Science.gov

Sample records for atmospheric neutrino experiments

  1. Neutrino Experiments

    SciTech Connect

    McKeown, R. D.

    2010-08-04

    Recent studies of neutrino oscillations have established the existence of finite neutrino masses and mixing between generations of neutrinos. The combined results from studies of atmospheric neutrinos, solar neutrinos, reactor antineutrinos and neutrinos produced at accelerators paint an intriguing picture that clearly requires modification of the standard model of particle physics. These results also provide clear motivation for future neutrino oscillation experiments as well as searches for direct neutrino mass and nuclear double-beta decay. I will discuss the program of new neutrino oscillation experiments aimed at completing our knowledge of the neutrino mixing matrix.

  2. Nuclear effects in atmospheric and accelerator neutrino experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2010-11-24

    We have studied the nuclear medium effects in the neutrino (antineutrino) induced interactions in nuclei at intermediate energy region. We have applied this study to calculate the event rates for atmospheric and accelerator neutrino experiments. The study of the nuclear effects has been done for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  3. Atmospheric neutrinos and discovery of neutrino oscillations.

    PubMed

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations.

  4. Atmospheric neutrinos and discovery of neutrino oscillations

    PubMed Central

    Kajita, Takaaki

    2010-01-01

    Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258

  5. Atmospheric neutrinos: Status and prospects

    NASA Astrophysics Data System (ADS)

    Choubey, Sandhya

    2016-07-01

    We present an overview of the current status of neutrino oscillation studies at atmospheric neutrino experiments. While the current data gives some tantalising hints regarding the neutrino mass hierarchy, octant of θ23 and δCP, the hints are not statistically significant. We summarise the sensitivity to these sub-dominant three-generation effects from the next-generation proposed atmospheric neutrino experiments. We next present the prospects of new physics searches such as non-standard interactions, sterile neutrinos and CPT violation studies at these experiments.

  6. MINOS atmospheric neutrino contained events

    SciTech Connect

    Habig, A.; /Minnesota U.

    2007-10-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment has continued to collect atmospheric neutrino events while doing a precision measurement of NuMI beam {nu}{sub {mu}} disappearance oscillations. The 5.4 kton iron calorimeter is magnetized to provide the unique capability of discriminating between {nu}{sub {mu}} and {bar {nu}}{sub {mu}} interactions on an event-by-event basis and has been collecting atmospheric neutrino data since July 2003. An analysis of the neutrino events with interaction vertices contained inside the detector will be presented.

  7. Results from Neutrino Oscillations Experiments

    SciTech Connect

    Aguilar-Arevalo, Alexis

    2010-09-10

    The interpretation of the results of early solar and atmospheric neutrino experiments in terms of neutrino oscillations has been verified by several recent experiments using both, natural and man-made sources. The observations provide compelling evidence in favor of the existence of neutrino masses and mixings. These proceedings give a general description of the results from neutrino oscillation experiments, the current status of the field, and some possible future developments.

  8. Atmospheric Neutrinos: Background and Signal

    SciTech Connect

    Mocioiu, Irina

    2010-11-24

    We discuss a brief history of atmospheric neutrinos, from background to proton decay searches to proving neutrino oscillations. We then discuss how high statistics atmospheric neutrino measurements in the IceCube Deep Core Array can provide useful information about neutrino oscillation parameters and other neutrino properties.

  9. Nucleon decay and atmospheric neutrinos in the Mont Blanc experiment

    NASA Technical Reports Server (NTRS)

    Battistoni, G.; Bellotti, E.; Bologne, G.; Campana, P.; Castagnoli, C.; Chiarella, V.; Ciocio, A.; Cundy, D. C.; Dettorepiazzoli, B.; Fiorini, E.

    1985-01-01

    In the NUSEX experiment, during 2.8 years of operation, 31 fully contained events have been collected; 3 among them are nucleon decay candidates, while the others have been attributed to upsilon interactions. Limits on nucleon lifetime and determinations of upsilon interaction rates are presented.

  10. Establishing atmospheric neutrino oscillations with Super-Kamiokande

    NASA Astrophysics Data System (ADS)

    Kajita, T.; Kearns, E.; Shiozawa, M.

    2016-07-01

    In this article we review the discovery of atmospheric neutrino oscillation by the Super-Kamiokande experiment. This review outlines the sequence of observations and their associated publications that solved the atmospheric neutrino anomaly and established the existence of neutrino oscillations with nearly maximal mixing of muon neutrinos and tau neutrinos. We also discuss subsequent and ongoing studies that use atmospheric neutrinos to continue to reveal the nature of the neutrino.

  11. Secondary atmospheric tau neutrino production

    SciTech Connect

    Bulmahn, Alexander; Hall Reno, Mary

    2010-09-01

    We evaluate the flux of tau neutrinos produced from the decay of pair produced taus from incident muons using a cascade equation analysis. To solve the cascade equations, our numerical result for the tau production Z moment is given. Our results for the flux of tau neutrinos produced from incident muons are compared to the flux of tau neutrinos produced via oscillations and the direct prompt atmospheric tau neutrino flux. Results are given for both downward and upward going neutrinos fluxes and higher zenith angles are discussed. We conclude that the direct prompt atmospheric tau neutrino flux dominates these other atmospheric sources of tau neutrinos for neutrino energies larger than a few TeV for upward fluxes, and over a wider range of energy for downward fluxes.

  12. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  13. Charm contribution to the atmospheric neutrino flux

    NASA Astrophysics Data System (ADS)

    Halzen, Francis; Wille, Logan

    2016-07-01

    We revisit the estimate of the charm particle contribution to the atmospheric neutrino flux that is expected to dominate at high energies because long-lived high-energy pions and kaons interact in the atmosphere before decaying into neutrinos. We focus on the production of forward charm particles which carry a large fraction of the momentum of the incident proton. In the case of strange particles, such a component is familiar from the abundant production of K+Λ pairs. These forward charm particles can dominate the high-energy atmospheric neutrino flux in underground experiments. Modern collider experiments have no coverage in the very large rapidity region where charm forward pair production dominates. Using archival accelerator data as well as IceCube measurements of atmospheric electron and muon neutrino fluxes, we obtain an upper limit on forward D¯0Λc pair production and on the associated flux of high-energy atmospheric neutrinos. We conclude that the prompt flux may dominate the much-studied central component and represent a significant contribution to the TeV atmospheric neutrino flux. Importantly, it cannot accommodate the PeV flux of high-energy cosmic neutrinos, or the excess of events observed by IceCube in the 30-200 TeV energy range indicating either structure in the flux of cosmic accelerators, or a presence of more than one component in the cosmic flux observed.

  14. Analysis Tool for Atmospheric Neutrino Oscillations

    SciTech Connect

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2008-03-13

    Of all the neutrino oscillation data, the atmospheric data is statistically the most important. It is also the most complex to analyze. This is because the source is cosmic rays colliding with the atmosphere or the rock in the Earth and, most importantly, Super-K is the only experiment in which the angle of the neutrino is approximately determined by a measurement of the direction of the created and measured lepton. For pedagogic purposes, we first derive how such an analysis is done. We then derive a new computationally efficient but still quantitative way of doing the analysis and we present some results for a two neutrino model.

  15. Oscillations of solar atmosphere neutrinos

    SciTech Connect

    Fogli, G. L.; Lisi, E.; Mirizzi, A.; Montanino, D.; Serpico, P. D.

    2006-11-01

    The Sun is a source of high-energy neutrinos (E(greater-or-similar sign)10 GeV) produced by cosmic ray interactions in the solar atmosphere. We study the impact of three-flavor oscillations (in vacuum and in matter) on solar atmosphere neutrinos, and calculate their observable fluxes at Earth, as well as their event rates in a kilometer-scale detector in water or ice. We find that peculiar three-flavor oscillation effects in matter, which can occur in the energy range probed by solar atmosphere neutrinos, are significantly suppressed by averaging over the production region and over the neutrino and antineutrino components. In particular, we find that the relation between the neutrino fluxes at the Sun and at the Earth can be approximately expressed in terms of phase-averaged vacuum oscillations, dominated by a single mixing parameter (the angle {theta}{sub 23})

  16. Atmospheric neutrino oscillations for Earth tomography

    NASA Astrophysics Data System (ADS)

    Winter, Walter

    2016-07-01

    Modern proposed atmospheric neutrino oscillation experiments, such as PINGU in the Antarctic ice or ORCA in Mediterranean sea water, aim for precision measurements of the oscillation parameters including the ordering of the neutrino masses. They can, however, go far beyond that: Since neutrino oscillations are affected by the coherent forward scattering with matter, neutrinos can provide a new view on the interior of the earth. We show that the proposed atmospheric oscillation experiments can measure the lower mantle density of the earth with a precision at the level of a few percent, including the uncertainties of the oscillation parameters and correlations among different density layers. While the earth's core is, in principle, accessible by the angular resolution, new technology would be required to extract degeneracy-free information.

  17. Atmospheric neutrinos in ice and measurement of neutrino oscillation parameters

    SciTech Connect

    Fernandez-Martinez, Enrique; Giordano, Gerardo; Mocioiu, Irina; Mena, Olga

    2010-11-01

    The main goal of the IceCube Deep Core array is to search for neutrinos of astrophysical origins. Atmospheric neutrinos are commonly considered as a background for these searches. We show that the very high statistics atmospheric neutrino data can be used to obtain precise measurements of the main oscillation parameters.

  18. Nuclear effects in neutrino oscillation experiments

    SciTech Connect

    Chauhan, S.; Athar, M. Sajjad; Singh, S. K.

    2011-10-06

    We have studied the nuclear medium effects in the neutrino(antineutrino) induced interactions in nuclei which are relevant for present neutrino oscillation experiments in the few GeV energy region. The study is specially focused on calculating the cross sections and the event rates for atmospheric and accelerator neutrino experiments. The nuclear effects are found to be important for the quasielastic lepton production and the charged current incoherent and coherent pion production processes.

  19. Report of the Solar and Atmospheric Neutrino Working Group

    SciTech Connect

    Back, H.; Bahcall, J.N.; Bernabeu, J.; Boulay, M.G.; Bowles, T.; Calaprice, F.; Champagne, A.; Freedman, S.; Gai, M.; Galbiati, C.; Gallagher, H.; Gonzalez-Garcia, C.; Hahn, R.L.; Heeger, K.M.; Hime, A.; Jung, C.K.; Klein, J.R.; Koike, M.; Lanou, R.; Learned, J.G.; Lesko, K.T.; Losecco, J.; Maltoni, M.; Mann, A.; McKinsey, D.; Palomares-Ruiz, S.; Pena-Garay, C.; Petcov, S.T.; Piepke, A.; Pitt, M.; Raghavan, R.; Robertson, R.G.H.; Scholberg, K.; Sobel, H.W.; Takeuchi, T.; Vogelaar, R.; Wolfenstein, L.

    2004-10-22

    The highest priority of the Solar and Atmospheric Neutrino Experiment Working Group is the development of a real-time, precision experiment that measures the pp solar neutrino flux. A measurement of the pp solar neutrino flux, in comparison with the existing precision measurements of the high energy {sup 8}B neutrino flux, will demonstrate the transition between vacuum and matter-dominated oscillations, thereby quantitatively testing a fundamental prediction of the standard scenario of neutrino flavor transformation. The initial solar neutrino beam is pure {nu}{sub e}, which also permits sensitive tests for sterile neutrinos. The pp experiment will also permit a significantly improved determination of {theta}{sub 12} and, together with other solar neutrino measurements, either a measurement of {theta}{sub 13} or a constraint a factor of two lower than existing bounds. In combination with the essential pre-requisite experiments that will measure the {sup 7}Be solar neutrino flux with a precision of 5%, a measurement of the pp solar neutrino flux will constitute a sensitive test for non-standard energy generation mechanisms within the Sun. The Standard Solar Model predicts that the pp and {sup 7}Be neutrinos together constitute more than 98% of the solar neutrino flux. The comparison of the solar luminosity measured via neutrinos to that measured via photons will test for any unknown energy generation mechanisms within the nearest star. A precise measurement of the pp neutrino flux (predicted to be 92% of the total flux) will also test stringently the theory of stellar evolution since the Standard Solar Model predicts the pp flux with a theoretical uncertainty of 1%. We also find that an atmospheric neutrino experiment capable of resolving the mass hierarchy is a high priority. Atmospheric neutrino experiments may be the only alternative to very long baseline accelerator experiments as a way of resolving this fundamental question. Such an experiment could be a very

  20. Neutrino experiments: Hierarchy, CP, CPT

    NASA Astrophysics Data System (ADS)

    Gupta, Manmohan; Randhawa, Monika; Singh, Mandip

    2016-07-01

    We present an overview of our recent investigations regarding the prospects of ongoing neutrino experiments as well as future experiments in determining few of the most important unknowns in the field of neutrino physics, specifically the neutrino mass ordering and leptonic CP-violation phase. The effect of matter oscillations on the neutrino oscillation probabilities has been exploited in resolving the degeneracy between the neutrino mass ordering and the CP violation phase in the leptonic sector. Further, we estimate the extent of extrinsic CP and CPT violation in the experiments with superbeams as well as neutrino factories.

  1. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect

    Howcroft, Caius Leo Frederick

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  2. Long Baseline Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Mezzetto, Mauro

    2016-05-01

    Following the discovery of neutrino oscillations by the Super-Kamiokande collaboration, recently awarded with the Nobel Prize, two generations of long baseline experiments had been setup to further study neutrino oscillations. The first generation experiments, K2K in Japan, Minos in the States and Opera in Europe, focused in confirming the Super-Kamiokande result, improving the precision with which oscillation parameters had been measured and demonstrating the ντ appearance process. Second generation experiments, T2K in Japan and very recently NOνA in the States, went further, being optimized to look for genuine three neutrino phenomena like non-zero values of θ13 and first glimpses to leptonic CP violation (LCPV) and neutrino mass ordering (NMO). The discovery of leptonic CP violation will require third generation setups, at the moment two strong proposals are ongoing, Dune in the States and Hyper-Kamiokande in Japan. This review will focus a little more in these future initiatives.

  3. NOνA Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Jediny, Filip

    2015-06-01

    The NOνA experiment is a long-baseline accelerator-based neutrino oscillation experiment. It uses the upgraded NuMI beam from Fermilab and measures electron-neutrino appearance and muon-neutrino disappearance at its far detector in Ash River, Minnesota. Goals of the experiment include measurements of θ13, mass hierarchy and the CP violating phase. NOνA has begun to take neutrino data and first neutrino candidates are observed in its detectors. This document provides an overview of the scientific reach of the experiment, the status of detector operation and physics analysis, as well as the first data.

  4. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Ferri, M.; Ferry, S.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Hallewell, G.; Hamal, M.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Petrovic, J.; Piattelli, P.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration

    2012-08-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δ m322 = (3.1 ± 0.9) ṡ10-3eV2 is obtained, in good agreement with the world average value.

  5. Generalized mass ordering degeneracy in neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar; Schwetz, Thomas

    2016-09-01

    We consider the impact of neutral-current (NC) nonstandard neutrino interactions (NSI) on the determination of the neutrino mass ordering. We show that in the presence of NSI there is an exact degeneracy which makes it impossible to determine the neutrino mass ordering and the octant of the solar mixing angle θ12 at oscillation experiments. The degeneracy holds at the probability level and for arbitrary matter density profiles, and hence solar, atmospheric, reactor, and accelerator neutrino experiments are affected simultaneously. The degeneracy requires order-1 corrections from NSI to the NC electron neutrino-quark interaction and can be tested in electron neutrino NC scattering experiments.

  6. Atmospheric neutrinos observed in underground detectors

    NASA Technical Reports Server (NTRS)

    Gaisser, T. K.; Stanev, T.

    1985-01-01

    Atmospheric neutrinos are produced when the primary cosmic ray beam hits the atmosphere and initiates atmospheric cascades. Secondary mesons decay and give rise to neutrinos. The neutrino production was calculated and compared with the neutrino fluxes detected in underground detectors. Contained neutrino events are characterized by observation of an interaction within the fiducial volume of the detector when the incoming particle is not observed. Both the neutrino flux and the containment requirement restrict the energy of the neutrinos observed in contained interactions to less than several GeV. Neutrinos interact with the rock surrounding the detector but only muon neutrino interactions can be observed, as the electron energy is dissipated too fast in the rock. The direction of the neutrino is preserved in the interaction and at energies above 1 TeV the angular resolution is restricted by the scattering of the muon in the rock. The muon rate reflects the neutrino spectrum above some threshold energy, determined by the detector efficiency for muons.

  7. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  8. Global analyses of neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garcia, M. C.; Maltoni, Michele; Schwetz, Thomas

    2016-07-01

    We summarize the determination of some neutrino properties from the global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino mixing as well as in some extended scenarios such as the mixing with eV-scale sterile neutrinos invoked for the interpretation of the short baseline anomalies, and the presence of non-standard neutrino interactions.

  9. Tau neutrinos favored over sterile neutrinos in atmospheric muon neutrino oscillations.

    PubMed

    Fukuda, S; Fukuda, Y; Ishitsuka, M; Kajita, T; Kameda, J; Kaneyuki, K; Kobayashi, K; Koshio, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Okada, A; Okumura, K; Sakurai, N; Shiozawa, M; Suzuki, Y; Takeuchi, H; Takeuchi, Y; Toshito, T; Totsuka, Y; Yamada, S; Earl, M; Habig, A; Kearns, E; Messier, M D; Scholberg, K; Stone, J L; Sulak, L R; Walter, C W; Goldhaber, M; Barszczak, T; Casper, D; Gajewski, W; Kropp, W R; Mine, S; Price, L R; Smy, M; Sobel, H W; Vagins, M R; Ganezer, K S; Keig, W E; Ellsworth, R W; Tasaka, S; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D

    2000-11-01

    The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.

  10. Atmospheric electron neutrinos in the MINOS far detector

    SciTech Connect

    Speakman, Benjamin Phillip

    2007-01-01

    Neutrinos produced as a result of cosmic-ray interactions in the earth's atmosphere offer a powerful probe into the nature of this three-membered family of low-mass, weakly-interacting particles. Ten years ago, the Super-Kamiokande Experiment has confirmed earlier indications that neutrinos undergo lepton-flavor oscillations during propagation, proving that they are massive contrary to the previous Standard Model assumptions. The Soudan Underground Laboratory, located in northern Minnesota, was host to the Soudan2 Experiment, which has made important contributions to atmospheric neutrino research. This same lab has more recently been host to the MINOS far detector, a neutrino detector which serves as the downstream element of an accelerator-based long-baseline neutrino-oscillation experiment. This thesis has examined 418.5 live days of atmospheric neutrino data (fiducial exposure of 4.18 kton-years) collected in the MINOS far detector prior to the activation of the NuMI neutrino beam, with a specific emphasis on the investigation of electron-type neutrino interactions. Atmospheric neutrino interaction candidates have been selected and separated into showering or track-like events. The showering sample consists of 89 observed events, while the track-like sample consists of 112 observed events. Based on the Bartol atmospheric neutrino flux model of Barr et al. plus a Monte Carlo (MC) simulation of interactions in the MINOS detector, the expected yields of showering and track-like events in the absence of neutrino oscillations are 88.0 ± 1.0 and 149.1 ± 1.0 respectively (where the uncertainties reflect only the limited MC statistics). Major systematic uncertainties, especially those associated with the flux model, are cancelled by forming a double ratio of these observed and expected yields: R$data\\atop{trk/shw}$/R$MC\\atop{trk/shw}$ = 0.74$+0.12\\atop{-1.0}$(stat.) ± 0.04 (syst.) This double ratio should be equal to unity in the absence of oscillations, and the

  11. Status of solar neutrino experiments

    SciTech Connect

    Beier, E.W.; Davis, R. Jr.; Kim, S.B. . Dept. of Physics); Elliott, S.R. ); Jelley, N. )

    1990-01-01

    A summary of the status of four solar neutrino experiments is presented. The Homestake {sup 37}Cl data are presented and the possible time dependence of the data is addressed. Data from 1040 days of operation of the Kamiokande II detector are presented next. The status of the {sup 71}Ga experiment in the Baksan Neutrino Observatory, which has operated for a short time, is discussed. The summary concludes with a discussion of the status of the Sudbury Neutrino Observatory, which has been under construction since the beginning of 1990. 7 refs., 6 figs.

  12. Accelerator-based neutrino oscillation experiments

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2007-12-01

    Neutrino oscillations were first discovered by experiments looking at neutrinos coming from extra-terrestrial sources, namely the sun and the atmosphere, but we will be depending on earth-based sources to take many of the next steps in this field. This article describes what has been learned so far from accelerator-based neutrino oscillation experiments, and then describe very generally what the next accelerator-based steps are. In section 2 the article discusses how one uses an accelerator to make a neutrino beam, in particular, one made from decays in flight of charged pions. There are several different neutrino detection methods currently in use, or under development. In section 3 these are presented, with a description of the general concept, an example of such a detector, and then a brief discussion of the outstanding issues associated with this detection technique. Finally, section 4 describes how the measurements of oscillation probabilities are made. This includes a description of the near detector technique and how it can be used to make the most precise measurements of neutrino oscillations.

  13. Testing atmospheric mixing sum rules at precision neutrino facilities

    NASA Astrophysics Data System (ADS)

    Ballett, Peter; King, Stephen F.; Luhn, Christoph; Pascoli, Silvia; Schmidt, Michael A.

    2014-01-01

    We study the prospects for testing classes of atmospheric mixing sum rules at precision neutrino facilities. Such sum rules, which correlate the atmospheric mixing angle θ23 with the recently measured reactor angle θ13 and the cosine of the oscillation phase δ, are predicted by a variety of semidirect models based on discrete family symmetry classified in terms of finite von Dyck groups. We perform a detailed simulation of the performance of the next generation of oscillation experiments, including the wideband superbeam and low-energy neutrino factory proposals, and compare their discriminating power for testing atmospheric mixing sum rules.

  14. Three dimensional calculation of flux of low energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Lee, H.; Bludman, S. A.

    1985-01-01

    Results of three-dimensional Monte Carlo calculation of low energy flux of atmospheric neutrinos are presented and compared with earlier one-dimensional calculations 1,2 valid at higher neutrino energies. These low energy neutrinos are the atmospheric background in searching for neutrinos from astrophysical sources. Primary cosmic rays produce the neutrino flux peaking at near E sub=40 MeV and neutrino intensity peaking near E sub v=100 MeV. Because such neutrinos typically deviate by 20 approximately 30 from the primary cosmic ray direction, three-dimensional effects are important for the search of atmospheric neutrinos. Nevertheless, the background of these atmospheric neutrinos is negligible for the detection of solar and supernova neutrinos.

  15. Future atmospheric neutrino measurements with PINGU

    SciTech Connect

    Grant, D.

    2015-07-15

    Neutrino oscillations, first measured in 1998 via atmospheric neutrinos, have provided the only current direct evidence for physics beyond the Standard Model of Elementary Particles. The full neutrino mixing, described by six parameters, has been measured in the last decade with the exception of the charge-parity phase and the ordering of the mass eigenstates (the neutrino mass hierarchy – NMH). A relatively large mixing-angle between the first and third mass eigenstates has opened the possibility of measuring the mass hierarchy via atmospheric neutrinos using very large volume detectors. A leading proposal to perform this measurement is the future low-energy extension to the IceCube–DeepCore detector, called PINGU (the Precision IceCube Next Generation Upgrade). By increasing the photocathode density in the DeepCore region, it is possible to lower the energy threshold in the fiducial volume to the region that is affected by the MSW [1, 2], and thus permits extraction of the hierarchy. Here we discuss the design of the PINGU detector, its sensitivity to the mass hierarchy (approximately 3σ in 3.5 years) and measurements of ν{sub μ} disappearance and ν{sub τ} appearance.

  16. Baseline concept for a precise measurement of atmospheric neutrino oscillation

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Ambrosio, M.; Aprile, E.; Bologna, G.; Bonesini, M.; Bencivenni, G.; Calvi, M.; Castellina, A.; Curioni, A.; Fulgione, W.; Ghia, P. L.; Gustavino, C.; Kokoulin, R. P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Negri, P.; Paganoni, M.; Periale, L.; Petrukhin, A. A.; Picchi, P.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Satta, L.; de Fatis, T. Tabarelli; Terranova, F.; Tonazzo, A.; Trinchero, G.; Vallania, P.; Villone, B.

    2000-08-01

    A high-density calorimeter, consisting of magnetized planes interleaved by Resistive Plates Chambers (RPCs, Ref. (1)) , as tracking and timing devices, is a good candidate for a new experiment on atmospheric neutrinos. With 34 kt of mass and in four years of data taking, this experiment will be sensitive to νμ→νx oscillation with Δm2>6×10-5 and large mixing, covering the region suggested by the SuperKamiokande results. Moreover, the experimental method will enable to measure the oscillation parameters from the modulation of the L/E spectrum (νμ disappearance). For >m2>3×10-3eV2, this experiment can also establish whether the oscillation occurs into a tau or a sterile neutrino, by looking for an excess of muon-less events at high energies produced by upward-going tau neutrinos(ντ appearence).

  17. A new high-density detector for atmospheric neutrinos. Towards neutrino stoichiometry

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Ambrosio, M.; Aprile, E.; Bologna, G.; Bonesini, M.; Bencivenni, G.; Calvi, M.; Castellina, A.; Curioni, A.; Fulgione, W.; Ghia, P. L.; Gustavino, C.; Kokoulin, R. P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Negri, P.; Paganoni, M.; Periale, L.; Petrukhin, A. A.; Picchi, P.; Pullia, A.; Ragazzi, S.; Redaelli, N.; Satta, L.; Tabarelli de Fatis, T.; Terranova, F.; Tonazzo, A.; Trinchero, G.; Vallania, P.; Villone, B.

    2000-05-01

    A high-density calorimeter, consisting of magnetised iron planes interleaved by RPCs, as tracking and timing devices, is a good candidate for a next generation experiment on atmospheric neutrinos. With 34 kt of mass and in four years of data taking, this experiment will be sensitive to vμ → vχ oscillation with Δm2 > 6 × 10 -5 and mixing near to maximal and fuly cover the region of oscillation parameters suggested by Super-Kamiokande results. Moreover, the experimental method will enable to measure the oscillation parameters from the modulation of the {L}/{E} spectrum ( vμ disappearance). For Δm2 > 3 × 10 -3 eV 2, this experiment can also establish whether the oscillation occurs into a tau or a sterile neutrino, by looking for an excess of muon-less events at high energies produced by upward-going tau neutrinos ( vτ appearance).

  18. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  19. Scientific Opportunities with the Long-Baseline Neutrino Experiment

    SciTech Connect

    Adams, C.; et al.,

    2013-07-28

    In this document, we describe the wealth of science opportunities and capabilities of LBNE, the Long-Baseline Neutrino Experiment. LBNE has been developed to provide a unique and compelling program for the exploration of key questions at the forefront of particle physics. Chief among the discovery opportunities are observation of CP symmetry violation in neutrino mixing, resolution of the neutrino mass hierarchy, determination of maximal or near-maximal mixing in neutrinos, searches for nucleon decay signatures, and detailed studies of neutrino bursts from galactic supernovae. To fulfill these and other goals as a world-class facility, LBNE is conceived around four central components: (1) a new, intense wide-band neutrino source at Fermilab, (2) a fine-grained `near' neutrino detector just downstream of the source, (3) the Sanford Underground Research Facility (SURF) in Lead, South Dakota at an optimal distance (~1300 km) from the neutrino source, and (4) a massive liquid argon time-projection chamber (LArTPC) deployed there as a 'far' detector. The facilities envisioned are expected to enable many other science opportunities due to the high event rates and excellent detector resolution from beam neutrinos in the near detector and atmospheric neutrinos in the far detector. This is a mature, well developed, world class experiment whose relevance, importance, and probability of unearthing critical and exciting physics has increased with time.

  20. A measurement of neutrino oscillations with muon neutrinos in the MINOS experiment

    SciTech Connect

    Coleman, Stephen James

    2011-05-01

    Experimental evidence has established that neutrino flavor states evolve over time. A neutrino of a particular flavor that travels some distance can be detected in a different neutrino flavor state. The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline experiment that is designed to study this phenomenon, called neutrino oscillations. MINOS is based at Fermilab near Chicago, IL, and consists of two detectors: the Near Detector located at Fermilab, and the Far Detector, which is located in an old iron mine in Soudan, MN. Both detectors are exposed to a beam of muon neutrinos from the NuMI beamline, and MINOS measures the fraction of muon neutrinos that disappear after traveling the 734 km between the two detectors. One can measure the atmospheric neutrino mass splitting and mixing angle by observing the energy-dependence of this muon neutrino disappearance. MINOS has made several prior measurements of these parameters. Here I describe recently-developed techniques used to enhance our sensitivity to the oscillation parameters, and I present the results obtained when they are applied to a dataset that is twice as large as has been previously analyzed. We measure the mass splitting Δm232 = (2.32-0.08+0.12) x 10-3 eV2/c4 and the mixing angle sin2(2θ32) > 0.90 at 90% C.L. These results comprise the world's best measurement of the atmospheric neutrino mass splitting. Alternative disappearance models are also tested. The neutrino decay hypothesis is disfavored at 7.2σ and the neutrino quantum decoherence hypothesis is disfavored at 9.0σ.

  1. Current and future liquid argon neutrino experiments

    SciTech Connect

    Karagiorgi, Georgia S.

    2015-05-15

    The liquid argon time projection chamber (LArTPC) detector technology provides an opportunity for precision neutrino oscillation measurements, neutrino cross section measurements, and searches for rare processes, such as SuperNova neutrino detection. These proceedings review current and future LArTPC neutrino experiments. Particular focus is paid to the ICARUS, MicroBooNE, LAr1, 2-LArTPC at CERN-SPS, LBNE, and 100 kton at Okinoshima experiments.

  2. The Energy Spectrum of Atmospheric Neutrinos between 2 and 200 TeV with the AMANDA-II Detector

    SciTech Connect

    IceCube Collaboration; Abbasi, R.

    2010-05-11

    The muon and anti-muon neutrino energy spectrum is determined from 2000-2003 AMANDA telescope data using regularised unfolding. This is the first measurement of atmospheric neutrinos in the energy range 2-200 TeV. The result is compared to different atmospheric neutrino models and it is compatible with the atmospheric neutrinos from pion and kaon decays. No significant contribution from charm hadron decays or extraterrestrial neutrinos is detected. The capabilities to improve the measurement of the neutrino spectrum with the successor experiment IceCube are discussed.

  3. A study of atmospheric neutrinos with the IMB detector

    NASA Technical Reports Server (NTRS)

    Losecco, J. M.; Bionta, R. M.; Blewitt, G.; Bratton, C. B.; Casper, D.; Chrysicopoulou, P.; Claus, R.; Cortez, B. G.; Errede, S.; Foster, G. W.

    1985-01-01

    A sample of 401 contained neutrino interactions collected in the 3300 metric ton fiducial mass IMB detector was used to study neutrino oscillations, geomagnetic modulation of the flux and to search for point sources. The majority of these events are attributed to neutrino interactions. For the most part, these neutrinos are believed to originate as tertiary products of cosmic ray interactions in the atmosphere. The neutrinos are a mixture of v sub e and v sub micron.

  4. Oscillations of very low energy atmospheric neutrinos

    SciTech Connect

    Peres, Orlando L. G.; Smirnov, A. Yu.

    2009-06-01

    There are several new features in the production, oscillations, and detection of the atmospheric neutrinos of low energies E < or approx. 100 MeV. The flavor ratio r of muon to electron neutrino fluxes is substantially smaller than 2 and decreases with energy, a significant part of events is due to the decay of invisible muons at rest, etc. Oscillations in a two-layer medium (atmosphere-Earth) should be taken into account. We derive analytical and semianalytical expressions for the oscillation probabilities of these 'sub-sub-GeV' neutrinos. The energy spectra of the e-like events in water Cherenkov detectors are computed, and the dependence of the spectra on the 2-3 mixing angle {theta}{sub 23}, the 1-3 mixing, and the CP-violation phase are studied. We find that variations of {theta}{sub 23} in the presently allowed region change the number of e-like events by about 15%-20% as well as lead to distortion of the energy spectrum. The 1-3 mixing and CP violation can lead to {approx}10% effects. Detailed study of the sub-sub-GeV neutrinos will be possible in future megaton-scale detectors.

  5. Review of direct neutrino mass experiments

    SciTech Connect

    Dragoun, O.

    2015-10-28

    Advantages and drawbacks of the kinematic methods of the neutrino mass determination are discussed. The meaning of the effective neutrino mass, resulting from measurements of the endpoint region of β-spectra is clarified. Current experimental constraints on the mass of active as well as sterile neutrinos are presented. Several new experiments are briefly outlined.

  6. Oscillation of Very Low Energy Atmospheric Neutrinos

    SciTech Connect

    Peres, Orlando L. G.

    2010-03-30

    We discuss the oscillation effects of sub-sub-GeV atmospheric neutrinos, the sample with energies E < or approx. 100 MeV. The energy spectra of the e-like events in water Cherenkov detectors are computed and dependence of the spectra on the 2-3 mixing angle, theta{sub 23}, the 1-3 mixing and CP-violation phase are studied.

  7. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model

    NASA Astrophysics Data System (ADS)

    Honda, M.; Athar, M. Sajjad; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2015-07-01

    We extend our calculation of the atmospheric neutrino fluxes to polar and tropical regions. It is well known that the air density profiles in the polar and the tropical regions are different from the mid-latitude region. Also there are large seasonal variations in the polar region. In this extension, we use the NRLMSISE-00 global atmospheric model J. M. Picone, J. Geophys. Res. 107, SIA 15 (2002), replacing the U.S.-standard 1976 atmospheric model, which has no positional or seasonal variations. With the NRLMSISE-00 atmospheric model, we study the atmospheric neutrino flux at the polar and tropical regions with seasonal variations. The geomagnetic model international geomagnetic reference field (IGRF) we have used in our calculations seems accurate enough in the polar regions also. However, the polar and the equatorial regions are the two extremes in the IGRF model, and the magnetic field configurations are largely different from one another. Note that the equatorial region is also the tropical region generally. We study the effect of the geomagnetic field on the atmospheric neutrino flux in these extreme regions.

  8. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect

    Rahman, Aftabur Dipu

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of Δm$2\\atop{23}$ and sin223, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are RA = R$data\\atop{low/high}$/R$MC\\atop{low/high}$ = 0.60$+0.11\\atop{-0.10}$(stat) ± 0.08(syst) and RHR = R$data\\atop{low/high}$/R$MC\\atop{low/high}$ = 0.58$+0.14\\atop{-0.11}$(stat) ± 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of Δm2 and sin2 2θ. The best fit point for both event samples occurs at Δm$2\\atop{23}$ = 1.3 x 10-3 eV2, and sin223 = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino

  9. Simulation of neutrino and charged particle production and propagation in the atmosphere

    SciTech Connect

    Derome, L.

    2006-11-15

    A precise evaluation of the secondary particle production and propagation in the atmosphere is very important for the atmospheric neutrino oscillation studies. The issue is addressed with the extension of a previously developed full 3-dimensional Monte-Carlo simulation of particle generation and transport in the atmosphere, to compute the flux of secondary protons, muons, and neutrinos. Recent balloon borne experiments have performed a set of accurate flux measurements for different particle species at different altitudes in the atmosphere, which can be used to test the calculations for the atmospheric neutrino production, and constrain the underlying hadronic models. The simulation results are reported and compared with the latest flux measurements. It is shown that the level of precision reached by these experiments could be used to constrain the nuclear models used in the simulation. The implication of these results for the atmospheric neutrino flux calculation are discussed.

  10. Atmospheric neutrinos, ν e- ν s oscillations and a novel neutrino evolution equation

    NASA Astrophysics Data System (ADS)

    Akhmedov, Evgeny

    2016-08-01

    If a sterile neutrino ν s with an eV-scale mass and a sizeable mixing to the electron neutrino exists, as indicated by the reactor and gallium neutrino anomalies, a strong resonance enhancement of ν e -ν s oscillations of atmospheric neutrinos should occur in the TeV energy range. At these energies neutrino flavour transitions in the 3+1 scheme depend on just one neutrino mass squared difference and are fully described within a 3-flavour oscillation framework. We demonstrate that the flavour transitions of atmospheric ν e can actually be very accurately described in a 2-flavour framework, with neutrino flavour evolution governed by an inhomogeneous Schrödinger-like equation. Evolution equations of this type have not been previously considered in the theory of neutrino oscillations.

  11. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    SciTech Connect

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  12. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Brunner, J.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration

    2015-04-01

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δ m322=2.72-0.20+0.19×10-3 eV2 and sin2θ23=0.53-0.12+0.09 (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.

  13. Probing possible decoherence effects in atmospheric neutrino oscillations.

    PubMed

    Lisi, E; Marrone, A; Montanino, D

    2000-08-01

    It is shown that the results of the Super-Kamiokande atmospheric neutrino experiment, interpreted in terms of nu(mu)<-->nu(tau) flavor transitions, can probe possible decoherence effects induced by new physics (e.g., by quantum gravity) with high sensitivity, supplementing current laboratory tests based on kaon oscillations and on neutron interferometry. By varying the (unknown) energy dependence of such effects, one can either obtain strong limits on their amplitude or use them to find an unconventional solution to the atmospheric nu anomaly based solely on decoherence.

  14. Light dark matter detection prospects at neutrino experiments

    NASA Astrophysics Data System (ADS)

    Kumar, Jason; Learned, John G.; Smith, Stefanie

    2009-12-01

    We consider the prospects for the detection of relatively light dark matter through direct annihilation to neutrinos. We specifically focus on the detection possibilities of water Cherenkov and liquid scintillator neutrino detection devices. We find, in particular, that liquid scintillator detectors may potentially provide excellent detection prospects for dark matter in the 4-10 GeV mass range. These experiments can provide excellent corroborative checks of the DAMA/LIBRA annual modulation signal, but may yield results for low mass dark matter in any case. We identify important tests of the ratio of electron to muon neutrino events (and neutrino versus antineutrino events), which discriminate against background atmospheric neutrinos. In addition, the fraction of events which arise from muon neutrinos or antineutrinos (Rμ and Rμ¯) can potentially yield information about the branching fractions of hypothetical dark matter annihilations into different neutrino flavors. These results apply to neutrinos from secondary and tertiary decays as well, but will suffer from decreased detectability.

  15. Behaviour of the high-energy neutrino flux in the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Kochanov, Aleksey; Sinegovskiy, Sergey; Sinegovskaya, Tatyana; Morozova, Anna

    2015-12-01

    The processing of the IceCube experiment data obtained during 988 days (2010-2013) revealed 37 high-energy neutrino-induced events with deposited energies of 30 TeV - 2 PeV. The hypothesis of an astrophysical origin of these neutrinos is confirmed at the statistical confidence level of 5.7σ. To identify reliably the neutrino events, a thorough calculation of the atmospheric neutrino background is required. In this work we calculate the atmospheric neutrino spectra in the energy range of 100 GeV - 10 PeV with usage of several hadronic models and a few parametrizations of cosmic ray spectra supported by experimental data which take into account the knee. It is shown that rare decays of short-lived neutral ka ns K_S^0 contribute more than a third of the total ν_e +(ν)_e flux at the energies above 100 eV. The account for kaons production in pion-nucleus collisions increases the ν_e +(ν)_e flux by 5-7% in the energy range of 102-104 GeV. Calculated neutrino spectra agree on the whole with the measurement data. The neutrino flavor ratio extracted from the IceCube data possibly indicates that the conventional atmospheric electron neutrino flux obtained in the IceCube experiment contains an admixture of the astrophysical neutrinos in the range of 20-50 TeV.

  16. Atmospheric neutrino problem in maximally-mixed three generations of neutrinos

    NASA Astrophysics Data System (ADS)

    Giunti, C.; Kim, C. W.; Kim, J. D.

    1995-02-01

    Motivated by the indication that both the atmospheric and the solar neutrino puzzles may simultaneously be solved by (vacuum as well as matter-induced resonant) oscillations of two generations of neutrinos with large mixing, we have analyzed the data on the atmospheric and solar neutrinos assuming that all three neutrinos are maximally mixed. It is shown that the values of Δm2 obtained from the two-generation analyses are still valid even in the three-generation scheme, i.e. the two puzzles can be solved simultaneously if Δm231 ~= 10-2eV2 for the atmospheric neutrinos and Δm221 ~= 10-10eV2 for solar neutrinos in the maximally mixed three-generation scheme.

  17. The SOX experiment in the neutrino physics

    NASA Astrophysics Data System (ADS)

    Di Noto, L.; Agostini, M.; Althenmüller, K.; Bellini, G.; Benziger, J.; Berton, N.; Bick, D.; Bonfini, G.; Bravo-Berguño, D.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Caminata, A.; Cavalcante, P.; Chavarria, A.; Chepurnov, A.; Cribier, M.; DAngelo, D.; Davini, S.; Derbin, A.; Durero, M.; Empl, A.; Etenko, A.; Farinon, S.; Fischer, V.; Fomenko, K.; Franco, D.; Gabriele, F.; Gaffiot, J.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Göger-Neff, M.; Goretti, A.; Grandi, L.; Gromov, M.; Hagner, C.; Houdy, Th.; Hungerford, E.; Ianni, Al.; Ianni, An.; Jonquères, N.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Lasserre, T.; Laubenstein, M.; Lehnert, T.; Lewke, T.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Machulin, I.; Manecki, S.; Maneschg, W.; Marcocci, S.; Maricic, J.; Meindl, Q.; Mention, G.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Montuschi, M.; Mosteiro, P.; Musenich, R.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Otis, K.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Rossi, N.; Saldanha, R.; Salvo, C.; Schönert, S.; Scola, L.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Veyssière, C.; Vivier, M.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.

    2015-01-01

    SOX (Short distance neutrino Oscillations with BoreXino) is a new experiment that takes place at the Laboratori Nazionali del Gran Sasso (LNGS) and it exploits the Borexino detector to study the neutrino oscillations at short distance. In different phases, by using two artificial sources 51Cr and 144Ce-144Pr, neutrino and antineutrino fluxes of measured intensity will be detected by Borexino in order to observe possible neutrino oscillations in the sterile state. In this paper an overview of the experiment is given and one of the two calorimeters that will be used to measure the source activity is described. At the end the expected sensitivity to determine the neutrino sterile mass is shown.

  18. Latest results on atmospheric neutrino oscillations from IceCube/DeepCore

    NASA Astrophysics Data System (ADS)

    de André, J. P. A. M.; IceCube Collaboration

    2016-05-01

    The IceCube Neutrino Observatory, located at the South Pole, is the world’s largest neutrino detector. DeepCore, the low energy extension for IceCube, with a threshold of about ten GeV is well suited to study neutrino oscillations using neutrinos produced in the Earth’s atmosphere and traveling distances as large as the Earth’s diameter before being detected. Using these neutrinos DeepCore makes measurements of the neutrino oscillation parameters θ23 and |Δm 2 32| with precisions approaching that of dedicated experiments, and based on preliminary studies these results can still be further improved. These new studies as well as the current results obtained in DeepCore are discussed here.

  19. High Energy Atmospheric Neutrino Fluxes From a Realistic Primary Spectrum

    NASA Astrophysics Data System (ADS)

    Campos Penha, Felipe; Dembinski, Hans; Gaisser, Thomas K.; Tilav, Serap

    2016-03-01

    Atmospheric neutrino fluxes depend on the energy spectrum of primary nucleons entering the top of the atmosphere. Before the advent of AMANDA and the IceCube Neutrino Observatory, measurements of the neutrino fluxes were generally below ~ 1TeV , a regime in which a simple energy power law sufficed to describe the primary spectrum. Now, IceCube's muon neutrino data extends beyond 1PeV , including a combination of neutrinos from astrophysical sources with background from atmospheric neutrinos. At such high energies, the steepening at the knee of the primary spectrum must be accounted for. Here, we describe a semi-analytical approach for calculating the atmospheric differential neutrino fluxes at high energies. The input is a realistic primary spectrum consisting of 4 populations with distinct energy cutoffs, each with up to 7 representative nuclei, where the parameters were extracted from a global fit. We show the effect of each component on the atmospheric neutrino spectra, above 10TeV . The resulting features follow directly from recent air shower measurements included in the fit. Felipe Campos Penha gratefully acknowledges financial support from CAPES (Processo BEX 5348/14-5), CNPq (Processo 142180/2012-2), and the Bartol Research Institute.

  20. Report on solar neutrino experiments

    SciTech Connect

    Davis, R. Jr.; Cleveland, B.T.; Rowley, J.K.

    1984-01-01

    A summary is given of the status of solar neutrino research that includes results of the Brookhaven chlorine detector, a discussion of the development of the gallium, bromine, and lithium radiochemical detectors, and some proposals for direct counting detectors. The gallium and bromine radiochemical detectors are developed and are capable of giving critical information of interest about neutrino physics and the fusion reactions in the interior of the sun. A plan for building these detectors is outlined and a rough cost estimate is given. A review is given of the plans in the Soviet Union in solar neutrino research.

  1. Measurement of neutrino oscillations in MACRO experiment

    NASA Technical Reports Server (NTRS)

    Musser, J.

    1985-01-01

    The possibility of investigating neutrino oscillations in the proposed MACRO experiment are considered. Its sensitivity taking into account the theoretical uncertainties coming from flux calculations, geomagnetic effects and propagation through matter, and the experimental limitations.

  2. A study of muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Yang, Tingjun

    2009-03-01

    The observation of neutrino oscillations (neutrino changing from one flavor to another) has provided compelling evidence that the neutrinos have non-zero masses and that leptons mix, which is not part of the original Standard Model of particle physics. The theoretical framework that describes neutrino oscillation involves two mass scales (Δmatm2 and Δmsol2), three mixing angles (θ12, θ23, and θ13) and one CP violating phase (δCP). Both mass scales and two of the mixing angles (θ12 and θ23) have been measured by many neutrino experiments. The mixing angle θ13, which is believed to be very small, remains unknown. The current best limit on θ13 comes from the CHOOZ experiment: θ13 < 11° at 90% C.L. at the atmospheric mass scale. δCP is also unknown today. MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino experiment based at Fermi National Accelerator Laboratory. The experiment uses a muon neutrino beam, which is measured 1 km downstream from its origin in the Near Detector at Fermilab and then 735 km later in the Far Detector at the Soudan mine. By comparing these two measurements, MINOS can obtain parameters in the atmospheric sector of neutrino oscillations. MINOS has published results on the precise measurement of Δmatm2 and θ23 through the disappearance of muon neutrinos in the Far Detector and on a search for sterile neutrinos by looking for a deficit in the number of neutral current interactions seen in the Far Detector. MINOS also has the potential to improve the limit on the neutrino mixing angle θ13 or make the first measurement of its value by searching for an electron neutrino appearance signal in the Far Detector. This is the focus of the study presented in this thesis. We developed a neural network based algorithm to

  3. Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Bergström, L.; Hulth, P. O.; Botner, O.; Carlson, P.; Ohlsson, T.

    2006-03-01

    J. N. Bahcall (1934-2005) -- Preface -- List of participants -- Committees -- Nobel symposium on neutrino physics - program -- The history of neutrino oscillations / S. M. Bilenky -- Super-Kamiokande results on neutrino oscillations / Y. Suzuki -- Sudbury neutrino observatory results / A. B. McDonald -- Results from KamLAND reactor neutrino detection / A. Suzuki -- New opportunities for surprise / J. Conrad -- Solar models and solar neutrinos / J. N. Bahcall -- Atmospheric neutrino fluxes / T. K. Gaisser -- The MSW effect and matter effects in neutrino oscillations / A. Yu. Smirnov -- Three-flavour effects and CP- and T-violation in neutrino oscillations / E. Kh. Akhmedov -- Global analysis of neutrino data / M. C. Gonzalez-Garcia -- Future precision neutrino oscillation experiments and theoretical implications / M. Lindner -- Experimental prospects of neutrinoless double beta decay / E. Fiorini -- Theoretical prospects of neutrinoless double beta decay / S. T. Petcov -- Supernova neutrino oscillations / G. G. Raffelt -- High-energy neutrino astronomy / F. Halzen -- Neutrino astrophysics in the cold: Amanda, Baikal and IceCube / C. Spiering -- Status of radio and acoustic detection of ultra-high energy cosmic neutrinos and a proposal on reporting results / D. Saltzberg -- Detection of neutrino-induced air showers / A. A. Watson -- Prospect for relic neutrino searches / G. B. Gelmini -- Leptogenesis in the early universe / T. Yanagida -- Neutrinos and big bang nucleosynthesis / G. Steigman -- Extra galactic sources of high energy neutrinos / E. Waxman -- Cosmological neutrino bounds for non-cosmologists / M. Tegmark -- Neutrino intrinsic properties: the neutrino-antineutrino relation / B. Kayser -- NuTeV and neutrino properties / M. H. Shaevitz -- Absolute masses of neutrinos - experimental results and future possibilities / C. Weinheimer -- Flavor theories and neutrino masses / P. Ramond -- Neutrino mass models and leptogenesis / S. F. King -- Neutrino mass and

  4. Neutrinos

    PubMed Central

    Besson, Dave; Cowen, Doug; Selen, Mats; Wiebusch, Christopher

    1999-01-01

    Neutrinos represent a new “window” to the Universe, spanning a large range of energy. We discuss the science of neutrino astrophysics and focus on two energy regimes. At “lower” energies (≈1 MeV), studies of neutrinos born inside the sun, or produced in interactions of cosmic rays with the atmosphere, have allowed the first incontrovertible evidence that neutrinos have mass. At energies typically one thousand to one million times higher, sources further than the sun (both within the Milky Way and beyond) are expected to produce a flux of particles that can be detected only through neutrinos. PMID:10588680

  5. Radiography of Earth's Core and Mantle with Atmospheric Neutrinos

    SciTech Connect

    Gonzalez-Garcia, M. C.; Halzen, Francis; Maltoni, Michele

    2008-02-15

    A measurement of the absorption of neutrinos with energies in excess of 10 TeV when traversing the Earth is capable of revealing its density distribution. Unfortunately, the existence of beams with sufficient luminosity for the task has been ruled out by the AMANDA South Pole neutrino telescope. In this Letter we point out that, with the advent of second-generation kilometer-scale neutrino detectors, the idea of studying the internal structure of Earth may be revived using atmospheric neutrinos instead.

  6. Near maximal atmospheric neutrino mixing in neutrino mass models with two texture zeros

    NASA Astrophysics Data System (ADS)

    Dev, S.; Gautam, R. R.; Singh, Lal; Gupta, Manmohan

    2014-07-01

    The implications of a large value of the effective Majorana neutrino mass for a class of two texture zero neutrino mass matrices have been studied in the flavor basis. It is found that these textures predict a near maximal atmospheric neutrino mixing angle in the limit of a large effective Majorana neutrino mass. It is noted that this prediction is independent of the values of solar and reactor neutrino mixing angles. We present the symmetry realization of these textures using the discrete cyclic group Z3. It is found that the texture zeros realized in this work remain stable under renormalization group running of the neutrino mass matrix from the seesaw scale to the electroweak scale, at one-loop level.

  7. Constraint on neutrino decay with medium-baseline reactor neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Abrahão, Thamys; Minakata, Hisakazu; Nunokawa, Hiroshi; Quiroga, Alexander A.

    2015-11-01

    The experimental bound on lifetime of ν 3, the neutrino mass eigenstate with the smallest ν e component, is much weaker than those of ν 1 and ν 2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future reactor neutrino oscillation experiments with medium-baseline (˜50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on ν3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed χ 2 analysis that the ν 3 lifetime divided by its mass, τ 3 /m 3, can be constrained to be τ 3 /m 3 > 7 .5 (5 .5) × 10-11 s/eV at 95% (99%) C.L. by 100 kt·years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent ν 3 decay affects mass-ordering determination and precision measurements of the mixing parameters.

  8. The CAPTAIN liquid argon neutrino experiment

    SciTech Connect

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energy regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.

  9. The CAPTAIN liquid argon neutrino experiment

    DOE PAGESBeta

    Liu, Qiuguang

    2015-01-01

    The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less

  10. Discovering New Light States at Neutrino Experiments

    SciTech Connect

    Essig, Rouven; Harnik, Roni; Kaplan, Jared; Toro, Natalia; /Stanford U., Phys. Dept.

    2011-08-11

    Experiments designed to measure neutrino oscillations also provide major opportunities for discovering very weakly coupled states. In order to produce neutrinos, experiments such as LSND collide thousands of Coulombs of protons into fixed targets, while MINOS and MiniBooNE also focus and then dump beams of muons. The neutrino detectors beyond these beam dumps are therefore an excellent arena in which to look for long-lived pseudoscalars or for vector bosons that kinetically mix with the photon. We show that these experiments have significant sensitivity beyond previous beam dumps, and are able to partially close the gap between laboratory experiments and supernovae constraints on pseudoscalars. Future upgrades to the NuMI beamline and Project X will lead to even greater opportunities for discovery. We also discuss thin target experiments with muon beams, such as those available in COMPASS, and show that they constitute a powerful probe for leptophilic PNGBs.

  11. Atmospheric neutrinos can make beauty strange

    SciTech Connect

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi; Pierce, Aaron

    2002-12-01

    The large observed mixing angle in atmospheric neutrinos, coupled with Grand Unification, motivates the search for a large mixing between right-handed strange and bottom squarks. Such mixing does not appear in the standard CKM phenomenology, but may induce significant b {yields} s transitions through gluino diagrams. Working in the mass eigenbasis, we show quantitatively that an order one effect on CP violation in B{sub d}{sup 0} {yields} {pi}K{sub S} is possible due to a large mixing between right-handed b and s squarks, while still satisfying constraints from b {yields} s {gamma}. We also include the effect of right- and left-handed bottom squark mixing proportional to m{sub b}{mu} tan{beta}. For small {mu}tan{beta} there may also be a large effect in B{sub s} mixing correlated with a large effect in B{sub d}{sup 0} {yields} {phi}K{sub S}, typically yielding an unambiguous signal of new physics at Tevatron Run II.

  12. Radiochemical Solar Neutrino Experiments - Successful and Otherwise.

    SciTech Connect

    Hahn,R.L.

    2008-05-25

    Over the years, several different radiochemical systems have been proposed as solar neutrino detectors. Of these, two achieved operating status and obtained important results that helped to define the current field of neutrino physics: the first solar-neutrino experiment, the Chlorine Detector ({sup 37}Cl) that was developed by chemist Raymond Davis and colleagues at the Homestake Mine, and the subsequent Gallium ({sup 71}Ga) Detectors that were operated by (a) the SAGE collaboration at the Baksan Laboratory and (b) the GALLEX/GNO collaborations at the Gran Sasso National Laboratory. These experiments have been extensively discussed in the literature and in many previous International Neutrino Conferences. In this paper, I present important updates to the results from SAGE and GALLEX/GNO. I also review the principles of the radiochemical detectors and briefly describe several different detectors that have been proposed. In light of the well-known successes that have been subsequently obtained by real-time neutrino detectors such as Kamiokande, Super-Kamiokande, SNO, and KamLAND, I do not anticipate that any new radiochemical neutrino detectors will be built. At present, only SAGE is still operating; the Chlorine and GNO radiochemical detectors have been decommissioned and dismantled.

  13. Report on solar-neutrino experiments

    SciTech Connect

    Davis, R. Jr.

    1982-01-01

    This report on solar neutrino experiments will include a summary of the results of the chlorine detector, and an account of our plans to build a gallium solar neutrino experiment. In addition to discussing the experimental side of the solar neutrino problem I would like to relate our experiences during the last 15 years in working in the Homestake Gold Mine. In the course of our work at Homestake a number of independent groups have asked to use our facilities and, because of the cooperative and helpful attitude of the Mine management, these experimentalists could be easily accommodated. A brief account of these experiences may be useful for the main business of this workshop, building large particle detectors for observing nucleon decay, and the related question of the need for a national underground physics facility.

  14. Prospects for long baseline neutrino oscillation experiments

    SciTech Connect

    Goodman, M.

    1991-01-01

    Several recent development have motivated consideration of neutrino experiments located hundreds or thousand of kilometers from an accelerator. The motivations and experimental challenges for such experiments are examined. Three proposals for using the Fermilab Main Injector are compared. The requirements on mass, distance and resolution for an ideal'' detector for such an experimental are considered.

  15. Prospects for long baseline neutrino oscillation experiments

    SciTech Connect

    Goodman, M.

    1991-12-31

    Several recent development have motivated consideration of neutrino experiments located hundreds or thousand of kilometers from an accelerator. The motivations and experimental challenges for such experiments are examined. Three proposals for using the Fermilab Main Injector are compared. The requirements on mass, distance and resolution for an ``ideal`` detector for such an experimental are considered.

  16. Long Baseline Neutrino Experiment Sensitivity Studies

    NASA Astrophysics Data System (ADS)

    Norrick, Anne; LBNE Collaboration

    2011-04-01

    The Long Baseline Neutrino Experiment (LBNE) will address the neutrino mass hierarchy, leptonic CP violation, and the value of the mixing angle Theta13 with unprecedented sensitivity. Protons from the Fermilab Main Injector will impinge on a target to create intense fluxes of charged pions and other mesons. The mesons will be guided down a 250 m length of pipe where they will decay creating a muon neutrino beam. The beam will pass through a near detector and travel on to massive detectors located in the Deep Underground Science and Engineering Lab (DUSEL) in Western South Dakota. The near detector at Fermilab will measure the absolute flux of neutrinos before oscillation, and measure signal and background processes in the poorly understood GeV neutrino energy range. To quantify the potential sensitivity of this experiment and the specific needs of the near detector, simulation work has been undertaken. In particular, results of studies using a more sophisticated understanding of various background processes will be presented. Additionally, hardware work for a possible near detector design will be presented.

  17. An overview of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Luk, Kam-Biu

    2016-07-01

    The Daya Bay Reactor Neutrino Experiment discovered an unexpectedly large neutrino oscillation related to the mixing angle θ13 in 2012. This finding paved the way to the next generation of neutrino oscillation experiments. In this article, we review the history, featured design, and scientific results of Daya Bay. Prospects of the experiment are also described.

  18. A select overview of neutrino experiments

    SciTech Connect

    Stefanski, Raymond J.

    2004-11-01

    The relationship between the lepton sector and the quark sector is an interesting source of discourse in the current theoretical climate. Models that might someday supersede the Standard Model typically require quark structure, with implications for the lepton sector. This talk will explore some of the consequences of newer models, in the context of certain neutrino experiments.

  19. Measurement of atmospheric neutrino oscillations with IceCube.

    PubMed

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; Benzvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Palazzo, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-08-23

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm(32)(2)|=(2.3(-0.5)(+0.6))×10(-3) eV(2) and sin(2)(2θ(23))>0.93, and maximum mixing is favored. PMID:24010427

  20. Measurement of atmospheric neutrino oscillations with IceCube.

    PubMed

    Aartsen, M G; Abbasi, R; Abdou, Y; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Bechet, S; Becker Tjus, J; Becker, K-H; Bell, M; Benabderrahmane, M L; Benzvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Bertrand, D; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohaichuk, S; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H-P; Brown, A M; Bruijn, R; Brunner, J; Carson, M; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Cruz Silva, A H; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; De Ridder, S; Desiati, P; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eisch, J; Ellsworth, R W; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Groß, A; Ha, C; Haj Ismail, A; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kelley, J L; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J-H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Palazzo, A; Paul, L; Pepper, J A; Pérez de los Heros, C; Pfendner, C; Pieloth, D; Pinat, E; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H-G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Waldenmaier, T; Wallraff, M; Wasserman, R; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2013-08-23

    We present the first statistically significant detection of neutrino oscillations in the high-energy regime (>20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010 and 2011. This measurement is made possible by the low-energy threshold of the DeepCore detector (~20 GeV) and benefits from the use of the IceCube detector as a veto against cosmic-ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20-100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV-10 TeV) was extracted from IceCube data to constrain systematic uncertainties. The disappearance of low-energy upward-going muon neutrinos was observed, and the nonoscillation hypothesis is rejected with more than 5σ significance. In a two-neutrino flavor formalism, our data are best described by the atmospheric neutrino oscillation parameters |Δm(32)(2)|=(2.3(-0.5)(+0.6))×10(-3) eV(2) and sin(2)(2θ(23))>0.93, and maximum mixing is favored.

  1. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    SciTech Connect

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-15

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  2. Report on the Brookhaven Solar Neutrino Experiment

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C. Jr.

    1976-09-22

    This report is intended as a brief statement of the recent developments and results of the Brookhaven Solar Neutrino Experiment communicated through Professor G. Kocharov to the Leningrad conference on active processes on the sun and the solar neutrino problem. The report summarizes the results of experiments performed over a period of 6 years, from April 1970 to January 1976. Neutrino detection depends upon the neutrino capture reaction /sup 37/Cl(..nu..,e/sup -/)/sup 37/Ar producing the isotope /sup 37/Ar (half life of 35 days). The detector contains 3.8 x 10/sup 5/ liters of C/sub 2/Cl/sub 4/ (2.2 x 10/sup 30/ atoms of /sup 37/Cl) and is located at a depth of 4400 meters of water equivalent (m.w.e.) in the Homestake Gold Mine at Lead, South Dakota, U.S.A. The procedures for extracting /sup 37/Ar and the counting techniques used were described in previous reports. The entire recovered argon sample was counted in a small gas proportional counter. Argon-37 decay events were characterized by the energy of the Auger electrons emitted following the electron capture decay and by the rise-time of the pulse. Counting measurements were continued for a period sufficiently long to observe the decay of /sup 37/Ar.

  3. Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube

    SciTech Connect

    IceCube; etal, Abbasi, R,

    2010-11-11

    A search for sidereal modulation in the flux of atmospheric muon neutrinos in IceCube was performed. Such a signal could be an indication of Lorentz-violating physics. Neutrino oscillationmodels, derivable from extensions to the Standard Model, allow for neutrino oscillations that depend on the neutrino's direction of propagation. No such direction-dependent variation was found. Adiscrete Fourier transform method was used to constrain the Lorentz and CPT-violating coefficients in one of these models. Due to the unique high energy reach of IceCube, it was possible to improveconstraints on certain Lorentz-violating oscillations by three orders of magnitude with respect to limits set by other experiments.

  4. Light sterile neutrinos, lepton number violating interactions and short baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; McKay, D. W.; Mocioiu, Irina; Pakvasa, Sandip

    2016-06-01

    We develop the consequences of introducing a purely leptonic, non-standard interaction (NSI) ΔL = 2, four-fermion effective Lagrangian and standard model neutrino mixing with a fourth, sterile neutrino in the analysis of short-baseline, neutrino experiments. We focus on the muon decay at rest (DAR) results from the Liquid Scintillation Neutrino Experiment (LSND) and the Karlsruhe and Rutherford medium Energy Neutrino Experiment (KARMEN), seeking a reconciliation between the two. Both v¯e appearance from v¯μ oscillation and v¯e survival after production from NSI decay of the µ+ contribute to the expected signal. This is a unique feature of our scheme. We comment on further implications of the lepton number violating interaction and sterile neutrino-standard neutrino mixing.

  5. Panofsky Prize Lecture: Evidence for Oscillation of Atmospheric Neutrinos

    NASA Astrophysics Data System (ADS)

    Totsuka, Yoji

    2002-04-01

    Atmospheric neutrinos are decay products of pions and kaons (and of their decay products muons) produced by nuclear interactions of cosmic rays with air nuclei. Though their flux is not known well, only within 20 %, physics quantities that are independent of the flux uncertainty exist. The ratio of the number of muon neutrinos to the number of electron neutrinos is estimated to be accurate within 5 %. The other quantity is the shape of the zenith-angle distribution. Kamiokande and Super-Kamiokande are water Cherenkov detectors with 3,000 ton and 50,000 ton pure water, respectively. Kamiokande was operational in 1983 - 1996, and Super-K in 1996 - 2001 and 2003 - in future. We had already noted in 1988 that the observed μ/e ratio, which represented ν_mu/ν_e, was smaller by about 40 %. Later in 1994 we noted that the zenith angle distribution of muon neutrinos was strongly distorted, namely much fewer muons observed in the upward direction, while downward-going muons were what we expected. Electrons were quite normal. In 1996 Super-Kamiokande was ready. Its fiducial volume is 22.5 kton, much larger than Kamiokande's 1.04 kton. In 1998 based on 25.5 kton years of data we presented convincing results on the small μ/e ratio which was caused by fewer number of muons in the upward direction. The essential feature of the observed anomaly was that the disappearance of muon neutrinos depended strongly on their path length and on their energies. Electrons showed no anomaly within the experimental limit. These results were quantitatively and almost uniquely explained by oscillation of muon neutrinos to tau neutrinos, thus evidence for the finite but tiny mass of neutrinos.

  6. New results for muon neutrino to electron neutrino oscillations in the MINOS experiment

    SciTech Connect

    Evans, Justin; Whitehead, Lisa; /Brookhaven

    2010-01-01

    MINOS is a long-baseline neutrino oscillation experiment situated along Fermilab's high-intensity NuMI neutrino beam. MINOS has completed an updated search for muon neutrino to electron neutrino transitions, observation of which would indicate a non-zero value for the neutrino mixing angle {theta}{sub 13}. The present 7 x 10{sup 20} protons-on-target data set represents more than double the exposure used in the previous analysis. The new result and its implications are presented.

  7. Status of the neutrino mass experiment KATRIN

    SciTech Connect

    Bornschein, L.; Bornschein, B.; Sturm, M.; Roellig, M.; Priester, F.

    2015-03-15

    The most sensitive way to determine the neutrino mass scale without further assumptions is to measure the shape of a tritium beta spectrum near its kinematic end-point. Tritium is the nucleus of choice because of its low endpoint energy, superallowed decay and simple atomic structure. Within an international collaboration the Karlsruhe Tritium Neutrino experiment (KATRIN) is currently being built up at KIT. KATRIN will allow a model-independent measurement of the neutrino mass scale with an expected sensitivity of 0.2 eV/c{sup 2} (90% CL). KATRIN will use a source of ultrapure molecular tritium. This contribution presents the status of the KATRIN experiment, thereby focusing on its Calibration and Monitoring System (CMS), which is the last component being subject to research/development. After a brief overview of the KATRIN experiment in Section II the CMS is introduced in Section III. In Section IV the Beta Induced X-Ray Spectroscopy (BIXS) as method of choice to monitor the tritium activity of the KATRIN source is described and first results are presented.

  8. An atmospheric muon neutrino disappearance measurement with the MINOS far detector

    SciTech Connect

    Gogos, Jeremy Peter

    2007-12-01

    It is now widely accepted that the Standard Model assumption of massless neutrinos is wrong, due primarily to the observation of solar and atmospheric neutrino flavor oscillations by a small number of convincing experiments. The MINOS Far Detector, capable of observing both the outgoing lepton and associated showering products of a neutrino interaction, provides an excellent opportunity to independently search for an oscillation signature in atmospheric neutrinos. To this end, a MINOS data set from an 883 live day, 13.1 kt-yr exposure collected between July, 2003 and April, 2007 has been analyzed. 105 candidate charged current muon neutrino interactions were observed, with 120.5 ± 1.3 (statistical error only) expected in the absence of oscillation. A maximum likelihood analysis of the observed log(L/E) spectrum shows that the null oscillation hypothesis is excluded at over 96% confidence and that the best fit oscillation parameters are sin223 = 0.95 -0.32 and Δm$2\\atop{23}$ = 0.93$+3.94\\atop{ -0.44}$ x 10-3 eV2. This measurement of oscillation parameters is consistent with the best fit values from the Super-Kamiokande experiment at 68% confidence.

  9. SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment

    DOE Data Explorer

    SAGE Collaboration

    SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

  10. Hunting in Daya Bay Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Feihong, Zhang

    2014-06-01

    The Daya Bay Reactor Neutrino Experiment has measured a nonzero value of θ13 with a significance of 7.7 standard deviation. Antineutrinos from six 2.9 GWth reactors were detected in six well-calibrated antineutrino detectors deployed in two near (flux-weighted baseline 470 m and 576 m) and one far (1648 m) underground experimental halls. Using 139 days of data, 28909 (205308) electron antineutrino candidates were detected at the far hall (near halls). The ratio of the observed to expected numbers of antineutrinos at the far hall is R = 0.944 ± 0.007(stat.) ± 0.003(syst.). A rate-only analysis finds s sin22θ13 = 0.089 ± 0.010(stat.) ± 0.005(syst.) in a three-neutrino framework.

  11. A study of atmospheric neutrino oscillation using the icecube deepcore detector

    NASA Astrophysics Data System (ADS)

    Gladstone, Laura

    The IceCube detector at the South Pole is a cubic-kilometer-scale neutrino detector designed to observe TeV-range charged particle secondaries from neutrino interactions, and thus do neutrino astronomy. As a main background to the search for astrophysical point sources of neutrinos, IceCube also observes muons and neutrinos from the atmospheric interactions of cosmic rays. By observing a spectrum of atmospheric neutrinos and comparing it to independent predictions of atmospheric fluxes with and without oscillations, IceCube can test various values of oscillation parameters. Neutrino oscillations have been observed experimentally for several decades; IceCube is the first experiment to extend this measurement to the 10-20 GeV energy range. An initial analysis has established that IceCube can see oscillations using the 79-string detector configuration ("IC79"), which was the first year of data that included the DeepCore detector. As a follow-up, this analysis uses a less restrictive event selection and thus a higher total event count, around 3,000 for one year of data. The fit is a Poisson likelihood fit of a two-dimensional rate histogram, using both oscillated length and observed energy. The arrival zenith angle of the muon is used as a proxy for oscillation length. The error contours are dominated by systematic effects more than by statistical limitations of the data. Major systematics include uncertainties in the atmospheric neutrino flux at high energies and uncertainties in the distribution of the cosmic ray muon background. This analysis was designed to produce limits on the mixing angle θ 23 that are competitive with other current experiments, although this is still uncertain as error analysis work is ongoing. Future work will further refine the event selection and systematic error analysis; the statistical methods and software used here are expected to become the IceCube oscillations standard. This thesis also includes background information about the

  12. Determining neutrino mass hierarchy by precise measurements of two delta m**2 in electron-neutrino and muon-neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, Stephen J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-09-01

    In this talk, the authors discuss the possibility of determining the neutrino mass hierarchy by comparing the two effective atmospheric neutrino mass squared differences measured, respectively, in electron, and in muon neutrino disappearance oscillation experiments. if the former, is larger (smaller) than the latter, the mass hierarchy is of normal (inverted) type. They consider two very high precision (a few per mil) measurements of such mass squared differences by the phase II of the T2K (Tokai-to-Kamioka) experiment and by the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic errors of both measurements, they determine the region of sensitivities where the mass hierarchy can be distinguished. Due to the tight space limitation, they present only the general idea and show a few most important plots.

  13. Study of atmospheric neutrino interactions and search for nucleon decay in Soudan 2

    SciTech Connect

    Leeson, W.R.

    1995-12-14

    Contained event samples, including 30 single-track muon-like events, 35 single-shower electron-like events, and 34 multiprong events, have been obtained from a 1.0 kiloton-year exposure of the Soudan 2 detector. A sample of 15 multiprong events which are partially contained has also been isolated. Properties of these events are used to examine the verity of the atmospheric neutrino flavor ratio anomaly as reported by the Kamiokande and IMB-3 water Cherenkov experiments. The compatibility of the Soudan data with each of two `new physics` explanations for the anomaly, namely proton decay and neutrino oscillations, is investigated. We examine background processes which have not been explicitly treated by the water Cherenkov detectors. Chapters discuss underground non-accelerator particle physics, the atmospheric neutrino anomaly and its interpretation, the Soudan 2 detector and event selection, reconstruction of neutrino events, rock event contamination in Soudan `quasi-elastic` samples, contained multiprong events in Soudan 2, neutrino flavor composition of the multiprong sample, partially contained events in Soudan 2, nucleon decay in Soudan 2, and a summary and discussion. 12 refs., 124 figs., 28 tabs., 7 appendices.

  14. Determining neutrino mass hierarchy by precision measurements in electron and muon neutrino disappearance experiments

    SciTech Connect

    Minakata, H.; Nunokawa, H.; Parke, S.J.; Zukanovich Funchal, R.; /Sao Paulo U.

    2006-07-01

    Recently a new method for determining the neutrino mass hierarchy by comparing the effective values of the atmospheric {Delta}m{sup 2} measured in the electron neutrino disappearance channel, {Delta}m{sup 2}(ee), with the one measured in the muon neutrino disappearance channel, {Delta}m{sup 2}({mu}{mu}), was proposed. If {Delta}m{sup 2}(ee) is larger (smaller) than {Delta}m{sup 2} ({mu}{mu}) the hierarchy is of the normal (inverted) type. We re-examine this proposition in the light of two very high precision measurements: {Delta}m{sup 2}({mu}{mu}) that may be accomplished by the phase II of the Tokai-to-Kamioka (T2K) experiment, for example, and {Delta}m{sup 2}(ee) that can be envisaged using the novel Moessbauer enhanced resonant {bar {nu}}{sub e} absorption technique. Under optimistic assumptions for the systematic uncertainties of both measurements, we estimate the parameter region of ({theta}{sub 13}, {delta}) in which the mass hierarchy can be determined. If {theta}{sub 13} is relatively large, sin{sup 2} 2{theta}{sub 13} {approx}> 0.05, and both of {Delta}m{sup 2}(ee) and {Delta}m{sup 2}({mu}{mu}) can be measured with the precision of {approx} 0.5 % it is possible to determine the neutrino mass hierarchy at > 95% CL for 0.3{pi} {approx}< {delta} {approx}< 1.7 {pi} for the current best fit values of all the other oscillation parameters.

  15. Solar neutrino experiments and a test for neutrino oscillations with radioactive sources

    SciTech Connect

    Cleveland, B.T.; Davis, R. Jr.; Rowley, J.K.

    1980-01-01

    The results of the Brookhaven solar neutrino experiment are given and compared to the most recent standard solar model calculations. The observations are about a factor of 4 below theoretical expectations. In view of the uncertainties involved in the theoretical models of the sun, the discrepancy is not considered to be evidence for neutrino oscillations. The status of the development of a gallium solar neutrino detector is described. Radiochemical neutrino detectors can be used to search for ..nu../sub e/ oscillations by using megacurie sources of monoenergetic neutrinos like /sup 65/Zn. A quantitative evaluation of possible experiments using the Brookhaven chlorine solar neutrino detector and a gallium detector is given. 6 figures, 3 tables.

  16. Implications of lepton flavor violation on long baseline neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Soumya, C.; Mohanta, R.

    2016-09-01

    Nonstandard neutrino interactions (NSIs), the subleading effects in the flavor transitions of neutrinos, play a crucial role in the determination of the various unknowns in neutrino oscillations, such as neutrino mass hierarchy, the Dirac C P violating phase, and the octant of the atmospheric mixing angle. In this work, we focus on the possible implications of lepton flavor violating (LFV) NSIs, which generally affect the neutrino propagation, on the determination of these unknown oscillation parameters. We study the effect of these NSIs on the physics potential of the currently running and upcoming long-baseline experiments, i.e., T2K, NO ν A , and DUNE. We also check the allowed oscillation parameter space in the presence of LFV NSIs.

  17. Implications of results of neutrino mass experiments

    SciTech Connect

    McKellar, B.H.; Garbutt, M.

    2000-10-01

    The long standing negative (mass){sup 2} anomaly encountered in attempts to measure the mass of the electron neutrino may be an indication of physics beyond the standard model. It is demonstrated that an additional charged current interaction which is not of V--A form, and which is at least an order of magnitude weaker than the standard model charged current interaction, will produce a spectrum, which, if fitted by the standard model, may give a negative value for m{sub {nu}}{sup 2}. A possible physical explanation of the time dependent effects seen by the Troitsk experiment is also provided.

  18. The MINERvA Neutrino Scattering Experiment at Fermilab

    SciTech Connect

    Schmitz, David W.

    2011-11-23

    The MINER{nu}A experiment at Fermilab is aimed at precision measurements of neutrino interactions in nuclei for energies up to a few GeV. MINER{nu}A makes use of a fine-grained, fully active detector design and a range of nuclear target materials. The experiment began taking data in the NuMI neutrino beam at Fermilab in late 2009 and will collect data in both the neutrino and antineutrino configurations of the beamline.

  19. Cosmic muon background and reactor neutrino detectors: the Angra experiment

    NASA Astrophysics Data System (ADS)

    Casimiro, E.; Anjos, J. C.

    2008-06-01

    We discuss on the importance of appropriately taking into account the cosmic background in the design of reactor neutrino detectors. In particular, as a practical study case, we describe the Angra Project, a new reactor neutrino oscillation experiment proposed to be built in the coming years at the Brazilian nuclear power complex, located near the Angra dos Reis city. The main goal of the experiment is to measure with high precision θ13, the last unknown of the three neutrino mixing angles. The experiment will in addition explore the possibility of using neutrino detectors for purposes of safeguards and non-proliferation of nuclear weapons.

  20. Future experiments with neutrino superbeams, beta-beams, and neutrino factories

    SciTech Connect

    Deborah A Harris

    2003-10-27

    This report describes the goals of the next generations of accelerator-based neutrino experiments, and the various strategies that are being considered to achieve those goals. Because these next steps in the field are significantly different from the current or previous steps, novel techniques must be considered for both the detectors and the neutrino beams themselves. We consider not only conventional neutrino beams created by decays of pions, but also those which could be made by decays of beams of relativistic isotopes (so-called ''beta-beams'') and also by decays of beams of muons (neutrino factories).

  1. CPT conservation and atmospheric neutrinos in the MINOS far detector

    SciTech Connect

    Becker, Bernard Raymond

    2006-02-01

    The MINOS Far Detector is a 5400 ton iron calorimeter located at the Soudan state park in Soudan Minnesota. The MINOS far detector can observe atmospheric neutrinos and separate charge current νμ and $\\bar{v}$μ interactions by using a 1.4 T magnetic field to identify the charge of the produced muon. The CPT theorem requires that neutrinos and anti-neutrinos oscillate in the same way. In a fiducial exposure of 5.0 kilo-ton years a total of 41 candidate neutrino events are observed with an expectation of 53.1 ± 7.6(system.) ± 7.2(stat.) unoscillated events or 31.6 ± 4.7(system.) ± 5.6(stat.) events with Δm2 = 2.4 x 10-3 eV2, sin2(2θ) = 1.0 as oscillation parameters. These include 28 events which can have there charge identified with high confidence. These 28 events consist of 18 events consistent with being produced by νμ and 10 events being consistent with being produced by $\\bar{v}$μ. No evidence of CPT violation is observed.

  2. MINER{nu}A, a Neutrino--Nucleus Interaction Experiment

    SciTech Connect

    Solano Salinas, C. J.; Chamorro, A.; Romero, C.

    2007-10-26

    With the fantastic results of KamLAND and SNO for neutrino physics, a new generation of neutrino experiments are being designed and build, specially to study the neutrino oscillations to resolve most of the incognita still we have in the neutrino physics. At FERMILAB we have the experiments MINOS and, in a near future, NO{nu}A, to study this kind of oscillations. One big problem these experiments will have is the lack of a good knowledge of the Physics of neutrino interactions with matter, and this will generate big systematic errors. MINER{nu}A, also at FERMILAB, will cover this space studying with high statistics and great precision the neutrino--nucleus interactions.

  3. Detector Development for the MARE Neutrino Experiment

    SciTech Connect

    Galeazzi, M.; Bogorin, D.; Molina, R.; Saab, T.; Ribeiro Gomes, M.

    2009-12-16

    The MARE experiment is designed to measure the mass of the neutrino with sub-eV sensitivity by measuring the beta decay of {sup 187}Re with cryogenic microcalorimeters. A preliminary analysis shows that, to achieve the necessary statistics, between 10,000 and 50,000 detectors are likely necessary. We have fabricated and characterized Iridium transition edge sensors with high reproducibility and uniformity for such a large scale experiment. We have also started a full scale simulation of the experimental setup for MARE, including thermalization in the absorber, detector response, and optimum filter analysis, to understand the issues related to reaching a sub-eV sensitivity and to optimize the design of the MARE experiment. We present our characterization of the Ir devices, including reproducibility, uniformity, and sensitivity, and we discuss the implementation and capabilities of our full scale simulation.

  4. Prospects for cosmic neutrino detection in tritium experiments in the case of hierarchical neutrino masses

    SciTech Connect

    Blennow, Mattias

    2008-06-01

    We discuss the effects of neutrino mixing and the neutrino mass hierarchy when considering the capture of the cosmic neutrino background (CNB) on radioactive nuclei. The implications of mixing and hierarchy at future generations of tritium decay experiments are considered. We find that the CNB should be detectable at these experiments provided that the resolution for the kinetic energy of the outgoing electron can be pushed to a few 0.01 eV for the scenario with inverted neutrino mass hierarchy, about an order of magnitude better than that of the upcoming KATRIN experiment. Another order of magnitude improvement is needed in the case of normal neutrino mass hierarchy. We also note that mixing effects generally make the prospects for CNB detection worse due to an increased maximum energy of the normal beta decay background.

  5. The History of "Anomalous" Atmospheric Neutrino Events: A First Person Account

    NASA Astrophysics Data System (ADS)

    LoSecco, John M.

    2016-08-01

    The modern picture of the neutrino as a multiple-mass, highly mixed neutral particle has emerged over forty years of study. Best known of the issues leading to this picture was the apparent loss of neutrinos coming from the sun. This article describes another piece of evidence that supports the picture; the substantial reduction of high-energy muon-type neutrinos observed in nature. For much of the forty-year period before the modern picture emerged, this observation was known as the "atmospheric neutrino anomaly," since these neutrinos originate in the Earth's atmosphere. This paper describes the discovery of the atmospheric neutrino anomaly. I explore the scientific context and motivations in the late 1970s, from which this work emerged. The gradual awareness that the observations of atmospheric neutrinos were not as expected took place in the 1983-1986 period.

  6. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J. P.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2016-05-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of ∼10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.

  7. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Orchanian, Mhair-armen Hagop

    2012-01-01

    This thesis describes a search for ve appearance in the two-detector long-baseline MINOS neutrino experiment at Fermilab, based on a data set representing an exposure of 8.2×1020 protons on the NuMI target. The analysis detailed herein represents an increase in sensitivity to the θ13 mixing angle of approximately 25% over previous analyses, due to improvements in the event discriminant and fitting technique. Based on our observation, we constrain the value of θ13 further, finding 2 sin2θ 23 sin2θ 13< 0.12(0.20) at the 90% confidence level for δCP = 0 and the normal (inverted) neutrino mass hierarchy. The best-fit value is 2 sin2θ 23 sin2θ 13 = 0.041+0.047 -0.031(0.079+0.071 -0.053) under the same assumptions. We exclude the θ 13 = 0 hypothesis at the 89% confidence level.

  8. Calculation of oscillation probabilities of atmospheric neutrinos using nuCraft

    NASA Astrophysics Data System (ADS)

    Wallraff, Marius; Wiebusch, Christopher

    2015-12-01

    NuCraft (nucraft.hepforge.org) is an open-source Python project that calculates neutrino oscillation probabilities for neutrinos from cosmic-ray interactions in the atmosphere for their propagation through Earth. The solution is obtained by numerically solving the Schrödinger equation. The code supports arbitrary numbers of neutrino flavors including additional sterile neutrinos, CP violation, arbitrary mass hierarchies, matter effects with a configurable continuous Earth model, and takes into account the production height distribution of neutrinos in the Earth's atmosphere.

  9. Physics from solar neutrinos in dark matter direct detection experiments

    NASA Astrophysics Data System (ADS)

    Cerdeño, David G.; Fairbairn, Malcolm; Jubb, Thomas; Machado, Pedro A. N.; Vincent, Aaron C.; Bœhm, Céline

    2016-05-01

    The next generation of dark matter direct detection experiments will be sensitive to both coherent neutrino-nucleus and neutrino-electron scattering. This will enable them to explore aspects of solar physics, perform the lowest energy measurement of the weak angle sin2 θ W to date, and probe contributions from new theories with light mediators. In this article, we compute the projected nuclear and electron recoil rates expected in several dark matter direct detection experiments due to solar neutrinos, and use these estimates to quantify errors on future measurements of the neutrino fluxes, weak mixing angle and solar observables, as well as to constrain new physics in the neutrino sector. Our analysis shows that the combined rates of solar neutrino events in second generation experiments (SuperCDMS and LZ) can yield a measurement of the pp flux to 2.5% accuracy via electron recoil, and slightly improve the 8B flux determination. Assuming a low-mass argon phase, projected tonne-scale experiments like DARWIN can reduce the uncertainty on both the pp and boron-8 neutrino fluxes to below 1%. Finally, we use current results from LUX, SuperCDMS and CDMSlite to set bounds on new interactions between neutrinos and electrons or nuclei, and show that future direct detection experiments can be used to set complementary constraints on the parameter space associated with light mediators.

  10. Light sterile neutrino sensitivity of 163Ho experiments

    NASA Astrophysics Data System (ADS)

    Gastaldo, L.; Giunti, C.; Zavanin, E. M.

    2016-06-01

    We explore the sensitivity of 163Ho electron capture experiments to neutrino masses in the standard framework of three-neutrino mixing and in the framework of 3+1 neutrino mixing with a sterile neutrino which mixes with the three standard active neutrinos, as indicated by the anomalies found in short-baseline neutrino oscillations experiments. We calculate the sensitivity to neutrino masses and mixing for different values of the energy resolution of the detectors, of the unresolved pileup fraction and of the total statistics of events, considering the expected values of these parameters in the two planned stages of the ECHo project (ECHo-1k and ECHo-1M). We show that an extension of the ECHo-1M experiment with the possibility to collect 1016 events will be competitive with the KATRIN experiment. This statistics will allow to explore part of the 3+1 mixing parameter space indicated by the global analysis of short-baseline neutrino oscillation experiments. In order to cover all the allowed region, a statistics of about 1017 events will be needed.

  11. Electron Neutrino Appearance in the MINOS Experiment

    SciTech Connect

    Holin, Anna Maria

    2010-02-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment which sends a high intensity muon neutrino beam through two functionally identical detectors, a Near detector at the Fermi National Accelerator Laboratory in Illinois, 1km from the beam source, and a Far detector, 734km away, in the Soudan Mine in Minnesota. MINOS may be able to measure the neutrino mixing angle parameter sin213 for the rst time. Detector granularity, however, makes it very hard to distinguish any e appearance signal events characteristic of a non-zero value of θ 13 from background neutral current (NC) and short-track vμ charged current (CC) events. Also, uncertainties in the hadronic shower modeling in the kinematic region characteristic of this analysis are relatively large. A new data-driven background decomposition method designed to address those issues is developed and its results presented. By removing the long muon tracks from vμ-CC events, the Muon Removed Charge Current (MRCC) method creates independent pseudo-NC samples that can be used to correct the MINOS Monte Carlo to agree with the high-statistics Near detector data and to decompose the latter into components so as to predict the expected Far detector background. The MRCC method also provides an important cross-check in the Far detector to test the background in the signal selected region. MINOS finds a 1.0-1.5 σ ve-CC excess above background in the Far detector data, depending on method used, for a total exposure of 3.14 x 1020 protons-on-target. Interpreting this excess as signal, MINOS can set limits on sin213. Using the MRCC method, MINOS sets a limit of sin2 2 θ 13 < 0.265 at the 90% confidence limit for a CP-violating phase δ = 0.

  12. Status of the Borexino Solar Neutrino Experiment, 2006

    SciTech Connect

    McCarty, Kevin B.

    2006-11-17

    The Borexino experiment is designed to measure the flux of 7Be solar neutrinos. The experiment, having a 100-ton fiducial volume of organic liquid scintillator, should detect roughly 35 neutrinos per day in the energy range 250 - 1300 keV, a range lower than that of any previous real-time neutrino detector. Though the 862-keV 7Be neutrinos make up roughly 10% of the total solar neutrino flux, they have not previously been directly observed. Their energy is at a delicate point for confirmation of the vacuum-to-matter oscillation transition. In these proceedings, I will present the status of the Borexino experiment as of August 2006, as we prepare for final filling of the detector.

  13. Sterile Neutrino Searches in MINOS and MINOS+ Experiments

    SciTech Connect

    Huang, Junting

    2015-05-01

    This dissertation presents the searches on sterile neutrinos using the data collected in MINOS+ Experiment from September 2013 to September 2014, and the full data set of MINOS Experiment collected from 2005 to 2012. Anomalies in short baseline experiments, such as LSND and MiniBooNE, showed hints of sterile neutrinos, a type of neutrino that does not interact with the Standard Model particles. In this work, two models are considered: 3+1 and large extra dimension (LED). In the 3+1 model, one sterile neutrino state is added into the standard oscillation scheme consisting of three known active neutrino states ve, vμ and vτ. In the LED model, sterile neutrinos arise as Kaluza-Klein (KK) states due to assumed large extra dimensions. Mixing between sterile and active neutrino states may modify the oscillation patterns observed in the MINOS detectors. Both searches yield null results. For 3+1, a combined fit of MINOS and MINOS+ data gives a stronger limit on θ24 in the range of 10-2 eV2 < Δm412 < 1 eV2 than previous experiments. For LED, with the complete MINOS data set, the size of extra dimensions is constrained to be smaller than ~ 0.35 μm at 90% C.L. in the limit of a vanishing lightest neutrino mass.

  14. NOvA: Building a Next Generation Neutrino Experiment

    ScienceCinema

    Perko, John; Williams, Ron; Miller, Bill

    2016-07-12

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  15. NOvA: Building a Next Generation Neutrino Experiment

    SciTech Connect

    Perko, John; Williams, Ron; Miller, Bill

    2013-12-05

    The NOvA neutrino experiment is searching for the answers to some of the most fundamental questions of the universe. This video documents how collaboration between government research institutions like Fermilab, academia and industry can create one of the largest neutrino detectors in the world.

  16. Observing Muon Neutrino to Electron Neutrino Oscillations in the NOνA Experiment

    SciTech Connect

    Xin, Tian

    2016-01-01

    Neutrino oscillations offers an insight on new physics beyond the Standard Model. The three mixing angles (θ12, θ13 and θ23) and the two mass splittings (Δm2 and Αm2 ) have been measured by different neutrino oscillation experiments. Some other parameters including the mass ordering of different neutrino mass eigenstates and the CP violation phase are still unknown. NOνA is a long-baseline accelerator neutrino experiment, using neutrinos from the NuMI beam at Fermilab. The experiment is equipped with two functionally identical detectors about 810 kilometers apart and 14 mrad off the beam axis. In this configuration, the muon neutrinos from the NuMI beam reach the disappearance maximum in the far detector and a small fraction of that oscillates into electron neutrinos. The sensitivity to the mass ordering and CP viola- tion phase determination is greately enhanced. This thesis presents the νeappearance analysis using the neutrino data collected with the NOνA experiment between February 2014 and May 2015, which corresponds to 3.45 ×1020 protons-on-target (POT). The νe appearance analysis is performed by comparing the observed νe CC-like events to the estimated background at the far detector. The total background is predicted to be 0.95 events with 0.89 originated from beam events and 0.06 from cosmic ray events. The beam background is obtained by extrapolating near detector data through different oscillation channels, while the cosmic ray background is calculated based on out-of-time NuMI trigger data. A total of 6 electron neutrino candidates are observed in the end at the far detector which represents 3.3 σ excess over the predicted background. The NOνA result disfavors inverted mass hierarchy for δcp ϵ [0, 0.6π] at 90% C.L.

  17. Neutrinos

    NASA Astrophysics Data System (ADS)

    Winter, K.; Murdin, P.

    2000-11-01

    Neutrinos are electrically neutral ELEMENTARY PARTICLES which experience only the weak nuclear force and gravity. Their existence was introduced as a hypothesis by Wolfgang Pauli in 1930 to explain the apparent violation of energy conservation in radioactive beta decay. Chadwick had discovered in 1914 that the energy spectrum of electrons emitted in beta decay was not monoenergetic but continuous...

  18. Large extra dimensions at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Berryman, Jeffrey M.; de Gouvêa, André; Kelly, Kevin J.; Peres, O. L. G.; Tabrizi, Zahra

    2016-08-01

    We investigate the potential of the long-baseline Deep Underground Neutrino Experiment (DUNE) to study large-extra-dimension (LED) models originally proposed to explain the smallness of neutrino masses by postulating that right-handed neutrinos, unlike all standard model fermion fields, can propagate in the bulk. The massive Kaluza-Klein (KK) modes of the right-handed neutrino fields modify the neutrino oscillation probabilities and can hence affect their propagation. We show that, as far as DUNE is concerned, the LED model is indistinguishable from a (3 +3 N )-neutrino framework for modest values of N ; N =1 is usually a very good approximation. Nonetheless, there are no new sources of C P -invariance violation other than one C P -odd phase that can be easily mapped onto the C P -odd phase in the standard three-neutrino paradigm. We analyze the sensitivity of DUNE to the LED framework and explore the capability of DUNE to differentiate the LED model from the three-neutrino scenario and from a generic (3 +1 )-neutrino model.

  19. Lunar atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1975-01-01

    Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.

  20. Neutrino Oscillations and the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wark, David

    2001-04-01

    When the existence of the neutrino was almost apologetically first proposed by Wolfgang Pauli it was intended to explain the mysterious apparent absence of energy and momentum in beta decay. 70 years later the neutrino has indeed solved that mystery, but it has generated still more of its own. Are neutrinos massive? Is it possible to create a neutrino with its spin in the same direction as its momentum? What fraction of the mass of the Universe is made up of neutrinos? Are the flavour labels which we put on neutrinos, like electron and muon, really fixed or can they change? Why does no experiment see the predicted flux of neutrinos from the Sun? Why do there appear to be roughly equal numbers of muon and electron neutrinos created in our atmosphere, rather than the 2:1 ratio we would expect? Many of these questions were coupled when Bruno Pontecorvo first suggested that the shortfall in solar neutrino measurements were caused by neutrino oscillations - neutrinos spontaneously changing flavour as they travel from the Sun. 30 years later we still await definitive proof of that conjecture, and providing that proof is the reason for the Sudbury Neutrino Observatory. The talk will discuss the current state of neutrino oscillations studies, and show how the unique capabilities of the Sudbury Neutrino Observatory can provide definitive proof of whether neutrino oscillations are the long-sought answer to the solar neutrino problem.

  1. Sensitivities to neutrino electromagnetic properties at the TEXONO experiment

    NASA Astrophysics Data System (ADS)

    Kosmas, T. S.; Miranda, O. G.; Papoulias, D. K.; Tórtola, M.; Valle, J. W. F.

    2015-11-01

    The possibility of measuring neutral-current coherent elastic neutrino-nucleus scattering (CENNS) at the TEXONO experiment has opened high expectations towards probing exotic neutrino properties. Focusing on low threshold Germanium-based targets with kg-scale mass, we find a remarkable efficiency not only for detecting CENNS events due to the weak interaction, but also for probing novel electromagnetic neutrino interactions. Specifically, we demonstrate that such experiments are complementary in performing precision Standard Model tests as well as in shedding light on sub-leading effects due to neutrino magnetic moment and neutrino charge radius. This work employs realistic nuclear structure calculations based on the quasi-particle random phase approximation (QRPA) and takes into consideration the crucial quenching effect corrections. Such a treatment, in conjunction with a simple statistical analysis, shows that the attainable sensitivities are improved by one order of magnitude as compared to previous studies.

  2. Atmospheric neutrino observations in the MINOS far detector

    SciTech Connect

    Chapman, John Derek

    2007-09-01

    This thesis presents the results of atmospheric neutrino observations from a 12.23 ktyr exposure of the 5.42 kt MINOS Far Detector between 1st August 2003 until 1st March 2006. The separation of atmospheric neutrino events from the large background of cosmic muon events is discussed. A total of 277 candidate contained vertex v/$\\bar{v}$μ CC data events are observed, with an expectation of 354.4±47.4 events in the absence of neutrino oscillations. A total of 182 events have clearly identified directions, 77 data events are identified as upward going, 105 data events are identified as downward going. The ratio between the measured and expected up/down ratio is: R$data\\atop{u/d}$/R$MC\\atop{u/d}$ = 0.72$+0.13\\atop{-0.11}$(stat.)± 0.04 (sys.). This is 2.1σ away from the expectation for no oscillations. A total of 167 data events have clearly identified charge, 112 are identified as vμ events, 55 are identified as $\\bar{v}$μ events. This is the largest sample of charge-separated contained-vertex atmospheric neutrino interactions so far observed. The ratio between the measured and expected $\\bar{v}$μ/vμ ratio is: R$data\\atop{$\\bar{v}$v}$/ R$MC\\atop{$\\bar{v}$v}$ = 0.93 $+0.19\\atop{-0.15}$ (stat.) ± 0.12 (sys.). This is consistent with vμ and $\\bar{v}$μ having the same oscillation parameters. Bayesian methods were used to generate a log(L/E) value for each event. A maximum likelihood analysis is used to determine the allowed regions for the oscillation parameters Δm$2\\atop{32}$ and sin223. The likelihood function uses the uncertainty in log(L/E) to bin events in order to extract as much information from the data as possible. This fit rejects the null oscillations hypothesis at the 98% confidence level. A fit to independent vμ and $\\bar{v}$μ oscillation assuming maximal mixing for both is also performed. The projected

  3. Subpanel on accelerator-based neutrino oscillation experiments

    SciTech Connect

    1995-09-01

    Neutrinos are among nature`s fundamental constituents, and they are also the ones about which we know least. Their role in the universe is widespread, ranging from the radioactive decay of a single atom to the explosions of supernovae and the formation of ordinary matter. Neutrinos might exhibit a striking property that has not yet been observed. Like the back-and-forth swing of a pendulum, neutrinos can oscillate to-and-from among their three types (or flavors) if nature provides certain conditions. These conditions include neutrinos having mass and a property called {open_quotes}mixing.{close_quotes} The phenomenon is referred to as neutrino oscillations. The questions of the origin of neutrino mass and mixing among the neutrino flavors are unsolved problems for which the Standard Model of particle physics holds few clues. It is likely that the next critical step in answering these questions will result from the experimental observation of neutrino oscillations. The High Energy Physics Advisory Panel (HEPAP) Subpanel on Accelerator-Based Neutrino Oscillation Experiments was charged to review the status and discovery potential of ongoing and proposed accelerator experiments on neutrino oscillations, to evaluate the opportunities for the U.S. in this area of physics, and to recommend a cost-effective plan for pursuing this physics, as appropriate. The complete charge is provided in Appendix A. The Subpanel studied these issues over several months and reviewed all the relevant and available information on the subject. In particular, the Subpanel reviewed the two proposed neutrino oscillation programs at Fermi National Accelerator Laboratory (Fermilab) and at Brookhaven National Laboratory (BNL). The conclusions of this review are enumerated in detail in Chapter 7 of this report. The recommendations given in Chapter 7 are also reproduced in this summary.

  4. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model

    NASA Astrophysics Data System (ADS)

    Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.

    2011-06-01

    We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita , Radiation MeasurementsRMEAEP1350-4487 41, 1080 (2006).10.1016/j.radmeas.2006.07.013]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).APHYEE0927-650510.1016/j.astropartphys.2008.07.007] a little better than DPMJET-III [S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. DPRVDAQ1550-7998 75, 043005 (2007).10.1103/PhysRevD.75.043005][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. DPRVDAQ1550-7998 75, 043006 (2007).10.1103/PhysRevD.75.043006]. Some improvements in the calculation of atmospheric neutrino flux are also reported.

  5. Design and construction of INGRID neutrino beam monitor for T2K neutrino experiment

    NASA Astrophysics Data System (ADS)

    Otani, M.; Nagai, N.; Orme, D.; Minamino, A.; Nitta, K.; Drapier, O.; Moreau, F.; Besnier, M.; Bronner, C.; Tran, P. D.; Ferreira, O.; Gonin, M.; Autiero, D.; Chaussard, L.; Declais, Y.; Yokoyama, M.; Ichikawa, A. K.; Nakaya, T.

    2010-11-01

    The INGRID(Interactive Neutrino GRID) detector is designed to measure the neutrino beam direction with a precision better than 1 mrad for T2K experiment. INGRID consists of 16 modules and placed around the beam center at 280 m downstream of the proton beam target. The module is a sandwich of iron targets and scintillator tracking planes which consist of X-Y layers. We have constructed all scintillator tracking planes and measured light yield of all scintillators. Currently we install 1st module into the detector hall and cosmic events are observed. INGRID is ready for 1st neutrino event from April 2009.

  6. Neutrino Oscillation Parameter Sensitivity in Future Long-Baseline Experiments

    SciTech Connect

    Bass, Matthew

    2014-01-01

    The study of neutrino interactions and propagation has produced evidence for physics beyond the standard model and promises to continue to shed light on rare phenomena. Since the discovery of neutrino oscillations in the late 1990s there have been rapid advances in establishing the three flavor paradigm of neutrino oscillations. The 2012 discovery of a large value for the last unmeasured missing angle has opened the way for future experiments to search for charge-parity symmetry violation in the lepton sector. This thesis presents an analysis of the future sensitivity to neutrino oscillations in the three flavor paradigm for the T2K, NO A, LBNE, and T2HK experiments. The theory of the three flavor paradigm is explained and the methods to use these theoretical predictions to design long baseline neutrino experiments are described. The sensitivity to the oscillation parameters for each experiment is presented with a particular focus on the search for CP violation and the measurement of the neutrino mass hierarchy. The variations of these sensitivities with statistical considerations and experimental design optimizations taken into account are explored. The effects of systematic uncertainties in the neutrino flux, interaction, and detection predictions are also considered by incorporating more advanced simulations inputs from the LBNE experiment.

  7. Wave-packet treatment of reactor neutrino oscillation experiments and its implications on determining the neutrino mass hierarchy

    NASA Astrophysics Data System (ADS)

    Chan, Yat-Long; Chu, M.-C.; Tsui, Ka Ming; Wong, Chan Fai; Xu, Jianyi

    2016-06-01

    We derive the neutrino flavor transition probabilities with the neutrino treated as a wave packet. The decoherence and dispersion effects from the wave-packet treatment show up as damping and phase-shifting of the plane-wave neutrino oscillation patterns. If the energy uncertainty in the initial neutrino wave packet is larger than around 0.01 of the neutrino energy, the decoherence and dispersion effects would degrade the sensitivity of reactor neutrino experiments to mass hierarchy measurement to lower than 3 σ confidence level.

  8. Discovering the Majorana neutrino: The next generation of experiments

    SciTech Connect

    Winslow, L. A.

    2015-07-15

    The discovery of a Majorana neutrino would be revolutionary with far-reaching consequences in both particle physics and cosmology. The only feasible experiments to determine the Majorana nature of the neutrino are searches for neutrinoless double-beta decay. The next generation of double-beta decay experiments are being prepared. The general goal is to search for neutrinoless double-beta decay throughout the parameter space corresponding to the inverted hierarchy for neutrino mass. There are a several strong proposals for how to achieve this goal. The status of these efforts is reviewed.

  9. Status of the Daya Bay Reactor Neutrino Oscillation Experiment

    SciTech Connect

    Daya Bay Collaboration; Lin, Cheng-Ju Stephen

    2010-12-15

    The last unknown neutrino mixing angle theta_13 is one of the fundamental parameters of nature; it is also a crucial parameter for determining the sensitivity of future long-baseline experiments aimed to study CP violation in the neutrino sector. Daya Bay is a reactor neutrino oscillation experiment designed to achieve a sensitivity on the value of sin^2(2*theta_13) to better than 0.01 at 90percent CL. The experiment consists of multiple identical detectors placed underground at different baselines to minimize systematic errors and suppress cosmogenic backgrounds. With the baseline design, the expected anti-neutrino signal at the far site is about 360 events per day and at each of the near sites is about 1500 events per day. An overview and current status of the experiment will be presented.

  10. NEUTRINO FACTORY AND BETA BEAM EXPERIMENTS AND DEVELOPMENT.

    SciTech Connect

    ALBRIGHT, C.; BERG, J.S.; FERNOW, R.; GALLARDO, J.; KAHN, S.; KIRK, H.; ET AL.

    2004-09-21

    The long-term prospects for fully exploring three-flavor mixing in the neutrino sector depend upon an ongoing and increased investment in the appropriate accelerator R&D. Two new concepts have been proposed that would revolutionize neutrino experiments, namely the Neutrino Factory and the Beta Beam facility. These new facilities would dramatically improve our ability to test the three-flavor mixing framework, measure CP violation in the lepton sector, and perhaps determine the neutrino mass hierarchy, and, if necessary, probe extremely small values of the mixing angle {theta}{sub 13}. The stunning sensitivity that could be achieved with a Neutrino Factory is described, together with our present understanding of the corresponding sensitivity that might be achieved with a Beta Beam facility. In the Beta Beam case, additional study is required to better understand the optimum Beta Beam energy, and the achievable sensitivity. Neither a Neutrino Factory nor a Beta Beam facility could be built without significant R&D. An impressive Neutrino Factory R&D effort has been ongoing in the U.S. and elsewhere over the last few years and significant progress has been made towards optimizing the design, developing and testing the required accelerator components, and significantly reducing the cost. The recent progress is described here. There has been no corresponding activity in the U.S. on Beta Beam facility design and, given the very limited resources, there is little prospect of starting a significant U.S. Beta Beam R&D effort in the near future. However, the Beta Beam concept is interesting, and progress on its development in Europe should be followed. The Neutrino Factory R&D program has reached a critical stage in which support is required for two crucial international experiments and a third-generation international design study. If this support is forthcoming, a Neutrino Factory could be added to the Neutrino Community's road map in about a decade.

  11. Muon and neutrino results from KGF experiment at a depth of 7000 hg/square cm

    NASA Technical Reports Server (NTRS)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Streekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    The KGF nucleon decay experiment at a depth of 7000 hg/sq cm has provided valuable data on muons and neutrinos. The detector comprised of 34 crossed layers of proportional counters (cross section 10 x 10 sq cm; lengths 4m and 6m) sandwiched between 1.2 cm thick iron plates can record tracks of charged particles to an accuracy of 1 deg from tracks that traverse the whole of the detector. A special two-fold coincidence system enables the detector to record charged particles that enter at very large zenith angles. In a live time of 3.6 years about 2600 events have been recorded. These events include atmospheric muons, neutrino induced muons from rock, stopping muons, showers and events which have their production vertex inside the detectors. The results on atmospheric muons and neutrino events are presented.

  12. Latest progress from the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Daya Bay Collaboration

    2016-05-01

    Recently the Daya Bay reactor neutrino experiment has presented several new results about neutrino and reactor physics after acquiring a large data sample and after gaining a more sophisticated understanding of the experiment. In this talk I will introduce the latest progress made by the experiment including a three-flavor neutrino oscillation analysis using neutron capture on gadolinium, which gave sin2 2θ 13 = 0.084 ± 0.005 and |Δm2 ee| = (2.42 ±0.11) × 10-3 eV2, an independent θ 13 measurement using neutron capture on hydrogen, a search for a light sterile neutrino, and a measurement of the reactor antineutrino flux and spectrum.

  13. A Sterile-Neutrino Search with the MINOS Experiment

    SciTech Connect

    Rodrigues, Philip

    2010-01-01

    The MINOS experiment is a long-baseline neutrino oscillation experiment in the the NuMI beamline at Fermilab, USA. Using a near detector at 1 km distance from the neutrino production target, and a far detector at 735 km from the target, it is designed primarily to measure the disappearance of muon neutrinos. This thesis presents an analysis using MINOS data of the possibility of oscil- lation of the neutrinos in the NuMI beam to a hypothetical sterile flavour, which would have no Standard Model couplings. Such oscillations would result in a deficit in the neutral current interaction rate in the MINOS far detector relative to the expectation derived from the near detector data. The method used to identify neutral current and charged current events in the MINOS detectors is described and a new method of predicting and fitting the far detector spectrum presented, along with the effects of systematic uncertainties on the sterile neutrino oscillation analysis. Using this analysis, the fraction fs of the disappearing neutrinos that go to steriles is constrained to be below 0.15 at the 90% confidence level in the absence of electron neutrino appearance in the NuMI beam. With electron appearance at the CHOOZ limit, fs < 0.41 at 90% C.L.

  14. Atmospheric tau neutrinos in a multikiloton liquid argon detector

    SciTech Connect

    Conrad, Janet; Gouvea, Andre de; Shalgar, Shashank; Spitz, Joshua

    2010-11-01

    An ultralarge liquid argon time projection chamber based neutrino detector will have the uncommon ability to detect atmospheric {nu}{sub {tau}}/{nu}{tau} events. This paper discusses the most promising modes for identifying charged current {nu}{sub {tau}}/{nu}{tau}, and shows that, with simple kinematic cuts, {approx}30 {nu}{sub {tau}}+{nu}{tau} interactions can be isolated in a 100 kt{center_dot}yr exposure, with greater than 4{sigma} significance. This sample is sufficient to perform flux-averaged total cross-section and cross-section shape parametrization measurements--the first steps toward using {nu}{sub {tau}}/{nu}{tau} to search for physics beyond the standard model.

  15. MicroBooNE, A Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment

    SciTech Connect

    Katori, Teppei

    2011-07-01

    Liquid Argon time projection chamber (LArTPC) is a promising detector technology for future neutrino experiments. MicroBooNE is a upcoming LArTPC neutrino experiment which will be located on-axis of Booster Neutrino Beam (BNB) at Fermilab, USA. The R&D efforts on this detection method and related neutrino interaction measurements are discussed.

  16. Light sterile neutrinos, spin flavor precession, and the solar neutrino experiments

    NASA Astrophysics Data System (ADS)

    Das, C. R.; Pulido, João; Picariello, Marco

    2009-04-01

    We generalize to three active flavors a previous two-flavor model for the resonant spin flavor conversion of solar neutrinos to sterile ones, a mechanism which is added to the well-known large mixing angle (LMA) one. The transition magnetic moments from the muon and tau neutrinos to the sterile play the dominant role in fixing the amount of active flavor suppression. We also show, through numerical integration of the evolution equations, that the data from all solar neutrino experiments except Borexino exhibit a clear preference for a sizable magnetic field either in the convection zone or in the core and radiation zone. This is possibly related to the fact that the data from the first set are average ones taken during a period of mostly intense solar activity, whereas in contrast Borexino data were taken during a period of quiet Sun. We argue that the solar neutrino experiments are capable of tracing the possible modulation of the solar magnetic field. Those monitoring the high-energy neutrinos, namely, the B8 flux, appear to be sensitive to a field modulation either in the convection zone or in the core and radiation zone. Those monitoring the low-energy fluxes will be sensitive to the second type of solar field profiles only. In this way Borexino alone may play an essential role, since it examines both energy sectors, although experimental redundancy from other experiments will be most important.

  17. Neutrino mass calorimetric searches in the MARE experiment

    NASA Astrophysics Data System (ADS)

    Nucciotti, A.; MARE Collaboration

    2012-08-01

    The international project "Microcalorimeter Arrays for a Rhenium Experiment" (MARE) aims at the direct and calorimetric measurement of the electron neutrino mass with sub-electronvolt sensitivity. Calorimetric neutrino mass experiments measure all the energy released in a beta decay except for the energy carried away by the neutrino, therefore removing the most severe systematic uncertainties which have plagued the traditional and, so far, more sensitive spectrometers. Calorimetric measurements are best realized exploiting the thermal detection technique. This approach uses thermal microcalorimeters whose absorbers contain a low transition energy Q beta decaying isotope. To date the two best options are 187Re and 163Ho. While the first beta decays, the latter decays via electron capture, but both have a Q value around 2.5 keV. The potential of using 187Re for a calorimetric neutrino mass experiment has been already demonstrated. On the contrary, no calorimetric spectrum of 163Ho has been so far measured with the precision required to set a useful limit on the neutrino mass. In this talk we present the status and the perspectives of the MARE project activities for the active isotope selection and the single channel development. We also discuss the neutrino mass statistical sensitivity achievable with both isotopes.

  18. Evidence for an oscillatory signature in atmospheric neutrino oscillations.

    PubMed

    Ashie, Y; Hosaka, J; Ishihara, K; Itow, Y; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Taki, K; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Okumura, K; Ooyabu, T; Saji, C; Takenaga, Y; Desai, S; Kearns, E; Likhoded, S; Stone, J L; Sulak, L R; Walter, C W; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Liu, D W; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Ellsworth, R W; Tasaka, S; Guillian, G; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Inagaki, T; Kato, I; Maesaka, H; Morita, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Sullivan, G W; Turcan, D; Scholberg, K; Habig, A; Fukuda, Y; Jung, C K; Kato, T; Kobayashi, K; Malek, M; Mauger, C; McGrew, C; Sarrat, A; Sharkey, E; Yanagisawa, C; Toshito, T; Miyano, K; Tamura, N; Ishii, J; Kuno, Y; Nagashima, Y; Takita, M; Yoshida, M; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Nakajima, Y; Nishijima, K; Harada, T; Ishino, H; Nishimura, R; Watanabe, Y; Kielczewska, D; Zalipska, J; Berns, H G; Gran, R; Shiraishi, K K; Stachyra, A; Washburn, K; Wilkes, R J

    2004-09-01

    Muon neutrino disappearance probability as a function of neutrino flight length L over neutrino energy E was studied. A dip in the L/E distribution was observed in the data, as predicted from the sinusoidal flavor transition probability of neutrino oscillation. The observed L/E distribution constrained nu(micro)<-->nu(tau) neutrino oscillation parameters; 1.9x10(-3)0.90 at 90% confidence level.

  19. Intensity of Upward Muon Flux Due to Cosmic-Ray Neutrinos Produced in the Atmosphere

    DOE R&D Accomplishments Database

    Lee, T. D.; Robinson, H.; Schwartz, M.; Cool, R.

    1963-06-01

    Calculations were performed to determine the upward going muon flux leaving the earth's surface after production by cosmic-ray neutrinos in the crust. Only neutrinos produced in the earth's atmosphere are considered. Rates of the order of one per 100 sq m/day might be expected if an intermediate boson exists and has a mass less than 2 Bev. (auth)

  20. A combined beta-beam and electron capture neutrino experiment

    NASA Astrophysics Data System (ADS)

    Bernabéu, José; Espinoza, Catalina; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2009-06-01

    The next generation of long baseline neutrino experiments will aim at determining the value of the unknown mixing angle, θ13, the type of neutrino mass hierarchy and the presence of CP-violation in the lepton sector. Beta-beams and electron capture experiments have been studied as viable candidates for long baseline experiments. They use a very clean electron neutrino beam from the β-decays or electron capture decays of boosted ions. In the present article we consider an hybrid setup which combines a beta-beam with an electron capture beam by using boosted Ytterbium ions. We study the sensitivity to the CP-violating phase δ and the θ13 angle, the CP-discovery potential and the reach to determine the type of neutrino mass hierarchy for this type of long baseline experiment. The analysis is performed for different neutrino beam energies and baselines. Finally, we also discuss how the results would change if a better knowledge of some of the assumed parameters was achieved by the time this experiment could take place.

  1. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.; /Fermilab

    2009-07-01

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  2. Review of Current and Future Neutrino Cross-Section Experiments

    SciTech Connect

    Schmitz, D.

    2010-03-30

    There has been a surge of progress and published results in neutrino cross-section physics in recent years. In many cases, absolute differential cross-sections are being measured for the first time and can be compared to interaction models first developed decades ago. These measurements are important input for the next generation of accelerator-based neutrino oscillation experiments where precise understanding of both signal and background channels will be critical to the observation of sub-dominant oscillation effects. This paper discusses recent results from several experiments and describes new experiments currently under construction dedicated to making these measurements with unprecedented precision.

  3. Measuring $\\theta_{13}$ via Muon Neutrino to Electron Neutrino Oscillations in the MINOS Experiment

    SciTech Connect

    Toner, Ruth B.

    2011-01-01

    One of the primary goals in neutrino physics at the present moment is to make a measurement of the neutrino oscillation parameter $\\theta_{13}$. This parameter, in addition to being unknown, could potentially allow for the introduction of CP violation into the lepton sector. The MINOS long-baseline neutrino oscillation experiment has the ability to make a measurement of this parameter, by looking for the oscillation of muon neutrinos to electron neutrinos between a Near and Far Detector over a distance of 735 km. This thesis discusses the development of an analysis framework to search for this oscillation mode. Two major improvements to pre-existing analysis techniques have been implemented by the author. First, a novel particle ID technique based on strip topology, known as the Library Event Matching (LEM) method, is optimized for use in MINOS. Second, a multiple bin likelihood method is developed to fit the data. These two improvements, when combined, increase MINOS' sensitivity to $\\sin^2(2\\theta_{13})$ by 27\\% over previous analyses. This thesis sees a small excess over background in the Far Detector. A Frequentist interpretation of the data rules out $\\theta_{13}=0$ at 91\\%. A Bayesian interpretation of the data is also presented, placing the most stringent upper boundary on the oscillation parameter to date, at $\\sin^2(2\\theta_{13})<0.09(0.015)$ for the Normal (Inverted) Hierarchy and $\\delta_{CP}=0$.

  4. Measurement of electron neutrino appearance with the MINOS experiment

    SciTech Connect

    Boehm, Joshua Adam Alpern

    2009-05-01

    MINOS is a long-baseline two-detector neutrino oscillation experiment that uses a high intensity muon neutrino beam to investigate the phenomena of neutrino oscillations. By measuring the neutrino interactions in a detector near the neutrino source and again 735 km away from the production site, it is possible to probe the parameters governing neutrino oscillation. The majority of the vμ oscillate to vτ but a small fraction may oscillate instead to ve. This thesis presents a measurement of the ve appearance rate in the MINOS far detector using the first two years of exposure. Methods for constraining the far detector backgrounds using the near detector measurements is discussed and a technique for estimating the uncertainty on the background and signal selection are developed. A 1.6σ excess over the expected background rate is found providing a hint of ve appearance.

  5. Detector-related backgrounds in the Karlsruhe Tritium Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Leber, Michelle; Katrin Collaboration

    2011-12-01

    The Karlsruhe Tritium Neutrino Experiment, or KATRIN, is a next generation tritium beta decay experiment to directly measure neutrino mass with an expected sensitivity of 0.2 eV [KATRIN Design Report 2004 see http://www-ik.fzk.de/~katrin/]. Neutrino mass does not fit into the Standard Model, and determining this mass may set the scale of new physics. To achieve this level of sensitivity, backgrounds in the experiment must be minimized. A complete Geant4 [Agostinelli S et al. 2003 Nuclear Instr. Methods A 506 250-303 Allison J et al. 2006 IEEE Transactions on Nuclear Science53 No. 1 270-8] simulation of KATRIN's focal plane detector and surrounding region is being developed. These simulations will help guide the design and selection of shielding and detector construction materials to reduce backgrounds from cosmic rays and natural radioactivity.

  6. Atmospheric muons and neutrinos, and the neutrino-induced muon flux underground

    NASA Technical Reports Server (NTRS)

    Liland, A.

    1985-01-01

    The diffusion equation for neutrino-induced cosmic ray muons underground was solved. The neutrino-induced muon flux and charge ratio underground have been calculated. The calculated horizontal neutrino-induced muon flux in the energy range 0.1 - 10000 GeV is in agreement with the measured horizontal flux. The calculated vertical flux above 2 GeV is in agreement with the measured vertical flux. The average charge ratio of neutrino-induced muons underground was found to be mu+/mu- = 0.40.

  7. Sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Kopp, J.; Machado, P. A. N.; Maltoni, M.; Schwetz, T.

    2016-06-01

    We characterize statistically the indications of a presence of one or more light sterile neutrinos from MiniBooNE and LSND data, together with the reactor and gallium anomalies, in the global context. The compatibility of the aforementioned signals with null results from solar, atmospheric, reactor, and accelerator experiments is evaluated. We conclude that a severe tension is present in the global fit, and therefore the addition of eV-scale sterile neutrinos does not satisfactorily explain the anomalies.

  8. a Brief Critique of the Search for Neutrino Oscillations with “SINGLE MEASUREMENT” Solar Neutrino Experiments

    NASA Astrophysics Data System (ADS)

    Cline, David B.; Cheng, Mao-Tung

    We briefly review the recent results on solar neutrino observations pointing out the dependence on the model of the solar neutrino production. We show that current uncertainties make it rather unlikely that unambiguous proof of neutrino oscillations can be obtained from any current (single measurement) techniques. We then show the importance of carrying out solar neutrino experiments where two reactions are measured simultaneously (double experiments). As an example we apply this to the ICARUS liquid Argon detector being constructed for the Gran Sasso Laboratory.

  9. MINERvA: A Dedicated neutrino scattering experiment at NuMI

    SciTech Connect

    McFarland, Kevin S.; /Rochester U.

    2006-05-01

    MINERvA is a dedicated neutrino cross-section experiment planned for the near detector hall of the NuMI neutrino beam at Fermilab. I summarize the detector design and physics capabilities of the experiment.

  10. Progress in ultra high energy neutrino experiments using radio techniques

    SciTech Connect

    Liu Jiali; Tiedt, Douglas

    2013-05-23

    Studying the source of Ultra High Energy Cosmic Ray (UHECR) can provide important clues on the understanding of UHE particle physics, astrophysics, and other extremely energetic phenomena in the universe. However, charged CR particles are deflected by magnetic fields and can not point back to the source. Furthermore, UHECR charged particles above the Greisen-Zatsepin-Kuzmin (GZK) cutoff (about 5 Multiplication-Sign 10{sup 19} eV) suffer severe energy loss due to the interaction with the Cosmic Microwave Background Radiation (CMBR). Consequently almost all the information carried by CR particles about their origin is lost. Neutrinos, which are neutral particles and have extremely weak interactions with other materials can arrive at the earth without deflection and absorption. Therefore UHE neutrinos can be traced back to the place where they are produced. Due to their weak interaction and ultra high energies (thus extremely low flux) the detection of UHE neutrinos requires a large collecting area and massive amounts of material. Cherenkov detection at radio frequency, which has long attenuation lengths and can travel freely in natural dense medium (ice, rock and salt et al), can fulfill the detection requirement. Many UHE neutrino experiments are being performed by radio techniques using natural ice, lunar, and salt as detection mediums. These experiments have obtained much data about radio production, propagation and detection, and the upper limit of UHE neutrino flux.

  11. A non-standard CP transformation leading to maximal atmospheric neutrino mixing

    NASA Astrophysics Data System (ADS)

    Grimus, Walter; Lavoura, Luís.

    2004-01-01

    We discuss a neutrino mass matrix Mν originally found by Babu, Ma, and Valle (BMV) and show that this mass matrix can be characterized by a simple algebraic relation. From this relation it follows that atmospheric neutrino mixing is exactly maximal while at the same time an arbitrary mixing angle θ13 of the lepton mixing matrix U is allowed and—in the usual phase convention—CP violation in mixing is maximal; moreover, neither the neutrino mass spectrum nor the solar mixing angle are restricted. We put forward a seesaw extension of the Standard Model, with three right-handed neutrinos and three Higgs doublets, where the family lepton numbers are softly broken by the Majorana mass terms of the right-handed neutrino singlets and the BMV mass matrix results from a non-standard CP symmetry.

  12. Evidence for the appearance of atmospheric tau neutrinos in super-Kamiokande.

    PubMed

    Abe, K; Hayato, Y; Iida, T; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Ueno, K; Ueshima, K; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Kajita, T; Kaneyuki, K; Lee, K P; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Labarga, L; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Renshaw, A; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Ishizuka, T; Tasaka, S; Learned, J G; Matsuno, S; Smith, S N; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Ikeda, M; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Lopez, G D; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Yoshida, M; Kim, S B; Yang, B S; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Martens, K; Schuemann, J; Vagins, M R; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Thrane, E; Wilkes, R J

    2013-05-01

    Super-Kamiokande atmospheric neutrino data were fit with an unbinned maximum likelihood method to search for the appearance of tau leptons resulting from the interactions of oscillation-generated tau neutrinos in the detector. Relative to the expectation of unity, the tau normalization is found to be 1.42 ± 0.35(stat)(-0.12)(+0.14)(syst) excluding the no-tau-appearance hypothesis, for which the normalization would be zero, at the 3.8σ level. We estimate that 180.1 ± 44.3(stat)(-15.2)(+17.8) (syst) tau leptons were produced in the 22.5 kton fiducial volume of the detector by tau neutrinos during the 2806 day running period. In future analyses, this large sample of selected tau events will allow the study of charged current tau neutrino interaction physics with oscillation produced tau neutrinos.

  13. Omnibus experiment: CPT and CP violation with sterile neutrinos

    NASA Astrophysics Data System (ADS)

    Loo, K. K.; Novikov, N. Yu; Smirnov, M. V.; Trzaska, W. H.; Wurm, M.

    2016-05-01

    We propose to probe both the CPT and CP violation together with the search for sterile neutrinos in one do-it-all experiment. This omnibus experiment would utilize neutrino oscillometry with large scintillator detectors like LENA, JUNO or RENO-50 and manmade radioactive sources similar to the ones used by the GALLEX experiment. Our calculations indicate that such an experiment is realistic and could be performed in parallel to the main research plan for JUNO, LENA, or RENO-50. Assuming as the starting point the values of the oscillation parameters indicated by the current global fit (in 3 active + 1 sterile scenario) and requiring at least 5 sigma confidence level, we estimate that with the proposed experiment we would be able to detect CPT mass anomalies of the order of 1% or larger.

  14. Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II

    SciTech Connect

    IceCube Collaboration; Klein, Spencer; Collaboration, IceCube

    2009-06-02

    The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of evidence for new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.

  15. Search for differences in oscillation parameters for atmospheric neutrinos and antineutrinos at Super-Kamiokande.

    PubMed

    Abe, K; Hayato, Y; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-12-01

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3)  eV2, 1.0) and is consistent with the overall Super-K measurement.

  16. Search for differences in oscillation parameters for atmospheric neutrinos and antineutrinos at Super-Kamiokande.

    PubMed

    Abe, K; Hayato, Y; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-12-01

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3)  eV2, 1.0) and is consistent with the overall Super-K measurement. PMID:22242990

  17. Hadronization processes in neutrino interactions

    SciTech Connect

    Katori, Teppei; Mandalia, Shivesh

    2015-10-15

    Next generation neutrino oscillation experiments utilize details of hadronic final states to improve the precision of neutrino interaction measurements. The hadronic system was often neglected or poorly modelled in the past, but they have significant effects on high precision neutrino oscillation and cross-section measurements. Among the physics of hadronic systems in neutrino interactions, the hadronization model controls multiplicities and kinematics of final state hadrons from the primary interaction vertex. For relatively high invariant mass events, many neutrino experiments rely on the PYTHIA program. Here, we show a possible improvement of this process in neutrino event generators, by utilizing expertise from the HERMES experiment. Finally, we estimate the impact on the systematics of hadronization models for neutrino mass hierarchy analysis using atmospheric neutrinos such as the PINGU experiment.

  18. Search for Neutrino Radiation from Collapsing Stars and the Sensitivity of Experiments to the Different Types of Neutrinos

    NASA Astrophysics Data System (ADS)

    Dadykin, V. L.; Ryazhskaya, O. G.

    2013-11-01

    The experiments running to search for neutrino radiation from collapsing stars up to now traditionally take one's bearings for the detection of the ˜ ν e p -> e^ + n reaction and, accordingly, for the use of the hadrogenate targets. The observation of neutrino radiation from SN1987A showed that it is important to have in the composition of the targets beside the hadrogen also other nuclei suitable to neutrino radiation detection. In particular the presence of iron nuclei in the LSD provided for the sensational detection of νe flux at 2:52 UT on February 23 1987 when other more powerful detectors with their hadrogenate targets could not respond to this type of neutrino. The sensitivity of present searching experiments to different types of neutrino radiation from collapsing stars is discussed in the paper.

  19. A search for muon neutrino to electron neutrino oscillations in the MINOS Experiment

    SciTech Connect

    Ochoa Ricoux, Juan Pedro

    2009-01-01

    We perform a search for vμ → ve oscillations, a process which would manifest a nonzero value of the θ13 mixing angle, in the MINOS long-baseline neutrino oscillation experiment. The analysis consists of searching for an excess of ve charged-current candidate events over the predicted backgrounds, made mostly of neutral-current events with high electromagnetic content. A novel technique to select electron neutrino events is developed, which achieves an improved separation between the signal and the backgrounds, and which consequently yields a better reach in θ13. The backgrounds are predicted in the Far Detector from Near Detector measurements. An excess is observed in the Far Detector data over the predicted backgrounds, which is consistent with the background-only hypothesis at 1.2 standard deviations.

  20. Some comments on high precision study of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Bilenky, S. M.

    2015-07-01

    I discuss here some problems connected with the high precision study of neutrino oscillations. In the general case of n-neutrino mixing I derive a convenient expression for transition probability in which only independent terms (and mass-squared differences) enter. For three-neutrino mixing I discuss a problem of a definition of a large (atmospheric) neutrino mass-squared difference. I comment also possibilities to reveal the character of neutrino mass spectrum in future reactor neutrino experiments.

  1. A search for sterile neutrinos at the MINOS experiment

    SciTech Connect

    Pittam, Robert Neil

    2010-01-01

    MINOS is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory in Illinois, USA. The experiment was designed to study neutrino oscillation phenomena. The vμ beam produced by the NuMI beam facility at FNAL is used along with two functionally identical detectors. The Near Detector at FNAL and a Far Detector 735 km away in the Soudan Underground Laboratory in northern Minnesota. Comparison of the observed spectra of neutrinos at the two detectors provides the evidence for neutrino oscillations. This thesis presents work on the postulated phenomena of sterile neutrinos. Oscillations between active and sterile neutrinos will lead to a deficit in the expected rate of measured Neutral Current interactions at the Far Detector. A technique for selecting Neutral Current events utilizing an Artificial Neural Network is presented with resulting overall efficiency of 91.1% and purity of 66.0%. A method of predicting the expected Charged and Neutral Current energy spectra at the Far Detector given the data recorded at the Near Detector is presented. A model to search for oscillations between sterile and active neutrinos is developed. Sources of systematic uncertainty that can effect the results of the analysis are discussed. The analysis developed is applied to a Standard Model 3 flavour oscillation model as a cross check under the scenarios with and without ve appearance. The oscillation parameters measured by this model are Δm322 = (2.39-0.15+0.23) x 10-3 eV2 and θ23 = 0.727-0.11+0.22 for the no ve appearance result. An analysis of the resulting prediction reveals no evidence for active neutrino disappearance. The analysis is then performed using the 4 flavour neutrino oscillation model developed. Again this is done under the 2 scenarios of ve appearance and no ve appearance

  2. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    SciTech Connect

    Ando, Shin'ichiro; Profumo, Stefano; Beacom, John F; Rainwater, David E-mail: beacom@mps.ohio-state.edu E-mail: rain@pas.rochester.edu

    2008-04-15

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.

  3. Probing new physics with long-lived charged particles produced by atmospheric and astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Beacom, John F.; Profumo, Stefano; Rainwater, David

    2008-04-01

    As suggested by some extensions of the standard model of particle physics, dark matter may be a super-weakly-interacting lightest stable particle, while the next-to-lightest particle (NLP) is charged and metastable. One could test such a possibility with neutrino telescopes, by detecting the charged NLPs produced in high-energy neutrino collisions with Earth matter. We study the production of charged NLPs by both atmospheric and astrophysical neutrinos; only the latter, which is largely uncertain and has not been detected yet, was the focus of previous studies. We compute the resulting fluxes of the charged NLPs, compare those of different origins and analyze the dependence on the underlying particle physics set-up. We point out that, even if the astrophysical neutrino flux is very small, atmospheric neutrinos, especially those from the prompt decay of charmed mesons, may provide a detectable flux of NLP pairs at neutrino telescopes such as IceCube. We also comment on the flux of charged NLPs expected from proton-nucleon collisions and show that, for theoretically motivated and phenomenologically viable models, it is typically subdominant and below detectable rates.

  4. The radon monitoring system in Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Chu, M. C.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Leung, J. K. C.; Leung, K. Y.; Lin, Y. C.; Luk, K. B.; Pun, C. S. J.

    2016-02-01

    We developed a highly sensitive, reliable and portable automatic system (H3) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3 is able to measure radon concentration with a statistical error less than 10% in a 1-h measurement of dehumidified air (R.H. 5% at 25 °C) with radon concentration as low as 50 Bq/m3. This is achieved by using a large radon progeny collection chamber, semiconductor α-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  5. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    NASA Astrophysics Data System (ADS)

    Choi, J. H.; Jang, H. I.; Choi, W. Q.; Choi, Y.; Jang, J. S.; Jeon, E. J.; Joo, K. K.; Kim, B. R.; Kim, H. S.; Kim, J. Y.; Kim, S. B.; Kim, S. Y.; Kim, W.; Kim, Y. D.; Ko, Y. J.; Lee, J. K.; Lim, I. T.; Pac, M. Y.; Park, I. G.; Park, J. S.; Park, R. G.; Seo, H. K.; Seo, S. H.; Shin, C. D.; Siyeon, K.; Yeo, I. S.; Yu, I.

    2016-02-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  6. Contribution of gallium experiments to the understanding of solar physics and neutrino physics

    SciTech Connect

    Gavrin, V. N.

    2013-10-15

    The results of gallium measurements of solar neutrino and measurements with artificial sources of neutrinos are presented. Conclusions are drawn from these results, and the potential of the SAGE experiment for studying transitions of active neutrinos to sterile states for {Delta}m{sup 2} > 0.5 eV{sup 2} and a sensitivity of a few percent to the disappearance of electron neutrinos is examined.

  7. A letter of intent for a neutrino scattering experiment on the booster neutrino meanline: FINeSSE

    SciTech Connect

    Fleming, B.T.; Tayloe, R.; /Indiana U. /Yale U.

    2005-03-01

    The experiment described in this Letter of Intent provides a decisive measurement of {Delta}s, the spin of the nucleon carried by strange quarks. This is crucial as, after more than thirty years of study, the spin contribution of strange quarks to the nucleon is still not understood. The interpretation of {Delta}s measurements from inclusive Deep Inelastic Scattering (DIS) experiments using charged leptons suffers from two questionable techniques; an assumption of SU(3)-flavor symmetry, and an extrapolation into unmeasured kinematic regions, both of which provide ample room for uncertain theoretical errors in the results. The results of recent semi-inclusive DIS data from HERMES paint a somewhat different picture of the contribution of strange quarks to the nucleon spin than do the inclusive results, but since HERMES does not make use of either of the above-mentioned techniques, then the results are somewhat incomparable. What is required is a measurement directly probing the spin contribution of the strange quarks in the nucleon. Neutrino experiments provide a theoretically clean and robust method of determining {Delta}s by comparing the neutral current interaction, which is isoscalar plus isovector, to the charged current interaction, which is strictly isovector. A past experiment, E734, performed at Brookhaven National Laboratory, has pioneered this effort. Building on what they have learned, we present an experiment which achieves a measurement to {+-} 0.025 using neutrino scattering, and {+-} 0.04 using anti-neutrino scattering, significantly better than past measurements. The combination of the neutrino and anti-neutrino data, when combined with the results of the parity-violating electron-nucleon scattering data, will produce the most significant result for {Delta}s. This experiment can also measure neutrino cross sections in the energy range required for accelerator-based precision oscillation measurements. Accurate measurements of cross sections have been

  8. Testing SO(10)-inspired leptogenesis with low energy neutrino experiments

    SciTech Connect

    Bari, Pasquale Di; Riotto, Antonio E-mail: Antonio.Riotto@cern.ch

    2011-04-01

    We extend the results of a previous analysis of ours showing that, when both heavy and light flavour effects are taken into account, successful minimal (type I + thermal) leptogenesis with SO(10)-inspired relations is possible. Barring fine tuned choices of the parameters, these relations enforce a hierarchical RH neutrino mass spectrum that results into a final asymmetry dominantly produced by the next-to-lightest RH neutrino decays (N{sub 2} dominated leptogenesis). We present the constraints on the whole set of low energy neutrino parameters. Allowing a small misalignment between the Dirac basis and the charged lepton basis as in the quark sector, the allowed regions enlarge and the lower bound on the reheating temperature gets relaxed to values as low as ∼ 10{sup 10} GeV. It is confirmed that for normal ordering (NO) there are two allowed ranges of values for the lightest neutrino mass: m{sub 1} ≅ (1−5) × 10{sup −3} eV and m{sub 1} ≅ (0.03−0.1) eV. For m{sub 1}∼<0.01 eV the allowed region in the plane θ{sub 13}-θ{sub 23} is approximately given by θ{sub 23}∼<49°+0.65 (θ{sub 13}−5°), while the neutrinoless double beta decay effective neutrino mass falls in the range m{sub ee} = (1−3) × 10{sup −3} eV for θ{sub 13} = (6°−11.5°). For m{sub 1}∼>0.01 eV, one has quite sharply m{sub ee} ≅ m{sub 1} and an upper bound θ{sub 23}∼<46°. These constraints will be tested by low energy neutrino experiments during next years. We also find that inverted ordering (IO), though quite strongly constrained, is not completely ruled out. In particular, we find approximately θ{sub 23} ≅ 43°+12° log (0.2 eV/m{sub 1}), that will be fully tested by future experiments.

  9. From DeepCore to PINGU. Measuring atmospheric neutrino oscillations at the South Pole

    NASA Astrophysics Data System (ADS)

    Yáñez, J. P.

    2016-04-01

    Very large volume neutrino telescopes (VLVNTs) observe atmospheric neutrinos over a wide energy range (GeV to TeV), after they travel distances as large as the Earth's diameter. DeepCore, the low energy extension of IceCube, has started making meaningful measurements of the neutrino oscillation parameters θ23 and | Δm232| by analyzing the atmospheric flux at energies above 10 GeV. PINGU, a proposed project to lower DeepCore's energy threshold, aims to use the same flux to further increase the precision with which these parameters are known, and eventually determine the sign of Δm232. The latest results from DeepCore, and the planned transition to PINGU, are discussed here.

  10. Creation of neutrino laboratory for carrying out experiment on search for a sterile neutrino at the SM-3 reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.; Ivochkin, V. G.; Samoilov, R. M.; Fomin, A. K.; Zinov'ev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinskii, N. V.; Solovei, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Martem'yanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; Gromov, M. O.; Afanas'ev, V. V.; Matrosov, L. N.; Matrosova, M. Yu.

    2015-12-01

    To check the existence of a sterile neutrino, a neutrino laboratory aimed at searching reactor antineutrino oscillations is created at the SM-3 reactor. A prototype of a neutrino detector with a scintillator volume of 400 L is moved at distances 6-11 m from the core of the reactor. Background conditions are measured. It is shown that the cosmic rays background is the main problem in the experiment. The prospects of the search for reactor antineutrino oscillations at short distances are discussed.

  11. The International Muon Ionization Cooling Experiment: MICE and Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Freemire, Ben

    2010-03-01

    The Muon Ionization Cooling Experiment (MICE) is an accelerator and particle physics experiment aimed at demonstrating the technique of ionization cooling on a beam of muons. Ionization cooling is the process by which muons are sent through an absorbing material, thereby losing energy and decreasing their normalized emittance. The muons are then reaccelerated in the appropriate direction with radio frequency (RF) cavities. This produces an overall reduction in transverse emittance of the muon beam. Ionization cooling could be a key technique in the design of a high intensity Neutrino Factory.

  12. Measurement of neutrino oscillation by the K2K experiment

    SciTech Connect

    Ahn, M. H.; Bhang, H.; Jeon, E. J.; Joo, K. K.; Kang, B. H.; Kim, B. J.; Kim, H. I.; Kim, J. H.; Kim, S. B.; Park, H.; Seo, E.; So, H.; Yoo, J.; Aliu, E.; Andringa, S.; Espinal, X.; Fernandez, E.; Jover, G.; Nova, F.; Rodriguez, A.

    2006-10-01

    We present measurements of {nu}{sub {mu}} disappearance in K2K, the KEK to Kamioka long-baseline neutrino oscillation experiment. One-hundred and twelve beam-originated neutrino events are observed in the fiducial volume of Super-Kamiokande with an expectation of 158.1{sub -8.6}{sup +9.2} events without oscillation. A distortion of the energy spectrum is also seen in 58 single-ring muonlike events with reconstructed energies. The probability that the observations are explained by the expectation for no neutrino oscillation is 0.0015% (4.3{sigma}). In a two-flavor oscillation scenario, the allowed {delta}m{sup 2} region at sin{sup 2}2{theta}=1 is between 1.9 and 3.5x10{sup -3} eV{sup 2} at the 90% C.L. with a best-fit value of 2.8x10{sup -3} eV{sup 2}.

  13. Solar neutrino interactions with liquid scintillators used for double beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu; Zuber, Kai

    2016-08-01

    Solar neutrinos interact within double-beta-decay (DBD) detectors and hence will contribute to backgrounds (BGs) for DBD experiments. Background contributions due to solar neutrinos are evaluated for their interactions with atomic electrons and nuclei in liquid scintillation detectors used for DBD experiments. They are shown to be serious BGs for high-sensitivity DBD experiments to search for the Majorana neutrino masses in the inverted and normal hierarchy regions.

  14. NASA's atmospheric variability experiments /AVE/

    NASA Technical Reports Server (NTRS)

    Hill, K.; Turner, R. E.

    1977-01-01

    A series of seven mesoscale experiments were conducted under the NASA program, Atmospheric Variability Experiments (AVE). Rawinsonde, satellite, aircraft, and ground observations were recorded during specially selected meteorological periods lasting from 1 to 3 days. Details are presented for each AVE relative to observation times, experiment size and location, and significant weather. Some research results based on the use of these AVE data are referenced. These include contributions to regional numerical prediction; relations between wind shears, instability, and thunderstorm motion and development; relations between moisture and temperature and the probability of convection; retrieval of tropospheric temperature profiles from cloud-contaminated satellite data; variation of convection intensity as a result of atmospheric variability; and effects of cloud rotation on their trajectories.

  15. Late Time Neutrino Masses, the LSND Experiment and the Cosmic Microwave Background

    SciTech Connect

    Chacko, Z.; Hall, Lawrence J.; Oliver, Steven J.; Perelstein, Maxim

    2004-05-07

    Models with low-scale breaking of global symmetries in the neutrino sector provide an alternative to the seesaw mechanism for understanding why neutrinos are light. Such models can easily incorporate light sterile neutrinos required by the LSND experiment. Furthermore, the constraints on the sterile neutrino properties from nucleosynthesis and large scale structure can be removed due to the non-conventional cosmological evolution of neutrino masses and densities. We present explicit, fully realistic supersymmetric models, and discuss the characteristic signatures predicted in the angular distributions of the cosmic microwave background.

  16. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment.

    PubMed

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bender, D; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Büttner, B; Chernyavsky, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Del Amo Sanchez, P; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, R A; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Goldberg, J; Gornushkin, Y; Grella, G; Guler, A M; Gustavino, C; Hagner, C; Hara, T; Hayakawa, H; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, J H; Kim, S H; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P F; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matsushita, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, M C; Morishima, K; Muciaccia, M T; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Nakatsuka, Y; Niwa, K; Ogawa, S; Olchevsky, A; Omura, T; Ozaki, K; Paoloni, A; Paparella, L; Park, B D; Park, I G; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Schmidt-Parzefall, W; Shakirianova, I; Shchedrina, T; Sheshukov, A; Shibuya, H; Shiraishi, T; Shoziyoev, G; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, S M; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Vilain, P; Vladymyrov, M; Votano, L; Vuilleumier, J L; Wilquet, G; Wonsak, B; Yoon, C S; Zemskova, S

    2015-09-18

    The OPERA experiment was designed to search for ν_{μ}→ν_{τ} oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the ν_{μ}→ν_{τ} appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of ν_{μ}→ν_{τ} oscillations in appearance mode with a significance larger than 5σ. PMID:26430986

  17. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bodnarchuk, I.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; de Lellis, G.; de Serio, M.; Del Amo Sanchez, P.; di Crescenzo, A.; di Ferdinando, D.; di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fornari, F.; Fukuda, T.; Galati, G.; Garfagnini, A.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hara, T.; Hayakawa, H.; Hollnagel, A.; Hosseini, B.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laudisio, F.; Lauria, A.; Ljubicic, A.; Longhin, A.; Loverre, P. F.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matsushita, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Miyanishi, M.; Mizutani, F.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Olchevsky, A.; Omura, T.; Ozaki, K.; Paoloni, A.; Paparella, L.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Pistillo, C.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Schmidt-Parzefall, W.; Shakirianova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Sotnikov, A.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladymyrov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.; Opera Collaboration

    2015-09-01

    The OPERA experiment was designed to search for νμ→ντ oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ντ interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the νμ→ντ appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ντ candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of νμ→ντ oscillations in appearance mode with a significance larger than 5 σ .

  18. Discovery of τ Neutrino Appearance in the CNGS Neutrino Beam with the OPERA Experiment.

    PubMed

    Agafonova, N; Aleksandrov, A; Anokhina, A; Aoki, S; Ariga, A; Ariga, T; Bender, D; Bertolin, A; Bodnarchuk, I; Bozza, C; Brugnera, R; Buonaura, A; Buontempo, S; Büttner, B; Chernyavsky, M; Chukanov, A; Consiglio, L; D'Ambrosio, N; De Lellis, G; De Serio, M; Del Amo Sanchez, P; Di Crescenzo, A; Di Ferdinando, D; Di Marco, N; Dmitrievski, S; Dracos, M; Duchesneau, D; Dusini, S; Dzhatdoev, T; Ebert, J; Ereditato, A; Fini, R A; Fornari, F; Fukuda, T; Galati, G; Garfagnini, A; Goldberg, J; Gornushkin, Y; Grella, G; Guler, A M; Gustavino, C; Hagner, C; Hara, T; Hayakawa, H; Hollnagel, A; Hosseini, B; Ishiguro, K; Jakovcic, K; Jollet, C; Kamiscioglu, C; Kamiscioglu, M; Kim, J H; Kim, S H; Kitagawa, N; Klicek, B; Kodama, K; Komatsu, M; Kose, U; Kreslo, I; Laudisio, F; Lauria, A; Ljubicic, A; Longhin, A; Loverre, P F; Malgin, A; Malenica, M; Mandrioli, G; Matsuo, T; Matsushita, T; Matveev, V; Mauri, N; Medinaceli, E; Meregaglia, A; Mikado, S; Miyanishi, M; Mizutani, F; Monacelli, P; Montesi, M C; Morishima, K; Muciaccia, M T; Naganawa, N; Naka, T; Nakamura, M; Nakano, T; Nakatsuka, Y; Niwa, K; Ogawa, S; Olchevsky, A; Omura, T; Ozaki, K; Paoloni, A; Paparella, L; Park, B D; Park, I G; Pasqualini, L; Pastore, A; Patrizii, L; Pessard, H; Pistillo, C; Podgrudkov, D; Polukhina, N; Pozzato, M; Pupilli, F; Roda, M; Roganova, T; Rokujo, H; Rosa, G; Ryazhskaya, O; Sato, O; Schembri, A; Schmidt-Parzefall, W; Shakirianova, I; Shchedrina, T; Sheshukov, A; Shibuya, H; Shiraishi, T; Shoziyoev, G; Simone, S; Sioli, M; Sirignano, C; Sirri, G; Sotnikov, A; Spinetti, M; Stanco, L; Starkov, N; Stellacci, S M; Stipcevic, M; Strolin, P; Takahashi, S; Tenti, M; Terranova, F; Tioukov, V; Tufanli, S; Vilain, P; Vladymyrov, M; Votano, L; Vuilleumier, J L; Wilquet, G; Wonsak, B; Yoon, C S; Zemskova, S

    2015-09-18

    The OPERA experiment was designed to search for ν_{μ}→ν_{τ} oscillations in appearance mode, i.e., by detecting the τ leptons produced in charged current ν_{τ} interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the ν_{μ}→ν_{τ} appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ν_{τ} candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of ν_{μ}→ν_{τ} oscillations in appearance mode with a significance larger than 5σ.

  19. MUON EDM EXPERIMENT USING STAGE II OF THE NEUTRINO FACTORY.

    SciTech Connect

    FERNOW,R.C.; GALLARDO,J.C.; MORSE,W.M.; SEMERTZIDIS,Y.K.

    2002-07-01

    During the second stage of a future neutrino factory unprecedented numbers of bunched muons will become available. The cooled medium-energy muon beam could be used for a high sensitivity search for an electric dipole moment (EDM) of the muon with a sensitivity better than 10{sup -24}e {center_dot} cm. This will make the sensitivity of the EDM experiment to non-standard physics competitive and in many models more sensitive than the present limits on edms of the electron and nucleons. The experimental design exploits the strong motional electric field sensed by relativistic particles in a magnetic storage ring.

  20. Ion source issues for the DAEδALUS neutrino experiment

    SciTech Connect

    Alonso, Jose R. Barletta, William A.; Toups, Matthew H.; Conrad, Janet; Liu, Y.; Bannister, Mark E.; Havener, C. C.; Vane, Randy

    2014-02-15

    The DAEδALUS experiment calls for 10 mA of protons at 800 MeV on a neutrino-producing target. To achieve this record-setting current from a cyclotron system, H{sub 2}{sup +} ions will be accelerated. Loosely bound vibrationally excited H{sub 2}{sup +} ions inevitably produced in conventional ion sources will be Lorentz stripped at the highest energies. Presence of these states was confirmed at the Oak Ridge National Laboratory and strategies were investigated to quench them, leading to a proposed R and D effort towards a suitable ion source for these high-power cyclotrons.

  1. Monte Carlo simulation of the Neutrino-4 experiment

    SciTech Connect

    Serebrov, A. P. Fomin, A. K.; Onegin, M. S.; Ivochkin, V. G.; Matrosov, L. N.

    2015-12-15

    Monte Carlo simulation of the two-section reactor antineutrino detector of the Neutrino-4 experiment is carried out. The scintillation-type detector is based on the inverse beta-decay reaction. The antineutrino is recorded by two successive signals from the positron and the neutron. The simulation of the detector sections and the active shielding is performed. As a result of the simulation, the distributions of photomultiplier signals from the positron and the neutron are obtained. The efficiency of the detector depending on the signal recording thresholds is calculated.

  2. Atmospheric variability experiment /AVE II/ pilot experiment

    NASA Technical Reports Server (NTRS)

    Turner, R. E.; Scroggins, J. R.

    1974-01-01

    The Atmospheric Variability Experiment (AVE II) was conducted in May 1974. Rawinsonde releases were made at 54 upper-air stations in two thirds of the eastern U.S. at 3-hr intervals for a 24-hr period. Radar data were obtained from 11 stations located near the center of the observational area, and as many data as possible were collected from the Nimbus 5, NOAA 2, ATS-3, and DMSP satellites. The present paper provides an overview of the experiment and describes how the user community can obtain copies of the data.

  3. Measurement of the atmospheric muon neutrino energy spectrum with IceCube in the 79- and 86-String configuration

    NASA Astrophysics Data System (ADS)

    Ruhe, T.; Scheriau, F.; Schmitz, M.

    2016-04-01

    IceCube is a neutrino telescope with an instrumented volume of one cubic kilometer. A total of 5160 Digital Optical Modules (DOMs) is deployed on 86 strings forming a three dimensional detector array. Although primarily designed for the detection of neutrinos from astrophysical sources, the detector can be used for spectral measurements of atmospheric neutrinos. These spectral measurements are hindered by a dominant background of atmospheric muons. State-of-the-art techniques from Machine Learning and Data Mining are required to select a high-purity sample of atmospheric neutrino candidates. The energy spectrum of muon neutrinos is obtained from energy-dependent input variables by utilizing regularized unfolding. The results obtained using IceCube in the 79- and 86-string configuration are presented in this paper.

  4. Connecting experiment with theory: A model-independent parameterization of neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Wagner, Doris Jeanne

    1997-09-01

    Many experiments are currently looking for evidence of neutrino mass in the form of neutrino oscillations. Oscillation probabilities are non-linear functions of the neutrino mixing matrix elements, so most comparisons of data to theory are based on simplifying models of the mixing matrix. We begin this dissertation with a review of neutrino interactions and a few of the popular models describing neutrino masses and mixing. Next we present our model-independent description of neutrino oscillations and derive the predictions of various models in terms of our new 'box' parameterization. Finally, we use our boxes to find mixing matrices consistent with existing neutrino data. As more definitive data becomes available, these solutions will probably need to be adjusted; when such a need arises, our box notation will provide a convenient method for finding new solutions.

  5. Hunting for cosmic neutrinos under the deep sea: the ANTARES experiment

    NASA Astrophysics Data System (ADS)

    Flaminio, Vincenzo

    2013-06-01

    Attempts to detect high energy neutrinos originating in violent Galactic or Extragalactic processes have been carried out for many years, both using the polar-cap ice and the sea as a target/detection medium. The first large detector built and operated for several years has been the AMANDA Ĉerenkov array, installed under about two km of ice at the South Pole. More recently a much larger detector, ICECUBE has been successfully installed and operated at the same location. Attempts by several groups to install similar arrays under large sea depths have been carried out following the original pioneering attempts by the DUMAND collaboration, initiated in 1990 and terminated only six years later. ANTARES has been so far the only detector deployed at large sea depths and successfully operated for several years. It has been installed in the Mediterranean by a large international collaboration and is in operation since 2007. I describe in the following the experimental technique, the sensitivity of the experiment, the detector performance and the first results that have been obtained in the search for neutrinos from cosmic point sources and on the oscillations of atmospheric neutrinos.

  6. Neutrino Physics

    DOE R&D Accomplishments Database

    Lederman, L. M.

    1963-01-09

    The prediction and verification of the neutrino are reviewed, together with the V A theory for its interactions (particularly the difficulties with the apparent existence of two neutrinos and the high energy cross section). The Brookhaven experiment confirming the existence of two neutrinos and the cross section increase with momentum is then described, and future neutrino experiments are considered. (D.C.W.)

  7. The SciBooNE neutrino experiment at Fermilab: an overview

    NASA Astrophysics Data System (ADS)

    Tanaka, Hide-Kazu

    2008-04-01

    The precise measurement of neutrino-nucleus cross-sections in the few GeV energy range is an essential ingredient in the interpretation of neutrino oscillation experiments. For the measurement of the cross-sections, a new experiment, SciBooNE, has been proposed and approved at Fermilab. From June 2007, SciBooNE has started operation and data taking. The experiment is carried out by installing the K2K SciBar detector in the FNAL Booster Neutrino Beamline. The marriage of a high rate, low energy neutrino beam and the fine granularity of SciBar detector is unique for precise measurements of neutrino cross sections since both the beamline and detectors have been built and operated successfully. We will present an overview of the SciBooNE physics program with emphasis on unique elements of the detector systems that allow for identification and measurement of several types of neutrino interactions.

  8. Status and Prospects for Hadron Production Experiments

    SciTech Connect

    Schroeter, Raphaeel

    2010-03-30

    The latest results from the HARP, MIPP and NA61 Hadron Production Experiments are reviewed and their implications for neutrinos physics experiments are discussed. We emphasize three neutrino sources: accelerator-based neutrino beams, advanced neutrino sources and atmospheric neutrinos. Finally, prospects from additional forthcoming hadron production measurements are presented.

  9. Evidence for neutrino mass: A decade of discovery

    SciTech Connect

    Heeger, Karsten M.

    2004-12-08

    Neutrino mass and mixing are amongst the major discoveries of recent years. From the observation of flavor change in solar and atmospheric neutrino experiments to the measurements of neutrino mixing with terrestrial neutrinos, recent experiments have provided consistent and compelling evidence for the mixing of massive neutrinos. The discoveries at Super-Kamiokande, SNO, and KamLAND have solved the long-standing solar neutrino problem and demand that we make the first significant revision of the Standard Model in decades. Searches for neutrinoless double-beta decay probe the particle nature of neutrinos and continue to place limits on the effective mass of the neutrino. Possible signs of neutrinoless double-beta decay will stimulate neutrino mass searches in the next decade and beyond. I review the recent discoveries in neutrino physics and the current evidence for massive neutrinos.

  10. Photon Detection System Designs for the Deep Underground Neutrino Experiment

    SciTech Connect

    Whittington, Denver

    2015-11-19

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  11. Photon detection system designs for the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Whittington, D.

    2016-05-01

    The Deep Underground Neutrino Experiment (DUNE) will be a premier facility for exploring long-standing questions about the boundaries of the standard model. Acting in concert with the liquid argon time projection chambers underpinning the far detector design, the DUNE photon detection system will capture ultraviolet scintillation light in order to provide valuable timing information for event reconstruction. To maximize the active area while maintaining a small photocathode coverage, the experiment will utilize a design based on plastic light guides coated with a wavelength-shifting compound, along with silicon photomultipliers, to collect and record scintillation light from liquid argon. This report presents recent preliminary performance measurements of this baseline design and several alternative designs which promise significant improvements in sensitivity to low-energy interactions.

  12. Constraints on Cosmic Neutrino Fluxes from the Antarctic Impulsive Transient Antenna Experiment

    SciTech Connect

    Barwick, S.W.; Goldstein, D.; Nam, J.; Silvestri, A.; Wu, F.; Beatty, J.J.; Nichol, R.; Palladino, K.; Besson, D.Z.; Binns, W.R.; Dowkontt, P.F.; Israel, M.H.; Cai, B.; DuVernois, M.A.; Clem, J.M.; Evenson, P.A.; Seckel, D.; Connolly, A.; Saltzberg, D.; Cowen, D.F.

    2006-05-05

    We report new limits on cosmic neutrino fluxes from the test flight of the Antarctic Impulsive Transient Antenna (ANITA) experiment, which completed an 18.4 day flight of a prototype long-duration balloon payload, called ANITA-lite, in early 2004. We search for impulsive events that could be associated with ultrahigh energy neutrino interactions in the ice and derive limits that constrain several models for ultrahigh energy neutrino fluxes and rule out the long-standing Z-burst model.

  13. REPORT OF THE US LONG BASELINE NEUTRINO EXPERIMENT STUDY.

    SciTech Connect

    BARGER,V.; FINLEY, D.; LAUGHTON, C.; PORDES, S.; MARCHIONNI, A.; RAMEIKA, R.; SAOULIDOU, N.; ZWASKA, R.; BISHAI, M.; DIWAN, M.; DIERCKXSENS, M.; KIRK, H.; KAHN, S.; SIMOS, N.; MARCIANO, W.; PARSA, Z.; VIREN, B.; ET AL.

    2007-01-01

    This report provides the results of an extensive and important study of the potential for a U.S. scientific program that will extend our knowledge of neutrino oscillations well beyond what can be anticipated from ongoing and planned experiments worldwide. The program examined here has the potential to provide the U.S. particle physics community with world leading experimental capability in this intensely interesting and active field of fundamental research. Furthermore, this capability is not likely to be challenged anywhere else in the world for at least two decades into the future. The present study was initially commissioned in April 2006 by top research officers of Brookhaven National Laboratory and Fermilab and, as the study evolved, it also provides responses to questions formulated and addressed to the study group by the Neutrino Scientific Advisory Committee (NuSAG) of the U.S. DOE and NSF. The participants in the study, its Charge and history, plus the study results and conclusions are provided in this report and its appendices. A summary of the conclusions is provided in the Executive Summary.

  14. Neutrino-4 experiment on the search for a sterile neutrino at the SM-3 reactor

    SciTech Connect

    Serebrov, A. P. Ivochkin, V. G.; Samoylov, R. M.; Fomin, A. K.; Zinoviev, V. G.; Neustroev, P. V.; Golovtsov, V. L.; Gruzinsky, N. V.; Solovey, V. A.; Chernyi, A. V.; Zherebtsov, O. M.; Martemyanov, V. P.; Tsinoev, V. G.; Tarasenkov, V. G.; Aleshin, V. I.; Petelin, A. L.; Pavlov, S. V.; Izhutov, A. L.; Sazontov, S. A.; Ryazanov, D. K.; and others

    2015-10-15

    In view of the possibility of the existence of a sterile neutrino, test measurements of the dependence of the reactor antineutrino flux on the distance from the reactor core has been performed on SM-2 reactor with the Neutrino-2 detector model in the range of 6–11 m. Prospects of the search for reactor antineutrinos at short distances have been discussed.

  15. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1998-03-20

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:18268748

  16. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1999-08-16

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:19399049

  17. The status of the solar neutrino problem and the Russian-American gallium experiment (SAGE)

    SciTech Connect

    Bowles, T.J.

    1994-04-01

    Perhaps the most outstanding discrepancy between prediction and measurements in current particle physics comes from the solar neutrino problem, in which a large deficit of high-energy solar neutrinos is observed. Many Nonstandard Solar Models have been invoked to try to reduce the predicted flux, but all have run into problems in trying to reproduce other measured parameters (e.g., the luminosity) of the Sun. Other explanations involving new physics such as neutrino decay and neutrino oscillations, etc. have also been proffered. Again, most of these explanations have been ruled out by either laboratory or astrophysical measurements. It appears that perhaps the most likely particle physics solution is that of matter enhanced neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein (MSW) oscillations. Two new radiochemical gallium experiments, which have a low enough threshold to be sensitive to the dominant flux of low-energy p-p neutrinos, now also report a deficit and also favor a particle physics solution.

  18. The search for Majorana neutrinos with neutrinoless double beta decays: From CUORICINO to LUCIFER experiment

    SciTech Connect

    Bellini, F.

    2012-11-20

    The study of neutrino properties is one of the fundamental challenges in particle physics nowadays. Fifty years of investigations established that neutrinos are massive but the absolute mass scale has not yet been measured. Moreover its true nature is still unknown. Is the neutrino its own antiparticle (thus violating the lepton number) as proposed by Majorana in 1937? The only way to probe the neutrino nature is through the observation of Neutrinoless Double Beta Decay (0{nu}{beta}{beta}), a very rare spontaneous nuclear transition which emits two electrons and no neutrinos. In this paper, after a brief introduction to the theoretical framework of Majorana's neutrino, a presentation of experimental challenges posed by 0{nu}{beta}{beta} search will be given as well as an overview of present status and future perpectives of experiments.

  19. Studies of Near-Far Neutrino Beam Correlations for the DUNE Experiment

    NASA Astrophysics Data System (ADS)

    Bashyal, Amit; DUNE Collaboration

    2016-03-01

    In the DUNE long-baseline neutrino experiment, the Near Detector near to the beamline sees a high neutrino flux, which helps to characterize the neutrino beam. Given a prediction for the neutrino flux at the Near Detector, the unoscillated flux at the Far Detector can be predicted and a transfer matrix constructed. We present results from a beam matrix method to predict the Far Detector flux from the Near Detector flux for the DUNE beamline and studies of the sensitivity to different physics models of the flux.

  20. Investigation of neutrino oscillations in the T2k long-baseline accelerator experiment

    SciTech Connect

    Izmaylov, A. O. Yershov, N. V.; Kudenko, Yu. G.; Matveev, V. A.; Mineev, O. V.; Musienko, Yu. V.; Khabibulliun, M. M.; Khotjantsev, A. N.; Shaykhiev, A. T.

    2012-02-15

    High-sensitivity searches for transitions of muon neutrinos to electron neutrinos are the main task of the T2K (Tokai-to-Kamioka) second-generation long-baseline accelerator neutrino experiment. The present article is devoted to describing basic principles of T2K, surveying experimental apparatuses that it includes, and considering in detail the muon-range detector (SMRD) designed and manufactured by a group of physicists from the Institute of Nuclear Research (Russian Academy of Sciences, Moscow). The results of the first measurements with a neutrino beam are presented, and plans for the near future are discussed.

  1. SIMULATION OF A WIDE-BAND LOW-ENERGY NEUTRINO BEAM FOR VERY LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS.

    SciTech Connect

    BISHAI, M.; HEIM, J.; LEWIS, C.; MARINO, A.D.; VIREN, B.; YUMICEVA, F.

    2006-08-01

    We present simulations of a wide-band low-energy neutrino beam for a future very long baseline neutrino oscillation (VLBNO) program using the proton beam from the Main Injector (MI) proton accelerator at Fermi National Accelerator Laboratory (Fermilab). The target and horn designs previously developed for Brookhaven Laboratory's Alternating Gradient Synchrotron (AGS) VLBNO program are used without modifications. The neutrino flux distributions for various MI proton beam energies and new high-intensity neutrino beam-line designs possible at Fermilab are presented. The beam-line siting and design parameters are chosen to match the requirements of an on-axis beam from Fermilab to one of the two possible sites for the future Deep Underground Science and Engineering Laboratory (DUSEL). A preliminary estimate of the observable event rates and spectra at a detector located in DUSEL for different beam configurations has been performed. Our preliminary conclusions are that a 40-60 GeV 0.5 to 1 MW beam from the Fermilab Main Injector to a DUSEL site has the potential to reach the desired intensity for the next generation of neutrino oscillation experiments. Recent studies indicate that the Fermilab MI can reach a beam power of 0.5 MW at 60 GeV with incremental upgrades to the existing accelerator complex.

  2. Looking for High Energy Astrophysical Neutrinos:. the Antares Experiment

    NASA Astrophysics Data System (ADS)

    Flaminio, Vincenzo

    2011-03-01

    Attempts to detect high energy neutrinos originating in violent Galactic or Extragalactic processes have been carried out for many years, both using the polar-cap ice and the sea as a target/detection medium. The first large detector built and operated for several years has been the AMANDA Čerenkov array, installed under about two km of ice at the South Pole. More recently a much larger detector, ICECUBE is being installed at the same location. Attempts by several groups to install similar arrays under large sea depths have been carried out following the original pioneering attempts by the DUMAND collaboration, initiated in 1990 and terminated only six years later. ANTARES has been so far the only experiment installed at large sea depths and successfully operated for several years. This report will provide a short review of the expected ν sources, of the detector characteristics, the installation operations performed, the data collected and the first results obtained.

  3. Spectral function in electro-weak interactions and its impact on neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Jen, C.-M.

    2015-10-01

    Neutrino oscillation experiments have entered the high-precision era in the last few years. The oscillation parameters, as a measure of the neutrino properties, are extracted from the energy-dependent oscillation probability function. Different types of nuclear dynamics deeply influence the determination of neutrino energies in neutrino oscillation experiments. As a consequence, a comprehensive understanding of various nuclear dynamics interprets the scenario behind the neutrino interaction with nucleus and nuclei. The initial ground-state structure of the target nucleus is categorized in one typical nuclear dynamics, and its realistic description is generally referred as the spectral function (SF). Implementing the SF for each target nucleus into the GENIE neutrino event generator is the preliminary step necessary to obtain a reliable determination of the kinematics of all detectable final-products from neutrino interactions. At the intermedium-range of neutrino energies (˜ 1 GeV), the kinematic energy reconstruction is the vastly used approach and consists in identifying final-products as coming from the charged-current quasi-elastic-like (CCQE-like) neutrino interactions.

  4. Spectral function in electro-weak interactions and its impact on neutrino oscillation experiments

    SciTech Connect

    Jen, C.-M.

    2015-10-15

    Neutrino oscillation experiments have entered the high-precision era in the last few years. The oscillation parameters, as a measure of the neutrino properties, are extracted from the energy-dependent oscillation probability function. Different types of nuclear dynamics deeply influence the determination of neutrino energies in neutrino oscillation experiments. As a consequence, a comprehensive understanding of various nuclear dynamics interprets the scenario behind the neutrino interaction with nucleus and nuclei. The initial ground-state structure of the target nucleus is categorized in one typical nuclear dynamics, and its realistic description is generally referred as the spectral function (SF). Implementing the SF for each target nucleus into the GENIE neutrino event generator is the preliminary step necessary to obtain a reliable determination of the kinematics of all detectable final-products from neutrino interactions. At the intermedium-range of neutrino energies (∼ 1 GeV), the kinematic energy reconstruction is the vastly used approach and consists in identifying final-products as coming from the charged-current quasi-elastic-like (CCQE-like) neutrino interactions.

  5. Neutrino factory and beta beam: accelerator options for future neutrino experiments

    SciTech Connect

    Zisman, Michael S.

    2012-06-03

    Two accelerator options for producing intense neutrino beams a Neutrino Factory based on stored muon beams and a Beta Beam facility based on stored beams of beta unstable ions are described. Technical challenges for each are described and current R&D efforts aimed at mitigating these challenges are indicated. Progress is being made in the design of both types of facility, each of which would extend the state-of-the-art in accelerator science.

  6. First search for atmospheric and extraterrestrial neutrino-induced cascades with the IceCube detector

    SciTech Connect

    Abbasi, R.; Aguilar, J. A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J. C.; Dumm, J. P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G. C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J. L.

    2011-10-01

    We report on the first search for atmospheric and for diffuse astrophysical neutrino-induced showers (cascades) in the IceCube detector using 257 days of data collected in the year 2007-2008 with 22 strings active. A total of 14 events with energies above 16 TeV remained after event selections in the diffuse analysis, with an expected total background contribution of 8.3{+-}3.6. At 90% confidence we set an upper limit of E{sup 2}{Phi}{sub 90%CL}<3.6x10{sup -7} GeV{center_dot}cm{sup -2}{center_dot}s{sup -1}{center_dot}sr{sup -1} on the diffuse flux of neutrinos of all flavors in the energy range between 24 TeV and 6.6 PeV assuming that {Phi}{proportional_to}E{sup -2} and the flavor composition of the {nu}{sub e} ratio {nu}{sub {mu}} ratio {nu}{sub {tau}} flux is 1 ratio 1 ratio 1 at the Earth. The atmospheric neutrino analysis was optimized for lower energies. A total of 12 events were observed with energies above 5 TeV. The observed number of events is consistent with the expected background, within the uncertainties.

  7. Neutrino physics

    SciTech Connect

    Harris, Deborah A.; /Fermilab

    2008-09-01

    The field of neutrino physics has expanded greatly in recent years with the discovery that neutrinos change flavor and therefore have mass. Although there are many neutrino physics results since the last DIS workshop, these proceedings concentrate on recent neutrino physics results that either add to or depend on the understanding of Deep Inelastic Scattering. They also describe the short and longer term future of neutrino DIS experiments.

  8. Feasibility of /sup 81/Br(nu,e/sup -/)/sup 81/Kr solar neutrino experiment

    SciTech Connect

    Hurst, G.S.; Allman, S.L.; Chen, C.H.; Kramer, S.D.; Thomson, J.O.; Cleveland, B.

    1985-05-01

    Several ingenious solutions have been offered for the solar neutrino problem - a defect in the solar model, the appearance of a new type of neutrino physics, the sun is no longer burning, etc. The range of these proffered solutions stresses the need for a new experiment to study the sun. The modern pulsed laser now makes possible a new solar neutrino test which examines an independent neutrino source in the sun. A recently proposed experiment would use the reaction /sup 81/Br(nu,e/sup -/)/sup 81/Kr to measure the flux of /sup 7/Be neutrinos from the sun. When /sup 7/Be decays by electron capture to make /sup 7/Li, a neutrino is emitted at 0.862 MeV and the flux of these on the earth is about 4 x 10/sup 9/ cm/sup -2/ s/sup -1/, according to the standard model. Therefore, an experiment based on /sup 81/Br(nu,e/sup -/)/sup 81/Kr which is sensitive to these lower energy neutrinos would be of fundamental importance. To first order, the chlorine experiment detects the /sup 8/B neutrinos while bromine detects the much more abundant /sup 7/Be neutrino source. In practice, the proposed bromine experiment would be very similar to the chlorine radiochemical experiment, except that /sup 81/Kr with a half-life of 2 x 10/sup 5/ years cannot be counted by decay methods. With an experiment of about the same volume as the chlorine experiment (380 m/sup 3/) filled with CH/sub 2/Br/sub 2/, the model predicts about 2 atoms of /sup 81/Kr per day. The bromine experiment depends entirely on the RIS method, implemented with pulsed lasers, for its success. 10 refs., 3 figs.

  9. Super-NOnuA: A Long-baseline neutrino experiment with two off-axis detectors

    SciTech Connect

    Mena Requejo, Olga; Palomares-Ruiz, Sergio; Pascoli, Silvia; /CERN

    2005-04-01

    Establishing the neutrino mass hierarchy is one of the fundamental questions that will have to be addressed in the next future. Its determination could be obtained with long-baseline experiments but typically suffers from degeneracies with other neutrino parameters. We consider here the NOvA experiment configuration and propose to place a second off-axis detector, with a shorter baseline, such that, by exploiting matter effects, the type of neutrino mass hierarchy could be determined with only the neutrino run. We show that the determination of this parameter is free of degeneracies, provided the ratio L/E, where L the baseline and E is the neutrino energy, is the same for both detectors.

  10. Sensitivity of low energy neutrino experiments to physics beyond the standard model

    SciTech Connect

    Barranco, J.; Miranda, O. G.; Rashba, T. I.

    2007-10-01

    We study the sensitivity of future low energy neutrino experiments to extra neutral gauge bosons, leptoquarks, and R-parity breaking interactions. We focus on future proposals to measure coherent neutrino-nuclei scattering and neutrino-electron elastic scattering. We introduce a new comparative analysis between these experiments and show that in different types of new physics it is possible to obtain competitive bounds to those of present and future collider experiments. For the cases of leptoquarks and R-parity breaking interactions we found that the expected sensitivity for most of the future low energy experimental setups is better than the current constraints.

  11. The status of the study of solar CNO neutrinos in the Borexino experiment

    SciTech Connect

    Lukyanchenko, G. A.; Collaboration: Borexino Collaboration

    2015-12-15

    Although less than 1% of solar energy is generated in the CNO cycle, it plays a critical role in astrophysics, since this cycle is the primary source of energy in certain more massive stars and at later stages of evolution of solar-type stars. Electron neutrinos are produced in the CNO cycle reactions. These neutrinos may be detected by terrestrial neutrino detectors. Various solar models with different abundances of elements heavier than helium predict different CNO neutrino fluxes. A direct measurement of the CNO neutrino flux could help distinguish between these models and solve several other astrophysical problems. No CNO neutrinos have been detected directly thus far, and the best upper limit on their flux was set in the Borexino experiment. The work on reducing the background in the region of energies of CNO neutrinos (up to 1.74 MeV) and developing novel data analysis methods is presently under way. These efforts may help detect the CNO neutrino flux in the Borexino experiment at the level predicted by solar models.

  12. Nonstandard interactions and resolving the ordering of neutrino masses at DUNE and other long baseline experiments

    NASA Astrophysics Data System (ADS)

    Masud, Mehedi; Mehta, Poonam

    2016-09-01

    In the era of precision neutrino physics, we study the influence of nonstandard interactions (NSI) of matter on the question of neutrino mass ordering and its resolution. At long-baseline experiments, since matter effects play a crucial role in addressing this very important question, it is timely to investigate how subleading effects due to NSI may affect and drastically alter inferences pertaining to this question. We demonstrate that the sensitivity to mass ordering gets significantly impacted due to NSI effects for various long-baseline experiments, including the upcoming long-baseline experiment Deep Underground Neutrino Experiment (DUNE). Finally, we draw a comparison between DUNE and the sensitivities offered by two of the current neutrino beam experiments, NOvA and T2K.

  13. Limits on Active to Sterile Neutrino Oscillations from Disappearance Searches in the MINOS, Daya Bay, and Bugey-3 Experiments

    NASA Astrophysics Data System (ADS)

    Adamson, P.; An, F. P.; Anghel, I.; Aurisano, A.; Balantekin, A. B.; Band, H. R.; Barr, G.; Bishai, M.; Blake, A.; Blyth, S.; Bock, G. J.; Bogert, D.; Cao, D.; Cao, G. F.; Cao, J.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, R.; Chen, S. M.; Chen, Y.; Chen, Y. X.; Cheng, J.; Cheng, J.-H.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Childress, S.; Chu, M. C.; Chukanov, A.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; Cummings, J. P.; de Arcos, J.; De Rijck, S.; Deng, Z. Y.; Devan, A. V.; Devenish, N. E.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gill, R.; Gomes, R. A.; Gonchar, M.; Gong, G. H.; Gong, H.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grassi, M.; Grzelak, K.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Habig, A.; Hackenburg, R. W.; Hahn, S. R.; Han, R.; Hans, S.; Hartnell, J.; Hatcher, R.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Holin, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, J.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Hylen, J.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; James, C.; Jen, K. L.; Jensen, D.; Jetter, S.; Ji, X. L.; Ji, X. P.; Jiao, J. B.; Johnson, R. A.; de Jong, J. K.; Joshi, J.; Kafka, T.; Kang, L.; Kasahara, S. M. S.; Kettell, S. H.; Kohn, S.; Koizumi, G.; Kordosky, M.; Kramer, M.; Kreymer, A.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lang, K.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Litchfield, P. J.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. C.; Liu, J. L.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Lucas, P.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. B.; Ma, X. Y.; Ma, Y. Q.; Malyshkin, Y.; Mann, W. A.; Marshak, M. L.; Martinez Caicedo, D. A.; Mayer, N.; McDonald, K. T.; McGivern, C.; McKeown, R. D.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Mitchell, I.; Mooney, M.; Moore, C. D.; Mualem, L.; Musser, J.; Nakajima, Y.; Naples, D.; Napolitano, J.; Naumov, D.; Naumova, E.; Nelson, J. K.; Newman, H. B.; Ngai, H. Y.; Nichol, R. J.; Ning, Z.; Nowak, J. A.; O'Connor, J.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Pan, H.-R.; Park, J.; Patterson, R. B.; Patton, S.; Pawloski, G.; Pec, V.; Peng, J. C.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Pinsky, L.; Plunkett, R. K.; Poonthottathil, N.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Qiu, X.; Radovic, A.; Raper, N.; Rebel, B.; Ren, J.; Rosenfeld, C.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Moed Sher, S.; Sousa, A.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tagg, N.; Talaga, R. L.; Tang, W.; Taychenachev, D.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z. M.; Webb, R. C.; Weber, A.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C.; Whitehead, L.; Whitehead, L. H.; Wise, T.; Wojcicki, S. G.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. L.; Xu, J. Y.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Z. J.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-10-01

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Stringent limits on sin22 θμ e are set over 6 orders of magnitude in the sterile mass-squared splitting Δ m412. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δ m412<0.8 eV2 at 95 % CLs .

  14. The detector system of the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Bai, J. Z.; Balantekin, A. B.; Band, H. R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Brown, R. L.; Butorov, I.; Cao, D.; Cao, G. F.; Cao, J.; Carr, R.; Cen, W. R.; Chan, W. T.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chasman, C.; Chen, H. Y.; Chen, H. S.; Chen, M. J.; Chen, Q. Y.; Chen, S. J.; Chen, S. M.; Chen, X. C.; Chen, X. H.; Chen, X. S.; Chen, Y. X.; Chen, Y.; Cheng, J. H.; Cheng, J.; Cheng, Y. P.; Cherwinka, J. J.; Chidzik, S.; Chow, K.; Chu, M. C.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dong, L.; Dove, J.; Draeger, E.; Du, X. F.; Dwyer, D. A.; Edwards, W. R.; Ely, S. R.; Fang, S. D.; Fu, J. Y.; Fu, Z. W.; Ge, L. Q.; Ghazikhanian, V.; Gill, R.; Goett, J.; Gonchar, M.; Gong, G. H.; Gong, H.; Gornushkin, Y. A.; Grassi, M.; Greenler, L. S.; Gu, W. Q.; Guan, M. Y.; Guo, R. P.; Guo, X. H.; Hackenburg, R. W.; Hahn, R. L.; Han, R.; Hans, S.; He, M.; He, Q.; He, W. S.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hinrichs, P.; Ho, T. H.; Hoff, M.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, L. M.; Hu, L. J.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. Z.; Huang, H. X.; Huang, P. W.; Huang, X.; Huang, X. T.; Huber, P.; Hussain, G.; Isvan, Z.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiang, H. J.; Jiang, W. Q.; Jiao, J. B.; Johnson, R. A.; Joseph, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Lai, C. Y.; Lai, W. C.; Lai, W. H.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, M. K. P.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Lewis, C. A.; Li, B.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, J.; Li, N. Y.; Li, Q. J.; Li, S. F.; Li, S. C.; Li, W. D.; Li, X. B.; Li, X. N.; Li, X. Q.; Li, Y.; Li, Y. F.; Li, Z. B.; Liang, H.; Liang, J.; Lin, C. J.; Lin, G. L.; Lin, P. Y.; Lin, S. X.; Lin, S. K.; Lin, Y. C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, B. J.; Liu, C.; Liu, D. W.; Liu, H.; Liu, J. L.; Liu, J. C.; Liu, S.; Liu, S. S.; Liu, X.; Liu, Y. B.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, A.; Luk, K. B.; Luo, T.; Luo, X. L.; Ma, L. H.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Mayes, B.; McDonald, K. T.; McFarlane, M. C.; McKeown, R. D.; Meng, Y.; Mitchell, I.; Mohapatra, D.; Monari Kebwaro, J.; Morgan, J. E.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Newsom, C.; Ngai, H. Y.; Ngai, W. K.; Nie, Y. B.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pagac, A.; Pan, H.-R.; Patton, S.; Pearson, C.; Pec, V.; Peng, J. C.; Piilonen, L. E.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, B.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Sands, W. R.; Seilhan, B.; Shao, B. B.; Shih, K.; Song, W. Y.; Steiner, H.; Stoler, P.; Stuart, M.; Sun, G. X.; Sun, J. L.; Tagg, N.; Tam, Y. H.; Tanaka, H. K.; Tang, W.; Tang, X.; Taychenachev, D.; Themann, H.; Torun, Y.; Trentalange, S.; Tsai, O.; Tsang, K. V.; Tsang, R. H. M.; Tull, C. E.; Tung, Y. C.; Viaux, N.; Viren, B.; Virostek, S.; Vorobel, V.; Wang, C. H.; Wang, L. S.; Wang, L. Y.; Wang, L. Z.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, T.; Wang, W.; Wang, W. W.; Wang, X. T.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Webber, D. M.; Wei, H. Y.; Wei, Y. D.; Wen, L. J.; Wenman, D. L.; Whisnant, K.; White, C. G.; Whitehead, L.; Whitten, C. A.; Wilhelmi, J.; Wise, T.; Wong, H. C.; Wong, H. L. H.; Wong, J.; Wong, S. C. F.; Worcester, E.; Wu, F. F.; Wu, Q.; Xia, D. M.; Xia, J. K.; Xiang, S. T.; Xiao, Q.; Xing, Z. Z.; Xu, G.; Xu, J. Y.; Xu, J. L.; Xu, J.; Xu, W.; Xu, Y.; Xue, T.; Yan, J.; Yang, C. G.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Yeh, M.; Yeh, Y. S.; Yip, K.; Young, B. L.; Yu, G. Y.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, F. H.; Zhang, H. H.; Zhang, J. W.; Zhang, K.; Zhang, Q. X.; Zhang, Q. M.; Zhang, S. H.; Zhang, X. T.; Zhang, Y. C.; Zhang, Y. H.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. F.; Zhao, Y. B.; Zheng, L.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhou, Z. Y.; Zhuang, H. L.; Zimmerman, S.; Zou, J. H.

    2016-03-01

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of νbare oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin2 2θ13 and the effective mass splitting Δ mee2. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors' baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This paper describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  15. The detector system of the Daya Bay reactor neutrino experiment

    SciTech Connect

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 213 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrino mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.

  16. Positronium signature in organic liquid scintillators for neutrino experiments

    SciTech Connect

    Franco, D.; Consolati, G.; Trezzi, D.

    2011-01-15

    Electron antineutrinos are commonly detected in liquid scintillator experiments via inverse {beta} decay by looking at the coincidence between the reaction products: neutrons and positrons. Prior to positron annihilation, an electron-positron pair may form an orthopositronium (o-Ps) state, with a mean lifetime of a few nanoseconds. Even if the o-Ps decay is speeded up by spin-flip or pick-off effects, it may introduce distortions in the photon emission time distribution, crucial for position reconstruction and pulse shape discrimination algorithms in antineutrino experiments. Reversing the problem, the o-Ps-induced time distortion represents a new signature for tagging antineutrinos in liquid scintillator. In this article, we report the results of measurements of the o-Ps formation probability and lifetime for the most used solvents for organic liquid scintillators in neutrino physics (pseudocumene, linear alkyl benzene, phenylxylylethane, and dodecane). We characterize also a mixture of pseudocumene +1.5 g/l of 2,5-diphenyloxazole, a fluor acting as wavelength shifter. In the second part of the article, we demonstrate that the o-Ps-induced distortion of the scintillation photon emission time distributions represent an optimal signature for tagging positrons on an event by event basis, potentially enhancing the antineutrino detection.

  17. Measurement of low energy neutrino cross sections with the PEANUT experiment

    SciTech Connect

    Russo, A.

    2011-11-23

    The PEANUT experiment was designed to study neutrino interactions in the few GeV range using the NuMi beam at Fermilab. The detector uses a hybrid technique, being made of nuclear emulsions and scintillator trackers. Emulsion films act as a tracking device and they are interleaved with lead plates used as neutrino target. The detector is designed to reconstruct the topology of neutrino interactions at the single particle level. We present here the full reconstruction and analysis of a sample of 147 neutrino interactions occurred in the PEANUT detector and the measurement of the quasi-elastic, resonance and deep-inelastic contributions to the total charged current cross-section. This technique could be applied for the beam monitoring for future neutrino facilities.

  18. Results and Status of the T2K and NOvA long-baseline neutrino experiments

    NASA Astrophysics Data System (ADS)

    Muether, Mathew

    2016-03-01

    The discovery of neutrino oscillations and the resulting implication that neutrinos have mass, recently awarded the Nobel Prize in Physics, has bolstered a world-wide effort to exploit this effect as a handle on the properties of neutrinos. In the decades since the initial discovery of neutrino oscillations, great strides have been made in understanding the nature of these elusive particles, yet important and fundamental questions remain open, such as: How are the neutrino masses ordered? And Do neutrinos and antineutrinos oscillate differently? The current generation of accelerator based long-baseline neutrino oscillation experiments, T2K in Japan and NOvA in the United States, are actively pursuing the answers to these questions. In this talk, I will review the recent results and current status of the T2K and NOvA long-baseline neutrino experiments.

  19. The Science and Strategy for Phasing of the Long-Baseline Neutrino Experiment

    SciTech Connect

    Diwan, Milind V.

    2012-05-22

    This note is about the principles behind a phased plan for realizing a Long-Baseline Neutrino Experiment(LBNE) in the U.S.. The most important issue that must be resolved is the direction of the first phase of the experiment. Based on both scientific and programmatic considerations, the U.S. should pursue the best option for accelerator neutrino physics, which is the longer baseline towards Homestake with an optimizedbroadband intense beam.

  20. Study of muon neutrino and muon antineutrino disappearance with the NOvA neutrino oscillation experiment

    SciTech Connect

    Pawloski, Gregory

    2014-06-30

    The primary goal of this working group is to study the disappearance rate of νμ charged current events in order to measure the mixing angle θ23 and the magnitude of the neutrino mass square splitting Δm 232.

  1. Inner structure and outer limits: Precision QCD and electroweak tests from neutrino experiments

    NASA Astrophysics Data System (ADS)

    Fleming, Bonnie Tamminga

    Neutrinos are both excellent probes for discovering the secrets of QCD and elusive particles continually surprising us. This thesis reports first on a proton structure measurement, specifically the extraction of the proton structure function F2 from CCFR neutrino-nucleon differential cross sections. The F2 results are in good agreement with the F2 measured in muon scattering above Q2 = 1 GeV2. Comparison of the two sets of data below Q2 = 1 GeV2, which provides information on the axial vector contribution, is discussed. The thesis also addresses the nature of neutrinos. Do neutrinos have mass? Do they have other Beyond-the-Standard-Model properties that can give us clues to their nature? Recent evidence from neutrino oscillation experiments from around the world indicate that neutrinos may oscillate between their different flavors and therefore may have mass. The MiniBooNE experiment discussed here will be able to address this oscillation phenomenon as well as other possible beyond Standard Model neutrino properties.

  2. The Radiometer Atmospheric Cubesat Experiment

    NASA Astrophysics Data System (ADS)

    Lim, B.; Bryk, M.; Clark, J.; Donahue, K.; Ellyin, R.; Misra, S.; Romero-Wolf, A.; Statham, S.; Steinkraus, J.; Lightsey, E. G.; Fear, A.; Francis, P.; Kjellberg, H.; McDonald, K.

    2014-12-01

    The Jet Propulsion Laboratory (JPL) has been developing the Radiometer Atmospheric CubeSat Experiment (RACE) since 2012, which consists of a water vapor radiometer integrated on a 3U CubeSat platform. RACE will measure 2 channels of the 183 GHz water vapor line, and will be used to validate new low noise amplifier (LNA) technology and a novel amplifier based internal calibration subsystem. The 3U spacecraft is provided by the University of Texas at Austin's Satellite Design Laboratory. RACE will advance the technology readiness level (TRL) of the 183 GHz receiver subsystem from TRL 4 to TRL 6 and a CubeSat 183 GHz radiometer system from TRL 4 to TRL 7. Measurements at 183 GHz are used to retrieve integrated products and vertical profiles of water vapor. Current full scale satellite missions that can utilize the technology include AMSU, ATMS, SSMIS and Megha-Tropiques. The LNAs are designed at JPL, based on a 35 nm indium phosphide (InP) high-electron-mobility transistors (HEMT) technology developed by Northrop Grumman. The resulting single chip LNAs require only 25 mW of power. Current pre-launch instrument performance specifications include an RF gain of over 30 dB and a room noise figure of < 9.5 dB. The noise figure is dominated by the insertion loss of the Dicke switch which at these frequencies are > 5dB. If a coupler based calibration system is shown to be sufficient, future receiver systems will have noise figures < 4 dB. The gain and noise figure variation over temperature is approximately 0.55 dB/K. The NEDT of the system is < 1K, and on orbit performance is expected to improve due to the thermal environment. The current system is configured for direct detection to reduce power consumption by eliminating the need for a local oscillator. A 2012 NASA CubeSat Launch Initiative (CSLI) selection, RACE is manifested for launch on the Orbital 3 (Orb-3) mission scheduled for October 2014. RACE will be deployed from the International Space Station (ISS) by NanoRacks.

  3. Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS.

    PubMed

    Adamson, P; Anghel, I; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; McGowan, A M; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Moed Sher, S; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2013-06-21

    We report measurements of oscillation parameters from ν(μ) and ν(μ) disappearance using beam and atmospheric data from MINOS. The data comprise exposures of 10.71×10(20) protons on target in the ν(μ)-dominated beam, 3.36×10(20) protons on target in the ν(μ)-enhanced beam, and 37.88 kton yr of atmospheric neutrinos. Assuming identical ν and ν oscillation parameters, we measure |Δm2| = (2.41(-0.10)(+0.09))×10(-3)  eV2 and sin2(2θ) = 0.950(-0.036)(+0.035). Allowing independent ν and ν oscillations, we measure antineutrino parameters of |Δm2| = (2.50(-0.25)(+0.23))×10(-3)  eV2 and sin2(2θ) = 0.97(-0.08)(+0.03), with minimal change to the neutrino parameters. PMID:23829728

  4. Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Backhouse, C.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Frohne, M. V.; Gallagher, H. R.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Himmel, A.; Holin, A.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mathis, M.; Mayer, N.; McGowan, A. M.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Oliver, W. P.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Phan-Budd, S.; Plunkett, R. K.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tinti, G.; Tognini, S. C.; Toner, R.; Torretta, D.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.

    2013-06-01

    We report measurements of oscillation parameters from νμ and ν¯μ disappearance using beam and atmospheric data from MINOS. The data comprise exposures of 10.71×1020 protons on target in the νμ-dominated beam, 3.36×1020 protons on target in the ν¯μ-enhanced beam, and 37.88 kton yr of atmospheric neutrinos. Assuming identical ν and ν¯ oscillation parameters, we measure |Δm2|=(2.41-0.10+0.09)×10-3eV2 and sin⁡2(2θ)=0.950-0.036+0.035. Allowing independent ν and ν¯ oscillations, we measure antineutrino parameters of |Δm¯2|=(2.50-0.25+0.23)×10-3eV2 and sin⁡2(2θ¯)=0.97-0.08+0.03, with minimal change to the neutrino parameters.

  5. Measurement of neutrino and antineutrino oscillations using beam and atmospheric data in MINOS.

    PubMed

    Adamson, P; Anghel, I; Backhouse, C; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; McGowan, A M; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Moed Sher, S; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tinti, G; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2013-06-21

    We report measurements of oscillation parameters from ν(μ) and ν(μ) disappearance using beam and atmospheric data from MINOS. The data comprise exposures of 10.71×10(20) protons on target in the ν(μ)-dominated beam, 3.36×10(20) protons on target in the ν(μ)-enhanced beam, and 37.88 kton yr of atmospheric neutrinos. Assuming identical ν and ν oscillation parameters, we measure |Δm2| = (2.41(-0.10)(+0.09))×10(-3)  eV2 and sin2(2θ) = 0.950(-0.036)(+0.035). Allowing independent ν and ν oscillations, we measure antineutrino parameters of |Δm2| = (2.50(-0.25)(+0.23))×10(-3)  eV2 and sin2(2θ) = 0.97(-0.08)(+0.03), with minimal change to the neutrino parameters.

  6. Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Palazzo, Antonio

    2016-05-01

    Several anomalies recorded in short-baseline neutrino experiments suggest the possibility that the standard 3-flavor framework may be incomplete and point towards a manifestation of new physics. Light sterile neutrinos provide a credible solution to these puzzling results. Here, we present a concise review of the status of the neutrino oscillations within the 3+1 scheme, the minimal extension of the standard 3-flavor framework endowed with one sterile neutrino species. We emphasize the potential role of LBL experiments in the searches of CP violation related to sterile neutrinos and their complementarity with the SBL experiments.

  7. Balloon atmospheric propagation experiment measurements

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1973-01-01

    High altitude balloon measurements on laser beam fading during propagation through turbulent atmosphere show that a correlation between fading strength and stellar scintillation magnitudes exists. Graphs for stellar scintillation as a function of receiver aperture are used to predict fading bit error rates for neodymium-yag laser communication system.

  8. ANTARES and Baikal: Recent results from underwater neutrino telescopes

    NASA Astrophysics Data System (ADS)

    Schüssler, Fabian

    2016-07-01

    Two Northern hemisphere neutrino telescopes are currently searching for astrophysical neutrinos in the TeV/PeV range: ANTARES and Baikal. Both observatories utilize various signatures like a high energy excess over the atmospheric neutrino flux, searches for localized neutrino sources of various extensions and multi-messenger analyses based on time and/or space coincidences with other cosmic probes. We here review the status of both experiments and discuss a selection of recent results.

  9. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S

    2010-12-24

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams (?Beta Beams?), one based on decays of stored muon beams (?Neutrino Factory?), and one based on the decays of an intense pion beam (?Superbeam?). In this paper we discuss the challenges each design team must face and the R&D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R&D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  10. Accelerator Challenges and Opportunities for Future Neutrino Experiments

    SciTech Connect

    Zisman, Michael S.

    2011-10-06

    There are three types of future neutrino facilities currently under study, one based on decays of stored beta-unstable ion beams ('Beta Beams'), one based on decays of stored muon beams ('Neutrino Factory'), and one based on the decays of an intense pion beam ('Superbeam'). In this paper we discuss the challenges each design team must face and the R and D being carried out to turn those challenges into technical opportunities. A new program, the Muon Accelerator Program, has begun in the U.S. to carry out the R and D for muon-based facilities, including both the Neutrino Factory and, as its ultimate goal, a Muon Collider. The goals of this program will be briefly described.

  11. Neutrino - Induced Muons in the MINOS Far Detector

    SciTech Connect

    Rebel, Brian J.

    2004-08-25

    The Main Injector Neutrino Oscillation Search (MINOS) is an experiment designed to probe the phenomenon of neutrino oscillations. When MINOS is completed it will consist of a neutrino beam and two detectors, which are separated by a distance of 735 km. The near detector measures the energy distribution and ux of a beam of muon neutrinos produced at Fermilab, while the far detector, located in Soudan, MN, measures these same neutrino properties 735 km away. The signal for a detection of neutrino oscillations is a de cit of neutrinos at the far detector compared to expectations based on the near detector measurements. In addition to measuring beam neutrinos, the far detector can be used to measure neutrinos produced in cosmic ray interactions in the atmosphere. While waiting for the beam to begin running, the far detector was used in this mode. Several previous experiments, such as Super-K and MACRO, have suggested that the atmospheric neutrinos oscillate between di erent avor states. This dissertation looks for an oscillation signal in the atmospheric neutrinos by using muons resulting from the interaction of the atmospheric neutrinos in the rock surrounding the MINOS far detector.

  12. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, J.

    2015-12-31

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter for electron neutrino appearance oscillation experiments. Current experiments typically begin with the muon neutrino cross section and apply theoretical corrections to obtain a prediction for the electron neutrino cross section. However, at present no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments exists. We present the cross sections for a CCQE-like process determined using the MINERvA detector, which are the first measurements of any exclusive reaction in few-GeV electron neutrino interactions. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^{2}$. We also compute the ratio to a muon neutrino cross-section in $Q^{2}$ from MINERvA. We find satisfactory agreement between these measurements and the predictions of the GENIE generator. We furthermore report on a photon-like background unpredicted by the generator which we interpret as neutral-coherent diffractive scattering from hydrogen.

  13. Electron Neutrino Charged-Current Quasielastic Scattering in the MINERvA Experiment

    SciTech Connect

    Wolcott, Jeremy

    2015-10-28

    The electron-neutrino charged-current quasielastic (CCQE) cross section on nuclei is an important input parameter to appearance-type neutrino oscillation experiments. Current experiments typically work from the muon neutrino cross section and apply corrections from theoretical arguments to obtain a prediction for the electron neutrino cross section, but to date there has been no experimental verification of the estimates for this channel at an energy scale appropriate to such experiments. We present the first measurement of an exclusive reaction in few-GeV electron neutrino interactions, namely, the cross section for a CCQE-like process, made using the MINERvA detector. The result is given as differential cross-sections vs. the electron energy, electron angle, and square of the four-momentum transferred to the nucleus, $Q^2$. We also compute the ratio to a muon neutrino cross-section in $Q^2$ from MINERvA. We find satisfactory agreement between this measurement and the predictions of the GENIE generator.

  14. SNO Data: Results from Experiments at the Sudbury Neutrino Observatory

    DOE Data Explorer

    The Sudbury Neutrino Observatory (SNO) was built 6800 feet under ground, in INCO's Creighton mine near Sudbury, Ontario. SNO is a heavy-water Cherenkov detector that is designed to detect neutrinos produced by fusion reactions in the sun. It uses 1000 tonnes of heavy water, on loan from Atomic Energy of Canada Limited (AECL), contained in a 12 meter diameter acrylic vessel. Neutrinos react with the heavy water (D2O) to produce flashes of light called Cherenkov radiation. This light is then detected by an array of 9600 photomultiplier tubes mounted on a geodesic support structure surrounding the heavy water vessel. The detector is immersed in light (normal) water within a 30 meter barrel-shaped cavity (the size of a 10 story building!) excavated from Norite rock. Located in the deepest part of the mine, the overburden of rock shields the detector from cosmic rays. The detector laboratory is extremely clean to reduce background signals from radioactive elements present in the mine dust which would otherwise hide the very weak signal from neutrinos. (From http://www.sno.phy.queensu.ca/]

    The SNO website provides access to various datasets. See also the SNO Image Catalog at http://www.sno.phy.queensu.ca/sno/images/ and computer-generated images of SNO events at http://www.sno.phy.queensu.ca/sno/events/ and the list of published papers.

  15. Present and future high-energy accelerators for neutrino experiments

    SciTech Connect

    Kourbanis, I.; /Fermilab

    2007-06-01

    There is an active neutrino program making use of the high-energy (larger than 50 GeV) accelerators both in USA at Fermilab with NuMI and at CERN in Europe with CNGS. In this paper we will review the prospects for high intensity high energy beams in those two locations during the next decade.

  16. Shifts of neutrino oscillation parameters in reactor antineutrino experiments with non-standard interactions

    NASA Astrophysics Data System (ADS)

    Li, Yu-Feng; Zhou, Ye-Ling

    2014-11-01

    We discuss reactor antineutrino oscillations with non-standard interactions (NSIs) at the neutrino production and detection processes. The neutrino oscillation probability is calculated with a parametrization of the NSI parameters by splitting them into the averages and differences of the production and detection processes respectively. The average parts induce constant shifts of the neutrino mixing angles from their true values, and the difference parts can generate the energy (and baseline) dependent corrections to the initial mass-squared differences. We stress that only the shifts of mass-squared differences are measurable in reactor antineutrino experiments. Taking Jiangmen Underground Neutrino Observatory (JUNO) as an example, we analyze how NSIs influence the standard neutrino measurements and to what extent we can constrain the NSI parameters. Long baseline reactor antineutrino experiments, such as KamLAND [10,11]. The aim of these experiments is to observe the slow oscillation with Δ21 and measure the corresponding oscillation parameters Δm212 and θ12. Short baseline reactor antineutrino experiments, such as Daya Bay [1-3], Double CHOOZ [4], RENO [5]. They are designed to observe the fast oscillation with Δ31 and Δ32 (or equivalently, Δee[3]) and measure the corresponding oscillation parameters Δmee2, θ13. Medium baseline reactor antineutrino experiments. They stand for the next generation experiments of reactor antineutrinos, with typical representatives of Jiangmen Underground Neutrino Observatory (JUNO) [12] and RENO-50 [13]. They can determine the neutrino mass ordering (m1experiments. High-dimensional operators originating from new physics can contribute to the neutrino oscillation in the form of non-standard interactions (NSIs) [14

  17. Neutrino Detectors

    NASA Astrophysics Data System (ADS)

    von Feilitzsch, Franz; Lanfranchi, Jean-Côme; Wurm, Michael

    The neutrino was postulated by Wolfgang Pauli in the early 1930s, but could only be detected for the first time in the 1950s. Ever since scientists all around the world have worked on the detection and understanding of this particle which so scarcely interacts with matter. Depending on the origin and nature of the neutrino, various types of experiments have been developed and operated. In this entry, we will review neutrino detectors in terms of neutrino energy and associated detection technique as well as the scientific outcome of some selected examples. After a brief historical introduction, the detection of low-energy neutrinos originating from nuclear reactors or from the Earth is used to illustrate the principles and difficulties which are encountered in detecting neutrinos. In the context of solar neutrino spectroscopy, where the neutrino is used as a probe for astrophysics, three different types of neutrino detectors are presented - water Čerenkov, radiochemical, and liquid-scintillator detectors. Moving to higher neutrino energies, we discuss neutrinos produced by astrophysical sources and from accelerators. The entry concludes with an overview of a selection of future neutrino experiments and their scientific goals.

  18. Observation of Electron Neutrino Appearance in the NuMI Beam with the NOvA Experiment

    SciTech Connect

    Niner, Evan David

    2015-01-01

    NOvA is a long-baseline neutrino oscillation experiment that uses two functionally identical detectors separated by 810 kilometers at locations 14 milliradians off-axis from the NuMI muon neutrino beam at Fermilab. At these locations the beam energy peaks at 2 GeV. This baseline is the longest in the world for an accelerator-based neutrino oscillation experiment, which enhances the sensitivity to the neutrino mass ordering. The experiment studies oscillations of the muon neutrino and anti-neutrino beam that is produced. Both detectors completed commissioning in the summer of 2014 and continue to collect data. One of the primary physics goals of the experiment is the measurement of electron neutrino appearance in the muon neutrino beam which yields measurements of the oscillation parameters sin213, δ , and the neutrino mass ordering within the standard model of neutrino oscillations. This thesis presents the analysis of data collected between February 2014 and May 2015, corresponding to 3.52 X 1020 protons-on-target. In this first analysis NOvA recorded 6 electron neutrino candidates, which is a 3.3σ observation of electron neutrino appearance. The T2K experiment performs the same measurement on a baseline of 295 kilometers and has a 1 σ preference for the normal mass ordering over the inverted ordering over the phase space of the CP violating parameter δ, which is also weakly seen in the NOvA result. By the summer of 2016 NOvA will triple its statistics due to increased beam power and a completed detector. If electron neutrinos continue to be observed at the current rate NOvA will be able to establish a mass ordering preference at a similar confidence level to T2K.

  19. Measuring the mass of a sterile neutrino with a very short baseline reactor experiment

    SciTech Connect

    Latimer, D. C.; Escamilla, J.; Ernst, D. J.

    2007-04-15

    An analysis of the world's neutrino oscillation data, including sterile neutrinos, [M. Sorel, C. M. Conrad, and M. H. Shaevitz, Phys. Rev. D 70, 073004 (2004)] found a peak in the allowed region at a mass-squared difference {delta}m{sup 2} congruent with 0.9 eV{sup 2}. We trace its origin to harmonic oscillations in the electron survival probability P{sub ee} as a function of L/E, the ratio of baseline to neutrino energy, as measured in the near detector of the Bugey experiment. We find a second occurrence for {delta}m{sup 2} congruent with 1.9 eV{sup 2}. We point out that the phenomenon of harmonic oscillations of P{sub ee} as a function of L/E, as seen in the Bugey experiment, can be used to measure the mass-squared difference associated with a sterile neutrino in the range from a fraction of an eV{sup 2} to several eV{sup 2} (compatible with that indicated by the LSND experiment), as well as measure the amount of electron-sterile neutrino mixing. We observe that the experiment is independent, to lowest order, of the size of the reactor and suggest the possibility of a small reactor with a detector sitting at a very short baseline.

  20. Short-baseline electron neutrino oscillation length after the Troitsk experiment

    NASA Astrophysics Data System (ADS)

    Giunti, C.; Laveder, M.; Li, Y. F.; Long, H. W.

    2013-01-01

    We discuss the implications for short-baseline electron neutrino disappearance in the 3+1 mixing scheme of the recent Troitsk bounds on the mixing of a neutrino with mass between 2 and 100 eV. Considering the Troitsk data in combination with the results of short-baseline νe and ν¯e disappearance experiments, which include the reactor and Gallium anomalies, we derive a 2σ allowed range for the effective neutrino squared-mass difference between 0.85 and 43eV2. The upper bound implies that it is likely that oscillations in distance and/or energy can be observed in radioactive source experiments. It is also favorable for the ICARUS@CERN experiment, in which it is likely that oscillations are not washed out in the near detector. We discuss also the implications for neutrinoless double-β decay.

  1. Terascale Physics Opportunities at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    This paper presents the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering on Glass). This experiment uses a Tevatron-based neutrino beam to obtain over an order of magnitude higher statistics than presently available for the purely weak processes νμ + e- → νμ + e- and νμ + e- → νe + μ-. A sample of Deep Inelastic Scattering events which is over two orders of magnitude larger than past samples will also be obtained. As a result, NuSOnG will be unique among present and planned experiments for its ability to probe neutrino couplings to Beyond the Standard Model physics. Many Beyond Standard Model theories physics predict a rich hierarchy of TeV-scale new states that can correct neutrino cross-sections, through modifications of Zνν couplings, tree-level exchanges of new particles such as Z‧'s, or through loop-level oblique corrections to gauge boson propagators. These corrections are generic in theories of extra dimensions, extended gauge symmetries, supersymmetry, and more. The sensitivity of NuSOnG to this new physics extends beyond 5 TeV mass scales. This paper reviews these physics opportunities.

  2. Investigation of alternative mechanisms to neutrino oscillations in the MINOS experiment; Investigacao de Mecanismos Alternativos a Oscilacao de Neutrinos no Experimentos MINOS

    SciTech Connect

    de Abreu Barbosa Coelho, Joao

    2012-01-01

    The neutrino oscillation model is very successful in explaining a large variety of experiments. The model is based on the premise that the neutrinos that interact through the weak force via charged current are not mass eigenstates, but a superposition of them. In general, a quantum superposition is subject to loss of coherence, so that pure states tend toward mixed states. This type of evolution is not possible within the context of isolated quantum systems because the evolution is unitary and, therefore, is invariant under time reversal. By breaking unitarity, an arrow of time is introduced and the characteristic effect for neutrinos is a damping of oscillations. In this thesis, some phenomenological decoherence and decay models are investigated, which could be observed by MINOS, a neutrino oscillation experiment that consists of measuring the neutrino flux produced in a particle accelerator 735 km away. We analyse the disappearance of muon neutrinos in MINOS. Information from other experiments is used to constrain the number of parameters, leaving only one extra parameter in each model. We assume a power law energy dependence of the decoherence parameter. The official MINOS software and simulation are used to obtain the experiment's sensitivities to the effects of unitarity breaking considered.

  3. Proposed solar neutrino experiment using /sup 81/Br(nu,e/sup -/)/sup 81/Kr

    SciTech Connect

    Hurst, G.S.; Chen, C.H.; Kramer, S.D.; Allman, S.L.

    1984-12-01

    It has now been shown that it is feasible to measure the /sup 7/Be neutrino source in the sun by using the reaction /sup 81/Br(nu,e/sup -/)/sup 81/Kr in a radiochemical experiment. Such an experiment would be quite similar to the Davis, Cleveland, and Rowley method for measuring the /sup 8/B neutrino using /sup 37/Cl(nu,e/sup -/)/sup 37/Ar except that the resonance ionization spectroscopy (RIS) method (instead of decay counting) would be employed to count the 2 x 10/sup 5/-yr /sup 81/Kr atoms.

  4. Neutrino oscillations with the MINOS, MINOS+, T2K, and NOvA experiments

    NASA Astrophysics Data System (ADS)

    Nakaya, Tsuyoshi; Plunkett, Robert K.

    2016-01-01

    This paper discusses recent results and near-term prospects of the long-baseline neutrino experiments MINOS, MINOS+, T2K and NOvA. The non-zero value of the third neutrino mixing angle θ 13 allows experimental analysis in a manner which explicitly exhibits appearance and disappearance dependencies on additional parameters associated with mass-hierarchy, CP violation, and any non-maximal θ 23. These current and near-future experiments begin the era of precision accelerator long-baseline measurements and lay the framework within which future experimental results will be interpreted.

  5. MOON for a next-generation neutrino-less double-beta decay experiment: Present status and perspective

    SciTech Connect

    Shima, T.; Doe, P.J.; Ejiri, H.; Elliot, S.R.; Engel, J.; Finger, M.; Finger, M.; Fushimi, K.; Gehman, V.M.; Greenfield, M.B.; Hazama, R.; /Hiroshima U. /NIRS, Chiba

    2008-01-01

    The performance of the MOON detector for a next-generation neutrino-less double-beta decay experiment was evaluated by means of the Monte Carlo method. The MOON detector was found to be a feasible solution for the future experiment to search for the Majorana neutrino mass in the range of 100-30 meV.

  6. Non-standard interactions in propagation at the Deep Underground Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Coloma, Pilar

    2016-03-01

    We study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ɛ ˜ {O} (0.05 - 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.

  7. Non-Standard Interactions in propagation at the Deep Underground Neutrino Experiment

    DOE PAGESBeta

    Coloma, Pilar

    2016-03-03

    Here, we study the sensitivity of current and future long-baseline neutrino oscillation experiments to the effects of dimension six operators affecting neutrino propagation through Earth, commonly referred to as Non-Standard Interactions (NSI). All relevant parameters entering the oscillation probabilities (standard and non-standard) are considered at once, in order to take into account possible cancellations and degeneracies between them. We find that the Deep Underground Neutrino Experiment will significantly improve over current constraints for most NSI parameters. Most notably, it will be able to rule out the so-called LMA-dark solution, still compatible with current oscillation data, and will be sensitive to off-diagonal NSI parameters at the level of ε ~more » $$ \\mathcal{O} $$ (0.05 – 0.5). We also identify two degeneracies among standard and non-standard parameters, which could be partially resolved by combining T2HK and DUNE data.« less

  8. Searching for Physics beyond the Standard Model with Accelerator Neutrino Experiments

    SciTech Connect

    Louis, William C

    2008-01-01

    The MiniBooNE experiment at Fermilab was designed to test the LSND evidence for {bar {nu}}{sub {mu}} {yields} {bar {nu}}{sub e} oscillations . The first MiniBooNE oscillation result in neutrino mode shows no significant excess of events at higher energies (E{sub {nu}} > 475 MeV), although a sizeable excess is observed at lower energies (E{sub {nu}}< 475 MeV). The lack of a significant excess at higher energies allows MiniBooNE to rule out simple 2 - {nu} oscillations as an explanation of the LSND signal. However, the low-energy excess is presently unexplained. Additional antineutrino data and NuMI data may allow the collaboration to determine whether the excess is due, for example, to a neutrino neutral-current radiative interaction or to neutrino oscillations involving sterile neutrinos. If the excess is consistent with being due to sterile neutrinos, then future experiments at FNAL (BooNE) or ORNL (OscSNS) could prove their existence.

  9. Neutrinos: Theory and Phenomenology

    SciTech Connect

    Parke, Stephen

    2013-10-22

    The theory and phenomenology of neutrinos will be addressed, especially that relating to the observation of neutrino flavor transformations. The current status and implications for future experiments will be discussed with special emphasis on the experiments that will determine the neutrino mass ordering, the dominant flavor content of the neutrino mass eigenstate with the smallest electron neutrino content and the size of CP violation in the neutrino sector. Beyond the neutrino Standard Model, the evidence for and a possible definitive experiment to confirm or refute the existence of light sterile neutrinos will be briefly discussed.

  10. Proposal to perform a high - statisics neutrino scattering experiment using a fine - grained detector in the NuMI Beam

    SciTech Connect

    Morfin, J.G.; McFarland, K.; /Rochester U.

    2003-12-01

    The NuMI facility at Fermilab will provide an extremely intense beam of neutrinos for the MINOS neutrino-oscillation experiment. The spacious and fully-outfitted MINOS near detector hall will be the ideal venue for a high-statistics, high-resolution {nu} and {bar {nu}}-nucleon/nucleus scattering experiment. The experiment described here will measure neutrino cross-sections and probe nuclear effects essential to present and future neutrino-oscillation experiments. Moreover, with the high NuMI beam intensity, the experiment will either initially address or significantly improve our knowledge of a wide variety of neutrino physics topics of interest and importance to the elementary-particle and nuclear-physics communities.

  11. Neutrino oscillation results from MINOS

    SciTech Connect

    Sousa, Alexandre; /Oxford U.

    2007-08-01

    The Main Injector Neutrino Oscillation Search (MINOS) long-baseline experiment has been actively collecting beam data since 2005, having already accumulated 3 x 10{sup 20} protons-on-target (POT). MINOS uses the Neutrinos at the Main Injector (NuMI) neutrino beam measured in two locations: at Fermilab, close to beam production, and 735 km downstream, in Northern Minnesota. By observing the oscillatory structure in the neutrino energy spectrum, MINOS can precisely measure the neutrino oscillation parameters in the atmospheric sector. These parameters were determined to be |{Delta}m{sub 32}{sup 2}| = 2.74{sub -0.26}{sup +0.44} x 10{sup -3} eV{sup 2}/c{sup 4} and sin{sup 2}(2{theta}{sub 23}) > 0.87 (68% C.L.) from analysis of the first year of data, corresponding to 1.27 x 10{sup 20} POT.

  12. Production and suppression of {sup 11}C in the solar neutrino experiment Borexino

    SciTech Connect

    Meindl, Quirin; Bellini, G.; Benziger, J.; Bonetti, S.; Avanzini, M. Buizza; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; Chepurnov, A.; Dalnoki-Veress, F.; D'Angelo, D.; Davini, S.; Kerret, H. de; Derbin, A.; Etenko, A.; Feilitzsch, F. von; Fomenko, K.; Franco, D.

    2011-04-27

    Cosmogenic {sup 11}C is produced in-situ by atmospheric muons and forms the main background for the measurement of solar pep- and CNO-neutrinos. However, FLUKA simulations show that the majority of {sup 11}C is accompanied by a free neutron in the final state, thus allowing for an efficient tagging method, the so-called Three-Fold Coincidence technique. The technique and its first applications on Borexino data are presented.

  13. Production and suppression of 11C in the solar neutrino experiment Borexino

    NASA Astrophysics Data System (ADS)

    Meindl, Quirin; Bellini, G.; Benziger, J.; Bonetti, S.; Avanzini, M. Buizza; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Carraro, C.; Chavarria, A.; Chepurnov, A.; Dalnoki-Veress, F.; D'Angelo, D.; Davini, S.; de Kerret, H.; Derbin, A.; Etenko, A.; von Feilitzsch, F.; Fomenko, K.; Franco, D.; Galbiati, C.; Gazzana, S.; Ghiano, C.; Giammarchi, M.; Goeger-Neff, M.; Goretti, A.; Guardincerri, E.; Hardy, S.; Ianni, Aldo; Ianni, Andrea; Joyce, M.; Kobychev, V.; Korga, G.; Kryn, D.; Laubenstein, M.; Leung, M.; Lewke, T.; Litvinovich, E.; Loer, B.; Lombardi, P.; Ludhova, L.; Machulin, I.; Manecki, S.; Maneschg, W.; Manuzio, G.; Meindl, Q.; Meroni, E.; Miramonti, L.; Misiaszek, M.; Montanari, D.; Muratova, V.; Oberauer, L.; Obolensky, M.; Ortica, F.; Pallavicini, M.; Papp, L.; Perasso, L.; Perasso, S.; Pocar, A.; Raghavan, R. S.; Ranucci, G.; Razeto, A.; Re, A.; Risso, P.; Romani, A.; Rountree, D.; Sabelnikov, A.; Saldanha, R.; Salvo, C.; Schönert, S.; Simgen, H.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Sukhotin, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Vignaud, D.; Vogelaar, R. B.; Winter, J.; Wojcik, M.; Wright, A.; Wurm, M.; Xu, J.; Zaimidoroga, O.; Zavatarelli, S.; Zuzel, G.

    2011-04-01

    Cosmogenic 11C is produced in-situ by atmospheric muons and forms the main background for the measurement of solar pep- and CNO-neutrinos. However, FLUKA simulations show that the majority of 11C is accompanied by a free neutron in the final state, thus allowing for an efficient tagging method, the so-called Three-Fold Coincidence technique. The technique and its first applications on Borexino data are presented.

  14. Checking T and CPT violation with sterile neutrino

    NASA Astrophysics Data System (ADS)

    Pant, Yogita; Diwakar, Sujata; Singh, Jyotsna; Singh, R. B.

    2016-08-01

    Post LSND results, sterile neutrinos have drawn attention and motivated the high energy physics, astronomy and cosmology to probe physics beyond the standard model considering minimal 3 + 1 (3 active and 1 sterile) to 3 + N neutrino schemes. The analytical equations for neutrino conversion probabilities are developed in this work for 3 + 1 neutrino scheme. Here, we have tried to explore the possible signals of T and CPT violations with four flavor neutrino scheme at neutrino factory. Values of sterile parameters considered in this analysis are taken from two different types of neutrino experiments viz. long baseline experiments and reactor+atmospheric experiments. In this work golden and discovery channels are selected for the investigation of T violation. While observing T violation we stipulate that neutrino factory working at 50 GeV energy has the potential to observe the signatures of T violation through discovery channel if sterile parameter values are equal to that taken from reactor+atmospheric experiments. The ability of neutrino factory for constraining CPT violation is enhanced with increase in energy for normal neutrino mass hierarchy (NH). Neutrino factory with the exposure time of 500 kt-yr will be able to capture CPT violation with δc31 ≥ 3.6 ×10-23 GeV at 3σ level for NH and for IH with δc31 ≥ 4 ×10-23 GeV at 3σ level.

  15. Theta13 Neutrino Experiment at the Diablo Canyon Power Plant, LBNL Engineering Summary Report

    SciTech Connect

    Oshatz, Daryl

    2004-03-12

    This summary document describes the results of conceptual design and cost estimates performed by LBNL Engineering staff between October 10, 2003 and March 12, 2004 for the proposed {theta}{sub 13} neutrino experiment at the Diablo Canyon Power Plant (DCPP). This document focuses on the detector room design concept and mechanical engineering issues associated with the neutrino detector structures. Every effort has been made not to duplicate information contained in the last LBNL Engineering Summary Report dated October 10, 2003. Only new or updated information is included in this document.

  16. Evidence for muon neutrino oscillation in an accelerator-based experiment.

    PubMed

    Aliu, E; Andringa, S; Aoki, S; Argyriades, J; Asakura, K; Ashie, R; Berns, H; Bhang, H; Blondel, A; Borghi, S; Bouchez, J; Burguet-Castell, J; Casper, D; Cavata, C; Cervera, A; Cho, K O; Choi, J H; Dore, U; Espinal, X; Fechner, M; Fernandez, E; Fukuda, Y; Gomez-Cadenas, J; Gran, R; Hara, T; Hasegawa, M; Hasegawa, T; Hayashi, K; Hayato, Y; Helmer, R L; Hill, J; Hiraide, K; Hosaka, J; Ichikawa, A K; Iinuma, M; Ikeda, A; Inagaki, T; Ishida, T; Ishihara, K; Ishii, T; Ishitsuka, M; Itow, Y; Iwashita, T; Jang, H I; Jeon, E J; Jeong, I S; Joo, K; Jover, G; Jung, C K; Kajita, T; Kameda, J; Kaneyuki, K; Kato, I; Kearns, E; Kerr, D; Kim, C O; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kim, J Y; Kim, S; Kitching, P; Kobayashi, K; Kobayashi, T; Konaka, A; Koshio, Y; Kropp, W; Kubota, J; Kudenko, Yu; Kuno, Y; Kutter, T; Learned, J; Likhoded, S; Lim, I T; Loverre, P F; Ludovici, L; Maesaka, H; Mallet, J; Mariani, C; Maruyama, T; Matsuno, S; Matveev, V; Mauger, C; McConnel, K; McGrew, C; Mikheyev, S; Minamino, A; Mine, S; Mineev, O; Mitsuda, C; Miura, M; Moriguchi, Y; Morita, T; Moriyama, S; Nakadaira, T; Nakahata, M; Nakamura, K; Nakano, I; Nakaya, T; Nakayama, S; Namba, T; Nambu, R; Nawang, S; Nishikawa, K; Nitta, K; Nova, F; Novella, P; Obayashi, Y; Okada, A; Okumura, K; Oser, S M; Oyama, Y; Pac, M Y; Pierre, F; Rodriguez, A; Saji, C; Sakuda, M; Sanchez, F; Sarrat, A; Sasaki, T; Scholberg, K; Schroeter, R; Sekiguchi, M; Sharkey, E; Shiozawa, M; Shiraishi, K; Sitjes, G; Smy, M; Sobel, H; Stone, J; Sulak, L; Suzuki, A; Suzuki, Y; Takahashi, T; Takenaga, Y; Takeuchi, Y; Taki, K; Takubo, Y; Tamura, N; Tanaka, M; Terri, R; T'Jampens, S; Tornero-Lopez, A; Totsuka, Y; Ueda, S; Vagins, M; Walter, C W; Wang, W; Wilkes, R J; Yamada, S; Yamamoto, S; Yanagisawa, C; Yershov, N; Yokoyama, H; Yokoyama, M; Yoo, J; Yoshida, M; Zalipska, J

    2005-03-01

    We present results for nu(mu) oscillation in the KEK to Kamioka (K2K) long-baseline neutrino oscillation experiment. K2K uses an accelerator-produced nu(mu) beam with a mean energy of 1.3 GeV directed at the Super-Kamiokande detector. We observed the energy-dependent disappearance of nu(mu), which we presume have oscillated to nu(tau). The probability that we would observe these results if there is no neutrino oscillation is 0.0050% (4.0 sigma).

  17. Effective field theory treatment of the neutrino background in direct dark matter detection experiments

    NASA Astrophysics Data System (ADS)

    Dent, James B.; Dutta, Bhaskar; Newstead, Jayden L.; Strigari, Louis E.

    2016-04-01

    Distinguishing a dark matter interaction from an astrophysical neutrino-induced interaction will be major challenge for future direct dark matter searches. In this paper, we consider this issue within nonrelativistic effective field theory (EFT), which provides a well-motivated theoretical framework for determining nuclear responses to dark matter scattering events. We analyze the nuclear energy recoil spectra from the different dark matter-nucleon EFT operators, and compare them to the nuclear recoil energy spectra that are predicted to be induced by astrophysical neutrino sources. We determine that for 11 of the 14 possible operators, the dark matter-induced recoil spectra can be cleanly distinguished from the corresponding neutrino-induced recoil spectra with moderate-size detector technologies that are now being pursued, e.g., these operators would require 0.5 tonne years to be distinguished from the neutrino background for low mass dark matter. Our results imply that in most models detectors with good energy resolution will be able to distinguish a dark matter signal from a neutrino signal, without the need for much larger detectors that must rely on additional information from timing or direction. In addition we calculate up-to-date exclusion limits in the EFT model space using data from the LUX experiment.

  18. Experimental Neutrino Physics: Final Report

    SciTech Connect

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  19. Early steps towards quarks and their interactions using neutrino beams in CERN bubble chamber experiments

    NASA Astrophysics Data System (ADS)

    Perkins, Don H.

    2016-06-01

    Results from neutrino experiments at CERN in the1970's, using bubble chamber detectors filled with heavy liquids, gave early evidence for the existence of quarks and gluons as real dynamical objects. In detail, the measured moments of the non-singlet structure functions provided crucial support for the validity of the present theory of the strong inter-quark interactions, quantum chromodynamics.

  20. Prospects for reconstruction of leptonic unitarity quadrangle and neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Verma, Surender; Bhardwaj, Shankita

    2016-06-01

    After the observation of non-zero θ13 the goal has shifted to observe CP violation in the leptonic sector. Neutrino oscillation experiments can, directly, probe the Dirac CP phases. Alternatively, one can measure CP violation in the leptonic sector using Leptonic Unitarity Quadrangle (LUQ). The existence of Standard Model (SM) gauge singlets - sterile neutrinos - will provide additional sources of CP violation. We investigate the connection between neutrino survival probability and rephasing invariants of the 4 × 4 neutrino mixing matrix. In general, LUQ contain eight geometrical parameters out of which five are independent. We obtain CP asymmetry (Pνf→νf‧ -Pνbarf→νbarf‧) in terms of these independent parameters of the LUQ and search for the possibilities of extracting information on these independent geometrical parameters in short baseline (SBL) and long baseline (LBL) experiments, thus, looking for constructing LUQ and possible measurement of CP violation. We find that it is not possible to construct LUQ using data from LBL experiments because CP asymmetry is sensitive to only three of the five independent parameters of LUQ. However, for SBL experiments, CP asymmetry is found to be sensitive to all five independent parameters making it possible to construct LUQ and measure CP violation.

  1. The MARE project: a new 187Re neutrino mass experiment with sub eV sensitivity

    NASA Astrophysics Data System (ADS)

    Schaeffer, D.; Gatti, F.; Gallinaro, G.; Pergolesi, D.; Repetto, P.; Ribeiro-Gomes, M.; Kelley, R.; Kilbourne, C. A.; Porter, F. S.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Andreotti, E.; Foggetta, L.; Giuliani, A.; Pedretti, M.; Prest, M.; Rusconi, C.; Sangiorgio, S.; Arnaboldi, C.; Brofferio, C.; Capelli, S.; Cremonesi, O.; Fiorini, E.; Gorla, P.; Kraft, S.; Nucciotti, A.; Pavan, M.; Pessina, G.; Previtali, E.; Sisti, M.; Irwin, K. D.; Margesin, B.; Monfardini, A.; Beyer, J.; Galeazzi, M.; de Bernardis, P.; Calvo, M.; Masi, S.; Petcov, S.; Heeger, K.; Maruyama, R.; McCammon, D.

    2011-12-01

    A large worldwide collaboration is growing around the project of Micro-calorimeter Arrays for a Rhenium Experiment (MARE) for a direct calorimetric measurement of the neutrino mass with a sensitivity of about 0.2 eV/c2. Many groups are joining their experience and technical expertise in a common effort towards this challenging experiment which will use the most recent and advanced developments of the thermal detection technique.

  2. Simulations of the Long Baseline Neutrino Experiment for the Sieroszowice Underground Laboratory (SUNLAB)

    NASA Astrophysics Data System (ADS)

    Harańczyk, Małgorzata

    2016-02-01

    The Sieroszowice Underground Laboratory in Poland, SUNLAB, had been studied in the years 2008-2011 within the framework of the FP7 LAGUNA design study as an option for the realization of a next generation large volume neutrino observatory in Europe. However, in order to fully understand its physics capabilities, the feasibility studies of the SUNLAB laboratory have continued after 2011, including sensitivity calculations focused on the delta CP measurement for a large LArTPC detector at a distance of 950 km from CERN in a long baseline neutrino experiment. For this purpose the neutrino beam based on the SPS proton accelerator at CERN was simulated and the LAr data used to simulate the detector response.

  3. Improved Search for a Light Sterile Neutrino with the Full Configuration of the Daya Bay Experiment

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Leung, J. K. C.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2016-10-01

    This Letter reports an improved search for light sterile neutrino mixing in the electron antineutrino disappearance channel with the full configuration of the Daya Bay Reactor Neutrino Experiment. With an additional 404 days of data collected in eight antineutrino detectors, this search benefits from 3.6 times the statistics available to the previous publication, as well as from improvements in energy calibration and background reduction. A relative comparison of the rate and energy spectrum of reactor antineutrinos in the three experimental halls yields no evidence of sterile neutrino mixing in the 2 ×10-4≲|Δ m412|≲0.3 eV2 mass range. The resulting limits on sin22 θ14 are improved by approx imately a factor of 2 over previous results and constitute the most stringent constraints to date in the |Δ m412|≲0.2 eV2 region.

  4. An intermediate γ beta-beam neutrino experiment with long baseline

    NASA Astrophysics Data System (ADS)

    Meloni, Davide; Mena, Olga; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2008-07-01

    In order to address some fundamental questions in neutrino physics a wide, future programme of neutrino oscillation experiments is currently under discussion. Among those, long baseline experiments will play a crucial role in providing information on the value of θ13, the type of neutrino mass ordering and on the value of the CP-violating phase δ, which enters in 3-neutrino oscillations. Here, we consider a beta-beam setup with an intermediate Lorentz factor γ = 450 and a baseline of 1050 km. This could be achieved in Europe with a beta-beam sourced at CERN to a detector located at the Boulby mine in the United Kingdom. We consider a neutrino run alone and show that, by exploiting the oscillatory pattern of the signal, a very good sensitivity to CP-violation and the type of hierarchy can be reached. We analyse the physics potential of this setup in detail and study two different exposures (1 × 1021 and 5 × 1021 ions-kton-years). In both cases, we find that the type of neutrino mass hierarchy could be determined at 99% CL, for all values of δ, for sin 22θ13>0.03. In the high-exposure scenario, we find that the value of the CP-violating phase δ could be measured with a 99% CL error of ~ 20o if sin 22θ13>10-3, with some sensitivity down to values of sin 22θ13 simeq 10-4. The ability to determine the octant of θ23 is also studied, and good prospects are found for the high-statistics scenario.

  5. High intensity muon beam source for neutrino beam experiments

    NASA Astrophysics Data System (ADS)

    Kamal Sayed, Hisham

    2015-09-01

    High intensity muon beams are essential for Muon accelerators like Neutrino Factories and Muon Colliders. In this study we report on a global optimization of the muon beam production and capture based on end-to-end simulations of the Muon Front End. The study includes the pion beam production target geometry, capture field profile, and forming muon beam into microbunches for further acceleration. The interplay between the transverse and longitudinal beam dynamics during the capture and transport of muon beam is evaluated and discussed. The goal of the optimization is to provide a set of design parameters that delivers high intensity muon beam that could be fit within the acceptance of a muon beam accelerator.

  6. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  7. OGO-6 neutral atmospheric composition experiment

    NASA Technical Reports Server (NTRS)

    Taeusch, D. R.

    1973-01-01

    The continued analysis of data obtained from the neutral atmospheric composition experiment flown on OGO-V6 is discussed. The effort was directed toward the study of five specific areas of interest for which the OGO-V6 data were especially useful.

  8. The development of the SNO+ experiment: Scintillator timing, pulse shape discrimination, and sterile neutrinos

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Erin

    The SNO+ experiment is a multi-purpose neutrino detector which is under construction in the SNOLAB facility in Sudbury, Ontario. SNO+ will search for neutrinoless double beta decay, and will measure low energy solar neutrinos. This thesis will describe three main development activities for the SNO+ experiment: the measurement of the timing parameters for the liquid scintillator cocktail, using those timing parameters to estimate the ability of SNO+ to discriminate alpha and beta events in the detector, and a sensitivity study that examines how solar neutrino data can constrain a light sterile neutrino model. Characterizing the timing parameters of the emission light due to charged-particle excitation in the scintillator is necessary for proper reconstruction of events in the detector. Using data obtained from a bench-top setup, the timing profile was modelled as three exponential components with distinct timing coefficients. Also investigated was the feasibility of using the timing profiles as a means to separate alpha and beta excitation events in the scintillator. The bench-top study suggested that using the peak-to-total method of analyzing the timing profiles could remove >99.9% of alpha events while retaining >99.9% of beta events. The timing parameters measured in the test set-up were then implemented in a Monte Carlo code which simulated the SNO+ detector conditions. The simulation results suggested that detector effects reduce the effectiveness of discriminating between alpha and beta events using the peak-to-total method. Using a more optimal method of analyzing the timing profile differences, specifically using a Gatti filter, improved the discrimination capability back to the levels determined in the bench-top setup. One of the physics goals of SNO+ is the first precision measurement of the pep solar neutrino ux at the level of about 5 % uncertainty. A study was performed to investigate how current solar neutrino data constrains the allowed parameters of

  9. The Intermediate Neutrino Program

    SciTech Connect

    Adams, C.; et al.

    2015-03-23

    The US neutrino community gathered at the Workshop on the Intermediate Neutrino Program (WINP) at Brookhaven National Laboratory February 4-6, 2015 to explore opportunities in neutrino physics over the next five to ten years. Scientists from particle, astroparticle and nuclear physics participated in the workshop. The workshop examined promising opportunities for neutrino physics in the intermediate term, including possible new small to mid-scale experiments, US contributions to large experiments, upgrades to existing experiments, R&D plans and theory. The workshop was organized into two sets of parallel working group sessions, divided by physics topics and technology. Physics working groups covered topics on Sterile Neutrinos, Neutrino Mixing, Neutrino Interactions, Neutrino Properties and Astrophysical Neutrinos. Technology sessions were organized into Theory, Short-Baseline Accelerator Neutrinos, Reactor Neutrinos, Detector R&D and Source, Cyclotron and Meson Decay at Rest sessions.This report summarizes discussion and conclusions from the workshop.

  10. DESI and other Dark Energy experiments in the era of neutrino mass measurements

    SciTech Connect

    Font-Ribera, Andreu; McDonald, Patrick; Mostek, Nick; Reid, Beth A.; Seo, Hee-Jong; Slosar, Anže E-mail: PVMcDonald@lbl.gov E-mail: BAReid@lbl.gov E-mail: anze@bnl.gov

    2014-05-01

    We present Fisher matrix projections for future cosmological parameter measurements, including neutrino masses, Dark Energy, curvature, modified gravity, the inflationary perturbation spectrum, non-Gaussianity, and dark radiation. We focus on DESI and generally redshift surveys (BOSS, HETDEX, eBOSS, Euclid, and WFIRST), but also include CMB (Planck) and weak gravitational lensing (DES and LSST) constraints. The goal is to present a consistent set of projections, for concrete experiments, which are otherwise scattered throughout many papers and proposals. We include neutrino mass as a free parameter in most projections, as it will inevitably be relevant — DESI and other experiments can measure the sum of neutrino masses to ∼ 0.02 eV or better, while the minimum possible sum is ∼ 0.06 eV. We note that constraints on Dark Energy are significantly degraded by the presence of neutrino mass uncertainty, especially when using galaxy clustering only as a probe of the BAO distance scale (because this introduces additional uncertainty in the background evolution after the CMB epoch). Using broadband galaxy power becomes relatively more powerful, and bigger gains are achieved by combining lensing survey constraints with redshift survey constraints. We do not try to be especially innovative, e.g., with complex treatments of potential systematic errors — these projections are intended as a straightforward baseline for comparison to more detailed analyses.

  11. Neutrino masses, neutrino oscillations, and cosmological implications

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1982-01-01

    Theoretical concepts and motivations for considering neutrinos having finite masses are discussed and the experimental situation on searches for neutrino masses and oscillations is summarized. The solar neutrino problem, reactor, deep mine and accelerator data, tri decay experiments and double beta-decay data are considered and cosmological implications and astrophysical data relating to neutrino masses are reviewed. The neutrino oscillation solution to the solar neutrino problem, the missing mass problem in galaxy halos and galaxy cluster galaxy formation and clustering, and radiative neutrino decay and the cosmic ultraviolet background radiation are examined.

  12. Neutrino factory

    DOE PAGESBeta

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; et al

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less

  13. Neutrino factory

    SciTech Connect

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R.J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A.C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-08

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  14. Neutrino factory

    NASA Astrophysics Data System (ADS)

    Bogomilov, M.; Matev, R.; Tsenov, R.; Dracos, M.; Bonesini, M.; Palladino, V.; Tortora, L.; Mori, Y.; Planche, T.; Lagrange, J. B.; Kuno, Y.; Benedetto, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoini, S.; Martini, M.; Wildner, E.; Prior, G.; Blondel, A.; Karadzhow, Y.; Ellis, M.; Kyberd, P.; Bayes, R.; Laing, A.; Soler, F. J. P.; Alekou, A.; Apollonio, M.; Aslaninejad, M.; Bontoiu, C.; Jenner, L. J.; Kurup, A.; Long, K.; Pasternak, J.; Zarrebini, A.; Poslimski, J.; Blackmore, V.; Cobb, J.; Tunnell, C.; Andreopoulos, C.; Bennett, J. R. J.; Brooks, S.; Caretta, O.; Davenne, T.; Densham, C.; Edgecock, T. R.; Fitton, M.; Kelliher, D.; Loveridge, P.; McFarland, A.; Machida, S.; Prior, C.; Rees, G.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Booth, C.; Skoro, G.; Back, J. J.; Harrison, P.; Berg, J. S.; Fernow, R.; Gallardo, J. C.; Gupta, R.; Kirk, H.; Simos, N.; Stratakis, D.; Souchlas, N.; Witte, H.; Bross, A.; Geer, S.; Johnstone, C.; Makhov, N.; Neuffer, D.; Popovic, M.; Strait, J.; Striganov, S.; Morfín, J. G.; Wands, R.; Snopok, P.; Bagacz, S. A.; Morozov, V.; Roblin, Y.; Cline, D.; Ding, X.; Bromberg, C.; Hart, T.; Abrams, R. J.; Ankenbrandt, C. M.; Beard, K. B.; Cummings, M. A. C.; Flanagan, G.; Johnson, R. P.; Roberts, T. J.; Yoshikawa, C. Y.; Graves, V. B.; McDonald, K. T.; Coney, L.; Hanson, G.

    2014-12-01

    The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that θ13>0 . The measured value of θ13 is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable of making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti)neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO ν Design Study consortium. EURO ν coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO ν baseline accelerator facility will provide 1 021 muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.

  15. Limits on active to sterile neutrino oscillations from disappearance searches in the MINOS, Daya Bay, and Bugey-3 experiments

    DOE PAGESBeta

    Adamson, P.; An, F. P.; Anghel, I.; Aurisano, A.; Balantekin, A. B.; Band, H. R.; Barr, G.; Bishai, M.; Blake, A.; Blyth, S.; et al

    2016-10-07

    Searches for a light sterile neutrino have been performed independently by the MINOS and the Daya Bay experiments using the muon (anti)neutrino and electron antineutrino disappearance channels, respectively. In this Letter, results from both experiments are combined with those from the Bugey-3 reactor neutrino experiment to constrain oscillations into light sterile neutrinos. The three experiments are sensitive to complementary regions of parameter space, enabling the combined analysis to probe regions allowed by the Liquid Scintillator Neutrino Detector (LSND) and MiniBooNE experiments in a minimally extended four-neutrino flavor framework. Here, stringent limits on sin22θμe are set over 6 orders of magnitudemore » in the sterile mass-squared splitting Δm241. The sterile-neutrino mixing phase space allowed by the LSND and MiniBooNE experiments is excluded for Δm241 < 0.8 eV2 at 95% CLs.« less

  16. Measurements of the atmospheric neutrino flux by Super-Kamiokande: Energy spectra, geomagnetic effects, and solar modulation

    NASA Astrophysics Data System (ADS)

    Richard, E.; Okumura, K.; Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tomura, T.; Wendell, R. A.; Akutsu, R.; Irvine, T.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Labarga, L.; Fernandez, P.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tanaka, H. A.; Tobayama, S.; Goldhaber, M.; Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Wongjirad, T.; Ishizuka, T.; Tasaka, S.; Jang, J. S.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Kikawa, T.; Minamino, A.; Nakaya, T.; Suzuki, K.; Fukuda, Y.; Choi, K.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; Konaka, A.; Chen, S.; Zhang, Y.; Wilkes, R. J.; Super-Kamiokande Collaboration

    2016-09-01

    A comprehensive study of the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande (SK) water Cherenkov detector is presented in this paper. The energy and azimuthal spectra, and variation over time, of the atmospheric νe+ν¯ e and νμ+ν¯μ fluxes are measured. The energy spectra are obtained using an iterative unfolding method by combining various event topologies with differing energy responses. The azimuthal spectra depending on energy and zenith angle, and their modulation by geomagnetic effects, are also studied. A predicted east-west asymmetry is observed in both the νe and νμ samples at 8.0 σ and 6.0 σ significance, respectively, and an indication that the asymmetry dipole angle changes depending on the zenith angle was seen at the 2.2 σ level. The measured energy and azimuthal spectra are consistent with the current flux models within the estimated systematic uncertainties. A study of the long-term correlation between the atmospheric neutrino flux and the solar magnetic activity cycle is performed, and a weak preference for a correlation was seen at the 1.1 σ level, using SK-I-SK-IV data spanning a 20-year period. For several particularly strong solar activity periods, corresponding to Forbush decrease events, no theoretical prediction is available but a deviation below the typical neutrino event rate is seen at the 2.4 σ level. The seasonal modulation of the neutrino flux is also examined, but the change in flux at the SK site is predicted to be negligible, and, as expected, no evidence for a seasonal correlation is seen.

  17. Neutrino physics with dark matter experiments and the signature of new baryonic neutral currents

    SciTech Connect

    Pospelov, Maxim

    2011-10-15

    New neutrino states {nu}{sub b}, sterile under the standard model interactions, can be coupled to baryons via the isoscalar vector currents that are much stronger than the standard model weak interactions. If some fraction of solar neutrinos oscillate into {nu}{sub b} on their way to Earth, the coherently enhanced elastic {nu}{sub b}-nucleus scattering can generate a strong signal in the dark matter detectors. For the interaction strength a few hundred times stronger than the weak force, the elastic {nu}{sub b}-nucleus scattering via new baryonic currents may account for the existing anomalies in the direct detection dark matter experiments at low recoil. We point out that for solar-neutrino energies, the baryon-current-induced inelastic scattering is suppressed, so that the possible enhancement of a new force is not in conflict with signals at dedicated neutrino detectors. We check this explicitly by calculating the {nu}{sub b}-induced deuteron breakup, and the excitation of a 4.4 MeV {gamma} line in {sup 12}C. A stronger-than-weak force coupled to the baryonic current implies the existence of a new Abelian gauge group U(1){sub B} with a relatively light gauge boson.

  18. The Majorana Zero-Neutrino Double-Beta Decay Experiment White Paper

    SciTech Connect

    Gaitskell, R.; Barabash, A.; Konovalov, S.; Stekhanov, V.; Umatov,, V.; Brudanin, V.; Egorov, S.; Webb, J.; Miley, Harry S.; Aalseth, Craig E.; Anderson, Dale N.; Bowyer, Ted W.; Brodzinski, Ronald L.; Jordan, David B.; Kouzes, Richard T.; Smith, Leon E.; Thompson, Robert C.; Warner, Ray A.; Tornow, W.; Young, A.; Collar, J. I.; Avignone, Frank T.; Palms, John M.; Doe, P. J.; Elliott, Steven R.; Kazkaz, K.; Robertson, Hamish; Wilkerson, John

    2002-03-07

    The goal of the Majorana Experiment is to determine the effective Majorana masss of the eletron neutrino. Detection of the neutrino mass implied by oscillation results in within our grasp. This exciting physics goal is best pursued using double-beta decay of germanium because of the historical and emerging advances in eliminating competing signals from radioactive backgrounds. The Majorana Experiment will consist of a large mass of 76Ge in the form of high-resolution detectors deep underground, searching for a sharp peak at the BB endpoint. We present here an overview of the entire project in order to help put in perspective the scope, the level and technial risk, and the readiness of the Collaboration to begin the undertaking.

  19. Testing and Characterization of Acrylic for the Daya Bay Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Krohn, Michael; Littlejohn, Bryce; Heeger, Karsten

    2011-10-01

    The Daya Bay reactor antineutrino experiment will determine the last unknown neutrino mixing angle T13 with a sensitivity of.01 or better. The measurement of T13 is important for theoretical model building and for possible searches of CP violation in the neutrino sector. Poly(methyl methacrylate), otherwise known as acrylic, is an important component for the construction of the target vessels in the antineutrino detectors and we have performed multiple tests that determined its unique properties. My project has been to understand the properties of acrylic in order to minimize systematic errors and test mechanical and materials compatibility issues in the Daya Bay reactor antineutrino experiment. These tests address both the mechanical and technical issues of the detector as well as the systematic affects introduced by the acrylic.

  20. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  1. Locating the neutrino interaction vertex with the help of electronic detectors in the OPERA experiment

    NASA Astrophysics Data System (ADS)

    Gornushkin, Yu. A.; Dmitrievsky, S. G.; Chukanov, A. V.

    2015-01-01

    The OPERA experiment is designed for the direct observation of the appearance of ντ from νμ → ντ oscillation in a νμ beam. A description of the procedure of neutrino interaction vertex localization (Brick Finding) by electronic detectors of a hybrid OPERA setup is presented. The procedure includes muon track and hadronic shower axis reconstruction and a determination of the target bricks with the highest probability to contain the vertex.

  2. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Kurylo, Michael (Technical Monitor)

    2004-01-01

    We seek funding from NASA for the third year (2005) of the four-year period January 1, 2003 - December 31, 2006 for continued support of the MIT contributions to the multi-national global atmospheric trace species measurement program entitled Advanced Global Atmospheric Gases Experiment (AGAGE). The case for real-time high-frequency measurement networks like AGAGE is very strong and the observations and their interpretation are widely recognized for their importance to ozone depletion and climate change studies and to verification issues arising from the Montreal Protocol (ozone) and Kyoto Protocol (climate). The proposed AGAGE program is distinguished by its capability to measure over the globe at high frequency almost all of the important species in the Montreal Protocol and almost all of the significant non-CO2 gases in the Kyoto Protocol.

  3. Atmospheric tracer experiments for regional dispersion studies

    SciTech Connect

    Heffter, J.L.; Ferber, G.J.

    1980-01-01

    Tracer experiments are being conducted to verify atmospheric transport and dispersion calculations at distances from tens to hundreds of km from pollutant sources. In one study, a 2 1/2 year sampling program has been carried out at 13 sites located 30 to 140 km from a source of /sup 85/Kr at the Savannah River Plant in South Carolina. Average weekly concentrations as well as twice-daily concentrations were obtained. Sampling data and meteorological data, including surface, tower, and rawinsonde observations are available on magnetic tape for model verification studies. Some verification results for the Air Resources Laboratories Atmospheric Transort and Dispersion Model (ARL-ATAD) are shown for averaging periods from one week to two years.

  4. A search for sterile neutrinos in MINOS

    SciTech Connect

    Osiecki, Thomas Henry

    2007-01-01

    MINOS, the Main Injector Neutrino Oscillation Search, is a long baseline neutrino oscillation experiment based at Fermilab National Accelerator Laboratory. The experiment uses a neutrino beam, which is measured 1 km downstream from its origin in the Near detector at Fermilab and then 735 km later in the Far detector at the Soudan mine. By comparing these two measurements, MINOS can attain a very high precision for parameters in the atmospheric sector of neutrino oscillations. In addition to precisely determining Δm$2\\atop{23}$ and θ23 through the disappearance of vμ, MINOS is able to measure vμ → vsterile by looking for a deficit in the number of neutral current interactions seen in the Far detector. In this thesis, we present the results of a search for sterile neutrinos in MINOS.

  5. Exploring flavor-dependent long-range forces in long-baseline neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sabya Sachi; Dasgupta, Arnab; Agarwalla, Sanjib Kumar

    2015-12-01

    The Standard Model gauge group can be extended with minimal matter content by introducing anomaly free U(1) symmetry, such as L e - L μ or L e - L τ . If the neutral gauge boson corresponding to this abelian symmetry is ultra-light, then it will give rise to flavor-dependent long-range leptonic force, which can have significant impact on neutrino oscillations. For an instance, the electrons inside the Sun can generate a flavor-dependent long-range potential at the Earth surface, which can suppress the ν μ → ν e appearance probability in terrestrial experiments. The sign of this potential is opposite for anti-neutrinos, and affects the oscillations of (anti-)neutrinos in different fashion. This feature invokes fake CP-asymmetry like the SM matter effect and can severely affect the leptonic CP-violation searches in long-baseline experiments. In this paper, we study in detail the possible impacts of these long-range flavor-diagonal neutral current interactions due to L e - L μ symmetry, when (anti-)neutrinos travel from Fermilab to Homestake (1300 km) and CERN to Pyhäsalmi (2290 km) in the context of future high-precision superbeam facilities, DUNE and LBNO respectively. If there is no signal of long-range force, DUNE (LBNO) can place stringent constraint on the effective gauge coupling α eμ < 1.9 × 10-53 (7.8 × 10-54) at 90% C.L., which is almost 30 (70) times better than the existing bound from the Super-Kamiokande experiment. We also observe that if α eμ ≥ 2 × 10-52, the CP-violation discovery reach of these future facilities vanishes completely. The mass hierarchy measurement remains robust in DUNE (LBNO) if α eμ < 5 × 10-52 (10-52).

  6. Neutrino oscillations as a probe of dark energy.

    PubMed

    Kaplan, David B; Nelson, Ann E; Weiner, Neal

    2004-08-27

    We consider a class of theories in which neutrino masses depend significantly on environment, as a result of interactions with the dark sector. Such theories of mass varying neutrinos were recently introduced to explain the origin of the cosmological dark energy density and why its magnitude is apparently coincidental with that of neutrino mass splittings. In this Letter we argue that in such theories neutrinos can exhibit different masses in matter and in vacuum, dramatically affecting neutrino oscillations. As an example of modifications to the standard picture, we consider simple models that may simultaneously account for the LSND anomaly, KamLAND, K2K, and studies of solar and atmospheric neutrinos, while providing motivation to continue to search for neutrino oscillations in short baseline experiments such as BooNE.

  7. Experimental study of the atmospheric neutrino backgrounds for p{yields}e{sup +}{pi}{sup 0} searches in water Cherenkov detectors

    SciTech Connect

    Mine, S.; Casper, D.; Kropp, W.; Smy, M.; Sobel, H.; Vagins, M.; Alcaraz, J. L.; Andringa, S.; Espinal, X.; Fernandez, E.; Jover, G.; Nova, F.; Rodriguez, A.; Sanchez, F.; Aoki, S.; Asakura, K.; Hara, T.; Moriguchi, Y.; Sekiguchi, M.; Suzuki, A.

    2008-02-01

    The atmospheric neutrino background for proton decay via p{yields}e{sup +}{pi}{sup 0} in ring imaging water Cherenkov detectors is studied with an artificial accelerator neutrino beam for the first time. In total, 3.14x10{sup 5} neutrino events corresponding to about 10 megaton-years of atmospheric neutrino interactions were collected by a 1000 ton water Cherenkov detector (KT). The KT charged-current single {pi}{sup 0} production data are well reproduced by simulation programs of neutrino and secondary hadronic interactions used in the Super-Kamiokande (SK) proton decay search. The obtained p{yields}e{sup +}{pi}{sup 0} background rate by the KT data for SK from the atmospheric neutrinos whose energies are below 3 GeV is 1.63{sub -0.33}{sup +0.42}(stat){sub -0.51}{sup +0.45}(syst)(megaton-year){sup -1}. This result is also relevant to possible future, megaton-scale water Cherenkov detectors.

  8. A Search for Lorentz and CPT Violation in the Neutrino Sector of the Standard Model Extension Using the Near Detectors of the Tokai to Kamioka Neutrino Oscillation Experiment

    NASA Astrophysics Data System (ADS)

    Clifton, Gary Alexander

    The Tokai to Kamioka (T2K) neutrino experiment is designed to search for electron neutrino appearance oscillations and muon neutrino disappearance oscillations. While the main physics goals of T2K fall into conventional physics, T2K may be used to search for more exotic physics. One exotic physics analysis that can be performed is a search for Lorentz and CPT symmetry violation (LV and CPTV) through short baseline neutrino oscillations. The theoretical framework which describes these phenomena is the Standard Model Extension (SME). Due to its off-axis nature, T2K has two near detectors. A search for LV and CPTV is performed in each detector. The search utilizes charged-current inclusive (CC inclusive) neutrino events to search for sidereal variations in the neutrino event rate at each detector. Two methods are developed; the first being a Fast Fourier Transform method to perform a hypothesis test of the data with a set of 10,000 toy Monte-Carlo simulations that do not have any LV signal in them. The second is a binned likelihood fit. Using three data sets, both analysis methods are consistent with no sidereal variations. One set of data is used to calculate upper limits on combinations of the SME coefficients while the other two are used to constrain the SME coefficients directly. Despite not seeing any indication of LV in the T2K near detectors, the upper limits provided are useful for the theoretical field to continue improving theories which include LV and CPTV.

  9. BNL Very Long Baseline Neutrino Oscillation Experiment - Technical Challenges in Getting There

    NASA Astrophysics Data System (ADS)

    Simos, Nicholas; Ludewig, Hans; Weng, Wu-Tsung; Kirk, Harold; Diwan, Milind; Kahn, Steve; Evangelakis, Yiorgos; McDonald, Kirk

    2003-04-01

    A neutrino oscillation experiment of exceptional intensity, driven by a 1 MW proton driver, is currently under study at BNL. To achieve the high neutrino intensity an energetic proton beam with intensity approaching 1014 protons will be intercepted by a low-Z target at 2.5 Hz pulse rate placed within a magnetic horn. Such intensities are expected to push the envelope of the target material integrity and the state of knowledge of how materials respond to both long-term irradiation and thermo-mechanical shock. Furthermore, the required repetition rate of 2.5 Hz will strain even further both the target and the horn in that large thermal loads generated from energy deposition and currents will need to be removed between pulses. To accomplish the physics requirements of the proposed neutrino oscillation experiment, technical challenges that relate to (a) material selection for the production target and its long-term survivability, (b) horn design and choice material integrity, and (c) the integration of the two systems, need to be met. This paper discusses the feasibility of different target/horn integration options both in terms of performance and longevity and examines the enhancing potential of innovative techniques. The paper also presents a discussion on the weak links in the various options, which result from the intensity levels and the selected cooling environments, and the strategy to extrapolate the current knowledge on material degradation through R and advanced computational techniques.

  10. Search for neutrino oscillations in the MINOS experiment by using quasi-elastic interactions

    SciTech Connect

    Piteira, Rodolphe

    2005-09-29

    The enthusiasm of the scientific community for studying oscillations of neutrinos is equaled only by the mass of their detectors. The MINOS experiment determines and compares the near spectrum of muonic neutrinos from the NUMI beam to the far one, in order to measure two oscillation parameters: Δm$2\\atop{23}$ and sin2 (2θ23). The spectra are obtained by analyzing the charged current interactions which difficulty lies in identifying the interactions products (e.g. muons). An alternative method identifying the traces of muons, bent by the magnetic field of the detectors, and determining their energies is presented in this manuscript. The sensitivity of the detectors is optimal for the quasi-elastic interactions, for which a selection method is proposed, to study their oscillation. Even though it reduces the statistics, such a study introduces fewer systematic errors, constituting the ideal method on the long range.

  11. Neutrino refraction by the cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Díaz, J. S.; Klinkhamer, F. R.

    2016-03-01

    We have determined the dispersion relation of a neutrino test particle propagating in the cosmic neutrino background. Describing the relic neutrinos and antineutrinos from the hot big bang as a dense medium, a matter potential or refractive index is obtained. The vacuum neutrino mixing angles are unchanged, but the energy of each mass state is modified. Using a matrix in the space of neutrino species, the induced potential is decomposed into a part which produces signatures in beta-decay experiments and another part which modifies neutrino oscillations. The low temperature of the relic neutrinos makes a direct detection extremely challenging. From a different point of view, the identified refractive effects of the cosmic neutrino background constitute an ultralow background for future experimental studies of nonvanishing Lorentz violation in the neutrino sector.

  12. Collective neutrino oscillations in supernovae

    SciTech Connect

    Duan, Huaiyu

    2014-06-24

    In a dense neutrino medium neutrinos can experience collective flavor transformation through the neutrino-neutrino forward scattering. In this talk we present some basic features of collective neutrino flavor transformation in the context in core-collapse supernovae. We also give some qualitative arguments for why and when this interesting phenomenon may occur and how it may affect supernova nucleosynthesis.

  13. Charmed-Particle Lifetimes from Neutrino Interactions Experiment #531

    SciTech Connect

    Reay, W. N.

    1980-01-01

    Detection of charm in several Fermilab experiments, among them E-531, was discussed by L. Hand, L. Voyvodic, and the author in Fermilab Report in March 1979. Since that time, there have been significant new results from E-531 on charmed particles and their lifetimes and a discussion of these results is useful at this time.

  14. Sneutrino-antisneutrino mixing and neutrino mass in anomaly-mediated supersymmetry breaking scenario.

    PubMed

    Choi, Kiwoon; Hwang, Kyuwan; Song, Wan Young

    2002-04-01

    In supersymmetric models with nonzero Majorana neutrino mass, the sneutrino and antisneutrino mix, which may lead to same-sign dilepton signals in future collider experiments. We point out that the anomaly-mediated supersymmetry breaking scenario has a good potential to provide an observable rate of such signals for the neutrino masses suggested by the atmospheric and solar neutrino oscillations. It is noted also that the sneutrino-antisneutrino mixing can provide much stronger information on some combinations of the neutrino masses and mixing angles than the neutrino experiments.

  15. Neutrino telescopes

    SciTech Connect

    Costantini, H.

    2012-09-15

    Neutrino astrophysics offers a new possibility to observe our Universe: high-energy neutrinos, produced by the most energetic phenomena in our Galaxy and in the Universe, carry complementary (if not exclusive) information about the cosmos: this young discipline extends in fact the conventional astronomy beyond the usual electromagnetic probe. The weak interaction of neutrinos with matter allows them to escape from the core of astrophysical objects and in this sense they represent a complementary messenger with respect to photons. However, their detection on Earth due to the small interaction cross section requires a large target mass. The aim of this article is to review the scientific motivations of the high-energy neutrino astrophysics, the detection principles together with the description of a running apparatus, the experiment ANTARES, the performance of this detector with some results, and the presentation of other neutrino telescope projects.

  16. Waterproofed photomultiplier tube assemblies for the Daya Bay reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    Chow, Ken; Cummings, John; Edwards, Emily; Edwards, William; Ely, Ry; Hoff, Matthew; Lebanowski, Logan; Li, Bo; Li, Piyi; Lin, Shih-Kai; Liu, Dawei; Liu, Jinchang; Luk, Kam-Biu; Miao, Jiayuan; Napolitano, Jim; Ochoa-Ricoux, Juan Pedro; Peng, Jen-Chieh; Qi, Ming; Steiner, Herbert; Stoler, Paul; Stuart, Mary; Wang, Lingyu; Yang, Changgen; Zhong, Weili

    2015-09-01

    In the Daya Bay Reactor Neutrino Experiment 960 20-cm-diameter waterproof photomultiplier tubes are used to instrument three water pools as Cherenkov detectors for detecting cosmic-ray muons. Of these 960 photomultiplier tubes, 341 are recycled from the MACRO experiment. A systematic program was undertaken to refurbish them as waterproof assemblies. In the context of passing the water leakage check, a success rate better than 97% was achieved. Details of the design, fabrication, testing, operation, and performance of these waterproofed photomultiplier-tube assemblies are presented.

  17. Novel Ideas for Neutrino Beams

    SciTech Connect

    Peach, Ken

    2007-04-23

    Recent developments in neutrino physics, primarily the demonstration of neutrino oscillations in both atmospheric neutrinos and solar neutrinos, provide the first conclusive evidence for physics beyond the Standard Model of particle physics. The simplest phenomenology of neutrino oscillations, for three generations of neutrino, requires six parameters - two squared mass differences, 3 mixing angles and a complex phase that could, if not 0 or {pi}, contribute to the otherwise unexplained baryon asymmetry observed in the universe. Exploring the neutrino sector will require very intense beams of neutrinos, and will need novel solutions.

  18. Overview and Status of Experimental Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Stancu, Ion

    2002-10-01

    Seventy years after the existence of the neutrino has been postulated by Wolfgang Pauli, these elusive particles remain surrounded by mystery. One of the most fundamental questions about neutrinos is whether they have an identically vanishing mass, as assumed by the Standard Model, or not. Direct measurements have proven to be extremely difficult to perform, and have yielded so far only upper limits. However, if neutrino flavour oscillations do happen, this would automatically imply that at least one of the three neutrinos (the electron, muon or tau neutrino) must have a non-zero mass. The present experimental data indicate that both the solar and atmospheric neutrino deficits can be explained by the phenomenon of neutrino oscillations, while the positive signal reported by the accelerator-based LSND experiment remains to be verified by an independent measurement (MiniBooNE). This talk reviews the current status of the neutrino oscillations experiments, experiments which are quite likely to produce results with significant consequences for both the Standard Model and Cosmology.

  19. Search for sterile neutrino mixing in the muon neutrino to tau neutrino appearance channel with the OPERA detector

    NASA Astrophysics Data System (ADS)

    Di Crescenzo, A.; OPERA Collaboration

    2016-05-01

    The OPERA experiment observed ν μ → ν τ oscillations in the atmospheric sector. To this purpose the hybrid OPERA detector was exposed to the CERN Neutrinos to Gran Sasso beam from 2008 to 2012, at a distance of 730 km from the neutrino source. Charged-current interactions of ν τ were searched for through the identification of τ lepton decay topologies. The five observed ν τ interactions are consistent with the expected number of events in the standard three neutrino framework. Based on this result, new limits on the mixing parameters of a massive sterile neutrino may be set. Preliminary results of the analysis performed in the 3+1 neutrino framework are here presented.

  20. Nonstandard interactions in neutrino oscillations and the recent Daya Bay and T2K experiments

    NASA Astrophysics Data System (ADS)

    Adhikari, Rathin; Chakraborty, Sabyasachi; Dasgupta, Arnab; Roy, Sourov

    2012-10-01

    We study the possible constraints on nonstandard interaction (NSIs) in a model-independent way by considering the recent results from the T2K and Daya Bay neutrino oscillations experiments. Using the perturbation method we present generic formulas (suitable for T2K baseline and for large θ13 as evident from Daya Bay) for the probability of oscillation for νμ→νe, taking into account NSIs at the source (ɛs), the detector (ɛd), and during propagation (ɛm) of neutrinos through matter. Two separate cases of perturbation with small (slightly large) NSI [ɛαβm˜0.03(0.18)] are discussed in detail. Using various possible presently allowed NSI values we reanalyze numerically the θ13-δ allowed region given by recent T2K experimental data. We obtain model-independent constraints on NSIs in the δ-ɛαβm plane using the θ13 value as measured by Daya Bay, where δ is the CP violating phase. Depending on δ values, significant constraints on ɛeτ and ɛττ, in particular, are possible for both hierarchies of neutrino masses. Corresponding to T2K’s 66% confidence level result, the constraints on ɛττ are shown to be independent of any δ value.

  1. The detector system of the Daya Bay reactor neutrino experiment

    DOE PAGESBeta

    An, F. P.

    2015-12-15

    The Daya Bay experiment was the first to report simultaneous measurements of reactor antineutrinos at multiple baselines leading to the discovery of ν¯e oscillations over km-baselines. Subsequent data has provided the world's most precise measurement of sin 22θ13 and the effective mass splitting Δm2ee. The experiment is located in Daya Bay, China where the cluster of six nuclear reactors is among the world's most prolific sources of electron antineutrinos. Multiple antineutrino detectors are deployed in three underground water pools at different distances from the reactor cores to search for deviations in the antineutrino rate and energy spectrum due to neutrinomore » mixing. Instrumented with photomultiplier tubes, the water pools serve as shielding against natural radioactivity from the surrounding rock and provide efficient muon tagging. Arrays of resistive plate chambers over the top of each pool provide additional muon detection. The antineutrino detectors were specifically designed for measurements of the antineutrino flux with minimal systematic uncertainty. Relative detector efficiencies between the near and far detectors are known to better than 0.2%. With the unblinding of the final two detectors’ baselines and target masses, a complete description and comparison of the eight antineutrino detectors can now be presented. This study describes the Daya Bay detector systems, consisting of eight antineutrino detectors in three instrumented water pools in three underground halls, and their operation through the first year of eight detector data-taking.« less

  2. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector

    SciTech Connect

    Adamson, P.; Andreopoulos, Constantinos V.; Arms, Kregg E.; Armstrong, Stephen Randolph; Auty, D.J.; Avvakumov, S.; Ayres, David S.; Baller, Bruce R.; Barish, Barry C.; Barnes, P.D., Jr.; Barr, Giles David; /Oxford U. /Western Washington U.

    2007-01-01

    We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector, which has an acceptance for neutrino-induced muons of 6.91 x 10{sup 6} cm{sup 2} sr. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios, R, is R = 0.65{sub 0.12}{sup +0.15}(stat) {+-} 0.09(syst), a result that is consistent with an oscillation signal. A fit to the data for the oscillation parameters sin{sup 2} 2{theta}{sub 23} and {Delta}m{sub 23}{sup 2} excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons into {mu}{sup -} and {mu}{sup +} in both the data and Monte Carlo events and found the ratio of the total number of {mu}{sup -} to {mu}{sup +} in both samples. The ratio of those ratios, {cflx R}{sub CPT}, is a test of CPT conservation. The result {cflx R}{sub CPT} = 0.72{sub -0.18}{sup +0.24}(stat){sub -0.04}{sup +0.08}(syst), is consistent with CPT conservation.

  3. Advanced Global Atmospheric Gases Experiment (AGAGE)

    NASA Technical Reports Server (NTRS)

    Weiss, R. F.

    1998-01-01

    The Advanced Global Atmospheric Gases Experiment (AGAGE) is an ongoing research project, for which the work carried out by the Scripps Institution of Oceanography. Due to the need to complete AGAGE activities specifically funded under NAGW-2034 that had been delayed, a no-cost extension to this grant was obtained, creating an overlap period between the two grants. Because the AGAGE project is continuing, and a Final Project Report is required only because of the change in grant numbers, it is most appropriate to submit for this report the Introduction and Accomplishments sections which appear on pages 1-62 of the October 1998 AGAGE renewal proposal. A copy of the complete proposal is attached.

  4. Sterile Neutrinos in Cold Climates

    SciTech Connect

    Jones, Benjamin J.P.

    2015-09-01

    Measurements of neutrino oscillations at short baselines contain an intriguing set of experimental anomalies that may be suggestive of new physics such as the existence of sterile neutrinos. This three-part thesis presents research directed towards understanding these anomalies and searching for sterile neutrino oscillations. Part I contains a theoretical discussion of neutrino coherence properties. The open-quantum-system picture of neutrino beams, which allows a rigorous prediction of coherence distances for accelerator neutrinos, is presented. Validity of the standard treatment of active and sterile neutrino oscillations at short baselines is verified, and non-standard coherence loss effects at longer baselines are predicted. Part II concerns liquid argon detector development for the MicroBooNE experiment, which will search for short-baseline oscillations in the Booster Neutrino Beam at Fermilab. Topics include characterization and installation of the MicroBooNE optical system; test-stand measurements of liquid argon optical properties with dissolved impurities; optimization of wavelength-shifting coatings for liquid argon scintillation light detection; testing and deployment of high-voltage surge arrestors to protect TPC field cages; and software development for optical and TPC simulation and reconstruction. Part III presents a search for sterile neutrinos using the IceCube neutrino telescope, which has collected a large sample of atmospheric-neutrino-induced events in the 1-10 TeV energy range. Sterile neutrinos would modify the detected neutrino flux shape via MSW-resonant oscillations. Following a careful treatment of systematic uncertainties in the sample, no evidence for MSW-resonant oscillations is observed, and exclusion limits on 3+1 model parameter space are derived. Under the mixing assumptions made, the 90% confidence level exclusion limit extends to sin224 ≤ 0.02 at m2 ~ 0.3 eV2, and the LSND and Mini

  5. Neutrino oscillation studies with IceCube-DeepCore

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-07-01

    IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make these calculations, as well as the results, is detailed. Finally, the future prospects of IceCube-DeepCore and the next generation of neutrino experiments at the South Pole (IceCube-Gen2, specifically the PINGU sub-detector) are briefly discussed.

  6. Enrichment services for chromium isotopes for the GALLEX (gallium experiment) international collaboration experiment on solar neutrino flux

    NASA Astrophysics Data System (ADS)

    Szady, Andrew J.

    1990-07-01

    Detailed discussions were held with members of the Gallium Experiment (GALLEX) international solar neutrino research collaboration concerning negotiations to provide $1.4 million in services to enrich (50)Cr for a (51)Cr neutrino source. The source will be used to calibrate the 20-ton gallium solar neutrino detector currently in place in the Gran Sasso Laboratory in Italy. Funding approval for the enrichment services is expected from the European Common Market by October 19, 1990. The discussions focused on the technical aspects of the enrichment, the health and safety requirements for handling the process gas, cost projections, schedule, the Work-for-Others contract, and the method of payment. Discussions were also held with members of the Nuclear Physics Dept. at the University of Milan concerning the availability of isotopes enriched by the Calutron at the Oak Ridge National Laboratory. Very high purity material is needed to grow crystals for use in double beta decay detectors. Finally, working sessions were held to draft a coauthored paper on the results of using the gas centrifuge to remove trace quantities of (85)Kr from natural xenon.

  7. Revealing the Earth's mantle from the tallest mountains using the Jinping Neutrino Experiment.

    PubMed

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A; Xi, Yufei; McDonough, William F

    2016-01-01

    The Earth's engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth's composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth's flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle's radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle's radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection. PMID:27611737

  8. Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A.; Xi, Yufei; McDonough, William F.

    2016-09-01

    The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection.

  9. Revealing the Earth’s mantle from the tallest mountains using the Jinping Neutrino Experiment

    PubMed Central

    Šrámek, Ondřej; Roskovec, Bedřich; Wipperfurth, Scott A.; Xi, Yufei; McDonough, William F.

    2016-01-01

    The Earth’s engine is driven by unknown proportions of primordial energy and heat produced in radioactive decay. Unfortunately, competing models of Earth’s composition reveal an order of magnitude uncertainty in the amount of radiogenic power driving mantle dynamics. Recent measurements of the Earth’s flux of geoneutrinos, electron antineutrinos from terrestrial natural radioactivity, reveal the amount of uranium and thorium in the Earth and set limits on the residual proportion of primordial energy. Comparison of the flux measured at large underground neutrino experiments with geologically informed predictions of geoneutrino emission from the crust provide the critical test needed to define the mantle’s radiogenic power. Measurement at an oceanic location, distant from nuclear reactors and continental crust, would best reveal the mantle flux, however, no such experiment is anticipated. We predict the geoneutrino flux at the site of the Jinping Neutrino Experiment (Sichuan, China). Within 8 years, the combination of existing data and measurements from soon to come experiments, including Jinping, will exclude end-member models at the 1σ level, define the mantle’s radiogenic contribution to the surface heat loss, set limits on the composition of the silicate Earth, and provide significant parameter bounds for models defining the mode of mantle convection. PMID:27611737

  10. Atmosphere control for plant growth flight experiments

    NASA Technical Reports Server (NTRS)

    Powell, Ferolyn T.; Sudar, Martin; Timm, Marc; Yost, Bruce

    1989-01-01

    An atmosphere exchange system (AES) has been designed to provide a conditioned atmosphere supply to plant specimens in flight without incurring the large weight and volume associated with bottled gases. The paper examines the atmosphere filter cartridge (AFC) designed to remove trace organic atmosphere contaminants from the Space Shuttle cabin and to condition the cabin atmosphere prior to exposure to plant specimens. The AES and AFC are described and illustrated. The AFC design requirements are discussed and results are presented from tests on the performance of the AFC. Also, consideration is given to the potential applications of the AFC and future design concepts for atmosphere control.

  11. Muon neutrino disappearance at MINOS

    SciTech Connect

    Armstrong, R

    2009-08-01

    A strong case has been made by several experiments that neutrinos oscillate, although important questions remain as to the mechanisms and precise values of the parameters. In the standard picture, two parameters describe the nature of how the neutrinos oscillate: the mass-squared difference between states and the mixing angle. The purpose of this thesis is to use data from the MINOS experiment to precisely measure the parameters associated with oscillations first observed in studies of atmospheric neutrinos. MINOS utilizes two similar detectors to observe the oscillatory nature of neutrinos. The Near Detector, located 1 km from the source, observes the unoscillated energy spectrum while the Far Detector, located 735 km away, is positioned to see the oscillation signal. Using the data in the Near Detector, a prediction of the expected neutrino spectrum at the Far Detector assuming no oscillations is made. By comparing this prediction with the MINOS data, the atmospheric mixing parameters are measured to be Δm322 = 2.45+0.12-0.12 x 10-3 eV2 and sin232) = 1.00-0.04+0.00 (> 0.90 at 90% confidence level).

  12. Analysis Techniques to Measure Charged Current Inclusive Water Cross Section and to Constrain Neutrino Oscillation Parameters using the Near Detector (ND280) of the T2K Experiment

    NASA Astrophysics Data System (ADS)

    Das, Rajarshi

    2014-03-01

    The Tokai to Kamioka (T2K) Experiment is a long-baseline neutrino oscillation experiment located in Japan with the primary goal to precisely measure multiple neutrino flavor oscillation parameters. An off-axis muon neutrino beam with an energy that peaks at 600 MeV is generated at the JPARC facility and directed towards the kiloton Super-Kamiokande (SK) water Cherenkov detector located 295 km away. The rates of electron neutrino and muon neutrino interactions are measured at SK and compared with expected model values. This yields a measurement of the neutrino oscillation parameters sinq and sinq. Measurements from a Near Detector that is 280 m downstream of the neutrino beam target are used to constrain uncertainties in the beam flux prediction and neutrino interaction rates. We present a measurement of inclusive charged current neutrino interactions on water. We used several sub-detectors in the ND280 complex, including a Pi-Zero detector (P0D) that has alternating planes of plastic scintillator and water bag layers, a time projection chamber (TPC) and fine-grained detector (FGD) to detect and reconstruct muons from neutrino charged current events. Finally, we describe a ``forward-fitting'' technique that is used to constrain the beam flux and cross section as an input for the neutrino oscillation analysis and also to extract a flux-averaged inclusive charged current cross section on water.

  13. Development of multi-pixel photon counters for the T2K long baseline neutrino experiment

    NASA Astrophysics Data System (ADS)

    Orme, D.; Nagai, N.; Minamino, A.; Nakaya, T.; Yokoyama, M.; Nakadaira, T.; Murakami, T.; Tanaka, M.; Retiere, F.; Vacheret, A.; Kudenko, Yu.

    2010-11-01

    We have developed a multi-pixel photon counter (MPPC) with Hamamatsu Photonics for use in the Tokai-Kamioka (T2K) long baseline neutrino experiment. A total of 60,000 MPPCs will be used in the T2K near detector, the first time that MPPCs have been used on such a large scale. We have created a test bench to measure the gain, noise rate, crosstalk and afterpulse rate, and photon detection efficiency of 17,686 of these MPPCs. The results of these measurements are presented in this paper.

  14. Accelerator neutrino program at Fermilab

    SciTech Connect

    Parke, Stephen J.; /Fermilab

    2010-05-01

    The accelerator neutrino programme in the USA consists primarily of the Fermilab neutrino programme. Currently, Fermilab operates two neutrino beamlines, the Booster neutrino beamline and the NuMI neutrino beamline and is the planning stages for a third neutrino beam to send neutrinos to DUSEL. The experiments in the Booster neutrino beamline are miniBooNE, SciBooNE and in the future microBooNE, whereas in the NuMI beamline we have MINOS, ArgoNut, MINERVA and coming soon NOvA. The major experiment in the beamline to DUSEL will be LBNE.

  15. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  16. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    SciTech Connect

    Jung, Chang Kee; Douglas, Michaek; Hobbs, John; McGrew, Clark; Rijssenbeek, Michael

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  17. Status of the MINOS Experiment

    SciTech Connect

    Elizabeth Buckley-Geer

    2003-03-17

    We report on the status of the MINOS long baseline neutrino experiment presently under construction at the Fermi National Accelerator Laboratory and the Soudan mine. There is growing evidence that the solar neutrino and atmospheric neutrino anomalies [1] are the result of neutrino oscillations. The MINOS experiment is a long baseline neutrino oscillation experiment designed to study the region of parameter space indicated by the SuperKamiokande atmospheric neutrino results [2]. The experiment consists of two detectors, one with a mass of 980 tons located at Fermilab (the near detector) and the other of mass 5400 tons located 731 km away in the Soudan mine in northern Minnesota (the far detector). The third component is the neutrino beam which is currently under construction at Fermilab.

  18. Review of neutrino oscillations with sterile and active neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-08-01

    Recently neutrino oscillation experiments have shown that it is very likely that there are one or two sterile neutrinos. In this review neutrino oscillations with one, two, three sterile and three active neutrinos, and parameters that are consistent with experiments, are reviewed.

  19. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  20. Charged Cosmic Rays and Neutrinos

    NASA Astrophysics Data System (ADS)

    Kachelrieß, M.

    2013-04-01

    High-energy neutrino astronomy has grown up, with IceCube as one of its main experiments having sufficient sensitivity to test "vanilla" models of astrophysical neutrinos. I review predictions of neutrino fluxes as well as the status of cosmic ray physics. I comment also briefly on an improvement of the Fermi-LAT limit for cosmogenic neutrinos and on the two neutrino events presented by IceCube first at "Neutrino 2012".

  1. Muon and neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Edwards, P. G.; Protheroe, R. J.

    1985-01-01

    The result of a new calculation of the atmospheric muon and neutrino fluxes and the energy spectrum of muon-neutrinos produced in individual extensive air showers (EAS) initiated by proton and gamma-ray primaries is reported. Also explained is the possibility of detecting atmospheric nu sub mu's due to gamma-rays from these sources.

  2. Observation of ultrahigh-energy cosmic rays and neutrinos from lunar orbit: LORD space experiment

    NASA Astrophysics Data System (ADS)

    Ryabov, Vladimir; Chechin, Valery; Gusev, German

    The problem of detecting highest-energy cosmic rays and neutrinos in the Universe is reviewed. Nowadays, there becomes clear that observation of these particles requires approaches based on novel principles. Projects based on orbital radio detectors for particles of energies above the CZK cut-off are discussed. We imply the registration of coherent Cherenkov radio emission produced by cascades of most energetic particles in radio-transparent lunar regolith. The Luna-Glob space mission proposed for launching in the near future involves the Lunar Orbital Radio Detector (LORD). The feasibility of LORD space instrument to detect radio signals from cascades initiated by ultrahigh-energy particles interacting with lunar regolith is examined. The comprehensive Monte Carlo calculations were carried out within the energy range of 10 (20) -10 (25) eV with the account for physical properties of the Moon such as its density, the lunar-regolith radiation length, the radio-wave absorption length, the refraction index, and the orbital altitude of a lunar satellite. We may expect that the LORD space experiment will surpass in its apertures and capabilities the majority of well-known current and proposed experiments dealing with the detection of both ultrahigh-energy cosmic rays and neutrinos. The design of the LORD space instrument and its scientific potentialities in registration of low-intense cosmic-ray particle fluxes above the GZK cut-off up to 10 (25) eV is discussed as well. The designed LORD module (including an antenna system, amplifiers, and a data acquisition system) now is under construction. The LORD space experiment will make it possible to obtain important information on the highest-energy particles in the Universe, to verify modern models for the origin and the propagation of ultrahigh-energy cosmic rays and neutrinos. Successful completion of the LORD experiment will permit to consider the next step of the program, namely, a multi-satellite lunar systems to

  3. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    DOE PAGESBeta

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energymore » regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.« less

  4. Comparison of the calorimetric and kinematic methods of neutrino energy reconstruction in disappearance experiments

    SciTech Connect

    Ankowski, Artur M.; Benhar, Omar; Coloma, Pilar; Huber, Patrick; Jen, Chun -Min; Mariani, Camillo; Meloni, Davide; Vagnoni, Erica

    2015-10-22

    To be able to achieve their physics goals, future neutrino-oscillation experiments will need to reconstruct the neutrino energy with very high accuracy. In this work, we analyze how the energy reconstruction may be affected by realistic detection capabilities, such as energy resolutions, efficiencies, and thresholds. This allows us to estimate how well the detector performance needs to be determined a priori in order to avoid a sizable bias in the measurement of the relevant oscillation parameters. We compare the kinematic and calorimetric methods of energy reconstruction in the context of two νμ → νμ disappearance experiments operating in different energy regimes. For the calorimetric reconstruction method, we find that the detector performance has to be estimated with an O(10%) accuracy to avoid a significant bias in the extracted oscillation parameters. Thus, in the case of kinematic energy reconstruction, we observe that the results exhibit less sensitivity to an overestimation of the detector capabilities.

  5. Neutrino Physics at Fermilab

    ScienceCinema

    Saoulidou, Niki

    2016-07-12

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  6. Some uncertainties of neutrino oscillation effect in the NOνA experiment

    NASA Astrophysics Data System (ADS)

    Kolupaeva, Lyudmila D.; Kuzmin, Konstantin S.; Petrova, Olga N.; Shandrov, Igor M.

    2016-04-01

    Uncertainties related to the effect of neutrino coherent forward scattering in Earth’s matter (MSW mechanism) and with the cross-sections of quasi-elastic (QE) neutrino scattering on nuclear targets of the NOνA detectors are studied. The NOνA sensitivity to the neutrino mass hierarchy and the CP violating phase is discussed.

  7. Study of Neutrino Interactions in MINOS

    SciTech Connect

    Sharma, Richa

    2014-01-01

    MINOS stands for Main Injector Neutrino Oscillation Search. It is a long baseline experiment located in the USA and is composed of two detectors. The Near Detector is at Fermilab, 1 km from the source of neutrinos. The Far Detector is in Minnesota at a distance of 735 km from the source. Both detectors are steel scintillator tracking calorimeters. MINOS searches for neutrino oscillations by comparing the neutrino energy spectrum at the Far Detector with that obtained from a prediction based on the spectrum at the Near Detector. The primary aim of MINOS is to measure the atmospheric oscillation parameters Δm2 32 and θ23. CPT symmetry requires that these parameters should be same for neutrinos and antineutrinos. Di erences between neutrino and antineutrino oscillations would be an indication of new physics beyond the neutrino-Standard Model ( SM). Additionally, violation of Lorentz or CPT symmetry could also give rise to oscillations di erent from that expected from the SM predictions, such as neutrino to antineutrino transitions.

  8. Measurement of Muon Neutrino Disappearance with the T2K Experiment

    NASA Astrophysics Data System (ADS)

    Wongjirad, Taritree Michael

    We describe the measurement of muon neutrino disappearance due to neutrino oscillation using the Tokai-2-Kamiokande (T2K) experiment's Run 1--4 (6.57 x 1020 POT) data set. We analyze the data using the conventional Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix for the three Standard Model neutrinos. The output of the analysis is a measurement of the parameters sin2theta23, Delta m232 for the normal hierarchy and sin2theta23, Deltam 213 for the inverted hierarchy. The best-fit oscillation parameters for the normal hierarchy are found to be. (sin2theta23, Deltam 232) = (0.514, 2.51 x 10-3 eV 2/c4). The 90% 1D confidence interval---determined for both parameters using the Feldman-Cousins procedure---is for the normal hierarchy. 0.428 < sin2theta23 < 0.598 and. 2.34 x 10-3 eV2/c4 < Deltam232 < 2.68 x 10-3 eV2/c4. For the inverted hierarchy, the best-fit oscillation parameters are. (sin2theta23, Deltam 213) = (0.511, 2.48 x 10-3 eV2/c4. The 90% 1D Feldman-Cousins confidence intervals for the inverted hierarchy are. 2.31 x 10-3 eV2/c4 < Deltam213 < 2.64 x 10-3 eV2/c4.

  9. Search for sterile neutrino mixing in the MINOS long baseline experiment

    SciTech Connect

    Adamson, P.; Andreopoulos, C.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barnes Jr., P.D.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, G.J.; /Fermilab /Fermilab

    2010-01-01

    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18 x 10{sup 20} protons on target in which neutrinos of energies between {approx}500 MeV and 120 GeV are produced predominantly as {nu}{sub {mu}}, the visible energy spectrum of candidate neutral-current reactions in the MINOS far-detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the {nu}{sub {mu}} flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles {theta}{sub 24} and {theta}{sub 34} are constrained to be less than 11{sup o} and 56{sup o} at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime {tau}{sub 3}/m{sub 3} > 2.1 x 10{sup -12} s/eV at 90% C.L.

  10. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment: NuSOnG

    SciTech Connect

    Adams, T.; Batra, P.; Bugel, Leonard G.; Camilleri, Leslie Loris; Conrad, Janet Marie; de Gouvea, A.; Fisher, Peter H.; Formaggio, Joseph Angelo; Jenkins, J.; Karagiorgi, Georgia S.; Kobilarcik, T.R.; /Fermilab /Texas U.

    2009-06-01

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDFs). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parameterized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of 'Beyond the Standard Model' physics.

  11. QCD Precision Measurements and Structure Function Extraction at a High Statistics, High Energy Neutrino Scattering Experiment:. NuSOnG

    NASA Astrophysics Data System (ADS)

    Adams, T.; Batra, P.; Bugel, L.; Camilleri, L.; Conrad, J. M.; de Gouvêa, A.; Fisher, P. H.; Formaggio, J. A.; Jenkins, J.; Karagiorgi, G.; Kobilarcik, T. R.; Kopp, S.; Kyle, G.; Loinaz, W. A.; Mason, D. A.; Milner, R.; Moore, R.; Morfín, J. G.; Nakamura, M.; Naples, D.; Nienaber, P.; Olness, F. I.; Owens, J. F.; Pate, S. F.; Pronin, A.; Seligman, W. G.; Shaevitz, M. H.; Schellman, H.; Schienbein, I.; Syphers, M. J.; Tait, T. M. P.; Takeuchi, T.; Tan, C. Y.; van de Water, R. G.; Yamamoto, R. K.; Yu, J. Y.

    We extend the physics case for a new high-energy, ultra-high statistics neutrino scattering experiment, NuSOnG (Neutrino Scattering On Glass) to address a variety of issues including precision QCD measurements, extraction of structure functions, and the derived Parton Distribution Functions (PDF's). This experiment uses a Tevatron-based neutrino beam to obtain a sample of Deep Inelastic Scattering (DIS) events which is over two orders of magnitude larger than past samples. We outline an innovative method for fitting the structure functions using a parametrized energy shift which yields reduced systematic uncertainties. High statistics measurements, in combination with improved systematics, will enable NuSOnG to perform discerning tests of fundamental Standard Model parameters as we search for deviations which may hint of "Beyond the Standard Model" physics.

  12. Testing CPT conservation using the NuMI neutrino beam with the MINOS experiment

    SciTech Connect

    Auty, David John

    2010-03-01

    The MINOS experiment was designed to measure neutrino oscillation parameters with muon neutrinos. It achieves this by measuring the neutrino energy spectrum and flavor composition of the man-made NuMI neutrino beam 1km after the beam is formed and again after 735 km. By comparing the two spectra it is possible to measure the oscillation parameters. The NuMI beam is made up of 7.0%$\\bar{v}$μ, which can be separated from the vμ because the MINOS detectors are magnetized. This makes it possible to study $\\bar{v}$μ oscillations separately from those of muon neutrinos, and thereby test CPT invariance in the neutrino sector by determining the $\\bar{v}$μ oscillation parameters and comparing them with those for vμ, although any unknown physics of the antineutrino would appear as a difference in oscillation parameters. Such a test has not been performed with beam $\\bar{v}$μ before. It is also possible to produce an almost pure $\\bar{v}$μ beam by reversing the current through the magnetic focusing horns of the NuMI beamline, thereby focusing negatively, instead of positively charged particles. This thesis describes the analysis of the 7% $\\bar{v}$μ component of the forward horn current NuMI beam. The $\\bar{v}$μ of a data sample of 3.2 x 10{sup 20} protons on target analysis found 42 events, compared to a CPT conserving prediction of 58.3-7.6+7.6(stat.)-3.6+3.6(syst.) events. This corresponds to a 1.9 σ deficit, and a best fit value of Δ$\\bar{m}$322 = 18 x 10-3 eV2 and sin2 2$\\bar{θ}$23 = 0.55. This thesis focuses particularly on the selection of $\\bar{v}$μ events, and investigates possible improvements of the selection algorithm. From this a different selector was chosen, which corroborated the findings of the original selector. The

  13. PARTICLES AND FIELDS: Systematic impact of spent nuclear fuel on θ13 sensitivity at reactor neutrino experiment

    NASA Astrophysics Data System (ADS)

    An, Feng-Peng; Tian, Xin-Chun; Zhan, Liang; Cao, Jun

    2009-09-01

    Reactor neutrino oscillation experiments, such as Daya Bay, Double Chooz and RENO are designed to determine the neutrino mixing angle θ13 with a sensitivity of 0.01-0.03 in sin2 2θ13 at 90% confidence level, an improvement over the current limit by more than one order of magnitude. The control of systematic uncertainties is critical to achieving the sin2 2θ13 sensitivity goal of these experiments. Antineutrinos emitted from spent nuclear fuel (SNF) would distort the soft part of energy spectrum and may introduce a non-negligible systematic uncertainty. In this article, a detailed calculation of SNF neutrinos is performed taking account of the operation of a typical reactor and the event rate in the detector is obtained. A further estimation shows that the event rate contribution of SNF neutrinos is less than 0.2% relative to the reactor neutrino signals. A global χ2 analysis shows that this uncertainty will degrade the θ13 sensitivity at a negligible level.

  14. Search for sub-eV sterile neutrinos in the precision multiple baselines reactor antineutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Luo, Shu

    2015-10-01

    According to different effects on neutrino oscillations, the unitarity violation in the MNSP matrix can be classified into the direct unitarity violation and the indirect unitarity violation which are induced by the existence of the light and the heavy sterile neutrinos respectively. Of which sub-eV sterile neutrinos are of most interesting. We study in this paper the possibility of searching for sub-eV sterile neutrinos in the precision reactor antineutrino oscillation experiments with three different baselines at around 500 m, 2 km and 60 km. We find that the antineutrino survival probabilities obtained in the reactor experiments are sensitive only to the direct unitarity violation and offer very concentrated sensitivity to the two parameters θ14 and Δ m412. If such light sterile neutrinos do exist, the active-sterile mixing angle θ14 could be acquired by the combined rate analysis at all the three baselines and the mass-squared difference Δ m412 could be obtained by taking the Fourier transformation to the L / E spectrum. Of course, for such measurements to succeed, both high energy resolution and large statistics are essentially important.

  15. Thermal properties of holmium-implanted gold films for a neutrino mass experiment with cryogenic microcalorimeters

    SciTech Connect

    Prasai, K.; Yanardag, S. Basak; Galeazzi, M.; Uprety, Y.; Alves, E.; Rocha, J.; Bagliani, D.; Biasotti, M.; Gatti, F.; Gomes, M. Ribeiro

    2013-08-15

    In a microcalorimetric neutrino mass experiment using the radioactive decay of {sup 163}Ho, the radioactive material must be fully embedded in the microcalorimeter absorber. One option that is being investigated is to implant the radioactive isotope into a gold absorber, as gold is successfully used in other applications. However, knowing the thermal properties at the working temperature of microcalorimeters is critical for choosing the absorber material and for optimizing the detector performance. In particular, it is paramount to understand if implanting the radioactive material in gold changes its heat capacity. We used a bolometric technique to measure the heat capacity of gold films, implanted with various concentrations of holmium and erbium (a byproduct of the {sup 163}Ho fabrication), in the temperature range 70 mK–300 mK. Our results show that the specific heat capacity of the gold films is not affected by the implant, making this a viable option for a future microcalorimeter holmium experiment.

  16. Current MINOS Neutrino Oscillation Results

    SciTech Connect

    Habig, Alec; /Minnesota U., Duluth

    2009-07-01

    The MINOS experiment is now making precise measurements of the {nu}{sub {mu}} disappearance oscillations seen in atmospheric neutrinos, tests possible disappearance to sterile {nu} by measuring the neutral current flux, and has extended our reach towards the so far unseen {theta}{sub 13} by looking for {nu}{sub e} appearance in the {nu}{sub {mu}} beam. It does so by using the intense, well-understood NuMI neutrino beam created at Fermilab and observing it 735km away at the Soudan Mine in Northeast Minnesota. High-statistics studies of the neutrino interactions themselves and the cosmic rays seen by the MINOS detectors have also been made. Results from MINOS first three years of operations will be presented.

  17. Solar neutrino detection in a large volume double-phase liquid argon experiment

    NASA Astrophysics Data System (ADS)

    Franco, D.; Giganti, C.; Agnes, P.; Agostino, L.; Bottino, B.; Canci, N.; Davini, S.; De Cecco, S.; Fan, A.; Fiorillo, G.; Galbiati, C.; Goretti, A. M.; Hungerford, E. V.; Ianni, Al.; Ianni, An.; Jollet, C.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Pagani, L.; Pallavicini, M.; Pantic, E.; Pocar, A.; Razeti, M.; Renshaw, A. L.; Rossi, B.; Rossi, N.; Suvorov, Y.; Testera, G.; Tonazzo, A.; Wang, H.; Zavatarelli, S.

    2016-08-01

    Precision measurements of solar neutrinos emitted by specific nuclear reaction chains in the Sun are of great interest for developing an improved understanding of star formation and evolution. Given the expected neutrino fluxes and known detection reactions, such measurements require detectors capable of collecting neutrino-electron scattering data in exposures on the order of 1 ktonne-yr, with good energy resolution and extremely low background. Two-phase liquid argon time projection chambers (LAr TPCs) are under development for direct Dark Matter WIMP searches, which possess very large sensitive mass, high scintillation light yield, good energy resolution, and good spatial resolution in all three cartesian directions. While enabling Dark Matter searches with sensitivity extending to the ``neutrino floor'' (given by the rate of nuclear recoil events from solar neutrino coherent scattering), such detectors could also enable precision measurements of solar neutrino fluxes using the neutrino-electron elastic scattering events. Modeling results are presented for the cosmogenic and radiogenic backgrounds affecting solar neutrino detection in a 300 tonne (100 tonne fiducial) LAr TPC operating at LNGS depth (3,800 meters of water equivalent). The results show that such a detector could measure the CNO neutrino rate with ~15% precision, and significantly improve the precision of the 7Be and pep neutrino rates compared to the currently available results from the Borexino organic liquid scintillator detector.

  18. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  19. Astroparticle physics with solar neutrinos.

    PubMed

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  20. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a experiment, resulting in a marked increase of its tension with other searches, under the standard set of phenomenological assumptions. The method is illustrated for other target materials (superheated and noble liquids).

  1. Applications of an 88Y/Be photoneutron calibration source to dark matter and neutrino experiments.

    PubMed

    Collar, J I

    2013-05-24

    The low-energy monochromatic neutron emission from an (88)Y/Be source can be exploited to mimic the few keV(nr) nuclear recoils expected from low-mass weakly interacting massive particles and coherent scattering of neutrinos off nuclei. Using this source, a experiment, resulting in a marked increase of its tension with other searches, under the standard set of phenomenological assumptions. The method is illustrated for other target materials (superheated and noble liquids). PMID:23745854

  2. A study of muon neutrino disappearance in the MINOS detectors and the NuMI beam

    SciTech Connect

    Ling, Jiajie

    2010-01-01

    There is now substantial evidence that the proper description of neutrino involves two representations related by the 3 x 3 PMNS matrix characterized by either distinct mass or flavor. The parameters of this mixing matrix, three angles and a phase, as well as the mass differences between the three mass eigenstates must be determined experimentally. The Main Injector Neutrino Oscillation Search experiment is designed to study the flavor composition of a beam of muon neutrinos as it travels between the Near Detector at Fermi National Accelerator Laboratory at 1 km from the target, and the Far Detector in the Soudan iron mine in Minnesota at 735 km from the target. From the comparison of reconstructed neutrino energy spectra at the near and far location, precise measurements of neutrino oscillation parameters from muon neutrino disappearance and electron neutrino appearance are expected. It is very important to know the neutrino flux coming from the source in order to achieve the main goal of the MINOS experiment: precise measurements of the atmospheric mass splitting |Δm232|, sin2 θ23. The goal of my thesis is to accurately predict the neutrino flux for the MINOS experiment and measure the neutrino mixing angle and atmospheric mass splitting.

  3. The OPERA experiment in the CERN to Gran Sasso neutrino beam

    NASA Astrophysics Data System (ADS)

    Acquafredda, R.; Adam, T.; Agafonova, N.; Alvarez Sanchez, P.; Ambrosio, M.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Arrabito, L.; Aufranc, C.; Autiero, D.; Badertscher, A.; Bagulya, A.; Baussan, E.; Bergnoli, A.; Bersani Greggio, F.; Bertolin, A.; Besnier, M.; Biaré, D.; Bick, D.; Blin, S.; Borer, K.; Boucrot, J.; Boutigny, D.; Boyarkin, V.; Bozza, C.; Brugière, T.; Brugnera, R.; Brunetti, G.; Buontempo, S.; Campagne, J. E.; Carlus, B.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Ciesielski, R.; Consiglio, L.; Cozzi, M.; D'Amato, G.; Dal Corso, F.; D'Ambrosio, N.; Damet, J.; de La Taille, C.; DeLellis, G.; Déclais, Y.; Descombes, T.; DeSerio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dick, N.; Dmitrievski, S.; Dominjon, A.; Dracos, M.; Duchesneau, D.; Dulach, B.; Dusini, S.; Ebert, J.; Efthymiopoulos, I.; Egorov, O.; Elsener, K.; Enikeev, R.; Ereditato, A.; Esposito, L. S.; Fanin, C.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.; Fournier, L.; Franceschi, A.; Frekers, D.; Fukuda, T.; Fukushima, C.; Galkin, V. I.; Galkin, V. A.; Gallet, R.; Gardien, S.; Garfagnini, A.; Gaudiot, G.; Giacomelli, G.; Giorgini, M.; Girerd, C.; Goellnitz, C.; Goeltzenlichter, T.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grapton, J.-N.; Grella, G.; Grianti, F.; Gschwendtner, E.; Guerin, C.; Guler, M.; Gustavino, C.; Guyonnet, J.-L.; Hagner, C.; Hamane, T.; Hara, T.; Hauger, M.; Hess, M.; Hierholzer, M.; Hoshino, K.; Ieva, M.; Incurvati, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kazuyama, M.; Kim, S. H.; Khovansky, N.; Kimura, M.; Klicek, B.; Knuesel, J.; Kodama, K.; Kolev, D.; Komatsu, M.; Kose, U.; Krasnoperov, A.; Kreslo, I.; Krumstein, Z.; Kutsenov, V. V.; Kuznetsov, V. A.; Laktineh, I.; Lavy, M.; Lazzaro, C.; Le, T. D.; LeFlour, T.; Lenkeit, J.; Lewis, J.; Lieunard, S.; Ljubicic, A.; Longhin, A.; Lutter, G.; Malgin, A.; Manai, K.; Mandrioli, G.; Marotta, A.; Marteau, J.; Martin-Chassard, G.; Matveev, V.; Mauri, N.; Meddahi, M.; Meisel, F.; Meregaglia, A.; Meschini, A.; Messina, M.; Migliozzi, P.; Monacelli, P.; Monteiro, I.; Moreau, F.; Morishima, K.; Moser, U.; Muciaccia, M. T.; Mugnier, P.; Naganawa, N.; Nakamura, M.; Nakano, T.; Napolitano, T.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Nozdrin, A.; Ogawa, S.; Olchevski, A.; Orlandi, D.; Orlova, G.; Osedlo, V.; Ossetski, D.; Paniccia, M.; Paoloni, A.; Park, B. D.; Park, I. G.; Pastore, A.; Patrizii, L.; Pellegrino, L.; Pennacchio, E.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, K.; Publichenko, P.; Pupilli, F.; Raux, L.; Repellin, J. P.; Rescigno, R.; Rizhikov, D.; Roganova, T.; Romano, G.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryasny, V.; Ryazhskaya, O.; Sadovski, A.; Sanelli, C.; Sato, O.; Sato, Y.; Saveliev, V.; Sazhina, G.; Schembri, A.; Schmidt Parzefall, W.; Schroeder, H.; Schütz, H. U.; Schuler, J.; Scotto Lavina, L.; Serrano, J.; Shibuya, H.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Song, J. S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, P.; Sugonyaev, V.; Takahashi, S.; Talochkin, V.; Tenti, M.; Tereschenko, V.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Tsarev, V.; Tsenov, R.; Tufanli, S.; Ugolino, U.; Ushida, N.; Van Beek, G.; Verguilov, V.; Viant, T.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J. L.; Waelchli, T.; Weber, M.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yakushev, V.; Yoon, C. S.; Zaitsev, Y.; Zghiche, A.; Zimmermann, R.

    2009-04-01

    The OPERA neutrino oscillation experiment has been designed to prove the appearance of ντ in a nearly pure νμ beam (CNGS) produced at CERN and detected in the underground Hall C of the Gran Sasso Laboratory, 730 km away from the source. In OPERA, τ leptons resulting from the interaction of ντ are produced in target units called bricks made of nuclear emulsion films interleaved with lead plates. The OPERA target contains 150000 of such bricks, for a total mass of 1.25 kton, arranged into walls interleaved with plastic scintillator strips. The detector is split into two identical supermodules, each supermodule containing a target section followed by a magnetic spectrometer for momentum and charge measurement of penetrating particles. Real time information from the scintillators and the spectrometers provide the identification of the bricks where the neutrino interactions occurred. The candidate bricks are extracted from the walls and, after X-ray marking and an exposure to cosmic rays for alignment, their emulsion films are developed and sent to the emulsion scanning laboratories to perform the accurate scan of the event. In this paper, we review the design and construction of the detector and of its related infrastructures, and report on some technical performances of the various components. The construction of the detector started in 2003 and it was completed in Summer 2008. The experiment is presently in the data taking phase. The whole sequence of operations has proven to be successful, from triggering to brick selection, development, scanning and event analysis.

  4. Hadron production measurements for neutrino physics

    SciTech Connect

    Panman, Jaap

    2008-02-21

    One of the limiting factors for the precision of neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Recently, dedicated hadron production experiments have been taking data and are being planned to supply measurements which can significantly reduce these uncertainties. The HARP experiment has presented results on the measurements of the double-differential production cross-section of charged pions in proton interactions with beryllium, carbon, aluminium, copper, tin, tantalum and lead targets. These results are relevant for a detailed understanding of neutrino flux in accelerator neutrino experiments K2K (p-Al data) and MiniBooNE/SciBooNE (p-Be data), for a better prediction of atmospheric neutrino fluxes (p-C, {pi}{sup +}-C and {pi}{sup -}-C data) as well as for a systematic improvement of hadron production models. The E910 experiment at BNL has recently published their p-Be data. NA49 has measured pion production spectra in p-C interactions and a new experiment, NA61, is starting to take data using essentially the same detector. NA61 plans to measure production spectra for the T2K experiment and for the calculation of extended air showers. MIPP has taken data with a copy of the NuMI target and is progressing in the analysis of these data. An upgrade of the readout of this experiment can greatly increase its potential.

  5. Cosmological neutrino mass detection: The Best probe of neutrino lifetime

    SciTech Connect

    Serpico, Pasquale D.; /Fermilab

    2007-01-01

    Future cosmological data may be sensitive to the effects of a finite sum of neutrino masses even as small as {approx}0.06 eV, the lower limit guaranteed by neutrino oscillation experiments. We show that a cosmological detection of neutrino mass at that level would improve by many orders of magnitude the existing limits on neutrino lifetime, and as a consequence on neutrino secret interactions with (quasi-)massless particles as in majoron models. On the other hand, neutrino decay may provide a way-out to explain a discrepancy {approx}< 0.1 eV between cosmic neutrino bounds and Lab data.

  6. Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

    NASA Astrophysics Data System (ADS)

    Agafonova, N.; Aleksandrov, A.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Bender, D.; Bertolin, A.; Bodnarchuk, I.; Bozza, C.; Brugnera, R.; Buonaura, A.; Buontempo, S.; Büttner, B.; Chernyavsky, M.; Chukanov, A.; Consiglio, L.; D'Ambrosio, N.; De Lellis, G.; De Serio, M.; Del Amo Sanchez, P.; Di Crescenzo, A.; Di Ferdinando, D.; Di Marco, N.; Dmitrievski, S.; Dracos, M.; Duchesneau, D.; Dusini, S.; Dzhatdoev, T.; Ebert, J.; Ereditato, A.; Fini, R. A.; Fukuda, T.; Galati, G.; Garfagnini, A.; Goldberg, J.; Gornushkin, Y.; Grella, G.; Guler, A. M.; Gustavino, C.; Hagner, C.; Hara, T.; Hollnagel, A.; Hosseini, B.; Ishiguro, K.; Jakovcic, K.; Jollet, C.; Kamiscioglu, C.; Kamiscioglu, M.; Kim, J. H.; Kim, S. H.; Kitagawa, N.; Klicek, B.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Lauria, A.; Ljubicic, A.; Longhin, A.; Malgin, A.; Malenica, M.; Mandrioli, G.; Matsuo, T.; Matveev, V.; Mauri, N.; Medinaceli, E.; Meregaglia, A.; Mikado, S.; Monacelli, P.; Montesi, M. C.; Morishima, K.; Muciaccia, M. T.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Nakatsuka, Y.; Niwa, K.; Ogawa, S.; Omura, T.; Ozaki, K.; Paoloni, A.; Paparella, L.; Park, B. D.; Park, I. G.; Pasqualini, L.; Pastore, A.; Patrizii, L.; Pessard, H.; Podgrudkov, D.; Polukhina, N.; Pozzato, M.; Pupilli, F.; Roda, M.; Roganova, T.; Rokujo, H.; Rosa, G.; Ryazhskaya, O.; Sato, O.; Schembri, A.; Shakirianova, I.; Shchedrina, T.; Sheshukov, A.; Shibuya, H.; Shiraishi, T.; Shoziyoev, G.; Simone, S.; Sioli, M.; Sirignano, C.; Sirri, G.; Spinetti, M.; Stanco, L.; Starkov, N.; Stellacci, S. M.; Stipcevic, M.; Strolin, P.; Takahashi, S.; Tenti, M.; Terranova, F.; Tioukov, V.; Tufanli, S.; Vilain, P.; Vladymyrov, M.; Votano, L.; Vuilleumier, J. L.; Wilquet, G.; Wonsak, B.; Yoon, C. S.; Zemskova, S.

    2015-06-01

    The OPERA experiment, exposed to the CERN to Gran Sasso ν μ beam, collected data from 2008 to 2012. Four oscillated ν τ Charged Current interaction candidates have been detected in appearance mode, which are consistent with ν μ → ν τ oscillations at the atmospheric Δ m 2 within the "standard" three-neutrino framework. In this paper, the OPERA ν τ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.

  7. Propagation experiments in low-visibility atmospheres.

    PubMed

    Paik, W H; Tebyani, M; Epstein, D J; Kennedy, R S; Shapiro, J H

    1978-03-15

    An experimental program aimed at measuring critical channel parameters of atmospheric optical communication channels under low-visibility weather conditions is described. Multipath and angular spectrum measurements made under a variety of weather conditions over a 13.6-km line-of-sight propagation path are reported. The latter measurements are used to examine the dependence of scattered plus unscattered optical transmission on optical thickness.

  8. Sudbury Neutrino Observatory

    SciTech Connect

    Beier, E.W.

    1992-03-01

    This document is a technical progress report on work performed at the University of Pennsylvania during the current year on the Sudbury Neutrino Observatory project. The motivation for the experiment is the measurement of neutrinos emitted by the sun. The Sudbury Neutrino Observatory (SNO) is a second generation dedicated solar neutrino experiment which will extend the results of our work with the Kamiokande II detector by measuring three reactions of neutrinos rather than the single reaction measured by the Kamiokande experiment. The collaborative project includes physicists from Canada, the United Kingdom, and the United States. Full funding for the construction of this facility was obtained in January 1990, and its construction is estimated to take five years. The motivation for the SNO experiment is to study the fundamental properties of neutrinos, in particular the mass and mixing parameters, which remain undetermined after decades of experiments in neutrino physics utilizing accelerators and reactors as sources of neutrinos. To continue the study of neutrino properties it is necessary to use the sun as a neutrino source. The long distance to the sun makes the search for neutrino mass sensitive to much smaller mass than can be studied with terrestrial sources. Furthermore, the matter density in the sun is sufficiently large to enhance the effects of small mixing between electron neutrinos and mu or tau neutrinos. This experiment, when combined with the results of the radiochemical {sup 37}Cl and {sup 71}Ga experiments and the Kamiokande II experiment, should extend our knowledge of these fundamental particles, and as a byproduct, improve our understanding of energy generation in the sun.

  9. Neutrino Oscillation Physics

    SciTech Connect

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  10. On the Detection of the Free Neutrino

    DOE R&D Accomplishments Database

    Reines, F.; Cowan, C. L., Jr.

    1953-08-06

    The experiment previously proposed [to Detect the Free Neutrino] has been initiated, with a Hanford pile as a neutrino source. It appears probable that neutrino detection has been accomplished, and confirmatory work is in progress. (K.S.)

  11. Brief introduction of the neutrino event generators

    SciTech Connect

    Hayato, Yoshinari

    2015-05-15

    The neutrino interaction simulation programs (event generators) play an important role in the neutrino experiments. This article briefly explains what is the neutrino event generator and how it works.

  12. A Spectacular Experiment Exhibiting Atmospheric Pressure

    ERIC Educational Resources Information Center

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  13. A Measurement of Electron Neutrino Appearance in the MINOS Experiment After Four Years of Data

    SciTech Connect

    Cavanaugh, Steven

    2010-05-01

    This work attempts to measure or set a limit on sin2(2θ13), the parameter which describes vμ → ve oscillations. The MINOS detectors at Fermilab are used to perform a search for the oscillations utilizing a beam of vμ neutrinos created in the NuMI beamline by the collisions of 120 GeV protons with a carbon target. These collisions create π± and K± which are focused with magnetic horns, are allowed to decay, and result in a beam of vμ in the energy range of 1 to 30 GeV. Two functionally identical steel-scintillator calorimetric detectors are utilized to measure the interactions of the generated neutrinos. A detector close to the NuMI beam, located 104 m underground and 1040 m from the target, is used to measure the properties of the neutrino beam, including the flux, composition, and energy spectrum. This information is used in part to generate a predicted spectrum of neutrinos in absence of vμ → ve oscillations in the detector located far from the target, at a distance of 705 m underground and 735.5 km from the target. An excess of predicted ve charged current events in this far detector will be interpreted as vμ → ve oscillations, and a measurement of sin2(2θ13) will be made using a Feldman-Cousins analysis. The measurement of vμ → ve requires the separation of ve candidates from background events. New reconstruction software was developed with a focus on identifying ve candidate events in order to reduce systematic errors. The event parameters measured by this software were used as an input to an artificial neutral network event discriminator. The details of this reconstruction software and the other steps of the analysis necessary to making the measurement will be discussed. This work builds on a previous measurement made with this

  14. OPERA neutrino oscillation search: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Gornushkin, Yu.

    2016-07-01

    OPERA is a long-baseline neutrino experiment at the Gran Sasso laboratory (LNGS) designed to search for ν_{{μ}}^{} → ν_{{τ}}^{} oscillations in a direct appearance mode on an event by event basis. OPERA took data in 2008-2012 with the CNGS neutrino beam from CERN. The data analysis is ongoing, with the goal of establishing ν_{{τ}}^{} appearance with a high significance. Complementary studies of the ν_{{μ}}^{} → ν_{{e}}^{} oscillations and atmospheric muons fluxes were performed as well. Current results of the experiment are presented and perspectives discussed.

  15. PREFACE: Prospects in Neutrino Physics 2013 - NuPhys2013

    NASA Astrophysics Data System (ADS)

    2015-04-01

    The first "Prospects in Neutrino Physics 2013 - NuPhys2013" conference was held at the Institute of Physics, IoP, London, 19-20 December 2013 and was attended by about 130 delegates from institutions worldwide. Lunch and coffee breaks allowed discussions among delegates and speakers to take place in an informal setting. This conference is unique in discussing the worldwide strategy to address unresolved issues in neutrino physics, and shape the future directions of particle physics. We discussed the current status and focussed especially on the prospects of future experiments, their performance and physics reach. It is particularly timely due to the recent measurements in neutrino physics and planned worldwide experiments. The following topics were addressed: • Theory and Phenomenology Perspectives • Future Long and Short Baseline Neutrino Oscillation Experiments • Reactor neutrino and flux • Neutrinoless double beta decays • Solar, atmospheric, supernova neutrinosNeutrino cosmology in which both the phenomenological and experimental aspects were equally addressed. World-leading experts in the different neutrino areas were invited to give review talks. To encourage and facilitate the participation of early-career researchers and PhD students, a poster session formed a key aspect of this meeting. The conference was organized by Francesca Di Lodovico and Silvia Pascoli. It was sponsored by the IoP through their Topic Research Meeting Grant, and also supported by Durham IPPP, ERC-207282, FP7 invisibles project, Queen Mary University of London.

  16. Mission and sampling analyses for atmospheric satellite experiments

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.

    1990-01-01

    Orbital analyses, instrument-viewing geometry studies, and sampling simulations are performed to define mission concepts for advanced atmospheric research satellite experiments. These analyses are conducted in collaboration with NASA Headquarters and working groups consisting of atmospheric scientists and experiment developers. Analytical techniques are developed and used to optimize geographical coverage, sensor-viewing geometries, data gathering strategies, sampling schemes, orbital characteristics, satellite launch times, and operational modes of the various experiments and mission concepts. Short-term (7 day) Shuttle Missions, the Upper Atmosphere Research Satellite (UARS), and multisatellite missions such as the Earth Observing System (EOS) are being studied. Atmospheric experiments which are being analyzed include nadir-viewing sounders, limb-emission scanners, laser systems, and solar-occultation techniques.

  17. Neutrino physics with JUNO

    NASA Astrophysics Data System (ADS)

    An, Fengpeng; An, Guangpeng; An, Qi; Antonelli, Vito; Baussan, Eric; Beacom, John; Bezrukov, Leonid; Blyth, Simon; Brugnera, Riccardo; Buizza Avanzini, Margherita; Busto, Jose; Cabrera, Anatael; Cai, Hao; Cai, Xiao; Cammi, Antonio; Cao, Guofu; Cao, Jun; Chang, Yun; Chen, Shaomin; Chen, Shenjian; Chen, Yixue; Chiesa, Davide; Clemenza, Massimiliano; Clerbaux, Barbara; Conrad, Janet; D'Angelo, Davide; De Kerret, Hervé; Deng, Zhi; Deng, Ziyan; Ding, Yayun; Djurcic, Zelimir; Dornic, Damien; Dracos, Marcos; Drapier, Olivier; Dusini, Stefano; Dye, Stephen; Enqvist, Timo; Fan, Donghua; Fang, Jian; Favart, Laurent; Ford, Richard; Göger-Neff, Marianne; Gan, Haonan; Garfagnini, Alberto; Giammarchi, Marco; Gonchar, Maxim; Gong, Guanghua; Gong, Hui; Gonin, Michel; Grassi, Marco; Grewing, Christian; Guan, Mengyun; Guarino, Vic; Guo, Gang; Guo, Wanlei; Guo, Xin-Heng; Hagner, Caren; Han, Ran; He, Miao; Heng, Yuekun; Hsiung, Yee; Hu, Jun; Hu, Shouyang; Hu, Tao; Huang, Hanxiong; Huang, Xingtao; Huo, Lei; Ioannisian, Ara; Jeitler, Manfred; Ji, Xiangdong; Jiang, Xiaoshan; Jollet, Cécile; Kang, Li; Karagounis, Michael; Kazarian, Narine; Krumshteyn, Zinovy; Kruth, Andre; Kuusiniemi, Pasi; Lachenmaier, Tobias; Leitner, Rupert; Li, Chao; Li, Jiaxing; Li, Weidong; Li, Weiguo; Li, Xiaomei; Li, Xiaonan; Li, Yi; Li, Yufeng; Li, Zhi-Bing; Liang, Hao; Lin, Guey-Lin; Lin, Tao; Lin, Yen-Hsun; Ling, Jiajie; Lippi, Ivano; Liu, Dawei; Liu, Hongbang; Liu, Hu; Liu, Jianglai; Liu, Jianli; Liu, Jinchang; Liu, Qian; Liu, Shubin; Liu, Shulin; Lombardi, Paolo; Long, Yongbing; Lu, Haoqi; Lu, Jiashu; Lu, Jingbin; Lu, Junguang; Lubsandorzhiev, Bayarto; Ludhova, Livia; Luo, Shu; Lyashuk, Vladimir; Möllenberg, Randolph; Ma, Xubo; Mantovani, Fabio; Mao, Yajun; Mari, Stefano M.; McDonough, William F.; Meng, Guang; Meregaglia, Anselmo; Meroni, Emanuela; Mezzetto, Mauro; Miramonti, Lino; Mueller, Thomas; Naumov, Dmitry; Oberauer, Lothar; Ochoa-Ricoux, Juan Pedro; Olshevskiy, Alexander; Ortica, Fausto; Paoloni, Alessandro; Peng, Haiping; Peng, Jen-Chieh; Previtali, Ezio; Qi, Ming; Qian, Sen; Qian, Xin; Qian, Yongzhong; Qin, Zhonghua; Raffelt, Georg; Ranucci, Gioacchino; Ricci, Barbara; Robens, Markus; Romani, Aldo; Ruan, Xiangdong; Ruan, Xichao; Salamanna, Giuseppe; Shaevitz, Mike; Sinev, Valery; Sirignano, Chiara; Sisti, Monica; Smirnov, Oleg; Soiron, Michael; Stahl, Achim; Stanco, Luca; Steinmann, Jochen; Sun, Xilei; Sun, Yongjie; Taichenachev, Dmitriy; Tang, Jian; Tkachev, Igor; Trzaska, Wladyslaw; van Waasen, Stefan; Volpe, Cristina; Vorobel, Vit; Votano, Lucia; Wang, Chung-Hsiang; Wang, Guoli; Wang, Hao; Wang, Meng; Wang, Ruiguang; Wang, Siguang; Wang, Wei; Wang, Yi; Wang, Yi; Wang, Yifang; Wang, Zhe; Wang, Zheng; Wang, Zhigang; Wang, Zhimin; Wei, Wei; Wen, Liangjian; Wiebusch, Christopher; Wonsak, Björn; Wu, Qun; Wulz, Claudia-Elisabeth; Wurm, Michael; Xi, Yufei; Xia, Dongmei; Xie, Yuguang; Xing, Zhi-zhong; Xu, Jilei; Yan, Baojun; Yang, Changgen; Yang, Chaowen; Yang, Guang; Yang, Lei; Yang, Yifan; Yao, Yu; Yegin, Ugur; Yermia, Frédéric; You, Zhengyun; Yu, Boxiang; Yu, Chunxu; Yu, Zeyuan; Zavatarelli, Sandra; Zhan, Liang; Zhang, Chao; Zhang, Hong-Hao; Zhang, Jiawen; Zhang, Jingbo; Zhang, Qingmin; Zhang, Yu-Mei; Zhang, Zhenyu; Zhao, Zhenghua; Zheng, Yangheng; Zhong, Weili; Zhou, Guorong; Zhou, Jing; Zhou, Li; Zhou, Rong; Zhou, Shun; Zhou, Wenxiong; Zhou, Xiang; Zhou, Yeling; Zhou, Yufeng; Zou, Jiaheng

    2016-03-01

    The Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy (MH) as a primary physics goal. The excellent energy resolution and the large fiducial volume anticipated for the JUNO detector offer exciting opportunities for addressing many important topics in neutrino and astro-particle physics. In this document, we present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. Following an introduction summarizing the current status and open issues in neutrino physics, we discuss how the detection of antineutrinos generated by a cluster of nuclear power plants allows the determination of the neutrino MH at a 3-4σ significance with six years of running of JUNO. The measurement of antineutrino spectrum with excellent energy resolution will also lead to the precise determination of the neutrino oscillation parameters {{sin}}2{θ }12, {{Δ }}{m}212, and | {{Δ }}{m}{ee}2| to an accuracy of better than 1%, which will play a crucial role in the future unitarity test of the MNSP matrix. The JUNO detector is capable of observing not only antineutrinos from the power plants, but also neutrinos/antineutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, and solar neutrinos. As a result of JUNO's large size, excellent energy resolution, and vertex reconstruction capability, interesting new data on these topics can be collected. For example, a neutrino burst from a typical core-collapse supernova at a distance of 10 kpc would lead to ˜5000 inverse-beta-decay events and ˜2000 all-flavor neutrino-proton ES events in JUNO, which are of crucial importance for understanding the mechanism of supernova explosion and for exploring novel phenomena such as collective neutrino oscillations

  18. A data summary file structure and analysis tools for neutrino oscillation analysis at the NOvA experiment

    NASA Astrophysics Data System (ADS)

    Backhouse, C.; Rocco, D.

    2015-12-01

    The NuMI Off-axis Neutrino Experiment (NOvA) is designed to study neutrino oscillations in the NuMI beam at Fermilab. Neutrinos at the Main Injector (NuMI) is currently being upgraded to provide 700 kW for NOvA. A 14 kt Far Detector in Ash River, MN and a functionally identical 0.3 kt Near Detector at Fermilab are positioned 810 km apart in the NuMI beam line. The fine granularity of the NOvA detectors provides a detailed representation of particle trajectories. The data volume associated with such granularity, however, poses problems for analyzing data with ease and speed. NOvA has developed a data summary file structure which discards the full event record in favor of higher-level reconstructed information. A general- purpose framework for neutrino oscillation measurements has been developed for analysis of these data summary files. We present the design methodology for this new file format as well as the analysis framework and the role it plays in producing NOvA physics results.

  19. Results from the Cuoricino (Zero-Neutrino Double Beta) Decay Experiment

    SciTech Connect

    Arnaboldi, C; Artusa, D R; Avignone, F T; Balata, M; Bandac, I; Barucci, M; Beeman, J W; Bellini, F; Brofferio, C; Bucci, C; Capelli, S; Carbone, L; Cebrian, S; Clemenza, M; Cremonesi, O; Creswick, R J; de Ward, A; Didomizio, S D; Dolinski, M J; Farach, H A; Fiorini, E; Frossati, G; Giachero, A; Giuliani, A; Gorla, P; Guardincerri, E; Gutierrez, T D; Haller, E E; Maruyama, R H; McDonald, R J; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Olivieri, E; Pallavicini, M; Palmieri, E; Pasca, E; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Risegari, L; Rosenfeld, C; Sangiorgio, S; Sisti, M; Smith, A R; Torres, L; Ventura, G; Vignati, M

    2007-12-20

    Recent results from the CUORICINO {sup 130}Te zero-neutrino double-beta (0v{beta}{beta}) decay experiment are reported. CUORICINO is an array of 62 tellurium oxide (TeO{sub 2}) bolometers with an active mass of 40.7 kg. It is cooled to {approx}8 mK by a dilution refrigerator shielded from environmental radioactivity and energetic neutrons. It is running in the Laboratori Nazionali del Gran Sasso (LNGS) in Assergi, Italy. These data represent 11.83 kg y or 90.77 mole-years of {sup 130}Te. No evidence for 0v{beta}{beta}-decay was observed and a limit of T{sub 1/2}{sup 0v} ({sup 130}Te) {ge} 3.0 x 10{sup 24} y (90% C.L.) is set. This corresponds to upper limits on the effective mass, , between 0.19 and 0.68eV when analyzed with the many published nuclear structure calculations. In the context of these nuclear models, the values fall within the range corresponding to the claim of evidence of 0v{beta}{beta}-decay by H.V. Klapdor-Kleingrothaus and his co-workers. The experiment continues to acquire data.

  20. Neutrino Physics at Fermilab

    SciTech Connect

    Federspiel, F.; Garvey, G.; Louis, W.C.; Mills, G.B.; Tayloe, R.; Sandberg, V.; Sapp, B.; White, D.H.

    1999-07-09

    The Liquid Scintillator Neutrino Detector (LSND), located at the LANSCE (formerly LAMPF) linear accelerator at Los Alamos National Laboratory, has seen evidence for the oscillation of neutrinos, and hence neutrino mass. That discovery was the impetus for this LDRD project, begun in 1996. The goal of this project was to define the appropriate technologies to use in a follow up experiment and to set in place the requirements for such an experiment.

  1. The San Marco 3 neutral atmosphere composition experiment

    NASA Technical Reports Server (NTRS)

    Pelz, D. T.; Newton, G. P.; Kasprzak, W. T.; Clem, T. D.

    1973-01-01

    The experimental instrumentation of the San Marco 3 satellite is described along with the calibration and operation. The instrumentation for the following experiments was included: an air density experiment for measuring the instantaneous drag force, and thus the neutral particle total mass density; a neutral atmosphere composition experiment for measuring the densities of helium, atomic and molecular oxygen, molecular nitrogen and argon; and a neutral atmosphere temperature experiment to determine the gas kinetic temperature by measuring molecular nitrogen density variations in an orificed spherical chamber as a function of angle of attack.

  2. Shuttle Coherent Atmospheric Lidar Experiment (SCALE)

    NASA Technical Reports Server (NTRS)

    Bilbro, J.; Beranek, R.; Fitzjarrald, D.; Mabry, J.

    1987-01-01

    The results of a study to design and accommodate a simplified version of a coherent lidar system capable of performing tropospheric wind measurements are outlined. The following topics are addressed: system sensitivity, orbital analysis, science experiments, preliminary system design, accommodations, and the space qualification of a 2J CO2 laser.

  3. Atmospheric Turbulence Statistics from GOLD Experiments

    NASA Technical Reports Server (NTRS)

    Jeganathan, Muthu; Wilson, Keith; Lesh, Jim

    1996-01-01

    Ground-Orbiter Lasercomm Demonstration (GOLD) includes the following: (1) Optical communication experiments between Table Mountain Observatory (TMF) and Japanese Engineering Test Satellite (ETS-VI); (2) International cooperative effort between NASA, NASDA, CRL and JPL; and (3) Phase 1 transmissions from October 1995 to January 1996 and Phase 2 transmissions from March 1996 to May 1996.

  4. The Atmospheric Chemistry Experiment (ACE): Mission Overview

    NASA Astrophysics Data System (ADS)

    Bernath, P.

    2003-04-01

    The ACE mission goals are: (1) to measure and to understand the chemical and dynamical processes that control the distribution of ozone in the upper troposphere and stratosphere, with a particular emphasis on the Arctic region; (2) to explore the relationship between atmospheric chemistry and climate change; (3) to study the effects of biomass burning in the free troposphere; (4) to measure aerosol number density, size distribution and composition in order to reduce the uncertainties in their effects on the global energy balance. ACE will make a comprehensive set of simultaneous measurements of trace gases, thin clouds, aerosols, and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) will give ACE coverage of tropical, mid-latitudes and polar regions. The solar occultation advantages are high sensitivity and self-calibration. A high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4100 cm-1) will measure the vertical distribution of trace gases, and the meteorological variables of temperature and pressure. The ACE concept is derived from the now-retired ATMOS FTS instrument, which flew on the Space Shuttle in 1985, 1992, 1993, 1994. Climate-chemistry coupling may lead to the formation of an Arctic ozone hole. ACE will provide high quality data to confront these model predictions and will monitor polar chemistry as chlorine levels decline. The ACE-FTS can measure water vapor and HDO in the tropical tropopause region to study dehydration and strat-trop exchange. The molecular signatures of massive forest fires will evident in the ACE infrared spectra. The CO_2 in our spectra can be used to either retrieve atmospheric pressure or (if the instrument pointing knowledge proves to be satisfactory) for an independent retrieval of a CO_2 profile for carbon cycle science. Aerosols and clouds will be monitored using the extinction of solar

  5. Light sterile neutrinos: Status and perspectives

    NASA Astrophysics Data System (ADS)

    Giunti, Carlo

    2016-07-01

    The indications in favor of the existence of light sterile neutrinos at the eV scale found in short-baseline neutrino oscillation experiments is reviewed. The future perspectives of short-baseline neutrino oscillation experiments and the connections with β-decay measurements of the neutrino masses and with neutrinoless double-β decay experiments are discussed.

  6. Readout electronics validation and target detector assessment for the Neutrinos Angra experiment

    NASA Astrophysics Data System (ADS)

    Alvarenga, T. A.; Anjos, J. C.; Azzi, G.; Cerqueira, A. S.; Chimenti, P.; Costa, J. A.; Dornelas, T. I.; Farias, P. C. M. A.; Guedes, G. P.; Gonzalez, L. F. G.; Kemp, E.; Lima, H. P.; Machado, R.; Nóbrega, R. A.; Pepe, I. M.; Ribeiro, D. B. S.; Simas Filho, E. F.; Valdiviesso, G. A.; Wagner, S.

    2016-09-01

    A compact surface detector designed to identify the inverse beta decay interaction produced by anti-neutrinos coming from near operating nuclear reactors is being developed by the Neutrinos Angra Collaboration. In this document we describe and test the detector and its readout system by means of cosmic rays acquisition. In this measurement campaign, the target detector has been equipped with 16 8-in PMTs and two scintillator paddles have been used to trigger cosmic ray events. The achieved results disclosed the main operational characteristics of the Neutrinos Angra system and have been used to assess the detector and to validate its readout system.

  7. CP violation from a combined Beta Beam and Electron Capture neutrino experiment

    NASA Astrophysics Data System (ADS)

    Bernabeu, Jose; Espinoza, Catalina; Orme, Christopher; Palomares-Ruiz, Sergio; Pascoli, Silvia

    2010-03-01

    We consider the proposal of a facility comprising a hybrid setup for a neutrino beam which combines an electron capture decay with a β+ decay from the same radioactive ion with the same boost. We study the sensitivity to the mixing angle θ13 and the CP-phase, the CP discovery potential and the reach to determine the type of neutrino mass hierarchy. The analysis is performed for different boosts and baselines demonstrating that the combination of the two decay channels, with different neutrino energies, achieves remarkable results.

  8. Results of ultra-low level 71ge counting for application in the Gallex-solar neutrino experiment at the Gran Sasso Underground Physics Laboratory

    NASA Technical Reports Server (NTRS)

    Hampel, W.; Heusser, G.; Huebner, M.; Kiko, J.; Kirsten, T.; Schneider, K.; Schlotz, R.

    1985-01-01

    It has been experimentally verified that the Ultra-Low-Level Counting System for the Gallex solar neutrino experiment is capable of measuring the expected solar up silon-flux to plus or minus 12% during two years of operation.

  9. Application of data mining techniques in atmospheric neutrino analyses with IceCube

    NASA Astrophysics Data System (ADS)

    Ruhe, T.

    2016-04-01

    The selection of event candidates by machine learning algorithms has become an important analysis tool. Data mining, however, goes beyond the simple training and application of a learning algorithm. It also incorporates finding a good representation of data in fewer dimensions without losing relevant information, as well as a thorough validation of the results throughout the entire analysis. A data mining-based event selection chain has been developed for the measurement of the atmospheric νμ spectrum with IceCube in the 59-string configuration. It yielded a high statistics and high purity sample (99.59 ± 0.37%) of νμ, while allowing only 1.0 × 10-4% of the incoming background muons to pass. In this paper the setup of the analysis chain is presented and the results are discussed in the context of atmospheric νμ analyses.

  10. Superluminal neutrinos at OPERA confront pion decay kinematics.

    PubMed

    Cowsik, Ramanath; Nussinov, Shmuel; Sarkar, Utpal

    2011-12-16

    Violation of Lorentz invariance (VLI) has been suggested as an explanation of the superluminal velocities of muon neutrinos reported by OPERA. In this Letter, we show that the amount of VLI required to explain this result poses severe difficulties with the kinematics of the pion decay, extending its lifetime and reducing the momentum carried away by the neutrinos. We show that the OPERA experiment limits α=(ν(ν)-c)/c<4×10(-6). We then take recourse to cosmic-ray data on the spectrum of muons and neutrinos generated in Earth's atmosphere to provide a stronger bound on VLI: (ν-c)/c<10(-12).

  11. Estudo da Oscilação de Neutrinos Muônicos Usando Dados Atmosféricos e de Acelerador nos Experimentos MINOS e MINOS+

    SciTech Connect

    Medeiros, Michelle Mesquita de

    2015-01-01

    The MINOS (Main Injector Neutrino Oscillation Search) and MINOS+ experiments were designed to study neutrino oscillations using a muon neutrino beam which is detected in two different locations, in the Near Detector and in the Far Detector. The distance between the detectors allows the beam neutrinos to oscillate to a different flavor. Therefore, a disappearance of the muon neutrinos from the beam is observed in the Far Detector. The Far Detector has a special apparatus which makes possible the selection of atmospheric neutrinos and antineutrinos. These come from interactions of cosmic rays with the Earth’s atmosphere. Both detectors have a magnetic field, allowing the distiction between neutrinos and antineutrinos interactions. This thesis presents the first combined analysis of data from the MINOS and MINOS+ experiments. We have analyzed the combined neutrino energy spectrum from the complete MINOS beam data and the first, more energetic, MINOS+ beam data. The disappearance of the muon neutrinos was observed and the data has shown to be congruent with the oscillation model. Beyond that, we have measured the atmospheric oscillation parameters of the beam and atmospheric neutrinos and antineutrinos from MINOS combined with the atmospheric neutrinos and antineutrinos from MINOS+. Assuming the same oscillation parameters for both neutrinos and antineutrinos, the best fit is obtained for inverted hierarchy and lower octant with Δm2 32 = 2:37 X 10-3 eV2 and sin2 θ 23 = 0:43, and the limits m2 32 = [2,29 - 2,49] 10-3 eV2 (68%) and sin2 θ23 = 0.36 - 0.66 (90%). These results are the most precise measurement of the neutrinos mass splitting using muon neutrino disappearance data only.

  12. India-based neutrino observatory (INO): Physics reach and status report

    SciTech Connect

    Indumathi, D.

    2015-07-15

    We present a review of the physics reach and current status of the proposed India-based Neutrino Observatory (INO). We briefly outline details of the INO location and the present status of detector development. We then present the physics goals and simulation studies of the main detector, the magnetised Iron Calorimeter (ICAL) detector, to be housed in INO. The ICAL detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos including a measurement of the neutrino mass hierarchy. Additional synergies with other experiments due to the complete insensitivity of ICAL to the CP phase are also discussed.

  13. The Atmospheric Chemistry Experiment (ACE): MLT Results

    NASA Astrophysics Data System (ADS)

    Bernath, Peter

    2010-05-01

    ACE (also known as SCISAT) is making a comprehensive set of simultaneous measurements of numerous trace gases, thin clouds, aerosols and temperature by solar occultation from a satellite in low earth orbit. A high inclination (74 degrees) low earth orbit (650 km) gives ACE coverage of tropical, mid-latitudes and polar regions. The primary instrument is a high-resolution (0.02 cm-1) infrared Fourier Transform Spectrometer (FTS) operating from 2 to 13 microns (750-4400 cm-1). ACE was launched by NASA on 12 August 2003 for a nominal 2-year mission; after 6 years on orbit the ACE-FTS performance is still excellent. The first results of ACE have been presented in a special issue of Geophysics Research Letters (http://www.agu.org/journals/ss/ACECHEM1/) in 2005 and recently a special issue on ACE validation has been prepared for Atmospheric Chemistry and Physics (http://www.atmos-chem-phys.net/special_issue114.html) by K. Walker and K. Strong; more information can be found at http://www.ace.uwaterloo.ca. The ACE mission goals were initially focussed mainly on polar ozone chemistry, and more recently have shifted more to the troposphere where organic pollutants such as methanol and formaldehyde have been detected. ACE makes limb observations from about 5 km (cloud free scenes) up to nearly 150 km in the lower thermosphere, where CO2 absorption is still weakly detectable. This talk will review ACE-FTS results in the mesosphere and lower thermosphere. Topics covered will include the mesospheric descent of NOx in the polar winter, spectra of polar mesospheric clouds, concentration profiles of CO2 (which do not match model predictions), and combined Odin-Osiris/ACE-FTS observations.

  14. High Energy Neutrinos from the Cold: Status and Prospects of the IceCube Experiment

    SciTech Connect

    IceCube Collaboration; Portello-Roucelle, Cecile; Collaboration, IceCube

    2008-02-29

    The primary motivation for building neutrino telescopes is to open the road for neutrino astronomy, and to offer another observational window for the study of cosmic ray origins. Other physics topics, such as the search for WIMPs, can also be developed with neutrino telescope. As of March 2008, the IceCube detector, with half of its strings deployed, is the world largest neutrino telescope taking data to date and it will reach its completion in 2011. Data taken with the growing detector are being analyzed. The results of some of these works are summarized here. AMANDA has been successfully integrated into IceCube data acquisition system and continues to accumulate data. Results obtained using only AMANDA data taken between the years 2000 and 2006 are also presented. The future of IceCube and the extensions in both low and high energy regions will finally be discussed in the last section.

  15. Neutrino Beam Simulations and Data Checks for the NOvA Experiment

    SciTech Connect

    Del Tutto, Marco

    2015-01-01

    This thesis presents a study of the NuMI beam line intended to clarify how the particle trajectories through the focusing system and consequently the neutrino event yield are affected by the variation of the Horn Currents.

  16. New Limits on the Ultra-High Energy Cosmic Neutrino Flux from the ANITA Experiment

    SciTech Connect

    Gorham, P.W.; Allison, P.; Barwick, S.W.; Beatty, J.J.; Besson, D.Z.; Binns, W.R.; Chen, C.; Chen, P.; Clem, J.M.; Connolly, A.; Dowkontt, P.F.; DuVernois, M.A.; Field, R.C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C.L.; Hoover, S.; Israel, M.H.; Kowalski, J.; Learned, J.G.; /Hawaii U. /Caltech, JPL /Hawaii U. /Minnesota U. /Hawaii U. /Ohio State U. /Hawaii U. /UC, Irvine /Taiwan, Natl. Taiwan U. /Caltech, JPL /SLAC /University Coll. London /Ohio State U. /SLAC /Hawaii U. /UCLA /Delaware U. /Hawaii U. /SLAC /Taiwan, Natl. Taiwan U.

    2011-12-01

    We report initial results of the first flight of the Antarctic Impulsive Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which searched for evidence of a diffuse flux of cosmic neutrinos above energies of E{sub v} = 3 x 10{sup 18} eV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan effect in neutrino-induced electromagnetic showers within the Antarctic ice sheets. We report here on our initial analysis, which was performed as a blind search of the data. No neutrino candidates are seen, with no detected physics background. We set model-independent limits based on this result. Upper limits derived from our analysis rule out the highest cosmogenic neutrino models. In a background horizontal-polarization channel, we also detect six events consistent with radio impulses from ultrahigh energy extensive air showers.

  17. PROPOSAL FOR AN EXPERIMENT PROGRAM IN NEUTRINO PHYSICS AND PROTON DECAY IN THE HOMESTAKE LABORATORY.

    SciTech Connect

    DIWAN, M.; KETTELL, S.; LITTENBERG, W.; MARIANO, W.; PARSA, Z.; SAMIOS, N.; WHITE, S.; ET AL.

    2006-07-24

    This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant from Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit with a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL. On the other hand the beam from BNL over the larger distance will produce very large matter effects, and consequently a hint of new physics (beyond CP violation) can be better tested with that configuration. In this proposal we focus on the CP violation physics. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. This presentation is not, however, to be taken as a technical design report with the extensive documentation and contingency costs that a TDR usually entails. Nevertheless, some contingency factors have been included in the estimates given here. The essential ideas expressed here were first laid out in a letter of intent to the interim director of the Homestake Laboratory on July 26, 2001. Since that time, the prospect of a laboratory in the Homestake Mine has been realized, and the design of a long baseline neutrino experiment has been refined. The extrapolation

  18. Los Alamos Science, Number 25 -- 1997: Celebrating the neutrino

    SciTech Connect

    Cooper, N.G.

    1997-12-31

    This issue is devoted to the neutrino and its remaining mysteries. It is divided into the following areas: (1) The Reines-Cowan experiment -- detecting the poltergeist; (2) The oscillating neutrino -- an introduction to neutrino masses and mixing; (3) A brief history of neutrino experiments at LAMPF; (4) A thousand eyes -- the story of LSND (Los Alamos neutrino oscillation experiment); (5) The evidence for oscillations; (6) The nature of neutrinos in muon decay and physics beyond the Standard Model; (7) Exorcising ghosts -- in pursuit of the missing solar neutrinos; (8) MSW -- a possible solution to the solar neutrino problem; (8) Neutrinos and supernovae; and (9) Dark matter and massive neutrinos.

  19. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    OGITSU, T.; AJIMA, Y.; ANERELLA, M.; ESCALLIER, J.; GANETIS, G.; GUPTA, R.; HAGEDOM, D.; HARRISON, M.; HIGASHI, N.; IWAMOTO, Y.; ICHIKAWA, A.; JAIN, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; MURATORE, J.; NAKAMOTO, T.; OHHATA, H.; TAKASAKI, N.; TANAKA, K.; TERASHIMA, A.; YAMOMOTO, A.; OBANA, T.; PARKER, B.; WANDERER, P.

    2004-10-03

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results.

  20. The nylon scintillator containment vessels for the Borexino solar neutrino experiment

    NASA Astrophysics Data System (ADS)

    Cadonati, L.; Calaprice, F.; Galbiati, C.; Pocar, A.; Shutt, T.

    2014-06-01

    The neutrino event rate in the Borexino scintillator is very low ( 0.5 events per day per ton) and concentrated in an energy region well below the 2.6 MeV threshold of natural radioactivity. The intrinsic radioactive contaminants in the photomultipliers (PMTs), in the Stainless Steel Sphere, and in other detector components, play special requirements on the system required to contain the scintillator. The liquid scintillator must be shielded from the Stainless Steel Sphere and from the PMTs by a thick barrier of buffer fluid. The fluid barrier, in addition, needs to be segmented in order to contain migration of radon and daughters emanated by the Stainless Steel Sphere and by the PMTs. These requirements were met by designing and building two spherical vessel made of thin nylon film. The inner vessel contains the scintillator, separating it from the surrounding buffer. The buffer region itself is divided into two concentric shells by the second, outer nylon vessel. In addition, the two nylon vessels must satisfy stringent requirements for radioactivity and for mechanical, optical and chemical properties. This paper describes the requirements of the the nylon vessels for the Borexino experiment and offers a brief overview of the construction methods adopted to meet those requirements.

  1. Large-θ 13 perturbation theory of neutrino oscillation for long-baseline experiments

    NASA Astrophysics Data System (ADS)

    Asano, Katsuhiro; Minakata, Hisakazu

    2011-06-01

    The Cervera et al. formula, the best known approximate formula of neutrino oscillation probability for long-baseline experiments, can be regarded as a second-order perturbative formula with small expansion parameter ɛ ≡ ∆ m {21/2} ∆ m {31/2} ≃ 0 .03 under the 21assumption s 13 ≃ ɛ. If θ 13 is large, as suggested by a candidate ν e event at T2K as well as the recent global analyses, higher order corrections of s 13 to the formula would be needed for better accuracy. We compute the corrections systematically by formulating a perturbative framework by taking θ 13 as {s_{13}} ˜ sqrt { in } ˜eq 0.18 , which guarantees its validity in a wide range of θ 13 below the Chooz limit. We show on general ground that the correction terms must be of order ɛ2. Yet, they nicely fill the mismatch between the approximate and the exact formulas at low energies and relatively long baselines. General theorems are derived which serve for better understanding of δ-dependence of the oscillation probability. Some interesting implications of the large θ 13 hypothesis are discussed.

  2. A precision measurement of charm dimuon production in neutrino interactions from the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Samoylov, O.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Duyang, H.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kim, J. J.; Kirsanov, M.; Kulagin, S.; Kullenberg, C. T.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Libo, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Scott, A. M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Tian, X. C.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2013-11-01

    We present our new measurement of the cross-section for charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9×106 events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to ˜2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of mc(mc)=1.159±0.075 GeV/c2 for the running mass of the charm quark in the MS¯ scheme and a strange quark sea suppression factor of κs=0.591±0.019 at Q2=20 GeV/c2.

  3. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    SciTech Connect

    SNO collaboration; Aharmim, B.; Ahmed, S.N.; Andersen, T.C.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Boudjemline, K.; Boulay, M.G.; Burritt, T.H.; Cai, B.; Chan, Y.D.; Chen, M.; Chon, M.C.; Cleveland, B.T.; Cox-Mobrand, G.A.; Currat, C.A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P.J.; Dosanjh, R.S.; Doucas, G.; Drouin, P.-L.; Duncan, F.A.; Dunford, M.; Elliott, S.R.; Evans, H.C.; Ewan, G.T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R.J.; Formaggio, J.A.; Gagnon, N.; Goon, J.TM.; Grant, D.R.; Guillian, E.; Habib, S.; Hahn, R.L.; Hallin, A.L.; Hallman, E.D.; Hargrove, C.K.; Harvey, P.J.; Harvey, P.J.; Heeger, K.M.; Heintzelman, W.J.; Heise, J.; Helmer, R.L.; Hemingway, R.J.; Henning, R.; Hime, A.; Howard, C.; Howe, M.A.; Huang, M.; Jamieson, B.; Jelley, N.A.; Klein, J.R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C.B.; Kutter, T.; Kyba, C.C.M.; Lange, R.; Law, J.; Lawson, I.T.; Lesko, K.T.; Leslie, J.R.; Levine, I.; Loach, J.C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H.B.; Maneira, J.; Marino, A.D.; Martin, R.; McCauley, N.; McDonald, A.B.; McGee, S.; Mifflin, C.; Miller, M.L.; Monreal, B.; Monroe, J.; Noble, A.J.; Oblath, N.S.; Okada, C.E.; O?Keeffe, H.M.; Opachich, Y.; Orebi Gann, G.D.; Oser, S.M.; Ott, R.A.; Peeters, S.J.M.; Poon, A.W.P.; Prior, G.; Rielage, K.; Robertson, B.C.; Robertson, R.G.H.; Rollin, E.; Schwendener, M.H.; Secrest, J.A.; Seibert, S.R.; Simard, O.; Simpson, J.J.; Sinclair, D.; Skensved, P.; Smith, M.W.E.; Sonley, T.J.; Steiger, T.D.; Stonehill, L.C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R.G.; VanDevender, B.A.; Virtue, C.J.; Waller, D.; Waltham, C.E.; Wan Chan Tseung, H.; Wark, D.L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J.F.; Wilson, J.R.; Wouters, J.M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-02-16

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  4. Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    SNO collaboration; Aharmim, B.; Ahmed, S. N.; Andersen, T. C.; Anthony, A. E.; Barros, N.; Beier, E. W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S. D.; Boudjemline, K.; Boulay, M. G.; Burritt, T. H.; Cai, B.; Chan, Y. D.; Chen, M.; Chon, M. C.; Cleveland, B. T.; Cox-Mobrand, G. A.; Currat, C. A.; Dai, X.; Dalnoki-Veress, F.; Deng, H.; Detwiler, J.; Doe, P. J.; Dosanjh, R. S.; Doucas, G.; Drouin, P.-L.; Duncan, F. A.; Dunford, M.; Elliott, S. R.; Evans, H. C.; Ewan, G. T.; Farine, J.; Fergani, H.; Fleurot, F.; Ford, R. J.; Formaggio, J. A.; Gagnon, N.; Goon, J. TM.; Grant, D. R.; Guillian, E.; Habib, S.; Hahn, R. L.; Hallin, A. L.; Hallman, E. D.; Hargrove, C. K.; Harvey, P. J.; Harvey, P. J.; Heeger, K. M.; Heintzelman, W. J.; Heise, J.; Helmer, R. L.; Hemingway, R. J.; Henning, R.; Hime, A.; Howard, C.; Howe, M. A.; Huang, M.; Jamieson, B.; Jelley, N. A.; Klein, J. R.; Kos, M.; Kruger, A.; Kraus, C.; Krauss, C. B.; Kutter, T.; Kyba, C. C. M.; Lange, R.; Law, J.; Lawson, I. T.; Lesko, K. T.; Leslie, J. R.; Levine, I.; Loach, J. C.; Luoma, S.; MacLellan, R.; Majerus, S.; Mak, H. B.; Maneira, J.; Marino, A. D.; Martin, R.; McCauley, N.; McDonald, A. B.; McGee, S.; Mifflin, C.; Miller, M. L.; Monreal, B.; Monroe, J.; Noble, A. J.; Oblath, N. S.; Okada, C. E.; O'Keeffe, H. M.; Opachich, Y.; Orebi Gann, G. D.; Oser, S. M.; Ott, R. A.; Peeters, S. J. M.; Poon, A. W. P.; Prior, G.; Rielage, K.; Robertson, B. C.; Robertson, R. G. H.; Rollin, E.; Schwendener, M. H.; Secrest, J. A.; Seibert, S. R.; Simard, O.; Simpson, J. J.; Sinclair, D.; Skensved, P.; Smith, M. W. E.; Sonley, T. J.; Steiger, T. D.; Stonehill, L. C.; Tagg, N.; Tesic, G.; Tolich, N.; Tsui, T.; Van de Water, R. G.; VanDevender, B. A.; Virtue, C. J.; Waller, D.; Waltham, C. E.; Wan Chan Tseung, H.; Wark, D. L.; Watson, P.; Wendland, J.; West, N.; Wilkerson, J. F.; Wilson, J. R.; Wouters, J. M.; Wright, A.; Yeh, M.; Zhang, F.; Zuber, K.

    2009-07-10

    Results are reported on the measurement of the atmospheric neutrino-induced muon flux at a depth of 2 kilometers below the Earth's surface from 1229 days of operation of the Sudbury Neutrino Observatory (SNO). By measuring the flux of through-going muons as a function of zenith angle, the SNO experiment can distinguish between the oscillated and un-oscillated portion of the neutrino flux. A total of 514 muon-like events are measured between -1 {le} cos {theta}{sub zenith} 0.4 in a total exposure of 2.30 x 10{sup 14} cm{sup 2} s. The measured flux normalization is 1.22 {+-} 0.09 times the Bartol three-dimensional flux prediction. This is the first measurement of the neutrino-induced flux where neutrino oscillations are minimized. The zenith distribution is consistent with previously measured atmospheric neutrino oscillation parameters. The cosmic ray muon flux at SNO with zenith angle cos {theta}{sub zenith} > 0.4 is measured to be (3.31 {+-} 0.01 (stat.) {+-} 0.09 (sys.)) x 10{sup -10} {micro}/s/cm{sup 2}.

  5. Neutrino-nucleus interactions

    SciTech Connect

    Gallagher, H.; Garvey, G.; Zeller, G.P.; /Fermilab

    2011-01-01

    The study of neutrino oscillations has necessitated a new generation of neutrino experiments that are exploring neutrino-nuclear scattering processes. We focus in particular on charged-current quasi-elastic scattering, a particularly important channel that has been extensively investigated both in the bubble-chamber era and by current experiments. Recent results have led to theoretical reexamination of this process. We review the standard picture of quasi-elastic scattering as developed in electron scattering, review and discuss experimental results, and discuss additional nuclear effects such as exchange currents and short-range correlations that may play a significant role in neutrino-nucleus scattering.

  6. The controllability of the aeroassist flight experiment atmospheric skip trajectory

    NASA Technical Reports Server (NTRS)

    Wood, R.

    1989-01-01

    The Aeroassist Flight Experiment (AFE) will be the first vehicle to simulate a return from geosynchronous orbit, deplete energy during an aerobraking maneuver, and navigate back out of the atmosphere to a low earth orbit It will gather scientific data necessary for future Aeroasisted Orbitl Transfer Vehicles (AOTV's). Critical to mission success is the ability of the atmospheric guidance to accurately attain a targeted post-aeropass orbital apogee while nulling inclination errors and compensating for dispersions in state, aerodynamic, and atmospheric parameters. In typing to satisfy mission constraints, atmospheric entry-interface (EI) conditions, guidance gains, and trajectory. The results of the investigation are presented; emphasizing the adverse effects of dispersed atmospheres on trajectory controllability.

  7. Cosmic Neutrinos

    SciTech Connect

    Quigg, Chris; /Fermilab /CERN

    2008-02-01

    I recall the place of neutrinos in the electroweak theory and summarize what we know about neutrino mass and flavor change. I next review the essential characteristics expected for relic neutrinos and survey what we can say about the neutrino contribution to the dark matter of the Universe. Then I discuss the standard-model interactions of ultrahigh-energy neutrinos, paying attention to the consequences of neutrino oscillations, and illustrate a few topics of interest to neutrino observatories. I conclude with short comments on the remote possibility of detecting relic neutrinos through annihilations of ultrahigh-energy neutrinos at the Z resonance.

  8. Determination of neutrino mass ordering in future 76Ge-based neutrinoless double-beta decay experiments

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhou, Shun

    2016-01-01

    Motivated by recent intensive experimental efforts on searching for neutrinoless double-beta decays, we perform a detailed analysis of the physics potential of the experiments based on 76Ge. Assuming no signals, current and future experiments could place a 90% lower limit on the half life T1/2 0 ν≳4 ×1026 yr and T1/2 0 ν≳7 ×1027 yr , respectively. Then, how to report an evidence for neutrinoless double-beta decays is addressed by following the Bayesian statistical approach. For the first time, we present a quantitative description of experimental power to distinguish between normal and inverted neutrino mass orderings. Taking an exposure of 104 kg yr and a background rate of 1 0-4 counts/(keV kg yr ) , we find that a moderate evidence for normal neutrino mass ordering (i.e., with a Bayes factor B given by ln (B )≃2.5 or a probability about 92.3% according to the Jeffreys scale) can be achieved if the true value of effective neutrino mass mβ β turns out to be below 0.01 eV.

  9. Neutrino Observations from the Sudbury Neutrino Observatory

    DOE R&D Accomplishments Database

    Q. R. Ahmad, R. C. Allen, T. C. Andersen, J. D. Anglin, G. Bühler, J. C. Barton, E. W. Beier, M. Bercovitch, J. Bigu, S. Biller, R. A. Black, I. Blevis, R. J. Boardman, J. Boger, E. Bonvin, M. G. Boulay, M. G. Bowler, T. J. Bowles, S. J. Brice, M. C. Browne, T. V. Bullard, T. H. Burritt, K. Cameron, J. Cameron, Y. D. Chan, M. Chen, H. H. Chen, X. Chen, M. C. Chon, B. T. Cleveland, E. T. H. Clifford, J. H. M. Cowan, D. F. Cowen, G. A. Cox, Y. Dai, X. Dai, F. Dalnoki-Veress, W. F. Davidson, P. J. Doe, G. Doucas, M. R. Dragowsky, C. A. Duba, F. A. Duncan, J. Dunmore, E. D. Earle, S. R. Elliott, H. C. Evans, G. T. Ewan, J. Farine, H. Fergani, A. P. Ferraris, R. J. Ford, M. M. Fowler, K. Frame, E. D. Frank, W. Frati, J. V. Germani, S. Gil, A. Goldschmidt, D. R. Grant, R. L. Hahn, A. L. Hallin, E. D. Hallman, A. Hamer, A. A. Hamian, R. U. Haq, C. K. Hargrove, P. J. Harvey, R. Hazama, R. Heaton, K. M. Heeger, W. J. Heintzelman, J. Heise, R. L. Helmer, J. D. Hepburn, H. Heron, J. Hewett, A. Hime, M. Howe, J. G. Hykawy, M. C. P. Isaac, P. Jagam, N. A. Jelley, C. Jillings, G. Jonkmans, J. Karn, P. T. Keener, K. Kirch, J. R. Klein, A. B. Knox, R. J. Komar, R. Kouzes, T. Kutter, C. C. M. Kyba, J. Law, I. T. Lawson, M. Lay, H. W. Lee, K. T. Lesko, J. R. Leslie, I. Levine, W. Locke, M. M. Lowry, S. Luoma, J. Lyon, S. Majerus, H. B. Mak, A. D. Marino, N. McCauley, A. B. McDonald, D. S. McDonald, K. McFarlane, G. McGregor, W. McLatchie, R. Meijer Drees, H. Mes, C. Mifflin, G. G. Miller, G. Milton, B. A. Moffat, M. Moorhead, C. W. Nally, M. S. Neubauer, F. M. Newcomer, H. S. Ng, A. J. Noble, E. B. Norman, V. M. Novikov, M. O'Neill, C. E. Okada, R. W. Ollerhead, M. Omori, J. L. Orrell, S. M. Oser, A. W. P. Poon, T. J. Radcliffe, A. Roberge, B. C. Robertson, R. G. H. Robertson, J. K. Rowley, V. L. Rusu, E. Saettler, K. K. Schaffer, A. Schuelke, M. H. Schwendener, H. Seifert, M. Shatkay, J. J. Simpson, D. Sinclair, P. Skensved, A. R. Smith, M. W. E. Smith, N. Starinsky, T. D. Steiger, R. G. Stokstad, R. S. Storey, B. Sur, R. Tafirout, N. Tagg, N. W. Tanner, R. K. Taplin, M. Thorman, P. Thornewell, P. T. Trent, Y. I. Tserkovnyak, R. Van Berg, R. G. Van de Water, C. J. Virtue, C. E. Waltham, J.-X. Wang, D. L. Wark, N. West, J. B. Wilhelmy, J. F. Wilkerson, J. Wilson, P. Wittich, J. M. Wouters, and M. Yeh

    2001-09-24

    The Sudbury Neutrino Observatory (SNO) is a water imaging Cherenkov detector. Its usage of 1000 metric tons of D{sub 2}O as target allows the SNO detector to make a solar-model independent test of the neutrino oscillation hypothesis by simultaneously measuring the solar {nu}{sub e} flux and the total flux of all active neutrino species. Solar neutrinos from the decay of {sup 8}B have been detected at SNO by the charged-current (CC) interaction on the deuteron and by the elastic scattering (ES) of electrons. While the CC reaction is sensitive exclusively to {nu}{sub e}, the ES reaction also has a small sensitivity to {nu}{sub {mu}} and {nu}{sub {tau}}. In this paper, recent solar neutrino results from the SNO experiment are presented. It is demonstrated that the solar flux from {sup 8}B decay as measured from the ES reaction rate under the no-oscillation assumption is consistent with the high precision ES measurement by the Super-Kamiokande experiment. The {nu}{sub e} flux deduced from the CC reaction rate in SNO differs from the Super-Kamiokande ES results by 3.3{sigma}. This is evidence for an active neutrino component, in additional to {nu}{sub e}, in the solar neutrino flux. These results also allow the first experimental determination of the total active {sup 8}B neutrino flux from the Sun, and is found to be in good agreement with solar model predictions.

  10. Neutrinos in Cosmology

    SciTech Connect

    Wong, Yvonne Y. Y.

    2008-01-24

    I give an overview of the effects of neutrinos on cosmology, focussing in particular on the role played by neutrinos in the evolution of cosmological perturbations. I discuss how recent observations of the cosmic microwave background and the large-scale structure of galaxies can probe neutrino masses with greater precision than current laboratory experiments. I describe several new techniques that will be used to probe cosmology in the future.

  11. High intensity neutrino beams

    SciTech Connect

    Ichikawa, A. K.

    2015-07-15

    High-intensity proton accelerator complex enabled long baseline neutrino oscillation experiments with a precisely controlled neutrino beam. The beam power so far achieved is a few hundred kW with enourmorous efforts of accelerator physicists and engineers. However, to fully understand the lepton mixing structure, MW-class accelerators are desired. We describe the current intensity-frontier high-energy proton accelerators, their plans to go beyond and technical challenges in the neutrino beamline facilities.

  12. Neutrino Detectors: Challenges and Opportunities

    SciTech Connect

    Soler, F. J. P.

    2011-10-06

    This paper covers possible detector options suitable at future neutrino facilities, such as Neutrino Factories, Super Beams and Beta Beams. The Magnetised Iron Neutrino Detector (MIND), which is the baseline detector at a Neutrino Factory, will be described and a new analysis which improves the efficiency of this detector at low energies will be shown. Other detectors covered include the Totally Active Scintillating Detectors (TASD), particularly relevant for a low energy Neutrino Factory, emulsion detectors for tau detection, liquid argon detectors and megaton scale water Cherenkov detectors. Finally the requirements of near detectors for long-baseline neutrino experiments will be demonstrated.

  13. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  14. Preliminary Measurement of Neutrino Oscillation Parameters By NuMI/MINOS and Calibration Studies for Improving this Measurement

    SciTech Connect

    Symes, Philip Andrew

    2005-11-01

    This thesis explains the origins of neutrinos and their interactions, and the phenomenon of neutrino oscillations. Experiments for measuring neutrino oscillations are mentioned and the experiment investigated in this thesis, the ''Main Injector Neutrino Oscillation Search'', and its neutrino beam, the Fermi National Accelerator Laboratory's ''Neutrinos At The Main Injector'', are described. MINOS is a long baseline (735 km) neutrino oscillation experiment with a near and a far detector, intended to make precision measurements of the atmospheric sector neutrino oscillation parameters. A measurement is made of the ''atmospheric'' neutrino oscillation parameters, {Delta}m{sub 23}{sup 2} and sin {sup 2}(2{theta}{sub 23}), using neutrinos from the NuMI beam. The results of this analysis are compared to measurements at MINOS using neutrinos from the atmosphere and with other experiments. A more detailed method of beam neutrino analysis is discussed, and the extra calibrations needed to perform that analysis properly are described, with special attention paid to two aspects of the calibration, which comprise the bulk of work for this thesis. The light injection calibration system uses LEDs to illuminate the detector readout and provides a normalization of the stability of the detector over time. The hardware and different modi operandi of the system are described. There is a description of installation and commissioning of the system at one of the MINOS detectors. The response normalization of each detector with cosmic ray muons is described. Special attention is paid to the explanation of necessary corrections that must be made to the muon sample in order for the sample to be used to calibrate each detector to the specified accuracy. The performance of the calibration is shown.

  15. MINOS Sterile Neutrino Search

    SciTech Connect

    Koskinen, David Jason

    2009-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline accelerator neutrino experiment designed to measure properties of neutrino oscillation. Using a high intensity muon neutrino beam, produced by the Neutrinos at Main Injector (NuMI) complex at Fermilab, MINOS makes two measurements of neutrino interactions. The first measurement is made using the Near Detector situated at Fermilab and the second is made using the Far Detector located in the Soudan Underground laboratory in northern Minnesota. The primary goal of MINOS is to verify, and measure the properties of, neutrino oscillation between the two detectors using the v μ→ Vτ transition. A complementary measurement can be made to search for the existence of sterile neutrinos; an oft theorized, but experimentally unvalidated particle. The following thesis will show the results of a sterile neutrino search using MINOS RunI and RunII data totaling ~2.5 x 1020 protons on target. Due to the theoretical nature of sterile neutrinos, complete formalism that covers transition probabilities for the three known active states with the addition of a sterile state is also presented.

  16. Hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2013-02-01

    The HARP and NA61/SHINE hadroproduction experiments as well as their implications for neutrino physics are discussed. HARP measurements have already been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve the atmospheric neutrino flux predictions and to help in the optimization of neutrino factory and super-beam designs. First measurements released recently by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment. Both HARP and NA61/SHINE experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  17. The sensitivity of past and near-future lunar radio experiments to ultra-high-energy cosmic rays and neutrinos

    NASA Astrophysics Data System (ADS)

    Bray, J. D.

    2016-04-01

    Various experiments have been conducted to search for the radio emission from ultra-high-energy (UHE) particles interacting in the lunar regolith. Although they have not yielded any detections, they have been successful in establishing upper limits on the flux of these particles. I present a review of these experiments in which I re-evaluate their sensitivity to radio pulses, accounting for effects which were neglected in the original reports, and compare them with prospective near-future experiments. In several cases, I find that past experiments were substantially less sensitive than previously believed. I apply existing analytic models to determine the resulting limits on the fluxes of UHE neutrinos and cosmic rays (CRs). In the latter case, I amend the model to accurately reflect the fraction of the primary particle energy which manifests in the resulting particle cascade, resulting in a substantial improvement in the estimated sensitivity to CRs. Although these models are in need of further refinement, in particular to incorporate the effects of small-scale lunar surface roughness, their application here indicates that a proposed experiment with the LOFAR telescope would test predictions of the neutrino flux from exotic-physics models, and an experiment with a phased-array feed on a large single-dish telescope such as the Parkes radio telescope would allow the first detection of CRs with this technique, with an expected rate of one detection per 140 h.

  18. Beta Decay in the Field of an Electromagnetic Wave and Experiments on Measuring the Neutrino Mass

    SciTech Connect

    Dorofeev, O.F.; Lobanov, A.E.

    2005-06-01

    Investigations of the effect of an electromagnetic wave field on the beta-decay process are used to analyze the tritium-decay experimental data on the neutrino mass. It is shown that the electromagnetic wave can distort the beta spectrum, shifting the end point to the higher energy region. This phenomenon is purely classical and it is associated with the electron acceleration in the radiation field. Since strong magnetic fields exist in setups for precise measurement of the neutrino mass, the indicated field can appear owing to the synchrotron radiation mechanism. The phenomenon under consideration can explain the experimentally observed anomalies in the spectrum of the decay electrons; in particular, the effect of the 'negative square of the neutrino mass'.

  19. The HARP Hadron Production Experiment and Its Significance for Neutrino Factory Design

    NASA Astrophysics Data System (ADS)

    Howlett, L. C.

    2004-03-01

    A neutrino factory would provide a high flux beam of electron and muon neutrinos with well understood energy and flavour composition for detailed studies of neutrino oscillations. Such a beam requires a large number of muons and hence pions, which would be provided by a proton driver and pion production target. The optimal design of such a pion production target and the necessary pion capture system need accurate knowledge of hadron production at energies of several GeV. HARP, a large acceptance particle spectrometer of conventional design, aims to measure hadron production cross sections on thin and thick nuclear targets in the range of beam momentum 2-15 GeV/c in order to provide the desired data.

  20. The program in muon and neutrino physics: Superbeams, cold muon beams, neutrino factory and the muon collider

    SciTech Connect

    R. Raja et al.

    2001-08-08

    The concept of a Muon Collider was first proposed by Budker [10] and by Skrinsky [11] in the 60s and early 70s. However, there was little substance to the concept until the idea of ionization cooling was developed by Skrinsky and Parkhomchuk [12]. The ionization cooling approach was expanded by Neufer [13] and then by Palmer [14], whose work led to the formation of the Neutrino Factory and Muon Collider Collaboration (MC) [3] in 1995. The concept of a neutrino source based on a pion storage ring was originally considered by Koshkarev [18]. However, the intensity of the muons created within the ring from pion decay was too low to provide a useful neutrino source. The Muon Collider concept provided a way to produce a very intense muon source. The physics potential of neutrino beams produced by muon storage rings was investigated by Geer in 1997 at a Fermilab workshop [19, 20] where it became evident that the neutrino beams produced by muon storage rings needed for the muon collider were exciting on their own merit. The neutrino factory concept quickly captured the imagination of the particle physics community, driven in large part by the exciting atmospheric neutrino deficit results from the SuperKamiokande experiment. As a result, the MC realized that a Neutrino Factory could be an important first step toward a Muon Collider and the physics that could be addressed by a Neutrino Factory was interesting in its own right. With this in mind, the MC has shifted its primary emphasis toward the issues relevant to a Neutrino Factory. There is also considerable international activity on Neutrino Factories, with international conferences held at Lyon in 1999, Monterey in 2000 [21], Tsukuba in 2001 [22], and another planned for London in 2002.

  1. An Atmospheric Science Observing System Simulation Experiment (OSSE) Environment

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard; Qu, Zheng; Bowman, Kevin; Eldering, Annmarie

    2010-01-01

    An atmospheric sounding mission starts with a wide range of concept designs involving measurement technologies, observing platforms, and observation scenarios. Observing system simulation experiment (OSSE) is a technical approach to evaluate the relative merits of mission and instrument concepts. At Jet Propulsion Laboratory (JPL), the OSSE team has developed an OSSE environment that allows atmospheric scientists to systematically explore a wide range of mission and instrument concepts and formulate a science traceability matrix with a quantitative science impact analysis. The OSSE environment virtually creates a multi-platform atmospheric sounding testbed (MAST) by integrating atmospheric phenomena models, forward modeling methods, and inverse modeling methods. The MAST performs OSSEs in four loosely coupled processes, observation scenario exploration, measurement quality exploration, measurement quality evaluation, and science impact analysis.

  2. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  3. Characterization of Settled Atmospheric Dust by the DART Experiment

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip P.; Baraona, Cosmo

    1999-01-01

    The DART ("Dust Accumulation and Removal Test") package is an experiment which will fly as part of the MIP experiment on the Mars-2001 Surveyor Lander. Dust deposition could be a significant problem for photovoltaic array operation for long duration emissions on the surface of Mars. Measurements made by Pathfinder showed 0.3% loss of solar array performance per day due to dust obscuration. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on the array performance, and test several methods of mitigating the effect of settled dust on a solar array. Although the purpose of DART (along with its sister experiment, MATE) is to gather information critical to the design of future power systems on the surface of Mars, the dust characterization instrumentation on DART will also provide significant scientific data on the properties of settled atmospheric dust.

  4. Interpretation of MINOS data in terms of non-standard neutrino interactions

    SciTech Connect

    Kopp, Joachim; Machado, Pedro A.N.; Parke, Stephen J.; /Fermilab

    2010-09-01

    The MINOS experiment at Fermilab has recently reported a tension between the oscillation results for neutrinos and anti-neutrinos. We show that this tension, if it persists, can be understood in the framework of non-standard neutrino interactions (NSI). While neutral current NSI (non-standard matter effects) are disfavored by atmospheric neutrinos, a new charged current coupling between tau neutrinos and nucleons can fit the MINOS data without violating other constraints. In particular, we show that loop-level contributions to flavor-violating {tau} decays are sufficiently suppressed. However, conflicts with existing bounds could arise once the effective theory considered here is embedded into a complete renormalizable model. We predict the future sensitivity of the T2K and NOvA experiments to the NSI parameter region favored by the MINOS fit, and show that both experiments are excellent tools to test the NSI interpretation of the MINOS data.

  5. Feasibility study: Atmospheric general circulation experiment, volume 2

    NASA Technical Reports Server (NTRS)

    Homsey, R. J. (Editor)

    1981-01-01

    The feasibility analysis of the atmospheric general circulation experiment (AGCE) are documented. The analysis performed in each technical area, the rationale and substantiation for the design approaches selected for the hardware, and the design details for the baseline AGCE are presented.

  6. Proton decay and solar neutrino experiment with a liquid argon Time Projection Chamber

    SciTech Connect

    Chen, H.H.; Doe, P.J.; Mahler, H.I.

    1983-01-01

    Recent progress in development of the liquid argon Time Projection Chamber is reviewed. Application of this technique to a search for proton decay and /sup 8/B solar neutrinos with directional sensitivity is considered. The steps necessary for a large scale application of this technique deep underground are described.

  7. Neutrino and Anti-neutrino Cross Sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan

    2011-10-06

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH{sub 2}). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  8. Small neutrino masses from gravitational θ -term

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Funcke, Lena

    2016-06-01

    We present how a neutrino condensate and small neutrino masses emerge from a topological formulation of gravitational anomaly. We first recapitulate how a gravitational θ -term leads to the emergence of a new bound neutrino state analogous to the η' meson of QCD. Then we show the consequent formation of a neutrino vacuum condensate, which effectively generates small neutrino masses. Afterwards we outline numerous phenomenological consequences of our neutrino mass generation model. The cosmological neutrino mass bound vanishes since we predict the neutrinos to be massless until the phase transition in the late Universe, T ˜meV . Coherent radiation of new light particles in the neutrino sector can be detected in prospective precision experiments. Deviations from an equal flavor rate due to enhanced neutrino decays in extraterrestrial neutrino fluxes can be observed in future IceCube data. These neutrino decays may also necessitate modified analyses of the original neutrino spectra of the supernova SN 1987A. The current cosmological neutrino background only consists of the lightest neutrinos, which, due to enhanced neutrino-neutrino interactions, either bind up, form a superfluid, or completely annihilate into massless bosons. Strongly coupled relic neutrinos could provide a contribution to cold dark matter in the late Universe, together with the new proposed particles and topological defects, which may have formed during neutrino condensation. These enhanced interactions could also be a source of relic neutrino clustering in our Galaxy, which possibly makes the overdense cosmic neutrino background detectable in the KATRIN experiment. The neutrino condensate provides a mass for the hypothetical B -L gauge boson, leading to a gravity-competing force detectable in short-distance measurements. Prospective measurements of the polarization intensities of gravitational waves can falsify our neutrino mass generation model.

  9. The Atmospheric Lifetime Experiment and the Global Atmospheric Gas Experiment (ALE/GAGE)

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. Aslam K.

    1995-01-01

    The ALE/GAGE project was designed to determine the global atmospheric lifetimes of the chlorofluorocarbons CCl3F and CCl2F2 (F-11 and F-12), which had been identified as the main gases that cause stratospheric ozone depletion. The experimental procedures also provided the concentrations of CH3CCl3, CCl4 and N2O. The extended role of the project was to evaluate the mass balances of these gases as well. Methylchloroform (CH3CCl3) serves as a tracer of average atmospheric OH concentrations and hence the oxidizing capacity of the atmosphere. Nitrous oxide (N2O) is a potent greenhouse gas and can also deplete the ozone layer. Measurements of these gases were taken with optimized instruments in the field at a frequency of about 1 sample/hr. Toward the end of the present project methane measurements were added to the program. The final report deals with the research of the Oregon Graduate Institute (OGI) as part of the ALE/GAGE program between 4/1/1988 and 1/31/1991. The report defines the scope of the OGI project, the approach, and the results.

  10. BEAMING NEUTRINOS AND ANTI-NEUTRINOS ACROSS THE EARTH TO DISENTANGLE NEUTRINO MIXING PARAMETERS

    SciTech Connect

    Fargion, Daniele; D'Armiento, Daniele; Paggi, Paolo; Desiati, Paolo E-mail: paolo.desiati@icecube.wisc.edu

    2012-10-10

    A result from MINOS seemed to indicate that the mass splitting and mixing angle of anti-neutrinos is different from that of neutrinos, suggesting a charge-parity-time (CPT) violation in the lepton sector. However, more recent MINOS data reduced the {nu}{sub {mu}}-{nu}-bar{sub {mu}} differences leading to a narrow discrepancy nearly compatible with no CPT violation. However, the last few years of OPERA activity on the appearance of a tau lepton (one unique event) still has not been probed and more tools may be required to disentangle a list of parameters ({mu}-{tau} flavor mixing, tau appearance, any eventual CPT violation, {theta}{sub 13} angle value, and any hierarchy neutrino mass). Atmospheric anisotropy in muon neutrino spectra in the DeepCore, at ten to tens of GeV (unpublished), can hardly reveal asymmetry in the eventual {nu}{sub {mu}}-{nu}-bar{sub {mu}} oscillation parameters. Here we considered how the longest baseline neutrino oscillation available, crossing most of Earth's diameter, may improve the measurement and at best disentangle any hypothetical CPT violation occurring between the earliest (2010) and the present (2012) MINOS bounds (with 6{sigma} a year), while testing {tau} and even the appearance of {tau}-bar at the highest rate. The {nu}{sub {mu}} and {nu}-bar{sub {mu}} disappearance correlated with the tau appearance is considered for those events at the largest distances. We thus propose a beam of {nu}{sub {mu}} and {nu}-bar{sub {mu}} crossing through the Earth, within an OPERA-like experiment from CERN (or Fermilab), in the direction of the IceCube-DeepCore {nu} detector at the South Pole. The ideal energy lies at 21 GeV to test the disappearance or (for any tiny CPT violation) the partial {nu}-bar{sub {mu}} appearance. Such a tuned detection experiment may lead to a strong signature of {tau} or {tau}-bar generation even within its neutral current noise background events: nearly one {tau}-bar or two {tau} a day. The tau appearance signal is

  11. DEVELOPMENT OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE PROTON TRANSPORT LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    NAKAMOTO, T.; AJIMA, Y.; FUJII, Y.; HIGASHI, N.; ICHIKAWA, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; OGITSU, T.; OHHATA, H.; OKAMURA, T.; SASAKI, K.; ET AL.

    2005-05-16

    Superconducting combined function magnets will be utilized for the 50 GeV, 750 kW proton beam line for the J-PARC neutrino experiment. The magnet is designed to provide a dipole field of 2.6 T combined with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm at a nominal current of 7345 A. Two full-scale prototype magnets to verify the magnet performance were successfully developed. The first prototype experienced no training quench during the excitation test and good field quality was confirmed.

  12. DESIGN OF SUPERCONDUCTING COMBINED FUNCTION MAGNETS FOR THE 50 GEV PROTON BEAM LINE FOR THE J-PARC NEUTRINO EXPERIMENT.

    SciTech Connect

    WANDERER,P.; ET AL.

    2003-06-15

    Superconducting combined function magnets will be utilized for the 50GeV-750kW proton beam line for the J-PARC neutrino experiment and an R and D program has been launched at KEK. The magnet is designed to provide a combined function with a dipole field of 2.59 T and a quadrupole field of 18.7 T/m in a coil aperture of 173.4 mm. A single layer coil is proposed to reduce the fabrication cost and the coil arrangement in the 2-D cross-section results in left-right asymmetry. This paper reports the design study of the magnet.

  13. Atmospheric measurements on Mars - The Viking meteorology experiment

    NASA Technical Reports Server (NTRS)

    Chamberlain, T. E.; Cole, H. L.; Dutton, R. G.; Greene, G. C.; Tillman, J. E.

    1976-01-01

    The Viking meteorology experiment is one of nine experiments to be carried out on the surface of Mars by each of two Viking Landers positioned at different latitudes and longitudes in the Northern Hemisphere. The meteorology experiment will measure pressure, temperature, wind speed, and wind direction at 1.5-hr intervals throughout the Martian day. The duration of each measurement period, the interval between data samples for a measurement period, and the time at which the measurement period is started will be varied throughout the mission. The scientific investigation and the sensors and electronics used for making the atmospheric measurement are discussed.

  14. The Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Bellerive, A.; Klein, J. R.; McDonald, A. B.; Noble, A. J.; Poon, A. W. P.

    2016-07-01

    This review paper provides a summary of the published results of the Sudbury Neutrino Observatory (SNO) experiment that was carried out by an international scientific collaboration with data collected during the period from 1999 to 2006. By using heavy water as a detection medium, the SNO experiment demonstrated clearly that solar electron neutrinos from 8B decay in the solar core change into other active neutrino flavors in transit to Earth. The reaction on deuterium that has equal sensitivity to all active neutrino flavors also provides a very accurate measure of the initial solar flux for comparison with solar models. This review summarizes the results from three phases of solar neutrino detection as well as other physics results obtained from analyses of the SNO data.

  15. W. K. H. Panofsky Prize: The Road to Neutrino Mixing Angle θ13

    NASA Astrophysics Data System (ADS)

    Luk, Kam-Biu

    2014-03-01

    A series of solar, atmospheric, accelerator and reactor neutrino experiments have observed transformations of one type of neutrino to another type. This intriguing phenomenon called neutrino oscillation was predicted by Pontecorvo, Maki, Nakagawa and Sakata. It is due to the fact that the three flavors of neutrinos observed in laboratories are mixtures of three neutrino mass eigenstates. Neutrino mixing is described by a set of three mixing angles and a CP-violating phase. The smallest angle, θ13, was unknown until 2012. Knowing the value of θ13 is essential. Besides being a fundamental parameter of nature, knowing its value will improve our understanding of neutrino mixing, provide guidance for building theoretical models and define the future program of neutrino oscillation experiments. In this talk, the experimental development that led to the recent discovery of a new θ13-driven neutrino oscillation will be presented. Work was supported by the US Department of Energy, Office of High Energy Physics, contract DE-AC02-05CH11231.

  16. Magnetospheric Atmospheric X-ray Imaging Experiment (MAXIE)

    NASA Technical Reports Server (NTRS)

    Imhof, W. L.; Voss, H. D.; Mobilia, J.; Datlowe, D. W.; Chinn, V. L.; Hilsenrath, M.; Vondrak, R. R.

    1996-01-01

    This report summarizes the activities sponsored by the Office of Naval Research for the Magnetospheric Atmospheric X-ray Imaging Experiment (MAXIE). The MAXIE instrument was developed as a joint activity of Lockheed, The Aerospace Corporation, and the University of Bergen, Norway. Lockheed was responsible for the overall management of the program, interfacing with the appropriate government agencies, the overall electrical and mechanical design, flight software, environmental testing, spacecraft integration activities, on orbit checkout, and data processing activities. The Magnetospheric Atmospheric X-ray Imaging Experiment (MAXIE), the ONR 401 experiment, is the first in a new class of satellite-borne remote sensing instruments. The primary innovation is the ability to obtain rapid, sequential, images with high sensitivity of the earth's X ray aurora from a low altitude polar orbiting satellite. These images can be used to identify dynamic temporal variations in the three-dimensional (energy and position) distribution of electron precipitation into the atmosphere. MAXIE was launched on the TIROS NOAA-13 satellite on 9 August 1993. The experiment performed well during its turn-on sequence; however, the spacecraft bus failed on 21 August 1993. New spacebased technologies successfully used in MAXIE were mixed-mode ASIC microcircuits, a zero torque scanning system with associated viscoelastic damping, a paraffin stow release mechanism, a parallel integrating PHA processor, a low noise Si(Li) sensor telescope, and an advanced thermal cooling system. MAXIE's on orbit operation, control of penetrating particle backgrounds, and scientific data indicated good overall performance.

  17. The mass-hierarchy and CP-violation discovery reach of the LBNO long-baseline neutrino experiment

    NASA Astrophysics Data System (ADS)

    Agarwalla, S. K.; Agostino, L.; Aittola, M.; Alekou, A.; Andrieu, B.; Angus, D.; Antoniou, F.; Ariga, A.; Ariga, T.; Asfandiyarov, R.; Autiero, D.; Ballett, P.; Bandac, I.; Banerjee, D.; Barker, G. J.; Barr, G.; Bartmann, W.; Bay, F.; Berardi, V.; Bertram, I.; Bésida, O.; Blebea-Apostu, A. M.; Blondel, A.; Bogomilov, M.; Borriello, E.; Boyd, S.; Brancus, I.; Bravar, A.; Buizza-Avanzini, M.; Cafagna, F.; Calin, M.; Calviani, M.; Campanelli, M.; Cantini, C.; Caretta, O.; Cata-Danil, G.; Catanesi, M. G.; Cervera, A.; Chakraborty, S.; Chaussard, L.; Chesneanu, D.; Chipesiu, F.; Christodoulou, G.; Coleman, J.; Crivelli, P.; Davenne, T.; Dawson, J.; De Bonis, I.; De Jong, J.; Déclais, Y.; Del Amo Sanchez, P.; Delbart, A.; Densham, C.; Di Lodovico, F.; Di Luise, S.; Duchesneau, D.; Dumarchez, J.; Efthymiopoulos, I.; Eliseev, A.; Emery, S.; Enqvist, K.; Enqvist, T.; Epprecht, L.; Ereditato, A.; Erykalov, A. N.; Esanu, T.; Finch, A. J.; Fitton, M. D.; Franco, D.; Galymov, V.; Gavrilov, G.; Gendotti, A.; Giganti, C.; Goddard, B.; Gomez, J. J.; Gomoiu, C. M.; Gornushkin, Y. A.; Gorodetzky, P.; Grant, N.; Haesler, A.; Haigh, M. D.; Hasegawa, T.; Haug, S.; Hierholzer, M.; Hissa, J.; Horikawa, S.; Huitu, K.; Ilic, J.; Ioannisian, A. N.; Izmaylov, A.; Jipa, A.; Kainulainen, K.; Kalliokoski, T.; Karadzhov, Y.; Kawada, J.; Khabibullin, M.; Khotjantsev, A.; Kokko, E.; Kopylov, A. N.; Kormos, L. L.; Korzenev, A.; Kosyanenko, S.; Kreslo, I.; Kryn, D.; Kudenko, Y.; Kudryavtsev, V. A.; Kumpulainen, J.; Kuusiniemi, P.; Lagoda, J.; Lazanu, I.; Levy, J.-M.; Litchfield, R. P.; Loo, K.; Loveridge, P.; Maalampi, J.; Magaletti, L.; Margineanu, R. M.; Marteau, J.; Martin-Mari, C.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCauley, N.; Mercadante, A.; Mineev, O.; Mirizzi, A.; Mitrica, B.; Morgan, B.; Murdoch, M.; Murphy, S.; Mursula, K.; Narita, S.; Nesterenko, D. A.; Nguyen, K.; Nikolics, K.; Noah, E.; Novikov, Yu.; O'Keeffe, H.; Odell, J.; Oprima, A.; Palladino, V.; Papaphilippou, Y.; Pascoli, S.; Patzak, T.; Payne, D.; Pectu, M.; Pennacchio, E.; Periale, L.; Pessard, H.; Pistillo, C.; Popov, B.; Przewlocki, P.; Quinto, M.; Radicioni, E.; Ramachers, Y.; Ratoff, P. N.; Ravonel, M.; Rayner, M.; Resnati, F.; Ristea, O.; Robert, A.; Rondio, E.; Rubbia, A.; Rummukainen, K.; Sacco, R.; Saftoiu, A.; Sakashita, K.; Sarkamo, J.; Sato, F.; Saviano, N.; Scantamburlo, E.; Sergiampietri, F.; Sgalaberna, D.; Shaposhnikova, E.; Slupecki, M.; Sorel, M.; Spooner, N. J. C.; Stahl, A.; Stanca, D.; Steerenberg, R.; Sterian, A. R.; Sterian, P.; Still, B.; Stoica, S.; Strauss, T.; Suhonen, J.; Suvorov, V.; Szeptycka, M.; Terri, R.; Thompson, L. F.; Toma, G.; Tonazzo, A.; Touramanis, C.; Trzaska, W. H.; Tsenov, R.; Tuominen, K.; Vacheret, A.; Valram, M.; Vankova-Kirilova, G.; Vanucci, F.; Vasseur, G.; Velotti, F.; Velten, P.; Viant, T.; Vincke, H.; Virtanen, A.; Vorobyev, A.; Wark, D.; Weber, A.; Weber, M.; Wiebusch, C.; Wilson, J. R.; Wu, S.; Yershov, N.; Zalipska, J.; Zito, M.

    2014-05-01

    The next generation neutrino observatory proposed by the LBNO collaboration will address fundamental questions in particle and astroparticle physics. The experiment consists of a far detector, in its first stage a 20 kt LAr double phase TPC and a magnetised iron calorimeter, situated at 2300 km from CERN and a near detector based on a highpressure argon gas TPC. The long baseline provides a unique opportunity to study neutrino flavour oscillations over their 1st and 2nd oscillation maxima exploring the L/E behaviour, and distinguishing effects arising from δ CP and matter. In this paper we have reevaluated the physics potential of this setup for determining the mass hierarchy (MH) and discovering CP-violation (CPV), using a conventional neutrino beam from the CERN SPS with a power of 750 kW. We use conservative assumptions on the knowledge of oscillation parameter priors and systematic uncertainties. The impact of each systematic error and the precision of oscillation prior is shown. We demonstrate that the first stage of LBNO can determine unambiguously the MH to > 5 σ C.L. over the whole phase space. We show that the statistical treatment of the experiment is of very high importance, resulting in the conclusion that LBNO has ~ 100% probability to determine the MH in at most 4-5 years of running. Since the knowledge of MH is indispensable to extract δ CP from the data, the first LBNO phase can convincingly give evidence for CPV on the 3 σ C.L. using today's knowledge on oscillation parameters and realistic assumptions on the systematic uncertainties.

  18. Dark matter astrophysical uncertainties and the neutrino floor

    NASA Astrophysics Data System (ADS)

    O'Hare, Ciaran A. J.

    2016-09-01

    The search for weakly interacting massive particles (WIMPs) by direct detection faces an encroaching background due to coherent neutrino-nucleus scattering. For a given WIMP mass the cross section at which neutrinos constitute a dominant background is dependent on the uncertainty on the flux of each neutrino source, principally from the Sun, supernovae or atmospheric cosmic ray collisions. However there are also considerable uncertainties with regard to the astrophysical ingredients of the predicted WIMP signal. Uncertainties in the velocity of the Sun with respect to the Milky Way dark matter halo, the local density of WIMPs, and the shape of the local WIMP speed distribution all have an effect on the expected event rate in direct detection experiments and hence will change the region of the WIMP parameter space for which neutrinos are a significant background. In this work we extend the neutrino floor calculation to account for the uncertainty in the astrophysics dependence of the WIMP signal. We show the effect of uncertainties on projected discovery limits with an emphasis on low WIMP masses (less than 10 GeV) when solar neutrino backgrounds are most important. We find that accounting for astrophysical uncertainties changes the shape of the neutrino floor as a function of WIMP mass but also causes it to appear at cross sections up to an order of magnitude larger, extremely close to existing experimental limits, indicating that neutrino backgrounds will become an issue sooner than previously thought. We also explore how neutrinos hinder the estimation of WIMP parameters and how astrophysical uncertainties impact the discrimination of WIMPs and neutrinos with the use of their respective time dependencies.

  19. Atmospheric nucleation and growth in the CLOUD experiment at CERN

    NASA Astrophysics Data System (ADS)

    Kirkby, Jasper; Cloud Collaboration

    2013-05-01

    Nucleation and growth of new particles in the atmosphere is thought to account for up to half of all cloud condensation nuclei. However the vapours and formation rates that underly this process are poorly understood, due both to the ultra low concentrations of participating vapours in the presence of high backgrounds and to the many sources of uncontrolled variability in the atmosphere. In consequence, laboratory measurements made under clean and precisely controlled conditions play an important role in identifying the vapours responsible and quantifying their associated nucleation and growth rates. The CLOUD experiment at CERN is studying the nucleation and growth of aerosol particles, and their interaction with clouds, in a 3 m stainless steel aerosol/cloud chamber. The experiment is optimised to study the influence of ions, for which the CERN Proton Synchrotron (PS) provides an adjustable source of 'cosmic rays'. Extraordinary care has been paid in the design and construction of CLOUD and its associated systems-gas, thermal, UV and electric field-to suppress contaminants at the technological limit. The unprecedented low contamination achieved in the CLOUD chamber has revealed that atmospheric nucleation and growth is sensitive to certain atmospheric vapours at mixing ratios of only a few parts-per-trillion by volume (pptv). Here we provide an overview of the design of CLOUD and its experimental programme over four years of operation at CERN.

  20. A Measurement of the muon neutrino charged current quasielastic interaction and a test of Lorentz violation with the MiniBooNE experiment

    SciTech Connect

    Katori, Teppei

    2008-12-01

    The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for vμ → ve appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (vμ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10-38 cm2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). ve appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.

  1. Search for neutrino oscillations at BNL preliminary results from E 816 experiment

    SciTech Connect

    Bernardi, G.

    1987-03-01

    Neutrino interactions in a fine-grain calorimeter have been analyzed with emphasis on events with associated electromagnetic showers. The good granularity of the detector allows to separate photon from electron showers. The number of events with an electron, according to the present status of our analysis, is found to be about three times larger than expected on the basis of the beam composition. 9 refs., 7 figs.

  2. Neutrino oscillations with MINOS and MINOS+

    NASA Astrophysics Data System (ADS)

    Whitehead, L. H.

    2016-07-01

    The MINOS experiment ran from 2003 until 2012 and collected a data sample including 10.71 ×1020 protons-on-target (POT) of beam neutrinos, 3.36 ×1020 POT of beam antineutrinos and an atmospheric neutrino exposure of 37.88 kt yrs. The final measurement of the atmospheric neutrino oscillation parameters, Δ m322 and θ23, came from a full three flavour oscillation analysis of the combined CC νμ and CC ν‾μ beam and atmospheric samples and the CC νe and CC ν‾e appearance samples. This analysis yielded the most precise measurement of the atmospheric mass splitting Δ m322 performed to date. The results are | Δ m322 | = [ 2.28- 2.46 ] ×10-3 eV2 (68%) and sin2 ⁡θ23 = 0.35- 0.65 (90%) in the normal hierarchy, and | Δ m322 | = [ 2.32- 2.53 ] ×10-3 eV2 (68%) and sin2 ⁡θ23 = 0.34- 0.67 (90%) in the inverted hierarchy. The successor to MINOS in the NOνA era at FNAL, MINOS+, is now collecting data mostly in the 3- 10 GeV region, and an analysis of νμ disappearance using the first 2.99 ×1020 POT of data produced results very consistent with those from MINOS. Future data will further test the standard neutrino oscillation paradigm and allow for improved searches for exotic phenomena including sterile neutrinos, large extra dimensions and non-standard interactions.

  3. VOCAR: An experiment in Variability of Coastal Atmospheric Refractivity

    NASA Astrophysics Data System (ADS)

    Paulus, Richard A.

    1994-10-01

    A previous radio-meteorological experiment conducted along the coast of southern California showed a high correlation between UHF signals and the base of the elevated temperature inversion. A reanalysis of this experimental data with a recently developed hybrid propagation model confirmed this correlation and a method to remotely sense the refractive structure was proposed. An experiment called Variability of Coastal Atmospheric Refractivity (VOCAR) was designed under a larger program called Coastal Variability Analysis, Measurements, and Prediction. VOCAR is a multi-year experimental effort to investigate the variability of atmospheric refractivity with emphasis on the coastal zone. The experiment is being conducted by the Naval Command, Control and Ocean Surveillance Center RDT&E Division jointly with the Naval Air Warfare Center Weapons Division, Point Mugu, CA, the Naval Research Laboratory (Washington, DC and Monterey), and the Naval Postgraduate School. In addition, the National Oceanic and Atmospheric Administration Environmental Technology Laboratory, Penn State University Applied Research Laboratory and Johns Hopkins University Applied Physics Laboratory participated in the intensive measurement phase of VOCAR. The objectives of VOCAR are to provide an assessment capability for horizontally varying refractivity conditions in a coastal environment and to develop a remote sensing capability. The propagation measurements being made during VOCAR consist of monitoring signal strength variations of VHF/UHF transmitters in the southern California coastal region. Corresponding meteorological measurements are made during routine, special, and intensive observation periods. Measurements began in May 1993 and will be conducted periodically through 1994.

  4. Measurement of neutrino mixing angle θ13 and mass difference Δ mee2 from reactor antineutrino disappearance in the RENO experiment

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Bong

    2016-07-01

    RENO (Reactor Experiment for Neutrino Oscillation) made a definitive measurement of the smallest neutrino mixing angle θ13 in 2012, based on the disappearance of reactor electron antineutrinos. The experiment has obtained a more precise value of the mixing angle and the first result on neutrino mass difference Δ mee2 from an energy and baseline dependent reactor neutrino disappearance using ∼500 days of data. Based on the ratio of inverse-beta-decay (IBD) prompt spectra measured in two identical far and near detectors, we obtain sin2 ⁡ (2θ13) = 0.082 ± 0.009 (stat .) ± 0.006 (syst .) and | Δ mee2 | = [2.62-0.23+0.21 (stat .)-0.13+0.12 (syst .) ] ×10-3 eV2. An excess of reactor antineutrinos near 5 MeV is observed in the measured prompt spectrum with respect to the most commonly used models. The excess is found to be consistent with coming from reactors. A successful measurement of θ13 is also made in an IBD event sample with a delayed signal of neutron capture on hydrogen. A precise value of θ13 would provide important information on determination of the leptonic CP phase if combined with a result of an accelerator neutrino beam experiment.

  5. Atmospheric guidance concepts for an aeroassist flight experiment

    NASA Astrophysics Data System (ADS)

    Gamble, J. D.; Cerimele, C. J.; Moore, T. E.; Higgins, J.

    1988-06-01

    Three atmospheric guidance concepts proposed for an aeroassist flight experiment are presented. The flight experiment will simulate a return from geosynchronous orbit by an aeroassisted orbital transfer vehicle and is proposed to be flown on board the Space Shuttle in 1992. The three guidance concepts include an analytic predictor/corrector, a numeric predictor/corrector, and an energy controller. The algorithms for the three guidance methods are developed and performance results are presented for the nominal case and for several cases dispersed from the nominal conditions.

  6. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative

  7. Absolute neutrino mass measurements

    SciTech Connect

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

  8. Solar mass-varying neutrino oscillations.

    PubMed

    Barger, V; Huber, Patrick; Marfatia, Danny

    2005-11-18

    We propose that the solar neutrino deficit may be due to oscillations of mass-varying neutrinos (MaVaNs). This scenario elucidates solar neutrino data beautifully while remaining comfortably compatible with atmospheric neutrino and K2K data and with reactor antineutrino data at short and long baselines (from CHOOZ and KamLAND). We find that the survival probability of solar MaVaNs is independent of how the suppression of neutrino mass caused by the acceleron-matter couplings varies with density. Measurements of MeV and lower energy solar neutrinos will provide a rigorous test of the idea.

  9. Atmospheric Climate Model Experiments Performed at Multiple Horizontal Resolutions

    SciTech Connect

    Phillips, T; Bala, G; Gleckler, P; Lobell, D; Mirin, A; Maxwell, R; Rotman, D

    2007-12-21

    This report documents salient features of version 3.3 of the Community Atmosphere Model (CAM3.3) and of three climate simulations in which the resolution of its latitude-longitude grid was systematically increased. For all these simulations of global atmospheric climate during the period 1980-1999, observed monthly ocean surface temperatures and sea ice extents were prescribed according to standard Atmospheric Model Intercomparison Project (AMIP) values. These CAM3.3 resolution experiments served as control runs for subsequent simulations of the climatic effects of agricultural irrigation, the focus of a Laboratory Directed Research and Development (LDRD) project. The CAM3.3 model was able to replicate basic features of the historical climate, although biases in a number of atmospheric variables were evident. Increasing horizontal resolution also generally failed to ameliorate the large-scale errors in most of the climate variables that could be compared with observations. A notable exception was the simulation of precipitation, which incrementally improved with increasing resolution, especially in regions where orography plays a central role in determining the local hydroclimate.

  10. Neutrino oscillations and the seesaw origin of neutrino mass

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Valle, J. W. F.

    2016-07-01

    The historical discovery of neutrino oscillations using solar and atmospheric neutrinos, and subsequent accelerator and reactor studies, has brought neutrino physics to the precision era. We note that CP effects in oscillation phenomena could be difficult to extract in the presence of unitarity violation. As a result upcoming dedicated leptonic CP violation studies should take into account the non-unitarity of the lepton mixing matrix. Restricting non-unitarity will shed light on the seesaw scale, and thereby guide us towards the new physics responsible for neutrino mass generation.

  11. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    SciTech Connect

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high source luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.

  12. Status of the KATRIN experiment and prospects to search for keV-mass sterile neutrinos in tritium β-decay

    DOE PAGESBeta

    Mertens, Susanne

    2015-03-24

    In this contribution the current status and future perspectives of the Karlsruhe Tritium Neutrino (KATRIN) Experiment are presented. The prime goal of this single β-decay experiment is to probe the absolute neutrino mass scale with a sensitivity of 200 meV (90% CL). We discuss first results of the recent main spectrometer commissioning measurements, successfully verifying the spectrometer’s basic vacuum, transmission and background properties. We also discuss the prospects of making use of the KATRIN tritium source, to search for sterile neutrinos in the multi-keV mass range constituting a classical candidate for Warm Dark Matter. Due to the very high sourcemore » luminosity, a statistical sensitivity down to active-sterile mixing angles of sin² θ < 1 · 10⁻⁷ (90% CL) could be reached.« less

  13. Supernova heavy element nucleosynthesis: Can it tell us about neutrino masses?

    SciTech Connect

    Fuller, George M.

    1997-05-20

    Here we describe a new probe of neutrino properties based on heavy element nucleosynthesis. This technique is in many ways akin to the familiar light element Primordial Nucleosynthesis probe of conditions in the early universe. Our new probe is based on the fact that neutrino masses and vacuum mixings can engender matter-enhanced neutrino flavor transformation in the post core bounce supernova environment. Transformations of the type {nu}{sub {mu}}{sub (r)}<-->{nu}{sub e} in this site will have significant effects on the synthesis of the rapid neutron capture (r-Process) elements and the light p-nuclei. We suggest that an understanding of the origin of these nuclides, combined with the measured abundances of these species, may provide a ''Rosetta Stone'' for neutrino properties. Heavy element nucleosynthesis abundance considerations give either constraints/evidence for neutrino masses and flavor mixings, or strong constraints on the site of origin of r-Process nucleosynthesis. The putative limits on neutrino characteristics are complimentary to those derived from laboratory neutrino oscillation studies and solar and atmospheric neutrino experiments. Preliminary studies show that the existence of r-Process nuclei in the abundances observed in the Galaxy cannot be understood unless neutrinos have small masses (possibly in the cosmologically significant range)

  14. Atmospheric Results from the MGS Horizon Science Experiment

    NASA Technical Reports Server (NTRS)

    Martin, T. Z.; Murphy, J. R.; Hollingsworth, J. L.

    1999-01-01

    The Horizon Science Experiment (HORSE) utilizes the Mars Horizon Sensor Assembly (MHSA) on the Mars Global Surveyor (MGS) orbiter to measure 15-micron band thermal emission from the Martian atmosphere. During the first two phases of aerobraking, from September 1997 to May 1998, and from September 1998 to March 1999, one of the four MGS quadrants was pointed well onto the planet consistently during the near-periapsis aerobraking passes, allowing the device to obtain data on the latitudinal variation of middle atmospheric temperature (0.2 - 2.0 mbar). Of particular interest during the first phase (L(sub s) = 182 - 300 deg) were the effects of a prominent dust storm at L(sub s) =224 deg, and wavelike behavior in the strong temperature gradient near the north polar cap. Additional information is contained in the original extended abstract.

  15. Can neutrino-electron scattering tell us whether neutrinos are Dirac or Majorana particles

    SciTech Connect

    Kayser, B.

    1988-04-01

    There has recently been interest in the possibility that neutrino-electron scattering experiments could determine whether neutrinos are Dirac or Majorana particles by providing information on their electromagnetic structure. We try to explain why studies of neutrino electromagnetic structure actually cannot distinguish between Dirac and Majorana neutrinos. 9 refs.

  16. Quantifying the impact of various radioactive background sources on germanium-76 zero-neutrino-double-beta-decay experiments

    NASA Astrophysics Data System (ADS)

    Mizouni, Katarina Leila

    The goal of searching for 0nubetabeta-decay is to probe an absolute neutrino mass scale suggested by the mass-splitting parameters observed by neutrino oscillation experiments. Furthermore, observation of 0nubetabeta-decay is an explicit instance of lepton-number non-conservation. To detect the rare events such as 0nubetabeta-decay, half-lives of the order of 10 25-1027 years have to be probed. Using an active detector with a large volume, such as hundreds of kilograms of HPGe in the case of MAJORANA, and taking efficient measures to mitigate background of cosmic and primordial origins are necessary for the success of a sensitive 0nubetabeta-decay experiment. One focus of the present research is the analysis of data from Cascades, a HPGe crystal array developed at Pacific Northwest National Laboratory in Richland, WA, to determine an upper bound on primordial radiation levels in the cryostat constructed with electroformed copper similar to that electroformed for MAJORANA. It will be shown, however, that there are sources of background much more serious than cryostats in 76Ge experiments. Additionally, experimental applications of the Cascades detector were studied by predicting the sensitivity for a 0nuBB-decay experiment using GEANT4 simulations. Tellurium-130, an even-even nucleus that can undergo 0nubetabeta-decay to either the ground state or first 01+ excited state of 130Xe, was used as an example. The present work developed techniques that will be used for a number of measurements of betabeta-decay half-lives for decays to excited states of the daughter isotopes.

  17. Mass production test of Hamamatsu MPPC for T2K neutrino oscillation experiment

    NASA Astrophysics Data System (ADS)

    Yokoyama, M.; Nakaya, T.; Gomi, S.; Minamino, A.; Nagai, N.; Nitta, K.; Orme, D.; Otani, M.; Murakami, T.; Nakadaira, T.; Tanaka, M.

    2009-10-01

    In the T2K near neutrino detectors, about 60 000 Hamamatsu Multi-Pixel Photon Counters (MPPCs) will be used. The mass production of MPPC has started in February 2008. In order to perform quality assurance and to characterize each device, we have developed an MPPC test system. For each MPPC, gain, breakdown voltage, noise rate, photo detection efficiency, and cross-talk and after-pulse rate are measured as functions of the bias voltage and temperature. The design of the test system and the measurement procedure are described.

  18. Comparisons of neutrino event generators from an oscillation-experiment perspective

    SciTech Connect

    Mayer, Nathan

    2015-05-15

    Monte Carlo generators are crucial to the analysis of high energy physics data, ideally giving a baseline comparison between the state-of-art theoretical models and experimental data. Presented here is a comparison between three of final state distributions from the GENIE, Neut, NUANCE, and NuWro neutrino Monte Carlo event generators. The final state distributions chosen for comparison are: the electromagnetic energy fraction in neutral current interactions, the energy of the leading π{sup 0} vs. the scattering angle for neutral current interactions, and the muon energy vs. scattering angle of ν{sub µ} charged current interactions.

  19. Sterile Neutrino Search with MINOS

    SciTech Connect

    Devan, Alena V.

    2015-08-01

    MINOS, Main Injector Neutrino Oscillation Search, is a long-baseline neutrino oscillation experiment in the NuMI muon neutrino beam at the Fermi National Accelerator Laboratory in Batavia, IL. It consists of two detectors, a near detector positioned 1 km from the source of the beam and a far detector 734 km away in Minnesota. MINOS is primarily designed to observe muon neutrino disappearance resulting from three flavor oscillations. The Standard Model of Particle Physics predicts that neutrinos oscillate between three active flavors as they propagate through space. This means that a muon-type neutrino has a certain probability to later interact as a different type of neutrino. In the standard picture, the neutrino oscillation probabilities depend only on three neutrino flavors and two mass splittings, Δm2. An anomaly was observed by the LSND and MiniBooNE experiments that suggests the existence of a fourth, sterile neutrino flavor that does not interact through any of the known Standard Model interactions. Oscillations into a theoretical sterile flavor may be observed by a deficit in neutral current interactions in the MINOS detectors. A distortion in the charged current energy spectrum might also be visible if oscillations into the sterile flavor are driven by a large mass-squared difference, ms2 ~ 1 eV2. The results of the 2013 sterile neutrino search are presented here.

  20. Neutrino-Electron Scattering in MINERvA for Constraining the NuMI Neutrino Flux

    SciTech Connect

    Park, Jaewon

    2013-01-01

    Neutrino-electron elastic scattering is used as a reference process to constrain the neutrino flux at the Main Injector (NuMI) beam observed by the MINERvA experiment. Prediction of the neutrino flux at accelerator experiments from other methods has a large uncertainty, and this uncertainty degrades measurements of neutrino oscillations and neutrino cross-sections. Neutrino-electron elastic scattering is a rare process, but its cross-section is precisely known. With a sample corresponding to $3.5\\times10^{20}$ protons on target in the NuMI low-energy neutrino beam, a sample of $120$ $\

  1. Unparticle physics and neutrino phenomenology

    SciTech Connect

    Barranco, J.; Bolanos, A.; Miranda, O. G.; Moura, C. A.; Rashba, T. I.

    2009-04-01

    We have constrained unparticle interactions with neutrinos and electrons using available data on neutrino-electron elastic scattering and the four CERN LEP experiments data on mono photon production. We have found that, for neutrino-electron elastic scattering, the MUNU experiment gives better constraints than previous reported limits in the region d>1.5. The results are compared with the current astrophysical limits, pointing out the cases where these limits may or may not apply. We also discuss the sensitivity of future experiments to unparticle physics. In particular, we show that the measurement of coherent reactor neutrino scattering off nuclei could provide a good sensitivity to the couplings of unparticle interaction with neutrinos and quarks. We also discuss the case of future neutrino-electron experiments as well as the International Linear Collider.

  2. First measurement of the flux of solar neutrinos from the sun at the Sudbury Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Wittich, Peter

    2000-12-01

    The Sudbury Neutrino Observatory (SNO) is a second generation solar neutrino detector. SNO is the first experiment that is able to measure both the electron neutrino flux and a flavor-blind flux of all active neutrino types, allowing a model-independent determination if the deficit of solar neutrinos known as the solar neutrino problem is due to neutrino oscillation. The Sudbury Neutrino Observatory started taking production data in November, 1999. A measurement of the charged current rate will be the first indication if SNO too sees a suppression of the solar neutrino signal relative to the theoretical predictions. Such a confirmation is the first step in SNO's ambitious science program. In this thesis, we present evidence that SNO is seeing solar neutrinos and a preliminary ratio of the measured vs predicted rate of electrons as induced by 8B neutrinos in the νe, + d --> p + p + e charged-current (CC) reaction.

  3. Measuring neutrino oscillation parameters using $\

    SciTech Connect

    Backhouse, Christopher James

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0.11

  4. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE)

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castañeda Vázquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.

    2016-07-01

    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below 2 e‑ RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.

  5. Results of the engineering run of the Coherent Neutrino Nucleus Interaction Experiment (CONNIE)

    NASA Astrophysics Data System (ADS)

    Aguilar-Arevalo, A.; Bertou, X.; Bonifazi, C.; Butner, M.; Cancelo, G.; Castañeda Vázquez, A.; Cervantes Vergara, B.; Chavez, C. R.; Da Motta, H.; D'Olivo, J. C.; Dos Anjos, J.; Estrada, J.; Fernandez Moroni, G.; Ford, R.; Foguel, A.; Hernández Torres, K. P.; Izraelevitch, F.; Kavner, A.; Kilminster, B.; Kuk, K.; Lima, H. P., Jr.; Makler, M.; Molina, J.; Moreno-Granados, G.; Moro, J. M.; Paolini, E. E.; Sofo Haro, M.; Tiffenberg, J.; Trillaud, F.; Wagner, S.

    2016-07-01

    The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GWth nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed around the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The in-situ calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor ON and OFF are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below 2 e- RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.

  6. Experimental data on solar neutrinos

    NASA Astrophysics Data System (ADS)

    Ludhova, Livia

    2016-04-01

    Neutrino physics continues to be a very active research field, full of opened fundamental questions reaching even beyond the Standard Model of elementary particles and towards a possible new physics. Solar neutrinos have played a fundamental historical role in the discovery of the phenomenon of neutrino oscillations and thus non-zero neutrino mass. Even today, the study of solar neutrinos provides an important insight both into the neutrino as well as into the stellar and solar physics. In this section we give an overview of the most important solar-neutrino measurements from the historical ones up to the most recent ones. We cover the results from the experiments using radio-chemic (Homestake, SAGE, GNO, GALLEX), water Cherenkov (Kamiokande, Super-Kamiokande, SNO), and the liquid-scintillator (Borexino, KamLAND) detection techniques.

  7. Experiments of reconstructing discrete atmospheric dynamic models from data (I)

    NASA Astrophysics Data System (ADS)

    Lin, Zhenshan; Zhu, Yanyu; Deng, Ziwang

    1995-03-01

    In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, x n + 1 = 1- μx {2/n}, could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.

  8. Neutrino Factories

    SciTech Connect

    Geer, Steve; /Fermilab

    2010-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(10{sup 21}) muons/year. This prepares the way for a Neutrino Factory (NF) in which high energy muons decay within the straight sections of a storage ring to produce a beam of neutrinos and anti-neutrinos. The NF concept was proposed in 1997 at a time when the discovery that the three known types of neutrino ({nu}{sub e}, {nu}{sub {mu}}, {nu}{sub {tau}}) can change their flavor as they propagate through space (neutrino oscillations) was providing a first glimpse of physics beyond the Standard Model. This development prepares the way for a new type of neutrino source: a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  9. Detectors for Neutrino Physics at the First Muon Collider

    SciTech Connect

    Harris, D.A.; McFarland, K.S.

    1998-04-01

    We consider possible detector designs for short-baseline neutrino experiments using neutrino beams produced at the First Muon Collider complex. The high fluxes available at the muon collider make possible high statistics deep-inelastic scattering neutrino experiments with a low-mass target. A design of a low-energy neutrino oscillation experiment on the ``tabletop`` scale is also discussed.

  10. Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos.

    PubMed

    Adamson, P; Anghel, I; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Cherdack, D; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Moed Sher, S; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2014-05-16

    We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν(μ) disappearance and ν(e) appearance data using the three-flavor formalism. We measure |Δm(32)(2)| = [2.28-2.46] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm(32)(2)| = [2.32-2.53] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L. PMID:24877929

  11. Combined analysis of νμ disappearance and νμ→νe appearance in MINOS using accelerator and atmospheric neutrinos.

    PubMed

    Adamson, P; Anghel, I; Aurisano, A; Barr, G; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Castromonte, C M; Cherdack, D; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hahn, S R; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Huang, J; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mayer, N; McGivern, C; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Michael, D G; Miller, W H; Mishra, S R; Moed Sher, S; Moore, C D; Mualem, L; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; O'Connor, J; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Perch, A; Phan-Budd, S; Plunkett, R K; Poonthottathil, N; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Tian, X; Timmons, A; Tognini, S C; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Whitehead, L H; Wojcicki, S G; Zwaska, R

    2014-05-16

    We report on a new analysis of neutrino oscillations in MINOS using the complete set of accelerator and atmospheric data. The analysis combines the ν(μ) disappearance and ν(e) appearance data using the three-flavor formalism. We measure |Δm(32)(2)| = [2.28-2.46] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.35-0.65 (90% C.L.) in the normal hierarchy, and |Δm(32)(2)| = [2.32-2.53] × 10(-3) eV(2) (68% C.L.) and sin(2)θ(23) = 0.34-0.67 (90% C.L.) in the inverted hierarchy. The data also constrain δ(CP), the θ(23} octant degeneracy and the mass hierarchy; we disfavor 36% (11%) of this three-parameter space at 68% (90%) C.L.

  12. Neutrino physics

    SciTech Connect

    Kayser, Boris; /Fermilab

    2005-06-01

    Thanks to compelling evidence that neutrinos can change flavor, we now know that they have nonzero masses, and that leptons mix. In these lectures, we explain the physics of neutrino flavor change, both in vacuum and in matter. Then, we describe what the flavor-change data have taught us about neutrinos. Finally, we consider some of the questions raised by the discovery of neutrino mass, explaining why these questions are so interesting, and how they might be answered experimentally.

  13. Atmospheric Measurements Aboard C-130 During the Pacific Atmospheric Sulfur Experiment

    NASA Astrophysics Data System (ADS)

    Yanchilina, A. G.; Mauldin, L.; Anderson, R.

    2007-12-01

    The Pacific Atmospheric Sulfur Experiment (PASE) is a study with a primary goal aimed at understanding the sulfur cycle in a remote marine atmosphere. The study will be conducted in August and September months of 2007 at Christmas Island on board the NSF/NCAR C-130 aircraft. It will foremost focus on measurements of DMS (dimethyl sulfide) and its contribution to formation of H2SO4 (sulfuric acid) and MSA (methane-sulfonic acid) by reaction with OH (hydroxyl). PASE will also concentrate on subsequent production of aerosols and cloud condensation nuclei from H2SO4, MSA, and NH3 concentrations in a cloud free convective boundary layer (CBL) and in outflow of marine cumulus. This study explains the measurement technique for OH, H2SO4, MSA, HO2, HO2+RO2 (peroxy radicals), and NH3 (ammonia) using the SICIMS (Selected ion chemical ionization mass spectrometer). It also presents sample measurements from research flights of OH, H2SO4, MSA, HO2, and HO2+RO2. In addition, this paper discusses the measurement technique utilized aboard the C-130 in testing SO2, DMS, DMSO (dimethyl sulfoxide), DMSO2 (dimethyl sulfone), O3 (ozone), aerosols, and cloud condensation nuclei. It includes several adaptations to technique and instrumentation from previous studies conducted: the First Aerosol Characterization Experiment (ACE-1) in 1998, the Pacific Exploratory Missions A and B (PEM- Tropics) in 1996, and the Intercontinental Transport Experiment (INTEX-B) in 2006.

  14. On LBNE neutrino flux systematic uncertainties

    SciTech Connect

    Lebrun, Paul L. G.; Hylen, James; Marchionni, Alberto; Fields, Laura; Bashyal, Amit; Park, Seongtae; Watson, Blake

    2015-10-15

    The systematic uncertainties in the neutrino flux of the Long-Baseline Neutrino Experiment, due to alignment uncertanties and tolerances of the neutrino beamline components, are estimated. In particular residual systematics are evaluated in the determination of the neutrino flux at the far detector, assuming that the experiment will be equipped with a near detector with the same target material of the far detector, thereby canceling most of the uncertainties from hadroproduction and neutrino cross sections. This calculation is based on a detailed Geant4-based model of the neutrino beam line that includes the target, two focusing horns, the decay pipe and ancillary items, such as shielding.

  15. Neutrino Factories

    NASA Astrophysics Data System (ADS)

    Geer, Steve

    2010-06-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source : a Neutrino Factory. This article reviews the motivation, design and R&D for a Neutrino Factory.

  16. Exploring a Non-Minimal Sterile Neutrino Model at IceCube

    NASA Astrophysics Data System (ADS)

    Moss, Zander; Arguelles, Carlos

    2016-03-01

    In a recent analysis of atmospheric muon neutrino disappearance, IceCube placed strong bounds on active-sterile neutrino mixing thus increasing the tension between disappearance measurements and the various signal excesses seen in short baseline and reactor neutrino experiments. The growing tension from terrestrial experiments and also from cosmology invites us to move from the minimal sterile neutrino model to one where the sterile neutrino has new interactions and additional particles can be considered. In particular, we will discuss a model of neutrino decay in which active and sterile neutrinos decay into light particle states. This decay will modify the neutrino disappearance oscillation probabilities. These modifications may alleviate the tension. Since the parameter space under consideration is large, we will study it in two ways. First, we assume an anarchic decay structure, sampling uniformly on the SU(N) flavor structure group. Second, we will perform an MCMC analysis using one year of IceCube data. By comparing the signals from anarchic sampling to the IceCube data and an MCMC analysis thereof, we draw conclusions about both the viability of the model and the likelihood that a random draw from the structure group could have produced the observed behavior.

  17. The magnetized steel and scintillator calorimeters of the MINOS experiment

    SciTech Connect

    Michael, : D.G.

    2008-05-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment uses an accelerator-produced neutrino beam to perform precision measurements of the neutrino oscillation parameters in the 'atmospheric neutrino' sector associated with muon neutrino disappearance. This long-baseline experiment measures neutrino interactions in Fermilab's NuMI neutrino beam with a near detector at Fermilab and again 735 km downstream with a far detector in the Soudan Underground Laboratory in northern Minnesota. The two detectors are magnetized steel-scintillator tracking calorimeters. They are designed to be as similar as possible in order to ensure that differences in detector response have minimal impact on the comparisons of event rates, energy spectra and topologies that are essential to MINOS measurements of oscillation parameters. The design, construction, calibration and performance of the far and near detectors are described in this paper.

  18. Experiments on light pulse communication and propagation through atmospheric clouds.

    PubMed

    Bucher, E A; Lerner, R M

    1973-10-01

    This paper describes the facilities and results in an experiment to investigate light pulse propagation through atmospheric clouds. The experiments were conducted with the transmitter and receiver located on two mountain peaks in a naturally cloudy area. The transmitter was a Q-switched ruby laser producing 30 nsec light pulses. The received pulses were 1-10 microsec in duration when there was a cloud in the propagation path. The multipath time lengthening of the received pulse resulted from multiple scattering inside the cloud. The extent of this multipath pulse spreading can be shown to be comparable to that predicted from computer simulation models. We also observed a number of effects in which relatively small changes in the gross cloud shape produced a change in the received signal intensity of an order of magnitude or so.

  19. Preliminary design for Arctic atmospheric radiative transfer experiments

    NASA Technical Reports Server (NTRS)

    Zak, B. D.; Church, H. W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z.; Ellingson, R. G.; Tsay, S. C.

    1995-01-01

    If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.

  20. Preliminary design for Arctic atmospheric radiative transfer experiments

    NASA Astrophysics Data System (ADS)

    Zak, B. D.; Church, H. W.; Stamnes, K.; Shaw, G.; Filyushkin, V.; Jin, Z.; Ellingson, R. G.; Tsay, S. C.

    If current plans are realized, within the next few years, an extraordinary set of coordinated research efforts focusing on energy flows in the Arctic will be implemented. All are motivated by the prospect of global climate change. SHEBA (Surface Energy Budget of the Arctic Ocean), led by the National Science Foundation (NSF) and the Office of Naval Research (ONR), involves instrumenting an ice camp in the perennial Arctic ice pack, and taking data for 12-18 months. The ARM (Atmospheric Radiation Measurement) North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO) Cloud and Radiation Testbed (CART) focuses on atmospheric radiative transport, especially in the presence of clouds. The NSA/AAO CART involves instrumenting a sizeable area on the North Slope of Alaska and adjacent waters in the vicinity of Barrow, and acquiring data over a period of about 10 years. FIRE (First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment) Phase 3 is a program led by the National Aeronautics and Space Administration (NASA) which focuses on Arctic clouds, and which is coordinated with SHEBA and ARM. FIRE has historically emphasized data from airborne and satellite platforms. All three program anticipate initiating Arctic data acquisition during spring, 1997. In light of his historic opportunity, the authors discuss a strawman atmospheric radiative transfer experimental plan that identifies which features of the radiative transport models they think should be tested, what experimental data are required for each type of test, the platforms and instrumentation necessary to acquire those data, and in general terms, how the experiments could be conducted. Aspects of the plan are applicable to all three programs.

  1. The field experiments on the HTO washout from the atmosphere

    SciTech Connect

    Golubev, A.V.; Mavrin, S.V.; Golubeva, V.N.; Stengach, A.V.; Balashov, Y.S.; Kovalenko, V.P.; Solomatin, I.I.

    2015-03-15

    HTO (tritiated water) wash-out from the atmosphere is one of the key processes governing the HTO transport from the atmosphere into soil and plants. Experimental studies of the HTO interaction with water drops were carried out both in laboratories and in the field. In the course of experiments, the following rain characteristics were recorded: rain intensity, size distribution of drops, and falling velocities and their dependence on drop diameter. A laser optical device was designed and used to measure the distribution of the drop radius and velocities during the period of experiment. The tritium source was placed at a height of 30 m. Rainwater samples were collected in plastic bottles and their HTO activity was determined by liquid scintillation techniques. The data obtained for the experimental values of the scavenging rate are within the range from 4.12*10{sup -5} to 1.57*10{sup -4} s{sup -1} and correspond to the precipitation intensity from 0.3 to 1.26 mm/hour. These results are in sufficiently good agreement with the results of earlier papers.

  2. ν generation: Present and future constraints on neutrino masses from global analysis of cosmology and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gerbino, Martina; Lattanzi, Massimiliano; Melchiorri, Alessandro

    2016-02-01

    We perform a joint analysis of current data from cosmology and laboratory experiments to constrain the neutrino mass parameters in the framework of Bayesian statistics, also accounting for uncertainties in nuclear modeling, relevant for neutrinoless double β decay (0 ν 2 β ) searches. We find that a combination of current oscillation, cosmological, and 0 ν 2 β data constrains mβ β<0.045 eV (0.014 eV experiments, and find that in the case of normal hierarchy, given a total mass of 0.1 eV, and assuming a factor-of-two uncertainty in the modeling of the relevant nuclear matrix elements, it will be possible to measure the total mass itself, the effective Majorana mass and the effective electron mass with an accuracy (at 95% C.L.) of 0.05, 0.015, 0.02 eV, respectively, as well as to be sensitive to one of the Majorana phases. This assumes that neutrinos are Majorana particles and that the mass mechanism gives the dominant contribution to 0 ν 2 β decay. We argue that more precise nuclear modeling will be crucial to improve these sensitivities.

  3. Bound on the tau neutrino magnetic moment from the TRISTAN experiments

    NASA Astrophysics Data System (ADS)

    Tanimoto, N.; Nakano, I.; Sakuda, M.

    2000-04-01

    We set limits on the magnetic moment and charge radius of the tau neutrino by examining an extra contribution to the electroweak process e+e--->ννoverlineγ using VENUS, TOPAZ and AMY results. We find that κ(ντ)<9.1×10-6 (i.e. μ(ντ)<9.1×10-6μB, μB=e/2me) and <3.1×10-31 cm2 with Poisson statistics by combining their results. Whereas, similar to this method, with the Unified Approach we find that κ(ντ)<8.0×10-6 and <2.7×10-31 cm2.

  4. Detecting the Neutrino

    NASA Astrophysics Data System (ADS)

    Arns, Robert G.

    In 1930 Wolfgang Pauli suggested that a new particle might be required to make sense of the radioactive-disintegration mode known as beta decay. This conjecture initially seemed impossible to verify since the new particle, which became known as the neutrino, was uncharged, had zero or small mass, and interacted only insignificantly with other matter. In 1951 Frederick Reines and Clyde L. Cowan, Jr., of the Los Alamos Scientific Laboratory undertook the difficult task of detecting the free neutrino by observing its inverse beta-decay interaction with matter. They succeeded in 1956. The neutrino was accepted rapidly as a fundamental particle despite discrepancies in reported details of the experiments and despite the absence of independent verification of the result. This paper describes the experiments, examines the nature of the discrepancies, and discusses the circumstances of the acceptance of the neutrino's detection by the physics community.

  5. Precision Solar Neutrino Measurements with the Sudbury Neutrino Observatory

    SciTech Connect

    Oblath, Noah

    2007-10-26

    The Sudbury Neutrino Observatory (SNO) is the first experiment to measure the total flux of active, high-energy neutrinos from the sun. Results from SNO have solved the long-standing 'Solar Neutrino Problem' by demonstrating that neutrinos change flavor. SNO measured the total neutrino flux with the neutral-current interaction of solar neutrinos with 1000 tonnes of D{sub 2}O. In the first two phases of the experiment we detected the neutron from that interaction by capture on deuterium and capture on chlorine, respectively. In the third phase an array of {sup 3}He proportional counters was deployed in the detector. This allows a measurement of the neutral-current neutrons that is independent of the Cherenkov light detected by the PMT array. We are currently developing a unique, detailed simulation of the current pulses from the proportional-counter array that will be used to help distinguish signal and background pulses.

  6. The Renaissance of Neutrino Interaction Physics

    SciTech Connect

    Gallagher, Hugh R.

    2009-12-17

    The advent of high intensity neutrino beams for neutrino oscillation experiments has produced a resurgence of interest in neutrino interaction physics. Recent experiments have been revisiting topics not studied since the bubble chamber era, and are exploring many interesting questions at the boundaries of particle and nuclear physics.

  7. Experiment for Investigation of Atmosphere-Magnetosphere Relationship at Mars

    NASA Astrophysics Data System (ADS)

    Vaisberg, O. L.; Koynash, G.; Shestakov, A.; Roman, Z.; Moiseenko, D.; Kirillov, A. S.; Chernouss, S.; Moiseev, P.; Shefov, N.; Semenov, A.; Rodionov, I.; Sosonkin, M.; Ivanov, Y.; Sinyavsky, I.; Sigernes, F.; Berthellier, J.; Leblanc, F.

    2013-12-01

    We are describing an optical experiment for investigation of nightglow of Mars, aeronomic phenomena, helium fluorescence, magnetospheric tail, and escape of planetary ions. Specifically, proposed experiment aimed to investigation of outer envelope of Mars: upper atmosphere and association of its connections with processes in accretion magnetosphere, including atmospheric losses induced by the solar wind. It includes: 1. Registration of spatial distribution of night-side atmospheric glow on Mars in order to determine spatial and temporal properties of electron precipitation for investigation of source regions of these electrons, 2. Registration of spectra of night-side glow for estimation of the energy of precipitation electrons and for analysis of kinetics of electron-excited molecules at different altitudes at Mars, 3. Registration of helium emission 1083 nm at dusk and down for determination of He number density, its height distribution and its variations, and 4. Measurements of CO+ (O+, O2+, CO2+) emission at night-side for determination of atmospheric losses through magnetospheric tail. To study mentioned phenomena we propose the set of instruments that may be used in mission to Mars. Experiment includes 4 optical sensors: all-sky camera, spectrograph, and two photometers. For investigation of spatial and spectral characteristics of night-side upper atmosphere we have chosen spectral interval 200-230 nm. Observations of Martian night glow will be performed with two instruments: all-sky camera (2π field of view), that measures emission in 200-230 nm band (CO) and narrow-angle spectrograph with 1800 - slit in spectral range 200-230 nm with resolution ~ 0.5 nm. This spectral range almost completely free of absorption by O3 and CO2 Recorded spectrum is attributed to specific emitting regions with help of all-sky camera. He emission at 1083 nm is observed with narrow-angle (~ 50) fast-lens photometer. 1083 nm emission of He depends not only on He number density but

  8. LUNASKA experiments using the Australia Telescope Compact Array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique

    SciTech Connect

    James, C. W.; Protheroe, R. J.; Ekers, R. D.; Phillips, C. J.; Roberts, P.; Alvarez-Muniz, J.; Bray, J. D.; McFadden, R. A.

    2010-02-15

    We describe the design, performance, sensitivity and results of our recent experiments using the Australia Telescope Compact Array (ATCA) for lunar Cherenkov observations with a very wide (600 MHz) bandwidth and nanosecond timing, including a limit on an isotropic neutrino flux. We also make a first estimate of the effects of small-scale surface roughness on the effective experimental aperture, finding that contrary to expectations, such roughness will act to increase the detectability of near-surface events over the neutrino energy-range at which our experiment is most sensitive (though distortions to the time-domain pulse profile may make identification more difficult). The aim of our 'Lunar UHE Neutrino Astrophysics using the Square Kilometre Array' (LUNASKA) project is to develop the lunar Cherenkov technique of using terrestrial radio telescope arrays for ultrahigh energy (UHE) cosmic ray (CR) and neutrino detection, and, in particular, to prepare for using the Square Kilometre Array (SKA) and its path-finders such as the Australian SKA Pathfinder (ASKAP) and the Low Frequency Array (LOFAR) for lunar Cherenkov experiments.

  9. Planck 2015 constraints on neutrino physics

    NASA Astrophysics Data System (ADS)

    Lattanzi, Massimiliano

    2016-05-01

    Anisotropies of the cosmic microwave background radiation represent a powerful probe of neutrino physics, complementary to laboratory experiments. Here I review constraints on neutrino properties from the recent 2015 data from the Planck satellite.

  10. Effective Majorana neutrino decay

    NASA Astrophysics Data System (ADS)

    Duarte, Lucía; Romero, Ismael; Peressutti, Javier; Sampayo, Oscar A.

    2016-08-01

    We study the decay of heavy sterile Majorana neutrinos according to the interactions obtained from an effective general theory. We describe the two- and three-body decays for a wide range of neutrino masses. The results obtained and presented in this work could be useful for the study of the production and detection of these particles in a variety of high energy physics experiments and astrophysical observations. We show in different figures the dominant branching ratios and the total decay width.

  11. Next discoveries in neutrino mixing: Electron neutrino appearance

    NASA Astrophysics Data System (ADS)

    Duyang, Hongyue

    The discovery of neutrino oscillation is a clear evidence of new physics beyond the Standard Model. Measurements of electron neutrino (nu e) and electron anti-neutrino (nu e) appearances are the most important channels to complete the neutrino mixing matrix. In a nue/ nue appearance experiment, a near detector (ND) is used to constrain the neutrino flux and measure the backgrounds to the signal. Backgrounds to the nue appearance comes from Neutral Current Muon Neutrino Interactions (numu-NC), Charged Current Muon Neutrino Interactions (numu-CC), beam nu e events and outside backgrounds. The background components are then extrapolated to the far detector (FD). By looking for excess of signal nu e/nue-like events in FD, we measure the neutrino mixing angle, neutrino's mass hierarchy and the elusive CP-violation in the lepton sector. This dissertation focuses on the signals and backgrounds in nu e/nue appearance measurements. The first part of the dissertation presents an analysis of nue appearance in a large Water Cherenkov detector such as the one proposed by the LBNE collaboration. The analysis, including scanning thousands of events, aims to distinguish nu e signals from the NC backgrounds. The second part of the dissertation presents measurements of Resonance Neutrino Interactions using the NOMAD data. This process plays a critical role in not only neutrino-nuclear cross section but also in the precision analysis of the next generation of neutrino oscillation experiments such as NOnuA and LBNE. The last part of the dissertation discusses the method of using low-nu fit method to measure relative neutrino flux and constrain beam nue background.

  12. Neutrino and Antineutrino Cross sections at MiniBooNE

    SciTech Connect

    Dharmapalan, Ranjan; /Alabama U.

    2011-10-01

    The MiniBooNE experiment has reported a number of high statistics neutrino and anti-neutrino cross sections -among which are the charged current quasi-elastic (CCQE) and neutral current elastic (NCE) neutrino scattering on mineral oil (CH2). Recently a study of the neutrino contamination of the anti-neutrino beam has concluded and the analysis of the anti-neutrino CCQE and NCE scattering is ongoing.

  13. Advanced Global Atmospheric Gases Experiment (AGAGE): MIT Contribution

    NASA Technical Reports Server (NTRS)

    Kurylo, Michael

    2003-01-01

    We describe in detail the instrumentation and calibrations used in the ALE, GAGE and AGAGE experiments and present a history of the majority of the anthropogenic ozone- depleting and climate-forcing gases in air based on these experiments. Beginning in 1978, these three successive automated high frequency in-situ experiments have documented the long-term behavior of the measured concentrations of these gases over the past twenty years, and show both the evolution of latitudinal gradients and the high frequency variability due to sources and circulation. We provide estimates of the long-term trends in total chlorine contained in long- lived halocarbons involved in ozone depletion. We summarize interpretations of these measurements using inverse methods to determine trace gas lifetimes and emissions. Finally, we provide a combined observational and modeled reconstruction of the evolution of chlorocarbons by latitude in the atmosphere over the past sixty years which can be used as boundary conditions for interpreting trapped air in glaciers and oceanic measurements of chlorocarbon tracers of the deep oceanic circulation. Some specific conclusions are: (a) International compliance with the Montreal Protocol is so far resulting in chlorofluorocarbon and chlorocarbon mole fractions comparable to target levels, (b) Mole fractions of total chlorine contained in long-lived halocarbons (CCl2F2, CCl3F, CH3CCl3, CCl4, CHClF2, CCl2FCClF2, CH3Cl, CH2Cl2, CHCl3, CCl2=CCl2) in the lower troposphere reached maximum values of about 3.6 ppb in 1993 and are beginning to slowly decrease in the global lower atmosphere, (c) The chlorofluorocarbons have atmospheric lifetimes consistent with destruction in the stratosphere being their principal removal mechanism, (d) Multi-annual variations in chlorofluorocarbon and chlorocarbon emissions deduced from ALUGAGWAGAGE data are consistent approximately with variations estimated independently from industrial production and sales data where

  14. Bilinear parity violation at the ILC: neutrino physics at colliders

    NASA Astrophysics Data System (ADS)

    Vormwald, Benedikt; List, Jenny

    2014-02-01

    Supersymmetry (SUSY) with bilinearly broken parity (bRPV) offers an attractive possibility to explain the origin of neutrino masses and mixings. In such scenarios, the study of neutralino decays at colliders gives access to neutrino sector parameters. The ILC offers a very clean environment to study the neutralino properties as well as its subsequent decays, which typically involve a or boson and a lepton. This study is based on ILC beam parameters according to the Technical Design Report for a center of mass energy of . A full detector simulation of the International Large Detector (ILD) has been performed for all Standard Model backgrounds and for neutralino pair production within a simplified model. The bRPV parameters are fixed according to current neutrino data. In this scenario, the mass can be reconstructed with an uncertainty of for an integrated luminosity of from direct pair production, thus, to a large extent independently of the rest of the SUSY spectrum. The achievable precision on the atmospheric neutrino mixing angle from measuring the neutralino branching fractions BR() and BR() at the ILC is in the same range than current uncertainties from neutrino experiments. Thus, the ILC could have the opportunity to unveil the mechanism of neutrino mass generation.

  15. The atmospheric transparency of Telescope Array experiment from LIDAR

    NASA Astrophysics Data System (ADS)

    Tomida, T.

    2011-09-01

    UV fluorescence light generated by an air shower is scattered and lost along the path of transmission to the telescope. The main scattering processes are Rayleigh scattering by molecules and scattering by aerosols in an atmosphere. In the Telescope Array Experiment, we make use of LIDAR (LIght Detection And Ranging), which observes the back-scattered light of laser. The LIDAR system is operated before the beginning and after the end of an FD observation, twice a night. The typical transparency of aerosols on clear night is obtained two years observation from September, 2007. The extinction coefficient of aerosols (αAS) at ground level are 0.040-0.013+0.036 km-1. The dependence of typical aerosols on height above ground level (1450 m a.s.l.) can be express by two exponential components as following: αAS(h) = 0.021 exp(-h/0.2)+0.019 exp(-h/1.9). The atmospheric transparency measured with the LIDAR system in TA site is discussed in this paper.

  16. Fixed-target hadron production experiments

    NASA Astrophysics Data System (ADS)

    Popov, Boris A.

    2015-08-01

    Results from fixed-target hadroproduction experiments (HARP, MIPP, NA49 and NA61/SHINE) as well as their implications for cosmic ray and neutrino physics are reviewed. HARP measurements have been used for predictions of neutrino beams in K2K and MiniBooNE/SciBooNE experiments and are also being used to improve predictions of the muon yields in EAS and of the atmospheric neutrino fluxes as well as to help in the optimization of neutrino factory and super-beam designs. Recent measurements released by the NA61/SHINE experiment are of significant importance for a precise prediction of the J-PARC neutrino beam used for the T2K experiment and for interpretation of EAS data. These hadroproduction experiments provide also a large amount of input for validation and tuning of hadron production models in Monte-Carlo generators.

  17. Results from Long Baseline Experiments

    NASA Astrophysics Data System (ADS)

    Messier, Mark

    2015-04-01

    The discovery of neutrino mass in 1998 spawned a world-wide effort to better understand neutrino properties using neutrinos from the Sun, the atmosphere, reactors, and from accelerators. Neutrino experiments based at the world's accelerators have been an important component of this program as the proton accelerators provide a nearly pure beam of muon neutrinos at selected energies with which to study neutrino oscillations of muon flavor to other flavors. The underlying structure of the neutrino masses and mixings are revealed through the study of the frequency and amplitude of the flavor oscillations. The smallness of the neutrino mass splittings (~= 0 . 05 eV) means that phase differences between the mass eigenstates accumulate very slowly requiring these experiments to be conducted over great distances ranging from 250 km to 810 km separation between source and detector. Currently there are three long-baseline experiments underway, T2K at the J-PARC facility in Japan, and MINOS+ and NOvA underway at Fermilab in the United States. In this talk, I will review the fundamental physics probed by these experiments, how the experimental setups probe this physics, and summarize the recent results with a particular emphasis on the newest experiment, NOvA.

  18. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-08-01

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation--or neutrino oscillation--by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5% respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock mechanical

  19. Geologic Investigation of a Potential Site for a Next-Generation Reactor Neutrino Oscillation Experiment -- Diablo Canyon, San Luis Obispo County, CA

    SciTech Connect

    Onishi, Celia Tiemi; Dobson, Patrick; Nakagawa, Seiji; Glaser, Steven; Galic, Dom

    2004-06-11

    This report provides information on the geology and selected physical and mechanical properties of surface rocks collected at Diablo Canyon, San Luis Obispo County, California as part of the design and engineering studies towards a future reactor neutrino oscillation experiment. The main objective of this neutrino project is to study the process of neutrino flavor transformation or neutrino oscillation by measuring neutrinos produced in the fission reactions of a nuclear power plant. Diablo Canyon was selected as a candidate site because it allows the detectors to be situated underground in a tunnel close to the source of neutrinos (i.e., at a distance of several hundred meters from the nuclear power plant) while having suitable topography for shielding against cosmic rays. The detectors have to be located underground to minimize the cosmic ray-related background noise that can mimic the signal of reactor neutrino interactions in the detector. Three Pliocene-Miocene marine sedimentary units dominate the geology of Diablo Canyon: the Pismo Formation, the Monterey Formation, and the Obispo Formation. The area is tectonically active, located east of the active Hosgri Fault and in the southern limb of the northwest trending Pismo Syncline. Most of the potential tunnel for the neutrino detector lies within the Obispo Formation. Review of previous geologic studies, observations from a field visit, and selected physical and mechanical properties of rock samples collected from the site provided baseline geological information used in developing a preliminary estimate for tunneling construction cost. Gamma-ray spectrometric results indicate low levels of radioactivity for uranium, thorium, and potassium. Grain density, bulk density, and porosity values for these rock samples range from 2.37 to 2.86 g/cc, 1.41 to 2.57 g/cc, and 1.94 to 68.5 percent respectively. Point load, unconfined compressive strength, and ultrasonic velocity tests were conducted to determine rock

  20. ICFA neutrino panel report

    NASA Astrophysics Data System (ADS)

    Long, K.

    2015-07-01

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: "To promote international cooperation in the development of the accelerator-based neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments." In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel's findings from the three Regional Town Meetings. The Panel's initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  1. ICFA neutrino panel report

    SciTech Connect

    Long, K.

    2015-07-15

    In the summer of 2013 the International Committee on Future Accelerators (ICFA) established a Neutrino Panel with the mandate: <<neutrino-oscillation program and to promote international collaboration in the development of a neutrino factory as a future intense source of neutrinos for particle physics experiments. >>>In its first year the Panel organised a series of regional Town Meetings to collect input from the community and to receive reports from the regional planning exercises. The Panel distilled its findings and presented them in a report to ICFA [1]. In this contribution the formation and composition of the Panel are presented together with a summary of the Panel’s findings from the three Regional Town Meetings. The Panel’s initial conclusions are then articulated and the steps that the Panel seeks to take are outlined.

  2. Neutrino Experiment to Test the Nature of Muon-Number Conservation

    SciTech Connect

    Willis, S. E.; Hughes, V. W.; Némethy, P.; Burman, R. L.; Cochran, D. R. F.; Frank, J. S.; Redwine, R. P.; Duclos, J.; Kaspar, H.; Hargrove, C. K.; Moser, U.

    1980-02-25

    We have searched for $\\overline{ν}$e from μ⁺→e⁺$\\overline{ν}$eνμ allowed by multiplicative but not additive muon conservation, and for νe from μ⁺→e⁺$\\overline{ν}$eνμ, allowed by both. We used neutrinos from LAMPF and a six-ton Cerenkov counter filled with H₂O to look for νep→ne⁺ and filled with D₂O to look for νed→ppe⁻ . Our branching ratio (μ⁺→e⁺νeνμ)/(μ⁺→all) =-0.001 ± 0.040 is in excellent agreement with the additive law. Our cross section <σ(νed→ppe⁻)> = (0.52 ± 0.18) x 10⁻⁴⁰ cm² agrees with theory.

  3. Deviations in tribimaximal mixing from sterile neutrino sector

    NASA Astrophysics Data System (ADS)

    Dev, S.; Raj, Desh; Gautam, Radha Raman

    2016-10-01

    We explore the possibility of generating a non-zero Ue3 element of the neutrino mixing matrix from tribimaximal neutrino mixing by adding a light sterile neutrino to the active neutrinos. Small active-sterile mixing can provide the necessary deviation from tribimaximal mixing to generate a non-zero θ13 and atmospheric mixing θ23 different from maximal. Assuming no CP-violation, we study the phenomenological impact of sterile neutrinos in the context of current neutrino oscillation data. The tribimaximal pattern is broken in such a manner that the second column of tribimaximal mixing remains intact in the neutrino mixing matrix.

  4. Measuring Neutrinos with the ANTARES Telescope

    SciTech Connect

    Reed, Corey

    2009-12-17

    The ANTARES underwater neutrino telescope has been taking data since construction began in 2006. The telescope, completed in May of 2008, detects the Cerenkov radiation of charged leptons produced by high energy neutrinos interacting in or around the detector. The lepton trajectory is reconstructed with high precision, revealing the direction of the incoming neutrino. The performance of the detector will be discussed and recent data showing muons, electromagnetic showers and atmospheric neutrinos will be presented. Studies have been underway to search for neutrino point sources in the ANTARES data since 2007. Results from these studies will be presented, and the sensitivity of the telescope will be discussed.

  5. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-10-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  6. Neutrino Oscillations With Two Sterile Neutrinos

    NASA Astrophysics Data System (ADS)

    Kisslinger, Leonard S.

    2016-06-01

    This work estimates the probability of μ to e neutrino oscillation with two sterile neutrinos using a 5×5 U-matrix, an extension of the previous estimate with one sterile neutrino and a 4×4 U-matrix. The sterile neutrino-active neutrino mass differences and the mixing angles of the two sterile neutrinos with the three active neutrinos are taken from recent publications, and the oscillation probability for one sterile neutrino is compared to the previous estimate.

  7. An overview of the Soviet Vega balloon experiment and studies of the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Sagdeev, R. Z.

    1986-01-01

    An overview of the VEGA probe to Venus is given, including a detailed examination of the balloon experiment to study the atmosphere of Venus. The areas of study include the ground network, the global network of radiotelescopes, meteorological measurements, the thermal structure of the Venus atmosphere in the middle cloud layer, atmospheric dynamics, and other results of the VEGA 1 and 2 experiments.

  8. Task I: Dark Matter Search Experiments with Cryogenic Detectors: CDMS-I and CDMS-II Task II: Experimental Study of Neutrino Properties: EXO and KamLAND

    SciTech Connect

    Cabrera, Blas; Gratta, Giorgio

    2013-08-30

    design and optimize the analysis. Neutrino Physics – In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The “first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on

  9. The Hlma Project in the Light of the First Kamland Results Measurement of sin2 (2θ13) with a New Short Baseline Reactor Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Lasserre, Thierry; Schönert, Stefan; Oberauer, Lothar

    2004-04-01

    The year 2002 was very fruitful for low energy neutrino physics. Prior to the results of SNO and KamLAND, a few solutions were perfectly allowed by the combination of all the results of solar and terrestrial neutrino experiments. In that context, the HLMA project was originally proposed to improve the KamLAND determination of the solar mixing parameters if Δ msol2 >=slant 2 10{ - 4} eV2 . In this article we analyse the impact of this project in the light of the first KamLAND results. Altought not new, the possibility to constraint the mixing angle between the third mass field and the electron field with a short baseline reactor neutrino experiment is explored in this article. We show that an experiment with a near detector close to a nuclear reactor and a far detector at about 2 kilometers distance could provide a limit of sin2 (2θ13) < 0.02 (90%C.L.), competitive and complementary with the next generation of accelerator long baseline experiments. Nevertheless, the total systematic error uncertainty has to be reduced by a factor three with respect to the CHOOZ experiment to achieve this goal.

  10. Feasibility study: Atmospheric general circulation experiment, volume 1

    NASA Technical Reports Server (NTRS)

    Homsey, R. J. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) uses a rotating fluid flow cell assembly. The key technical areas affecting the feasibility of the design and operation of the AGCE are investigated. The areas investigated include materials for the flow cell assembly, thermal design, high voltage power supply design, effective retrieval and handling of experiment data and apparatus configuration. Several materials, DMSO and m-tolunitrile, were selected as candidate fluids for the flow cell principally for their high dielectric constant which permits the high voltage power supply design to be held to 15 kV and still simulate terrestrial gravity. Achievement of a low dissipation factor in the fluid to minimize internal heating from the applied electrical field depends strongly on purification and handling procedures. The use of sapphire as the outer hemisphere for the flow cell provides excellent viewing conditions without a significant impact on attaining the desired thermal gradients. Birefringent effects from sapphire can be held to acceptably low limits. Visualization of flow fluid is achieved through the motion of a dot matrix formed by photochromic dyes. Two dyes found compatible with the candidate fluids are spiropyran and triarylmethane. The observation of the dot motion is accomplished using a flying spot scanner.

  11. Laboratory experiments of an atmospheric/oceanic turbulence

    NASA Astrophysics Data System (ADS)

    Thacker, Adrien; Eiff, Olivier; waves, turbulence, environment Team

    2015-11-01

    Atmospheric or oceanic turbulence is strongly influenced by the effects of stratification leading to the emmergence of quasi-horizontal layers often described as ``pancake'' structures. The mechanisms of this layering and the selection of the vertical length scale of pancake structures is discussed for one decade whereas it is of a major importance to elucidate the energetic cascade that leads to viscous dissipation. In this present work, we analyze a new series of decaying grid turbulence experiments under the effects of stratification aiming to identify and observe the strongly stratified turbulence regime. The experiments have been performed in a large water towing tank with salt stratification and measurements have been carried out using a scanning correlation imaging velocimetry technique providing instantaneous 3D3C velocity fields along the decaying turbulence. Self similar power laws of the decaying grid turbulence have been assessed and allow the definition of empirical critical time giving transitions to the strongly stratified turbulence regime. A first experimental evidence of overturning process between layers of pancake vortices has been obtained through vorticity fields observation. This observation support the existence of a downscale energy cascade.

  12. Impact of Nonstandard Interactions on Sterile-Neutrino Searches at IceCube.

    PubMed

    Liao, Jiajun; Marfatia, Danny

    2016-08-12

    We analyze the energy and zenith angle distributions of the latest two-year IceCube data set of upward-going atmospheric neutrinos to constrain sterile neutrinos at the eV scale in the 3+1 scenario. We find that the parameters favored by a combination of LSND and MiniBooNE data are excluded at more than the 99% C.L. We explore the impact of nonstandard matter interactions on this exclusion and find that the exclusion holds for nonstandard interactions (NSIs) that are within the stringent model-dependent bounds set by collider and neutrino scattering experiments. However, for large NSI parameters subject only to model-independent bounds from neutrino oscillation experiments, the LSND and MiniBooNE data are consistent with IceCube. PMID:27563951

  13. Impact of Nonstandard Interactions on Sterile-Neutrino Searches at IceCube

    NASA Astrophysics Data System (ADS)

    Liao, Jiajun; Marfatia, Danny

    2016-08-01

    We analyze the energy and zenith angle distributions of the latest two-year IceCube data set of upward-going atmospheric neutrinos to constrain sterile neutrinos at the eV scale in the 3 +1 scenario. We find that the parameters favored by a combination of LSND and MiniBooNE data are excluded at more than the 99% C.L. We explore the impact of nonstandard matter interactions on this exclusion and find that the exclusion holds for nonstandard interactions (NSIs) that are within the stringent model-dependent bounds set by collider and neutrino scattering experiments. However, for large NSI parameters subject only to model-independent bounds from neutrino oscillation experiments, the LSND and MiniBooNE data are consistent with IceCube.

  14. Neutrino mass

    SciTech Connect

    Bowles, T.J.

    1994-04-01

    The existence of a finite neutrino mass would have important consequences in particle physics, astrophysics, and cosmology. Experimental sensitivities have continued to be pushed down without any confirmed evidence for a finite neutrino mass. Yet there are several observations of discrepancies between theoretical predictions and observations which might be possible indications of a finite neutrino mass. Thus, extensive theoretical and experimental work is underway to resolve these issues.

  15. The Fermilab neutrino beam program

    SciTech Connect

    Rameika, Regina A.; /Fermilab

    2007-01-01

    This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

  16. Performance Improvements to the Lidar Atmospheric Sensing Experiment (LASE)

    NASA Technical Reports Server (NTRS)

    Edwards, W. C.; Petway, L. P.; Antill, C. W., Jr.

    1998-01-01

    Lidar Atmospheric Sensing Experiment (LASE) is the first fully-engineered, modular, tunable, autonomous Differential Absorption Lidar (DIAL) system for the remote measurement of water vapor, aerosols and clouds across the troposphere. It was designed, built and environmentally tested at LARC. LASE was designed to fly aboard a NASA/Ames ER-2 aircraft (NASA's high altitude aircraft) and operate at altitudes from 58,000 to 70,000 feet. Since its first flight on May 11, 1994, it has flown 28 total missions on board the ER-2. LASE has been validated with results showing an accuracy better than the initial requirement for vertical profiles of water vapor in the troposphere. LASE can also deploy on several other aircraft including the NASA P-3 and will fly aboard the NASA DC-8 during the Convection And Moisture EXperiment (CAMEX) in July-September 1998. The tunable laser system of LASE was designed to operate in a double-pulse mode at 5Hz, with energy outputs of up to 15OmJ per pulse in the 813 to 819nm wavelength region and with 99% of the output energy within a spectral interval of 1.06 pm. Sixteen wavelengths were selected to cover the various water vapor absorption cross sections needed for the DIAL measurement. The Ti:Sapphire laser was constructed using a frequency-doubled Nd:YAG laser as the pump source and a single mode diode laser as a injection seeder for the Ti:Al2O3 laser. We have improved the LASE instrument in several important ways. Improvements to the seed source have demonstrated that DFB laser diodes can be used as reliable seed sources on airborne DIAL instruments. The DFB diode has enabled LASE to gather more data and significantly reduced the maintenance required to insure that the system performance requirements are met. The multiwavelength sequential seeding technique is the current method of data collection for LASE. It has the advantages of providing an entire atmospheric coverage of H2O(v) from the ground to the aircraft altitude along a single

  17. Nonthermal cosmic neutrino background

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Ratz, Michael; Trautner, Andreas

    2015-12-01

    We point out that, for Dirac neutrinos, in addition to the standard thermal cosmic neutrino background (C ν B ), there could also exist a nonthermal neutrino background with comparable number density. As the right-handed components are essentially decoupled from the thermal bath of standard model particles, relic neutrinos with a nonthermal distribution may exist until today. The relic density of the nonthermal (nt) background can be constrained by the usual observational bounds on the effective number of massless degrees of freedom Neff and can be as large as nν nt≲0.5 nγ. In particular, Neff can be larger than 3.046 in the absence of any exotic states. Nonthermal relic neutrinos constitute an irreducible contribution to the detection of the C ν B and, hence, may be discovered by future experiments such as PTOLEMY. We also present a scenario of chaotic inflation in which a nonthermal background can naturally be generated by inflationary preheating. The nonthermal relic neutrinos, thus, may constitute a novel window into the very early Universe.

  18. Progress in the Physics of Massive Neutrinos

    NASA Astrophysics Data System (ADS)

    BARGER, V.; MARFATIA, D.; WHISNANT, K.

    The current status of the physics of massive neutrinos is reviewed with a forward-looking emphasis. The article begins with the general phenomenology of neutrino oscillations in vacuum and matter and documents the experimental evidence for oscillations of solar, reactor, atmospheric and accelerator neutrinos. Both active and sterile oscillation possibilities are considered. The impact of cosmology (BBN, CMB, leptogenesis) and astrophysics (supernovae, highest energy cosmic rays) on neutrino observables and vice versa, is evaluated. The predictions of grand unified, radiative and other models of neutrino mass are discussed. Ways of determining the unknown parameters of three-neutrino oscillations are assessed, taking into account eight-fold degeneracies in parameters that yield the same oscillation probabilities, as well as ways to determine the absolute neutrino mass scale (from beta-decay, neutrinoless double-beta decay, large scale structure and Z-bursts). Critical unknowns at present are the amplitude of νμ→νe oscillations and the hierarchy of the neutrino mass spectrum; the detection of CP violation in the neutrino sector depends on these and on an unknown phase. The estimated neutrino parameter sensitivities at future facilities (reactors, superbeams, neutrino factories) are given. The overall agenda of a future neutrino physics program to construct a bottom-up understanding of the lepton sector is presented.

  19. The MINOS Experiment: Results and Prospects

    SciTech Connect

    Evans, Justin

    2013-01-01

    The Minos experiment has used the world's most powerful neutrino beam to make precision neutrino oscillation experiments. By observing the disappearance of muon neutrinos, MINOS has made the world's most precise measurement of the larger neutrino mass splitting....

  20. Constraining White Dwarf Structure and Neutrino Physics in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Goldsbury, R.; Heyl, J.; Richer, H. B.; Kalirai, J. S.; Tremblay, P. E.

    2016-04-01

    We present a robust statistical analysis of the white dwarf cooling sequence in 47 Tucanae. We combine Hubble Space Telescope UV and optical data in the core of the cluster, Modules for Experiments in Stellar Evolution (MESA) white dwarf cooling models, white dwarf atmosphere models, artificial star tests, and a Markov Chain Monte Carlo sampling method to fit white dwarf cooling models to our data directly. We use a technique known as the unbinned maximum likelihood to fit these models to our data without binning. We use these data to constrain neutrino production and the thickness of the hydrogen layer in these white dwarfs. The data prefer thicker hydrogen layers ({q}{{H}}=3.2× {10}-5) and we can strongly rule out thin layers ({q}{{H}}={10}-6). The neutrino rates currently in the models are consistent with the data. This analysis does not provide a constraint on the number of neutrino species.