations, the extracted HULIS from the four samples all revealed very high-oxidation states (O : C > 0.95), indicating secondary formation as the major source of HULIS in Yangtze River Delta (YRD). An overall low volatility was identified for the extracted HULIS, with the volume fraction remaining (VFR) higher than 55 % for all the regenerated HULIS particles at the temperature of 280 °C. A kinetic mass transfer model was applied to the thermodenuder (TD) data to interpret the observed evaporation pattern of HULIS, and to derive the mass fractions of semi-volatile (SVOC), low-volatility (LVOC) and extremely low-volatility components (ELVOC). The results showed that LVOC and ELVOC dominated (more than 80 %) the total volume of HULIS. Atomizing processes led to a size-dependent evaporation of regenerated HULIS particles, and resulted in more ELVOC in smaller particles. In order to understand the role of interaction between inorganic salts and atmospheric organic mixtures in the volatility of an organic aerosol, the evaporation of mixed samples of ammonium sulfate (AS) and HULIS was measured. The results showed a significant but nonlinear influence of ammonium sulfate on the volatility of HULIS. The estimated fraction of ELVOC in the organic part of the largest particles (145 nm) increased from 26 %, in pure HULIS samples, to 93 % in 1 : 3 (mass ratio of HULIS : AS) mixed samples, to 45 % in 2 : 2 mixed samples, and to 70 % in 3 : 1 mixed samples, suggesting that the interaction with ammonium sulfate

  14. Asian Dust at Mauna Loa Observatory: Analysis and Modeling of Individual Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Willis, R. D.; Ortiz-Montalvo, D. L.

    2015-12-01

    Springtime Asian dust storms events, typically originating in the Gobi Desert or Taklamakan Desert, produce particles that can be carried aloft eastward for thousands of miles. As a result, the radiative properties of these particles can significantly affect global climate. Here, we determine the optical properties of particles identified as Asian dust at Mauna Loa Observatory, Hawaii, (MLO) based on the composition and actual shapes of individual particles. Samples of particulate material <10 μm in size were collected at MLO, between March 15 and April 26, 2011. Air mass back trajectories and satellite imagery showed that a subset of the aerosol sampled during this period likely originated from the Asian mainland while most of the aerosol probably did not. Samples were first analyzed by automated scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry, whereby particles were sorted into compositionally-distinct particle types. Two particle types, identified as dolomite and calcite were determined to have originated from Asia. A third type, anhydrite, also aloft in the free troposphere, was not associated with Asian dust. Individual particles were analyzed compositionally and their shapes modeled spatially using focused ion-beam (FIB) SEM and FIB tomography. Particle 3-D representations were then input to the discrete dipole approximation method to determine their optical properties for 589 nm light. Calculations revealed that the single scattering albedo (SSA) for the Asian dust particles (0.79 to 0.94) straddled the critical SSA for cooling vs. warming (0.86), with the lowest SSA (0.79) attributed to a small amount of soot (1.7 % by volume) attached to a dolomite particle. SSA for the free troposphere anhydrite particles (0.90 to 0.93) was well above the critical SSA. For the three particle types, SSA for the actual-shaped particles was higher than equivalently-sized spheres, cubes, or tetrahedra. For the fraction of backscattered light from

  15. Energy Transport Effects in Flaring Atmospheres Heated by Mixed Particle Beams

    NASA Astrophysics Data System (ADS)

    Zharkova, Valentina; Zharkov, Sergei; Macrae, Connor; Druett, Malcolm; Scullion, Eamon

    2016-07-01

    We investigate energy and particle transport in the whole flaring atmosphere from the corona to the photosphere and interior for the flaring events on the 1st July 2012, 6 and 7 September 2011 by using the RHESSI and SDO instruments as well as high-resolution observations from the Swedish 1-metre Solar Telescope (SST3) CRISP4 (CRisp Imaging Spectro-polarimeter). The observations include hard and soft X-ray emission, chromospheric emission in both H-alpha 656.3 nm core and continuum, as well as, in the near infra-red triplet Ca II 854.2 nm core and continuum channels and local helioseismic responses (sunquakes). The observations are compared with the simulations of hard X-ray emission and tested by hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams. The temperature, density and macro-velocity variations of the ambient atmospheres are calculated for heating by mixed beams and the seismic response of the solar interior to generation of supersonic shocks moving into the solar interior. We investigate the termination depths of these shocks beneath the quiet photosphere levels and compare them with the parameters of seismic responses in the interior, or sunquakes (Zharkova and Zharkov, 2015). We also present an investigation of radiative conditions modelled in a full non-LTE approach for hydrogen during flare onsets with particular focus on Balmer and Paschen emission in the visible, near UV and near IR ranges and compare them with observations. The links between different observational features derived from HXR, optical and seismic emission are interpreted by different particle transport models that will allow independent evaluation of the particle transport scenarios.

  16. In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds

    PubMed Central

    Williams, Brent J.; Goldstein, Allen H.; Kreisberg, Nathan M.; Hering, Susanne V.

    2010-01-01

    An understanding of the gas/particle-phase partitioning of semivolatile compounds is critical in determining atmospheric aerosol formation processes and growth rates, which in turn affect global climate and human health. The Study of Organic Aerosol at Riverside 2005 campaign was performed to gain a better understanding of the factors responsible for aerosol formation and growth in Riverside, CA, a region with high concentrations of secondary organic aerosol formed through the phase transfer of low-volatility reaction products from the oxidation of precursor gases. We explore the ability of the thermal desorption aerosol gas chromatograph (TAG) to measure gas-to-particle-phase transitioning for several organic compound classes (polar and nonpolar) found in the ambient Riverside atmosphere by using in situ observations of several hundred semivolatile organic compounds. Here we compare TAG measurements to modeled partitioning of select semivolatile organic compounds. Although TAG was not designed to quantify the vapor phase of semivolatile organics, TAG measurements do distinguish when specific compounds are dominantly in the vapor phase, are dominantly in the particle phase, or have both phases present. Because the TAG data are both speciated and time-resolved, this distinction is sufficient to see the transition from vapor to particle phase as a function of carbon number and compound class. Laboratory studies typically measure the phase partitioning of semivolatile organic compounds by using pure compounds or simple mixtures, whereas hourly TAG phase partitioning measurements can be made in the complex mixture of thousands of polar/nonpolar and organic/inorganic compounds found in the atmosphere. PMID:20142511

  17. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

    SciTech Connect

    Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

    2013-05-14

    Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by α-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ≤ 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ≤ 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ≥ 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ≤ 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

  18. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    DOE PAGES

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; ...

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z  53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS

  19. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    SciTech Connect

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z  53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate

  20. A realtime, online automated system for measurement of Phosphate ions in atmospheric particles

    NASA Astrophysics Data System (ADS)

    Violaki, Kalliopi; Fang, Ting; Mihalopoulos, Nikos; Weber, Rodney James; Nenes, Athanasios

    2016-04-01

    Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Of particular interest is the role of phosphorus in marine primary productivity, owing to its potential for affecting the concentration of atmospheric carbon dioxide. The atmosphere is considered a principal source of externally-supplied nutrients for large areas of the surface ocean, and oligotrophic open oceans in particular. Atmospheric inorganic P species (e.g. mono- or diprotonated orthophosphate) comprise the most bioavailable P form, and have been studied for many decades. Nevertheless, there are very large uncertainties in the phosphate biogeochemical budget due to the lack of observations and the poor match of the model to observations. This study presents a novel automated on-line, real-time analytical method for the analysis of water-soluble PO4-3 ions in atmospheric particles. The instrumentation consists of a particle-into-liquid sampler (PILS) coupled with a reaction coil to allow reagents to interact with the PILS liquid flow; the composite flow is then introduced into a mini spectrophotometer, which is equipped with a long path length of 250cm Liquid Wavequide Capillary Cell (LWCC), achieving low detection limit. This new system overcomes the limitations on detection and time resolution, as the configuration presented allows for measurement with 8 minute resolution. The data, when combined with routine PILS-IC or aerosol mass spectrometry, allows for an unprecedented insight towards the drivers of phosphate solubility and its relation to acidification from atmospheric acids. We present results for concentration of PM2.5 PO4-3 in Atlanta Georgia for a 2 month period (February-March, 2015) and the Eastern Mediterranean and its relation to aerosol acidity and other meteorological parameters. The results are discussed together with future directions towards optimized performance during long periods of operation.

  1. Guiding of charged particles through capillaries in insulating materials

    NASA Astrophysics Data System (ADS)

    Stolterfoht, Nikolaus; Yamazaki, Yasunori

    2016-04-01

    Studies of charged particle guiding through capillaries in insulating materials, performed during the last decade, are reviewed in a comprehensive manner. First, the principles of capillary guiding of slow highly charged ions are introduced describing the self-organized formation of charge patches. Basic quantities are defined, such as the guiding power characterizing a capillary. Challenges of the guiding experiments are pointed out. Then, experiments are described with emphasis on the guiding of highly charged ions in the keV energy range. Samples with an array of nanocapillaries as well as single macrocapillaries are treated. Emission profiles of transmitted ions are analyzed to establish scaling laws for the guiding angle, which quantifies the guiding power. Oscillations of the mean ion emission angle reveal the temporal dynamics of the charge patch formation. Next, experiments with ions of high (MeV) energies are focused on single tapered capillaries allowing for the production of a microbeam for various applications. Experiments concerning electrons are presented showing that apart from being elastically scattered these negative particles may enter into the capillary surface where they suffer energy losses. Finally, theoretical concepts of the capillary guiding are discussed. Simulations based on different charge transport methods clearly support the understanding of the guiding mechanisms. Altogether, capillary guiding involves several novel phenomena for which understanding have progressed far beyond their infancy.

  2. Formation of bioorganic compounds in simulated planetary atmospheres by high energy particles or photons.

    PubMed

    Kobayashi, K; Masuda, H; Ushio, K I; Ohashi, A; Yamanashi, H; Kaneko, T; Takahashi, J I; Hosokawa, T; Hashimoto, H; Saito, T

    2001-01-01

    Various types of organic compounds have been detected in Jupiter, Titan, and cometary coma. It is probable that organic compounds were formed in primitive Earth and Mars atmospheres. Cosmic rays and solar UV are believed to be two major energy sources for organic formation in space. We examined energetics of organic formation in simulated planetary atmospheres. Gas mixtures including a C-source (carbon monoxide or methane) and a N-source (nitrogen or ammonia) was irradiated with the followings: High energy protons or electrons from accelerators, gamma-rays from 60Co, UV light from a deuterium lamp, and soft X-rays or UV light from an electron synchrotron. Amino acids were detected in the products of particles, gamma-rays and soft X-rays irradiation from each gas mixture examined. UV light gave, however, no amino acid precursors in the gas mixture of carbon monoxide, nitrogen and nitrogen. It gave only a trace of them in the gas mixture of carbon monoxide, ammonia and water or that of methane, nitrogen and water. Yield of amino acid precursors by photons greatly depended on their wavelength. These results suggest that nitrogen-containing organic compounds like amino acid precursors were formed chiefly with high energy particles, not UV photons, in Titan or primitive Earth/Mars atmospheres where ammonia is not available as a predominant N-source.

  3. Determination of iodine and bromine in coal and atmospheric particles by inductively coupled plasma mass spectrometry.

    PubMed

    Sun, Mingxing; Gao, Yunchuan; Wei, Biwen; Wu, Xiaowei

    2010-04-15

    Bromine and iodine in atmospheric particles or coal can cause environmental problems such as destruction of ozone in the atmosphere; therefore, the presence of these compounds has recently received increased attention. Here, a rapid and reliable method for the simultaneous determination of total bromine and iodine using ICP-MS analysis is described. Samples were dissolved in mixtures of 5 mL of HNO(3) and 2 mL of H(2)O(2) in a high pressure microwave digester. The solution was then oxidized by per-sulfate (Na(2)S(2)O(8)) in addition to a small amount of silver nitrate, after which the total bromine and iodine were measured simultaneously by ICP-MS. The signal memory effects of bromine and iodine during analysis were effectively decreased by washing with a new mixture agent (2% alcohol acidic solution, pH 1-2 adjusted with HCl). The detection limits for bromine and iodine using this method were about 3.2 microg L(-1) and 1.1 microg L(-1), respectively. Additionally, the spike recoveries were between 78.7% and 121% for bromine and iodine analysis, while the relative standard deviations ranged from 4.3% to 9.7%, and from 1.5% to 3.4% for bromine and iodine, respectively. The results of this study indicate that the method described here is suitable for the analysis of micro-amounts of bromine and iodine in atmospheric particles and coal samples.

  4. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions.

    PubMed

    Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

    2010-10-19

    The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth's climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO(3) to form Ca(NO(3))(2). Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO(3))(2) and CaCl(2), which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO(3) to Ca(NO(3))(2) tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO(3) exceed those of HCl ([HNO(3)/HCl] >  ∼ 1). In this regime, CaCl(2) is hardly detected from dust particles. However, the generation of CaCl(2) becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO(3) ([HNO(3)/HCl] <  ∼ 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions.

  5. Asian dust particles converted into aqueous droplets under remote marine atmospheric conditions

    PubMed Central

    Tobo, Yutaka; Zhang, Daizhou; Matsuki, Atsushi; Iwasaka, Yasunobu

    2010-01-01

    The chemical history of dust particles in the atmosphere is crucial for assessing their impact on both the Earth’s climate and ecosystem. So far, a number of studies have shown that, in the vicinity of strong anthropogenic emission sources, Ca-rich dust particles can be converted into aqueous droplets mainly by the reaction with gaseous HNO3 to form Ca(NO3)2. Here we show that other similar processes have the potential to be activated under typical remote marine atmospheric conditions. Based on field measurements at several sites in East Asia and thermodynamic predictions, we examined the possibility for the formation of two highly soluble calcium salts, Ca(NO3)2 and CaCl2, which can deliquesce at low relative humidity. According to the results, the conversion of insoluble CaCO3 to Ca(NO3)2 tends to be dominated over urban and industrialized areas of the Asian continent, where the concentrations of HNO3 exceed those of HCl ([HNO3/HCl] >  ∼ 1). In this regime, CaCl2 is hardly detected from dust particles. However, the generation of CaCl2 becomes detectable around the Japan Islands, where the concentrations of HCl are much higher than those of HNO3 ([HNO3/HCl] <  ∼ 0.3). We suggest that elevated concentrations of HCl in the remote marine boundary layer are sufficient to modify Ca-rich particles in dust storms and can play a more important role in forming a deliquescent layer on the particle surfaces as they are transported toward remote ocean regions. PMID:20921372

  6. Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios.

    PubMed

    Núñez, Andrés; Amo de Paz, Guillermo; Rastrojo, Alberto; García, Ana M; Alcamí, Antonio; Gutiérrez-Bustillo, A Montserrat; Moreno, Diego A

    2016-03-01

    The first part of this review ("Monitoring of airborne biological particles in outdoor atmosphere. Part 1: Importance, variability and ratios") describes the current knowledge on the major biological particles present in the air regarding their global distribution, concentrations, ratios and influence of meteorological factors in an attempt to provide a framework for monitoring their biodiversity and variability in such a singular environment as the atmosphere. Viruses, bacteria, fungi, pollen and fragments thereof are the most abundant microscopic biological particles in the air outdoors. Some of them can cause allergy and severe diseases in humans, other animals and plants, with the subsequent economic impact. Despite the harsh conditions, they can be found from land and sea surfaces to beyond the troposphere and have been proposed to play a role also in weather conditions and climate change by acting as nucleation particles and inducing water vapour condensation. In regards to their global distribution, marine environments act mostly as a source for bacteria while continents additionally provide fungal and pollen elements. Within terrestrial environments, their abundances and diversity seem to be influenced by the land-use type (rural, urban, coastal) and their particularities. Temporal variability has been observed for all these organisms, mostly triggered by global changes in temperature, relative humidity, et cetera. Local fluctuations in meteorological factors may also result in pronounced changes in the airbiota. Although biological particles can be transported several hundreds of meters from the original source, and even intercontinentally, the time and final distance travelled are strongly influenced by factors such as wind speed and direction. [Int Microbiol 2016; 19(1):1-1 3].

  7. The utilization of physisorption analyzer for studying the hygroscopic properties of atmospheric relevant particles.

    PubMed

    Ma, Qingxin; Liu, Yongchun; He, Hong

    2010-04-01

    The hygroscopic behavior of atmospheric aerosols has a significant effect on the global climate change. In this study, a physisorption analyzer was used to measure the water adsorption capacity of Al(2)O(3), NaCl, NH(4)NO(3), and (NH(4))(2)SO(4) particles at 273.6 K. Qualitative and quantitative information about water adsorption on these particles was obtained with changing the temperature and/or relative humidity (RH). Uptake of water on Al(2)O(3) showed a type-II BET adsorption isotherm with the monolayer formed at approximately 18% relative humidity (RH). The hygroscopic properties of NaCl, (NH(4))(2)SO(4), and NH(4)NO(3), including the deliquescence relative humidities (DRH), the temperature dependence of the DRH for NH(4)NO(3), and the growth factors of NaCl and (NH(4))(2)SO(4) were determined. All these results were in good agreement with the results obtained by other methods and/or theoretical prediction with a deviation less than 2%. For NaCl, the water adsorption amount increase rate exhibits three stages (<30% RH, approximately 30%-65% RH, and >65% RH) in the predeliquescence process and monolayer thin film water was formed at about 30% RH. It demonstrated that this instrument was practicable for studying the hygroscopic behavior of both soluble and insoluble but wettable atmospheric nonviolate aerosol particles.

  8. The Effect of Particle Size on Iron Solubility in Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Marcotte, A. R.; Majestic, B. J.; Anbar, A. D.; Herckes, P.

    2012-12-01

    The long range transport of mineral dust aerosols, which contain approximately 3% iron by mass, results in an estimated 14-16 Tg of iron deposited into the oceans annually; however, only a small percentage of the deposited iron is soluble. In high-nutrient, low chlorophyll ocean regions iron solubility may limit phytoplankton primary productivity. Although the atmospheric transport processes of mineral dust aerosols have been well studied, the role of particle size has been given little attention. In this work, the effect of particle size on iron solubility in atmospheric aerosols is examined. Iron-containing minerals (illite, kaolinite, magnetite, goethite, red hematite, black hematite, and quartz) were separated into five size fractions (10-2.5, 2.5-1, 1-0.5, 0.5-0.25, and <0.25μm) and extracted into buffer solutions simulating environments in the transport of aerosol particles for 150 minutes. Particle size was confirmed by scanning electron microscopy (SEM). Soluble iron content of the extracted mineral solutions was determined by inductively coupled plasma-mass spectrometry (ICP-MS). Extracted mineral solutions were also analyzed for Fe(II) and Fe(III) content using a ferrozine/UV-VIS method. Preliminary results show that differences in solution composition are more important than differences in size. When extracted into acetate and cloudwater buffers (pH 4.25-4.3), < 0.3% of the Fe in iron oxides (hematite, magnetite, and goethite) is transferred to solution as compared to ~0.1-35% for clays (kaolinite and illite). When extracted into a marine aerosol solution (pH 1.7), the percentage of Fe of the iron oxides and clays transferred to solution increases to approximately 0.5-3% and 5-70%, respectively. However, there is a trend of increased %Fe in the minerals transferred to solution in the largest and smallest size fractions (~0.01-0.3% and ~0.5-35% for iron oxides and clays, respectively), and decreased %Fe in the minerals transferred to solution in the mid

  9. Measuring the spectral emissivity of thermal protection materials during atmospheric reentry simulation

    NASA Technical Reports Server (NTRS)

    Marble, Elizabeth

    1996-01-01

    Hypersonic spacecraft reentering the earth's atmosphere encounter extreme heat due to atmospheric friction. Thermal Protection System (TPS) materials shield the craft from this searing heat, which can reach temperatures of 2900 F. Various thermophysical and optical properties of TPS materials are tested at the Johnson Space Center Atmospheric Reentry Materials and Structures Evaluation Facility, which has the capability to simulate critical environmental conditions associated with entry into the earth's atmosphere. Emissivity is an optical property that determines how well a material will reradiate incident heat back into the atmosphere upon reentry, thus protecting the spacecraft from the intense frictional heat. This report describes a method of measuring TPS emissivities using the SR5000 Scanning Spectroradiometer, and includes system characteristics, sample data, and operational procedures developed for arc-jet applications.

  10. Particle excitation, airglow and H2 vibrational disequilibrium in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.

    1984-01-01

    The extreme ultraviolet EUV emission produced by particle excitation of the hydrogen atmospheres of Jupiter and Saturn is examined using model calculations to determine the nature of the energy deposition process and the effect of such processes on atmospheric structure. Tasks ranging from examination of phenomenologically related processes on Saturn and Titan to analysis of experimental laboratory data required to allow accurate modeling of emissions from hydrogenic atmospheres are investigated. An explanation of the hydrogen H Ly(alpha) bulge in Jupiter's emission from the equatorial region is presented. It is proposed that Saturn, rather then Titan is the major source of the extended hydrogen cloud. The atomic hydrogen detected at the rings of Saturn may originate predominantly from the same source. A cross calibration is obtained between the Pioneer 10 EUV photometer and the Voyager EUV spectrometers, thus providing a direct measure of the temporal morphology of Jupiter between a minimum and a maximum in solar activity. Atomic and molecular data required for the research program are analyzed. An extrapolation of conditions in the upper atmospheres of Jupiter and Saturn produces a predicted condition at Uranus in terms of excitation and hydrogen escape rates that may be observed at Voyager-Uranus encounter.

  11. Mineralogical and chemical characterization of suspended atmospheric particles over the east Mediterranean based on synoptic-scale circulation patterns

    NASA Astrophysics Data System (ADS)

    Kalderon-Asael, Boriana; Erel, Yigal; Sandler, Amir; Dayan, Uri

    Suspended atmospheric particles were collected in Israel in order to identify their nature and relationships with the major synoptic-scale circulation patterns. The particles were analyzed for their major and trace element concentrations and mineralogical composition. Samples were collected during three synoptic systems associated with desert dust storms: Red Sea trough, Sharav cyclone and cold depression, and during deep and shallow modes of Persian Gulf trough, which prevails in the summer months and is not associated with dust storms. All samples mostly contain particles smaller than 2 μm. The suspended desert dust is composed primarily of illite-smectite and calcite. Some indicative secondary minerals were found for each of the dust transporting synoptic systems (e.g., palygorskite for Red Sea trough). The bulk chemistry data support the mineralogical observations and reveal additional chemical signatures of each dust transporting system. For instance, Red Sea trough samples have significantly higher Ca/Al and Ca/Mg in the carbonate and Mg/Al in Al-silicate fraction than cold depression samples. Nevertheless, Sharav cyclone samples have intermediate values in spite of the fact that the source of the dust during these conditions is similar to cold depression (i.e., North Africa). Even though differences in the chemical and the mineralogical composition of desert dust do exist, this study reveals their overall chemical and mineralogical similarities. In contrast to the synoptic systems that carry desert dust, the inorganic fraction of the Persian Gulf trough samples contains significant amount (up to 50%) of non-mineral material that has a pronounced chemical signature in terms of major element concentrations (e.g., Al, Ca, Mg, Na, S) implying their anthropogenic nature, probably from countries around the Black Sea. This striking finding is indicative for atmospheric pollution in the Eastern Mediterranean region during the summer.

  12. The Origin of the Reactivity of the Criegee Intermediate: Implications for Atmospheric Particle Growth.

    PubMed

    Miliordos, Evangelos; Xantheas, Sotiris S

    2016-01-18

    The electronic structure of the simplest Criegee intermediate, H2COO, is practically that of a closed shell. On the biradical scale (β), where 0 corresponds to the pure closed shell and 1 to a pure biradical, its β value is only 0.10, suggesting that its ground electronic state is best described as a H2C=O(δ+)-O(δ-) zwitterion. However, this picture of a nearly inert closed shell contradicts its rich reactivity in the atmosphere. It is shown that the mixing of its ground state with the first triplet excited state, which is a pure biradical state of the type H2C˙-O-O˙, is responsible for the formation of strongly bound products during reactions inducing atmospheric particle growth.

  13. The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere

    NASA Astrophysics Data System (ADS)

    Hu, Qingqing; Fu, Hongbo; Wang, Zhenzhen; Kong, Lingdong; Chen, Mindong; Chen, Jianmin

    2016-11-01

    The severe long-lasting haze episode in December 2013 provided a unique opportunity to track the variation of aerosol particles in Shanghai, China. Concentrations and sources of the pollutants varied greatly in severe haze-fog episode (P1), moderate haze episode (P2), and clear episode (P3). Both low wind speed and high relative humidity (RH) during P1 resulted in the high level pollutants of PM2.5 (240.3 ± 167.9 μg m- 3), SO2 (37.9 ± 20.7 μg m- 3), NO2 (111.5 ± 50.2 μg m- 3) and total water-soluble ions (58.73 ± 28.87 μg m- 3), indicating a strong accumulation of local pollutants and secondary species formation. During P2, air masses from the north decreased the concentration level of particles (116.1 ± 65.5 μg m- 3) and increased the visibility, resulting in a moderate degree of pollution. Most of the pollutants dropped to the lowest concentration levels due to the rainfall in P3, and the haze episode ended at 13 December. Single particle analysis showed that C-rich particles exhibited the highest number percentages (30%) in the samples of P1, S/N-rich species (35%) dominated the particles in the samples of P2, and Al/Si-rich particles (23%) were most abundant in the samples of P3. The TEM-EDS analysis confirmed that particles contained more internally mixed components during P1 and P2 than those during P3, suggesting that the particles during P1 and P2 underwent more intense aging in the atmosphere. The single particle analysis indicated that trace metals may promote the heterogeneous transformation of SO2 and NO2 on the surface of the particles during P1, which was in agreement with the highest sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) observed in the haze-fog episode. Such information will deepen our understanding on the evolution of haze and fog pollutions in China, which will help the government to establish efficient control strategy for air pollution prevention.

  14. Correlation of Upper-Atmospheric Be-7 With Solar Energetic Particle Events

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; Share, G. H.; August, R. A.; Tylka, A. J.; Adams, J. H., Jr.; Panasyuk, M. I.; Nymmik, R. A.; Kuzhevskjj, B. M.; Kulikauskas, V. S.; Rose, M. Franklin (Technical Monitor); Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Surprisingly large concentrations of radioactive Be-7 have been found in the upper atmosphere at levels of one to three orders of magnitude greater than observed in the stratosphere. This phenomenon was originally observed on the LDEF satellite which was recovered in January 1990 following a period of extremely high solar activity in the fall of 1989. We report on follow-up measurements on the Russian COSMOS and RESURS F1 spacecraft during the period of 1996 to 1999 which was a period of minimal to moderate solar activity. The Be-7 concentrations observed on these flights were down substantially from the LDEF observations but were still one to two orders of magnitude higher than stratospheric levels. A significant correlation is observed between the Be-7 activity and the combined fluence of solar energetic protons (SEP) and galactic cosmic-ray (GCR) protons. The Be-7 activity is not correlated with overall solar activity as represented by the solar x-ray flux. We discuss possible mechanisms for the solar proton correlation. However, it is likely that the Be-7 is ionized and it is unknown how this will affect the calculations. There were several large solar flares in the fall of 1989 that produced extraordinarily intense solar particle events at the Earth and record geophysical disturbances. These may have acted to increase production of Be-7 from spallation in the stratosphere and also to enhance transport to higher altitudes from the effects of heating and expansion of the upper atmosphere. Be-7 in the upper atmosphere may also have been produced directly at the Sun. Be-7 and Li-7 are produced in solar flares when accelerated alpha-particles fuse with He-4 in the solar atmosphere. Under optimistic assumptions for Sun to Earth transport and subsequent insertion into low Earth orbit, a Be-7 density of about 10(exp -7) atom/cubic cm at 310 km is estimated.

  15. Mass and elemental distributions of atmospheric particles nearby blast furnace and electric arc furnace operated industrial areas in Australia.

    PubMed

    Mohiuddin, Kazi; Strezov, Vladimir; Nelson, Peter F; Stelcer, Eduard; Evans, Tim

    2014-07-15

    The improved understanding of mass and elemental distributions of industrial air particles is important due to their heterogeneous atmospheric behaviour and impact on human health and the environment. In this study, particles of different size ranges were collected from three sites in Australia located in the vicinity of iron and steelmaking industries and one urban background site with very little industrial influence. In order to determine the importance of the type of industrial activity on the urban atmospheric quality, the industrial sites selected in this study were in the close proximity to two blast furnace operated and one electric arc furnace based steelmaking sites. The chemical compositions of the collected air particles were analysed using the proton induced X-ray emission (PIXE) technique. This study revealed significantly higher metal concentrations in the atmospheric particles collected in the industrial sites, comparing to the background urban site, demonstrating local influence of the industrial activities to the air quality. The modality types of the particles were found to be variable between the mass and elements, and among elements in the urban and industrial areas indicating that the elemental modal distribution is as important as particle mass for particle pollution modelling. The highest elemental number distribution at all studied sites occurred with particle size of 0.1 μm. Iron was found as the main dominant metal at the industrial atmosphere in each particle size range. The industrial Fe fraction in the submicron and ultrafine size particles was estimated at up to 95% which may be released from high temperature industrial activities with the iron and steelmaking industries being one of the major contributors. Hence, these industrial elemental loadings can highly influence the atmospheric pollution at local urban and regional levels and are required to consider in the atmospheric modelling settings.

  16. Concentration and size distribution of particulate oxalate in marine and coastal atmospheres - Implication for the increased importance of oxalate in nanometer atmospheric particles

    NASA Astrophysics Data System (ADS)

    Guo, Tianfeng; Li, Kai; Zhu, Yujiao; Gao, Huiwang; Yao, Xiaohong

    2016-10-01

    In literature, particulate oxalate has been widely studied in the total suspended particles (TSP), particles <10 μm or 2.5 μm (PM10 and PM2.5) and size-segregated particles >100 nm. In this article, we measured oxalate's concentrations in size-segregated atmospheric particles down to 10 nm or 56 nm during eight campaigns performed at a semi-urban coastal site, over the marginal seas of China and from the marginal seas to the northwest Pacific Ocean (NWPO) in 2012-2015. When the sum of the oxalate's concentration in particles <10 μm was used for intercomparison, the lowest average values of 0.05-0.06 μg m-3 were observed during the two campaigns performed at NWPO. The highest average value of 0.38 μg m-3 was observed at the coastal site during a heavy pollution event. Mode analysis results of particulate oxalate and the correlation between oxalate and sulfate suggested that the elevated concentrations of oxalate in PM10 were mainly related to enhanced in-cloud formation of oxalate via anthropogenic precursors. Size distribution data in the total of 136 sets of samples also showed approximately 80% of particulate oxalate's mass existing in atmospheric particles >100 nm. Consistent with previous studies, particulate oxalate in particles >100 nm was a negligible ionic component when comparing to particulate SO42- in the same size range. However, the mole ratios of oxalate/sulfate in particles <100 nm were generally increased by 1-2 orders of magnitude. In approximately 30% of the samples, the mole ratios in atmospheric particles <56 nm were larger than 0.5. Moreover, during Campaign 5, the oxalate's concentrations in <56 nm particles were substantially increased on the days in presence of new particle formation events. These results strongly imply the importance of oxalate in nanometer atmospheric particles, but not in >100 nm atmospheric particles such as PM2.5, PM10, TSP, etc.

  17. Exploring the Origin of High-Energy Particle Beams in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Chilingarian, Ashot A.

    2014-11-01

    High-energy processes in the magnetosphere and atmosphere such as thunderstorm ground enhancements (TGEs), terrestrial gamma ray flashes (TGFs), and transient luminous events (TLEs) and recently discovered relativistic electron acceleration in the Earth's outer radiation belt trigger various dynamic processes in the Earth's environments and have broad astrophysical relevance. Investigation of the accelerated structures in the geospace plasmas can shed light on particle acceleration to much higher energy in the similar structures of space plasmas in the most distant objects in the universe. The Earth's broad environment is a real laboratory for high-energy astrophysics.

  18. An improved pulse-height analyzer for energetic particle measurements in the upper atmosphere

    NASA Technical Reports Server (NTRS)

    Dean, L.; Smith, L. G.

    1982-01-01

    An energetic particle spectrometer for measurements in the upper atmosphere by rocket is described. The system has two methods of processing data. One is a staircase generator using threshold detectors; the other is a peak detector. The system incorporates a logarithmic converter for better resolution at low amplitudes and better use of telemetry channels. The circuits are described and calibration procedures are given. Modifications are recommended for high flux environments. Appendices cover sampling error in the peak detector and modifications made to the receiver of the propagation experiment.

  19. The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Bourtsoukidis, E.; Sun, T. S.; Bingemer, H.; Rondo, L.; Javed, U.; Li, J.; Axinte, R.; Li, X.; Brauers, T.; Sonderfeld, H.; Koppmann, R.; Sogachev, A.; Jacobi, S.; Spracklen, D. V.

    2014-10-01

    It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulfuric acid. However, the activation process of sulfuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulfuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products, in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilised Criegee intermediates (sCI). This novel laboratory-derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during night-time. Because the RO2 lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation capacity but

  20. The link between atmospheric radicals and newly formed particles at a spruce forest site in Germany

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Bourtsoukidis, E.; Sun, T. S.; Bingemer, H.; Rondo, L.; Javed, U.; Li, J.; Axinte, R.; Li, X.; Brauers, T.; Sonderfeld, H.; Koppmann, R.; Sogachev, A.; Jacobi, S.; Spracklen, D. V.

    2013-10-01

    It has been claimed for more than a century that atmospheric new particle formation is primarily influenced by the presence of sulphuric acid. However, the activation process of sulphuric acid related clusters into detectable particles is still an unresolved topic. In this study we focus on the PARADE campaign measurements conducted during August/September 2011 at Mt. Kleiner Feldberg in central Germany. During this campaign a set of radicals, organic and inorganic compounds and oxidants and aerosol properties were measured or calculated. We compared a range of organic and inorganic nucleation theories, evaluating their ability to simulate measured particle formation rates at 3 nm in diameter (J3) for a variety of different conditions. Nucleation mechanisms involving only sulphuric acid tentatively captured the observed noon-time daily maximum in J3, but displayed an increasing difference to J3 measurements during the rest of the diurnal cycle. Including large organic radicals, i.e. organic peroxy radicals (RO2) deriving from monoterpenes and their oxidation products in the nucleation mechanism improved the correlation between observed and simulated J3. This supports a recently proposed empirical relationship for new particle formation that has been used in global models. However, the best match between theory and measurements for the site of interest was found for an activation process based on large organic peroxy radicals and stabilized Criegee intermediates (sCI). This novel laboratory derived algorithm simulated the daily pattern and intensity of J3 observed in the ambient data. In this algorithm organic derived radicals are involved in activation and growth and link the formation rate of smallest aerosol particles with OH during daytime and NO3 during nighttime. Because of the RO2s lifetime is controlled by HO2 and NO we conclude that peroxy radicals and NO seem to play an important role for ambient radical chemistry not only with respect to oxidation

  1. COMPASS - COMparative Particle formation in the Atmosphere using portable Simulation chamber Study techniques

    NASA Astrophysics Data System (ADS)

    Bonn, B.; Sun, S.; Haunold, W.; Sitals, R.; van Beesel, E.; dos Santos, L.; Nillius, B.; Jacobi, S.

    2013-12-01

    In this study we report the set-up of a novel twin chamber technique that uses the comparative method and establishes an appropriate connection of atmospheric and laboratory methods to broaden the tools for investigations. It is designed to study the impact of certain parameters and gases on ambient processes, such as particle formation online, and can be applied in a large variety of conditions. The characterisation of both chambers proved that both chambers operate identically, with a residence time xT (COMPASS1) = 26.5 ± 0.3 min and xT (COMPASS2) = 26.6 ± 0.4 min, at a typical flow rate of 15 L min-1 and a gas leak rate of (1.6 ± 0.8) × 10-5 s-1. Particle loss rates were found to be larger (due to the particles' stickiness to the chamber walls), with an extrapolated maximum of 1.8 × 10-3 s-1 at 1 nm, i.e. a hundredfold of the gas leak rate. This latter value is associated with sticky non-volatile gaseous compounds, too. Comparison measurement showed no significant differences. Therefore operation under atmospheric conditions is trustworthy. To indicate the applicability and the benefit of the system, a set of experiments was conducted under different conditions, i.e. urban and remote, enhanced ozone and terpenes as well as reduced sunlight. In order to do so, an ozone lamp was applied to enhance ozone in one of two chambers; the measurement chamber was protected from radiation by a first-aid cover and volatile organic compounds (VOCs) were added using a small additional flow and a temperature-controlled oven. During the elevated ozone period, ambient particle number and volume increased substantially at urban and remote conditions, but by a different intensity. Protection of solar radiation displayed a clear negative effect on particle number, while terpene addition did cause a distinct daily pattern. E.g. adding β pinene particle number concentration rose by 13% maximum at noontime, while no significant effect was observable during darkness. Therefore

  2. Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere

    SciTech Connect

    Strawa, A.W.; Kirchstetter, T.W.; Puxbaum, H.

    2009-12-11

    Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or ''Carbon Conference'' as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting form the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS1 characterization, optical properties, and regional and global climate effects. The conference website, http://iccpa.lbl.gov/, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria. The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to

  3. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    PubMed Central

    Carrillo‐Sánchez, J. D.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-01-01

    Abstract The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s−1) particles. PMID:27478282

  4. Particle size distributions of currently used pesticides in a rural atmosphere of France

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Yahyaoui, Abderrazak; Colin, Patrice; Robin, Corine; Martinon, Laurent; Val, Stéphanie; Baeza-Squiban, Armelle; Mellouki, Abdelwahid; Yusà, Vicent

    2013-12-01

    This work presents first data on the particle size distributions of current-used pesticides in the atmosphere. Ambient air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Centre Region (France). Most pesticides were accumulated in the fine (0.1-1 μm) particle size fraction such as cyprodinil, pendimethalin, fenpropidin, fenpropimorph and spiroxamine. Other pesticides such as acetochlor and metolachlor presented a bimodal distribution with maximum concentrations in the ultrafine (0.03-0.1 μm)-coarse (1-10 μm) and in the ultrafine-fine size ranges, respectively. No pesticides were detected in the size fraction >10 μm.

  5. [Study on number concentration distribution of atmospheric ultrafine particles in Hangzhou].

    PubMed

    Xie, Xiao-Fang; Sun, Zai; Fu, Zhi-Min; Yang, Wen-Jun; Lin, Jian-Zhong

    2013-02-01

    Atmospheric ultrafine particles (UFPs) were measured with fast mobility particle sizer(FMPS) in Hangzhou, during March 2011 to February 2012. The number concentration and size distribution of UFPs associated with meteorology were studied. The results showed that the number concentration of UFPs was logarithmic bi-modal distribution, and the seasonal levels presented winter > summer > spring> autumn. The highest monthly average concentration was 3.56 x 10(4) cm-3 in December and the lowest was 2.51 x 10(4) cm-3 in October. The seasonal values of count medium diameter(CMD) were spring > winter > autumn > summer. The highest monthly average CMD was 53. 51 nm in April and the lowest was 16.68 nm in June. Meteorological factors had effects on concentration of UFPs.

  6. On the size and velocity distribution of cosmic dust particles entering the atmosphere.

    PubMed

    Carrillo-Sánchez, J D; Plane, J M C; Feng, W; Nesvorný, D; Janches, D

    2015-08-16

    The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s(-1)) particles.

  7. On the size and velocity distribution of cosmic dust particles entering the atmosphere

    NASA Astrophysics Data System (ADS)

    Carrillo-Sánchez, J. D.; Plane, J. M. C.; Feng, W.; Nesvorný, D.; Janches, D.

    2015-08-01

    The size and velocity distribution of cosmic dust particles entering the Earth's atmosphere is uncertain. Here we show that the relative concentrations of metal atoms in the upper mesosphere, and the surface accretion rate of cosmic spherules, provide sensitive probes of this distribution. Three cosmic dust models are selected as case studies: two are astronomical models, the first constrained by infrared observations of the Zodiacal Dust Cloud and the second by radar observations of meteor head echoes; the third model is based on measurements made with a spaceborne dust detector. For each model, a Monte Carlo sampling method combined with a chemical ablation model is used to predict the ablation rates of Na, K, Fe, Mg, and Ca above 60 km and cosmic spherule production rate. It appears that a significant fraction of the cosmic dust consists of small (<5 µg) and slow (<15 km s-1) particles.

  8. Characterisation of iron-rich atmospheric submicrometre particles in the roadside environment

    NASA Astrophysics Data System (ADS)

    Sanderson, P.; Su, S. S.; Chang, I. T. H.; Delgado Saborit, J. M.; Kepaptsoglou, D. M.; Weber, R. J. M.; Harrison, Roy M.

    2016-09-01

    Human exposure to ambient metallic nanoparticles is an area of great interest owing to their potential health impacts. Ambient metallic nanoparticles found in the roadside environment are contributed by combustion engines and wear of brakes, tyres and road surfaces. Submicrometre atmospheric particles collected at two UK urban sites have been subject to detailed characterisation. It is found that many metallic nanoparticles collected from roadside sampling sites are rich in iron. The Fe-rich nanoparticles can be classified into (1) high Fe content (ca 90 wt%) with each alloying element less than 1 wt%; and (2) moderate Fe content (<75 wt%) with high manganese and silicon content. Both clusters contain a variable mix of minor constituents, Mn, S and Si being most important in the high-Fe group. The moderate Fe group also contains Zn, Cu, Ba, Al and Ca. The Fe-rich nanoparticles exhibit primary particle sizes ranging between 20 and 30 nm, although some much larger particles up to around 100 nm can also be observed, along with some very small particles of 10 nm or less. These tend to agglomerate forming clusters ranging from ∼200 nm to 1 μm in diameter. The iron-rich particles observed are oxides, taking the form of spheres or multifaceted regular polyhedra. Analysis by EELS shows that both high- and moderate-Fe groups include particles of FeO, Fe3O4, α-Fe2O3 and γ-Fe2O3 of which γ-Fe2O3 is the most prominent. Internal mixing of different Fe-oxides is not observed.

  9. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma.

    PubMed

    Averroes, A; Sekiguchi, H; Sakamoto, K

    2011-11-15

    Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica=1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica=7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment.

  10. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  11. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

  12. T-matrix calculations of fractal black carbon atmospheric aerosol particle optical scattering

    NASA Astrophysics Data System (ADS)

    Smith, Anna; Boness, David

    2008-05-01

    To better constrain global climate change computer models, and thereby to more fully understand the full extent of anthropogenic climate change, it is necessary to understand the physics of light scattering from those atmospheric aerosol particles that are caused by human activities. The IPCC AR4 report on the physical basis of climate change lists uncertainty in the effects of black carbon aerosol particles, caused by burning fossil fuels and organic matter, as one of the greatest uncertainties in current climate change understanding. This study hopes to increase the knowledge of how aerosols contribute to radiative forcing by using more realistic modeling of scattering properties. We use D. W. Mackowski's T- matrix code on fractal aggregates of uniform spherical monomers and compare this with fractal scattering predicted by the Raleigh-Debye-Gans approximation. The T-matrix code is checked for accuracy with one spherical particle as found with Mie theory. Scattering properties found using the T-matrix method are performed as a function of fractal dimension and number of monomers. Preliminary results will be presented. Future work will involve comparison with soot particle optical scattering measurements made at Seattle University.

  13. Soft materials design via self assembly of functionalized icosahedral particles

    NASA Astrophysics Data System (ADS)

    Muthukumar, Vidyalakshmi Chockalingam

    In this work we simulate self assembly of icosahedral building blocks using a coarse grained model of the icosahedral capsid of virus 1m1c. With significant advancements in site-directed functionalization of these macromolecules [1], we propose possible application of such self-assembled materials for drug delivery. While there have been some reports on organization of viral particles in solution through functionalization, exploiting this behaviour for obtaining well-ordered stoichiometric structures has not yet been explored. Our work is in well agreement with the earlier simulation studies of icosahedral gold nanocrystals, giving chain like patterns [5] and also broadly in agreement with the wet lab works of Finn, M.G. et al., who have shown small predominantly chain-like aggregates with mannose-decorated Cowpea Mosaic Virus (CPMV) [22] and small two dimensional aggregates with oligonucleotide functionalization on the CPMV capsid [1]. To quantify the results of our Coarse Grained Molecular Dynamics Simulations I developed analysis routines in MATLAB using which we found the most preferable nearest neighbour distances (from the radial distribution function (RDF) calculations) for different lengths of the functional groups and under different implicit solvent conditions, and the most frequent coordination number for a virus particle (histogram plots further using the information from RDF). Visual inspection suggests that our results most likely span the low temperature limits explored in the works of Finn, M.G. et al., and show a good degree of agreement with the experimental results in [1] at an annealing temperature of 4°C. Our work also reveals the possibility of novel stoichiometric N-mer type aggregates which could be synthesized using these capsids with appropriate functionalization and solvent conditions.

  14. Modeling of light absorbing particles in atmosphere, snow and ice in the Arctic

    NASA Astrophysics Data System (ADS)

    Sobhani, N.; Kulkarni, S.; Carmichael, G. R.

    2015-12-01

    Long-range transport of atmospheric particles from mid-latitude sources to the Arctic is the main contributor to the Arctic aerosol loadings and deposition. Black Carbon (BC), Brown Carbon (BrC) and dust are considered of great climatic importance and are the main absorbers of sunlight in the atmosphere. Furthermore, wet and dry deposition of light absorbing particles (LAPs) on snow and ice cause reduction of snow and ice albedo. LAPs have significant radiative forcing and effect on snow albedo. There are high uncertainties in estimating radiative forcing of LAPs. We studied the potential effect of LAPs from different emission source regions and sectors on snow albedo in the Arctic. The transport pathway of LAPs to the Arctic is studies for different high pollution episodes. In this study a modeling framework including Weather Research and Forecasting Model (WRF) and the University of Iowa's Sulfur Transport and dEpostion model(STEM) is used to predict the transport of LAPs from different geographical sources and sectors (i.e. transportation, residential, industry, biomass burning and power) to the Arctic. For assessing the effect of LAP deposition on snow single-layer simulator of the SNow, Ice, and Aerosol Radiation (SNICAR-Online) model was used to derive snow albedo values for snow albedo reduction causes by BC deposition. To evaluate the simulated values we compared the BC concentration in snow with observed values from previous studies including Doherty et al. 2010.

  15. Dry deposition, concentration and gas/particle partitioning of atmospheric carbazole

    NASA Astrophysics Data System (ADS)

    Esen, Fatma; Tasdemir, Yücel; Cindoruk, S. Sıddık

    2010-03-01

    The atmospheric concentrations and dry deposition of carbazole were measured to present the temporal changes, gas/particle partitioning and magnitude of fluxes. Atmospheric samples were collected from July 2004 to May 2005 at four different sites in Bursa, Turkey. The average total (gas and particulate) carbazole concentrations were 7.6 ± 9.9 ng m - 3 in Gulbahce (Residential), 1.1 ± 1.2 ng m - 3 in BUTAL (Traffic), 3.3 ± 5.0 ng m - 3 in BOID (Industrial), and 1.2 ± 0.7 ng m - 3 in the Uludag University Campus (UU) (Suburban). Experimental gas/particle partition coefficient ( Kp) was determined using the study results and compared with Kp values calculated from octanol-air and soot-air + octanol partitioning models. Total dry deposition fluxes of carbazole were 290 ± 484 ng m - 2 d - 1 in BUTAL and 72 ± 67 ng m - 2 d - 1 in the UU Campus. Particulate phase dry deposition velocities were 0.81 ± 0.78 cm s - 1 and 0.90 ± 1.53 cm s - 1 for BUTAL and the UU Campus, respectively. On the other hand, gas-phase mass transfer coefficients were calculated to be 0.34 ± 0.29 cm s - 1 and 0.26 ± 0.17 cm s - 1 for BUTAL and the UU Campus, respectively.

  16. Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Ullrich, Romy; Hiranuma, Naruki; Hoose, Corinna; Möhler, Ottmar; Niemand, Monika; Steinke, Isabelle; Wagner, Robert

    2014-05-01

    Developing a new parameterization framework for the heterogeneous ice nucleation of atmospheric aerosol particles Ullrich, R., Hiranuma, N., Hoose, C., Möhler, O., Niemand, M., Steinke, I., Wagner, R. Aerosols of different nature induce microphysical processes of importance for the Earth's atmosphere. They affect not only directly the radiative budget, more importantly they essentially influence the formation and life cycles of clouds. Hence, aerosols and their ice nucleating ability are a fundamental input parameter for weather and climate models. During the previous years, the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber was used to extensively measure, under nearly realistic conditions, the ice nucleating properties of different aerosols. Numerous experiments were performed with a broad variety of aerosol types and under different freezing conditions. A reanalysis of these experiments offers the opportunity to develop a uniform parameterization framework of ice formation for many atmospherically relevant aerosols in a broad temperature and humidity range. The analysis includes both deposition nucleation and immersion freezing. The aim of this study is to develop this comprehensive parameterization for heterogeneous ice formation mainly by using the ice nucleation active site (INAS) approach. Niemand et al. (2012) already developed a temperature dependent parameterization for the INAS- density for immersion freezing on desert dust particles. In addition to a reanalysis of the ice nucleation behaviour of desert dust (Niemand et al. (2012)), volcanic ash (Steinke et al. (2010)) and organic particles (Wagner et al. (2010,2011)) this contribution will also show new results for the immersion freezing and deposition nucleation of soot aerosols. The next step will be the implementation of the parameterizations into the COSMO- ART model in order to test and demonstrate the usability of the framework. Hoose, C. and Möhler, O. (2012) Atmos

  17. Effect of reaction atmosphere on particle morphology of TiO2 produced by thermal decomposition of titanium tetraisopropoxide

    NASA Astrophysics Data System (ADS)

    Choi, Jae Gil; Park, Kyun Young

    2006-04-01

    Thermal decomposition of titanium tetraisopropoxide (TTIP) was carried out in varying reaction atmospheres: nitrogen, oxygen, and nitrogen plus water vapor. The effect of reaction atmosphere on the morphology, size, and crystalline structure of produced TiO2 particles was studied. The reactor used was similar to the microreactor proposed earlier by Park et al. (2001, J. Nanopart. Res., 3, 309-319), but for a modification in the precursor evaporator. The reactor temperature was varied from 300 to 700°C and the TTIP concentration in the evaporator from 1.0 to 7.0 mol%, holding the reactor residence time at 0.7 s. The primary-particle size was in the range 25-250 nm, varying with operating condition. The crystalline structure was amorphous in nitrogen, a mixture of rutile and anatase in nitrogen plus water vapor, and anatase in oxygen atmospheres. In nitrogen, agglomerates composed of very small particles whose individual boundaries are not clearly distinguished were produced. In oxygen, the particles composing an agglomerate became larger and were clearly spherical. As the atmosphere was varied to the nitrogen plus water vapor, the particle size increased further. The variation of primary particle size with reaction atmosphere was discussed in comparison with previous experimental data.

  18. (Bio)hybrid materials based on optically active particles

    NASA Astrophysics Data System (ADS)

    Reitzig, Manuela; Härtling, Thomas; Opitz, Jörg

    2014-03-01

    In this contribution we provide an overview of current investigations on optically active particles (nanodiamonds, upconversion phospors) for biohybrid and sensing applications. Due to their outstanding properties nanodiamonds gain attention in various application elds such as microelectronics, optical monitoring, medicine, and biotechnology. Beyond the typical diamond properties such as high thermal conductivity and extreme hardness, the carbon surface and its various functional groups enable diverse chemical and biological surface functionalization. At Fraunhofer IKTS-MD we develop a customization of material surfaces via integration of chemically modi ed nanodiamonds at variable surfaces, e.g bone implants and pipelines. For the rst purpose, nanodiamonds are covalently modi ed at their surface with amino or phosphate functionalities that are known to increase adhesion to bone or titanium alloys. The second type of surface is approached via mechanical implementation into coatings. Besides nanodiamonds, we also investigate the properties of upconversion phosphors. In our contribution we show how upconversion phosphors are used to verify sterilization processes via a change of optical properties due to sterilizing electron beam exposure.

  19. Dual morphology (fibres and particles) cellulosic filler for WPC materials

    NASA Astrophysics Data System (ADS)

    Valente, Marco; Tirillò, Jacopo; Quitadamo, Alessia; Santulli, Carlo

    2016-05-01

    Wood-plastic composites (WPC) were fabricated by using a polyethylene (PE) matrix and filling it with wood flour in the amount of 30 wt.%, and compared with the same composites with further amount of 10 wt.% of cellulosic recycled fibres added. The materials were produced by turbomixing and subsequent moulding under pressure. Mechanical properties of both WPC and WPC with cellulosic recycled fibres were evaluated through mechanical and physical-chemical tests. Tensile tests clarified that a moderate reduction is strength is observed with the bare introduction of wood flour with respect to the neat PE matrix, whilst some recovery is offered by the addition of recycled cellulose fibres. Even more promisingly, the elastic modulus of PE matrix is substantially improved by the addition of wood flour (around 8% on average) and much more so with the further addition of recycled cellulose (around 20% on average). The fracture surfaces from the tensile test were analysed by scanning electron microscope (SEM) indicating a reduction in microporosity as an effect of added cellulose. The water absorption test and the hardness measure (Shore D) were also performed. SEM analysis underlined the weak interface between both wood particle and cellulosic recycled fibres and matrix. The water absorption test showed a higher mass variation for pure WPC than WPC with cellulosic recycled fibres. The hardness measurement showed that the presence of cellulosic recycled fibres improves both superficial hardness of the composite and temperature resistance.

  20. On uncertainty of determination of particle optical thickness in atmospheric environment

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.

    2002-04-01

    The uncertainty of particle optical thickness retrieval in the Earth's atmosphere is estimated. There are some specific factors, which are notoriously not evaluated i) the intensity distribution on the solar disk, ii) changes of the optical air mass along the solar disk, and iii) diffuse radiation in the solar aureola, which represents an addition to the measured intensity because of the finite instrument field-of-view. It is shown that the first two factors, in general, reduce the final value of the aerosol optical thickness tau_a, so that the corrected value tau_a^C looks to be less than the approximate value tau_a^A obtained by a simple retrieval mechanism. However, diffuse radiation in the aureola region causes an increasing of tau_a^C by a factor Q. The corrected value of tau_a^C can finally be about 2-3% larger than tau_a^A. This difference varies with modal radius of the aerosol size distribution, due to sensitive dependence of the scattering pattern (in the near-forward scattering region) on particle size. An error level (2-3%) cannot be ignored, because it is comparable to the standard systematic/random measurement error approx. 4-5%. It is shown that such a small uncertainty in the aerosol optical thickness can produce large changes in the solution of the inverse problem yielding the size distribution of the aerosol particles f(r). This influences data processing and it is, for instance, a source of new open questions when interpreting the measured brightness of F-corona (to retrieve the number density of interplanetary dust particles). The gained range of the possible solutions of f(r) then has a direct impact on the calculation of radiation fluxes in the atmosphere. The uncertainty in estimation of the radiative balance may change the view of chemical and physical processes in the planetary atmosphere, and may be a reason for partially inaccurate or inadequate physical conclusions.

  1. [Pollution characteristics of organic acids in atmospheric particles during haze periods in autumn in Guangzhou].

    PubMed

    Tan, Ji-hua; Zhao, Jing-ping; Duan, Jing-chun; Ma, Yong-liang; He, Ke-bin; Yang, Fu-mo

    2013-05-01

    Total suspended particles (TSP), collected during a typical haze period in Guangzhou, were analyzed for the fatty acids (C12-C30) and low molecular weight dicarboxylic acids (C3-C9) using gas chromatography/mass spectrometry (GC/MS). The results showed that the concentration of total fatty and carboxylic acids was pretty high during the haze episode. The ratios of fatty acids and carboxylic acids in haze to those in normal days were 1.9 and 2.5, respectively. During the episode of the increasing pollution, the fatty acids and carboxylic acids at night (653 ng x m(-3)) was higher than that (487 ng x m(-3)) in days. After that, the level of fatty acids and carboxylic acids in days (412 ng x m(-3)) was higher than that (336 ng x m(-3)) at night. In general, the time-series of fatty acids and carboxylic acids was similar to that of the air particle and carbonaceous species, however, the trend of the ratio of fatty acids and carboxylic acids to organic carbon was opposite to that of air particle and carbonaceous species. This ratio decreased with the increase of the concentration of air particle and after the night of 27th, the ratio increased with the decrease in the concentration of air particle. The results showed that haze pollution had a significant inhibitory effect on the enrichment of fatty and carboxylic acids. Based on the ratio of malonate to succinate (C3/C4), it could be found that primary sources contribute more to the atmospheric fatty and carboxylic acids during the autumn haze pollution periods in Guangzhou.

  2. Experimental and theoretical studies of ignition and combustion of boron particles in wet and dry atmospheres

    SciTech Connect

    Li, Shuichi.

    1990-01-01

    Experiments were performed on the ignition and combustion of fine boron particles in hot wet gas. In these experiments a steady nitrogen jet transporting the particles at low loading densities was injected coaxially into the combustion products of a flat-flame burner. Three powder samples, having diameters around 0.1, 7, and 10 microns were studied. The types of boron flames that existed for different flat-flame temperatures were identified and characterized. It was found that the yellow-region height strongly depends on the flat-flame temperature and is independent of the oxygen mole fraction in the product gas, while the thickness of the white-glow region is inversely proportional to the oxygen concentration and directly proportional to particle diameter. Based on a theory for one-step Arrhenius, ignition process, overall rate parameters for ignition were extracted from measurements of the yellow region heights as a function of the flat-flame temperature. Scattering measurements were performed with an argon-ion laser demonstrating that particle sizes remained constant during ignition and decreased linearly with time during combustion. Models of ignition and combustion of boron particles in both wet and dry atmospheres were developed, and their predictions were compared with all available data. For the ignition stage the model involves equilibrium reactive dissolution of B in the thin B2O3(L) layer, surface attack of BO by O2(g) and by H2O(g) to form BO2(g) and HOBO(g), respectively, vaporization of B2O3, and later clean-surface attack of B by O2 to form O=B-B=O.

  3. Atmospheric impacts of the strongest known solar particle storm of 775 AD

    PubMed Central

    Sukhodolov, Timofei; Usoskin, Ilya; Rozanov, Eugene; Asvestari, Eleanna; Ball, William T.; Curran, Mark A. J.; Fischer, Hubertus; Kovaltsov, Gennady; Miyake, Fusa; Peter, Thomas; Plummer, Christopher; Schmutz, Werner; Severi, Mirko; Traversi, Rita

    2017-01-01

    Sporadic solar energetic particle (SEP) events affect the Earth’s atmosphere and environment, in particular leading to depletion of the protective ozone layer in the Earth’s atmosphere, and pose potential technological and even life hazards. The greatest SEP storm known for the last 11 millennia (the Holocene) occurred in 774–775 AD, serving as a likely worst-case scenario being 40–50 times stronger than any directly observed one. Here we present a systematic analysis of the impact such an extreme event can have on the Earth’s atmosphere. Using state-of-the-art cosmic ray cascade and chemistry-climate models, we successfully reproduce the observed variability of cosmogenic isotope 10Be, around 775 AD, in four ice cores from Greenland and Antarctica, thereby validating the models in the assessment of this event. We add to prior conclusions that any nitrate deposition signal from SEP events remains too weak to be detected in ice cores by showing that, even for such an extreme solar storm and sub-annual data resolution, the nitrate deposition signal is indistinguishable from the seasonal cycle. We show that such a severe event is able to perturb the polar stratosphere for at least one year, leading to regional changes in the surface temperature during northern hemisphere winters. PMID:28349934

  4. Formation of Sunquakes in Hydrodynamic Flaring Atmospheres Heated by Mixed Particle Beams

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Zharkov, S.

    2015-12-01

    We present hydrodynamic simulations of flaring atmospheres of the Sun heated by mixed particle beams and investigate their effects on the solar interior beneath the photosphere for production of acoustic waves, or sunquakes. The temperature, density and macro-velocity variations are calculated as functions of both column and linear depths for different mixed beams revealing strong sweeping of a flaring atmosphere under the quiet photosphere level (QFL). This results in subsequent plasma evaporation into the upper atmosphere and formation of supersonic shocks moving into the solar interior and terminating at depths of 300-5000 km beneath the QFL. The shocks deposited at different depths below the photosphere are found to define the parameters of seismic responses in the interior and their observation as sunquakes, according to the hydrodynamic model of wave propagation (Zharkov, 2013). In addition, we compare temporal and spatial distributions of HXR and optical emission in a few acoustically active flares with those produced by the complex simulations above, in attempt to resolve the puzzle of co-spatial formation of HXR and WL emission reported by Martinez-Oliveros et al. (2012).

  5. Particle-in-Cell Simulations of Atmospheric Pressure He/2%H2O Discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.; Graves, D. B.; Gopalakrishnan, R.

    2015-09-01

    Atmospheric pressure micro-discharges in contact with liquid surfaces are of increasing interest, especially in the bio-medical field. We conduct 1D3v particle-in-cell (PIC) simulations of a voltage-driven 1 mm width atmospheric pressure He/2% H2O plasma discharge in series with an 0.5 mm width liquid H2O layer and a 1mm width quartz dielectric layer. A previously developed two-temperature hybrid global model of atmospheric pressure He/H2O discharges was used to determine the most important species and collisional reactions to use in the PIC simulations. We found that H13O6+, H5O3-, and electrons were the most prominent charged species, while most of the metastable helium He* was quenched via Penning ionization. The ion-induced secondary emission coefficient γi was assumed to be 0.15 at all surfaces. A series of simulations were conducted at 27.12 MHz with Jrf ~ 800-2200 A/m2. The H2O rotational and vibrational excitation losses were so high that electrons reached the walls at thermal temperatures. We also simulated a much lower frequency case of 50 kHz with Vrf = 10 kV. In this case, the discharge ran in a pure time-varying γ-mode. This work was supported by the Department of Energy Office of Fusion Energy Science Contract DE-SC0001939.

  6. Photochemistry of iron(III)-carboxylato complexes in aqueous atmospheric particles

    NASA Astrophysics Data System (ADS)

    Weller, Christian; Herrmann, Hartmut

    2010-05-01

    Iron is always present in the atmosphere in concentrations from ~10-9 M (clouds, rain) up to ~10-3 M (fog, particles). Sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and therefore photo-chemically reactive. Iron complex photolysis leads to radical production and can initiate radical chain reactions, which is related to the oxidizing capacity of the atmosphere. These radical chain reactions are involved in the decomposition and transformation of a variety of chemical compounds in cloud droplets and deliquescent particles. Additionally, the photochemical reaction itself can be a degradation pathway for organic compounds with the ability to bind iron. Iron-complexes of atmospherically relevant coordination compounds like oxalate, malonate, succinate, glutarate, tartronate, gluconate, pyruvate and glyoxalate have been investigated in laboratory experiments. Iron speciation depends on the iron-ligand ratio and the pH. The most suitable experimental conditions were calculated with a speciation program (Visual Minteq). The solutions were prepared accordingly and transferred to a 1 cm quartz cuvette and flash-photolyzed with an excimer laser at wavelengths 308 or 351 nm. Photochemically produced Fe2+ has been measured by spectrometry at 510 nm as Fe(phenantroline)32+. Fe2+ overall effective quantum yields have been calculated with the concentration of photochemically produced Fe2+ and the measured energy of the excimer laser pulse. The laser pulse energy was measured with a pyroelectric sensor. For some iron-carboxylate systems the experimental parameters like the oxygen content of the solution, the initial iron concentration and the incident laser energy were systematically altered to observe an effect on the overall quantum yield. The dependence of some quantum yields on these parameters allows in some cases an interpretation of the underlying photochemical reaction mechanism. Quantum yields of malonate

  7. Characterization of spatial impact of particles emitted from a cement material production facility on outdoor particle deposition in the surrounding community.

    PubMed

    Yu, Chang Ho; Fan, Zhihua; McCandlish, Elizabeth; Stern, Alan H; Lioy, Paul J

    2011-10-01

    The objective of this study was to estimate the contribution of a facility that processes steel production slag into raw material for cement production to local outdoor particle deposition in Camden, NJ. A dry deposition sampler that can house four 37-mm quartz fiber filters was developed and used for the collection of atmospheric particle deposits. Two rounds of particle collection (3-4 weeks each) were conducted in 8-11 locations 200-800 m downwind of the facility. Background samples were concurrently collected in a remote area located -2 km upwind from the facility. In addition, duplicate surface wipe samples were collected side-by-side from each of the 13 locations within the same sampling area during the first deposition sampling period. One composite source material sample was also collected from a pile stored in the facility. Both the bulk of the source material and the < 38 microm fraction subsample were analyzed to obtain the elemental source profile. The particle deposition flux in the study area was higher (24-83 mg/m2 x day) than at the background sites (13-17 mg/m2day). The concentration of Ca, a major element in the cement source production material, was found to exponentially decrease with increasing downwind distance from the facility (P < 0.05). The ratio of Ca/Al, an indicator of Ca enrichment due to anthropogenic sources in a given sample, showed a similar trend. These observations suggest a significant contribution of the facility to the local particle deposition. The contribution of the facility to outdoor deposited particle mass was further estimated by three independent models using the measurements obtained from this study. The estimated contributions to particle deposition in the study area were 1.8-7.4% from the regression analysis of the Ca concentration in particle deposition samples against the distance from the facility, 0-11% from the U.S. Environmental Protection Agency (EPA) Chemical Mass Balance (CMB) source-receptor model, and 7

  8. Ideas and Perspectives: On the emission of amines from terrestrial vegetation in the context of atmospheric new particle formation

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.

    2015-02-01

    In this article we summarise recent science, which shows how airborne amines, specifically methylamines (MAs), play a key role in atmospheric new particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NFP events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants have already been described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions, and the decomposition of organic material could constitute another source for airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited and thus it is also an open question how Global Change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  9. Ideas and perspectives: on the emission of amines from terrestrial vegetation in the context of new atmospheric particle formation

    NASA Astrophysics Data System (ADS)

    Sintermann, J.; Neftel, A.

    2015-06-01

    In this article we summarise recent science which shows how airborne amines, specifically methylamines (MAs), play a key role in new atmospheric particle formation (NPF) by stabilising small molecule clusters. Agricultural emissions are assumed to constitute the most important MA source, but given the short atmospheric residence time of MAs, they can hardly have a direct impact on NPF events observed in remote regions. This leads us to the presentation of existing knowledge focussing on natural vegetation-related MA sources. High MA contents as well as emissions by plants was already described in the 19th century. Strong MA emissions predominantly occur during flowering as part of a pollination strategy. The behaviour is species-specific, but examples of such species are common and widespread. In addition, vegetative plant tissue exhibiting high amounts of MAs might potentially lead to significant emissions. The decomposition of organic material constitutes another, potentially ubiquitous, source of airborne MAs. These mechanisms would provide sources, which could be crucial for the amine's role in NPF, especially in remote regions. Knowledge about vegetation-related amine emissions is, however, very limited, and thus it is also an open question how global change and the intensified cycling of reactive nitrogen over the last 200 years have altered amine emissions from vegetation with a corresponding effect on NPF.

  10. Iodine observed in new particle formation events in the Arctic atmosphere during ACCACIA

    NASA Astrophysics Data System (ADS)

    Allan, J. D.; Williams, P. I.; Najera, J.; Whitehead, J. D.; Flynn, M. J.; Taylor, J. W.; Liu, D.; Darbyshire, E.; Carpenter, L. J.; Chance, R.; Andrews, S. J.; Hackenberg, S. C.; McFiggans, G.

    2015-05-01

    Accurately accounting for new particle formation (NPF) is crucial to our ability to predict aerosol number concentrations in many environments and thus cloud properties, which is in turn vital in simulating radiative transfer and climate. Here we present an analysis of NPF events observed in the Greenland Sea during the summertime as part of the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) project. While NPF events have been reported in the Arctic before, we were able, for the first time, to detect iodine in the growing particles using an Aerosol Mass Spectrometer (AMS) during a persistent event in the region of the coastal sea-ice near Greenland. Given the potency of iodine as a nucleation precursor, the results imply that iodine was responsible for the initial NPF, a phenomenon that has been reported at lower latitudes and associated with molecular iodine emissions from coastal macroalgae. The initial source of iodine in this instance is not clear, but it was associated with air originating approximately 1 day previously over melting coastal sea-ice. These results show that atmospheric models must consider iodine as a source of new particles in addition to established precursors such as sulfur compounds.

  11. Femtosecond laser ablation particle introduction to a liquid sampling-atmospheric pressure glow discharge ionization source

    SciTech Connect

    Carado, Anthony J.; Quarles, C. Derrick; Duffin, Andrew M.; Barinaga, Charles J.; Russo, Richard E.; Marcus, R. Kenneth; Eiden, Gregory C.; Koppenaal, David W.

    2012-01-01

    This work describes the use of a compact, liquid sampling – atmospheric pressure glow discharge (LS-APGD) ionization source to ionize metal particles within a laser ablation aerosol. Mass analysis was performed with a Thermo Scientific Exactive Mass Spectrometer which utilizes an orbitrap mass analyzer capable of producing mass resolution exceeding M/ΔM > 160,000. The LS-APGD source generates a low-power plasma between the surface of an electrolytic solution flowing at several µl min-1 through a fused silica capillary and a counter electrode consisting of a stainless steel capillary employed to deliver the laser ablation particles into the plasma. Sample particles of approximately 100 nm were generated with an Applied Spectra femtosecond laser located remotely and transported through 25 meters of polyurethane tubing by means of argon carrier gas. Samples consisted of an oxygen free copper shard, a disk of solder, and a one-cent U.S. coin. Analyte signal onset was readily detectable relative to the background signal produced by the carrier gas alone. The high mass resolution capability of the orbitrap mass spectrometer was demonstrated on the solder sample with resolution exceeding 90,000 for Pb and 160,000 for Cu. In addition, results from a laser ablation depth-profiling experiment of a one cent coin revealed retention of the relative locations of the ~10 µm copper cladding and zinc rich bulk layers.

  12. Particle-Induced X-Ray Emission Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Gleason, Colin; Harrington, Charles; Schuff, Katie; Battaglia, Maria; Moore, Robert; Turley, Colin; Vineyard, Michael; Labrake, Scott

    2010-11-01

    We are developing a research program in ion-beam analysis (IBA) of atmospheric aerosols at the Union College Ion-Beam Analysis Laboratory to study the transport, transformation, and effects of airborne pollution in Upstate New York. The simultaneous applications of the IBA techniques of particle-induced X-ray emission (PIXE), Rutherford back-scattering spectrometry (RBS), particle-induced gamma-ray emission (PIGE), and proton elastic scattering analysis (PESA) is a powerful tool for the study of airborne pollution because they are non-destructive and provide quantitative information on nearly all elements of the periodic table. PIXE is the main IBA technique because it is able to detect nearly all elements from Na to U with high sensitivities and low detection limits. The aerosol samples are collected with cascade impactors that allow for the study of particulate matter as a function of particle size and the samples are analyzed using proton beams with energies around 2 MeV from the Union College 1.1-MV Pelletron Accelerator. The emitted X-rays are measured using a silicon drift detector with a resolution of 136 eV. We will describe how the aerosol samples were collected, discuss the PIXE analysis, and present preliminary results.

  13. Students 'Weigh' Atmospheric Pollution.

    ERIC Educational Resources Information Center

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  14. Modelling the contribution of biogenic volatile organic compounds to new particle formation in the Jülich plant atmosphere chamber

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Liao, L.; Mogensen, D.; Dal Maso, M.; Rusanen, A.; Kerminen, V.-M.; Mentel, T. F.; Wildt, J.; Kleist, E.; Kiendler-Scharr, A.; Tillmann, R.; Ehn, M.; Kulmala, M.; Boy, M.

    2015-09-01

    We used the Aerosol Dynamics gas- and particle-phase chemistry model for laboratory CHAMber studies (ADCHAM) to simulate the contribution of BVOC plant emissions to the observed new particle formation during photooxidation experiments performed in the Jülich Plant-Atmosphere Chamber and to evaluate how well smog chamber experiments can mimic the atmospheric conditions during new particle formation events. ADCHAM couples the detailed gas-phase chemistry from Master Chemical Mechanism with a novel aerosol dynamics and particle phase chemistry module. Our model simulations reveal that the observed particle growth may have either been controlled by the formation rate of semi- and low-volatility organic compounds in the gas phase or by acid catalysed heterogeneous reactions between semi-volatility organic compounds in the particle surface layer (e.g. peroxyhemiacetal dimer formation). The contribution of extremely low-volatility organic gas-phase compounds to the particle formation and growth was suppressed because of their rapid and irreversible wall losses, which decreased their contribution to the nano-CN formation and growth compared to the atmospheric situation. The best agreement between the modelled and measured total particle number concentration (R2 > 0.95) was achieved if the nano-CN was formed by kinetic nucleation involving both sulphuric acid and organic compounds formed from OH oxidation of BVOCs.

  15. Observational and laboratory studies of optical properties of black and brown carbon particles in the atmosphere using spectroscopic techniques

    NASA Astrophysics Data System (ADS)

    Nakayama, Tomoki; Matsumi, Yutaka

    2015-04-01

    Light absorption and scattering by aerosols are as an important contributor to radiation balance in the atmosphere. Black carbon (BC) is considered to be the most potent light absorbing material in the visible region of the spectrum, although light absorbing organic carbon (brown carbon or BrC) and mineral dust may also act as sources of significant absorption, especially in the ultraviolet (UV) and shorter visible wavelength regions. The optical properties of such particles depend on wavelength, particle size and shape, morphology, coating, and complex refractive index (or chemical composition), and therefore accurate in situ measurements of the wavelength dependence of the optical properties of particles are needed. Recently, cavity ring-down spectroscopy (CRDS) and photoacoustic spectroscopy (PAS) have been used for the direct measurements of extinction and absorption coefficients of particles suspended in air. We have applied these techniques to the observational studies of optical properties of BC and BrC in an urban site in Japan and to the laboratory studies of optical properties of secondary organic aerosols (SOAs) generated from a variety of biogenic and anthropogenic volatile organic compounds and those of diesel exhaust particles (DEPs). In the presentation, the basic principles of these techniques and the results obtained in our studies and in the recent literatures will be overviewed. References Guo, X. et al., Measurement of the light absorbing properties of diesel exhaust particles using a three-wavelength photoacoustic spectrometer, Atmos. Environ., 94, 428-437 (2014). Nakayama, T. et al., Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques, Atmos. Environ., 44, 3034-3042 (2010). Nakayama, T. et al., Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of alpha

  16. Large pore volume mesoporous copper particles and scaffold microporous carbon material obtained from an inorganic-organic nanohybrid material, copper-succinate-layered hydroxide.

    PubMed

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S K

    2011-10-01

    Copper-succinate-layered hydroxide (CSLH), a new nanohybrid material, was synthesized as an inorganic-organic nanohybrid, in which organic moiety was intercalated between the layers of a single cation layered material, copper hydroxide nitrate. Microporous scaffold carbon material was obtained by thermal decomposition of the nanohybrid at 500 °C under argon atmosphere followed by acid washing process. Furthermore, the heat-treated product of the nanohybrid at 600 °C was ultrafine mesoporous metallic copper particles. The results of this study confirmed the great potential of CSLH to produce the carbon material with large surface area (580 m(2)/g) and high pore volume copper powder (2.04 cm(3)/g).

  17. Atmospheric trace element concentrations in total suspended particles near Paris, France

    NASA Astrophysics Data System (ADS)

    Ayrault, Sophie; Senhou, Abderrahmane; Moskura, Mélanie; Gaudry, André

    2010-09-01

    To evaluate today's trace element atmospheric concentrations in large urban areas, an atmospheric survey was carried out for 18 months, from March 2002 to September 2003, in Saclay, nearby Paris. The total suspended particulate matter (TSP) was collected continuously on quartz fibre filters. The TSP contents were determined for 36 elements (including Ag, Bi, Mo and Sb) using two analytical methods: Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The measured concentrations were in agreement within the uncertainties with the certified values for the polycarbonate reference material filter SRM-2783 (National Institute for Standard Technology NIST, USA). The measured concentrations were significantly lower than the recommended atmospheric concentrations. In 2003, the Pb atmospheric level at Saclay was 15 ng/m 3, compared to the 500 ng/m 3 guideline level and to the 200 ng/m 3 observed value in 1994. The typical urban background TSP values of 1-2, 0.2-1, 4-6, 10-30 and 3-5 ng/m 3 for As, Co, Cr, Cu and Sb, respectively, were inferred from this study and were compared with the literature data. The typical urban background TSP concentrations could not be realised for Cd, Pb and Zn, since these air concentrations are highly influenced by local features. The Zn concentrations and Zn/Pb ratio observed in Saclay represented a characteristic fingerprint of the exceptionally large extent of zinc-made roofs in Paris and its suburbs. The traffic-related origin of Ba, Cr, Cu, Pb and Sb was demonstrated, while the atmospheric source(s) of Ag was not identified.

  18. Polar Northern Hemisphere Middle Atmospheric Influence due to Energetic Particle Precipitation in January 2005

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.

    2010-01-01

    Solar eruptions and geomagnetic activity led to energetic particle precipitation in early 2005, primarily during the January 16-21 period. Production of OH and destruction of ozone have been documented due to the enhanced energetic solar proton flux in January 2005 [e.g., Verronen et al., Geophys. Res. Lett.,33,L24811,doi:10.1029/2006GL028115, 2006; Seppala et al., Geophys. Res. Lett.,33,L07804, doi:10.1029/2005GL025571,2006]. These solar protons as well as precipitating electrons also led to the production of NO(x) (NO, NO2). Our simulations with the Whole Atmosphere Community Climate Model (WACCM) show that NO(x) is enhanced by 20-50 ppbv in the polar Northern Hemisphere middle mesosphere (approx.60-70 km) by January 18. Both the SCISAT-1 Atmospheric Chemistry Experiment (ACE) NO(x) measurements and Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIP AS) nighttime NO2 observations show large increases during this period, in reasonable agreement with WACCM predictions. Such enhancements are considerable for the mesosphere and led to simulated increases in polar Northern Hemisphere upper stratospheric odd nitrogen (NO(y)) of2-5 ppbv into February 2005. The largest ground level enhancement (GLE) of solar cycle 23 occurred on January 20, 2005 with a neutron monitor increase of about 270 percent [Gopalswamy et al., 29th International Cosmic Ray Conference, Pune,00,101-104,2005]. We found that protons of energies 300 to 20,000 MeV, not normally included in our computations, led to enhanced stratospheric NO(y) of less than 1 percent as a result of this GLE. The atmospheric impact of precipitating middle energy electrons (30-2,500 keV) during the January 16-21, 2005 period is also of interest, and an effort is ongoing to include these in WACCM computations. This presentation will show both short- and longer-term changes due to the January 2005 energetic particle precipitation.

  19. Production and characterization of anisotropic particles from biodegradable materials.

    PubMed

    Romanski, Francis S; Winkler, Jennifer S; Riccobene, Ryan C; Tomassone, M Silvina

    2012-02-28

    In recent years, production and characterization of anisotropic particles has become of interest in a wide range of scientific fields including polymer chemistry, drug delivery, electronics, energy, and nanotechnology. In this work, we demonstrate a novel formulation for production of anisotropic particles via an internal phase separation of biodegradable components. Specifically, binary mixtures of biodegradable polymers poly(lactic-co-glycolic acid), polycaprolactone, and biodegradable lipid Precirol (glyceryl palmitostearate) were dissolved in dichloromethane, emulsified, and prepared into anisotropic particles using a modified solvent evaporation technique. During the slow evaporation process the components self-assembled into anisotropic particles with distinct morphologies. Polymer/polymer formulations resulted in compartmentalized anisotropic heterodimer particles, while polymer/lipid combinations yielded "ice cream cone" shaped particles. It was found that addition of certain active pharmaceuticals resulted in an altered, pox-like segregation at the particle surface of polymer/polymer formulations. The anisotropic nature of the particles was subsequently characterized using optical microscopy, scanning electron microscopy, zeta potential, electrophoresis, and X-ray diffraction. Successful formulations presented here may potentially be employed as multicompartmental drug carriers with staggered drug release rates or alternatively as a colloidal excipient for an arsenal of pharmaceutical applications.

  20. A comparative study on the varying exposure to atmospheric fine and coarse particles under urban and rural conditions.

    PubMed

    Wolf-Benning, Uta; Schultz, Eckart; Dietze, Volker; Kaminski, Uwe; Endlicher, Wilfried

    2012-11-01

    This paper is based on the results of three air quality studies conducted in Buenos Aires in Berlin, and in German spas between 2003 and 2007. A high comparability of results was ensured by using the same sampling techniques and analytical methods. Total particle sampling was achieved by active sampling of fine (PM2.5) and passive sampling of coarse particles > or = 2.5 microm and giant particles > or = 10 microm. The highly absorbing, black, predominantly carbonaceous particles (BC) of fine particle samples were determined by measuring the total light attenuation of filter samples and interpreting the extinction value as black carbon. The difference between the gravimetric total mass concentration of the PM2.5 samples and the BC is defined as the transparent, mostly mineral fine fraction. In coarse/giant particle samples the mean gray value was determined by means of automated light microscopy with subsequent single-particle analysis. "Opaque" particles were separated from the "transparent" particle fraction by applying a grey value threshold level. Microscopic measurement of individual particles was employed to establish the size distribution of the coarse and giant fraction. Due to different health effects, the separate detection of these components is suggested. Decline functions of particles are given, possibly providing useful information for a more detailed specification of the local particle distribution, and for a better estimate of the individual exposure. Atmospheric dispersal of particles was found effected mainly by source characteristics. An increased, spatially largely constant level of fine transparent particles in Berlin indicates a particle plume originating from photochemical processes. Buenos Aires, in contrast, is characterized by a lower background level of fine transparent particles but is considerably affected by fine black particles from diesel emissions and by a higher resuspension of coarse/giant transparent, mainly soil particles.

  1. Investigation of atmospheric particle-bound reactive oxidative species (ROS): Their sources, characterization, and measurement

    NASA Astrophysics Data System (ADS)

    Venkatachari, Prasanna

    The relationships between the observed ROS concentrations in the New York City PMTACS study and various other atmospheric indicator species such as O3, HOx radicals, organic carbon (OC), elemental carbon (EC) and secondary organic carbon (SOC), as well as the statistical significance of any observable correlations were explored. A statistically significant moderate positive correlation between the O3 and the ROS concentrations, that indicated the local intensity of photochemistry was a moderate factor affecting the formation of particulate ROS in the daytime atmosphere, was observed. The results of the comparison between ROS and HO x concentrations indicated the existence of, at best, a weak positive correlation. The lack of a more positive correlation of the particle-bound ROS, both with ozone as well as other gas phase oxidants, showed the decoupling of the particulate matter ROS from the gas phase oxidants. The comparison of ROS concentrations with OC, EC, and SOC concentrations revealed a statistically significant relationship (P-value < 0.05) only in the case of ROS and SOC. EC and OC, in general exhibited weak, negative correlations with the observed ROS concentrations. The consistency of the positive relationships between ROS and SOC for all the periods suggested that the measured ROS was photochemically driven. The absence of any statistical relevance of primary EC and OC concentrations on the ROS concentrations suggested that primary emissions, especially from motor vehicles, were not a major source of the measured particle-bound ROS. An important objective of this work was to develop a system that could provide a stable throughput of particle-bound ROS, and characterize it in terms of particle size distribution, concentrations, and formed products, such that the results obtained could be viewed in the perspective of atmospheric processes and measurements. A ROS-bearing particle generator was developed, that could deliver known exposures of ROS. It was

  2. Space Systems - Safety and Compatibility of Materials - Method to Determine the Ignition Susceptibility of Materials or Components to Particle Impact

    NASA Technical Reports Server (NTRS)

    Hirsch, David B.

    2011-01-01

    The scope of this International Technical Specification is to provide a method to determine the ignition susceptibility of materials and components to particle impact. The method can be used to determine the conditions at which ignition and consumption of a specimen material occurs when impacted by single or multiple particles entrained in a flow of gaseous oxygen (GOX). Alternatively, the method can be used to determine if a specific material or component is subject to ignition and sustained combustion in a given flow environment when impacted by single or multiple particles entrained in a flow of GOX.

  3. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing

    NASA Astrophysics Data System (ADS)

    Tan, Jihua; Duan, Jingchun; Zhen, Naijia; He, Kebin; Hao, Jiming

    2016-01-01

    The abundance, behavior, and source of chemical species in size-fractionated atmospheric particle were studied with a 13-stage low pressure impactor (ELPI) during high polluted winter episode in Beijing. Thirty three elements (Al, Ca, Fe, K, Mg, Na, Si, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Sr, Zr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, and Pb) and eight water soluble ions (Cl-, NO3-, SO42 -, NH4+, Na+, K+, Ca2 +, and Mg2 +) were determined by ICP/MS and IC, respectively. The size distribution of TC (OC + EC) was reconstructed. Averagely, 51.5 ± 5.3% and 74.1 ± 3.7% of the total aerosol mass was distributed in the sub-micron (PM1) and fine particle (PM2.5), respectively. A significant shift to larger fractions during heavy pollution episode was observed for aerosol mass, NH4+, SO42 -, NO3-, K, Fe, Cu, Zn, Cd, and Pb. The mass size distributions of NH4+, SO42 -, NO3-, and K were dominated by accumulation mode. Size distributions of elements were classified into four main types: (I) elements were enriched within the accumulation mode (< 1 μm, Ge, Se, Ag, Sn, Sb, Cs, Hg, Ti, and Pb); (II) those mass (K, Cr, Mn, Cu, Zn, As, Mo, and Cd) was resided mainly within the accumulation mode, ranged from 1 to 2 μm; (III) Na, V, Co, Ni, and Ga were distributed among fine, intermediate, and coarse modes; and (IV) those which were mainly found within particles larger than 2.7 μm (Al, Mg, Si, Ca, Sc, Tl, Fe, Sr, Zr, and Ba). [H+]cor showed an accumulation mode at 600-700 nm and the role of Ca2 + should be fully considered in the estimation of acidity. The acidity in accumulation mode particles suggested that generally gaseous NH3 was not enough to neutralize sulfate completely. PMF method was applied for source apportionment of elements combined with water soluble ions. Dust, vehicle, aged coal combustion, and sea salt were identified, and the size resolved source apportionments were discussed. Aged coal combustion was the important source of fine particles and

  4. Gas-to-Particle Conversion in Surface Discharge Nonthermal Plasmas and Its Implications for Atmospheric Chemistry

    PubMed Central

    Kim, Hyun-Ha; Ogata, Atsushi

    2011-01-01

    This paper presents some experimental data on gas-to-particle conversion of benzene using nonthermal plasma (NTP) technology and discusses the possibility of its technical application in atmospheric chemistry. Aerosol measurement using a differential mobility analyzer (DMA) revealed that the parts of benzene molecules were converted into a nanometer-sized aerosol. Aerosol formation was found to be highly related with the missing part in carbon balance. Scanning electron microscopy analysis showed that the aerosols formed in synthetic humid air are the collection of nanoparticles. The carbonyl band (C=O) was found to be an important chemical constituent in the aerosol. The potential of the NTP as an accelerated test tool in studying secondary organic aerosol (SOA) formation from VOCs will be also addressed. PMID:22163781

  5. Simulation of ion motion at atmospheric pressure: particle tracing versus electrokinetic flow.

    PubMed

    Wissdorf, Walter; Pohler, Larissa; Klee, Sonja; Müller, David; Benter, Thorsten

    2012-02-01

    Results obtained with two computational approaches for the simulation of ion motion at elevated pressure are compared with experimentally derived ion current data. The computational approaches used are charged particle tracings with the software package SIMION ver. 8 and finite element based calculations using the software package Comsol Multiphysics ver. 4.0/4.0a. The experimental setup consisted of a tubular corona discharge ion source coupled to a cylindrical measurement chamber held at atmospheric pressure. Generated ions are flown into the chamber at essentially subsonic laminar isothermal conditions. In the simulations, strictly stationary conditions were assumed. The results show very good agreement between the SIMION/SDS model and experimental data. For the Comsol model, only qualitative agreement is observed.

  6. Risk Assessment Related to Atmospheric Polycyclic Aromatic Hydrocarbons in Gas and Particle Phases near Industrial Sites

    PubMed Central

    Ramírez, Noelia; Cuadras, Anna; Marcé, Rosa Maria

    2011-01-01

    Background: Inhalation is one of the main means of human exposure to polycyclic aromatic hydrocarbons (PAHs) because of their ubiquitous presence in the atmosphere. However, most studies have considered only PAHs found in the particle phase and have omitted the contribution of the gas-phase PAHs to the risk. Objective: We estimated the lifetime lung cancer risk from PAH exposure by inhalation in people living next to the largest chemical site in Southern Europe and the Mediterranean area. Methods: We determined 18 PAHs in the atmospheric gas and particle phase. We monitored the PAHs for 1 year in three locations near the chemical site in different seasons. We used toxic equivalence factors to calculate benzo[a]pyrene (BaP) equivalents (BaP-eq) for individual PAHs and applied the World Health Organization unit risk (UR) for BaP (UR = 8.7 × 10–5) to estimate lifetime cancer risks due to PAH exposures. Results: We observed some spatial and seasonal variability in PAH concentrations. The contribution of gas-phase PAHs to the total BaP-eq value was between 34% and 86%. The total estimated average lifetime lung cancer risk due to PAH exposure in the study area was 1.2 × 10–4. Conclusions: The estimated risk was higher than values recommended by the World Health Organization and U.S. Environmental Protection Agency but lower than the threshold value of 10–3 that is considered an indication of definite risk according to similar risk studies. The results also showed that risk may be underestimated if the contributions of gas-phase PAHs are not considered. PMID:21478082

  7. Influences of fireworks on chemical characteristics of atmospheric fine and coarse particles during Taiwan's Lantern Festival

    NASA Astrophysics Data System (ADS)

    Tsai, Hsieh-Hung; Chien, Li-Hsing; Yuan, Chung-Shin; Lin, Yuan-Chung; Jen, Yi-Hsiu; Ie, Iau-Ren

    2012-12-01

    In recent years, the celebration activities of various folk-custom festivals have been getting more and more attention from the citizens in Taiwan. Festivities throughout the whole island are traditionally accompanied by loud and brightly colored firework displays. Among these activities, the firework displays during Taiwan's Lantern Festival in Kaohsiung harbor is one of the largest festivals in Taiwan each year. Therefore, it is of importance to investigate the influence of fireworks displays on the ambient air quality during the Taiwan's Lantern Festival. Field measurements of atmospheric particulate matter (PM) were conducted on February 9th-11th, 2009 during Taiwan's Lantern Festival in Kaohsiung City. Moreover, three kinds of fireworks powders obtained from the same manufacturing factory producing Kaohsiung Lantern Festival fireworks were burned in a self-designed combustion chamber to determine the physicochemical properties of the fireworks' particles and to establish the source profile of firework burning. Several metallic elements of PM during the firework display periods were notably higher than those during the non-firework periods. The concentrations of Mg, K, Pb, and Sr in PM2.5 during the firework periods were 10 times higher than those during the non-firework periods. Additionally, the Cl-/Na+ ratio was approximately 3 during the firework display periods as Cl- came from the chlorine content of the firework powder. Moreover, the OC/EC ratio increased up to 2.8. Results obtained from PCA and CMB receptor modeling showed that major sources of atmospheric particles during the firework display periods in Kaohsiung harbor were fireworks, vehicular exhausts, soil dusts and marine sprays. Particularly, on February 10th, the firework displays contributed approximately 25.2% and 16.6% of PM10 at two downwind sampling sites, respectively.

  8. Solubility of methanol in low-temperature aqueous sulfuric acid and implications for atmospheric particle composition

    NASA Technical Reports Server (NTRS)

    Iraci, Laura T.; Essin, Andrew M.; Golden, David M.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Using traditional Knudsen cell techniques, we find well-behaved Henry's law uptake of methanol in aqueous 45 - 70 wt% H2SO4 solutions at temperatures between 197 and 231 K. Solubility of methanol increases with decreasing temperature and increasing acidity, with an effective Henry's law coefficient ranging from 10(exp 5) - 10(exp 8) M/atm. Equilibrium uptake of methanol into sulfuric acid aerosol particles in the upper troposphere and lower stratosphere will not appreciably alter gas-phase concentrations of methanol. The observed room temperature reaction between methanol and sulfuric acid is too slow to provide a sink for gaseous methanol at the temperatures of the upper troposphere and lower stratosphere. It is also too slow to produce sufficient quantities of soluble reaction products to explain the large amount of unidentified organic material seen in particles of the upper troposphere.

  9. Detection of preferential particle orientation in the atmosphere. Development of an alternative polarization lidar system

    DOE PAGES

    Geier, Manfred; Arienti, Marco

    2014-07-19

    Increasing interest in polarimetric characterization of atmospheric aerosols has led to the development of complete sample-measuring (Mueller) polarimeters that are capable of measuring the entire backscattering phase matrix of a probed volume. The Mueller polarimeters consist of several moving parts, which limit measurement rates and complicate data analysis. In this paper, we present the concept of a less complex polarization lidar setup for detection of preferential orientation of atmospheric particulates. On the basis of theoretical considerations of data inversion stability and propagation of measurement uncertainties, an optimum optical configuration is established for two modes of operation (with either a linearmore » or a circular polarized incident laser beam). We discovered that the conceptualized setup falls in the category of incomplete sample-measuring polarimeters and uses four detection channels for simultaneous measurement of the backscattered light. Likewise, the expected performance characteristics are discussed through an example of a typical aerosol with a small fraction of particles oriented in a preferred direction. As a result, the theoretical analysis suggests that achievable accuracies in backscatter cross-sections and depolarization ratios are similar to those with conventional two-channel configurations, while in addition preferential orientation can be detected with the proposed four-channel system for a wide range of conditions.« less

  10. Detection of preferential particle orientation in the atmosphere. Development of an alternative polarization lidar system

    SciTech Connect

    Geier, Manfred; Arienti, Marco

    2014-07-19

    Increasing interest in polarimetric characterization of atmospheric aerosols has led to the development of complete sample-measuring (Mueller) polarimeters that are capable of measuring the entire backscattering phase matrix of a probed volume. The Mueller polarimeters consist of several moving parts, which limit measurement rates and complicate data analysis. In this paper, we present the concept of a less complex polarization lidar setup for detection of preferential orientation of atmospheric particulates. On the basis of theoretical considerations of data inversion stability and propagation of measurement uncertainties, an optimum optical configuration is established for two modes of operation (with either a linear or a circular polarized incident laser beam). We discovered that the conceptualized setup falls in the category of incomplete sample-measuring polarimeters and uses four detection channels for simultaneous measurement of the backscattered light. Likewise, the expected performance characteristics are discussed through an example of a typical aerosol with a small fraction of particles oriented in a preferred direction. As a result, the theoretical analysis suggests that achievable accuracies in backscatter cross-sections and depolarization ratios are similar to those with conventional two-channel configurations, while in addition preferential orientation can be detected with the proposed four-channel system for a wide range of conditions.

  11. Association between the concentration of fine particles in the atmosphere and acute respiratory diseases in children

    PubMed Central

    Nascimento, Antônio Paula; Santos, Jane Meri; Mill, José Geraldo; de Souza, Juliana Bottoni; Reis, Neyval Costa; Reisen, Valdério Anselmo

    2016-01-01

    ABSTRACT OBJECTIVE To analyze the association between fine particulate matter concentration in the atmosphere and hospital care by acute respiratory diseases in children. METHODS Ecological study, carried out in the region of Grande Vitória, Espírito Santo, in the winter (June 21 to September 21, 2013) and summer (December 21, 2013 to March 19, 2014). We assessed data of daily count for outpatient care and hospitalization by respiratory diseases (ICD-10) in children from zero to 12 years in three hospitals in the Region of Grande Vitória. For collecting fine particulate matter, we used portable samplers of particles installed in six locations in the studied region. The Generalized Additive Model with Poisson distribution, fitted for the effects of predictor covariates, was used to evaluate the relationship between respiratory outcomes and concentration of fine particulate matter. RESULTS The increase of 4.2 µg/m3 (interquartile range) in the concentration of fine particulate matter increased in 3.8% and 5.6% the risk of medical care or hospitalization, respectively, on the same day and with six-day lag from the exposure. CONCLUSIONS We identified positive association between outpatient care and hospitalizations of children under 12 years due to acute respiratory diseases and the concentration of fine particulate matter in the atmosphere. PMID:28099552

  12. The origin of the reactivity of the Criegee intermediate: implications for atmospheric particle growth

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2016-01-18

    The electronic structure of the simplest Criegee intermediate (H₂COO) is practically that of a closed shell. On the biradical scale (β) from 0 (pure closed shell) to 1 (pure biradical) it registers a mere β=0.10, suggesting that a Lewis structure of a H₂C=Oδ+-Oδ- zwitterion best describes its ground electronic state. However, this picture of a nearly inert closed shell contradicts its rich atmospheric reactivity. It is the mixing of its ground with the first triplet excited state, which is a pure biradical state of the type H₂C•-O-O•, that is responsible for the formation of strongly bound products during reactions inducing atmospheric particle growth. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. This research also used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

  13. Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan

    NASA Astrophysics Data System (ADS)

    Chio, Chia-Pin; Liao, Chung-Min; Tsai, Ying-I.; Cheng, Man-Ting; Chou, Wei-Chun

    2014-03-01

    Evidence shows a strong association among air pollution, oxidative stress (OS), deoxyribonucleic acid (DNA) damage, and diseases. Recent studies indicated that the aging, human neurodegenerative diseases and cancers resulted from mitochondrial dysfunction and OS. The purpose of this study is to provide a probabilistic risk assessment model to quantify the atmospheric diesel exhaust particles (DEP)-induced pre-cancer biomarker response and cancer incidence risk for residents in south Taiwan. We conducted entirely monthly particulate matter sampling data at five sites in Kaohsiung of south Taiwan in the period 2002-2003. Three findings were found: (i) the DEP dose estimates and cancer risk quantification had heterogeneously spatiotemporal difference in south Taiwan, (ii) the pre-cancer DNA damage biomarker and cancer incidence estimates had a positive yet insignificant association, and (iii) all the estimates of cancer incidence in south Taiwan populations fell within and slight lower than the values from previous cancer epidemiological investigations. In this study, we successfully assessed the tumor incidence for residents posed by DEP exposure in south Taiwan compared with the epidemiological approach. Our approach provides a unique way for assessing human health risk for residences exposed to atmospheric DEP depending on specific combinations of local and regional conditions. Our work implicates the importance of incorporating both environmental and health risk impacts into models of air pollution exposure to guide adaptive mitigation strategies.

  14. The stable isotope compositions of mercury in atmospheric particles (PM10) from Paris (France) and vicinity

    NASA Astrophysics Data System (ADS)

    Widory, D.; Petelet-Giraud, E.; Johnson, T.; Quétel, C.; Snell, J.; van Bocxstaele, M.; Bullen, T. D.

    2010-12-01

    Solid mercury (Hg) in atmospheric particles in the environment can be derived from a variety of primary sources and cycled through numerous secondary processes, complicating identification of its origin. Using the PM10 fraction of aerosols from Paris and vicinity, we investigated the possibility that Hg stable isotope compositions could help identify the origins of atmospheric Hg and processes affecting the atmospheric Hg budget. Characterization of Hg isotope compositions of emissions from the different potential sources (e.g. waste incinerators, coal-fired power plants, metal refining plants, road traffic, heating sources and volcanic gases) shows that those containing Hg are clearly discriminated by specific Hg isotope signatures. PM10 were sampled in three different locations: A) downtown Paris, characterized by diffuse pollution, B) nearby suburb of the city, close to suspected Hg emitters, and C) in distant suburb of the city, having only a few industrial activities in the area. Results indicate that Hg in most of the PM10 samples is explained by binary mixings. The mixing end-members include at least two distinct sources at low Hg concentrations in the aerosols, compatible with industrial activity. At high Hg concentration in the aerosols, the isotopes may likewise indicate two distinct sources with δ202Hg compositions of -4.1 and -11.4 ‰. This range is significantly less than that measured on the potential sources of Hg pollution, and may indicate secondary processes, such as gas to solid phase transfers. The occurrence of post-emission processes is reinforced by the strong correlations existing between these low δ202Hg and MIF Δ201Hg values.

  15. Effect of atmospheric aging on volatility and reactive oxygen species of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-08-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  16. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  17. Particle alignment and clustering in sheared granular materials composed of platy particles.

    PubMed

    Boton, Mauricio; Estrada, Nicolas; Azéma, Emilien; Radjaï, Farhang

    2014-11-01

    By means of molecular dynamics simulations, we investigate the texture and local ordering in sheared packings composed of cohesionless platy particles. The morphology of large packings of platy particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of the particles and anisotropic orientations of contacts between particles. We find that particle alignment is strongly enhanced by the degree of platyness and leads to the formation of face-connected clusters of exponentially decaying size. Interestingly, due to dynamics in continuous shearing, this ordering phenomenon emerges even in systems composed of particles of very low platyness differing only slightly from spherical shape. The number of clusters is an increasing function of platyness. However, at high platyness the proportion of face-face interactions is too low to allow for their percolation throughout the system.

  18. Occurrence and dry deposition of organophosphate esters in atmospheric particles over the northern South China Sea.

    PubMed

    Lai, Senchao; Xie, Zhiyong; Song, Tianli; Tang, Jianhui; Zhang, Yingyi; Mi, Wenying; Peng, Jinhu; Zhao, Yan; Zou, Shichun; Ebinghaus, Ralf

    2015-05-01

    Nine organophosphate esters (OPEs) in airborne particles were measured during a cruise campaign over the northern South China Sea (SCS) from September to October 2013. The concentration of the total OPEs (∑OPEs) was 47.1-160.9 pg m(-3), which are lower than previous measurements in marine atmosphere environments. Higher OPE concentrations were observed in terrestrially influenced samples, suggesting that OPE concentrations were significantly influenced by air mass transport. Chlorinated OPEs were the dominant OPEs, accounting for 65.8-83.7% of the ∑OPEs. Tris-(2-chloroethyl) phosphate (TCEP) was the predominant OPE compound in the samples (45.0±12.1%), followed by tris-(1-chloro-2-propyl) phosphates (TCPPs) (28.8±8.9%). Dry particle-bound deposition fluxes ranged from 8.2 to 27.8 ng m(-2) d(-1) for the ∑OPEs. Moreover, the dry deposition input of the ∑OPEs was estimated to be 4.98 ton y(-1) in 2013 in a vast area of northern SCS. About half of the input was found to relate to air masses originating from China.

  19. Characterisation of atmospheric deposited particles during a dust storm in urban areas of Eastern Australia.

    PubMed

    Gunawardena, Janaka; Ziyath, Abdul M; Bostrom, Thor E; Bekessy, Lambert K; Ayoko, Godwin A; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2013-09-01

    The characteristics of dust particles deposited during the 2009 dust storm in the Gold Coast and Brisbane regions of Australia are discussed in this paper. The study outcomes provide important knowledge in relation to the potential impacts of dust storm related pollution on ecosystem health in the context that the frequency of dust storms is predicted to increase due to anthropogenic desert surface modifications and climate change impacts. The investigated dust storm contributed a large fraction of fine particles to the environment with an increased amount of total suspended solids, compared to dry deposition under ambient conditions. Although the dust storm passed over forested areas, the organic carbon content in the dust was relatively low. The primary metals present in the dust storm deposition were aluminium, iron and manganese, which are common soil minerals in Australia. The dust storm deposition did not contain significant loads of nickel, cadmium, copper and lead, which are commonly present in the urban environment. Furthermore, the comparison between the ambient and dust storm chromium and zinc loads suggested that these metals were contributed to the dust storm by local anthropogenic sources. The potential ecosystem health impacts of the 2009 dust storm include, increased fine solids deposition on ground surfaces resulting in an enhanced capacity to adsorb toxic pollutants as well as increased aluminium, iron and manganese loads. In contrast, the ecosystem health impacts related to organic carbon and other metals from dust storm atmospheric deposition are not considered to be significant.

  20. Pesticides in the atmosphere: a comparison of gas-particle partitioning and particle size distribution of legacy and current-use pesticides

    NASA Astrophysics Data System (ADS)

    Degrendele, C.; Okonski, K.; Melymuk, L.; Landlová, L.; Kukučka, P.; Audy, O.; Kohoutek, J.; Čupr, P.; Klánová, J.

    2015-09-01

    This study presents a comparison of seasonal variation, gas-particle partitioning and particle-phase size distribution of organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in air. Two years (2012/2013) of weekly air samples were collected at a background site in the Czech Republic using a high-volume air sampler. To study the particle-phase size distribution, air samples were also collected at an urban and rural site in the area of Brno, Czech Republic, using a cascade impactor separating atmospheric particulates according to six size fractions. The timing and frequencies of detection of CUPs related to their legal status, usage amounts and their environmental persistence, while OCPs were consistently detected throughout the year. Two different seasonal trends were noted: certain compounds had higher concentrations only during the growing season (April-September) and other compounds showed two peaks, first in the growing season and second in plowing season (October-November). In general, gas-particle partitioning of pesticides was governed by physicochemical properties, with higher vapor pressure leading to higher gas phase fractions, and associated seasonality in gas-particle partitioning was observed in nine pesticides. However, some anomalous partitioning was observed for fenpropimorph and chlorpyrifos suggesting the influence of current pesticide application on gas-particle distributions. Nine pesticides had highest particle phase concentrations on fine particles (< 0.95 μm) and four pesticides on coarser (> 1.5 μm) particles.

  1. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    PubMed Central

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J.; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K.; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P.; Ruuskanen, Taina; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N.; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E.; Wagner, Paul E.; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M.; Virtanen, Annele; Donahue, Neil M.; Carslaw, Kenneth S.; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R.; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere. PMID:27197574

  2. The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    DOE PAGES

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; ...

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted formore » in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. Furthermore, we bring these observations into a coherent framework and discuss their significance in the atmosphere.« less

  3. The effect of acid-base clustering and ions on the growth of atmospheric nano-particles.

    PubMed

    Lehtipalo, Katrianne; Rondo, Linda; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-05-20

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a coherent framework and discuss their significance in the atmosphere.

  4. Investigation of particle sizes in Pluto's atmosphere from the 29 June 2015 occultation

    NASA Astrophysics Data System (ADS)

    Sickafoose, Amanda A.; Bosh, A. S.; Person, M. J.; Zuluaga, C. A.; Levine, S. E.; Pasachoff, J. M.; Babcock, B. A.; Dunham, E. W.; McLean, I.; Wolf, J.; Abe, F.; Bida, T. A.; Bright, L. P.; Brothers, T.; Christie, G.; Collins, P. L.; Durst, R. F.; Gilmore, A. C.; Hamilton, R.; Harris, H. C.; Johnson, C.; Kilmartin, P. M.; Kosiarek, M. R.; Leppik, K.; Logsdon, S.; Lucas, R.; Mathers, S.; Morley, C. J. K.; Natusch, T.; Nelson, P.; Ngan, H.; Pfüller, E.; de, H.-P.; Sallum, S.; Savage, M.; Seeger, C. H.; Siu, H.; Stockdale, C.; Suzuki, D.; Thanathibodee, T.; Tilleman, T.; Tristam, P. J.; Van Cleve, J.; Varughese, C.; Weisenbach, L. W.; Widen, E.; Wiedemann, M.

    2015-11-01

    The 29 June 2015 observations of a stellar occultation by Pluto, from SOFIA and ground-based sites in New Zealand, indicate that haze was present in the lower atmosphere (Bosh et al., this conference). Previously, slope changes in the occultation light curve profile of Pluto’s lower atmosphere have been attributed to haze, a steep thermal gradient, and/or a combination of the two. The most useful diagnostic for differentiating between these effects has been observing occultations over a range of wavelengths: haze scattering and absorption are functions of particle size and are wavelength dependent, whereas effects due to a temperature gradient should be largely independent of observational wavelength. The SOFIA and Mt. John data from this event exhibit obvious central flashes, from multiple telescopes observing over a range of wavelengths at each site (Person et al. and Pasachoff et al., this conference). SOFIA data include Red and Blue observations from the High-speed Imaging Photometer for Occultations (HIPO, at ~ 500 and 850 nm), First Light Infrared Test Camera (FLITECAM, at ~1800 nm), and the Focal Plan Imager (FPI+, at ~ 600 nm). Mt. John data include open filter, g', r', i', and near infrared. Here, we analyze the flux at the bottom of the light curves versus observed wavelength. We find that there is a distinct trend in flux versus wavelength, and we discuss applicable Mie scattering models for different particle size distributions and compositions (as were used to characterize haze in Pluto's lower atmosphere in Gulbis et al. 2015).SOFIA is jointly operated by the Universities Space Research Association, Inc. (USRA), under NASA contract NAS2-97001, and the Deutsches SOFIA Institut (DSI) under DLR contract 50 OK 0901 to the University of Stuttgart. Support for this work was provided by the National Research Foundation of South Africa, NASA SSO grants NNX15AJ82G (Lowell Observatory), PA NNX10AB27G (MIT), and PA NNX12AJ29G (Williams College), and the NASA

  5. [The emissions of fiber particles into the atmosphere in the region of an asbestos-processing industry].

    PubMed

    Deneva, S

    1991-01-01

    Examination is carried out on dust taken from the atmospheric air in the town of Sevlievo, where a plant for asbestos products is situated. The concentrations of fibre particles are determined by the methods of light and electron microscopy. The results are compared with the emissions of fibres in the air of a control town. There is a significant contribution of an industrial source of emission in the atmospheric pollution by fibre particles. It was proved that the method of light-phase contrast microscopy is not suitable for analyses of low concentrations of fibres in the air. As only reliable method is that of electron microscopy.

  6. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime

    NASA Astrophysics Data System (ADS)

    Wu, Z. J.; Zheng, J.; Shang, D. J.; Du, Z. F.; Wu, Y. S.; Zeng, L. M.; Wiedensohler, A.; Hu, M.

    2016-02-01

    Simultaneous measurements of particle number size distribution, particle hygroscopic properties, and size-resolved chemical composition were made during the summer of 2014 in Beijing, China. During the measurement period, the mean hygroscopicity parameters (κs) of 50, 100, 150, 200, and 250 nm particles were respectively 0.16 ± 0.07, 0.19 ± 0.06, 0.22 ± 0.06, 0.26 ± 0.07, and 0.28 ± 0.10, showing an increasing trend with increasing particle size. Such size dependency of particle hygroscopicity was similar to that of the inorganic mass fraction in PM1. The hydrophilic mode (hygroscopic growth factor, HGF > 1.2) was more prominent in growth factor probability density distributions and its dominance of hydrophilic mode became more pronounced with increasing particle size. When PM2.5 mass concentration was greater than 50 μg m-3, the fractions of the hydrophilic mode for 150, 250, and 350 nm particles increased towards 1 as PM2.5 mass concentration increased. This indicates that aged particles dominated during severe pollution periods in the atmosphere of Beijing. Particle hygroscopic growth can be well predicted using high-time-resolution size-resolved chemical composition derived from aerosol mass spectrometer (AMS) measurements using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. The organic hygroscopicity parameter (κorg) showed a positive correlation with the oxygen to carbon ratio. During the new particle formation event associated with strongly active photochemistry, the hygroscopic growth factor or κ of newly formed particles is greater than for particles with the same sizes not during new particle formation (NPF) periods. A quick transformation from external mixture to internal mixture for pre-existing particles (for example, 250 nm particles) was observed. Such transformations may modify the state of the mixture of pre-existing particles and thus modify properties such as the light absorption coefficient and cloud condensation nuclei activation.

  7. Alluvial Fans on Titan Reveal Atmosphere and Surface Interactions and Material Transport

    NASA Astrophysics Data System (ADS)

    Radebaugh, J.; Ventra, D.; Lorenz, R. D.; Farr, T. G.; Kirk, R. L.; Hayes, A.; Malaska, M. J.; Birch, S.; Liu, Z. Y. C.; Lunine, J. I.; Barnes, J. W.; Le Gall, A. A.; Lopes, R. M. C.; Stofan, E. R.; Wall, S. D.; Paillou, P.

    2015-12-01

    Alluvial fans, important depositional systems that record how sediment is stored and moved on planetary surfaces, are found on the surface of Titan, a body of significantly different materials and process rates than Earth. As seen by Cassini's Synthetic Aperture Radar (SAR) images at 350 m resolution, fans on Titan are found globally and are variable in size, shape and relationship to adjacent landforms. Their morphologies and SAR characteristics, which reveal roughness, textural patterns and other material properties, show similarities with fans in Death Valley seen by SAR and indicate there are regions of high relative relief locally, in the Ganesa, Xanadu and equatorial mountain belt regions. The Leilah Fluctus fans near Ganesa are ~30 km x 15 km, similar to the largest Death Valley fans, and revealing mountainous topography adjacent to plains. Others have gentle slopes over hundreds of kilometers, as in the high southern latitude lakes regions or the Mezzoramia southern midlatitudes, where a fan system is 200 km x 150 km, similar to the Qarn Alam fan emerging into the Rub al Khali in Oman. Additionally, there is evidence for a range of particle sizes, from relatively coarse (~2 cm or more) to fine, revealing long-term duration and variability in erosion by methane rainfall and transport. Some features have morphologies consistent with proximality to high-relief source areas and highly ephemeral runoff, while others appear to draw larger catchment areas and are perhaps characterized by more prolonged episodes of flow. The presence of many fans indicates the longevity of rainfall and erosion in Titan's surface processes and reveals that sediment transport and the precipitation that drives it are strongly episodic. Alluvial fans join rivers, lakes, eroded mountains, sand dunes and dissolution features in the list of surface morphologies derived from atmospheric and fluvial processes similar to those on Earth, strengthening comparisons between the two planetary

  8. Aerosol and Cloud-Nucleating Particle Observations during an Atmospheric River Event

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; McCluskey, C. S.; Petters, M.; Suski, K. J.; Levin, E. J.; Hill, T. C. J.; Atwood, S. A.; Schill, G. P.; Rocci, K.; Boose, Y.; Martin, A.; Cornwell, G.; Al-Mashat, H.; Moore, K.; Prather, K. A.; Rothfuss, N.; Taylor, H.; Leung, L. R.; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Rosenfeld, D.; Spackman, J. R.; Fairall, C. W.; Creamean, J.; White, A. B.; Kreidenweis, S. M.

    2015-12-01

    The multi-agency CalWater 2015 project occurred over North Central CA and the Eastern Pacific during January to March 2015 (Spackman et al., this session). The goals of the campaign were to document the structure of atmospheric rivers (ARs) that deliver much of the water vapor associated with major winter storms along the U.S. West Coast and to investigate the modulating effect of aerosols on precipitation. Aerosol sources that may influence orographic cloud properties for air lifted over the mountains in California in winter include pollution, biomass burning, soil dusts and marine aerosols, but their roles will also be influenced by transport, vertical stratification, and scavenging processes. We present results from a comprehensive study of aerosol distributions, compositions, and cloud nucleating properties during an intense winter storm during February 2015, including data from an NSF-supported measurement site at Bodega Bay, from the DOE-ARM Cloud Aerosol Precipitation Experiment that included sampling on the NOAA RV Ron Brown offshore and the G-1 aircraft over ocean and land, and with context provided by other NOAA aircraft and remote sensing facilities. With a special focus on the coastal site, we discuss changes in aerosol distributions, aerosol hygroscopicity, and number concentrations of fluorescent particles, cloud condensation nuclei (CCN), and ice nucleating particles (INPs) during the AR event. We compare with periods preceding and following the event. For example, total aerosol number and surface area concentrations at below 0.5 μm diameter decreased from typical values of a few thousand cm-3 and 100 μm2 cm-3, respectively, to a few hundred cm-3 and 10 μm2cm-3 at Bodega Bay during the AR event. CCN concentrations were similarly lower, but hygroscopicity parameter (kappa) increased from typical values of 0.2 to values > 0.5 during the AR.INP and fluorescent particle number concentrations were generally lower during the AR event than at any other

  9. Meteoric Material - One of the Least Explored Components of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Moses, J. I.; Grebowsky, J. M.; Pesnell, W. D.; Weisman, A. L.

    2001-12-01

    Interplanetary dust particles (IDPs) continuously impact all the planets and their satellites in the solar system. In all planetary atmospheres IDPs leave their imprint as aerosols or smoke particles that are left behind when the IDPs do not ablate completely or when the ablated vapors recondense. In addition, in all atmospheres they produce ionization layers comprised of metallic ions, predominantly Mg+ and Fe+. On Earth the metal ions are frequently measured to be the dominant positively charged species in low-latitude ionospheric layers. Theoretical models provide evidence that such layers exist at Venus, Mars, Jupiter, Saturn, Neptune and Saturn's moon Titan. Even the sparse atmosphere of Triton may be lit up by meteors. Spacecraft radio occultation measurements reveal low altitude, narrow ionosphere layers at each of the giant planets. These narrow features appear to be consistent with the presence of metallic ions that have been compressed by electrodynamic processes as on Earth. Observations at Mars and Venus do not show clear evidence of such layers. The IDPs also deposit nonmetal neutral species in the ablation process. For the inner planets these species blend unnoticed into the atmosphere, but for the outer planets they can lead to persistent amounts of water vapor and carbon dioxide. Although many measurements are available for the Earth, measurements of the IDP distributions and their atmospheric signatures at other planets are in their initial stages at the present time. Modeling efforts are still qualitative as the chemical reaction rates for many of the ablated gases are not established. Most of our knowledge of long lasting IDP atmospheric effects is derived from what we know about Earth, for which our understanding is still far from complete. This component of all atmospheres must be treated as a key factor in all planetary atmospheric aeronomy systems.

  10. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: Roles of particle size and acid anion in iron dissolution

    PubMed Central

    Rubasinghege, Gayan; Lentz, Robert W.; Scherer, Michelle M.; Grassian, Vicki H.

    2010-01-01

    A number of recent studies have shown that iron dissolution in Fe-containing dust aerosol can be linked to source material (mineral or anthropogenic), mineralogy, and iron speciation. All of these factors need to be incorporated into atmospheric chemistry models if these models are to accurately predict the impact of Fe-containing dusts into open ocean waters. In this report, we combine dissolution measurements along with spectroscopy and microscopy to focus on nanoscale size effects in the dissolution of Fe-containing minerals in low-pH environments and the importance of acid type, including HNO3, H2SO4, and HCl, on dissolution. All of these acids are present in the atmosphere, and dust particles have been shown to be associated with nitrate, sulfate, and/or chloride. These measurements are done under light and dark conditions so as to simulate and distinguish between daytime and nighttime atmospheric chemical processing. Both size (nano- versus micron-sized particles) and anion (nitrate, sulfate, and chloride) are found to play significant roles in the dissolution of α-FeOOH under both light and dark conditions. The current study highlights these important, yet unconsidered, factors in the atmospheric processing of iron-containing mineral dust aerosol. PMID:20360560

  11. Simulated atmospheric processing of iron oxyhydroxide minerals at low pH: roles of particle size and acid anion in iron dissolution.

    PubMed

    Rubasinghege, Gayan; Lentz, Robert W; Scherer, Michelle M; Grassian, Vicki H

    2010-04-13

    A number of recent studies have shown that iron dissolution in Fe-containing dust aerosol can be linked to source material (mineral or anthropogenic), mineralogy, and iron speciation. All of these factors need to be incorporated into atmospheric chemistry models if these models are to accurately predict the impact of Fe-containing dusts into open ocean waters. In this report, we combine dissolution measurements along with spectroscopy and microscopy to focus on nanoscale size effects in the dissolution of Fe-containing minerals in low-pH environments and the importance of acid type, including HNO(3), H(2)SO(4), and HCl, on dissolution. All of these acids are present in the atmosphere, and dust particles have been shown to be associated with nitrate, sulfate, and/or chloride. These measurements are done under light and dark conditions so as to simulate and distinguish between daytime and nighttime atmospheric chemical processing. Both size (nano- versus micron-sized particles) and anion (nitrate, sulfate, and chloride) are found to play significant roles in the dissolution of alpha-FeOOH under both light and dark conditions. The current study highlights these important, yet unconsidered, factors in the atmospheric processing of iron-containing mineral dust aerosol.

  12. Autofluorescence of atmospheric bioaerosols - fluorescent biomolecules, biological standard particles and potential interferences

    NASA Astrophysics Data System (ADS)

    Pöhlker, C.; Huffmann, J. A.; Pöschl, U.

    2012-04-01

    Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze standard

  13. Characteristics of atmospheric particulate mercury in size-fractionated particles during haze days in Shanghai

    NASA Astrophysics Data System (ADS)

    Chen, Xiaojia; Balasubramanian, Rajasekhar; Zhu, Qiongyu; Behera, Sailesh N.; Bo, Dandan; Huang, Xian; Xie, Haiyun; Cheng, Jinping

    2016-04-01

    Atmospheric particulate mercury (PHg) is recognized as a global pollutant that requires regulation because of its significant impacts on both human health and wildlife. The haze episodes that occur frequently in China could influence the transport and fate of PHg. To examine the characteristics of PHg during haze and non-haze days, size-fractioned particles were collected using thirteen-stage Nano-MOUDI samplers (10 nm-18 μm) during a severe haze episode (from December 2013 to January 2014) in Shanghai. The PHg concentration on haze days (4.11 ± 0.53 ng m-3) was three times higher than on non-haze days (1.34 ± 0.15 ng m-3). The ratio of the PHg concentration to total gaseous mercury (TGM) ranged from 0.42 during haze days to 0.21 during non-haze days, which was possibly due to the elevated concentration of particles for gaseous elemental mercury (GEM) adsorption, elevated sulfate and nitrate contributing to GEM oxidation, and the catalytic effect of elevated water-soluble inorganic metal ions. PHg/PM10 during haze days (0.019 ± 0.004 ng/μg) was lower than during non-haze days (0.024 ± 0.002 ng/μg), and PHg/PM10 was significantly reduced with an increasing concentration of PM10, which implied a relatively lower growth velocity of mercury than other compositions on particles during haze days, especially in the diameter range of 0.018-0.032 μm. During haze days, each size-fractioned PHg concentration was higher than the corresponding fraction on non-haze days, and the dominant particle size was in the accumulation mode, with constant accumulation to a particle size of 0.56-1.0 μm. The mass size distribution of PHg was bimodal with peaks at 0.32-0.56 μm and 3.1-6.2 μm on non-haze days, and 0.56-1.0 μm and 3.1-6.2 μm on haze days. There was a clear trend that the dominant size for PHg in the fine modes shifted from 0.32-0.56 μm during non-haze days to 0.56-1.0 μm on haze days, which revealed the higher growth velocity of PHg on haze days due to the

  14. Estimation of particle size variations for laser speckle rheology of materials.

    PubMed

    Hajjarian, Zeinab; Nadkarni, Seemantini K

    2015-03-01

    Laser speckle rheology (LSR) is an optical technique for assessing the viscoelastic properties of materials with several industrial, biological, and medical applications. In LSR, the viscoelastic modulus, G*(ω), of a material is quantified by analyzing the temporal fluctuations of speckle patterns. However, the size of scattering particles within the material also influences the rate of speckle fluctuations, independent of sample mechanical properties, and complicates the accurate estimation of G*(ω). Here, we demonstrate that the average particle size may be retrieved from the azimuth-angle dependence of time-averaged speckle intensities, permitting the accurate quantification of the viscoelastic moduli of materials with unknown particle size distribution using LSR.

  15. Microgel particles for the delivery of bioactive materials

    SciTech Connect

    Frechet, Jean M. J.; Murthy Niren

    2010-03-23

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  16. Microgel particles for the delivery of bioactive materials

    DOEpatents

    Frechet, Jean M.; Murthy, Niren

    2006-06-06

    Novel microgels, microparticles and related polymeric materials capable of delivering bioactive materials to cells for use as vaccines or therapeutic agents. The materials are made using a crosslinker molecule that contains a linkage cleavable under mild acidic conditions. The crosslinker molecule is exemplified by a bisacryloyl acetal crosslinker. The new materials have the common characteristic of being able to degrade by acid hydrolysis under conditions commonly found within the endosomal or lysosomal compartments of cells thereby releasing their payload within the cell. The materials can also be used for the delivery of therapeutics to the acidic regions of tumors and sites of inflammation.

  17. The origins of liner material in a shaped charge jet particle

    SciTech Connect

    Zernow, L.; Chapyak, E.J.; Meyer, K.A.; Zernow, R.H.

    1992-02-01

    An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

  18. The origins of liner material in a shaped charge jet particle

    SciTech Connect

    Zernow, L. ); Chapyak, E.J.; Meyer, K.A. ); Zernow, R.H. )

    1992-01-01

    An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

  19. Chemical Imaging and Stable Isotope Analysis of Atmospheric Particles by NanoSIMS (Invited)

    NASA Astrophysics Data System (ADS)

    Sinha, B.; Harris, E. J.; Pöhlker, C.; Wiedemann, K. T.; van Pinxteren, D.; Tilgner, A.; Fomba, K. W.; Schneider, J.; Roth, A.; Gnauk, T.; Fahlbusch, B.; Mertes, S.; Lee, T.; Collett, J. L.; Shiraiwa, M.; Gunthe, S. S.; Smith, M.; Artaxo, P. P.; Gilles, M.; Kilcoyne, A. L.; Moffet, R.; Weigand, M.; Martin, S. T.; Poeschl, U.; Andreae, M. O.; Hoppe, P.; Herrmann, H.; Borrmann, S.

    2013-12-01

    Chemical imaging analysis of the internal distribution of chemical compounds by a combination of SEM-EDX, and NanoSIMS allows investigating the physico-chemical properties and isotopic composition of individual aerosol particles. Stable sulphur isotope analysis provides insight into the sources, sinks and oxidation pathways of SO2 in the environment. Oxidation by OH radicals, O3 and H2O2 enriches the heavier isotope in the product sulphate, whereas oxidation by transition metal ions (TMI), hypohalites and hypohalous acids depletes the heavier isotope in the product sulphate. The isotope fractionation during SO2 oxidation by stabilized Criegee Intermediate radicals is unknown. We studied the relationship between aerosol chemical composition and predominant sulphate formation pathways in continental clouds in Central Europe and during the wet season in the Amazon rain forest. Sulphate formation in continental clouds in Central Europe was studied during HCCT-2010, a lagrangian-type field experiment, during which an orographic cloud was used as a natural flow-through reactor to study in-cloud aerosol processing (Harris et al. 2013). Sulphur isotopic compositions in SO2 and H2SO4 gas and particulate sulphate were measured and changes in the sulphur isotope composition of SO2 between the upwind and downwind measurement sites were used to determine the dominant SO2 chemical removal process occurring in the cloud. Changes in the isotopic composition of particulate sulphate revealed that transition metal catalysis pathway was the dominant SO2 oxidation pathway. This reaction occurred primarily on coarse mineral dust particles. Thus, sulphate produced due to in-cloud SO2 oxidation is removed relatively quickly from the atmosphere and has a minor climatic effect. The aerosol samples from the Amazonian rainforest, a pristine tropical environment, were collected during the rainy season. The samples were found to be dominated by SOA particles in the fine mode and primary

  20. ISSARS Aerosol Database : an Incorporation of Atmospheric Particles into a Universal Tool to Simulate Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Goetz, Michael B.

    2011-01-01

    The Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) entered its third and final year of development with an overall goal of providing a unified tool to simulate active and passive space borne atmospheric remote sensing instruments. These simulations focus on the atmosphere ranging from UV to microwaves. ISSARS handles all assumptions and uses various models on scattering and microphysics to fill the gaps left unspecified by the atmospheric models to create each instrument's measurements. This will help benefit mission design and reduce mission cost, create efficient implementation of multi-instrument/platform Observing System Simulation Experiments (OSSE), and improve existing models as well as new advanced models in development. In this effort, various aerosol particles are incorporated into the system, and a simulation of input wavelength and spectral refractive indices related to each spherical test particle(s) generate its scattering properties and phase functions. These atmospheric particles being integrated into the system comprise the ones observed by the Multi-angle Imaging SpectroRadiometer(MISR) and by the Multiangle SpectroPolarimetric Imager(MSPI). In addition, a complex scattering database generated by Prof. Ping Yang (Texas A&M) is also incorporated into this aerosol database. Future development with a radiative transfer code will generate a series of results that can be validated with results obtained by the MISR and MSPI instruments; nevertheless, test cases are simulated to determine the validity of various plugin libraries used to determine or gather the scattering properties of particles studied by MISR and MSPI, or within the Single-scattering properties of tri-axial ellipsoidal mineral dust particles database created by Prof. Ping Yang.

  1. Source reconciliation of atmospheric gas-phase and particle-phase pollutants during a severe photochemical smog episode.

    PubMed

    Schauer, James J; Fraser, Matthew P; Cass, Glen R; Simoneit, Bernd R T

    2002-09-01

    A comprehensive organic compound-based receptor model is developed that can simultaneously apportion the source contributions to atmospheric gas-phase organic compounds, semivolatile organic compounds, fine particle organic compounds, and fine particle mass. The model is applied to ambient data collected at four sites in the south coast region of California during a severe summertime photochemical smog episode, where the model determines the direct primary contributions to atmospheric pollutants from 11 distinct air pollution source types. The 11 sources included in the model are gasoline-powered motor vehicle exhaust, diesel engine exhaust, whole gasoline vapors, gasoline headspace vapors, organic solvent vapors, whole diesel fuel, paved road dust, tire wear debris, meat cooking exhaust, natural gas leakage, and vegetative detritus. Gasoline engine exhaust plus whole gasoline vapors are the predominant sources of volatile organic gases, while gasoline and diesel engine exhaust plus diesel fuel vapors dominate the emissions of semivolatile organic compounds from these sources during the episode studied at all four air monitoring sites. The atmospheric fine particle organic compound mass was composed of noticeable contributions from gasoline-powered motor vehicle exhaust, diesel engine exhaust, meat cooking, and paved road dust with smaller but quantifiable contributions from vegetative detritus and tire wear debris. In addition, secondary organic aerosol, which is formed from the low-vapor pressure products of gas-phase chemical reactions, is found to be a major source of fine particle organic compound mass under the severe photochemical smog conditions studied here. The concentrations of secondary organic aerosol calculated in the present study are compared with previous fine particle source apportionment results for less intense photochemical smog conditions. It is shown that estimated secondary organic aerosol concentrations correlate fairly well with the

  2. Autofluorescence of atmospheric bioaerosols - Biological standard particles and the influence of environmental conditions

    NASA Astrophysics Data System (ADS)

    Pöhlker, Christopher; Huffman, J. Alex; Förster, Jan-David; Pöschl, Ulrich

    2013-04-01

    Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, biogenic polymers and debris from larger organisms are known to influence atmospheric chemistry and physics, the biosphere and public health. PBAP can account for up to ~30% of fine and up to ~70% of coarse particulate matter in urban, rural and pristine environment and are released with estimated emission rates of up to ~1000 Tg/a [1]. Continuous measurements of the abundance, variability and diversity of PBAP have been difficult until recently, however. The application of on-line instruments able to detect autofluorescence from biological particles in real-time has been a promising development for the measurement of PBAP concentrations and fluxes in different environments [2,3]. The detected fluorescent biological aerosol particles (FBAP) can be regarded as a subset of PBAP, although the exact relationship between PBAP and FBAP is still being investigated. Autofluorescence of FBAP is usually a superposition of fluorescence from a mixture of individual fluorescent molecules (fluorophores). Numerous biogenic fluorophores such as amino acids (e.g., tryptophan, tyrosine), coenzymes (e.g., NAD(P)H, riboflavin) and biopolymers (e.g., cellulose) emit fluorescent light due to heterocyclic aromatic rings or conjugated double bonds within their molecular structures. The tryptophan emission peak is a common feature of most bioparticles because the amino acid is a constituent of many proteins and peptides. The influence of the coenzymes NAD(P)H and riboflavin on the autofluorescence of bacteria can be regarded as an indicator for bacterial metabolism and has been utilized to discriminate between viable and non-viable organisms [4]. However, very little information is available about other essential biofluorophores in fungal spores and pollen. In order to better understand the autofluorescence behavior of FBAP, we have used fluorescence spectroscopy and fluorescence microscopy to analyze

  3. Photochemistry of iron(III)-carboxylato complexes in aqueous atmospheric particles - Laboratory experiments and modeling studies

    NASA Astrophysics Data System (ADS)

    Weller, C.; Tilgner, A.; Herrmann, H.

    2010-12-01

    Iron is always present in the atmosphere in concentrations from ~10-9 M (clouds, rain) up to ~10-3 M (fog, particles). Sources are mainly mineral dust emissions. Iron complexes are very good absorbers in the UV-VIS actinic region and therefore photo-chemically reactive. Iron complex photolysis leads to radical production and can initiate radical chain reactions, which is related to the oxidizing capacity of the atmosphere. These radical chain reactions are involved in the decomposition and transformation of a variety of chemical compounds in cloud droplets and deliquescent particles. Additionally, the photochemical reaction itself can be a degradation pathway for organic compounds with the ability to bind iron. Iron-complexes of atmospherically relevant coordination compounds like oxalate, malonate, succinate, glutarate, tartronate, gluconate, pyruvate and glyoxalate have been investigated in laboratory experiments. Iron speciation depends on the iron-ligand ratio and the pH. The most suitable experimental conditions were calculated with a speciation program (Visual Minteq). The solutions were prepared accordingly and transferred to a 1 cm quartz cuvette and flash-photolyzed with an excimer laser at wavelengths 308 or 351 nm. Photochemically produced Fe2+ has been measured by spectrometry at 510 nm as Fe(phenantroline)32+. Fe2+ overall effective quantum yields have been calculated with the concentration of photochemically produced Fe2+ and the measured energy of the excimer laser pulse. The laser pulse energy was measured with a pyroelectric sensor. For some iron-carboxylate systems the experimental parameters like the oxygen content of the solution, the initial Iron concentration and the incident laser energy were systematically altered to observe an effect on the overall quantum yield. The dependence of some quantum yields on these parameters allows in some cases an interpretation of the underlying photochemical reaction mechanism. Quantum yields of malonate

  4. Seasonal variation of atmospheric particle number concentrations, new particle formation and atmospheric oxidation capacity at the high Arctic site Villum Research Station, Station Nord

    NASA Astrophysics Data System (ADS)

    Nguyen, Quynh T.; Glasius, Marianne; Sørensen, Lise L.; Jensen, Bjarne; Skov, Henrik; Birmili, Wolfram; Wiedensohler, Alfred; Kristensson, Adam; Nøjgaard, Jacob K.; Massling, Andreas

    2016-09-01

    This work presents an analysis of the physical properties of sub-micrometer aerosol particles measured at the high Arctic site Villum Research Station, Station Nord (VRS), northeast Greenland, between July 2010 and February 2013. The study focuses on particle number concentrations, particle number size distributions and the occurrence of new particle formation (NPF) events and their seasonality in the high Arctic, where observations and characterization of such aerosol particle properties and corresponding events are rare and understanding of related processes is lacking.A clear accumulation mode was observed during the darker months from October until mid-May, which became considerably more pronounced during the prominent Arctic haze months from March to mid-May. In contrast, nucleation- and Aitken-mode particles were predominantly observed during the summer months. Analysis of wind direction and wind speed indicated possible contributions of marine sources from the easterly side of the station to the observed summertime particle number concentrations, while southwesterly to westerly winds dominated during the darker months. NPF events lasting from hours to days were mostly observed from June until August, with fewer events observed during the months with less sunlight, i.e., March, April, September and October. The results tend to indicate that ozone (O3) might be weakly anti-correlated with particle number concentrations of the nucleation-mode range (10-30 nm) in almost half of the NPF events, while no positive correlation was observed. Calculations of air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model for the NPF event days suggested that the onset or interruption of events could possibly be explained by changes in air mass origin. A map of event occurrence probability was computed, indicating that southerly air masses from over the Greenland Sea were more likely linked to those events.

  5. Functionalised carboxylic acids in atmospheric particles: An annual cycle revealing seasonal trends and possible sources

    NASA Astrophysics Data System (ADS)

    Teich, Monique; van Pinxteren, Dominik; Herrmann, Hartmut

    2013-04-01

    Carboxylic acids represent a major fraction of the water soluble organic carbon (WSOC) in atmospheric particles. Among the particle phase carboxylic acids, straight-chain monocarboxylic acids (MCA) and dicarboxylic acids (DCA) with 2-10 carbon atoms have extensively been studied in the past. However, only a few studies exist dealing with functionalised carboxylic acids, i.e. having additional hydroxyl-, oxo- or nitro-groups. Regarding atmospheric chemistry, these functionalised carboxylic acids are of particular interest as they are supposed to be formed during atmospheric oxidation processes, e.g. through radical reactions. Therefore they can provide insights into the tropospheric multiphase chemistry. During this work 28 carboxylic acids (4 functionalised aliphatic MCAs, 5 aromatic MCAs, 3 nitroaromatic MCAs, 6 aliphatic DCAs, 6 functionalised aliphatic DCAs, 4 aromatic DCAs) were quantitatively determined in 256 filter samples taken at the rural research station Melpitz (Saxony, Germany) with a PM10 Digitel DHA-80 filter sampler. All samples were taken in 2010 covering a whole annual cycle. The resulting dataset was examined for a possible seasonal dependency of the acid concentrations. Furthermore the influence of the air mass origin on the acid concentrations was studied based on a simple two-sector classification (western or eastern sector) using a back trajectory analysis. Regarding the annual average, adipic acid was found to be the most abundant compound with a mean concentration of 7.8 ng m-3 followed by 4-oxopimelic acid with 6.1 ng m-3. The sum of all acid concentrations showed two maxima during the seasonal cycle; one in summer and one in winter, whereas the highest overall acid concentrations were found in summer. In general the target acids could be divided into two different groups, where one group has its maximum concentration in summer and the other group during winter. The first group contains all investigated aliphatic mono- and dicarboxylic

  6. Measurements of aerosol-cloud interactions, including on-line particle chemical composition, at the Jungfraujoch Global Atmospheric Watch Station

    NASA Astrophysics Data System (ADS)

    Coe, H.; Allan, J. D.; Alfarra, M. R.; Williams, P. I.; Bower, K. N.; Gallagher, M. W.; Choularton, T. W.; Weingartner, E.; Corrigan, C.; Baltensperger, U.

    2003-04-01

    The Global Atmospheric Watch research laboratory is located in the Sphinx building, 3580 m asl; 46.55oN, 7.98oE on the Jungfraujoch in the Swiss Alps. The site is exposed to a wide range of conditions and frequently samples long range transported lower free tropospheric air, and is exposed to cloudy conditions. The Paul Scherrer Institute have previously developed a dual inlet system that allows measurements of the total sub-micron aerosol population (dry residuals and interstitial particles) and interstitial particles alone to be made alternately every few minutes. During July 2002 an Aerodyne Aerosol Mass Spectrometer was coupled to the dual inlet and was used to sample the composition of both the total particle distribution and the interstitial fraction and hence derive the mass loadings of the dry droplet residuals. In out of cloud conditions the aerosol composition can be linked to air mass history and age of the air mass. Microphysical measurements include cloud droplet size distributions made using an FSSP and also a new phase Doppler anemometry system. A comparison between these probes will be made. Two different types of cloud droplet spectra were observed. In the first type a large number of cloud droplets were measured with a single, narrow drop size distribution and modal diameter of around 10 um. In the second type, a bimodal cloud droplet spectrum occurred with a smaller mode (by number) at around 20 um, in addition to the 10 um mode. The aerosol mass spectrometry shows that the composition of the residuals from the two spectrum types is very different, the former type being composed mainly of sulphate, the latter a combination of nitrate, sulphate and organic material. We have also shown that the organic material observed is highly oxidized. We argue that the bimodality arises as a result of mixing of cloud droplets below the site that have been activated separately: the larger a less numerous mode in the widespread strato-cumulus forming under low

  7. Atmospheric Effects of Energetic Particle Precipitation in the Arctic Winter 1978-1979 Revisited

    NASA Technical Reports Server (NTRS)

    Holt, L. A.; Randall, C. E.; Harvey, V. L.; Remsberg, E. E.; Stiller, G. P.; Funke, B.; Bernath, P. F.; Walker, K. A.

    2012-01-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) measured polar stratospheric enhancements of NO2 mixing ratios due to energetic particle precipitation (EPP) in the Arctic winter of 1978-1979. Recently reprocessed LIMS data are compared to more recent measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) to place the LIMS measurements in the context of current observations. The amount of NOx (NO + NO2) entering the stratosphere that has been created by EPP in the mesosphere and lower thermosphere (EPP-NOx) has been quantified for the 1978-1979 and 2002-2003 through 2008-2009 Arctic winters. The NO2 enhancements in the LIMS data are similar to those in MIPAS and ACE-FTS data in the Arctic winters of 2002-2003, 2004-2005, 2006-2007, and 2007-2008. The largest enhancement by far is in 2003-2004 (approximately 2.2 Gmol at 1500 K), which is attributed to a combination of elevated EPP and unusual dynamics that led to strong descent in the upper stratosphere/lower mesosphere in late winter. The enhancements in 2005-2006 and 2008-2009, during which large stratospheric NOx enhancements were caused by a dynamical situation similar to that in 2003 2004, are larger than in all the other years (except 2003-2004) at 3000 K. However, by 2000 K the enhancements in 2005-2006 (2008-2009) are on the same order of magnitude as (smaller than) all other years. These results highlight the importance of the timing of the descent in determining the potential of EPP-NOx for reaching the middle stratosphere.

  8. Atmospheric effects of energetic particle precipitation in the Arctic winter 1978-1979 revisited

    NASA Astrophysics Data System (ADS)

    Holt, L. A.; Randall, C. E.; Harvey, V. L.; Remsberg, E. E.; Stiller, G. P.; Funke, B.; Bernath, P. F.; Walker, K. A.

    2012-03-01

    The Limb Infrared Monitor of the Stratosphere (LIMS) measured polar stratospheric enhancements of NO2 mixing ratios due to energetic particle precipitation (EPP) in the Arctic winter of 1978-1979. Recently reprocessed LIMS data are compared to more recent measurements from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) to place the LIMS measurements in the context of current observations. The amount of NOx (NO + NO2) entering the stratosphere that has been created by EPP in the mesosphere and lower thermosphere (EPP-NOx) has been quantified for the 1978-1979 and 2002-2003 through 2008-2009 Arctic winters. The NO2 enhancements in the LIMS data are similar to those in MIPAS and ACE-FTS data in the Arctic winters of 2002-2003, 2004-2005, 2006-2007, and 2007-2008. The largest enhancement by far is in 2003-2004 (˜2.2 Gmol at 1500 K), which is attributed to a combination of elevated EPP and unusual dynamics that led to strong descent in the upper stratosphere/lower mesosphere in late winter. The enhancements in 2005-2006 and 2008-2009, during which large stratospheric NOx enhancements were caused by a dynamical situation similar to that in 2003-2004, are larger than in all the other years (except 2003-2004) at 3000 K. However, by 2000 K the enhancements in 2005-2006 (2008-2009) are on the same order of magnitude as (smaller than) all other years. These results highlight the importance of the timing of the descent in determining the potential of EPP-NOx for reaching the middle stratosphere.

  9. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

    2014-11-01

    Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the MILAGRO study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+; and that a higher H+ loading and lower cation/anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and ammonia-ammonium (NH3-NH4+) partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the Extended Aerosol Inorganics Model (E-AIM) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both models run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements, and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and published studies to date with conclusions based on such acidity proxies may need to be reevaluated. Given the

  10. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Hennigan, C. J.; Izumi, J.; Sullivan, A. P.; Weber, R. J.; Nenes, A.

    2015-03-01

    Given significant challenges with available measurements of aerosol acidity, proxy methods are frequently used to estimate the acidity of atmospheric particles. In this study, four of the most common aerosol acidity proxies are evaluated and compared: (1) the ion balance method, (2) the molar ratio method, (3) thermodynamic equilibrium models, and (4) the phase partitioning of ammonia. All methods are evaluated against predictions of thermodynamic models and against direct observations of aerosol-gas equilibrium partitioning acquired in Mexico City during the Megacity Initiative: Local and Global Research Objectives (MILAGRO) study. The ion balance and molar ratio methods assume that any deficit in inorganic cations relative to anions is due to the presence of H+ and that a higher H+ loading and lower cation / anion ratio both correspond to increasingly acidic particles (i.e., lower pH). Based on the MILAGRO measurements, no correlation is observed between H+ levels inferred with the ion balance and aerosol pH predicted by the thermodynamic models and NH3-NH4+ partitioning. Similarly, no relationship is observed between the cation / anion molar ratio and predicted aerosol pH. Using only measured aerosol chemical composition as inputs without any constraint for the gas phase, the E-AIM (Extended Aerosol Inorganics Model) and ISORROPIA-II thermodynamic equilibrium models tend to predict aerosol pH levels that are inconsistent with the observed NH3-NH4+ partitioning. The modeled pH values from both E-AIM and ISORROPIA-II run with gas + aerosol inputs agreed well with the aerosol pH predicted by the phase partitioning of ammonia. It appears that (1) thermodynamic models constrained by gas + aerosol measurements and (2) the phase partitioning of ammonia provide the best available predictions of aerosol pH. Furthermore, neither the ion balance nor the molar ratio can be used as surrogates for aerosol pH, and previously published studies with conclusions based

  11. Hygroscopicity of aerosol particles and CCN activity of nearly hydrophobic particles in the urban atmosphere over Japan during summer

    NASA Astrophysics Data System (ADS)

    Ogawa, Shuhei; Setoguchi, Yoshitaka; Kawana, Kaori; Nakayama, Tomoki; Ikeda, Yuka; Sawada, Yuuki; Matsumi, Yutaka; Mochida, Michihiro

    2016-06-01

    We investigated the hygroscopicity of 150 nm particles and the number-size distributions and the cloud condensation nuclei (CCN) activity of nearly hydrophobic particles in aerosols over Nagoya, Japan, during summer. We analyzed the correlations between the number concentrations of particles in specific hygroscopic growth factor (g) ranges and the mass concentrations of chemical components. This analysis suggests the association of nearly hydrophobic particles with hydrocarbon-like organic aerosol, elemental carbon and semivolatile oxygenated organic aerosol (SV-OOA), that of less hygroscopic particles with SV-OOA and nitrate and that of more hygroscopic particles with low-volatile oxygenated organic aerosol (LV-OOA) and sulfate. The hygroscopicity parameter (κ) of organics was derived based on the g distributions and chemical composition of 150 nm particles. The κ of the organics correlated positively with the fraction of the total organic mass spectral signal at m/z 44 and the volume fraction of the LV-OOA to the organics, indicating that organics with highly oxygenated structures including carboxylic acid groups contribute to the water uptake. The number-size distributions of the nearly hydrophobic particles with g around 1.0 and 1.1 correlated with the mass concentrations of chemical components. The results show that the chemical composition of the particles with g around 1.0 was different between the Aitken mode and the accumulation mode size ranges. An analysis for a parameter Fmax of the curves fitted to the CCN efficiency spectra of the particles with g around 1.0 suggests that the coating by organics associated with SV-OOA elevated the CCN activity of these particles.

  12. Absorption of Beta Particles in Different Materials: An Undergraduate Experiment

    ERIC Educational Resources Information Center

    La Rocca, Paola; Riggi, Francesco

    2009-01-01

    The absorption of beta rays from a radioactive source in different materials was investigated by the use of a simple setup based on a Geiger counter and a set of absorber sheets. The number of electrons traversing the material was measured as a function of its thickness. Detailed GEANT simulations were carried out to reproduce the obtained…

  13. Solid spherical glass particle impingement studies of plastic materials

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Young, S. G.; Buckley, D. H.

    1983-01-01

    Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening.

  14. Estimating the contribution of point sources to atmospheric metals using single-particle mass spectrometry

    NASA Astrophysics Data System (ADS)

    Snyder, David C.; Schauer, James J.; Gross, Deborah S.; Turner, Jay R.

    Single-particle mass spectra were collected using an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) during December of 2003 and February of 2004 at an industrially impacted location in East St. Louis, IL. Hourly integrated peak areas for twenty ions were evaluated for their suitability in representing metals/metalloids, particularly those reported in the US EPA Toxic Release Inventory (TRI). Of the initial twenty ions examined, six (Al, As, Cu, Hg, Ti, and V) were found to be unsuitable due to strong isobaric interferences with commonly observed organic fragments, and one (Be) was found to have no significant signal. The usability of three ions (Co, Cr, and Mn) was limited due to suspected isobaric interferences based on temporal comparisons with commonly observed organic fragments. The identity of the remaining ions (Sb, Ba, Cd, Ca, Fe, Ni, Pb, K, Se, and Zn) was substantiated by comparing their signals with the integrated hourly signals of one or more isotope ions. When compared with one-in-six day integrated elemental data as determined by X-ray fluorescence spectroscopy (XRF), the daily integrated ATOFMS signal for several metal ions revealed a semi-quantitative relationship between ATOFMS peak area and XRF concentrations, although in some cases comparison of these measurements were poor at low elemental concentrations/ion signals due to isobaric interferences. A method of estimating the impact of local point sources was developed using hourly integrated ATOFMS peak areas, and this method attributed as much as 85% of the concentration of individual metals observed at the study site to local point sources. Hourly surface wind data were used in conjunction with TRI facility emissions data to reveal likely point sources impacting metal concentrations at the study site and to illustrate the utility of using single-particle mass spectral data to characterize atmospheric metals and identify point sources.

  15. Atmospheric Muon Lifetime, Standard Model of Particles and the Lead Stopping Power for Muons

    NASA Astrophysics Data System (ADS)

    Gutarra-Leon, Angel; Barazandeh, Cioli; Majewski, Walerian

    2017-01-01

    The muon is a fundamental particles of matter. It decays into three other leptons through an exchange of the weak vector bosons W +/W-. Muons are present in the atmosphere from cosmic ray showers. By detecting the time delay between arrival of the muon and an appearance of the decay electron in our detector, we'll measure muon's lifetime at rest. From the lifetime we should be able to find the ratio gw /MW of the weak coupling constant gw (a weak analog of the electric charge) to the mass of the W-boson MW. Vacuum expectation value v of the Higg's field, which determines the masses of all particles of the Standard Model (SM), could be then calculated from our muon experiment as v =2MWc2/gw =(τ m μc2/6 π3ĥ)1/4m μc2 in terms of muon mass mµand muon lifetime τ only. Using known experimental value for MWc2 = 80.4 GeV we'll find the weak coupling constant gw. Using the SM relation e =gwsin θ√ hc ɛ0 with the experimental value of the Z0-photon weak mixing angle θ = 29o we could find from our muon lifetime the value of the elementary electric charge e. We'll determine the sea-level fluxes of low-energy and high-energy cosmic muons, then we'll shield the detector with varying thicknesses of lead plates and find the energy-dependent muon stopping power in lead.

  16. Regression modeling of gas-particle partitioning of atmospheric oxidized mercury from temperature data

    NASA Astrophysics Data System (ADS)

    Cheng, Irene; Zhang, Leiming; Blanchard, Pierrette

    2014-10-01

    Models describing the partitioning of atmospheric oxidized mercury (Hg(II)) between the gas and fine particulate phases were developed as a function of temperature. The models were derived from regression analysis of the gas-particle partitioning parameters, defined by a partition coefficient (Kp) and Hg(II) fraction in fine particles (fPBM) and temperature data from 10 North American sites. The generalized model, log(1/Kp) = 12.69-3485.30(1/T) (R2 = 0.55; root-mean-square error (RMSE) of 1.06 m3/µg for Kp), predicted the observed average Kp at 7 of the 10 sites. Discrepancies between the predicted and observed average Kp were found at the sites impacted by large Hg sources because the model had not accounted for the different mercury speciation profile and aerosol compositions of different sources. Site-specific equations were also generated from average Kp and fPBM corresponding to temperature interval data. The site-specific models were more accurate than the generalized Kp model at predicting the observations at 9 of the 10 sites as indicated by RMSE of 0.22-0.5 m3/µg for Kp and 0.03-0.08 for fPBM. Both models reproduced the observed monthly average values, except for a peak in Hg(II) partitioning observed during summer at two locations. Weak correlations between the site-specific model Kp or fPBM and observations suggest the role of aerosol composition, aerosol water content, and relative humidity factors on Hg(II) partitioning. The use of local temperature data to parameterize Hg(II) partitioning in the proposed models potentially improves the estimation of mercury cycling in chemical transport models and elsewhere.

  17. Gas/particle partitioning of atmospheric PCDD/Fs in a satellite town in Eastern China.

    PubMed

    Xu, Meng-xia; Yan, Jian-hua; Lu, Sheng-yong; Li, Xiao-dong; Chen, Tong; Ni, Ming-jiang; Dai, Hui-fen; Wang, Fei; Cen, Ke-fa

    2009-09-01

    Gas/particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in ambient air was investigated in a satellite town in Eastern China from April 2007 to January 2008 comprehending large temperature variations (from 3 to 34 degrees C, daily average). Molecular weight, molecular structure and ambient temperatures are the three major factors that govern the gas/particle partitioning of atmospheric PCDD/Fs throughout the year. Generally, good agreements were obtained (except for winter) between measured particulate fractions and theoretical estimates of both the Junge-Pankow adsorption model and Harner Bidleman absorption model using different sets of subcooled liquid vapor pressure (P(L)(o)) and octanol-air partition coefficient (K(oa)), respectively. Models utilizing P(L)(o) estimates, derived from gas chromatographic retention indices (GC-RIs), are more accurate than that of entropy-based. Moreover, during winter, the K(oa)-based model using the GC-RIs approach performs better on lower chlorinated PCDD/Fs than that of P(L)(o)-based. Furthermore, possible sources of mismatch between measured and predicted values in winter (3-7 degrees C) were discussed. Gas adsorption artifact was demonstrated to be of minor importance for the phenomena observed. On the other hand, large deviations of slopes (m(r)) and intercepts (b(r)) in logK(p) vs. logP(L)(o)(Pa)/logK(oa) plots from theoretical values are observed in the literature data and these are found to be linearly correlated with ambient temperatures (P<0.001) in this study. This indicates that the non-equilibrium partitioning of PCDD/Fs in winter may be significantly influenced by the colder temperatures that may have slowed down the exchange between gaseous and particulate fractions.

  18. Atmospheric deposition of particles at a sensitive alpine lake: Size-segregated daily and annual fluxes from passive sampling techniques.

    PubMed

    Tai, Anna Y-C; Chen, L-W Antony; Wang, Xiaoliang; Chow, Judith C; Watson, John G

    2017-02-01

    Lake Tahoe, a North American alpine lake long appreciated for its clear water and geographic setting, has experienced a trend of declining water clarity due to increasing nutrient and particle inputs. Contributions from atmospheric deposition of particulate matter (PM) could be important, yet they are inadequately quantified. This study established a yearlong deposition monitoring network in the northern Lake Tahoe Basin. Dry deposition was quantified on surrogate surfaces while wet deposition was based on particles suspended in precipitation at 24-hour resolution. The particle size ranges by these passive techniques were 1-64μm and 0.5-20μm in diameter for dry and wet deposition, respectively. Dry deposition of submicrometer (0.5-1μm) particles was also estimated by extrapolation of a lognormal size distribution. Higher daily number deposition fluxes (NDFdry and NDFwet) were found at a near-shore site, confirming substantial impacts of commercial and tourist activities. The two more isolated sites indicated a uniform regional background. On average, daily NDFdry is about one order of magnitude lower than daily NDFwet. Dry deposition velocities increased rapidly with particle size, as evidenced by collocated measurements of NDFdry and ambient particle number concentrations, though it seems less so for wet deposition due to different scavenging mechanisms. Despite fewer "wet" days than "dry" days during the monitoring period, wet processes dominated seasonal particle deposition, particularly in winter and spring when most precipitation occurred. Adopting sediment (insoluble, inorganic) particle fraction estimates from the literature, this study reports an annual particle flux of 2.9-5.2×10(10)#m(-2)yr(-1) for sediment particles with 1-20μm diameter and 6.1-11×10(10)#m(-2)yr(-1) for those with 0.5-20μm diameter. Implications of these findings to the current knowledge of atmospheric deposition in the Lake Tahoe Total Maximum Daily Load (TMDL) are discussed.

  19. Effect of ions on sulfuric acid-water binary particle formation: 1. Theory for kinetic- and nucleation-type particle formation and atmospheric implications

    NASA Astrophysics Data System (ADS)

    Merikanto, Joonas; Duplissy, Jonathan; Määttänen, Anni; Henschel, Henning; Donahue, Neil M.; Brus, David; Schobesberger, Siegfried; Kulmala, Markku; Vehkamäki, Hanna

    2016-02-01

    We derive a version of Classical Nucleation Theory normalized by quantum chemical results on sulfuric acid-water hydration to describe neutral and ion-induced particle formation in the binary sulfuric acid-water system. The theory is extended to treat the kinetic regime where the nucleation free energy barrier vanishes at high sulfuric acid concentrations or low temperatures. In the kinetic regime particle formation rates become proportional to sulfuric acid concentration to second power in the neutral system or first power in the ion-induced system. We derive simple general expressions for the prefactors in kinetic-type and activation-type particle formation calculations applicable also to more complex systems stabilized by other species. The theory predicts that the binary water-sulfuric acid system can produce strong new particle formation in the free troposphere both through barrier crossing and through kinetic pathways. At cold stratospheric and upper free tropospheric temperatures neutral formation dominates the binary particle formation rates. At midtropospheric temperatures the ion-induced pathway becomes the dominant mechanism. However, even the ion-induced binary mechanism does not produce significant particle formation in warm boundary layer conditions, as it requires temperatures below 0°C to take place at atmospheric concentrations. The theory successfully reproduces the characteristics of measured charged and neutral binary particle formation in CERN CLOUD3 and CLOUD5 experiments, as discussed in a companion paper.

  20. The Ultrafine Mineralogy of a Molten Interplanetary Dust Particle as an Example of the Quench Regime of Atmospheric Entry Heating

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    Melting and degassing of interplanetary dust particle L2005B22 at approx. 1200 C was due to flash heating during atmospheric entry. Preservation of the porous particle texture supports rapid quenching from the peak heating temperature whereby olivine and pyroxene nanocrystals (3 nm-26 nm) show partial devitrification of the quenched melt at T approx. = 450 C - 740 C. The implied ultrahigh cooling rates are calculated at approx. 105 C/h-106 C/h, which is consistent with quench rates inferred from the temperature-time profiles based on atmospheric entry heating models. A vesicular rim on a nonstoichiometric relic forsterite grain in this particle represents either evaporative magnesium loss during flash heating or thermally annealed ion implantation texture.

  1. Atmospheric Chemistry Special Feature: Internally mixed sulfate and organic particles as potential ice nuclei in the tropical tropopause region

    NASA Astrophysics Data System (ADS)

    Wise, Matthew E.; Baustian, Kelly J.; Tolbert, Margaret A.

    2010-04-01

    Cirrus clouds are ubiquitous in the tropical tropopause region and play a major role in the Earth's climate. Any changes to cirrus abundance due to natural or anthropogenic influences must be considered to evaluate future climate change. The detailed impact of cirrus clouds on climate depends on ice particle number, size, morphology, and composition. These properties depend in turn on the nucleation mechanism of the ice particles. Although it is often assumed that ice nucleates via a homogeneous mechanism, recent work points to the possibility that heterogeneous ice nucleation is important in the tropical tropopause region. However, there are very few studies of depositional ice nucleation on the complex types of particles likely to be found in this region of the atmosphere. Here, we use a unique method to probe depositional ice nucleation on internally mixed ammonium sulfate/palmitic acid particles, namely optical microscopy coupled with Raman microscopy. The deliquescence and efflorescence phase transitions of the mixed particles were first studied to gain insight into whether the particles are likely to be liquid or solid in the tropical tropopause region. The ice nucleating ability of the particles was then measured under typical upper tropospheric conditions. It was found that coating the particles with insoluble palmitic acid had little effect on the deliquescence, efflorescence, or ice nucleating ability of ammonium sulfate. Additional experiments involving Raman mapping provide new insights into how the composition and morphology of mixed particles impact their ability to nucleate ice.

  2. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    We present INP data measured in-situ at two mostly free tropospheric locations: the High Altitude Research Station Jungfraujoch (JFJ) in the Swiss Alps, located at 3580 m above sea level (asl) and the Izaña observatory on Tenerife, off the West African shore (2373 m asl). INP concentrations were measured online with the Portable Ice Nucleation Chamber, PINC, at the Jungfraujoch in the winters of 2012, 2013 and 2014 and at Izaña in the summers of 2013 and 2014. Each measurement period lasted between 2 to 6 weeks. During summer, Izaña is frequently within the Saharan Air Layer and thus often exposed to Saharan dust events. Saharan dust also reaches the Jungfraujoch mainly during spring. For offline ice nucleation analysis in the laboratory under similar thermodynamic conditions, airborne dust was collected a) at Izaña with a cyclone directly from the air and b) collected from the surface of the Aletsch glacier close to the JFJ after deposition. Supporting measurements of aerosol particle size distributions and fluorescence were conducted at both locations, as well as cloud water isotope analysis at the Jungfraujoch and aerosol chemistry at Izaña. For both locations the origin of the INPs was investigated with a focus on dust and biological particles using back trajectories and chemical signature. Results show that dust aerosol is the dominant INP type at both locations at a temperature of 241 K. In addition to Saharan dust, also more local, basaltic dust is found at the Jungfraujoch. Biological particles are not observed to play a role for ice nucleation in clouds during winter at Jungfraujoch but are enriched in INP compared to the total aerosol at Izaña also during dust events. The comparison of the laboratory and the field measurements at Izaña indicates a good reproducibility of the field data by the collected dust samples. Field and laboratory data of the dust samples from both locations show that the dust arriving at JFJ is less ice nucleation active

  3. Modeling of in situ ultrafine atmospheric particle formation in the eastern United States

    NASA Astrophysics Data System (ADS)

    Gaydos, Timothy M.; Stanier, Charles O.; Pandis, Spyros N.

    2005-04-01

    The creation of new atmospheric particles from in situ nucleation influences climate through cloud-aerosol interactions and may negatively impact human health. Although recent observations show that nucleation is widespread in the eastern United States, the corresponding pathways remain uncertain. Combining extensive field measurements in Pittsburgh, Pennsylvania, with an aerosol dynamics and chemistry model assuming ternary NH3-H2SO4-H2O nuclei formation, we show excellent model-measurement agreement and predictive capability. The ternary NH3-H2SO4-H2O nucleation model is successful in predicting the presence or lack of nucleation on 19 out of 19 days with complete data sets in July 2001 and on 25 out of 29 days in January 2002. Reductions of ammonia emissions are predicted to decrease the frequency of nucleation events during both summer and winter, with a more dramatic effect during the summer. The response to changes in emissions of sulfur dioxide during the summer is counterintuitive. Reductions of sulfur dioxide and the resulting sulfate by up to 40% actually increase the frequency of the summer nucleation events. Modeling predicts the opposite effect in winter, with reductions of sulfur dioxide leading to fewer nucleation events.

  4. Identifying organic aerosol sources by comparing functional group composition in chamber and atmospheric particles.

    PubMed

    Russell, Lynn M; Bahadur, Ranjit; Ziemann, Paul J

    2011-03-01

    Measurements of submicron particles by Fourier transform infrared spectroscopy in 14 campaigns in North America, Asia, South America, and Europe were used to identify characteristic organic functional group compositions of fuel combustion, terrestrial vegetation, and ocean bubble bursting sources, each of which often accounts for more than a third of organic mass (OM), and some of which is secondary organic aerosol (SOA) from gas-phase precursors. The majority of the OM consists of alkane, carboxylic acid, hydroxyl, and carbonyl groups. The organic functional groups formed from combustion and vegetation emissions are similar to the secondary products identified in chamber studies. The near absence of carbonyl groups in the observed SOA associated with combustion is consistent with alkane rather than aromatic precursors, and the absence of organonitrate groups can be explained by their hydrolysis in humid ambient conditions. The remote forest observations have ratios of carboxylic acid, organic hydroxyl, and nonacid carbonyl groups similar to those observed for isoprene and monoterpene chamber studies, but in biogenic aerosols transported downwind of urban areas the formation of esters replaces the acid and hydroxyl groups and leaves only nonacid carbonyl groups. The carbonyl groups in SOA associated with vegetation emissions provides striking evidence for the mechanism of esterification as the pathway for possible oligomerization reactions in the atmosphere. Forest fires include biogenic emissions that produce SOA with organic components similar to isoprene and monoterpene chamber studies, also resulting in nonacid carbonyl groups in SOA.

  5. Impacts of the Canadian forest fires on atmospheric mercury and carbonaceous particles in Northern New York.

    PubMed

    Wang, Yungang; Huang, Jiaoyan; Zananski, Tiffany J; Hopke, Philip K; Holsen, Thomas M

    2010-11-15

    The impact of Canadian forest fires in Quebec on May 31, 2010 on PM(2.5), carbonaceous species, and atmospheric mercury species was observed at three rural sites in northern New York. The results were compared with previous studies during a 2002 Quebec forest fire episode. MODIS satellite images showed transport of forest fire smoke from southern Quebec, Canada to northern New York on May 31, 2010. Back-trajectories were consistent with this regional transport. During the forest fire event, as much as an 18-fold increase in PM(2.5) concentration was observed. The concentrations of episode-related OC, EC, BC, UVBC, and their difference (Delta-C), reactive gaseous mercury (RGM), and particle-bound mercury (PBM) were also significantly higher than those under normal conditions, suggesting a high impact of Canadian forest fire emissions on air quality in northern New York. PBM, RGM, and Delta-C are all emitted from forest fires. The correlation coefficient between Delta-C and other carbonaceous species may serve as an indicator of forest fire smoke. Given the marked changes in PBM, it may serve as a more useful tracer of forest fires over distances of several hundred kilometers relative to GEM. However, the Delta-C concentration changes are more readily measured.

  6. Adsorption and reactions of atmospheric constituents and pollutants on ice particles: an FTIR study

    NASA Astrophysics Data System (ADS)

    Rudakova, A. V.; Marinov, I. L.; Poretskiy, M. S.; Tsyganenko, A. A.

    2009-04-01

    Processes on icy particles attract much attention due to their importance for atmospheric science, ecology and astrophysics. In this work, adsorption and ecologically important reactions of some molecules on pure and mixed water icy films by means of FTIR spectroscopy have been investigated. The cell for spectral studies of adsorbed molecules at variable temperatures (55-370 K), described elsewhere1, enables one to run the spectra in the presence of gaseous adsorbate, and even to perform adsorption from the solution in some cryogenic solvents. For the studies of ice films, it was equipped with a device for water vapour sputtering from the heated capillaries and deposition onto the inner BaF2 or ZnSe windows of the cell, cooled by liquid nitrogen. Lower temperatures were obtained by pumping off evaporating nitrogen from the coolant volume. The estimated specific surface area of freshly deposited at 77 K water ice film was about 160 m2/g and decreases on raising the temperature together with the diminishing intensity of the bands of dangling OH (OD) groups at 3696 (2727) cm-1 until the latter disappear at 130 - 160 K when the changes of bulk absorption provide evidence for a phase transition from amorphous to polycrystalline ice. CO adsorption at 77 K results in two bands at 2153 and 2137 cm-1 assigned to molecules forming weak H-bond with the dangling hydroxyl groups and bound to unsaturated surface oxygen atoms, respectively2. The band of dangling hydroxyl groups moves to lower wavenumbers on adsorption of different molecules (hydrogen, nitrogen, methane, ozone, NO, ethane or chlorinated ethenes, etc.). The shift value depends on the nature of adsorbate. Besides this shift, spectra of adsorbed nitrogen and methane registered at 55 K reveal the adsorption intensity decrease at ~ 2650 cm-1 at the high-frequency slope of bulk adsorption, and increase at about 25 cm-1 below. We interpret this perturbation as a strengthening of H-bonds between surface water molecules

  7. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    PubMed

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  8. Heterogeneous Combustion Particles with Distinctive Light-Absorbing and Light-Scattering Phases as Mimics of Internally-Mixed Ambient Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Conny, J. M.; Ma, X.; Gunn, L. R.

    2011-12-01

    Particles with heterogeneously-distributed light-absorbing and light-scattering phases were generated from incomplete combustion or thermal decomposition to mimic real atmospheric particles with distinctive optical properties. Individual particles and particle populations were characterized microscopically. The purpose was to examine how optical property measurements of internally-mixed ambient air particles might vary based on the properties of laboratory-generated particles produced under controlled conditions. The project is an initial stage in producing reference samples for calibrating instrumentation for monitoring climatically-important atmospheric aerosols. Binary-phase particles containing black carbon (BC) and a metal or a metal oxide phase were generated from the thermal decomposition or partial combustion of liquid fuels at a variety of temperatures from 600 °C to 1100 °C. Fuels included mixtures of toluene or isooctane and iron pentacarbonyl or titanium tetrachloride. Scanning electron microscopy with energy-dispersive x-ray spectroscopy revealed that burning the fuels at different temperatures resulted in distinctive differences in morphology and carbon vs. metal/metal oxide composition. Particles from toluene/Fe(CO)5 thermal decomposition exhibited aggregated morphologies that were classified as dendritic, soot-like, globular, or composited (dendritic-globular). Particles from isooctane/TiCl4 combustion were typically spherical with surface adducts or aggregates. Diameters of the BC/TiO2 particles averaged 0.68 μm to 0.70 μm. Regardless of combustion temperature, the most abundant particles in each BC/TiO2 sample had an aspect ratio of 1.2. However, for the 600 °C and 900 °C samples the distribution of aspect ratios was skewed toward much larger ratios suggesting significant chainlike aggregation. Carbon and titanium compositions (wt.) for the 600 °C sample were 12 % and 53 %, respectively. In contrast, the composition trended in the opposite

  9. Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.

    2006-04-11

    Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.

  10. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically.

    PubMed

    Lackmann, Jan-Wilm; Schneider, Simon; Edengeiser, Eugen; Jarzina, Fabian; Brinckmann, Steffen; Steinborn, Elena; Havenith, Martina; Benedikt, Jan; Bandow, Julia E

    2013-12-06

    Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.

  11. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically

    PubMed Central

    Lackmann, Jan-Wilm; Schneider, Simon; Edengeiser, Eugen; Jarzina, Fabian; Brinckmann, Steffen; Steinborn, Elena; Havenith, Martina; Benedikt, Jan; Bandow, Julia E.

    2013-01-01

    Cold atmospheric-pressure plasmas are currently in use in medicine as surgical tools and are being evaluated for new applications, including wound treatment and cosmetic care. The disinfecting properties of plasmas are of particular interest, given the threat of antibiotic resistance to modern medicine. Plasma effluents comprise (V)UV photons and various reactive particles, such as accelerated ions and radicals, that modify biomolecules; however, a full understanding of the molecular mechanisms that underlie plasma-based disinfection has been lacking. Here, we investigate the antibacterial mechanisms of plasma, including the separate, additive and synergistic effects of plasma-generated (V)UV photons and particles at the cellular and molecular levels. Using scanning electron microscopy, we show that plasma-emitted particles cause physical damage to the cell envelope, whereas UV radiation does not. The lethal effects of the plasma effluent exceed the zone of physical damage. We demonstrate that both plasma-generated particles and (V)UV photons modify DNA nucleobases. The particles also induce breaks in the DNA backbone. The plasma effluent, and particularly the plasma-generated particles, also rapidly inactivate proteins in the cellular milieu. Thus, in addition to physical damage to the cellular envelope, modifications to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma. PMID:24068175

  12. Thermoelectric figure of merit of a material consisting of semiconductor or metal particles

    SciTech Connect

    Kharlamov, V. F.

    2013-07-15

    It is found that the dimensionless thermoelectric figure of merit of a material consisting of a large number of ball-shaped semiconductor or metal particles can be much more than unity. The introduction of an insulator into the space between the particles is shown to sharply increase the power of the converter of heat energy into electric current energy.

  13. Angular particle impingement studies of thermoplastic materials at normal incidence

    NASA Technical Reports Server (NTRS)

    Rao, P. V.; Buckley, D. H.

    1985-01-01

    Scanning electron microscope studies were conducted to characterize the erosion resistance of polymethyl methacrylate (PMMA), polycarbonate (PC), polytetrafluorethylene (PTFE), and ultra-high-molecular-weight polyethylene (UHMWPE). Erosion was caused by a jet of angular microparticles of crushed glass at normal incidence. Material built up above the original surface on all of the materials. As erosion progressed, this buildup disappeared. UHMWPE was the most resistant material and PMMA the least. The most favorable properties for high erosion resistance were high values of ultimate elongation, maximum service temperature, and strain energy and a low value of the modulus of elasticity. Erosion-rate-versus-time curves of PC and PTFE exhibited incubation, acceleration, and steady-state periods. PMMA also exhibited a deceleration period, and an incubation period with deposition was observed for UHMWPE.

  14. Carbonaceous material in aerosol particles in the lower stratosphere and tropopause region

    NASA Astrophysics Data System (ADS)

    Murphy, D. M.; Cziczo, D. J.; Hudson, P. K.; Thomson, D. S.

    2007-02-01

    The Particle Analysis by Laser Mass Spectrometry (PALMS) instrument has measured the composition of single particles in the lower stratosphere. The average fraction of carbonaceous material in the stratospheric particles decreased rapidly above the tropopause. The decrease in the average carbon content was mostly associated with a sharp increase in the bottom 2 km of the stratosphere in the frequency of fairly pure sulfate particles both with or without meteoric metals. The low potassium content of the fairly pure sulfate particles is used to show that they were formed in the stratosphere and were not tropospheric particles that had lost organics because of oxidation. Of the tropospheric carbonaceous-sulfate particles found in the stratosphere, the mass spectra had similar patterns from the upper troposphere to the maximum altitude sampled, about 19 km. A reduction in the carbon to sulfate ratio in tropospheric particles was only apparent above about 440 K potential temperature. This implies that carbon compounds can remain for months in particles larger than about 300 nm. Despite the slow rate, these data do not exclude rapid heterogeneous reactions of organics in the particles with OH or other radicals. There was no evidence of significant transfer of semivolatile organics between particles in the stratosphere. However, particles that originated in the stratosphere acquired small amounts of carbon when they were transported to the tropopause.

  15. Material removal mechanism and material removal rate model of polishing process for quartz glass using soft particle

    NASA Astrophysics Data System (ADS)

    Liu, Defu; Chen, Guanglin; Hu, Qing

    2015-10-01

    Fiber arrays are used to connect arrayed waveguide chips. The end-faces of fiber array components are multi-materials non-uniform surfaces. Their low polishing quality has become a bottleneck that restricts coupling performance of integrated photo-electronic devices. The chemical mechanical polishing (CMP) is normally used to improve the polishing quality of the end-faces of fiber array components. It is very important to optimize process parameters by researching the mechanical behavior of nanoparticles and material microstructure evolution on the CMP interfaces. Based on the elastic and hyper-elastic contact of the soft polishing particle with quartz glass and polishing pad, the material removal mechanism at molecular scale of polishing process for quartz glass using soft polishing particles is investigated, and the material removal rate model is also derived by using Arrhenius theory and molecule vibration theory. Theoretical and experimental results show that the material is mainly removed by the interfacial tribo-chemical effect between polishing particle and quartz glass during CMP process. The depth of a single particle embedding into the quartz glass is at molecular scale, and the superficial molecules of quartz glass are removed by chemical reactions because of enough energy obtained. The material removal rate of quartz glass during CMP process is determined by the polishing pressure, the chemical reagents and its concentration, and the relative movement speed between the quartz glass workpiece and the polishing pad.

  16. Particle-bound polychlorinated dibenzo- p-dioxins and dibenzofurans in the atmosphere of Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Yu, Liping; Mai, Bixian; Meng, Xiangzhou; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo; Peng, Ping'an

    A short-term sampling scheme was devised to determine the levels of particle-bound polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs) in Guangzhou atmosphere and to evaluate the impact of PCDD/Fs on the lives of the inhabitants in Guangzhou. Samples were collected from four different districts of Guangzhou City, and the results indicated that industrial activities had tremendous influence on the levels of atmospheric PCDD/Fs in these districts. The mean PCDD/Fs concentrations (mean I-TEQ values) for Huadu, Liwan, Tianhe and Huangpu districts were 3815 fg m -3 (104.6 fg I-TEQ m -3), 12 777 fg m -3 (430.5 fg I-TEQ m -3), 6963 fg m -3 (163.7 fg I-TEQ m -3) and 10 953 fg m -3 (769.3 fg I-TEQ m -3), respectively, which were higher than the concentration ranges for other cities in the world. The mean concentrations of particulate organic carbon (OC) and elemental carbon (EC) were 17.61±0.94 and 3.17±0.21 μg m -3 for Huadu district, 44.18±2.29 and 13.32±0.75 μg m -3 for Liwan district, 33.53±1.72 and 9.89±0.56 μg m -3 for Tianhe district, and 29.52±1.53 and 8.87±0.53 μg m -3 for Huangpu district, respectively. The relationship between PCDD/Fs concentrations and OC and EC concentrations demonstrated that EC could be a better predictor for the concentration of PCDD/Fs. Detailed source analysis indicated that the PCDD/Fs in Guangzhou were derived from small diffuse combustion sources, e.g., traffic sources, domestic burning of fossil fuels, non-industrial combustion sources and industrial combustion sources. Results of daily intake of PCDD/Fs by inhaling air suggested that the inhalation exposure of PCDD/Fs by the inhabitants in Liwan district is relatively high.

  17. Wood dust particle and mass concentrations and filtration efficiency in sanding of wood materials.

    PubMed

    Welling, Irma; Lehtimäki, Matti; Rautio, Sari; Lähde, Tero; Enbom, Seppo; Hynynen, Pasi; Hämeri, Kaarle

    2009-02-01

    The importance of fine particles has become apparent as the knowledge of their effects on health has increased. Fine particle concentrations have been published for outside air, plasma arc cutting, welding, and grinding, but little data exists for the woodworking industry. Sanding was evaluated as the producer of the woodworking industry's finest particles, and was selected as the target study. The number of dust particles in different particle size classes and the mass concentrations were measured in the following environments: workplace air during sanding in plywood production and in the inlet and return air; in the dust emission chamber; and in filter testing. The numbers of fine particles were low, less than 10(4) particles/cm(3) (10(7) particles/L). They were much lower than typical number concentrations near 10(6) particles/cm(3) measured in plasma arc cutting, grinding, and welding. Ultrafine particles in the size class less than 100 nm were found during sanding of MDF (medium density fiberboard) sheets. When the cleaned air is returned to the working areas, the dust content in extraction systems must be monitored continuously. One way to monitor the dust content in the return air is to use an after-filter and measure pressure drop across the filter to indicate leaks in the air-cleaning system. The best after-filtration materials provided a clear increase in pressure drop across the filter in the loading of the filter. The best after-filtration materials proved to be quite effective also for fine particles. The best mass removal efficiencies for fine particles around 0.3 mum were over 80% for some filter materials loaded with sanding wood dust.

  18. Interactions of mineral dust with pollution and clouds: An individual-particle TEM study of atmospheric aerosol from Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Pósfai, Mihály; Axisa, Duncan; Tompa, Éva; Freney, Evelyn; Bruintjes, Roelof; Buseck, Peter R.

    2013-03-01

    Aerosol particles from desert dust interact with clouds and influence climate on regional and global scales. The Riyadh (Saudi Arabia) aerosol campaign was initiated to study the effects of dust particles on cloud droplet nucleation and cloud properties. Here we report the results of individual-particle studies of samples that were collected from an aircraft in April 2007. We used analytical transmission electron microscopy, including energy-dispersive X-ray spectrometry, electron diffraction, and imaging techniques for the morphological, chemical, and structural characterization of the particles. Dust storms and regional background conditions were encountered during four days of sampling. Under dusty conditions, the coarse (supermicrometer) fraction resembles freshly crushed rock. The particles are almost exclusively mineral dust grains and include common rock-forming minerals, among which clay minerals, particularly smectites, are most abundant. Unaltered calcite grains also occur, indicating no significant atmospheric processing. The particles have no visible coatings but some contain traces of sulfur. The fine (submicrometer) fraction is dominated by particles of anthropogenic origin, primarily ammonium sulfate (with variable organic coating and some with soot inclusions) and combustion-derived particles (mostly soot). In addition, submicrometer, iron-bearing clay particles also occur, many of which are internally mixed with ammonium sulfate, soot, or both. We studied the relationships between the properties of the aerosol and the droplet microphysics of cumulus clouds that formed above the aerosol layer. Under dusty conditions, when a large concentration of coarse-fraction mineral particles was in the aerosol, cloud drop concentrations were lower and droplet diameters larger than under regional background conditions, when the aerosol was dominated by submicrometer sulfate particles.

  19. Air Quality Impacts of Atmospheric Particles & Trace Gases: Field Studies in Diverse Environments

    NASA Astrophysics Data System (ADS)

    Mwaniki, George R.

    Air pollution impacts occur at all scales, meaning that policies and air quality management practices must be implemented and coordinated at the local, regional, national, and global scales. This dissertation is part of a continuing effort to improve our understanding of various air quality related issues in different environments. The dissertation consists of four studies. In the first study, wintertime chemical composition of water-soluble particulate matter with aerodynamic diameter less than 2.5 microm (PM2.5) was monitored in the Treasure Valley region near Boise, Idaho. This study was aimed at understanding the major drivers of wintertime PM2.5 within the locality of Boise and its suburbs. From this study, organics and particulate nitrate were the dominant contributors to the PM2.5 mass during wintertime. In the second study, particle size distribution, light scattering coefficient, speciated water soluble PM2.5, and cloud condensation nuclei (CCN) concentration were monitored in a mixed deciduous forest in Northern Michigan during the Community Atmosphere-Biosphere Interactions Experiment (CABINEX-2009). The overall goal of this study was to understand on how emissions of biogenic volatile organic compounds (BVOC) affect the gas-phase and particle-phase chemistry in the near-canopy environment, and the implications on local and regional air quality. From this study aerosol derived from the oxidation of BVOCs exhibited reduced hygroscopicity and CCN activation potential compared to aerosols derived from anthropogenic activities. The third study employed the eddy covariance (EC) technique to understand source-sink interactions of carbon dioxide (CO2), methane (CH 4), carbon monoxide (CO) and nitrous oxide (N2O) in Xi'an, China. In this study urban vegetation were found to play a major role in regulating CO2 emissions within the city while vehicular activities were a major driver for CO and CH4 fluxes. In the fourth study, visibility degradation effects of

  20. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2007-10-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  1. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Hasselbach, J.; Lauer, P.; Baumann, R.; Franke, K.; Gurk, C.; Schlager, H.; Weingartner, E.

    2008-05-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transformation studies in the plume of a large container ship in the English Channel using the DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies combined with a Gaussian plume dispersion model yield a consistent picture of particle transformation processes from emission to atmospheric processing during plume expansion. Particulate matter emission indices obtained from plume measurements are 8.8±1.0×1015(kg fuel)-1 by number for non-volatile particles and 174±43 mg (kg fuel)-1 by mass for Black Carbon (BC). Values determined for test rig conditions between 85 and 110% engine load are of similar magnitude. For the total particle number including volatile compounds no emission index can be derived since the volatile aerosol fraction is subject to rapid transformation processes in the plume. Ship exhaust particles occur in the size range Dp<0.3 μm, showing a bi-modal structure. The combustion particle mode is centred at modal diameters of 0.05 μm for raw emissions to 0.10 μm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at Dp≤0.02 μm. From the decay of ship exhaust particle number concentrations in an expanding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed marine boundary layer.

  2. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also §...

  3. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also §...

  4. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also §...

  5. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also §...

  6. 29 CFR 1917.23 - Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Hazardous atmospheres and substances (see also § 1917.2 Hazardous cargo, material, substance or atmosphere). 1917.23 Section 1917.23 Labor Regulations Relating to... TERMINALS Marine Terminal Operations § 1917.23 Hazardous atmospheres and substances (see also §...

  7. Massive-scale aircraft observations of giant sea-salt aerosol particle size distributions in atmospheric marine boundary layers

    NASA Astrophysics Data System (ADS)

    Jensen, J. B.

    2015-12-01

    iant sea-salt aerosol particles (dry radius, rd > 0.5 μm) occur nearly everywhere in the marine boundary layer and frequently above. This study presents observations of atmospheric sea-salt size distributions in the range 0.7 < rd < 14 μm based on external impaction of sea-spray aerosol particles onto microscope polycarbonate microscope slides. The slides have very large sample volumes, typically about 250 L over a 10-second sampling period. This provides unprecedented sampling of giant sea-salt particles for flights in marine boundary layer air. The slides were subsequently analyzed in a humidified chamber using dual optical digital microscopy. At a relative humidity of 90% the sea-salt aerosol particles form spherical cap drops. Based on measurement the volume of the spherical cap drop and assuming NaCl composition, the Kohler equation is used to derive the dry salt mass of tens of thousands of individual aerosol particles on each slide. Size distributions are given with a 0.2 μm resolution. The slides were exposed from the NSF/NCAR C-130 research aircraft during the 2008 VOCALS project off the coast of northern Chile and the 2011 ICE-T in the Caribbean. In each deployment, size distributions using hundreds of slides are used to relate fitted log-normal size distributions parameters to wind speed, altitude and other atmospheric conditions. The size distributions provide a unique observational set for initializing cloud models with coarse-mode aerosol particle observations for marine atmospheres.

  8. Insights on Sources, Growth, and Phase Partitioning of Atmospheric Particles from Hourly Measurements of Organic Marker Compounds

    NASA Astrophysics Data System (ADS)

    Williams, B.; Goldstein, A.; Kreisberg, N.; Hering, S.; Docherty, K.; Jimenez, J.; Shields, L.; Qin, X.; Prather, K.; Ziemann, P.

    2007-12-01

    Atmospheric aerosols have adverse affects on human health and have direct and indirect affects on the global radiation balance. In order to implement particle concentration control strategies, we must first understand particle origins. Atmospheric aerosols have both primary sources such as combustion processes and secondary sources such as photochemically driven gas to particle phase partitioning. By monitoring changes in the molecular composition of the organic fraction of atmospheric aerosols, these various sources can be differentiated. Thermal desorption Aerosol Gas chromatography (TAG) is a new in-situ instrument capable of identifying and quantifying organic aerosol chemical composition with one hour time resolution. TAG is fully automated, offering around the clock measurements to determine diurnal, weekly, and seasonal patterns in organic aerosol composition, hence, determining aerosol sources and transformation processes. We report results from ambient measurements made in Southern California during the summer and fall of 2005 as part of the Study of Organic Aerosol at Riverside (SOAR). We use hourly measurements of over 300 individual organic compounds to define both primary and secondary particle sources. The particle sources defined include primary anthropogenic sources such as vehicle emissions, meat cooking, biomass burning, pesticide use, herbicide use, along with primary biogenic sources such as plant emissions and plant waxes. We also explore secondary particle sources (i.e. SOA) formed as a result of the oxidation of biogenic and anthropogenic precursor gases. Comparisons are made between TAG-defined sources and aerosol sources defined using Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) and Aerosol Mass Spectrometer (AMS) data. In addition to source apportionment results, we present seasonal changes in ambient phase partitioning of organic compounds as a function of carbon number for multiple compound classes.

  9. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  10. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    NASA Astrophysics Data System (ADS)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  11. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    SciTech Connect

    Rodriguez-Fernandez, Luis

    2010-09-10

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  12. Sorting it out: bedding particle size and nesting material processing method affect nest complexity.

    PubMed

    Robinson-Junker, Amy; Morin, Amelia; Pritchett-Corning, Kathleen; Gaskill, Brianna N

    2017-04-01

    As part of routine husbandry, an increasing number of laboratory mice receive nesting material in addition to standard bedding material in their cages. Nesting material improves health outcomes and physiological performance in mice that receive it. Providing usable nesting material uniformly and efficiently to various strains of mice remains a challenge. The aim of this study was to determine how bedding particle size, method of nesting material delivery, and processing of the nesting material before delivery affected nest building in mice of strong (BALB/cAnNCrl) and weak (C3H/HeNCrl) gathering abilities. Our data suggest that processing nesting material through a grinder in conjunction with bedding material, although convenient for provision of bedding with nesting material 'built-in', negatively affects the integrity of the nesting material and subsequent nest-building outcomes. We also found that C3H mice, previously thought to be poor nest builders, built similarly scored nests to those of BALB/c mice when provided with unprocessed nesting material. This was true even when nesting material was mixed into the bedding substrate. We also observed that when nesting material was mixed into the bedding substrate, mice of both strains would sort their bedding by particle size more often than if it were not mixed in. Our findings support the utility of the practice of distributing nesting material mixed in with bedding substrate, but not that of processing the nesting material with the bedding in order to mix them.

  13. Phase inversion of particle-stabilized materials from foams to dry water.

    PubMed

    Binks, Bernard P; Murakami, Ryo

    2006-11-01

    Small particles attached to liquid surfaces arise in many products and processes, including crude-oil emulsions and food foams and in flotation, and there is a revival of interest in studying their behaviour. Colloidal particles of suitable wettability adsorb strongly to liquid-liquid and liquid-vapour interfaces, and can be sole stabilizers of emulsions and foams, respectively. New materials, including colloidosomes, anisotropic particles and porous solids, have been prepared by assembling particles at such interfaces. Phase inversion of particle-stabilized emulsions from oil in water to water in oil can be achieved either by variation of the particle hydrophobicity (transitional) or by variation of the oil/water ratio (catastrophic). Here we describe the phase inversion of particle-stabilized air-water systems, from air-in-water foams to water-in-air powders and vice versa. This inversion can be driven either by a progressive change in silica-particle hydrophobicity at constant air/water ratio or by changing the air/water ratio at fixed particle wettability, and has not been observed in the corresponding systems stabilized by surfactants. The simplicity of the work is that this novel inversion is achieved in a single system. The resultant materials in which either air or water become encapsulated have potential applications in the food, pharmaceutical and cosmetics industries.

  14. Electrode including porous particles with embedded active material for use in a secondary electrochemical cell

    DOEpatents

    Vissers, Donald R.; Nelson, Paul A.; Kaun, Thomas D.; Tomczuk, Zygmunt

    1978-04-25

    Particles of carbonaceous matrices containing embedded electrode active material are prepared for vibratory loading within a porous electrically conductive substrate. In preparing the particles, active materials such as metal chalcogenides, solid alloys of alkali or alkaline earth metals along with other metals and their oxides in powdered or particulate form are blended with a thermosetting resin and particles of a volatile to form a paste mixture. The paste is heated to a temperature at which the volatile transforms into vapor to impart porosity at about the same time as the resin begins to cure into a rigid, solid structure. The solid structure is then comminuted into porous, carbonaceous particles with the embedded active material.

  15. Atmospheric pressure plasma pretreatment of sugarcane bagasse: the influence of biomass particle size in the ozonation process.

    PubMed

    Souza-Corrêa, J A; Oliveira, C; Nascimento, V M; Wolf, L D; Gómez, E O; Rocha, G J M; Amorim, J

    2014-02-01

    Atmospheric pressure O₂ plasma was used to produce ozone in order to treat sugarcane bagasse as a function of particle sizes. The fixed bagasse moisture content was 50%. The delignification efficiency had small improvement due to ozonation process as a function of particle size, varying from 75 up to 80%. Few amounts of hemicellulose were removed, but the ozonation has not been affected significantly with particle size variance as well (from 30 up to 35%). The cellulose presented some losses below 1.0 mm size (8-15%) which was an unexpected result. The conversion of cellulose content into free sugar has shown a significant increase as the particle size has diminished as well. The best condition of the bagasse particle size was for 0.08 mm. For this case, a great quantity of cellulose (78.8%) was converted into glucose. Optical absorption spectroscopy was applied to determine ozone concentrations in real time where the samples with typical bagasse particle sizes equal or below to 0.5 mm had shown a better absorption of ozone in comparison with greater particle size samples.

  16. Investigations of Physicochemical Properties of Size-Resolved, Subsaturated, Atmospheric Aerosol Particles: Instrument Development, Field Measurements, and Data Analysis

    NASA Astrophysics Data System (ADS)

    Shingler, Taylor

    Aerosol particle properties and their impact on air quality, clouds, and the hydrologic cycle remain a critically important factor for the understanding of our atmosphere. Particle hygroscopic growth leads to impacts on direct and indirect radiative forcing properties, the likelihood for particles to act as cloud condensation nuclei, and aerosol-cloud interactions. Current instruments measuring hygroscopic growth have a number of limitations, lacking either the ability to measure size-resolved particles or process samples at a fast enough resolution to be suitable for airborne deployment. Advanced in-situ airborne particle retrieval and measurements of aerosol hygroscopic growth and scattering properties are analyzed and discussed. To improve the analysis of cloud nuclei particles, an updated counterflow virtual impact inlet was characterized and deployed during the 2011 E-PEACE field campaign. Theoretical and laboratory based cut size diameters were determined and validated against data collected from an airborne platform. In pursuit of higher quality aerosol particle hygroscopicity measurements, a newer instrument, the differential aerosol sizing and hygroscopicity probe (DASH-SP) has been developed in the recent past and only flown on a handful of campaigns. It has been proven to provide quality, rapid, size-resolved hygroscopic growth factor data, but was further improved into a smaller form factor making it easier for deployment on airborne platforms. It was flown during the 2013 SEAC4RS field campaign and the data was analyzed to composite air mass based hygroscopicity and refractive index (real portion only) statistics. Additionally, a comparison of bulk and size-resolved hygroscopic growth measurements was conducted. Significant findings include a potential particle size bias on bulk scattering measurements as well as a narrow range of ambient real portion of refractive index values. An investigation into the first reported ambient hygroscopicity

  17. Hybrid metal organic scintillator materials system and particle detector

    DOEpatents

    Bauer, Christina A.; Allendorf, Mark D.; Doty, F. Patrick; Simmons, Blake A.

    2011-07-26

    We describe the preparation and characterization of two zinc hybrid luminescent structures based on the flexible and emissive linker molecule, trans-(4-R,4'-R') stilbene, where R and R' are mono- or poly-coordinating groups, which retain their luminescence within these solid materials. For example, reaction of trans-4,4'-stilbenedicarboxylic acid and zinc nitrate in the solvent dimethylformamide (DMF) yielded a dense 2-D network featuring zinc in both octahedral and tetrahedral coordination environments connected by trans-stilbene links. Similar reaction in diethylformamide (DEF) at higher temperatures resulted in a porous, 3-D framework structure consisting of two interpenetrating cubic lattices, each featuring basic to zinc carboxylate vertices joined by trans-stilbene, analogous to the isoreticular MOF (IRMOF) series. We demonstrate that the optical properties of both embodiments correlate directly with the local ligand environments observed in the crystal structures. We further demonstrate that these materials produce high luminescent response to proton radiation and high radiation tolerance relative to prior scintillators. These features can be used to create sophisticated scintillating detection sensors.

  18. Using Atmospheric Dispersion Theory to Inform the Design of a Short-lived Radioactive Particle Release Experiment

    SciTech Connect

    Rishel, Jeremy P.; Keillor, Martin E.; Arrigo, Leah M.; Baciak, James E.; Detwiler, Rebecca S.; Kernan, Warnick J.; Kirkham, Randy R.; Milbrath, Brian D.; Seifert, Allen; Seifert, Carolyn E.; Smart, John E.

    2016-01-01

    Atmospheric dispersion theory can be used to predict ground deposition of particulates downwind of a radionuclide release. This paper utilizes standard formulations found in Gaussian plume models to inform the design of an experimental release of short-lived radioactive particles into the atmosphere. Specifically, a source depletion algorithm is used to determine the optimum particle size and release height that maximizes the near-field deposition while minimizing the both the required source activity and the fraction of activity lost to long-distance transport. The purpose of the release is to provide a realistic deposition pattern that might be observed downwind of a small-scale vent from an underground nuclear explosion. The deposition field will be used, in part, to investigate several techniques of gamma radiation survey and spectrometry that could be utilized by an On-Site Inspection team under the verification regime of the Comprehensive Nuclear-Test-Ban Treaty.

  19. A non-equilibrium model for the hygroscopic growth and dry deposition of atmospheric particles to water surfaces

    SciTech Connect

    Zufall, M.J.; Davidson, C.I.; Bergin, M.H.

    1995-12-31

    Atmospheric dry deposition may provide a significant contribution of pollutants to a body of water. The rate of dry deposition to water surfaces may be enhanced by the growth of hygroscopic aerosols. Current dry deposition models predict hygroscopic growth by assuming equilibrium between the particles and atmosphere. However, particles larger than 1 mm may not reach their equilibrium size. These models also assume a constant, high (> 99%) relative humidity throughout the laminar flow region several centimeters above the water surface. Relative humidity profiles determined for ocean surfaces show that this is generally not the case, as the relative humidity decreases quickly above the water surface. A hygroscopic growth model is presented that combines more accurate relative humidity profiles with detailed water vapor mass transport. Hygroscopic growth estimates for ammonium nitrate, ammonium sulfate and mixtures of these two salts show that the current deposition models greatly over predict the influence of hygroscopic growth on deposition velocity to water surfaces.

  20. Use of a size-resolved 1-D resuspension scheme to evaluate resuspended radioactive material associated with mineral dust particles from the ground surface.

    PubMed

    Ishizuka, Masahide; Mikami, Masao; Tanaka, Taichu Y; Igarashi, Yasuhito; Kita, Kazuyuki; Yamada, Yutaka; Yoshida, Naohiro; Toyoda, Sakae; Satou, Yukihiko; Kinase, Takeshi; Ninomiya, Kazuhiko; Shinohara, Atsushi

    2017-01-01

    A size-resolved, one-dimensional resuspension scheme for soil particles from the ground surface is proposed to evaluate the concentration of radioactivity in the atmosphere due to the secondary emission of radioactive material. The particle size distributions of radioactive particles at a sampling point were measured and compared with the results evaluated by the scheme using four different soil textures: sand, loamy sand, sandy loam, and silty loam. For sandy loam and silty loam, the results were in good agreement with the size-resolved atmospheric radioactivity concentrations observed at a school ground in Tsushima District, Namie Town, Fukushima, which was heavily contaminated after the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011. Though various assumptions were incorporated into both the scheme and evaluation conditions, this study shows that the proposed scheme can be applied to evaluate secondary emissions caused by aeolian resuspension of radioactive materials associated with mineral dust particles from the ground surface. The results underscore the importance of taking soil texture into account when evaluating the concentrations of resuspended, size-resolved atmospheric radioactivity.

  1. A preliminary analysis of the surface chemistry of atmospheric aerosol particles in a typical urban area of Beijing.

    PubMed

    Zhang, Zhengzheng; Li, Hong; Liu, Hongyan; Ni, Runxiang; Li, Jinjuan; Deng, Liqun; Lu, Defeng; Cheng, Xueli; Duan, Pengli; Li, Wenjun

    2016-09-01

    Atmospheric aerosol particle samples were collected using an Ambient Eight Stage (Non-Viable) Cascade Impactor Sampler in a typical urban area of Beijing from 27th Sep. to 5th Oct., 2009. The surface chemistry of these aerosol particles was analyzed using Static Time of Flight-Secondary Ion Mass Spectrometry (Static TOF-SIMS). The factors influencing surface compositions were evaluated in conjunction with the air pollution levels, meteorological factors, and air mass transport for the sampling period. The results show that a variety of organic ion groups and inorganic ions/ion groups were accumulated on the surfaces of aerosol particles in urban areas of Beijing; and hydrophobic organic compounds with short- or middle-chain alkyl as well as hydrophilic secondary inorganic compounds were observed. All these compounds have the potential to affect the atmospheric behavior of urban aerosol particles. PM1.1-2.1 and PM3.3-4.7 had similar elements on their surfaces, but some molecules and ionic groups demonstrated differences in Time of Flight-Secondary Ion Mass Spectrometry spectra. This suggests that the quantities of elements varied between PM1.1-2.1 and PM3.3-4.7. In particular, more intense research efforts into fluoride pollution are required, because the fluorides on aerosol surfaces have the potential to harm human health. The levels of air pollution had the most significant influence on the surface compositions of aerosol particles in our study. Hence, heavier air pollution was associated with more complex surface compositions on aerosol particles. In addition, wind, rainfall, and air masses from the south also greatly influenced the surface compositions of these urban aerosol particles.

  2. Large area nuclear particle detectors using ET materials, phase 2

    NASA Technical Reports Server (NTRS)

    Wrigley, Charles Y.; Storti, George M.; Walter, Lee; Mathews, Scott

    1990-01-01

    This report presents work done under a Phase 2 SBIR contract for demonstrating large area detector planes utilizing Quantex electron trapping materials as a film medium for storing high-energy nuclide impingement information. The detector planes utilize energy dissipated by passage of the high-energy nuclides to produce localized populations of electrons stored in traps. Readout of the localized trapped electron populations is effected by scanning the ET plane with near-infrared, which frees the trapped electrons and results in optical emission at visible wavelengths. The effort involved both optimizing fabrication technology for the detector planes and developing a readout system capable of high spatial resolution for displaying the recorded nuclide passage tracks.

  3. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James; Webb, Michael E.

    2016-04-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. However, the identities, sources and abundances of airborne particles capable of efficiently nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. Recently, several studies have suggested that unidentified biogenic residues in soil dusts are likely to be an important source of these efficient atmospheric INPs. While it has been shown that cell-free proteins produced by common soil-borne fungi are exceptional INPs, whether these fungi are a source of ice-nucleating biogenic residues in soils has yet to be shown. In particular, it is unclear whether upon adsorption to soil mineral particles, the activity of fungal ice-nucleating proteins is retained or is reduced, as observed for other soil enzymes. Here we show that proteins from a common soil fungus (Fusarium avenaceum) do in fact preferentially bind to and impart their ice-nucleating properties to the common clay mineral kaolinite. The ice-nucleating activity of the proteinaceous INPs is found to be unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of their activity even after multiple washings with pure water. The atmospheric implications of the finding that nanoscale fungal INPs can effectively determine the nucleating abilities of lofted soil dusts are discussed.

  4. Determination of neonicotinoid insecticides and strobilurin fungicides in particle phase atmospheric samples by liquid chromatography-tandem mass spectrometry.

    PubMed

    Raina-Fulton, Renata

    2015-06-03

    A liquid chromatography-tandem mass spectrometry method has been developed for the determination of neonicotinoids and strobilurin fungicides in the particle phase fraction of atmosphere samples. Filter samples were extracted with pressurized solvent extraction, followed by a cleanup step with solid phase extraction. Method detection limits for the seven neonicotinoid insecticides and six strobilurin fungicides were in the range of 1.0-4.0 pg/m(3). Samples were collected from June to September 2013 at two locations (Osoyoos and Oliver) in the southern Okanagan Valley Agricultural Region of British Columbia, where these insecticides and fungicides are recommended for use on tree fruit crops (apples, pears, cherries, peaches, apricots) and vineyards. This work represents the first detection of acetamiprid, imidacloprid, clothianidin, kresoxim-methyl, pyraclostrobin, and trifloxystrobin in particle phase atmospheric samples collected in the Okanagan Valley in Canada. The highest particle phase atmospheric concentrations were observed for imidacloprid, pyraclostrobin, and trifloxystrobin at 360.0, 655.6, and 1908.2 pg/m(3), respectively.

  5. The adsorption of fungal ice-nucleating proteins on mineral dusts: a terrestrial reservoir of atmospheric ice-nucleating particles

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Daniel; Murray, Benjamin J.; Ross, James F.; Webb, Michael E.

    2016-06-01

    The occurrence of ice-nucleating particles (INPs) in our atmosphere has a profound impact on the properties and lifetime of supercooled clouds. To date, the identities, sources and abundances of particles capable of nucleating ice at relatively low supercoolings (T > -15 °C) remain enigmatic. While biomolecules such as proteins and carbohydrates have been implicated as important high-temperature INPs, the lack of knowledge on the environmental fates of these species makes it difficult to assess their potential atmospheric impacts. Here we show that such nanoscale ice-nucleating proteins from a common soil-borne fungus (Fusarium avenaceum) preferentially bind to and confer their ice-nucleating properties to kaolinite. The ice-nucleating activity of the proteinaceous INPs is unaffected by adsorption to the clay, and once bound the proteins do not readily desorb, retaining much of the activity even after multiple washings with pure water. The atmospheric implications of the finding that biological residues can confer their ice-nucleating ability to dust particles are discussed.

  6. A novel source of atmospheric H2: abiotic degradation of organic material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Rahn, T.; Throop, H. L.

    2012-11-01

    Molecular hydrogen (H2) plays an important role in atmospheric chemistry by competing for reactions with the hydroxyl radical (OH·) and contributing to the production of H2O in the stratosphere, indirectly influencing stratospheric ozone concentrations. The dominant pathway for loss of H2 from the atmosphere is via microbially-mediated soil uptake, although the magnitude of this loss is still regarded as highly uncertain. Recent studies have shown that abiotic processes such as photochemically mediated degradation (photodegradation) of organic material result in direct emissions of carbon (C) and nitrogen (N)-based trace gases as well as H2. This H2 production has important implications on source-sink dynamics of H2 at the soil-atmosphere interface and thus it is important to quantify its variability over a range of plant types and materials. Here, we show laboratory observations of H2 production and its temperature dependence during abiotic degradation of four plant litter types as well as pure cellulose and high lignin content woody material. A greater amount of H2 was produced in the absence of solar radiation than from photodegradation alone, verifying that low temperature thermal degradation of plant litter is a source of H2. In addition, we measured a significant release of H2 both in the presence and absence of O2. Our results suggest that abiotic release of H2 during organic matter degradation is ubiquitous in arid ecosystems and may also occur in other terrestrial ecosystems. We propose that because these processes occur at the soil-atmosphere interface, they provide a previously unrecognized proximal source of H2 for microbial uptake and confound interpretation of direct measurements of atmospheric uptake that are important for constraining the global H2 budget.

  7. A novel source of atmospheric H2: abiotic degradation of organic material

    NASA Astrophysics Data System (ADS)

    Lee, H.; Rahn, T.; Throop, H. L.

    2012-07-01

    Molecular hydrogen (H2) plays an important role in atmospheric chemistry by competing for reactions with the hydroxyl radical (·OH) and contributing to the production of H2O in the stratosphere, indirectly influencing stratospheric ozone concentrations. The dominant pathway for loss of H2 from the atmosphere is via microbially-mediated soil uptake although the magnitude of this loss is still regarded as highly uncertain. Recent studies have shown that abiotic processes such as photochemically mediated degradation (photodegradation) of organic material result in direct emissions of carbon (C) and nitrogen (N)-based trace gases as well as H2. This H2 production has important implications on source-sink dynamics of H2 at the soil-atmosphere interface and thus it is important to quantify its variability over a range of plant types and materials. Here, we show quantitative observations of H2 production and its temperature dependence during abiotic degradation of four plant litter types as well as pure cellulose and high lignin content woody material. A greater amount of H2 was produced in the absence of solar radiation than from photodegradation alone, verifying that low temperature thermal degradation of plant litter is a source of H2. In addition, we measured a significant release of H2 in the absence of O2 in addition to H2 release in the presence of O2. Our results suggest that abiotic release of H2 during organic matter is ubiquitous in terrestrial ecosystems. We propose that because these processes occur at the soil-atmosphere interface, they provide a previously unaccounted for proximal source of H2 for microbial uptake and confound interpretation of direct measurements of atmospheric uptake that are important for constraining the global H2 budget.

  8. Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method.

    PubMed

    Lu, Zhaolin; Hu, Xiaojuan; Lu, Yao

    2017-01-01

    Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis.

  9. Particle Morphology Analysis of Biomass Material Based on Improved Image Processing Method

    PubMed Central

    Lu, Zhaolin

    2017-01-01

    Particle morphology, including size and shape, is an important factor that significantly influences the physical and chemical properties of biomass material. Based on image processing technology, a method was developed to process sample images, measure particle dimensions, and analyse the particle size and shape distributions of knife-milled wheat straw, which had been preclassified into five nominal size groups using mechanical sieving approach. Considering the great variation of particle size from micrometer to millimeter, the powders greater than 250 μm were photographed by a flatbed scanner without zoom function, and the others were photographed using a scanning electron microscopy (SEM) with high-image resolution. Actual imaging tests confirmed the excellent effect of backscattered electron (BSE) imaging mode of SEM. Particle aggregation is an important factor that affects the recognition accuracy of the image processing method. In sample preparation, the singulated arrangement and ultrasonic dispersion methods were used to separate powders into particles that were larger and smaller than the nominal size of 250 μm. In addition, an image segmentation algorithm based on particle geometrical information was proposed to recognise the finer clustered powders. Experimental results demonstrated that the improved image processing method was suitable to analyse the particle size and shape distributions of ground biomass materials and solve the size inconsistencies in sieving analysis. PMID:28298925

  10. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  11. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Baars, H.; Bange, J.; Lampert, A.

    2015-04-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the

  12. Properties of Atmospheric Pressure Ar Plasma Jet Depending on Treated Dielectric Material

    NASA Astrophysics Data System (ADS)

    Prysiazhnyi, Vadym; Ricci Castro, Alonso H.; Kostov, Konstantin G.

    2017-02-01

    Atmospheric pressure plasma jet operated in argon was utilized to modify surfaces of glass, acrylic, and PTFE dielectrics. This paper describes the influence of the dielectric substrate on operation and properties of plasma. Two modes of operation (each of those have two patterns) were described. The transition from one mode to another, values of the dissipated power, and spreading of plasma over the dielectric surfaces strongly depended on the substrate material. Additionally, three methods of plasma spreading estimation were presented and discussed.

  13. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    SciTech Connect

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorption on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.

  14. Brominated flame retardants in the urban atmosphere of Northeast China: concentrations, temperature dependence and gas-particle partitioning.

    PubMed

    Qi, Hong; Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Ma, Wan-Li; Li, Yi-Fan

    2014-09-01

    57 pairs of air samples (gas and particle phases) were collected using a high volume air sampler in a typical city of Northeast China. Brominated flame retardants (BFRs) including 13 polybrominated diphenyl ethers (PBDEs, including BDEs 17, 28, 47, 49, 66, 85, 99, 100, 138, 153, 154, 183, and 209) and 9 alternative BFRs (p-TBX, PBBZ, PBT, PBEB, DPTE, HBBZ, γ-HBCD, BTBPE, and DBDPE) were analyzed. The annual average total concentrations of the 13 PBDEs and the 9 alternative BFRs were 69 pg/m(3) and 180 pg/m(3), respectively. BDE 209 and γ-HBCD were the dominant congeners, according to the one-year study. The partial pressure of BFRs in the gas phase was significantly correlated with the ambient temperature, except for BDE 85, γ-HBCD and DBDPE, indicating the important influence of ambient temperature on the behavior of BFRs in the atmosphere. It was found that the gas-particle partitioning coefficients (logKp) for most low molecular weight BFRs were highly temperature dependent as well. Gas-particle partitioning coefficients (logKp) also correlated with the sub-cooled liquid vapor pressure (logPL(o)). Our results indicated that absorption into organic matter is the main control mechanism for the gas-particle partitioning of atmospheric PBDEs.

  15. Control of TTIP Solution for Atmospheric Pressure Plasma Jet and Deposition of TiO2 Micro-particles

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masahiro; Parajulee, Shankar; Ikezawa, Shunjiro

    TiO2 deposition-methods are versatile and are expected to be more simple and easy, however, in recent years the industrial photocatalytic products have been developed enormously. In this work, photocatalytic TiO2 micro-particles are deposited using the atmospheric pressure plasma jet device. Here, deposition-method is carried out in two steps, at first, the hydrolysis reaction time has been able to control which will resolve the TTIP coagulating trouble during the transportation, by acidifying the solution with AA (Acetic acid) and DEA (Diethanolamine). An experiment was performed to measure the hydrolysis reaction time of TTIP (Titanium tetraisopropoxide) solution by He-Ne laser. Secondly, the deposition of TiO2 micro-particles was carried out using the atmospheric pressure plasma jet with the controlled TTIP solution in reaction time. Based on SEM and water contact angle measurement, it is found that the smaller the mixing ratios of TTIP and DEA the smaller the TiO2 particle size. Also, the smaller the TiO2 particles the smaller the contact angle under the UV irradiation which suffices the photocatalytic behavior.

  16. The role of electrostatic charge in the adhesion of spherical particles onto planar surfaces in atmospheric systems

    DOE PAGES

    Kweon, Hyojin; Yiacoumi, Sotira Z.; Tsouris, Costas

    2015-06-19

    In this study, the influence of electrostatic charge on the adhesive force between spherical particles and planar surfaces in atmospheric systems was studied using atomic force microscopy. Electrical bias was applied to modify the surface charge, and it was found that application of a stronger positive bias to a particle induces a stronger total adhesive force. The sensitivity of the system to changes in the bias depended on the surface charge density. For larger-size particles, the contribution of the electrostatic force decreased, and the capillary force became the major contributor to the total adhesive force. The influence of water adsorptionmore » on the total adhesive force and, specifically, on the contribution of the electrostatic force depended on the hydrophobicity of interacting surfaces. For a hydrophilic surface, water adsorption either attenuated the surface charge or screened the effect of surface potential. An excessive amount of adsorbed water provided a path to surface charge leakage, which might cancel out the electrostatic force, leading to a reduction in the adhesive force. Theoretically calculated forces were comparable with measured adhesive forces except for mica which has a highly localized surface potential. The results of this study provide information on the behavior of charged colloidal particles in atmospheric systems.« less

  17. Classification of Multiple Types of Organic Carbon Composition in Atmospheric Particles by Scanning Transmission X-Ray Microscopy Analysis

    SciTech Connect

    Kilcoyne, Arthur L; Takahama, S.; Gilardoni, S.; Russell, L.M.; Kilcoyne, A.L.D.

    2007-05-16

    A scanning transmission X-ray microscope at the Lawrence Berkeley National Laboratory is used to measure organic functional group abundance and morphology of atmospheric aerosols. We present a summary of spectra, sizes, and shapes observed in 595 particles that were collected and analyzed between 2000 and 2006. These particles ranged between 0.1 and 12 mm and represent aerosols found in a large range of geographical areas, altitudes, and times. They include samples from seven different field campaigns: PELTI, ACE-ASIA, DYCOMS II, Princeton, MILAGRO (urban), MILAGRO (C-130), and INTEX-B. At least 14 different classes of organic particles show different types of spectroscopic signatures. Different particle types are found within the same region while the same particle types are also found in different geographical domains. Particles chemically resembling black carbon, humic-like aerosols, pine ultisol, and secondary or processed aerosol have been identified from functional group abundance and comparison of spectra with those published in the literature.

  18. Comparison of Contributions of Wind-blown and Anthropogenic Fugitive Dust Particles to Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Park, S.; Gong, S.

    2010-12-01

    A new wind-blown-dust emissions module was recently implemented into AURAMS, a Canadian regional air quality model (Park et al., 2009; Park et al., 2007), to investigate the relative impact of wind-blown dust vs. anthropogenic fugitive dust on air quality in North America. In order to apply the wind-blown dust emissions module to the entire North American continent, a soil-grain-size-distribution map was developed using the outputs of four monthly runs of AURAMS for 2002 and available PM2.5 dust-content observations. The simulation results using the new soil-grain-size-distribution map showed that inclusion of wind-blown dust emissions is essential to predict the impact of dust aerosols on air quality in North America, especially in the western U.S.. The wind-blown dust emissions varied widely by season, whereas the anthropogenic fugitive dust emissions did not change significantly. In the spring (April), the continental monthly average emissions rate of wind-blown dust was much higher than that of anthropogenic fugitive dust. The total amount of wind-blown dust emissions in North America predicted by the model for 2002 was comparable to that of anthropogenic fugitive dust emissions. Even with the inclusion of wind-blown dust emissions, however, the model still had difficulty simulating dust concentrations. Further improvements are needed, in terms of both limitations of the wind-blown-dust emission module and uncertainties in the anthropogenic fugitive dust emissions inventories, for improved dust modelling. References Park, S.H., S.L. Gong, W. Gong, P.A. Makar, M.D. Moran, C.A. Stroud, and J. Zhang, Sensitivity of surface characteristics on the simulation of wind-blown dust source in North America, Atmospheric Environment, 43 (19), 3122-3129, 2009. Park, S.H., S.L. Gong, T.L. Zhao, R.J. Vet, V.S. Bouchet, W. Gong, P.A. Makar, M.D. Moran, C. Stroud, and J. Zhang, Simulation of entrainment and transport of dust particles within North America in April 2001 ("Red

  19. Particle and Joule heating of the neutral polar thermosphere in cusp region using atmosphere Explorer-C satellite measurements

    NASA Technical Reports Server (NTRS)

    Griffis, M.; Nisbet, J. S.; Bleuler, E.

    1981-01-01

    It is pointed out that thermospheric heating in the auroral zone and polar cap is of great importance to the variations in the high-latitude neutral wind and the resulting global temperature and densities. The considered investigation is concerned with relating in a quantitative manner the energy inputs from the Joule heating and particle inputs with the thermospheric responses, taking into account the cusp region, and the region of the eastward auroral electrojet. The data used in the investigation were obtained by the Atmosphere Explorer C satellite in late December 1974. Attention is given to electric fields derived from ion drift measurements, electric field strength and particle energy flux measured by the low energy electron experiment for AE-C orbit 4708, electron density contours, Joule heating contours, and height integrated Joule heating and particle energy flux.

  20. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China

    NASA Astrophysics Data System (ADS)

    Yu, Huan; Zhou, Luyu; Dai, Liang; Shen, Wenchao; Dai, Wei; Zheng, Jun; Ma, Yan; Chen, Mindong

    2016-03-01

    Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014-2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN)-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity - RH) and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH) and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm-3 s-1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56-0.86, excluding a day with significant nocturnal nucleation), but the correlation among all eight events deteriorated (R2 = 0.17) due to temperature or season change. We observed that new particle growth rate (GR) did not increase monotonically with particle size, but had a local maximum up to 25 nm h-1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.

  1. Trace elements in chondritic stratospheric particles - Zinc depletion as a possible indicator of atmospheric entry heating

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.

    1992-01-01

    Major-element abundances in 11 C, C?, and TCA cosmic dust particles have been measured using SEM and TEM energy dispersive X-ray (EDX) systems. The Fe/Ni ratio, when coupled with major element abundances, appears to be a useful discriminator of cosmic particles. Three particles classified as C?, but having Fe/Ni peak height ratios similar to those measured on the powdered Allende meteorite sample in their HSC EDX spectra, exhibit chondritic minor-/trace-element abundance patterns, suggesting they are extraterrestrial. The one particle classified as C-type, but without detectable Ni in its JSC EDX spectrum, exhibits an apparently nonchondritic minor-/trace-element abundance pattern. A class of particles that are chondritic except for large depletions in the volatile elements Zn and S has been identified. It is likely that these particles condensed with a C1 abundance pattern and that Zn and S were removed by some subsequent process.

  2. Black carbon enrichment in atmospheric ice particle residuals observed in lower trophospheric mixed phase clouds

    SciTech Connect

    Cozic, J.; Mertes, S.; Verheggen, B.; Cziczo, Dan; Gallavardin, S. J.; Walter, S.; Baltensperger, Urs; Weingartner, E.

    2008-08-15

    The enrichment of black carbon (BC) in residuals of small ice particles was investigated during intensive experiments in winter 2004 and 2005 at the high alpine research station Jungfraujoch (3580 m asl, Switzerland). Two inlets were used to sample the bulk aerosol (residuals of cloud droplets and ice crystals as well as non-activated aerosol particles) and the residual particles of small ice crystals (diameter 5 - 20 m). An enrichment of the BC mass fraction in the ice particle residuals was observed by investigating the measured BC mass concentration as a fraction of the bulk (submicrometer) aerosol mass concentration sampled by the two inlets. On average, the BC mass fraction was 5% for the bulk aerosol and 14% for the ice particle residuals. The observed enrichment of BC in ice particle residuals suggests that BC may act as ice nuclei, with important implications for the indirect aerosol effect via glaciation of clouds.

  3. Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds

    SciTech Connect

    Cozic, J.; Mertes, S.; Verheggen, B.; Cziczo, Daniel J.; Gallavardin, S. J.; Walter, S.; Baltensperger, Urs; Weingartner, E.

    2008-08-15

    The enrichment of black carbon (BC) in residuals of small ice crystals was investigated during intensive experiments in winter 2004 and 2005 at the high alpine research station Jungfraujoch (3580 m asl, Switzerland). Two inlets were used to sample the bulk aerosol (residuals of cloud droplets and ice crystals as well as non-activated aerosol particles) and the residual particles of small ice crystals (diameter 5 - 20 μm). An enrichment of the BC mass fraction in the ice particle residuals was observed by investigating the measured BC mass concentration as a fraction of the bulk (submicrometer) aerosol mass concentration sampled by the two inlets. On average, the BC mass fraction was 5% for the bulk aerosol and 27% for the ice particle residuals. The observed enrichment of BC in ice particle residuals suggests that BC containing particles preferentially act as ice nuclei, with important implications for the indirect aerosol effect via glaciation of clouds.

  4. Experimental Technique for Producing and Recording Precise Particle Impacts on Transparent Window Materials

    NASA Technical Reports Server (NTRS)

    Gray, Perry; Guven, Ibrahim

    2016-01-01

    A new facility for making small particle impacts is being developed at NASA. Current sand/particle impact facilities are an erosion test and do not precisely measure and document the size and velocity of each of the impacting particles. In addition, evidence of individual impacts is often obscured by subsequent impacts. This facility will allow the number, size, and velocity of each particle to be measured and adjusted. It will also be possible to determine which particle produced damage at a given location on the target. The particle size and velocity will be measured by high speed imaging techniques. Information as to the extent of damage and debris from impacts will also be recorded. It will be possible to track these secondary particles, measuring size and velocity. It is anticipated that this additional degree of detail will provide input for erosion models and also help determine the impact physics of the erosion process. Particle impacts will be recorded at 90 degrees to the particle flight path and also from the top looking through the target window material.

  5. ALADINA - an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Altstädter, B.; Platis, A.; Wehner, B.; Scholtz, A.; Lampert, A.; Wildmann, N.; Hermann, M.; Käthner, R.; Bange, J.; Baars, H.

    2014-12-01

    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN-situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard-Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturized by re-arranging the vital parts and composing them in a space saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time. Each system was characterized in the laboratory and calibrated with test aerosols. The CPCs are operated with two different lower detection threshold diameters of 6 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs. Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on two days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from

  6. Composite material reinforced with atomized quasicrystalline particles and method of making same

    DOEpatents

    Biner, S.B.; Sordelet, D.J.; Lograsso, B.K.; Anderson, I.E.

    1998-12-22

    A composite material comprises an aluminum or aluminum alloy matrix having generally spherical, atomized quasicrystalline aluminum-transition metal alloy reinforcement particles disposed in the matrix to improve mechanical properties. A composite article can be made by c