Science.gov

Sample records for atmospheric phenomena

  1. Luminous Phenomena - A Scientific Investigation of Anomalous Luminous Atmospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2003-12-01

    Anomalous atmospheric luminous phenomena reoccur in several locations of Earth, in the form of multi-color light balls characterized by large dimensions, erratic motion, long duration and a correlated electromagnetic field. The author (an astrophysicist) of this book, which is organized as a selection of some of his technical and popularizing papers and seminars, describes and discusses all the efforts that have been done in 10 years, through several missions and a massive data analysis, in order to obtain some scientific explanation of this kind of anomalies, in particular the Hessdalen anomaly in Norway. The following topics are treated in the book: a) geographic archive of the areas of Earth where such phenomena are known to reoccur most often; b) observational techniques of astrophysical kind that have been used to acquire the data; c) main scientific results obtained so far; d) physical interpretation and natural hypothesis vs. ETV hypothesis; e) historical and chronological issues; f) the importance to brindle new energy sources; g) the importance to keep distance from any kind of "ufology". An unpublished chapter is entirely devoted to a detailed scientific investigation project of light phenomena reoccurring on the Ontario lake; the chosen new-generation multi-wavelength sensing instrumentation that is planned to be used in future missions in that specific area, is described together with scientific rationale and planned procedures. The main results, which were obtained in other areas of the world, such as the Arizona desert, USA and the Sibillini Mountains, Italy, are also briefly mentioned. One chapter is entirely dedicated to the presentation of extensive abstracts of technical papers by the author concerning this specific subject. The book is accompanied with a rich source of bibliographic references.

  2. Atmospheric waves as scaling, turbulent phenomena

    NASA Astrophysics Data System (ADS)

    Pinel, J.; Lovejoy, S.

    2014-04-01

    It is paradoxical that, while atmospheric dynamics are highly nonlinear and turbulent, atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are in fact high-Reynolds-number (Re), emergent laws so that - in common with the emergent high-Re turbulent laws - they are also constrained by scaling symmetries. We propose an effective turbulence-wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator, with dispersion relations similar to those of inertial gravity waves (and Kelvin waves) yet with an anomalous (fractional) order Hwav/2. Using geostationary IR radiances, we estimate the parameters, finding that Hwav ≈ 0.17 ± 0.04 (the classical value = 2).

  3. Atmospheric waves as scaling, turbulent phenomena

    NASA Astrophysics Data System (ADS)

    Pinel, J.; Lovejoy, S.

    2013-06-01

    It is paradoxical that while atmospheric dynamics are highly nonlinear and turbulent that atmospheric waves are commonly modelled by linear or weakly nonlinear theories. We postulate that the laws governing atmospheric waves are on the contrary high Reynold's number (Re), emergent laws so that - in common with the emergent high Re turbulent laws - they are also constrained by scaling symmetries. We propose an effective turbulence - wave propagator which corresponds to a fractional and anisotropic extension of the classical wave equation propagator with dispersion relations similar to those of inertial gravity waves (and Kelvin waves) yet with an anomalous (fractional) order Hwav/2. Using geostationary IR radiances, we estimate the parameters finding that Hwav/2 ≈ 0.17 ± 0.04 (the classical value = 2).

  4. Single event phenomena in atmospheric neutron environments

    SciTech Connect

    Gossett, C.A.; Hughlock, B.W.; Katoozi, M.; LaRue, G.S. ); Wender, S.A. )

    1993-12-01

    As integrated circuit technology achieves higher density through smaller feature sizes and as the airplane manufacturing industry integrates more sophisticated electronic components into the design of new aircraft, it has become increasingly important to evaluate the contribution of single event effects, primarily Single Event Upset (SEU), to the safety and reliability of commercial aircraft. In contrast to the effects of radiation on electronic systems in space applications for which protons and heavy ions are of major concern, in commercial aircraft applications the interactions of high energy neutrons are the dominant cause of single event effects. These high energy neutrons are produced by the interaction of solar and galactic cosmic rays, principally protons and heavy ions, in the upper atmosphere. This paper will describe direct experimental measurements of neutron-induced Single Event Effect (SEE) rates in commercial high density static random access memories in a neutron environment characteristic of that at commercial airplane altitudes. The first experimental measurements testing current models for neutron-silicon burst generation rates will be presented, as well as measurements of charge collection in silicon test structures as a function of neutron energy. These are the first laboratory SEE and charge collection measurements using a particle beam having a continuum energy spectrum and with a shape nearly identical to that observed during flight.

  5. Polarimetic Study of Atmospheric Phenomena and Its Applications

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2015-12-01

    Polarized light occurs in three states: unpolarized, linear and circularized. Each mode of polarized light provides information about the scattering medium, from atmospheres to search for signatures of habitability. Linear polarization in the optical and near-infrared windows are optimum to study changes in cloud/hazes in planetary atmospheres. Circular polarization is important to understand the influence of multiple scattering in the atmosphere. Linear and circular polarization of comets provides information about the composition and wavelength dependence of the dust, indicative of new, active comets vs. older comets. Changes in magnetic fields (as in aurorae) can be explored with polarimetry. Atmospheric phenomena such as rainbows,clouds and haloes exhibit polarimetric signatures that can be used as diagnostics to probe the atmosphere and may be possible to extend this approach to other planets and exoplanets. Biological molecules exhibit an inherent handedness or circular polarization or chirality, assisting in search for the identification of astrobiological material in the solar system. I shall highlight observations and models for these phenomena.

  6. Modelling meteor phenomena in the atmospheres of the Terrestrial planets.

    NASA Astrophysics Data System (ADS)

    McAuliffe, J.

    The results of a comparative study of meteor phenomena in the atmospheres of the Earth, Mars and Venus are presented. The study has sought to quantify the scientific potential of future off-Earth observational campaigns. A pseudo-thermal meteor ablation model has been developed and shown to be capable of reproducing observed terrestrial light curves. This model has been used to simulate the ablation of meteoroids of 10-9 to 10-1 kg in the atmospheres of the three planets, and the resulting differences in meteor brightness, ablation heights, and durations have been investigated. Cometary meteoroids are found to ablate 5-25 km higher up at Venus than at the Earth with this difference increasing to 15-35 km for dense asteroidal particles. The associated peak brightnesses are found to be on the order 1.0 to 1.5 magnitudes brighter at Venus. Furthermore, steeper atmospheric density gradients at Venusian ablation heights result in meteor visibility times at Venus being on the order of 0.75 times as long as for similar particles at the Earth. Actual visibility times range from 100 ms to 2 seconds. The similar density gradients of the Martian and Terrestrial atmospheres at ablation altitudes result in Martian meteors being only ˜0.1 magnitudes fainter than Terrestrial equivalents. Due to the downward shift of the ablative atmospheric density interval at Mars, cometary meteors reach maximum brightness at altitudes 10-15 km less than would identical particles at the Earth. For asteroidal meteoroids this downward shift in the Martian atmosphere is ˜20 km. Visibility times for identical meteors at the Earth and Mars are found to differ by no more than 0.2 seconds. Surface and orbital observational systems have been simulated in order to estimate the relative detectability of some 20 real, possible and hypothetical showers and storms in all three atmospheres. Mass distributions for Martian and Venusian showers were estimated from the observed characteristics of Terrestrial

  7. Science of atmospheric phenomena with JEM-EUSO

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.; Słomiński, J.

    2015-11-01

    The main goal of the JEM-EUSO experiment is the study of Ultra High Energy Cosmic Rays (UHECR, 1019-1021 e V), but the method which will be used (detection of the secondary light emissions induced by cosmic rays in the atmosphere) allows to study other luminous phenomena. The UHECRs will be detected through the measurement of the emission in the range between 290 and 430 m, where some part of Transient Luminous Events (TLEs) emission also appears. This work discusses the possibility of using the JEM-EUSO Telescope to get new scientific results on TLEs. The high time resolution of this instrument allows to observe the evolution of TLEs with great precision just at the moment of their origin. The paper consists of four parts: review of the present knowledge on the TLE, presentation of the results of the simulations of the TLE images in the JEM-EUSO telescope, results of the Russian experiment Tatiana-2 and discussion of the possible progress achievable in this field with JEM-EUSO as well as possible cooperation with other space projects devoted to the study of TLE - TARANIS and ASIM. In atmospheric physics, the study of TLEs became one of the main physical subjects of interest after their discovery in 1989. In the years 1992 - 1994 detection was performed from satellite, aircraft and space shuttle and recently from the International Space Station. These events have short duration (milliseconds) and small scales (km to tens of km) and appear at altitudes 50 - 100 km. Their nature is still not clear and each new experimental data can be useful for a better understanding of these mysterious phenomena.

  8. Double streamer phenomena in atmospheric pressure low frequency corona plasma

    SciTech Connect

    Kim, Dan Bee; Jung, H.; Gweon, B.; Choe, Wonho

    2010-07-15

    Time-resolved images of an atmospheric pressure corona discharge, generated at 50 kHz in a single pin electrode source, show unique positive and negative corona discharge features: a streamer for the positive period and a glow for the negative period. However, unlike in previous reports of dc pulse and low frequency corona discharges, multistreamers were observed at the initial time stage of the positive corona. A possible physical mechanism for the multistreamers is suggested.

  9. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  10. Fleets of enduring drones to probe atmospheric phenomena with clouds

    NASA Astrophysics Data System (ADS)

    Lacroix, Simon; Roberts, Greg; Benard, Emmanuel; Bronz, Murat; Burnet, Frédéric; Bouhoubeiny, Elkhedim; Condomines, Jean-Philippe; Doll, Carsten; Hattenberger, Gautier; Lamraoui, Fayçal; Renzaglia, Alessandro; Reymann, Christophe

    2016-04-01

    A full spatio-temporal four-dimensional characterization of the microphysics and dynamics of cloud formation including the onset of precipitation has never been reached. Such a characterization would yield a better understanding of clouds, e.g. to assess the dominant mixing mechanism and the main source of cloudy updraft dilution. It is the sampling strategy that matters: fully characterizing the evolution over time of the various parameters (P, T, 3D wind, liquid water content, aerosols...) within a cloud volume requires dense spatial sampling for durations of the order of one hour. A fleet of autonomous lightweight UAVs that coordinate themselves in real-time as an intelligent network can fulfill this purpose. The SkyScanner project targets the development of a fleet of autonomous UAVs to adaptively sample cumuli, so as to provide relevant data to address long standing questions in atmospheric science. It mixes basic researches and experimental developments, and gathers scientists in UAV conception, in optimal flight control, in intelligent cooperative behaviors, and of course atmospheric scientists. Two directions of researches are explored: optimal UAV conception and control, and optimal control of a fleet of UAVs. The design of UAVs for atmospheric science involves the satisfaction of trade-offs between payload, endurance, ease of deployment... A rational conception scheme that integrates the constraints to optimize a series of criteria, in particular energy consumption, would yield the definition of efficient UAVs. This requires a fine modeling of each involved sub-system and phenomenon, from the motor/propeller efficiency to the aerodynamics at small scale, including the flight control algorithms. The definition of mission profiles is also essential, considering the aerodynamics of clouds, to allow energy harvesting schemes that exploit thermals or gusts. The conception also integrates specific sensors, in particular wind sensor, for which classic

  11. To investigate or not to investigate? Researchers' views on unexplored atmospheric light phenomena

    NASA Astrophysics Data System (ADS)

    Caron, Etienne; Faridi, Pouya

    2016-02-01

    For hundreds of years, scientists have been studying light, which is used nowadays to explore the universe and cure diseases. Here, we present the results of a survey indicating a significant support from a subset of the academic community to investigate rare, unusual and unexplained atmospheric light phenomena that have historically been unexplored by scientists — the transient luminous phenomena in the valley of Hessdalen in Norway in particular. We propose that stable, long-term funding, and thorough investigation of poorly understood and/or unexplored luminous phenomena occurring in the low atmosphere could lead to the creation of new inter-disciplinary research programs in multiple universities, and ultimately, to important fundamental discoveries in the field of atmospheric science, photonics and beyond.

  12. Atmospheric Manmade Glowings Phenomena Observed During the Launches of Solid Propellant Rockets

    NASA Astrophysics Data System (ADS)

    Chernouss, S. A.; Platov, V. V.; Upspensky, M. V.; Alpatov, V. V.; Kirillov, A. S.

    2015-09-01

    Exotic types of luminosities observed in the upper atmosphere always take place during the launch and flight of solid-propellant rockets We consider a large-scale geometry and dynamic features of such phenomena also physics of the intense turquoise (blue-green) glow observed in twilight conditions in the region of missile flight. This study has been based on numerous observations of different rocket flights in the atmosphere over Russia and Scandinavia. Formation of the monoxide aluminum clouds observed in the upper atmosphere is a result of interaction of the exhausted propellant products with the atomic oxygen. The sunlight excited the monoxide aluminum EA1O*) resonance emissions in the atmosphere. Careful studies of spectra of the manmade luminosities during rocket launch/flight permit us to know chemical, thermal and mechanical processes in the atmosphere similar as it is doing in experiments with the artificial cloud release from sounding rockets in the high latitude atmosphere.

  13. A Study of the Effects of Atmospheric Phenomena on Mars Science Laboratory Entry Performance

    NASA Technical Reports Server (NTRS)

    Cianciolo, Alicia D.; Way, David W.; Powell, Richard W.

    2008-01-01

    At Earth during entry the shuttle has experienced what has come to be known as potholes in the sky or regions of the atmosphere where the density changes suddenly. Because of the small data set of atmospheric information where the Mars Science Laboratory (MSL) parachute deploys, the purpose of this study is to examine the effect similar atmospheric pothole characteristics, should they exist at Mars, would have on MSL entry performance. The study considers the sensitivity of entry design metrics, including altitude and range error at parachute deploy and propellant use, to pothole like density and wind phenomena.

  14. The Shuttle era - A challenge to the earth scientist. [observations of land, ocean and atmosphere phenomena

    NASA Technical Reports Server (NTRS)

    Muehlberger, W. R.; Wilmarth, V. R.

    1977-01-01

    Satellite observations of large-scale earth features and phenomena, with either instruments or astronauts, are discussed on the basis of earlier experience (mainly Skylab). Off-nadir views and photographs by astronauts have provided valuable supplements to instrument nadir views, providing cross-checks through remote sensing at different angles, different altitudes, and in different seasons. New information on plate tectonics, global cooling/drying trends, global oceanographic data (changing positions of major ocean current patterns, evolution of warm and cold eddies and their relation to sea temperatures and concentrations of marine fauna, location of internal sea waves, interactions between ocean currents and atmosphere, plankton blooms), storm development, snow cover patterns, lake and sea ice growth, sand-dune patterns, desert storms blown out to sea, effects of grazing and swidden agriculture, and other earth features and phenomena are surveyed.

  15. Atmospheric Electric Field Measurements at 100 Hz and High Frequency Electric Phenomena

    NASA Astrophysics Data System (ADS)

    Conceição, Ricardo; Gonçalves da Silva, Hugo; Matthews, James; Bennett, Alec; Chubb, John

    2016-04-01

    Spectral response of Atmospheric Electric Potential Gradient (PG), symmetric to the Atmospheric Electric Field, gives important information about phenomena affecting these measurements with characteristic time-scales that appear in the spectra as specific periodicities. This is the case of urban pollution that has a clear weekly dependence and reveals itself on PG measurements by a ~7 day periodicity (Silva et al., 2014). While long-term time-scales (low frequencies) have been exhaustively explored in literature, short-term time-scales (high frequencies), above 1 Hz, have comparatively received much less attention (Anisimov et al., 1999). This is mainly because of the technical difficulties related with the storage of such a huge amount of data (for 100 Hz sampling two days of data uses a ~1 Gb file) and the response degradation of the field-meters at such frequencies. Nevertheless, important Electric Phenomena occurs for frequencies above 1 Hz that are worth pursuing, e.g. the Schumann Resonances have a signature of worldwide thunderstorm activity at frequencies that go from ~8 up to ~40 Hz. To that end the present work shows preliminary results on PG measurements at 100 Hz that took place on two clear-sky days (17th and 18th June 2015) on the South of Portugal, Évora (38.50° N, 7.91° W). The field-mill used is a JCI 131F installed in the University of Évora campus (at 2 m height) with a few trees and two buildings in its surroundings (~50 m away). This device was developed by John Chubb (Chubb, 2014) and manufactured by Chilworth (UK). It was calibrated in December 2013 and recent work by the author (who is honored in this study for his overwhelming contribution to atmospheric electricity) reveals basically a flat spectral response of the device up to frequencies of 100 Hz (Chubb, 2015). This makes this device suitable for the study of High Frequency Electric Phenomena. Anisimov, S.V., et al. (1999). On the generation and evolution of aeroelectric structures

  16. Infrared characteristic radiation of water condensation and freezing in connection with atmospheric phenomena

    NASA Astrophysics Data System (ADS)

    Tatartchenko, Vitali A.

    2010-07-01

    This paper considers the emission of infrared characteristic radiation during the first order phase transitions of water (condensation and crystallization). Experimental results are analyzed in terms of their correspondence to the theoretical models. These models are based on the assumption that the particle's (atom, molecule, or cluster) transition from the higher energetic level (vapor or liquid) to a lower one (liquid or crystal) produces an emission of one or more photons. The energy of these photons depends on the latent energy of the phase transition and the character of bonds formed by the particle in the new phase. Based on experimental data, the author proposes a model explaining the appearance of a window of transparency for the characteristic radiation in the substances when first order phase transitions take place. The effect under investigation must play a very important role in atmospheric phenomena: it is one of the sources of Earth's cooling; formation of hailstorm clouds in the atmosphere is accompanied by intensive characteristic infrared radiation that could be detected for process characterization and meteorological warnings. The effect can be used for atmospheric heat accumulation. Together with the energy of wind, falling water, and solar energy, fog and cloud formation could give us a forth source of ecologically pure energy. Searching for the presence of water in the atmospheres of other planets might also be possible using this technique. Furthermore, this radiation might explain the red color and infrared emission of Jupiter.

  17. PROPAGATING WAVE PHENOMENA DETECTED IN OBSERVATIONS AND SIMULATIONS OF THE LOWER SOLAR ATMOSPHERE

    SciTech Connect

    Jess, D. B.; Shelyag, S.; Mathioudakis, M.; Keys, P. H.; Keenan, F. P.; Christian, D. J.

    2012-02-20

    We present high-cadence observations and simulations of the solar photosphere, obtained using the Rapid Oscillations in the Solar Atmosphere imaging system and the MuRAM magnetohydrodynamic (MHD) code, respectively. Each data set demonstrates a wealth of magnetoacoustic oscillatory behavior, visible as periodic intensity fluctuations with periods in the range 110-600 s. Almost no propagating waves with periods less than 140 s and 110 s are detected in the observational and simulated data sets, respectively. High concentrations of power are found in highly magnetized regions, such as magnetic bright points and intergranular lanes. Radiative diagnostics of the photospheric simulations replicate our observational results, confirming that the current breed of MHD simulations are able to accurately represent the lower solar atmosphere. All observed oscillations are generated as a result of naturally occurring magnetoconvective processes, with no specific input driver present. Using contribution functions extracted from our numerical simulations, we estimate minimum G-band and 4170 A continuum formation heights of 100 km and 25 km, respectively. Detected magnetoacoustic oscillations exhibit a dominant phase delay of -8 Degree-Sign between the G-band and 4170 A continuum observations, suggesting the presence of upwardly propagating waves. More than 73% of MBPs (73% from observations and 96% from simulations) display upwardly propagating wave phenomena, suggesting the abundant nature of oscillatory behavior detected higher in the solar atmosphere may be traced back to magnetoconvective processes occurring in the upper layers of the Sun's convection zone.

  18. Determination of constant-volume balloon capabilities for aeronautical research. [specifically measurement of atmospheric phenomena

    NASA Technical Reports Server (NTRS)

    Tatom, F. B.; King, R. L.

    1977-01-01

    The proper application of constant-volume balloons (CVB) for measurement of atmospheric phenomena was determined. And with the proper interpretation of the resulting data. A literature survey covering 176 references is included. the governing equations describing the three-dimensional motion of a CVB immersed in a flow field are developed. The flowfield model is periodic, three-dimensional, and nonhomogeneous, with mean translational motion. The balloon motion and flow field equations are cast into dimensionless form for greater generality, and certain significant dimensionless groups are identified. An alternate treatment of the balloon motion, based on first-order perturbation analysis, is also presented. A description of the digital computer program, BALLOON, used for numerically integrating the governing equations is provided.

  19. A Scientific Approach to the Investigation on Anomalous Atmospheric Light Phenomena

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    2011-12-01

    Anomalous atmospheric light phenomena tend to occur recurrently in several places of our planet. Statistical studies show that a phenomenon's real recurrence area can be identified only after pondering reported cases on the population number and on the diffusion of communication media. The main scientific results that have been obtained so far after explorative instrumented missions have been carried out are presented, including the empirical models that have been set up in order to describe the observed reality. Subsequently, a focused theorization is discussed in order to attack the physical problem concerning the structure and the dynamics of "light balls" and the enigma related to the central force that maintains them in spherical shape. Finally, several important issues are discussed regarding methodology, strategy, tactics and interdisciplinary approaches.

  20. A new South American network to study the atmospheric electric field and its variations related to geophysical phenomena

    NASA Astrophysics Data System (ADS)

    Tacza, J.; Raulin, J.-P.; Macotela, E.; Norabuena, E.; Fernandez, G.; Correia, E.; Rycroft, M. J.; Harrison, R. G.

    2014-12-01

    In this paper we present the capability of a new network of field mill sensors to monitor the atmospheric electric field at various locations in South America; we also show some early results. The main objective of the new network is to obtain the characteristic Universal Time diurnal curve of the atmospheric electric field in fair weather, known as the Carnegie curve. The Carnegie curve is closely related to the current sources flowing in the Global Atmospheric Electric Circuit so that another goal is the study of this relationship on various time scales (transient/monthly/seasonal/annual). Also, by operating this new network, we may also study departures of the Carnegie curve from its long term average value related to various solar, geophysical and atmospheric phenomena such as the solar cycle, solar flares and energetic charged particles, galactic cosmic rays, seismic activity and specific meteorological events. We then expect to have a better understanding of the influence of these phenomena on the Global Atmospheric Electric Circuit and its time-varying behavior.

  1. Some phenomena of the interaction between vegetation and a atmosphere on multiple scales

    NASA Astrophysics Data System (ADS)

    Hu, Yinqiao; Chen, Jinbei; Zheng, Yuanrun; Li, Guoqing; Zuo, Hongchao

    2006-12-01

    This article studies the response of the distribution pattern and the physiological characteristies of the ecosystem to the spontaneous precipitation and the interaction between vegetation and the atmosphere on multiple scales in arid and semi-arid zones, based on measured data of the ecological physiological parameters in the Ordas Plateau of northern China. The results show that the vegetation biomass and the energy use efficiency of photosynthesis are especially sensitive to the annual precipitation; strong and complex interactions exist between the vegetation and the atmosphere on multiple scales leading to supernormal thermal heterogeneity of the underlying surface, the strong vortex movement and turbulence. This study can facilitate understanding of the land surface processes and the influences of global climate change as well as human activities on the human environment in the arid and semi-arid zones. It also aids in improving the parameterization schemes of turbulent fluxes of a heterogeneous underlying surface for land surface processes in climate models.

  2. Investigation of chemical properties and transport phenomena associated with pollutants in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Holmes, Heather A.

    Under the Clean Air Act, the U.S. Environmental Protection Agency is required to determine which air pollutants are harmful to human health, then regulate, monitor and establish criteria levels for these pollutants. To accomplish this and for scientific advancement, integration of knowledge from several disciplines is required including: engineering, atmospheric science, chemistry and public health. Recently, a shift has been made to establish interdisciplinary research groups to better understand the atmospheric processes that govern the transport of pollutants and chemical reactions of species in the atmospheric boundary layer (ABL). The primary reason for interdisciplinary collaboration is the need for atmospheric processes to be treated as a coupled system, and to design experiments that measure meteorological, chemical and physical variables simultaneously so forecasting models can be improved (i.e., meteorological and chemical process models). This dissertation focuses on integrating research disciplines to provide a more complete framework to study pollutants in the ABL. For example, chemical characterization of particulate matter (PM) and the physical processes governing PM distribution and mixing are combined to provide more comprehensive data for source apportionment. Data from three field experiments were utilized to study turbulence, meteorological and chemical parameters in the ABL. Two air quality field studies were conducted on the U.S./Mexico border. The first was located in Yuma, AZ to investigate the spatial and temporal variability of PM in an urban environment and relate chemical properties of ambient aerosols to physical findings. The second border air quality study was conducted in Nogales, Sonora, Mexico to investigate the relationship between indoor and outdoor air quality in order to better correlate cooking fuel types and home activities to elevated indoor PM concentrations. The final study was executed in southern Idaho and focused on

  3. Waves, shocks and non-stationary phenomena in the outer solar atmosphere

    NASA Technical Reports Server (NTRS)

    Hansteen, V. H.

    1997-01-01

    The dynamics of the solar chromosphere, transition region and corona were investigated. The consequences of the solar dynamics on the formation of spectral features in solar atmosphere regions are discussed. Data mainly from the solar ultraviolet measurement of emitted radiation (SUMER) instrument, showing signatures of non-stationary processes, are presented. These data are compared to the predictions of numerical models of the chromosphere and transition region. The observations seem to support the importance of upwardly propagating acoustic shocks in the heating of the chromosphere.

  4. Spectral derates phenomena of atmospheric components on multi-junction CPV technologies

    NASA Astrophysics Data System (ADS)

    Armijo, Kenneth M.; Harrison, Richard K.; King, Bruce H.; Martin, Jeffrey B.

    2014-09-01

    The solar spectrum varies with atmospheric conditions and composition, and can have significant impacts on the output power performance of each junction in a concentrating solar photovoltaic (CPV) system, with direct implications on the junction that is current-limiting. The effect of changing solar spectrum on CPV module power production has previously been characterized by various spectral performance parameters such as air mass (AM) for both single and multi-junction module technologies. However, examinations of outdoor test results have shown substantial uncertainty contributions by many of these parameters, including air mass, for the determination of projected power and energy production. Using spectral data obtained from outdoor spectrometers, with a spectral range of 336nm-1715nm, this investigation examines precipitable water (PW), aerosol and dust variability effects on incident spectral irradiance. This work then assesses air mass and other spectral performance parameters, including a new atmospheric component spectral factor (ACSF), to investigate iso-cell, stacked multijunction and single-junction c-Si module performance data directly with measured spectrum. This will then be used with MODTRAN5® to determine if spectral composition can account for daily and seasonal variability of the short-circuit current density Jsc and the maximum output power Pmp values. For precipitable water, current results show good correspondence between the modeled atmospheric component spectral factor and measured data with an average rms error of 0.013, for all three iso-cells tested during clear days over a one week time period. Results also suggest average variations in ACSF factors with respect to increasing precipitable water of 8.2%/cmH2O, 1.3%/cmH2O, 0.2%/cmH2O and 1.8%/cmH2O for GaInP, GaAs, Ge and c-Si cells, respectively at solar noon and an AM value of 1.0. For ozone, the GaInP cell had the greatest sensitivity to increasing ozone levels with an ACSF variation of

  5. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    NASA Astrophysics Data System (ADS)

    Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E.

    2011-02-01

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  6. Abnormal winter weather in Japan during 2012 controlled by large-scale atmospheric and small-scale oceanic phenomena

    NASA Astrophysics Data System (ADS)

    Ando, Yuta; Ogi, Masayo; Tachibana, Yoshihiro

    2014-05-01

    Negative Arctic Oscillation (AO) and Western Pacific (WP) pattern indices persisted from October through December 2012. For the first time both the monthly AO and WP were negative for three consecutive months. Although negative AOs and WPs make Siberia, Eastern Asia, and Japan abnormally cold, Japan was warm in October 2012. The temperature of the Sea of Japan was a record-breaking high in October 2012. Heating by these very warm waters overwhelmed the cooling effect of the negative AO and WP in October, even though the Sea of Japan is small. Linear regression analyses showed that Japan tends to be warm in years when the Sea of Japan is warm. Consequently, the temperature over Japan is controlled by interannual variations of small-scale oceanic phenomena as well as by large-scale atmospheric patterns. Previous studies have ignored such small-scale oceanic influences on island temperatures.

  7. Atmospheric Phenomena Observed Over The South China Sea By The Advanced Synthetic Aperture Radar Onboard the ENVISAT Satellite

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Huang, Weigen; Chan, Pak Wai; Wong, Wai Kin; Cheng, Cho Ming; Mouche, Alexis

    2010-10-01

    Atmospheric phenomena often leave fingerprints on the sea surface, which are detectable by synthetic aperture radar (SAR). Here we present some representative examples of SAR images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the Envisat satellite over the South China Sea (SCS) which show radar signatures of atmospheric gravity waves (AGWs) and of coastal wind fields. On SAR images of the SCS also often radar signatures of oceanic internal waves (OIWs) are visible which have similar spatial scales as the ones originating from AGWs. Therefore we first present criteria how to distinguish between them by analyzing the structure of the radar signatures. Then we present two examples of ASAR images which show radar signatures of AGWs over the SCS. Furthermore, we present a SAR image showing radar signatures of a northerly Winter Monsoon surge event over the coastal area south of Hong Kong and compare it with a cloud image and a weather radar image. From the ASAR image we retrieve the near-surface wind field and compare it with the wind field simulated by the AIR model of the Hong Kong Observatory. The comparison shows that the AIR model can simulate quite well the wind speed as well as the position and shape of the frontal line measured by ASAR.

  8. Transformation and birth processes of the transient luminous phenomena's in the low atmosphere of the Hessdalen valley, Norway.

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Strand, Erling

    2013-04-01

    Transient louminous phenomenas has been observed in and over the Hessdalen valley for over 100 years. These phenomena's has been nicknamed "Hessdalen phenomenas", HP, and has been under permanent scientific investigation since 1998, when Norwegian, Italian and later French researchers installed different types of monitoring equipment in the valley. The earth's magnetic field, electromagnetic radiation in different bands, radioactive radiation, electrical resistance in the ground, ultrasound, and seismic activity are some of the signals/parameters that has been monitored. The valley has also been surveillanced by radar, optical spectrometers and automatic video recording devices. So far no electromagnetic radiation, except in the optical band, has been detected that can be coupled to the HP. The phenomenon is characterized by its horizontal movement, intense optical radiation when a transformation process occurs, different colours where white/yellow dominates, no sound, high speed, unpredictable flight patterns, seen by radar while optical invisible and often observed with continuous optical spectrum. The phenomena have been seen touching ground, without leaving burning marks and flying in higher altitudes over the valley apparently ignoring wind/weather conditions. The Hessdalen valley is located in the middle of Norway and is famous for its mines with iron, zinc and copper ore. Big deposits of ore still reside inside the valley, and the mountains are penetrated by several mineshafts, some has depth down to 1000m. No exact birthplace has been located and the phenomenon seems to emerge "out of thin air" anywhere in the valley. Any activity coupled to mineshafts has not been observed. In September 2006 a birth and transformation process was observed and several optical spectrums was obtained. The phenomena appear as a big white light possibly not more than some hundred meters above the ground in a desolated area. The phenomenon starts a transformation process

  9. Interpretation of atmospheric pollution phenomena in relationship with the vertical atmospheric remixing by means of natural radioactivity measurements (radon) of particulate matter.

    PubMed

    Avino, Pasquale; Brocco, Domenico; Lepore, Luca; Pareti, Salvatore

    2003-01-01

    In this paper the results of seasonal monitoring campaign for primary (benzene and carbon monoxide) and secondary (nitrogen dioxide and ozone) pollutants and for the natural radioactivity of the particulate matter in the urban area of Rome, are reported to investigate acute atmospheric pollution episodes. Comparing the daily concentration trends of primary and secondary pollutants with those of the natural radioactivity, considered as index of the vertical diffusion in the low boundary layer, it has been evidenced that the acute pollution episodes in Rome occur in the winter period for the high atmospheric stability (primary pollution) and in the summer period for the strong diurnal atmospheric remixing (secondary pollution).

  10. Paranormal phenomena

    NASA Astrophysics Data System (ADS)

    Gaina, Alex

    1996-08-01

    Critical analysis is given of some paranormal phenomena events (UFO, healers, psychokinesis (telekinesis))reported in Moldova. It is argued that correct analysis of paranormal phenomena should be made in the framework of electromagnetism.

  11. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  12. A Compact Monitoring System for Recording X-Rays, Gamma Rays and Neutrons Generated By Atmospheric Lightning Discharges and Other Natural Phenomena

    NASA Astrophysics Data System (ADS)

    Martin, I. M.; Alves, M. A.

    2009-12-01

    The generation of X-rays, gamma-rays and neutrons by atmospheric lightning discharges has been predicted by different researchers several decades ago. But only within the last 25 years the first experimental evidences of events relating the generation of these radiations with lightning have been made; since then there is a continuing effort to collect more information about this type of phenomenon. In this study we describe a compact monitoring system to detect simultaneously X-rays, gamma-rays and neutrons using rather inexpensive off-the-shelf commercial detectors (Micro Roengten Radiation Monitor, 8-inch gamma tube coupled to a 3x3 inch sodium iodide [Nai(Tl)] crystal, Ludlum He-3 neutron detector) and accompanying computer interfaces. The system is extremely portable and can be powered with small automotive batteries, if necessary. Measurements are performed at ground-level. Preliminary measurements have already yielded positive results, e.g., changes in the neutron flux related to a lightning discharge and varying weather conditions have been observed in the city of Sao Jose dos Campos, Brazil (23° 11‧ 11″S, 45° 52‧ 43″ W, 600 m above sea level). This a pilot study, in the near future a larger number of these compact monitoring system will be installed in different location in order to increase the area coverage. Although the main objective of the study is to detect high-energy events produced by lightning discharges, the monitoring system will also be able to detect changes in the radiation background produced by other natural phenomena.

  13. Transport Phenomena.

    ERIC Educational Resources Information Center

    McCready, Mark J.; Leighton, David T.

    1987-01-01

    Discusses the problems created in graduate chemical engineering programs when students enter with a wide diversity of understandings of transport phenomena. Describes a two-semester graduate transport course sequence at the University of Notre Dame which focuses on fluid mechanics and heat and mass transfer. (TW)

  14. Bending and turbulent enhancement phenomena of neutral gas flow containing an atmospheric pressure plasma by applying external electric fields measured by schlieren optical method

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Yamagishi, Yusuke; Sakakita, Hajime; Tsunoda, Syuichiro; Kasahara, Jiro; Fujiwara, Masanori; Kato, Susumu; Itagaki, Hirotomo; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Yutaka; Ikehara, Yuzuru; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    To understand the mechanism of turbulent enhancement phenomena of a neutral gas flow containing plasma ejected from the nozzle of plasma equipment, the schlieren optical method was performed to visualize the neutral gas behavior. It was confirmed that the turbulent starting point became closer to the nozzle exit, as the amplitude of discharge voltage (electric field) increased. To study the effect of electric field on turbulent enhancement, two sets of external electrodes were arranged in parallel, and the gas from the nozzle was allowed to flow between the upper and lower electrodes. It was found that the neutral gas flow was bent, and the bending angle increased as the amplitude of the external electric field increased. The results obtained using a simple model analysis roughly coincide with experimental data. These results indicate that momentum transport from drifted ions induced by the electric field to neutral particles is an important factor that enhances turbulence.

  15. Study of the atmospheric flashes and man-made global phenomena ultraviolet and infrared glow of the night air on the board of satellite "VERNOV"

    NASA Astrophysics Data System (ADS)

    Garipov, Gali; Panasyuk, Mikhael; Svertilov, Sergey; Bogomolov, Vitaliy; Barinova, Vera; Saleev, Kirill

    2016-04-01

    The set of scientific payload for optical observation on-board of "Vernov" satellite, launched at July 8, 2014, had measured transient (millisecond) flashes in the atmosphere in two wavelength bands: ultraviolet (UV,240-380nm) and red-infrared (IR,610-800nm). Global distribution of the flashes, their frequency and time parameters are studied in this work. Transient flashes measured from the satellite frequently were detected in high latitudes in winter time. Flashes in equatorial region were observed in series which were stretched along magnetic meridian and some of them were detected in cloudless regions. At night time when the Earth atmosphere was observed in nadir direction there were registered the optical signals of artificial origin, distributed along the meridian in an extended region of latitude in the Northern and Southern hemispheres of the Earth, modulated by low frequency and at the coincidence of the orbits with the geographic location of the powerful radio stations. Examples of the waveforms of such signals in UV and IR spectral ranges and their global distribution are presented in this presentation. Particular attention is paid to man-made causes of the glow in the ionosphere under the influence of the high power radio wave transmitters of low (LF) and high frequencies (HF). The height of the luminescence source and components of the atmosphere, which can be the sources of this radiation, are discussed.

  16. Thermal Wave Phenomena

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down.

    The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  17. Wave phenomena in sunspots

    NASA Astrophysics Data System (ADS)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  18. Coupled Phenomena in Chemistry.

    ERIC Educational Resources Information Center

    Matsubara, Akira; Nomura, Kazuo

    1979-01-01

    Various phenomena in chemistry and biology can be understood through Gibbs energy utilization. Some common phenomena in chemistry are explained including neutralization, hydrolysis, oxidation and reaction, simultaneous dissociation equilibrium of two weak acids, and common ion effect on solubility. (Author/SA)

  19. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  20. Stress pulse phenomena

    SciTech Connect

    McGlaun, M.

    1993-08-01

    This paper is an introductory discussion of stress pulse phenomena in simple solids and fluids. Stress pulse phenomena is a very rich and complex field that has been studied by many scientists and engineers. This paper describes the behavior of stress pulses in idealized materials. Inviscid fluids and simple solids are realistic enough to illustrate the basic behavior of stress pulses. Sections 2 through 8 deal with the behavior of pressure pulses. Pressure is best thought of as the average stress at a point. Section 9 deals with shear stresses which are most important in studying solids.

  1. Imaging of snapping phenomena

    PubMed Central

    Guillin, R; Marchand, A J; Roux, A; Niederberger, E; Duvauferrier, R

    2012-01-01

    Snapping phenomena result from the sudden impingement between anatomical and/or heterotopical structures with subsequent abrupt movement and noise. Snaps are variously perceived by patients, from mild discomfort to significant pain requiring surgical management. Identifying the precise cause of snaps may be challenging when no abnormality is encountered on routinely performed static examinations. In this regard, dynamic imaging techniques have been developed over time, with various degrees of success. This review encompasses the main features of each imaging technique and proposes an overview of the main snapping phenomena in the musculoskeletal system. PMID:22744321

  2. Quantum phenomena in superconductors

    SciTech Connect

    Clarke, J.

    1987-08-01

    This paper contains remarks by the author on aspects of macroscopic quantum phenomena in superconductors. Some topics discussed are: Superconducting low-inductance undulatory galvanometer (SLUGS), charge imbalance, cylindrical dc superconducting quantum interference device (SQUIDS), Geophysics, noise theory, magnetic resonance with SQUIDS, and macroscopic quantum tunneling. 23 refs., 4 figs. (LSP)

  3. Neutron Star Phenomena

    NASA Technical Reports Server (NTRS)

    Ruderman, Malvin

    1998-01-01

    Various phenomena involving neutron stars are addressed. Electron-positron production in the near magnetosphere of gamma-ray pulsars is discussed along with magnetic field evolution in spun-up and spinning-down pulsars. Glitches and gamma-ray central engines are also discussed.

  4. Electronic phenomena at high pressure

    SciTech Connect

    Drickamer, H.G.

    1981-01-01

    High pressure research is undertaken either to investigate intrinsically high pressure phenomena or in order to get a better understanding of the effect of the chemical environment on properties or processes at one atmosphere. Studies of electronic properties which fall in each area are presented. Many molecules and complexes can assume in the excited state different molecular arrangements and intermolecular forces depending on the medium. Their luminescence emission is then very different in a rigid or a fluid medium. With pressure one can vary the viscosity of the medium by a factor of 10/sup 7/ and thus control the distribution and rate of crossing between the excited state conformations. In rare earth chelates the efficiency of 4f-4f emission of the rare earth is controlled by the feeding from the singlet and triplet levels of the organic ligand. These ligand levels can be strongly shifted by pressure. A study of the effect of pressure on the emission efficiency permits one to understand the effect of ligand chemistry at one atmosphere. At high pressure electronic states can be sufficiently perturbed to provide new ground states. In EDA complexes these new ground states exhibit unusual chemical reactivity and new products.

  5. Membrane Transport Phenomena (MTP)

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1997-01-01

    The third semi-annual period of the MTP project has been involved with performing experiments using the Membrane Transport Apparatus (MTA), development of analysis techniques for the experiment results, analytical modeling of the osmotic transport phenomena, and completion of a DC-9 microgravity flight to test candidate fluid cell geometries. Preparations were also made for the MTP Science Concept Review (SCR), held on 13 June 1997 at Lockheed Martin Astronautics in Denver. These activities are detailed in the report.

  6. Paramutation phenomena in plants.

    PubMed

    Pilu, Roberto

    2015-08-01

    Paramutation is a particular epigenetic phenomenon discovered in Zea mays by Alexander Brink in the 1950s, and then also found in other plants and animals. Brink coined the term paramutation (from the Greek syllable "para" meaning beside, near, beyond, aside) in 1958, with the aim to differentiate paramutation from mutation. The peculiarity of paramutation with respect to other gene silencing phenomena consists in the ability of the silenced allele (named paramutagenic) to silence the other allele (paramutable) present in trans. The newly silenced (paramutated) allele remains stable in the next generations even after segregation from the paramutagenic allele and acquires paramutagenic ability itself. The inheritance behaviour of these epialleles permits a fast diffusion of a particular gene expression level/phenotype in a population even in the absence of other evolutionary influences, thus breaking the Hardy-Weinberg law. As with other gene silencing phenomena such as quelling in the fungus Neurospora crassa, transvection in Drosophila, co-suppression and virus-induced gene silencing (VIGS) described in transgenic plants and RNA interference (RNAi) in the nematode Caenorhabditis elegans, paramutation occurs without changes in the DNA sequence. So far the molecular basis of paramutation remains not fully understood, although many studies point to the involvement of RNA causing changes in DNA methylation and chromatin structure of the silenced genes. In this review I summarize all paramutation phenomena described in plants, focusing on the similarities and differences between them.

  7. Atmospheric optics in art.

    PubMed

    Gedzelman, S D

    1991-08-20

    A brief historical overview of the atmospheric optical phenomena that appear in works of fine art is presented. It is shown that artists have recorded many features of the color and brightness of the sky and clouds, aerial perspective and visibility effects, and phenomena, including crepuscular rays, rainbows, halos, and coronas. Artistic biases resulting from prevailing styles and societal influences are noted. Attention is drawn to a number of phenomena recorded by artists that have not yet been explained or modeled.

  8. Atmospheric optics in art.

    PubMed

    Gedzelman, S D

    1991-08-20

    A brief historical overview of the atmospheric optical phenomena that appear in works of fine art is presented. It is shown that artists have recorded many features of the color and brightness of the sky and clouds, aerial perspective and visibility effects, and phenomena, including crepuscular rays, rainbows, halos, and coronas. Artistic biases resulting from prevailing styles and societal influences are noted. Attention is drawn to a number of phenomena recorded by artists that have not yet been explained or modeled. PMID:20706420

  9. MULTISCALE PHENOMENA IN MATERIALS

    SciTech Connect

    A. BISHOP

    2000-09-01

    This project developed and supported a technology base in nonequilibrium phenomena underpinning fundamental issues in condensed matter and materials science, and applied this technology to selected problems. In this way the increasingly sophisticated synthesis and characterization available for classes of complex electronic and structural materials provided a testbed for nonlinear science, while nonlinear and nonequilibrium techniques helped advance our understanding of the scientific principles underlying the control of material microstructure, their evolution, fundamental to macroscopic functionalities. The project focused on overlapping areas of emerging thrusts and programs in the Los Alamos materials community for which nonlinear and nonequilibrium approaches will have decisive roles and where productive teamwork among elements of modeling, simulations, synthesis, characterization and applications could be anticipated--particularly multiscale and nonequilibrium phenomena, and complex matter in and between fields of soft, hard and biomimetic materials. Principal topics were: (i) Complex organic and inorganic electronic materials, including hard, soft and biomimetic materials, self-assembly processes and photophysics; (ii) Microstructure and evolution in multiscale and hierarchical materials, including dynamic fracture and friction, dislocation and large-scale deformation, metastability, and inhomogeneity; and (iii) Equilibrium and nonequilibrium phases and phase transformations, emphasizing competing interactions, frustration, landscapes, glassy and stochastic dynamics, and energy focusing.

  10. Wave propagation phenomena

    NASA Astrophysics Data System (ADS)

    Groenenboom, P. H. L.

    The phenomenon of wave propagation is encountered frequently in a variety of engineering disciplines. It has been realized that for a growing number of problems the solution can only be obtained by discretization of the boundary. Advantages of the Boundary Element Method (BEM) over domain-type methods are related to the reduction of the number of space dimensions and of the modelling effort. It is demonstrated how the BEM can be applied to wave propagation phenomena by establishing the fundamental relationships. A numerical solution procedure is also suggested. In connection with a discussion of the retarded potential formulation, it is shown how the wave propagation problem can be cast into a Boundary Integral Formulation (BIF). The wave propagation problem in the BIF can be solved by time-successive evaluation of the boundary integrals. The example of pressure wave propagation following a sodium-water reaction in a Liquid Metal cooled Fast Breeder Reactor steam generator is discussed.

  11. Weld pool phenomena

    SciTech Connect

    David, S.A.; Vitek, J.M.; Zacharia, T.; DebRoy, T.

    1994-09-01

    During welding, the composition, structure and properties of the welded structure are affected by the interaction of the heat source with the metal. The interaction affects the fluid flow, heat transfer and mass transfer in the weld pool, and the solidification behavior of the weld metal. In recent years, there has been a growing recognition of the importance of the weld pool transport processes and the solid state transformation reactions in determining the composition, structure and properties of the welded structure. The relation between the weld pool transport processes and the composition and structure is reviewed. Recent applications of various solidification theories to welding are examined to understand the special problems of weld metal solidification. The discussion is focussed on the important problems and issues related to weld pool transport phenomena and solidification. Resolution of these problems would be an important step towards a science based control of composition, structure and properties of the weld metal.

  12. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  13. ON DETECTING TRANSIENT PHENOMENA

    SciTech Connect

    Belanger, G.

    2013-08-10

    Transient phenomena are interesting and potentially highly revealing of details about the processes under observation and study that could otherwise go unnoticed. It is therefore important to maximize the sensitivity of the method used to identify such events. In this article, we present a general procedure based on the use of the likelihood function for identifying transients which is particularly suited for real-time applications because it requires no grouping or pre-processing of the data. The method makes use of all the information that is available in the data throughout the statistical decision-making process, and is suitable for a wide range of applications. Here we consider those most common in astrophysics, which involve searching for transient sources, events or features in images, time series, energy spectra, and power spectra, and demonstrate the use of the method in the case of a weak X-ray flare in a time series and a short-lived quasi-periodic oscillation in a power spectrum. We derive a fit statistic that is ideal for fitting arbitrarily shaped models to a power density distribution, which is of general interest in all applications involving periodogram analysis.

  14. Visualization of bioelectric phenomena.

    PubMed

    Palmer, T C; Simpson, E V; Kavanagh, K M; Smith, W M

    1992-01-01

    Biomedical investigators are currently able to acquire and analyze physiological and anatomical data from three-dimensional structures in the body. Often, multiple kinds of data can be recorded simultaneously. The usefulness of this information, either for exploratory viewing or for presentation to others, is limited by the lack of techniques to display it in intuitive, accessible formats. Unfortunately, the complexity of scientific visualization techniques and the inflexibility of commercial packages deter investigators from using sophisticated visualization methods that could provide them added insight into the mechanisms of the phenomena under study. Also, the sheer volume of such data is a problem. High-performance computing resources are often required for storage and processing, in addition to visualization. This chapter describes a novel, language-based interface that allows scientists with basic programming skills to classify and render multivariate volumetric data with a modest investment in software training. The interface facilitates data exploration by enabling experimentation with various algorithms to compute opacity and color from volumetric data. The value of the system is demonstrated using data from cardiac mapping studies, in which multiple electrodes are placed in an on the heart to measure the cardiac electrical activity intrinsic to the heart and its response to external stimulation.

  15. Solar Magnetic Phenomena

    NASA Astrophysics Data System (ADS)

    Hanslmeier, Arnold; Veronig, Astrid; Messerotti, Mauro

    This book contains the proceedings of the Summerschool and Workshop "Solar Magnetic Phenomena" held from 25 August to 5 September 2003 at the Solar Observatory Kanzelhoehe, which belongs to the Institute for Geophysics, Astrophysics and Meteorology of the University of Graz, Austria. The book contains the contributions from six invited lecturers, They give an overview on the following topics: observations of the photosphere and chromosphere, solar flares observations and theory, coronal mass ejections and the relevance of magnetic helicity, high-energy radiation from the Sun, the physics of solar prominences and highlights from the SOHO mission. The lectures contain about 25 to 30 pages each and provide a valuable introduction to the topics mentioned above. The comprehensive lists of references at the end of each contribution enable the interested reader to go into more detail. The second part of the book contains contributed papers. These papers were presented and discussed in the workshop sessions during the afternoons. The sessions stimulated intensive discussions between the participants and the lecturers.

  16. Arcjet Cathode Phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  17. Arcjet cathode phenomena

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Haag, Thomas W.; Raquet, John F.

    1989-01-01

    Cathode tips made from a number of different materials were tested in a modular arcjet thruster in order to examine cathode phenomena. Periodic disassembly and examination, along with the data collected during testing, indicated that all of the tungsten-based materials behaved similarly despite the fact that in one of these samples the percentage of thorium oxide was doubled and another was 25 percent rhenium. The mass loss rate from a 2 percent thoriated rhenium cathode was found to be an order of magnitude greater than that observed using 2 percent thoriated tungsten. Detailed analysis of one of these cathode tips showed that the molten crater contained pure tungsten to a depth of about 150 microns. Problems with thermal stress cracking were encountered in the testing of a hafnium carbide tip. Post test analysis showed that the active area of the tip had chemically reacted with the propellant. A 100 hour continuous test was run at about 1 kW. Post test analysis revealed no dendrite formation, such as observed in a 30 kW arcjet lifetest, near the cathode crater. The cathodes from both this test and a previously run 1000 hour cycled test displayed nearly identical arc craters. Data and calculations indicate that the mass losses observed in testing can be explained by evaporation.

  18. Tail phenomena. [of Halley's comet

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Niedner, M. B., Jr.

    1985-01-01

    An overview of tail phenomena is presented based on worldwide submissions to the Large-Scale Phenomena Discipline Specialist Team of the International Halley Watch. Examples of tail phenomena and science are presented along with estimates of total expected yield from the Network. The archive of this material will clearly be very valuable for studying the solar-wind/comet interaction during the 1985-1986 apparition of Halley's Comet.

  19. Time-Variable Phenomena in the Jovian System

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S. (Editor); West, Robert A. (Editor); Rahe, Jurgen (Editor); Pereyda, Margarita

    1989-01-01

    The current state of knowledge of dynamic processes in the Jovian system is assessed and summaries are provided of both theoretical and observational foundations upon which future research might be based. There are three sections: satellite phenomena and rings; magnetospheric phenomena, Io's torus, and aurorae; and atmospheric phenomena. Each chapter discusses time dependent theoretical framework for understanding and interpreting what is observed; others describe the evidence and nature of observed changes or their absence. A few chapters provide historical perspective and attempt to present a comprehensive synthesis of the current state of knowledge.

  20. Hypervelocity impact phenomena

    SciTech Connect

    Chhabildas, L.C.

    1995-07-01

    There is a need to determine the equations of state of materials in regimes of extreme high pressures, temperatures and strain rates that are not attainable on current two-stage light-gas guns. Understanding high-pressure material behavior is crucial to address the physical processes associated with a variety of hypervelocity impact events related to space sciences-orbital-debris impact, debris-shield designs, high-speed plasma propagation, and impact lethality applications. At very high impact velocities material properties will be dominated by phase-changes, such as melting or vaporization, which cannot be achieved at lower impact velocities. Development of well-controlled and repeatable hypervelocity launch capabilities is the first step necessary to improve our understanding of material behavior at extreme pressures and temperatures not currently available using conventional two-stage light-gas gun techniques. In this paper, techniques that have been used to extend both the launch capabilities of a two-stage light gas gun to 16 km/s, and their use to determine the material properties at pressures and temperature states higher than those ever obtained in the laboratory are summarized. The newly developed hypervelocity launcher (HVL) can launch intact (macroscopic dimensions) plates to 16 km/s. Time-resolved interferometric techniques have been used to determine shock-loading/release characteristics of materials impacted by such fliers as well as shock-induced vaporization phenomena in fully vaporized states. High-speed photography or radiography has been used to evaluate the debris propagation characteristics resulting from disc impact of thin bumper sheets at hypervelocities in excess of 10 km/s using the HVL. Examples of these experiments are provided in this paper.

  1. Atmospheric Photochemistry

    NASA Technical Reports Server (NTRS)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  2. Positron impact ionisation phenomena

    NASA Astrophysics Data System (ADS)

    Moxom, J.

    A magnetically guided beam of nearly-monoenergetic slow positrons has been used to study positron impact ionisation phenomena in gases. A novel hemispherical scattering cell incorporating an efficient ion extraction and detection system has been developed and has been utilised throughout this work. The energy spectra for the electrons ejected around 0° relative to the incident beam, following positron impact ionisation of Ar, have been measured by a time-of-flight method and a retarding electric field analyzer. The angular acceptance of the electron detection system has been estimated and used to compare the measured spectra with the double differential cross-sections calculated by Mandal et al (1986), Sil et al (1991) and Schultz and Reinhold (1990). The importance of the electron-capture-to-the-continuum process is discussed in this context and found to be minor at small forward angles, in contrast to the case of heavy positively charged projectiles. The apparatus was modified to produce a pulsed beam of slow positrons and utilised to measure in detail the total ionisation cross-section (Qt+) for a variety of atomic and molecular targets. For Ar, He and H2, Qt+ which includes contributions from Ps formation, has been subtracted from corresponding total cross-sections, in order to deduce the behaviour of the elastic scattering cross-section (Qel) in the vicinity of the Ps formation threshold (Eps). Here a small change in the gradient of Qel, has been found. The energy dependencies of the Qt+ for He, Ne and Ar, close to Eps have been interpreted in terms of threshold theory. In the case of Ar the outgoing Ps appears to be predominantly s-wave in character. For He and Ne the analysis suggests that the Ps contains significant contributions from a number of partial waves. In the case of O 2, structure in Qt+ has been found, which is attributed to coupling between two inelastic channels, namely Ps formation and excitation to the Schuman-Runge continuum.

  3. Relaxation phenomena in disordered systems

    NASA Astrophysics Data System (ADS)

    Sciortino, F.; Tartaglia, P.

    1997-02-01

    In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.

  4. Teaching Optical Phenomena with Tracker

    ERIC Educational Resources Information Center

    Rodrigues, M.; Carvalho, P. Simeão

    2014-01-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a…

  5. Active microwave sensing of the atmosphere, chapter 4

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The use of active microwave systems to study atmospheric phenomena is studied. Atmospheric pollution, weather prediction, climate and weather modification, weather danger and disaster warning, and atmospheric processes and interactions are covered.

  6. Teaching optical phenomena with Tracker

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Simeão Carvalho, P.

    2014-11-01

    Since the invention and dissemination of domestic laser pointers, observing optical phenomena is a relatively easy task. Any student can buy a laser and experience at home, in a qualitative way, the reflection, refraction and even diffraction phenomena of light. However, quantitative experiments need instruments of high precision that have a relatively complex setup. Fortunately, nowadays it is possible to analyse optical phenomena in a simple and quantitative way using the freeware video analysis software ‘Tracker’. In this paper, we show the advantages of video-based experimental activities for teaching concepts in optics. We intend to show: (a) how easy the study of such phenomena can be, even at home, because only simple materials are needed, and Tracker provides the necessary measuring instruments; and (b) how we can use Tracker to improve students’ understanding of some optical concepts. We give examples using video modelling to study the laws of reflection, Snell’s laws, focal distances in lenses and mirrors, and diffraction phenomena, which we hope will motivate teachers to implement it in their own classes and schools.

  7. Undergraduates' understanding of cardiovascular phenomena.

    PubMed

    Michael, Joel A; Wenderoth, Mary Pat; Modell, Harold I; Cliff, William; Horwitz, Barbara; McHale, Philip; Richardson, Daniel; Silverthorn, Dee; Williams, Stephen; Whitescarver, Shirley

    2002-12-01

    Undergraduates students in 12 courses at 8 different institutions were surveyed to determine the prevalence of 13 different misconceptions (conceptual difficulties) about cardiovascular function. The prevalence of these misconceptions ranged from 20 to 81% and, for each misconception, was consistent across the different student populations. We also obtained explanations for the students' answers either as free responses or with follow-up multiple-choice questions. These results suggest that students have a number of underlying conceptual difficulties about cardiovascular phenomena. One possible source of some misconceptions is the students' inability to apply simple general models to specific cardiovascular phenomena. Some implications of these results for teachers of physiology are discussed.

  8. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  9. Radioactive γ/β tracer to explore dangerous technogenic phenomena

    NASA Astrophysics Data System (ADS)

    Nagorsky, P. M.; Yakovleva, V. S.; Makarov, E. O.; Firstov, P. P.; Kondratyeva, A. G.; Stepanenko, A. A.

    2016-06-01

    A radioactive γ/β tracer to explore dangerous technogenic phenomena has been proposed: the ratio of the measured flux density of β- and γ-radiations in the surface layer of the atmosphere. The time dependence analysis of the ratio of β- and γ-pulse count rate has been carried out. A significant increase of the γ/β ratio was recorded under the cyclone passing through Japan (Fukushima) to Kamchatka. The proposed γ/β tracer can be a very sensitive indicator of nonstationary processes related to hazardous natural and technogenic phenomena.

  10. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  11. Quantum Phenomena Observed Using Electrons

    SciTech Connect

    Tonomura, Akira

    2011-05-06

    Electron phase microscopy based on the Aharonov-Bohm (AB) effect principle has been used to illuminate fundamental phenomena concerning magnetism and superconductivity by visualizing quantitative magnetic lines of force. This paper deals with confirmation experiments on the AB effect, the magnetization process of tiny magnetic heads for perpendicular recording, and vortex behaviors in high-Tc superconductors.

  12. Visualizing Chemical Phenomena in Microdroplets

    ERIC Educational Resources Information Center

    Lee, Sunghee; Wiener, Joseph

    2011-01-01

    Phenomena that occur in microdroplets are described to the undergraduate chemistry community. Droplets having a diameter in the micrometer range can have unique and interesting properties, which arise because of their small size and, especially, their high surface area-to-volume ratio. Students are generally unfamiliar with the characteristics of…

  13. Thermodynamic constraints on fluctuation phenomena

    NASA Astrophysics Data System (ADS)

    Maroney, O. J. E.

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  14. Molecular model for chirality phenomena

    NASA Astrophysics Data System (ADS)

    Latinwo, Folarin; Stillinger, Frank H.; Debenedetti, Pablo G.

    2016-10-01

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  15. Statistical phenomena in particle beams

    SciTech Connect

    Bisognano, J.J.

    1984-09-01

    Particle beams are subject to a variety of apparently distinct statistical phenomena such as intrabeam scattering, stochastic cooling, electron cooling, coherent instabilities, and radiofrequency noise diffusion. In fact, both the physics and mathematical description of these mechanisms are quite similar, with the notion of correlation as a powerful unifying principle. In this presentation we will attempt to provide both a physical and a mathematical basis for understanding the wide range of statistical phenomena that have been discussed. In the course of this study the tools of the trade will be introduced, e.g., the Vlasov and Fokker-Planck equations, noise theory, correlation functions, and beam transfer functions. Although a major concern will be to provide equations for analyzing machine design, the primary goal is to introduce a basic set of physical concepts having a very broad range of applicability.

  16. Thermodynamic constraints on fluctuation phenomena.

    PubMed

    Maroney, O J E

    2009-12-01

    The relationships among reversible Carnot cycles, the absence of perpetual motion machines, and the existence of a nondecreasing globally unique entropy function form the starting point of many textbook presentations of the foundations of thermodynamics. However, the thermal fluctuation phenomena associated with statistical mechanics has been argued to restrict the domain of validity of this basis of the second law of thermodynamics. Here we demonstrate that fluctuation phenomena can be incorporated into the traditional presentation, extending rather than restricting the domain of validity of the phenomenologically motivated second law. Consistency conditions lead to constraints upon the possible spectrum of thermal fluctuations. In a special case this uniquely selects the Gibbs canonical distribution and more generally incorporates the Tsallis distributions. No particular model of microscopic dynamics need be assumed.

  17. Emergent Phenomena via Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Rapaport, D. C.

    Emergent phenomena are unusual because they are not obvious consequences of the design of the systems in which they appear, a feature no less relevant when they are being simulated. Several systems that exhibit surprisingly rich emergent behavior, each studied by molecular dynamics (MD) simulation, are described: (i) Modeling self-assembly processes associated with virus growth reveals the ability to achieve error-free assembly, where paradoxically, near-maximum yields are due to reversible bond formation. (ii) In fluids studied at the atomistic level, complex hydrodynamic phenomena in rotating and convecting fluids - the Taylor- Couette and Rayleigh-Bénard instabilities - can be reproduced, despite the limited length and time scales accessible by MD. (iii) Segregation studies of granular mixtures in a rotating drum reproduce the expected, but counterintuitive, axial and radial segregation, while for the case of a vertically vibrated layer a novel form of horizontal segregation is revealed.

  18. Cathodic phenomena in aluminum electrowinning

    NASA Astrophysics Data System (ADS)

    Bouteillon, J.; Poignet, J. C.; Rameau, J. J.

    1993-02-01

    Although aluminum is one of the world's highest production-volume primary metals, it is particularly costly to produce for a variety of factors, not the least of which are the expenses associated with electrolytic reduction. Based on the scale of global aluminum processing, even minor improvements in the electrowinning technology can result in significant savings of resources. Thus, from this perspective, the following reviews recent studies of cathodic phenomena in aluminum electrowinning.

  19. Mathematical Modeling of Diverse Phenomena

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1979-01-01

    Tensor calculus is applied to the formulation of mathematical models of diverse phenomena. Aeronautics, fluid dynamics, and cosmology are among the areas of application. The feasibility of combining tensor methods and computer capability to formulate problems is demonstrated. The techniques described are an attempt to simplify the formulation of mathematical models by reducing the modeling process to a series of routine operations, which can be performed either manually or by computer.

  20. New phenomena searches at CDF

    SciTech Connect

    Soha, Aron; /UC, Davis

    2006-04-01

    The authors report on recent results from the Collider Detector at Fermilab (CDF) experiment, which is accumulating data from proton-antiproton collisions with {radical}s = 1.96 TeV at Run II of the Fermilab Tevatron. The new phenomena being explored include Higgs, Supersymmetry, and large extra dimensions. They also present the latest results of searches for heavy objects, which would indicate physics beyond the Standard Model.

  1. PREFACE Integrability and nonlinear phenomena Integrability and nonlinear phenomena

    NASA Astrophysics Data System (ADS)

    Gómez-Ullate, David; Lombardo, Sara; Mañas, Manuel; Mazzocco, Marta; Nijhoff, Frank; Sommacal, Matteo

    2010-10-01

    Back in 1967, Clifford Gardner, John Greene, Martin Kruskal and Robert Miura published a seminal paper in Physical Review Letters which was to become a cornerstone in the theory of integrable systems. In 2006, the authors of this paper received the AMS Steele Prize. In this award the AMS pointed out that `In applications of mathematics, solitons and their descendants (kinks, anti-kinks, instantons, and breathers) have entered and changed such diverse fields as nonlinear optics, plasma physics, and ocean, atmospheric, and planetary sciences. Nonlinearity has undergone a revolution: from a nuisance to be eliminated, to a new tool to be exploited.' From this discovery the modern theory of integrability bloomed, leading scientists to a deep understanding of many nonlinear phenomena which is by no means reachable by perturbation methods or other previous tools from linear theories. Nonlinear phenomena appear everywhere in nature, their description and understanding is therefore of great interest both from the theoretical and applicative point of view. If a nonlinear phenomenon can be represented by an integrable system then we have at our disposal a variety of tools to achieve a better mathematical description of the phenomenon. This special issue is largely dedicated to investigations of nonlinear phenomena which are related to the concept of integrability, either involving integrable systems themselves or because they use techniques from the theory of integrability. The idea of this special issue originated during the 18th edition of the Nonlinear Evolution Equations and Dynamical Systems (NEEDS) workshop, held at Isola Rossa, Sardinia, Italy, 16-23 May 2009 (http://needs-conferences.net/2009/). The issue benefits from the occasion offered by the meeting, in particular by its mini-workshops programme, and contains invited review papers and contributed papers. It is worth pointing out that there was an open call for papers and all contributions were peer reviewed

  2. TRANSIENT LUNAR PHENOMENA: REGULARITY AND REALITY

    SciTech Connect

    Crotts, Arlin P. S.

    2009-05-20

    Transient lunar phenomena (TLPs) have been reported for centuries, but their nature is largely unsettled, and even their existence as a coherent phenomenon is controversial. Nonetheless, TLP data show regularities in the observations; a key question is whether this structure is imposed by processes tied to the lunar surface, or by terrestrial atmospheric or human observer effects. I interrogate an extensive catalog of TLPs to gauge how human factors determine the distribution of TLP reports. The sample is grouped according to variables which should produce differing results if determining factors involve humans, and not reflecting phenomena tied to the lunar surface. Features dependent on human factors can then be excluded. Regardless of how the sample is split, the results are similar: {approx}50% of reports originate from near Aristarchus, {approx}16% from Plato, {approx}6% from recent, major impacts (Copernicus, Kepler, Tycho, and Aristarchus), plus several at Grimaldi. Mare Crisium produces a robust signal in some cases (however, Crisium is too large for a 'feature' as defined). TLP count consistency for these features indicates that {approx}80% of these may be real. Some commonly reported sites disappear from the robust averages, including Alphonsus, Ross D, and Gassendi. These reports begin almost exclusively after 1955, when TLPs became widely known and many more (and inexperienced) observers searched for TLPs. In a companion paper, we compare the spatial distribution of robust TLP sites to transient outgassing (seen by Apollo and Lunar Prospector instruments). To a high confidence, robust TLP sites and those of lunar outgassing correlate strongly, further arguing for the reality of TLPs.

  3. Meteorological phenomena in Western classical orchestral music

    NASA Astrophysics Data System (ADS)

    Williams, P. D.; Aplin, K. L.

    2012-12-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London. Of course, an important part of what we see and hear is not only the people with whom we interact, but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant, because we are exposed to it directly and daily. The weather was a great source of inspiration for Monet, Constable, and Turner, who are known for their scientifically accurate paintings of the skies. But to what extent does weather inspire composers? The authors of this presentation, who are atmospheric scientists by day but amateur classical musicians by night, have been contemplating this question. We have built a systematic musical database, which has allowed us to catalogue and analyze the frequencies with which weather is depicted in a sample of classical orchestral music. The depictions vary from explicit mimicry using traditional and specialized orchestral instruments, through to subtle suggestions. We have found that composers are generally influenced by their own environment in the type of weather they choose to represent. As befits the national stereotype, British composers seem disproportionately keen to depict the UK's variable weather patterns and stormy coastline. Reference: Aplin KL and Williams PD (2011) Meteorological phenomena in Western classical orchestral music. Weather, 66(11), pp 300-306. doi:10.1002/wea.765

  4. Transport phenomena in porous media

    NASA Astrophysics Data System (ADS)

    Bear, Jacob; Corapcioglu, M. Yavuz

    The Advanced Study Institute on Fundamentals of Transport Phenomena in Porous Media, held July 14-23, 1985 in Newark, Del. and directed by Jacob Bear (Israel Institute of Technology, Haifa) and M. Yavuz Corapcioglu (City College of New York), under the auspices of NATO, was a sequel to the NATO Advanced Study Institute (ASI) held in 1982 (proceedings published as Fundamentals of Transport Phenomena in Porous Media, J. Bear, and M.Y. Corapcioglu (Ed.), Martinus Nijhoff, Dordrecht, the Netherlands, 1984). The meeting was attended by 106 participants and lecturers from 21 countries.As in the first NATO/ASI, the objective of this meeting—which was a combination of a conference of experts and a teaching institute— was to present and discuss selected topics of transport in porous media. In selecting topics and lecturers, an attempt was made to bridge the gap that sometimes exists between research and practice. An effort was also made to demonstrate the unified approach to the transport of mass of a fluid phase, components of a fluid phase, momentum, and heat in a porous medium domain. The void space may be occupied by a single fluid phase or by a number of such phases; each fluid may constitute a multicomponent system; the solid matrix may be deformable; and the whole process of transport in the system may take place under nonisothermal conditions, with or without phase changes. Such phenomena are encountered in a variety of disciplines, e.g., petroleum engineering, civil engineering (in connection with groundwater flow and contamination), soil mechanics, and chemical engineering. One of the goals of the 1985 NATO/ASI, as in the 1982 institute, was to bring together experts from all these disciplines and enhance communication among them.

  5. Correlated randomness and switching phenomena

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.; Buldyrev, S. V.; Franzese, G.; Havlin, S.; Mallamace, F.; Kumar, P.; Plerou, V.; Preis, T.

    2010-08-01

    One challenge of biology, medicine, and economics is that the systems treated by these serious scientific disciplines have no perfect metronome in time and no perfect spatial architecture-crystalline or otherwise. Nonetheless, as if by magic, out of nothing but randomness one finds remarkably fine-tuned processes in time and remarkably fine-tuned structures in space. Further, many of these processes and structures have the remarkable feature of “switching” from one behavior to another as if by magic. The past century has, philosophically, been concerned with placing aside the human tendency to see the universe as a fine-tuned machine. Here we will address the challenge of uncovering how, through randomness (albeit, as we shall see, strongly correlated randomness), one can arrive at some of the many spatial and temporal patterns in biology, medicine, and economics and even begin to characterize the switching phenomena that enables a system to pass from one state to another. Inspired by principles developed by A. Nihat Berker and scores of other statistical physicists in recent years, we discuss some applications of correlated randomness to understand switching phenomena in various fields. Specifically, we present evidence from experiments and from computer simulations supporting the hypothesis that water’s anomalies are related to a switching point (which is not unlike the “tipping point” immortalized by Malcolm Gladwell), and that the bubbles in economic phenomena that occur on all scales are not “outliers” (another Gladwell immortalization). Though more speculative, we support the idea of disease as arising from some kind of yet-to-be-understood complex switching phenomenon, by discussing data on selected examples, including heart disease and Alzheimer disease.

  6. Critical phenomena of invariant circles

    SciTech Connect

    Hu, B.; Shi, J. ); Kim, S. )

    1991-04-15

    Some novel critical phenomena are discovered in a class of nonanalytic twist maps. It is found that the degree of inflection {ital z} plays a role reminiscent of that of dimensionality in phase transitions with {ital z}=2 and 3 corresponding to the lower and upper critical dimensions, respectively. Moreover, recurrence of invariant circles has also been observed. An inverse residue criterion,'' complementary to the residue criterion'' for the determination of the disappearance point, is introduced to determine the reappearance point of invariant circles.

  7. Visual phenomena, disturbances, and hallucinations.

    PubMed

    Adamczyk, D T

    1996-01-01

    The visual system and its processing of sensory information can be affected in a variety of ways that may be either normal or associated with numerous disorders and diseases. Visual images produced by the intrinsic components of the eyes are often normal and are known as entoptic phenomena. In contrast, the visual system may be disrupted by various disorders and pathologic processes, which can result in metamorphopsia, transient loss of vision, and positive scotomas. Such disruptions can be secondary to retinal and optic nerve disease, migraines associated with visual auras, and cerebrovascular and neurologic diseases; they can also be side effects of certain drugs. In addition, the visual system may process incoming sensory information in such a way that what is seen is perceived incorrectly, i.e. illusion; or the visual system may produce images of things not really there, i.e. hallucination. Various types of visual phenomena, disturbances, and hallucinations are discussed. The numerous visual presentations need to be differentiated so that appropriate treatment, management, and patient education can be rendered.

  8. Uranium Pyrophoricity Phenomena and Prediction

    SciTech Connect

    DUNCAN, D.R.

    2000-04-20

    We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis.

  9. Natural phenomena hazards, Hanford Site, Washington

    SciTech Connect

    Conrads, T.J.

    1998-09-29

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

  10. Global atmospheric changes.

    PubMed Central

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation. PMID:1820255

  11. Global atmospheric changes.

    PubMed

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  12. Quantification of statistical phenomena in turbulent dispersions

    NASA Astrophysics Data System (ADS)

    Yates, Matthew; Hann, David; Hewakandamby, Buddhika

    2015-11-01

    Understanding of turbulent dispersions is of great importance for environmental and industrial applications. This includes developing a greater understanding of particle movement in atmospheric flows, and providing data that can be used to validate CFD models aimed at producing more accurate simulations of dispersed turbulent flows, aiding design of many industrial components. Statistical phenomena in turbulent dispersions were investigated using Particle Image Velocimetry. Experiments were carried out in a two dimensional channel over a Reynolds number range of 10000-30000, using water and 500 micron hydrogel particles. Particles were injected at the channel entrance, and dispersion properties were characterised at different distances downstream from the injection point. Probability density functions were compiled for the velocity components of the hydrogels for differing flow conditions. Higher order PDFs were constructed to investigate the behaviour of particle pairs. Dispersed phase data was also used to investigate the mechanics of collisions between hydrogel particles, allowing for calculation of the co-efficient of restitution. PIV algorithms were used to create velocity maps for the continuous phase for varying dispersed phase fractions. Thanks to support of Chevron grant as part of TMF consortium.

  13. Unidentified phenomena - Unusual plasma behavior?

    NASA Astrophysics Data System (ADS)

    Avakian, S. V.; Kovalenok, V. V.

    1992-06-01

    The paper describes observations of a phenomenon belonging to the UFO category and the possible causes of these events. Special attention is given to an event which occurred during the night of September 19-20, 1974, when a huge 'star' was observed over Pertrozavodsk (Russia), consisting of a bright-white luminous center, emitting beams of light, and a less bright light-blue shell. The star gradually formed a cometlike object with a tail consisting of beams of light and started to descend. It is suggested that this event was related to cosmic disturbances caused by an occurrence of unusually strong solar flares. Other examples are presented that relate unusual phenomena observed in space to the occurrence of strong magnetic turbulence events.

  14. Emergent Phenomena at Oxide Interfaces

    SciTech Connect

    Hwang, H.Y.

    2012-02-16

    Transition metal oxides (TMOs) are an ideal arena for the study of electronic correlations because the s-electrons of the transition metal ions are removed and transferred to oxygen ions, and hence the strongly correlated d-electrons determine their physical properties such as electrical transport, magnetism, optical response, thermal conductivity, and superconductivity. These electron correlations prohibit the double occupancy of metal sites and induce a local entanglement of charge, spin, and orbital degrees of freedom. This gives rise to a variety of phenomena, e.g., Mott insulators, various charge/spin/orbital orderings, metal-insulator transitions, multiferroics, and superconductivity. In recent years, there has been a burst of activity to manipulate these phenomena, as well as create new ones, using oxide heterostructures. Most fundamental to understanding the physical properties of TMOs is the concept of symmetry of the order parameter. As Landau recognized, the essence of phase transitions is the change of the symmetry. For example, ferromagnetic ordering breaks the rotational symmetry in spin space, i.e., the ordered phase has lower symmetry than the Hamiltonian of the system. There are three most important symmetries to be considered here. (i) Spatial inversion (I), defined as r {yields} -r. In the case of an insulator, breaking this symmetry can lead to spontaneous electric polarization, i.e. ferroelectricity, or pyroelectricity once the point group belongs to polar group symmetry. (ii) Time-reversal symmetry (T) defined as t {yields} -t. In quantum mechanics, the time-evolution of the wave-function {Psi} is given by the phase factor e{sup -iEt/{h_bar}} with E being the energy, and hence time-reversal basically corresponds to taking the complex conjugate of the wave-function. Also the spin, which is induced by the 'spinning' of the particle, is reversed by time-reversal. Broken T-symmetry is most naturally associated with magnetism, since the spin

  15. Earthquake prediction with electromagnetic phenomena

    NASA Astrophysics Data System (ADS)

    Hayakawa, Masashi

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  16. Autistic phenomena in neurotic patients.

    PubMed

    Klien, S

    1980-01-01

    I have described a group of patients who are seemingly successful in their professional and social lives, and who seek analysis ostensibly for professional reasons or for minor difficulties in their relationship. However, sooner or later they reveal phenomena which are strikingly similar to those observed in so-called autistic children. These autistic phenomena are characterized by an almost impenetrable encapsulation of part of the personality, mute and implacable resistance to change, and a lack of real emotional contact either with themselves or the analyst. Progress of the analysis reveals an underlying intense fear of pain, and of death, disintegration or breakdown. These anxieties occur as a reaction to real or feared separation, especially when commitment to analysis deepens. In the case I have described in detail the patient used various projective processes to deflect painful emotions either into other people, including the analyst, or into their own bodies. As a consequence the various objects or organs of the body swell up and became suffused with rage as a result of having to contain the unwanted feelings. This process leads in turn to intense persecutory fears and a heightened sensitivity to the analyst's tone of voice and facial expression. It would seem that the initial hypersensitivity of part of the personality is such as to lead it to anticipate danger to such an extent that it expels feelings even before they reach awareness. The sooner the analyst realizes the existence of this hidden part of the patient the less the danger of the analysis becoming an endless and meaningless intellectual dialogue and the greater the possibilities of the patient achieving a relatively stable equilibrium. Although the analyst has to live through a great deal of anxiety with the patient I feel that ultimately the results make it worth while.

  17. Middle Atmosphere Program. Handbook for MAP, Volume 10

    NASA Technical Reports Server (NTRS)

    Taubenheim, J. (Editor)

    1984-01-01

    The contributions of ground based investigations to the study of middle atmospheric phenomena are addressed. General topics include diagnostics of the middle atmosphere from D region properties, winter anomaly, seasonal variations and disturbances, dynamics and theoretical models, ground based tracking of winds and waves, lower thermosphere phenomena, and solar-terrestrial influences.

  18. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  19. Monitoring of Transient Lunar Phenomena

    NASA Astrophysics Data System (ADS)

    Barker, Timothy; Farber, Ryan; Ahrendts, Gary

    2014-06-01

    Transient Lunar Phenomena (TLP’s) are described as short-lived changes in the brightness of areas on the face of the Moon. TLP research is characterized by the inability to substantiate, reproduce, and verify findings. Our current research includes the analysis of lunar images taken with two Santa Barbara Instrument Group (SBIG) ST8-E CCD cameras mounted on two 0.36m Celestron telescopes. On one telescope, we are using a sodium filter, and on the other an H-alpha filter, imaging approximately one-third of the lunar surface. We are focusing on two regions: Hyginus and Ina. Ina is of particular interest because it shows evidence of recent activity (Schultz, P., Staid, M., Pieters, C. Nature, Volume 444, Issue 7116, pp. 184-186, 2006). A total of over 50,000 images have been obtained over approximately 35 nights and visually analyzed to search for changes. As of March, 2014, no evidence of TLPs has been found. We are currently developing a Matlab program to do image analysis to detect TLPs that might not be apparent by visual inspection alone.

  20. WESF natural phenomena hazards survey

    SciTech Connect

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  1. Intrinsic interfacial phenomena in manganite heterostructures

    NASA Astrophysics Data System (ADS)

    Vaz, C. A. F.; Walker, F. J.; Ahn, C. H.; Ismail-Beigi, S.

    2015-04-01

    We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

  2. Astronomy and Atmospheric Optics

    NASA Astrophysics Data System (ADS)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  3. Observation of Celestial Phenomena in Ancient China

    NASA Astrophysics Data System (ADS)

    Sun, Xiaochun

    Because of the need for calendar-making and portent astrology, the Chinese were diligent and meticulous observers of celestial phenomena. China has maintained the longest continuous historical records of celestial phenomena in the world. Extraordinary or abnormal celestial events were particularly noted because of their astrological significance. The historical records cover various types of celestial phenomena, which include solar and lunar eclipses, sunspots, "guest stars" (novae or supernovae as we understand today), comets and meteors, and all kinds of planetary phenomena. These records provide valuable historical data for astronomical studies today.

  4. Fluctuation theory of critical phenomena in fluids

    NASA Astrophysics Data System (ADS)

    Martynov, G. A.

    2016-07-01

    It is assumed that critical phenomena are generated by density wave fluctuations carrying a certain kinetic energy. It is noted that all coupling equations for critical indices are obtained within the context of this hypothesis. Critical indices are evaluated for 15 liquids more accurately than when using the current theory of critical phenomena.

  5. Magnetic influence on the unidentified luminous phenomena in Hessdalen, Norway

    NASA Astrophysics Data System (ADS)

    Gitle Hauge, Bjørn; Kjøniksen, Anna-Lena; Petter Strand, Erling; Zlotnicki, Jaques; Vargemezis, George

    2016-04-01

    Unidentified luminous phenomena have been observed in the low atmosphere over the Hessdalen valley for decades. First scientific investigation was done by E.Strand in 1984, where spiral movements of lights was recorded. The Science Camp program has conducted yearly field investigations since 2002 and has confirmed the existence of this spiral-behavior. (http://sciencecamp.no) Such behavior has also been documented in Alabama, USA. In September 2015 spiral like movement of lights was observed together with the more common spherical lights. This spiral movement indicates the presence of low atmospheric charged matter, moving in a magnetic field. A geological survey in 2014 reviled the presence of strong magnetic anomalies. The valley contains several abandoned copper mines containing Chalcopyrite and Magnetite. The Magnetite was not useful in the copper production, and left in heaps around the valley unused. This may contribute to the magnetic anomalies in the valley.

  6. Unsteady flow phenomena in industrial centrifugal compressor stage

    NASA Technical Reports Server (NTRS)

    Bonciani, L.; Terrinoni, L.; Tesei, A.

    1982-01-01

    The results of an experimental investigation on a typical centrifugal compressor stage running on an atmospheric pressure test rig are shown. Unsteady flow was invariably observed at low flow well before surge. In order to determine the influence of the statoric components, the same impeller was repeatedly tested with the same vaneless diffuser, but varying return channel geometry. Experimental results show the strong effect exerted by the return channel, both on onset and on the behavior of unsteady flow. Observed phenomena have been found to confirm well the observed dynamic behavior of full load tested machines when gas density is high enough to cause appreciable mechanical vibrations. Therefore, testing of single stages at atmospheric pressure may provide a fairly accurate prediction of this kind of aerodynamic excitation.

  7. New atmospheric sensor analysis study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1989-01-01

    The functional capabilities of the ESAD Research Computing Facility are discussed. The system is used in processing atmospheric measurements which are used in the evaluation of sensor performance, conducting design-concept simulation studies, and also in modeling the physical and dynamical nature of atmospheric processes. The results may then be evaluated to furnish inputs into the final design specifications for new space sensors intended for future Spacelab, Space Station, and free-flying missions. In addition, data gathered from these missions may subsequently be analyzed to provide better understanding of requirements for numerical modeling of atmospheric phenomena.

  8. Atmospheric propagation effects relevant to optical communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. The effects of clear air turbulence are reviewed as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study. Useful information on the atmospheric propagation of light in relation to optical deep space communications to an earth based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  9. Atmospheric Propagation Effects Relevant to Optical Communications

    NASA Technical Reports Server (NTRS)

    Shaik, K. S.

    1988-01-01

    A number of atmospheric phenomena affect the propagation of light. This article reviews the effects of clear-air turbulence as well as atmospheric turbidity on optical communications. Among the phenomena considered are astronomical and random refraction, scintillation, beam broadening, spatial coherence, angle of arrival, aperture averaging, absorption and scattering, and the effect of opaque clouds. An extensive reference list is also provided for further study, Useful information on the atmospheric propagation of light in resolution to optical deep-space communications to an earth-based receiving station is available, however, further data must be generated before such a link can be designed with committed performance.

  10. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  11. Modeling direct containment heating phenomena with CONTAIN 1. 12

    SciTech Connect

    Griffith, R.O.; Russell, N.A.; Washington, K.E.

    1991-01-01

    CONTAIN is a detailed mechanistic computer code developed at Sandia National Laboratories for the integrated analysis of light water reactor severe accident containment phenomena. The most recent version of the code, CONTAIN 1.12, incorporates models for the phenomena of high pressure melt ejection (HPME) and the subsequent processes collectively known as Direct Containment Heating (DCH). CONTAIN 1.12 was used to model the Limited Flight Path 8A (LFP8A) experiment conducted at the Surtsey test facility at Sandia National Laboratories. In the experiment, 50 kg of molten thermite was injected into a scale model of the Surry cavity and then blown into the Surtsey vessel by high pressure steam. A seven-cell best-estimate CONTAIN model, using only a minimum of measured data, was used to simulate the LFP8A experiment. A comparison of the experimental and calculated results indicated that CONTAIN 1.12 was accurately modeling the physical processes involved in DCH phenomena, but the method of injecting the molten debris into the cavity in the CONTAIN model was causing the code to overpredict the chemical reaction and heat transfer rates between the molten debris and the system atmosphere. CONTAIN 1.12 predicted the peak vessel pressure to within less than 2% of the experimental value, but missed the timing on the pressure peak by approximately 1.75 s over the course of a 10 s calculation. 6 refs., 6 figs.

  12. Atmospheric effects on oblique impacts

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1991-01-01

    Laboratory experiments and theoretical calculations often use vertical impact angles (90 deg) in order to avoid the complicating effect of asymmetry. Nevertheless, oblique impacts represent the most likely starting condition for planetary cratering. Changing both impact angles and atmospheric pressure not only allows testing previous results for vertical impacts but also reveals phenomena whose signatures would otherwise be masked in the planetary cratering record. The laboratory studies were performed for investigating impact cratering processes. Impact angles can be increased from 0 to 90 deg in 15 deg increments while maintaining a flat target surface. Different atmospheres (nitrogen, argon, and helium) characterized the effects of both gas density and Mach number. Targets varied according to purpose. Because of the complexities in atmosphere-impactor-ejecta interactions, no single combination allows direct simulation of a planetary-scale (10-100 km) event. Nevertheless, fundamental processes and observed phenomena allow formulating first-order models at such broad scales.

  13. Electromagnetic charges in aggregation phenomena.

    NASA Astrophysics Data System (ADS)

    Rioux, Claude; Slobodrian, R. J.

    Introduction The mechanism of fine particles aggregation is of great importance in many areas of research, in particular environment sciences where the state of aggregation defines the removal speed of dust from the atmosphere. The study of this mechanism is also important to understand the first stage of planet formation from the solar nebula. The aggregates formed are generally fractals and, as mentioned in the literature [1], the fractal dimensions and the site growth probability measures of the resulting fractal structures strongly depend on the properties of the forces that cause the aggregation. Theory and experimental apparatus We began this study by the aggregation between two charged particles and we are now consid-ering the aggregation between two magnetized particles. The aggregations are produced in a gas at a pressure between 10 and 1000 mbar and by using the applicable simplifications; we find that the distance (r) between the particles as a function of time (t) is given by the following equations: r=Ce(tf -t)1/3 for the electrical attraction r=Cm(tf -t)1/5 for the magnetic dipoles aligned in an external magnetic field. The apparatus built for these measurements consists of an experimental cell from which two perpendicular views are combined via an optical system in one image recorded by a video camera. From the video, we can then measure the distance between the particles as a function of time and reconstruct the trajectories in 3-D. The horizontal and vertical resolutions are respectively 0.86 and 0.92 microns per pixel. With a depth of field of 250 microns, the usable volume for 3-D observation in then 250 microns x 250 microns x 443 microns. Results and discussion A first version of the apparatus was tested on an electrical force aggregation and the results [2] show that the corresponding equation is a good representation of the phenomenon. Preliminary results, from an experiment using iron particles, show that the magnetic force can be seen in

  14. Synchronization Phenomena and Epoch Filter of Electroencephalogram

    NASA Astrophysics Data System (ADS)

    Matani, Ayumu

    Nonlinear electrophysiological synchronization phenomena in the brain, such as event-related (de)synchronization, long distance synchronization, and phase-reset, have received much attention in neuroscience over the last decade. These phenomena contain more electrical than physiological keywords and actually require electrical techniques to capture with electroencephalography (EEG). For instance, epoch filters, which have just recently been proposed, allow us to investigate such phenomena. Moreover, epoch filters are still developing and would hopefully generate a new paradigm in neuroscience from an electrical engineering viewpoint. Consequently, electrical engineers could be interested in EEG once again or from now on.

  15. Canister storage building natural phenomena design loads

    SciTech Connect

    Tallman, A.M.

    1996-02-01

    This document presents natural phenomena hazard (NPH) loads for use in the design and construction of the Canister Storage Building (CSB), which will be located in the 200 East Area of the Hanford Site.

  16. Classifying prion and prion-like phenomena.

    PubMed

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  17. Perspective: Emergent magnetic phenomena at interfaces

    SciTech Connect

    Suzuki, Yuri

    2015-06-01

    The discovery of emergent magnetic phenomena is of fundamental and technological interest. This perspective highlights recent promising examples of emergent ferromagnetism at complex oxide interfaces in the context of spin based electronics.

  18. Nanoflares, Spicules, and Other Small-Scale Dynamic Phenomena on the Sun

    NASA Technical Reports Server (NTRS)

    Klimchuk, James

    2010-01-01

    There is abundant evidence of highly dynamic phenomena occurring on very small scales in the solar atmosphere. For example, the observed pr operties of many coronal loops can only be explained if the loops are bundles of unresolved strands that are heated impulsively by nanoflares. Type II spicules recently discovered by Hinode are an example of small-scale impulsive events occurring in the chromosphere. The exist ence of these and other small-scale phenomena is not surprising given the highly structured nature of the magnetic field that is revealed by photospheric observations. Dynamic phenomena also occur on much lar ger scales, including coronal jets, flares, and CMEs. It is tempting to suggest that these different phenomena are all closely related and represent a continuous distribution of sizes and energies. However, this is a dangerous over simplification in my opinion. While it is tru e that the phenomena all involve "magnetic reconnection" (the changin g of field line connectivity) in some form, how this occurs depends s trongly on the magnetic geometry. A nanoflare resulting from the interaction of tangled magnetic strands within a confined coronal loop is much different from a major flare occurring at the current sheet form ed when a CME rips open an active region. I will review the evidence for ubiquitous small-scale dynamic phenomena on the Sun and discuss wh y different phenomena are not all fundamentally the same.

  19. A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms

    NASA Technical Reports Server (NTRS)

    Simoes, Fernando; Pfaff, Robert; Berthelier, Jean-Jacques; Klenzing, Jeffrey

    2012-01-01

    Investigation of coupling mechanisms between the troposphere and the ionosphere requires a multidisciplinary approach involving several branches of atmospheric sciences, from meteorology, atmospheric chemistry, and fulminology to aeronomy, plasma physics, and space weather. In this work, we review low frequency electromagnetic wave propagation in the Earth-ionosphere cavity from a troposphere-ionosphere coupling perspective. We discuss electromagnetic wave generation, propagation, and resonance phenomena, considering atmospheric, ionospheric and magnetospheric sources, from lightning and transient luminous events at low altitude to Alfven waves and particle precipitation related to solar and magnetospheric processes. We review in situ ionospheric processes as well as surface and space weather phenomena that drive troposphere-ionosphere dynamics. Effects of aerosols, water vapor distribution, thermodynamic parameters, and cloud charge separation and electrification processes on atmospheric electricity and electromagnetic waves are reviewed. We also briefly revisit ionospheric irregularities such as spread-F and explosive spread-F, sporadic-E, traveling ionospheric disturbances, Trimpi effect, and hiss and plasma turbulence. Regarding the role of the lower boundary of the cavity, we review transient surface phenomena, including seismic activity, earthquakes, volcanic processes and dust electrification. The role of surface and atmospheric gravity waves in ionospheric dynamics is also briefly addressed. We summarize analytical and numerical tools and techniques to model low frequency electromagnetic wave propagation and solving inverse problems and summarize in a final section a few challenging subjects that are important for a better understanding of tropospheric-ionospheric coupling mechanisms.

  20. Active—Passive radiolocation of dangerous natural phenomena

    NASA Astrophysics Data System (ADS)

    Kachurin, L. G.

    1990-05-01

    In nature one observes strong deviations from thermodynamic equilibrium. The most dangerous natural phenomena proceeding in a thermodynamically irreversible way, are accompanied by the initiation of nonthermal impulse radio and optical radiation, the intensity and amplitude-frequency characteristics of which may serve as a measure of irreversibility while making the passive radiolocation and simultaneously as an information characteristic of the degree of the phenomenon's approach to the stage of maximum development. The active radiolocation of natural phenomena at the stage of thermodynamic irreversibility has a number of distinct features caused by the high speed of their progress and anomalies of the dielectric properties and accordingly, effective scattering area of natural radio targets. The above is the physical basis of the method proposed by the author, that of the active-passive radiolocation of dangerous natural phenomena such as thunderstorms-both naturally developing and provoked by flying vehicles or other modifying means, avalanches, landslides, catastrophic atmospheric eddies and showers, sudden destruction of sea, river and lake ice and so on. Active-passive radar sounding of cloudiness presumes radical changes in the air traffic control in thunderous situations in the take-off and landing areas of flying vehicles as well as along the airways. Thermodynamic irreversibility turns out to be an important factor in the process of the interaction of ice with heavy-duty icebreakers (nuclear-powered vessels) causing their anomalous corrosion. The non-thermal radio radiation arising at the deformation of ice cover under the pressure of an icebreaker or under the action of wind load, may be used while choosing the route and tactics of the ice-breaker's progress, for the hydrometeorological service of other sea and coastal operations. The completed investigations of the thermodynamically irreversible natural phenomena have found practical application, but

  1. Convective storms in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sánchez-Lavega, A.

    2013-05-01

    The atmospheres of the planets in the Solar System have different physical properties that in some cases can be considered as extreme when compared with our own planet's more familiar atmosphere. From the tenuous and cold atmosphere of Mars to the dense and warm atmosphere of Venus in the case of the terrestrial planets, to the gigantic atmospheres of the outer planets, or the nitrogen and methane atmosphere of Saturn's moon Titan, we can find a large variety of physical environments. The comparative study of these atmospheres provides a better understanding of the physics of a geophysical fluid. In many of these worlds convective storms of different intensity appear. They are analogous to terrestrial atmospheres fed by the release of latent heat when one of the gases in the atmosphere condenses and they are therefore called moist convective storms. In many of these planets they can produce severe meteorological phenomena and by studying them in a comparative way we can aspire to get a further insight in the dynamics of these atmospheres even beyond the scope of moist convection. A classical example is the structure of the complex systems of winds in the giant planets Jupiter and Saturn. These winds are zonal and alternate in latitude but their deep structure is not accessible to direct observation. However the behaviour of large--scale convective storms vertically extending over the "weather layer" allows to study the buried roots of these winds. Another interesting atmosphere with a rather different structure of convection is Titan, a world where methane is close to its triple point in the atmosphere and can condense in bright clouds with large precipitation fluxes that may model part of the orography of the surface making Titan a world with a methane cycle similar to the hydrological cycle of Earth's atmosphere.

  2. Investigating the students' understanding of surface phenomena

    NASA Astrophysics Data System (ADS)

    Hamed, Kastro Mohamad

    1999-11-01

    This study investigated students' understanding of surface phenomena. The main purpose for conducting this research endeavor was to understand how students think about a complex topic about which they have little direct or formal instruction. The motivation for focusing on surface phenomena stemmed from an interest in integrating research and education. Despite the importance of surfaces and interfaces in research laboratories, in technological applications, and in everyday experiences, no previous systematic effort was done on pedagogy related to surface phenomena. The design of this research project was qualitative, exploratory, based on a Piagetian semi-structured clinical piloted interview, focused on obtaining a longitudinal view of the intended sample. The sampling was purposeful and the sample consisted of forty-four undergraduate students at Kansas State University. The student participants were enrolled in physics classes that spanned a wide academic spectrum. The data were analyzed qualitatively. The main themes that emerged from the analysis were: (a) students used analogies when confronted with novel situations, (b) students mixed descriptions and explanations, (c) students used the same explanation for several phenomena, (d) students manifested difficulties transferring the meaning of vocabulary across discipline boundaries, (e) in addition to the introductory chemistry classes, students used everyday experiences and job-related experiences as sources of knowledge, and (f) students' inquisitiveness and eagerness to investigate and discuss novel phenomena seemed to peak about the time students were enrolled in second year physics classes.

  3. Anomalous Light Phenomena vs. Bioelectric Brain Activity

    NASA Astrophysics Data System (ADS)

    Teodorani, M.; Nobili, G.

    We present a research proposal concerning the instrumented investigation of anomalous light phenomena that are apparently correlated with particular mind states, such as prayer, meditation or psi. Previous research by these authors demonstrate that such light phenomena can be monitored and measured quite efficiently in areas of the world where they are reported in a recurrent way. Instruments such as optical equipment for photography and spectroscopy, VLF spectrometers, magnetometers, radar and IR viewers were deployed and used massively in several areas of the world. Results allowed us to develop physical models concerning the structural and time-variable behaviour of light phenomena, and their kinematics. Recent insights and witnesses have suggested to us that a sort of "synchronous connection" seems to exist between plasma-like phenomena and particular mind states of experiencers who seem to trigger a light manifestation which is very similar to the one previously investigated. The main goal of these authors is now aimed at the search for a concrete "entanglement-like effect" between the experiencer's mind and the light phenomena, in such a way that both aspects are intended to be monitored and measured simultaneously using appropriate instrumentation. The goal of this research project is twofold: a) to verify quantitatively the existence of one very particular kind of mind-matter interaction and to study in real time its physical and biophysical manifestations; b) to repeat the same kind of experiment using the same test-subject in different locations and under various conditions of geomagnetic activity.

  4. Solar Atmosphere Models

    NASA Astrophysics Data System (ADS)

    Rutten, R. J.

    2002-12-01

    This contribution honoring Kees de Jager's 80th birthday is a review of "one-dimensional" solar atmosphere modeling that followed on the initial "Utrecht Reference Photosphere" of Heintze, Hubenet & de Jager (1964). My starting point is the Bilderberg conference, convened by de Jager in 1967 at the time when NLTE radiative transfer theory became mature. The resulting Bilderberg model was quickly superseded by the HSRA and later by the VAL-FAL sequence of increasingly sophisticated NLTE continuum-fitting models from Harvard. They became the "standard models" of solar atmosphere physics, but Holweger's relatively simple LTE line-fitting model still persists as a favorite of solar abundance determiners. After a brief model inventory I discuss subsequent work on the major modeling issues (coherency, NLTE, dynamics) listed as to-do items by de Jager in 1968. The present conclusion is that one-dimensional modeling recovers Schwarzschild's (1906) finding that the lower solar atmosphere is grosso modo in radiative equilibrium. This is a boon for applications regarding the solar atmosphere as one-dimensional stellar example - but the real sun, including all the intricate phenomena that now constitute the mainstay of solar physics, is vastly more interesting.

  5. Theories of dynamical phenomena in sunspots

    NASA Technical Reports Server (NTRS)

    Thomas, J. H.

    1981-01-01

    Attempts that have been made to understand and explain observed dynamical phenomena in sunspots within the framework of magnetohydrodynamic theory are surveyed. The qualitative aspects of the theory and physical arguments are emphasized, with mathematical details generally avoided. The dynamical phenomena in sunspots are divided into two categories: aperiodic (quasi-steady) and oscillatory. For each phenomenon discussed, the salient observational features that any theory should explain are summarized. The two contending theoretical models that can account for the fine structure of the Evershed motion, namely the convective roll model and the siphon flow model, are described. With regard to oscillatory phenomena, attention is given to overstability and oscillatory convection, umbral oscillations and flashes. penumbral waves, five-minute oscillations in sunspots, and the wave cooling of sunspots.

  6. Fundamental investigation of duct/ESP phenomena

    SciTech Connect

    Brown, C.A. ); Durham, M.D. ); Sowa, W.A. . Combustion Lab.); Himes, R.M. ); Mahaffey, W.A. )

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  7. Halo phenomena modified by multiple scattering.

    NASA Astrophysics Data System (ADS)

    Takano, Y.; Kuo-Nan, Liou

    1990-05-01

    Halo phenomena produced by horizontally oriented plate and column ice crystals are computed. Owing to the effect of multiple scattering, a number of optical features, in addition to the well-known halos and arcs caused by single scattering, can be produced in the sky. These include the parhelia, the anthelion, the uniform and white parhelic circle, and the uniform and white circumzenithal circle in the case of horizontally oriented plates. The anthelion is a result of double scattering that involves horizontally oriented columns that produce the Parry arc. The optical phenomena identified in the present study are compared with those of previous research and discussed.

  8. Atmospheric probing by Doppler radar

    NASA Technical Reports Server (NTRS)

    Lhermitte, R. M.

    1969-01-01

    A survey is presented of the application of Doppler techniques to the study of atmospheric phenomena. Particular emphasis is placed on the requirement of adequate digital processing means for the Doppler signal and the Doppler data which are acquired at a very high rate. The need is discussed of a two or three Doppler method as an ultimate approach to the problem of observing the three-dimensional field of particle motion inside convective storms.

  9. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  10. Charged dust phenomena in the near-Earth space environment.

    PubMed

    Scales, W A; Mahmoudian, A

    2016-10-01

    Dusty (or complex) plasmas in the Earth's middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented. PMID:27575926

  11. Comments on the measurements of multiple muon phenomena

    NASA Technical Reports Server (NTRS)

    Sato, T.; Takahashi, T.; Higashi, S.

    1985-01-01

    The extensive air showers in the energy around 10 to the 15th power eV include those initiated by astrophysical primary gamma-rays. The observations need a precise measurement on the directions of primary particles. It is one of the methods to measure the directions of high-energy muons in air showers. The accuracy in measuring the direction, by calculating the cosmic-ray phenomena in the atmosphere at very high energy was investgated. The results calculated by Monte Carlo method suggest that one may determine the direction of primary cosmic-rays within errors of 10/3 rad in observing muons of above 100 GeV at sea level.

  12. Charged dust phenomena in the near-Earth space environment

    NASA Astrophysics Data System (ADS)

    Scales, W. A.; Mahmoudian, A.

    2016-10-01

    Dusty (or complex) plasmas in the Earth’s middle and upper atmosphere ultimately result in exotic phenomena that are currently forefront research issues in the space science community. This paper presents some of the basic criteria and fundamental physical processes associated with the creation, evolution and dynamics of dusty plasmas in the near-Earth space environment. Recent remote sensing techniques to probe naturally created dusty plasma regions are also discussed. These include ground-based experiments employing high-power radio wave interaction. Some characteristics of the dusty plasmas that are actively produced by space-borne aerosol release experiments are discussed. Basic models that may be used to investigate the characteristics of such dusty plasma regions are presented.

  13. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn's moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  14. Neutral Atmospheres

    NASA Astrophysics Data System (ADS)

    Mueller-Wodarg, I. C. F.; Strobel, D. F.; Moses, J. I.; Waite, J. H.; Crovisier, J.; Yelle, R. V.; Bougher, S. W.; Roble, R. G.

    2008-08-01

    This paper summarizes the understanding of aeronomy of neutral atmospheres in the solar system, discussing most planets as well as Saturn’s moon Titan and comets. The thermal structure and energy balance is compared, highlighting the principal reasons for discrepancies amongst the atmospheres, a combination of atmospheric composition, heliocentric distance and other external energy sources not common to all. The composition of atmospheres is discussed in terms of vertical structure, chemistry and evolution. The final section compares dynamics in the upper atmospheres of most planets and highlights the importance of vertical dynamical coupling as well as magnetospheric forcing in auroral regions, where present. It is shown that a first order understanding of neutral atmospheres has emerged over the past decades, thanks to the combined effects of spacecraft and Earth-based observations as well as advances in theoretical modeling capabilities. Key gaps in our understanding are highlighted which ultimately call for a more comprehensive programme of observation and laboratory measurements.

  15. NASA/MSFC FY-81 Atmospheric Processes Research Review

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler)

    1981-01-01

    Progress in ongoing research programs and future plans for satellite investigations into global weather, upper atmospheric phenomena, and severe storms and local weather are summarized. Principle investigators and publications since June 1980 are listed.

  16. Shock phenomena in dusty plasmas of the Solar System

    NASA Astrophysics Data System (ADS)

    Popel, S. I.

    The results on shock phenomena in dusty plasmas of the Solar System are reviewed. The emphasis is given to the problems of dust ion acoustic bow shock in interaction of the solar wind with dusty cometary coma and formation of transient atmospheres of atmosphereless cosmic bodies such as Moon, Mercury, asteroids and comets. The latter assumes the evolution of meteoroid impact plumes and production of charged dust grains due to the condensation of both the plume substance and the vapor thrown from the crater and the surrounding regolith layer. Active rocket experiments, which involve the release of some gaseous substance in near-Earth space, are described. These experiments model physical phenomena occurring during large meteoroid impacts. New vistas in investigation of shock processes in space dusty plasmas are determined. This work was carried out within the Program of Fundamental Investigations of the Division of Earth Sciences of the Russian Academy of Sciences "Nanoparticles in Natural and Technogenic Systems" and was supported by the Russian Foundation for Basic Research, project no. 06-05-64826-a. One of the authors (S.I.P.) would like to thank the Russian Science Support Foundation for the grant in the nomination "Doctors of Science of the Russian Academy of Sciences".

  17. Atmospheric neutrons

    NASA Technical Reports Server (NTRS)

    Korff, S. A.; Mendell, R. B.; Merker, M.; Light, E. S.; Verschell, H. J.; Sandie, W. S.

    1979-01-01

    Contributions to fast neutron measurements in the atmosphere are outlined. The results of a calculation to determine the production, distribution and final disappearance of atmospheric neutrons over the entire spectrum are presented. An attempt is made to answer questions that relate to processes such as neutron escape from the atmosphere and C-14 production. In addition, since variations of secondary neutrons can be related to variations in the primary radiation, comment on the modulation of both radiation components is made.

  18. Atmospheric Physics

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The possibility of extending the atmospheric observation from space is discussed. Observations of the earth's limb from GEO at microwave frequencies, global mapping of ozone, charged particle precipitation, photochemical reactions, spectral emissions from the atmosphere, microwave measurements, and radio probing of the atmosphere and ionosphere, which were not feasible prior to the availability of the shuttle because of the antenna limitations, may be readily carried out from the space stations.

  19. Infrared experiments for spaceborne planetary atmospheres research. Full report

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The role of infrared sensing in atmospheric science is discussed and existing infrared measurement techniques are reviewed. Proposed techniques for measuring planetary atmospheres are criticized and recommended instrument developments for spaceborne investigations are summarized for the following phenomena: global and local radiative budget; radiative flux profiles; winds; temperature; pressure; transient and marginal atmospheres; planetary rotation and global atmospheric activity; abundances of stable constituents; vertical, lateral, and temporal distribution of abundances; composition of clouds and aerosols; radiative properties of clouds and aerosols; cloud microstructure; cloud macrostructure; and non-LTE phenomena.

  20. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  1. Simple Phenomena, Slow Motion, Surprising Physics

    ERIC Educational Resources Information Center

    Koupil, Jan; Vicha, Vladimir

    2011-01-01

    This article describes a few simple experiments that are worthwhile for slow motion recording and analysis either because of interesting phenomena that can be seen only when slowed down significantly or because of the ability to do precise time measurements. The experiments described in this article are quite commonly done in Czech schools. All…

  2. Phylogeny of Aging and Related Phenoptotic Phenomena.

    PubMed

    Libertini, G

    2015-12-01

    The interpretation of aging as adaptive, i.e. as a phenomenon genetically determined and modulated, and with an evolutionary advantage, implies that aging, as any physiologic mechanism, must have phylogenetic connections with similar phenomena. This review tries to find the phylogenetic connections between vertebrate aging and some related phenomena in other species, especially within those phenomena defined as phenoptotic, i.e. involving the death of one or more individuals for the benefit of other individuals. In particular, the aim of the work is to highlight and analyze similarities and connections, in the mechanisms and in the evolutionary causes, between: (i) proapoptosis in prokaryotes and apoptosis in unicellular eukaryotes; (ii) apoptosis in unicellular and multicellular eukaryotes; (iii) aging in yeast and in vertebrates; and (iv) the critical importance of the DNA subtelomeric segment in unicellular and multicellular eukaryotes. In short, there is strong evidence that vertebrate aging has clear similarities and connections with phenomena present in organisms with simpler organization. These phylogenetic connections are a necessary element for the sustainability of the thesis of aging explained as an adaptive phenomenon, and, on the contrary, are incompatible with the opposite view of aging as being due to the accumulation of random damages of various kinds.

  3. Temporal Phenomena in the Korean Conjunctive Constructions

    ERIC Educational Resources Information Center

    Kim, Dongmin

    2015-01-01

    The goal of this study is to characterize the temporal phenomena in the Korean conjunctive constructions. These constructions consist of three components: a verbal stem, a clause medial temporal suffix, and a clause terminal suffix. This study focuses on both the temporality of the terminal connective suffixes and the grammatical meanings of the…

  4. Phylogeny of Aging and Related Phenoptotic Phenomena.

    PubMed

    Libertini, G

    2015-12-01

    The interpretation of aging as adaptive, i.e. as a phenomenon genetically determined and modulated, and with an evolutionary advantage, implies that aging, as any physiologic mechanism, must have phylogenetic connections with similar phenomena. This review tries to find the phylogenetic connections between vertebrate aging and some related phenomena in other species, especially within those phenomena defined as phenoptotic, i.e. involving the death of one or more individuals for the benefit of other individuals. In particular, the aim of the work is to highlight and analyze similarities and connections, in the mechanisms and in the evolutionary causes, between: (i) proapoptosis in prokaryotes and apoptosis in unicellular eukaryotes; (ii) apoptosis in unicellular and multicellular eukaryotes; (iii) aging in yeast and in vertebrates; and (iv) the critical importance of the DNA subtelomeric segment in unicellular and multicellular eukaryotes. In short, there is strong evidence that vertebrate aging has clear similarities and connections with phenomena present in organisms with simpler organization. These phylogenetic connections are a necessary element for the sustainability of the thesis of aging explained as an adaptive phenomenon, and, on the contrary, are incompatible with the opposite view of aging as being due to the accumulation of random damages of various kinds. PMID:26638678

  5. Geophysical phenomena classification by artificial neural networks

    NASA Technical Reports Server (NTRS)

    Gough, M. P.; Bruckner, J. R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN's) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN's were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  6. Geophysical phenomena classification by artificial neural networks

    SciTech Connect

    Gough, M.P.; Bruckner, J.R.

    1995-01-01

    Space science information systems involve accessing vast data bases. There is a need for an automatic process by which properties of the whole data set can be assimilated and presented to the user. Where data are in the form of spectrograms, phenomena can be detected by pattern recognition techniques. Presented are the first results obtained by applying unsupervised Artificial Neural Networks (ANN`s) to the classification of magnetospheric wave spectra. The networks used here were a simple unsupervised Hamming network run on a PC and a more sophisticated CALM network run on a Sparc workstation. The ANN`s were compared in their geophysical data recognition performance. CALM networks offer such qualities as fast learning, superiority in generalizing, the ability to continuously adapt to changes in the pattern set, and the possibility to modularize the network to allow the inter-relation between phenomena and data sets. This work is the first step toward an information system interface being developed at Sussex, the Whole Information System Expert (WISE). Phenomena in the data are automatically identified and provided to the user in the form of a data occurrence morphology, the Whole Information System Data Occurrence Morphology (WISDOM), along with relationships to other parameters and phenomena.

  7. Intervention in Biological Phenomena via Feedback Linearization

    PubMed Central

    Fnaiech, Mohamed Amine; Nounou, Hazem; Nounou, Mohamed; Datta, Aniruddha

    2012-01-01

    The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented demonstrate the effectiveness of the proposed technique. PMID:23209459

  8. Intervention in Biological Phenomena via Feedback Linearization.

    PubMed

    Fnaiech, Mohamed Amine; Nounou, Hazem; Nounou, Mohamed; Datta, Aniruddha

    2012-01-01

    The problems of modeling and intervention of biological phenomena have captured the interest of many researchers in the past few decades. The aim of the therapeutic intervention strategies is to move an undesirable state of a diseased network towards a more desirable one. Such an objective can be achieved by the application of drugs to act on some genes/metabolites that experience the undesirable behavior. For the purpose of design and analysis of intervention strategies, mathematical models that can capture the complex dynamics of the biological systems are needed. S-systems, which offer a good compromise between accuracy and mathematical flexibility, are a promising framework for modeling the dynamical behavior of biological phenomena. Due to the complex nonlinear dynamics of the biological phenomena represented by S-systems, nonlinear intervention schemes are needed to cope with the complexity of the nonlinear S-system models. Here, we present an intervention technique based on feedback linearization for biological phenomena modeled by S-systems. This technique is based on perfect knowledge of the S-system model. The proposed intervention technique is applied to the glycolytic-glycogenolytic pathway, and simulation results presented demonstrate the effectiveness of the proposed technique. PMID:23209459

  9. Solar Phenomena Associated with "EIT Waves"

    NASA Technical Reports Server (NTRS)

    Biesecker, D. A.; Myers, D. C.; Thompson, B. J.; Hammer, D. M.; Vourlidas, A.

    2002-01-01

    In an effort to understand what an 'EIT wave' is and what its causes are, we have looked for correlations between the initiation of EIT waves and the occurrence of other solar phenomena. An EIT wave is a coronal disturbance, typically appearing as a diffuse brightening propagating across the Sun. A catalog of EIT waves, covering the period from 1997 March through 1998 June, was used in this study. For each EIT wave, the catalog gives the heliographic location and a rating for each wave, where the rating is determined by the reliability of the observations. Since EIT waves are transient, coronal phenomena, we have looked for correlations with other transient, coronal phenomena: X-ray flares, coronal mass ejections (CMEs), and metric type II radio bursts. An unambiguous correlation between EIT waves and CMEs has been found. The correlation of EIT waves with flares is significantly weaker, and EIT waves frequently are not accompanied by radio bursts. To search for trends in the data, proxies for each of these transient phenomena are examined. We also use the accumulated data to show the robustness of the catalog and to reveal biases that must be accounted for in this study.

  10. Atmospheric chemistry

    SciTech Connect

    Sloane, C.S. ); Tesche, T.W. )

    1991-01-01

    This book covers the predictive strength of atmospheric models. The book covers all of the major important atmospheric areas, including large scale models for ozone depletion and global warming, regional scale models for urban smog (ozone and visibility impairment) and acid rain, as well as accompanying models of cloud processes and biofeedbacks.

  11. The Atmosphere.

    ERIC Educational Resources Information Center

    Ingersoll, Andrew P.

    1983-01-01

    The composition and dynamics of the earth's atmosphere are discussed, considering the atmosphere's role in distributing the energy of solar radiation received by the earth. Models of this activity which help to explain climates of the past and predict those of the future are also considered. (JN)

  12. Satellite Atmosphere and Io Torus Observations

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas M.

    2000-01-01

    Io is the most volcanically active body in the solar system, and it is embedded deep within the strongest magnetosphere of any planet. This combination of circumstances leads to a host of scientifically compelling phenomena, including (1) an atmosphere out of proportion with such a small object, (2) a correspondingly large atmospheric escape rate, (3) a ring of dense plasma locked in a feedback loop with the atmosphere, and (4) a host of Io-induced emissions from radio bursts to UV auroral spots on Jupiter. This proposal seeks to continue our investigation into the physics connecting these phenomena, with emphasis on Io's atmosphere and plasma torus. The physical processes are clearly of interest for Io, and also other places in the solar system where they are important but not readily observable.

  13. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike. PMID:17842831

  14. Auroral Phenomena: Associated with auroras in complex ways are an extraordinary number of other physical phenomena.

    PubMed

    O'brien, B J

    1965-04-23

    The array of auroral phenomena involves all the basic types of physical phenomena: heat, light, sound, electricity and magnetism, atomic physics, and plasma physics. The uncontrollability, the unreproducibility, and the sheer enormity of the phenomena will keep experimentalists and theorists busy but unsatisfied for many years to come. The greatest challenge in this field of research is an adequate experimentally verifiable theory of the local energization of auroral particle fluxes. Once that is achieved, there is every likelihood that the multitude of correlations between auroral phenomena can be understood and appreciated. Until that time, however, such correlations are to be regarded like icebergs-the parts that can be seen are only a small fraction of the whole phenomenon, and it is the large unseen parts that can be dangerous to theorists and experimentalists alike.

  15. Vector analysis of postcardiotomy behavioral phenomena.

    PubMed

    Caston, J C; Miller, W C; Felber, W J

    1975-04-01

    The classification of postcardiotomy behavioral phenomena in Figure 1 is proposed for use as a clinical instrument to analyze etiological determinants. The utilization of a vector analysis analogy inherently denies absolutism. Classifications A-P are presented as prototypes of certain ratio imbalances of the metabolic, hemodynamic, environmental, and psychic vectors. Such a system allows for change from one type to another according to the individuality of the patient and the highly specific changes in his clinical presentation. A vector analysis also allows for infinite intermediary ratio imbalances between classification types as a function of time. Thus, postcardiotomy behavioral phenomena could be viewed as the vector summation of hemodynamic, metabolic, environmental, and psychic processes at a given point in time. Elaboration of unknown determinants in this complex syndrome appears to be task for the future.

  16. A review of impulsive phase phenomena

    NASA Technical Reports Server (NTRS)

    Dejager, C.

    1986-01-01

    A brief review is given of impulsive phase phenomena in support of the models used to compute the energies of the different components of the flares under study. The observational characteristics of the impulsive phase are discussed as well as the evidence for multi-thermal or non-thermal phenomena. The significance of time delays between hard X-rays and microwaves is discussed in terms of electron beams and Alfven waves, two-step acceleration, and secondary bursts at large distances from the primary source. Observations indicating the occurrence of chromospheric evaporation, coronal explosions, and thermal conduction fronts are reviewed briefly, followed by the gamma ray and neutron results. Finally, a preferred flare scenario and energy source are presented involving the interactions in a complex of magnetic loops with the consequent reconnection and electron acceleration.

  17. Vector analysis of postcardiotomy behavioral phenomena.

    PubMed

    Caston, J C; Miller, W C; Felber, W J

    1975-04-01

    The classification of postcardiotomy behavioral phenomena in Figure 1 is proposed for use as a clinical instrument to analyze etiological determinants. The utilization of a vector analysis analogy inherently denies absolutism. Classifications A-P are presented as prototypes of certain ratio imbalances of the metabolic, hemodynamic, environmental, and psychic vectors. Such a system allows for change from one type to another according to the individuality of the patient and the highly specific changes in his clinical presentation. A vector analysis also allows for infinite intermediary ratio imbalances between classification types as a function of time. Thus, postcardiotomy behavioral phenomena could be viewed as the vector summation of hemodynamic, metabolic, environmental, and psychic processes at a given point in time. Elaboration of unknown determinants in this complex syndrome appears to be task for the future. PMID:1090426

  18. Transport Phenomena During Equiaxed Solidification of Alloys

    NASA Technical Reports Server (NTRS)

    Beckermann, C.; deGroh, H. C., III

    1997-01-01

    Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.

  19. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  20. A new mechanism for lunar transient phenomena

    SciTech Connect

    Zito, R.R. )

    1989-12-01

    Lunar transient phenomena, which are changes in lunar surface brightness observed over the course of four centuries, are presently characterized by a novel mechanism in which electrodynamic effects associated with rock fracturing could account for the sporadic optical pulses noted near specific lunar features. It is suggested that only mild seismic activity, or perhaps thermal cracking, may be required for the activation of the proposed mechanism. 22 refs.

  1. Natural phenomena hazards site characterization criteria

    SciTech Connect

    Not Available

    1994-03-01

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  2. Seismoelectric Phenomena in Fluid-Saturated Sediments

    SciTech Connect

    Block, G I; Harris, J G

    2005-04-22

    Seismoelectric phenomena in sediments arise from acoustic wave-induced fluid motion in the pore space, which perturbs the electrostatic equilibrium of the electric double layer on the grain surfaces. Experimental techniques and the apparatus built to study this electrokinetic (EK) effect are described and outcomes for studies of seismoelectric phenomena in loose glass microspheres and medium-grain sand are presented. By varying the NaCl concentration in the pore fluid, we measured the conductivity dependence of two kinds of EK behavior: (1) the electric fields generated within the samples by the passage of transmitted acoustic waves, and (2) the electromagnetic wave produced at the fluid-sediment interface by the incident acoustic wave. Both phenomena are caused by relative fluid motion in the sediment pores--this feature is characteristic of poroelastic (Biot) media, but not predicted by either viscoelastic fluid or solid models. A model of plane-wave reflection from a fluid-sediment interface using EK-Biot theory leads to theoretical predictions that compare well to the experimental data for both sand and glass microspheres.

  3. Stability and restoration phenomena in competitive systems

    NASA Astrophysics Data System (ADS)

    Uechi, Lisa; Akutsu, Tatsuya

    2013-10-01

    A conservation law along with stability, recovering phenomena, and characteristic patterns of a nonlinear dynamical system have been studied and applied to physical, biological, and ecological systems. In our previous study, we proposed a system of symmetric 2n-dimensional conserved nonlinear differential equations. In this paper, competitive systems described by a 2-dimensional nonlinear dynamical (ND) model with external perturbations are applied to population cycles and recovering phenomena of systems from microbes to mammals. The famous 10-year cycle of population density of Canadian lynx and snowshoe hare is numerically analyzed. We find that a nonlinear dynamical system with a conservation law is stable and generates a characteristic rhythm (cycle) of population density, which we call the standard rhythm of a nonlinear dynamical system. The stability and restoration phenomena are strongly related to a conservation law and the balance of a system. The standard rhythm of population density is a manifestation of the survival of the fittest to the balance of a nonlinear dynamical system.

  4. Physical mechanism of membrane osmotic phenomena

    SciTech Connect

    Guell, D.C.; Brenner, H.

    1996-09-01

    The microscale, physicomechanical cause of osmosis and osmotic pressure in systems involving permeable and semipermeable membranes is not well understood, and no fully satisfactory mechanism has been offered to explain these phenomena. A general theory, albeit limited to dilute systems of inert, noninteracting solute particles, is presented which demonstrates that short-range forces exerted by the membrane on the dispersed solute particles constitute the origin of osmotic phenomena. At equilibrium, the greater total force exerted by the membrane on those solute particles present in the reservoir containing the more concentrated of the two solutions bathing the membrane is balanced by a macroscopically observable pressure difference between the two reservoirs. The latter constitutes the so-called osmotic pressure difference. Under nonequilibrium conditions, the membrane-solute force is transmitted to the solvent, thus driving the convective flow of solvent observed macroscopically as osmosis. While elements of these ideas have been proposed previously in various forms, the general demonstration offered here of the physicomechanical source of osmotic phenomena is novel. Beyond the purely academic interest that exists in establishing a mechanical understanding of osmotic pressure, the analysis lays the foundation underlying a quantitative theory of osmosis in dilute, nonequilibrium systems outlined in a companion paper.

  5. Bion and Tustin: the autistic phenomena.

    PubMed

    Korbivcher, Celia Fix

    2013-08-01

    This article examines the implications of the proposal of autistic transformations within the general context of Bion's theory of Transformations. The aim is to confirm the coherence of this proposal of autistic transformations within the overall structure of Bion's theory of Transformations. She examines the relation between emotional links and their negatives, particularly -K. She questions in which of the dimensions of the mind the autistic phenomena are located, the relation between autistic phenomena and beta elements, and where to place them in the Grid. The author tries to form metapsychological support for the incorporation of the autistic area in Bion's theory of Transformations. She argues that, despite the incongruence and imprecision of this incorporation, such autistic phenomena cannot be excluded from the complexus of the human mind and should therefore be accounted for in Bion's transformations. She discusses the idea that the theory of transformations includes the field of the neurosis and psychosis and deals with emotions, whereas the autistic area is dominated by sensations. The author asks how to add the autistic area to Bion's theory. Clinical material of a child for whom the non-psychotic part of the personality predominates and who presents autistic nuclei provides material for the discussion.

  6. Search for collective phenomena in hadron interactions

    SciTech Connect

    Kokoulina, E. S. Nikitin, V. A. Petukhov, Y. P.; Karpov, A. V. Kutov, A. Ya.

    2010-12-15

    New results of the search for collective phenomena have been obtained and analyzed in the present report. The experimental studies are carried out on U-70 accelerator of IHEP in Protvino. It is suggested that these phenomena can be discovered at the energy range of 50-70 GeV in the extreme multiplicity region since the high-density matter can form in this very region. The collective behavior of secondary particles is considered to manifest itself in the Bose-Einstein condensation of pions, Vavilov-Cherenkov gluon radiation, excess of soft-photon yield, and other unique phenomena. The perceptible peak in the angular distribution has been revealed. It was interpreted as the gluon radiation and so the parton matter refraction index was determined. The new software was designed for the track reconstruction based on Kalman Filter technique. This algorithm allows one to estimate more precisely the track parameters (especially momentum). The search for Bose-Einstein condensation can be continued by using the selected events with the multiplicity of more than eight charged particles. The gluon dominance model predictions have shown good agreement with the multiplicity distribution at high multiplicity and confirmed the guark-gluon medium formation under these conditions.

  7. An interpretation of passive containment cooling phenomena

    SciTech Connect

    Chung, Bum-Jin; Kang, Chang-Sun,

    1995-09-01

    A simplified interpretation model for the cooling capability of the Westinghouse type PCCS is proposed in this paper. The PCCS domain was phenomenologically divided into 3 regions; water entrance effect region, asymptotic region, and air entrance effect region. The phenomena in the asymptotic region is focused in this paper. Due to the very large height to thickness ratio of the water film, the length of the asymptotic region is estimated to be over 90% of the whole domain. Using the analogy between heat and mass transfer phenomena in a turbulent situation, a new dependent variable combining temperature and vapor mass fraction was defined. The similarity between the PCCS phenomena, which contains the sensible and latent heat transfer, and the buoyant air flow on a vertical heated plate is derived. The modified buoyant coefficient and thermal conductivity were defined. Using these newly defined variable and coefficients, the modified correlation for the interfacial heat fluxes and the ratios of latent heat transfer to sensible heat transfer is established. To verify the accuracy of the correlation, the results of this study were compared with the results of other numerical analyses performed for the same configuration and they are well within the range of 15% difference.

  8. Atmospheric composition

    NASA Technical Reports Server (NTRS)

    Daniels, G. E.

    1973-01-01

    The earth's atmosphere is made up of a number of gases in different relative amounts. Near sea level and up to about 90 km, the amount of these atmospheric gases in clean, relatively dry air is practically constant. Four of these gases, nitrogen, oxygen, argon, and carbon dioxide, make up 99.99 percent by volume of the atmosphere. Two gases, ozone and water vapor, change in relative amounts, but the total amount of these two is very small compared to the amount of the other gases. The atmospheric composition shown in a table can be considered valid up to 90 km geometric altitude. Above 90 km, mainly because of molecular dissociation and diffusive separation, the composition changes.

  9. Atmospheric pollution

    SciTech Connect

    Pickett, E.E.

    1987-01-01

    Atmospheric pollution (AP), its causes, and measures to prevent or reduce it are examined in reviews and reports presented at a workshop held in Damascus, Syria in August 1985. Topics discussed include AP and planning studies, emission sources, pollutant formation and transformation, AP effects on man and vegetation, AP control, atmospheric dispersion mechanisms and modeling, sampling and analysis techniques, air-quality monitoring, and applications. Diagrams, graphs, and tables of numerical data are provided.

  10. The atmospheres of M dwarfs: Observations

    NASA Technical Reports Server (NTRS)

    Rodono, Marcello

    1987-01-01

    After presenting global properties of M dwarfs, the principal diagnostic of activity phenomena occurring in their atmosphere from the geometrical, energetic, and temporal points of view is stressed. Observations of sunspots, plages, flares, and activity cycles are presented. The major sources of activity are discussed with particular emphasis on the generation, intensification, and measurements of stellar magnetic fields.

  11. Lidar investigations of atmospheric dynamics

    NASA Astrophysics Data System (ADS)

    Philbrick, C. Russell; Hallen, Hans D.

    2015-09-01

    Ground based lidar techniques using Raleigh and Raman scattering, differential absorption (DIAL), and supercontinuum sources are capable of providing unique signatures to study dynamical processes in the lower atmosphere. The most useful profile signatures of dynamics in the lower atmosphere are available in profiles of time sequences of water vapor and aerosol optical extinction obtained with Raman and DIAL lidars. Water vapor profiles are used to study the scales and motions of daytime convection cells, residual layer bursts into the planetary boundary layer (PBL), variations in height of the PBL layer, cloud formation and dissipation, scale sizes of gravity waves, turbulent eddies, as well as to study the seldom observed phenomena of Brunt-Väisälä oscillations and undular bore waves. Aerosol optical extinction profiles from Raman lidar provide another tracer of dynamics and motion using sequential profiles atmospheric aerosol extinction, where the aerosol distribution is controlled by dynamic, thermodynamic, and photochemical processes. Raman lidar profiles of temperature describe the stability of the lower atmosphere and measure structure features. Rayleigh lidar can provide backscatter profiles of aerosols in the troposphere, and temperature profiles in the stratosphere and mesosphere, where large gravity waves, stratospheric clouds, and noctilucent clouds are observed. Examples of several dynamical features are selected to illustrate interesting processes observed with Raman lidar. Lidar experiments add to our understanding of physical processes that modify atmospheric structure, initiate turbulence and waves, and describe the relationships between energy sources, atmospheric stability parameters, and the observed dynamics.

  12. The reaction of the atmosphere to solar disturbances

    NASA Technical Reports Server (NTRS)

    Mikhnevich, V. V.

    1979-01-01

    The effect of solar flares on the thermosphere and the troposphere is investigated. It is found that during periods of geoeffect solar disturbances, there is a connection between phenomena in the upper and lower atmospheres and that variations in atmospheric parameters correlate with changes in the geomagnetic index.

  13. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  14. Studies of Novel Quantum Phenomena in Ruthenates

    SciTech Connect

    Mao, Zhiqiang

    2011-04-08

    Strongly correlated oxides have been the subject of intense study in contemporary condensed matter physics, and perovskite ruthenates (Sr,Ca)n+1RunO3n+1 have become a new focus in this field. One of important characteristics of ruthenates is that both lattice and orbital degrees of freedom are active and are strongly coupled to charge and spin degrees of freedom. Such a complex interplay of multiple degrees of freedom causes the properties of ruthenates to exhibit a gigantic response to external stimuli under certain circumstances. Magnetic field, pressure, and chemical composition all have been demonstrated to be effective in inducing electronic/magnetic phase transitions in ruthenates. Therefore, ruthenates are ideal candidates for searching for novel quantum phenomena through controlling external parameters. The objective of this project is to search for novel quantum phenomena in ruthenate materials using high-quality single crystals grown by the floating-zone technique, and investigate the underlying physics. The following summarizes our accomplishments. We have focused on trilayered Sr4Ru3O10 and bilayered (Ca1-xSrx)3Ru2O7. We have succeeded in growing high-quality single crystals of these materials using the floating-zone technique and performed systematic studies on their electronic and magnetic properties through a variety of measurements, including resistivity, Hall coefficient, angle-resolved magnetoresistivity, Hall probe microscopy, and specific heat. We have also studied microscopic magnetic properties for some of these materials using neutron scattering in collaboration with Los Alamos National Laboratory. We have observed a number of unusual exotic quantum phenomena through these studies, such as an orbital selective metamagnetic transition, bulk spin valve effect, and a heavy-mass nearly ferromagnetic state with a surprisingly large Wilson ratio. Our work has also revealed underlying physics of these exotic phenomena. Exotic phenomena of correlated

  15. Displacement phenomena in lectin affinity chromatography.

    PubMed

    Cho, Wonryeon

    2015-10-01

    The work described here examines displacement phenomena that play a role in lectin affinity chromatography and their potential to impact reproducibility. This was achieved using Lycopersicon esculentum lectin (LEL), a lectin widely used in monitoring cancer. Four small identical LEL columns were coupled in series to form a single affinity chromatography system with the last in the series connected to an absorbance detector. The serial affinity column set (SACS) was then loaded with human plasma proteins. At the completion of loading, the column set was disassembled, the four columns were eluted individually, the captured proteins were trypsin digested, the peptides were deglycosylated with PNGase F, and the parent proteins were identified through mass spectral analyses. Significantly different sets of glycoproteins were selected by each column, some proteins appearing to be exclusively bound to the first column while others were bound further along in the series. Clearly, sample displacement chromatography (SDC) occurs. Glycoproteins were bound at different places in the column train, identifying the presence of glycoforms with different affinity on a single glycoprotein. It is not possible to see these phenomena in the single column mode of chromatography. Moreover, low abundance proteins were enriched, which facilitates detection. The great advantage of this method is that it differentiates between glycoproteins on the basis of their binding affinity. Displacement phenomena are concluded to be a significant component of the separation mechanism in heavily loaded lectin affinity chromatography columns. This further suggests that care must be exercised in sample loading of lectin columns to prevent analyte displacement with nonretained proteins. PMID:26348026

  16. Rod Driven Frequency Entrainment and Resonance Phenomena

    PubMed Central

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  17. Fast Particle Methods for Multiscale Phenomena Simulations

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.; Wray, A.; Shariff, K.; Pohorille, Andrew

    2000-01-01

    We are developing particle methods oriented at improving computational modeling capabilities of multiscale physical phenomena in : (i) high Reynolds number unsteady vortical flows, (ii) particle laden and interfacial flows, (iii)molecular dynamics studies of nanoscale droplets and studies of the structure, functions, and evolution of the earliest living cell. The unifying computational approach involves particle methods implemented in parallel computer architectures. The inherent adaptivity, robustness and efficiency of particle methods makes them a multidisciplinary computational tool capable of bridging the gap of micro-scale and continuum flow simulations. Using efficient tree data structures, multipole expansion algorithms, and improved particle-grid interpolation, particle methods allow for simulations using millions of computational elements, making possible the resolution of a wide range of length and time scales of these important physical phenomena.The current challenges in these simulations are in : [i] the proper formulation of particle methods in the molecular and continuous level for the discretization of the governing equations [ii] the resolution of the wide range of time and length scales governing the phenomena under investigation. [iii] the minimization of numerical artifacts that may interfere with the physics of the systems under consideration. [iv] the parallelization of processes such as tree traversal and grid-particle interpolations We are conducting simulations using vortex methods, molecular dynamics and smooth particle hydrodynamics, exploiting their unifying concepts such as : the solution of the N-body problem in parallel computers, highly accurate particle-particle and grid-particle interpolations, parallel FFT's and the formulation of processes such as diffusion in the context of particle methods. This approach enables us to transcend among seemingly unrelated areas of research.

  18. Rod Driven Frequency Entrainment and Resonance Phenomena.

    PubMed

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  19. Phenomena and Parameters Important to Burnup Credit

    SciTech Connect

    Parks, C.V.

    2001-01-10

    Since the mid-1980s, a significant number of studies have been directed at understanding the phenomena and parameters important to implementation of burnup credit in out-of-reactor applications involving pressurized-water-reactor (PWR) spent fuel. The efforts directed at burnup credit involving boiling-water-reactor (BWR) spent fuel have been more limited. This paper reviews the knowledge and experience gained from work performed in the US and other countries in the study of burnup credit. Relevant physics and analysis phenomenon are identified, and an assessment of their importance to burnup credit implementation for transport and dry cask storage is given.

  20. Quenching phenomena in natural circulation loop

    SciTech Connect

    Umekawa, Hisashi; Ozawa, Mamoru; Ishida, Naoki

    1995-09-01

    Quenching phenomena has been investigated experimentally using circulation loop of liquid nitrogen. During the quenching under natural circulation, the heat transfer mode changes from film boiling to nucleate boiling, and at the same time flux changes with time depending on the vapor generation rate and related two-phase flow characteristics. Moreover, density wave oscillations occur under a certain operating condition, which is closely related to the dynamic behavior of the cooling curve. The experimental results indicates that the occurrence of the density wave oscillation induces the deterioration of effective cooling of the heat surface in the film and the transition boiling regions, which results in the decrease in the quenching velocity.

  1. Advances in modelling of condensation phenomena

    SciTech Connect

    Liu, W.S.; Zaltsgendler, E.; Hanna, B.

    1997-07-01

    The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUF are described.

  2. Generalized Bloch theorem and chiral transport phenomena

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki

    2015-10-01

    Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.

  3. The acoustic phenomena of the stalling flutter

    NASA Astrophysics Data System (ADS)

    Hu, Z. A.; Feng, Y. C.; Zhao, X. H.; Wang, Y. W.

    An experimental study and measurement analysis is conducted of 275-285 Hz acoustic phenomena associated with the stalling flutter of an axial-flow rotor which has been designed to yield zero total aerodynamic damping at the stall-flutter onset. The two different blade-tip clearances used are 1.6 and 0.5 mm. The multiple-circular arc airfoils employed by the rotor blades are found to possess poorer aeroelastic stability than those of double-circular arc design. The smaller tip clearance is found to result in poorer aeroelastic stability than the larger one.

  4. Numerical simulation and prediction of implosion phenomena

    NASA Astrophysics Data System (ADS)

    Chen, J.; Dietrich, R. A.

    1992-10-01

    Using gas-liquid two phase flow theory, a modified mathematical model based on the computational fluid dynamics method SIMPLE (Semi Implicit Method for Pressure Linked Equations) is introduced to investigate implosion phenomena in high pressure chambers. For a characteristic physical model, the numerical results are obtained and analyzed, without referring to experimental data. Extensive calculations to predict the highest pressure on the chamber wall are performed under varying conditions such as the implosion pressure, the dimensions of the test models, and the height of the upper air layer. The efficiency of different highest pressure reduction methods is analyzed. The results of these simulations and predictions are shown in a series of plots.

  5. Paramagnetic Meissner effect and related dynamical phenomena

    NASA Astrophysics Data System (ADS)

    Li, Mai Suan

    2003-03-01

    The hallmark of superconductivity is the diamagnetic response to external magnetic field. In striking contrast to this behavior, a paramagnetic response or paramagnetic Meissner effect was observed in ceramic high- Tc and in conventional superconductors. The present review is given on this interesting effect and related phenomena. We begin with a detailed discussion of experimental results on the paramagnetic Meissner effect in both granular and conventional superconductors. There are two main mechanisms leading to the paramagnetic response: the so-called d-wave and the flux compression. In the first scenario, the Josephson critical current between two d-wave superconductors becomes negative or equivalently one has a π junction. The paramagnetic signal occurs due to the nonzero spontaneous supercurrent circulating in a loop consisting of odd number of π junctions. In addition to the d-wave mechanism we present the flux compression mechanism for the paramagnetic Meissner effect. The compression may be due to either an inhomogeneous superconducting transition or flux trap inside the giant vortex state. The flux trapping which acts like a total nonzero spontaneous magnetic moment causes the paramagnetic signal. The anisotropic pairing scenario is believed to be valid for granular materials while the flux trap one can be applied to both conventional and high- Tc superconductors. The study of different phenomena by a three-dimensional lattice model of randomly distributed π Josephson junctions with finite self-inductance occupies the main part of our review. By simulations one can show that the chiral glass phase in which chiralities are frozen in time and in space may occur in granular superconductors possessing d-wave pairing symmetry. Experimental attempts on the search for the chiral glass phase are analysed. Experiments on dynamical phenomena such as AC susceptibility, compensation effect, anomalous microwave absorption, aging effect, AC resistivity and

  6. Electronic phenomena near semiconductor grain boundaries

    NASA Astrophysics Data System (ADS)

    Pike, G. E.

    Various electronic phenomena which are generally associated with grain boundaries in semiconductors are reviewed. At equilibrium majority carriers are trapped at the boundaries, and a corresponding space charge layer of ionized dopant forms on both sides of the boundary. This creates a potential barrier to free carriers. An applied dc voltage causes the barrier to lower and change shape in an asymmetric way. At high voltages hot majority carriers can produce impact ionized minority carriers which further reduce the barrier height. Small ac voltages cause anomalous apparent capacitances which are either positive or negative.

  7. Complex Synchronization Phenomena in Ecological Systems

    NASA Astrophysics Data System (ADS)

    Stone, Lewi; Olinky, Ronen; Blasius, Bernd; Huppert, Amit; Cazelles, Bernard

    2002-07-01

    Ecological and biological systems provide us with many striking examples of synchronization phenomena. Here we discuss a number of intriguing cases and attempt to explain them taking advantage of a modelling framework. One main focus will concern synchronized ecological end epidemiological cycles which have Uniform Phase growth associated with their regular recurrence, and Chaotic Amplitudes - a feature we term UPCA. Examples come from different areas and include decadal cycles of small mammals, recurrent viral epidemics such as childhood infections (eg., measles), and seasonally driven phytoplankton blooms observed in lakes and the oceans. A more detailed theoretical analysis of seasonally synchronized chaotic population cycles is presented.

  8. Atmospheric radiation

    SciTech Connect

    Harshvardhan, M.R. )

    1991-01-01

    Studies of atmospheric radiative processes are summarized for the period 1987-1990. Topics discussed include radiation modeling; clouds and radiation; radiative effects in dynamics and climate; radiation budget and aerosol effects; and gaseous absorption, particulate scattering and surface reflection. It is concluded that the key developments of the period are a defining of the radiative forcing to the climate system by trace gases and clouds, the recognition that cloud microphysics and morphology need to be incorporated not only into radiation models but also climate models, and the isolation of a few important unsolved theoretical problems in atmospheric radiation.

  9. Uncommon corrosion phenomena of archaeological bronze alloys

    NASA Astrophysics Data System (ADS)

    Ingo, G. M.; de Caro, T.; Riccucci, C.; Khosroff, S.

    2006-06-01

    In the framework of the EFESTUS project (funded by the European Commission, contract No. ICA3-CT-2002-10030) the corrosion products of a large number of archaeological bronze artefacts are investigated by means of the combined use of scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and optical microscopy (OM) and tentative correlation of their nature with the chemical composition of the artefacts and the burial context is proposed. The results provide good insight into the corrosion layers and evidence in some bronze Roman coins and artefacts; the occurrence of uncommon corrosion phenomena that give rise to the formation of a yellowish-green complex chlorine-phosphate of lead (pyromorphite, (PbCl)Pb4(PO4)3) and of a gold-like thick layer of an iron and copper sulphide (chalcopyrite, CuFeS2). The micro-chemical and micro-structural results show that the coins were buried in a soil enriched in phosphorus for the accidental presence of a large amount of decomposing fragments of bones or in an anaerobic and humus rich soil where the chalcopyrite layer has been produced via the interaction between the iron of the soil, the copper of the coin and the sulphur produced by the decomposition of organic matter in an almost oxygen free environment. Finally, some unusual periodic corrosion phenomena occurring in high tin bronze mirrors found at Zama (Tunisia) are described.

  10. Effects of electrostatic correlations on electrokinetic phenomena.

    PubMed

    Storey, Brian D; Bazant, Martin Z

    2012-11-01

    The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures the essential features in a simple continuum framework. The model is derived as a gradient approximation for nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator, scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal. These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt concentrations. PMID:23214872

  11. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect

    Conrads, T.J.

    1996-09-11

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  12. Animal network phenomena: insights from triadic games

    NASA Astrophysics Data System (ADS)

    Mesterton-Gibbons, Mike; Sherratt, Tom N.

    Games of animal conflict in networks rely heavily on computer simulation because analysis is difficult, the degree of difficulty increasing sharply with the size of the network. For this reason, virtually the entire analytical literature on evolutionary game theory has assumed either dyadic interaction or a high degree of symmetry, or both. Yet we cannot rely exclusively on computer simulation in the study of any complex system. So the study of triadic interactions has an important role to play, because triads are both the simplest groups in which asymmetric network phenomena can be studied and the groups beyond dyads in which analysis of population games is most likely to be tractable, especially when allowing for intrinsic variation. Here we demonstrate how such analyses can illuminate a variety of behavioral phenomena within networks, including coalition formation, eavesdropping (the strategic observation of contests between neighbors) and victory displays (which are performed by the winners of contests but not by the losers). In particular, we show that eavesdropping acts to lower aggression thresholds compared to games without it, and that victory displays to bystanders will be most intense when there is little difference in payoff between dominating an opponent and not subordinating.

  13. Nonlinear phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.

    2008-05-01

    We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, 2008). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, Phys. Rev. A in press, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).

  14. Physical phenomena and the microgravity response

    NASA Technical Reports Server (NTRS)

    Todd, Paul

    1989-01-01

    The living biological cell is not a sack of Newtonian fluid containing systems of chemical reactions at equilibrium. It is a kinetically driven system, not a thermodynamically driven system. While the cell as a whole might be considered isothermal, at the scale of individual macromolecular events there is heat generated, and presumably sharp thermal gradients exist at the submicron level. Basic physical phenomena to be considered when exploring the cell's response to inertial acceleration include particle sedimentation, solutal convection, motility electrokinetics, cytoskeletal work, and hydrostatic pressure. Protein crystal growth experiments, for example, illustrate the profound effects of convection currents on macromolecular assembly. Reaction kinetics in the cell vary all the way from diffusion-limited to life-time limited. Transport processes vary from free diffusion, to facilitated and active transmembrane transport, to contractile-protein-driven motility, to crystalline immobilization. At least four physical states of matter exist in the cell: aqueous, non-aqueous, immiscible-aqueous, and solid. Levels of order vary from crystalline to free solution. The relative volumes of these states profoundly influence the cell's response to inertial acceleration. Such subcellular phenomena as stretch-receptor activation, microtubule re-assembly, synaptic junction formation, chemotactic receptor activation, and statolith sedimentation were studied recently with respect to both their basic mechanisms and their responsiveness to inertial acceleration. From such studies a widespread role of cytoskeletal organization is becoming apparent.

  15. Mathematical methods of studying physical phenomena

    NASA Astrophysics Data System (ADS)

    Man'ko, Margarita A.

    2013-03-01

    In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of

  16. A Comprehensive Analysis of Io's Atmosphere and Torus

    NASA Technical Reports Server (NTRS)

    Schneider, Nicholas M.

    1999-01-01

    This final report describes the results of our NASA/Planetary Atmospheres program studying the atmosphere of Jupiter's moon Io and the plasma torus which it creates. Io is the most volcanically active body in the solar system, and it is embedded deep within the strongest magnetosphere of any planet. This combination of circumstances leads to a host of scientifically compelling phenomena, including (1) an atmosphere out of proportion with such a small object, (2) a correspondingly large atmospheric escape rate, (3) a ring of dense plasma locked in a feedback loop with the atmosphere, and (4) a host of Io-induced emissions from radio bursts to UV auroral spots on Jupiter. This proposal seeks to continue our investigation into the physics connecting these phenomena, with emphasis on Io's atmosphere and plasma torus. The physical processes are clearly of interest for Io, and also other places in the solar system where they are important but not so readily observable.

  17. Atmospheric Waves

    NASA Technical Reports Server (NTRS)

    2007-01-01

    With its Multispectral Visible Imaging Camera (MVIC), half of the Ralph instrument, New Horizons captured several pictures of mesoscale gravity waves in Jupiter's equatorial atmosphere. Buoyancy waves of this type are seen frequently on Earth - for example, they can be caused when air flows over a mountain and a regular cloud pattern forms downstream. In Jupiter's case there are no mountains, but if conditions in the atmosphere are just right, it is possible to form long trains of these small waves. The source of the wave excitation seems to lie deep in Jupiter's atmosphere, below the visible cloud layers at depths corresponding to pressures 10 times that at Earth's surface. The New Horizons measurements showed that the waves move about 100 meters per second faster than surrounding clouds; this is about 25% of the speed of sound on Earth and is much greater than current models of these waves predict. Scientists can 'read' the speed and patterns these waves to learn more about activity and stability in the atmospheric layers below.

  18. Atmospheric humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water vapor plays a critical role in earth's atmosphere. It helps to maintain a habitable surface temperature through absorption of outgoing longwave radiation, and it transfers trmendous amounts of energy from the tropics toward the poles by absorbing latent heat during evaporation and subsequently...

  19. Seasonal Variability of Saturn's Atmosphere

    NASA Technical Reports Server (NTRS)

    Yanamandra-Fisher, Padma A.; Simon, Amy; Delcroix, Marc; Orton, Glenn S.; Trinh, Shirley

    2012-01-01

    The seasonal variability of Saturn's clouds and weather layer, currently displaying a variety of phenomena (convective storms, planetary waves, giant storms and lightning-induced events, etc.) is not yet fully understood. Variations of Saturn's radiance at 5.2 microns, a spectral region dominated by thermal emission in an atmospheric window containing weak gaseous absorption, contain a strong axisymmetric component as well as large discrete features at low and mid-latitudes that are several degrees colder than the planetary average and uncorrelated with features at shorter wavelengths that are dominated by reflected sunlight (Yanamandra-Fisher et al., 2001. Icarus, Vol. 150). The characterization of several fundamental atmospheric properties and processes, however, remains incomplete, namely: How do seasons affect (a) the global distribution of gaseous constituents and aerosols; and (b) temperatures and the stability against convection and large scale-atmospheric transport? Do 5-micron clouds have counterparts at other altitude levels? What changes occur during the emergence of Great White Storms? Data acquired at the NASA/IRTF and NAOJ/Subaru from 1995 - 2011; since 2004, high-resolution multi-spectral and high-spatial imaging data acquired by the NASA/ESA Cassini mission, represents half a Saturnian year or two seasons. With the addition of detailed multi-spectral data sets acquired by amateur observers, we study these dramatic phenomena to better understand the timeline of the evolution of these events. Seasonal (or temporal) trends in the observables such as albedo of the clouds, thermal fields of the atmosphere as function of altitude, development of clouds, hazes and global abundances of various hydrocarbons in the atmosphere can now be modeled. We will present results of our ongoing investigation for the search and characterization of periodicities over half a Saturnian year, based on a non-biased a priori approach and time series techniques (such as

  20. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  1. Collective Phenomena In Volume And Surface Barrier Discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  2. Microgravity Transport Phenomena Experiment (MTPE) Overview

    NASA Technical Reports Server (NTRS)

    Mason, Larry W.

    1999-01-01

    The Microgravity Transport Phenomena Experiment (MTPE) is a fluids experiment supported by the Fundamentals in Biotechnology program in association with the Human Exploration and Development of Space (BEDS) initiative. The MTP Experiment will investigate fluid transport phenomena both in ground based experiments and in the microgravity environment. Many fluid transport processes are affected by gravity. Osmotic flux kinetics in planar membrane systems have been shown to be influenced by gravimetric orientation, either through convective mixing caused by unstably stratified fluid layers, or through a stable fluid boundary layer structure that forms in association with the membrane. Coupled transport phenomena also show gravity related effects. Coefficients associated with coupled transport processes are defined in terms of a steady state condition. Buoyancy (gravity) driven convection interferes with the attainment of steady state, and the measurement of coupled processes. The MTP Experiment measures the kinetics of molecular migration that occurs in fluids, in response to the application of various driving potentials. Three separate driving potentials may be applied to the MTP Experiment fluids, either singly or in combination. The driving potentials include chemical potential, thermal potential, and electrical potential. Two separate fluid arrangements are used to study membrane mediated and bulk fluid transport phenomena. Transport processes of interest in membrane mediated systems include diffusion, osmosis, and streaming potential. Bulk fluid processes of interest include coupled phenomena such as the Soret Effect, Dufour Effect, Donnan Effect, and thermal diffusion potential. MTP Experiments are performed in the Microgravity Transport Apparatus (MTA), an instrument that has been developed specifically for precision measurement of transport processes. Experiment fluids are contained within the MTA fluid cells, designed to create a one dimensional flow geometry

  3. Introductory Comments on Stellar Atmospheric Structure and Its Modeling

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A general historical perspective on stellar atmospheric models is presented. Some comments on the priori speculative-theoretical modeling of the star, its atmosphere, and its environment are made. In contrast to this more speculative type of investigation, an empirical-theoretical program is defined. The objectives of the program are to delineate atmospheric structural patterns, properties of the local stellar environment, and some necessary characteristics of subatmospheric structure as inferred from the observations of nonthermal fluxes and phenomena, and thermodynamic self consistency.

  4. Establishment of the New Ecuadorian Solar Physics Phenomena Division

    NASA Astrophysics Data System (ADS)

    Lopez, E. D.

    2014-02-01

    Crucial physical phenomena occur in the equatorial atmosphere and ionosphere, which are currently understudied and poorly understood. Thus, scientific campaigns for monitoring the equatorial region are required in order to provide the necessary data for the physical models. Ecuador is located in strategic geographical position where these studies can be performed, providing quality data for the scientific community working in understanding the nature of these physical systems. The Quito Astronomical Observatory of National Polytechnic School is moving in this direction by promoting research in space sciences for the study of the equatorial zone. With the participation and the valuable collaboration of international initiatives such us AWESOME, MAGDAS, SAVNET and CALLISTO, the Quito Observatory is establishing a new space physics division on the basis of the International Space Weather Initiative. In this contribution, the above initiative is presented by inviting leaders of other scientific projects to deploy its instruments and to work with us providing the necessary support to the creation of this new strategic research center

  5. Collective phenomena in volume and surface barrier discharges

    NASA Astrophysics Data System (ADS)

    Kogelschatz, U.

    2010-11-01

    Barrier discharges are increasingly used as a cost-effective configuration to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without significant heating of the background gas. In most applications the barrier is made of dielectric material. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are devoted to biomedical applications and to plasma actuators for flow control. Sinusoidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or diffuse, laterally homogeneous discharges. The physical effects leading to collective phenomena in volume and surface barrier discharges are discussed in detail. Special attention is paid to self-organization of current filaments and pattern formation. Major similarities of the two types of barrier discharges are elaborated.

  6. EZ lidar dust transit phenomena observations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lolli, S.; Sauvage, L.; Loaec, S.

    2009-09-01

    Duststorms and sandstorms regularly devastate Northeast Asia and cause considerable damage to transportation system and public health; further, these events are conceived to be one of the very important indices for estimating the global warming and desertification. Previously, yellow sand events were considered natural phenomena that originate in deserts and arid areas. However, the greater scale and frequency of these events in recent years are considered to be the result of human activities such as overgrazing and over-cultivation. Japan, Korea, Cina and Mongolia are directly concerned to prevent and control these storms and have been able to some extent to provide forecasts and early warnings. In this framework, to improve the accuracy of forecasting , a compact and rugged eye safe lidar, the EZ LIDATM, developed together by Laboratoire des Sciences du Climat et l'Environnement (LSCE) (CEA-CNRS) and LEOSPHERE, France) to study and investigate structural and optical properties of clouds and aerosols, thanks to the strong know-how of CEA and CNRS in the field of air quality measurements and cloud observation and analysis, was deployed in Seoul, Korea in order to detect and study yellow sand events, thanks to its depolarization channel and scan capabilities. The preliminary results, showed in this paper, of this measurement campaign put in evidence that EZ Lidar, for its capabilities of operating unattended day and night under each atmospheric condition, is mature to be deployed in a global network to study long-range transport, crucial in the forecasting model.

  7. Reversion phenomena of Cu-Cr alloys

    NASA Technical Reports Server (NTRS)

    Nishikawa, S.; Nagata, K.; Kobayashi, S.

    1985-01-01

    Cu-Cr alloys which were given various aging and reversion treatments were investigated in terms of electrical resistivity and hardness. Transmission electron microscopy was one technique employed. Some results obtained are as follows: the increment of electrical resistivity after the reversion at a constant temperature decreases as the aging temperature rises. In a constant aging condition, the increment of electrical resistivity after the reversion increases, and the time required for a maximum reversion becomes shorter as the reversion temperature rises. The reversion phenomena can be repeated, but its amount decreases rapidly by repetition. At first, the amount of reversion increases with aging time and reaches its maximum, and then tends to decrease again. Hardness changes by the reversion are very small, but the hardness tends to soften slightly. Any changes in transmission electron micrographs by the reversion treatment cannot be detected.

  8. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  9. Natural time analysis of critical phenomena

    PubMed Central

    Varotsos, Panayiotis; Sarlis, Nicholas V.; Skordas, Efthimios S.; Uyeda, Seiya; Kamogawa, Masashi

    2011-01-01

    A quantity exists by which one can identify the approach of a dynamical system to the state of criticality, which is hard to identify otherwise. This quantity is the variance of natural time χ, where and pk is the normalized energy released during the kth event of which the natural time is defined as χk = k/N and N stands for the total number of events. Then we show that κ1 becomes equal to 0.070 at the critical state for a variety of dynamical systems. This holds for criticality models such as 2D Ising and the Bak–Tang–Wiesenfeld sandpile, which is the standard example of self-organized criticality. This condition of κ1 = 0.070 holds for experimental results of critical phenomena such as growth of rice piles, seismic electric signals, and the subsequent seismicity before the associated main shock. PMID:21700886

  10. Density-functional theory of thermoelectric phenomena.

    PubMed

    Eich, F G; Di Ventra, M; Vignale, G

    2014-05-16

    We introduce a nonequilibrium density-functional theory of local temperature and associated local energy density that is suited for the study of thermoelectric phenomena. The theory rests on a local temperature field coupled to the energy-density operator. We identify the excess-energy density, in addition to the particle density, as the basic variable, which is reproduced by an effective noninteracting Kohn-Sham system. A novel Kohn-Sham equation emerges featuring a time-dependent and spatially varying mass which represents local temperature variations. The adiabatic contribution to the Kohn-Sham potentials is related to the entropy viewed as a functional of the particle and energy density. Dissipation can be taken into account by employing linear response theory and the thermoelectric transport coefficients of the electron gas.

  11. Surfactant-based critical phenomena in microgravity

    NASA Technical Reports Server (NTRS)

    Kaler, Eric W.; Paulaitis, Michael E.

    1994-01-01

    The objective of this research project is to characterize by experiment and theoretically both the kinetics of phase separation and the metastable structures produced during phase separation in a microgravity environment. The particular systems we are currently studying are mixtures of water, nonionic surfactants, and compressible supercritical fluids at temperatures and pressures where the coexisting liquid phases have equal densities (isopycnic phases). In this report, we describe experiments to locate equilibrium isopycnic phases and to determine the 'local' phase behavior and critical phenomena at nearby conditions of temperature, pressure, and composition. In addition, we report the results of preliminary small angle neutron scattering (SANS) experiments to characterize microstructures that exist in these mixtures at different fluid densities.

  12. Atom optics simulator of lattice transport phenomena

    NASA Astrophysics Data System (ADS)

    An, Fangzhao; Meier, Eric; Gadway, Bryce

    2016-05-01

    We report on a novel scheme for studying lattice transport phenomena, based on the controlled momentum-space dynamics of ultracold atomic matter waves. In the effective tight binding models that can be simulated, we demonstrate that this technique allows for a local and time-dependent control over all system parameters, and additionally allows for single-site resolved detection of atomic populations. We demonstrate full control over site-to-site off-diagonal tunneling elements (amplitude and phase) and diagonal site-energies, through the observation of continuous time quantum walks, Bloch oscillations, and negative tunneling. These capabilities open up new prospects in the experimental study of disordered and topological systems.

  13. Boundary quantum critical phenomena with entanglement renormalization

    SciTech Connect

    Evenbly, G.; Pfeifer, R. N. C.; Tagliacozzo, L.; McCulloch, I. P.; Vidal, G.; Pico, V.; Iblisdir, S.

    2010-10-15

    We propose the use of entanglement renormalization techniques to study boundary critical phenomena on a lattice system. The multiscale entanglement renormalization ansatz (MERA), in its scale invariant version, offers a very compact approximation to quantum critical ground states. Here we show that, by adding a boundary to the MERA, an accurate approximation to the ground state of a semi-infinite critical chain with an open boundary is obtained, from which one can extract boundary scaling operators and their scaling dimensions. As in Wilson's renormalization-group formulation of the Kondo problem, our construction produces, as a side result, an effective chain displaying explicit separation of energy scales. We present benchmark results for the quantum Ising and quantum XX models with free and fixed boundary conditions.

  14. Transient Phenomena: Opportunities for New Discoveries

    NASA Technical Reports Server (NTRS)

    Lazio, T. Joseph W.

    2010-01-01

    Known classes of radio wavelength transients range from the nearby (stellar flares and radio pulsars) to the distant Universe (gamma-ray burst afterglows). Hypothesized classes of radio transients include analogs of known objects, such as extrasolar planets emitting Jovian-like radio bursts and giant-pulse emitting pulsars in other galaxies, to the exotic, such as prompt emission from gamma-ray bursts, evaporating black holes and transmitters from other civilizations. Time domain astronomy has been recognized internationally as a means of addressing key scientific questions in astronomy and physics, and pathfinders and Precursors to the Square Kilometre Array (SKA) are beginning to offer a combination of wider fields of view and more wavelength agility than has been possible in the past. These improvements will continue when the SKA itself becomes operational. I illustrate the range of transient phenomena and discuss how the detection and study of radio transients will improve immensely.

  15. Real time animation of space plasma phenomena

    NASA Technical Reports Server (NTRS)

    Jordan, K. F.; Greenstadt, E. W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.

  16. Electron Acceleration by Transient Ion Foreshock Phenomena

    NASA Astrophysics Data System (ADS)

    Wilson, L. B., III; Turner, D. L.

    2015-12-01

    Particle acceleration is a topic of considerable interest in space, laboratory, and astrophysical plasmas as it is a fundamental physical process to all areas of physics. Recent THEMIS [e.g., Turner et al., 2014] and Wind [e.g., Wilson et al., 2013] observations have found evidence for strong particle acceleration at macro- and meso-scale structures and/or pulsations called transient ion foreshock phenomena (TIFP). Ion acceleration has been extensively studied, but electron acceleration has received less attention. Electron acceleration can arise from fundamentally different processes than those affecting ions due to differences in their gyroradii. Electron acceleration is ubiquitous, occurring in the solar corona (e.g., solar flares), magnetic reconnection, at shocks, astrophysical plasmas, etc. We present new results analyzing the dependencies of electron acceleration on the properties of TIFP observed by the THEMIS spacecraft.

  17. The demystification of autoscopic phenomena: experimental propositions.

    PubMed

    Mohr, Christine; Blanke, Olaf

    2005-06-01

    Autoscopic phenomena (AP) are rare, illusory visual experiences during which the subject has the impression of seeing a second own body in extrapersonal space. AP consist of out-of-body experience, autoscopic hallucination, and heautoscopy. Recent neurologic reports support the role of multisensory integration deficits of body-related information and vestibular dysfunctions in AP at the temporo-parietal junction. A caveat to test the underlying neurologic and cognitive mechanisms of AP has been their rare and spontaneous occurrence. Recent evidence linked AP to mental own-body imagery engaging brain mechanisms at the temporo-parietal junction. These recent observations open a new avenue for testing AP-related cognitive mechanisms in selected clinical and normal populations. We review evidence on several clinical syndromes (psychosis, depression, anxiety, depersonalization, body dysmorphic disorder), suggesting that some of these syndromes may relate to AP-proneness, thereby leading to testable propositions for future research on body and self processing in addition to AP.

  18. Teaching wave phenomena via biophysical applications

    NASA Astrophysics Data System (ADS)

    Reich, Daniel; Robbins, Mark; Leheny, Robert; Wonnell, Steven

    2014-03-01

    Over the past several years we have developed a two-semester second-year physics course sequence for students in the biosciences, tailored in part to the needs of undergraduate biophysics majors. One semester, ``Biological Physics,'' is based on the book of that name by P. Nelson. This talk will focus largely on the other semester, ``Wave Phenomena with Biophysical Applications,'' where we provide a novel introduction to the physics of waves, primarily through the study of experimental probes used in the biosciences that depend on the interaction of electromagnetic radiation with matter. Topic covered include: Fourier analysis, sound and hearing, diffraction - culminating in an analysis of x-ray fiber diffraction and its use in the determination of the structure of DNA - geometrical and physical optics, the physics of modern light microscopy, NMR and MRI. Laboratory exercises tailored to this course will also be described.

  19. Lunar orbital photography of astronomical phenomena.

    NASA Technical Reports Server (NTRS)

    Mercer, R. D.; Dunkelman, L.; Ross, C. L.; Worden, A.

    1972-01-01

    This paper reports further progress on photography of faint astronomical and geophysical phenomena accomplished during the recent Apollo missions. Command module pilots have been able to photograph such astronomical objects as the solar corona, zodiacal light-corona transition region, lunar libration region, and portions of the Milky Way. The methods utilized for calibration of the film by adaptation of the High Altitude Observatory sensitometer are discussed. Kodak 2485 high-speed recording film was used in both 35-mm and 70-mm formats. The cameras used were Nikon f/1.2 55-mm focal length and Hasselblad f/2.8 80-mm focal length. Preflight and postflight calibration exposures were included on both the flight and control films, corresponding to luminances extending from the inner solar corona to as faint as 1/10 of the luminance of the light of the night sky. The photographs obtained from unique vantage points available during lunar orbit are discussed.

  20. Coherence Phenomena in Coupled Optical Resonators

    NASA Technical Reports Server (NTRS)

    Smith, David D.

    2007-01-01

    Quantum coherence effects in atomic media such as electromagnetically-induced transparency and absorption, lasing without inversion, super-radiance and gain-assisted superluminality have become well-known in atomic physics. But these effects are not unique to atoms, nor are they uniquely quantum in nature, but rather are fundamental to systems of coherently coupled oscillators. In this talk I will review a variety of analogous photonic coherence phenomena that can occur in passive and active coupled optical resonators. Specifically, I will examine the evolution of the response that can occur upon the addition of a second resonator, to a single resonator that is side-coupled to a waveguide, as the coupling is increased, and discuss the conditions for slow and fast light propagation, coupled-resonator-induced transparency and absorption, lasing without gain, and gain-assisted superluminal pulse propagation. Finally, I will discuss the application of these systems to laser stabilization and gyroscopy.

  1. Analysis of oblique hypervelocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Schonberg, William P.; Taylor, Roy A.

    1988-01-01

    This paper describes the results of an experimental investigation of phenomena associated with the oblique hypervelocity impact of spherical projectiles on multisheet aluminum structures. A model that can be employed in the design of meteoroid and space debris protection systems for space structures is developed. The model consists of equations that relate crater and perforation damage of a multisheet structure to parameters such as projectile size, impact velocity, and trajectory obliquity. The equations are obtained through a regression analysis of oblique hypervelocity impact test data. This data shows that the response of a multisheet structure to oblique impact is significantly different from its response to normal hypervelocity impact. It was found that obliquely incident projectiles produce ricochet debris that can severely damage panels or instrumentation located on the exterior of a space structure. Obliquity effects of high-speed impact must, therefore, be considered in the design of any structure exposed to a meteoroid or space debris environement.

  2. Hadronic and nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-06-01

    Many of the key issues in understanding quantum chromodynamics involves processes at intermediate energies. We discuss a range of hadronic and nuclear phenomena - exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction - as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Many of these processes can be studied in electroproduction, utilizing internal targets in storage rings. We also review several areas where there has been significant theoretical progress in determining the form of hadron and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. 98 refs., 40 figs., 2 tabs.

  3. Novel nuclear phenomena in quantum chromodynamics

    SciTech Connect

    Brodsky, S.J.

    1987-08-01

    Many of the key issues in understanding quantum chromodynamics involve processes in nuclear targets at intermediate energies. A range of hadronic and nuclear phenomena-exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction were discussed as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Several areas were also reviewed where there has been significant theoretical progress determining the form of hadron and nuclear wave functions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. A possible interpretation was also discussed of the large spin correlation A/sub NN/ in proton-proton scattering, and how relate this effect to an energy and angular dependence of color transparency in nuclei. 76 refs., 24 figs.

  4. Transient phenomena in compressor stations during surge

    SciTech Connect

    Botros, K.K. )

    1994-01-01

    Transient phenomena are generally inherent in the operation of compressor stations: These are either fast or slow transients. A model describing the governing equation for the gas dynamics, control system, compressor and turbine shaft inertias has been developed. The effect of these inertias is manifested by an example of a compressor station operating near the surge control line. Another example deals with a station that has a cooler placed in the recycle path. This alters the rate at which the compressor shaft decelerates upon shutdown and may cause backward spinning depending on the relative magnitude of the shaft inertia with respect to the cooler volume. Backward spinning of compressor shaft has detrimental effects on dry seals and is undesirable. It was found that by keeping the recycle value closed upon shutdown, the rate of shaft deceleration will be reduced.

  5. Critical Phenomena in Liquid-Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Jacobs, D. T.

    2000-04-01

    Critical phenomena provide intriguing and essential insight into many issues in condensed matter physics because of the many length scales involved. Large density or concentration fluctuations near a system's critical point effectively mask the identity of the system and produce universal phenomena that have been well studied in simple liquid-vapor and liquid-liquid systems. Such systems have provided useful model systems to test theoretical predictions which can then be extended to more complicated systems. Along various thermodynamic paths, several quantities exhibit a simple power-law dependence close to the critical point. The critical exponents describing these relationships are universal and should depend only on a universality class determined by the order-parameter and spatial dimensionality of the system. Liquid gas, binary fluid mixtures, uniaxial ferromagnetism, polymer-solvent, and protein solutions all belong to the same (Ising model) universality class. The diversity of critical systems that can be described by universal relations indicates that experimental measurements on one system should yield the same information as on another. Our experimental investigations have tested existing theory and also extended universal behavior into new areas. By measuring the coexistence curve, heat capacity, thermal expansion and static light scattering (turbidity) in various liquid-liquid and polymer-solvent systems, we have determined critical exponents and amplitudes that have sometimes confirmed and other times challenged current theory. Recent experiments investigating the heat capacity and light scattering in a liquid-liquid mixture very close to the critical point will be discussed. This research is currently supported by The Petroleum Research Fund and by NASA grant NAG8-1433 with some student support from NSF-DMR 9619406.

  6. Nonlinear Phenomena in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Carr, Lincoln D.

    2008-03-01

    We present a medley of results from the last three years on nonlinear phenomena in BECs [1]. These include exact dynamics of multi-component condensates in optical lattices [2], vortices and ring solitons [3], macroscopic quantum tunneling [4], nonlinear band theory [5], and a pulsed atomic soliton laser [6]. 1. Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment, ed. P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag, to appear, 2008) -- see L. D. Carr and Joachim Brand, e-print arXiv:0705.1139 (2007); Joachim Brand, L. D. Carr, B. P. Anderson, e-print arXiv:0705.1341 (2007). 2. R. Mark Bradley, James E. Bernard, and L. D. Carr, e-print arXiv:0711.1896 (2007). 3. G. Herring, L. D. Carr, R. Carretero-Gonzalez, P. G. Kevrekidis, D. J. Frantzeskakis, e-print arXiv:0709.2193 (2007); L. D. Carr and C. W. Clark, Phys. Rev. A v. 74, p.043613 (2006); L. D. Carr and C. W. Clark, Phys. Rev. Lett. v. 97, p.010403 (2006). 4. L. D. Carr, M. J. Holland, and B. A. Malomed, J. Phys. B: At. Mol. Opt. Phys., v.38, p.3217 (2005) 5. B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A, v. 71, p.033622 (2005). 6. L. D. Carr and J. Brand, Phys. Rev. A, v.70, p.033607 (2004); L. D. Carr and J. Brand, Phys. Rev. Lett., v.92, p.040401 (2004).

  7. Features of optical phenomena connected with launches of solid-propellant ballistic rockets

    NASA Astrophysics Data System (ADS)

    Platov, Yu. V.; Chernouss, S. A.; Alpatov, V. V.

    2013-04-01

    Specific optical phenomena observed in the upper atmosphere layers and connected with launches of powerful solid-propellant rockets are considered: the development of spherically symmetric gas-dust formations having the shape of an extending torus in the image plane and the formation of regions with intense blue-green (turquoise) glow observed under twilight conditions along a rocket's flight path. The development of clouds can be represented by the model of a strong explosion occurring at the stage separation of solid-propellant rockets in the upper atmosphere. A turquoise glow arises as a result of resonance scattering of solar radiation on AlO molecules that are formed when metallic aluminum in the composition of fuel interacts with atmosphere components and combustion products.

  8. Atmospheric Dynamics

    NASA Astrophysics Data System (ADS)

    Green, John

    2004-12-01

    In his book, John Green presents a unique personal insight into the fundamentals of fluid mechanics and atmospheric dynamics. Generations of students have benefited from his lectures, and this book, many years in the making, is the result of his wide teaching and research experience. The theory of fluid flow has developed to such an extent that very complex mathematics and models are currently used to describe it, but many of the fundamental results follow from relatively simple considerations: these classic principles are derived here in a novel, distinctive, and at times even idiosyncratic, way. The book is an introduction to fluid mechanics in the atmosphere for students and researchers that are already familiar with the subject, but who wish to extend their knowledge and philosophy beyond the currently popular development of conventional undergraduate instruction.

  9. Different atmospheric effects causing FSO link attenuation: experimental results and modelling in Czech Republic

    NASA Astrophysics Data System (ADS)

    Fiser, Ondrej; Brazda, Vladimir; Wilfert, Otakar

    2015-10-01

    The four year FSO link attenuation measurement concurrently with most important meteorological parameters was performed at our mountain observatory Milesovka. In this contribution we summarize and classify different atmospheric phenomena after the FSO link attenuation quantity. For all particular phenomena the CD curves, typical events and simple dependences on relevant atmospheric parameter(s) are presented. We consider the following phenomena (approximate specific attenuation in dB/km in brackets): 1. Fog and cloud (hundreds dB/km) 2. Rain and snow (tens dB/km) 3. Atmospheric turbulence (unit dB) 4. Clear air attenuation due to water vapour (unit dB or less)

  10. Astrophysical phenomena related to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Pott, Jörg-Uwe

    2006-12-01

    The thesis contains the results of my recent projects in astrophysical research. All projects aim at pushing the limits of our knowledge about the interaction between a galaxy, the fundamental building block of today's universe, and a supermassive black hole (SMBH) at its center. Over the past years a lot of observational evidence has been gathered for the current understanding, that at least a major part of the galaxies with a stellar bulge contain central SMBHs. The typical extragalactic approach consists of searching for the spectroscopic pattern of Keplerian rotation, produced by stars and gas, when orbiting a central dark mass (Kormendy & Richstone 1995). It suggests that a significant fraction of large galaxies host in their very nucleus a SMBH of millions to billions of solar masses (Kormendy & Gebhardt 2001). In the closest case, the center of our Milky Way, the most central stars, which can be imaged, were shown to move on orbits with circulation times of a few decades only, evidencing a mass and compactness of the dark counter part of the Keplerian motion, which can only be explained by a SMBH (Eckart & Genzel 1996; Ghez et al. 2000; Schödel et al. 2002). Having acknowledged the widespread existence of SMBHs the obvious next step is investigating the interaction with their environment. Although the basic property of a SMBH, which is concentrating a huge amount of mass in a ludicrously small volume defined by the Schwarzschild radius, only creates a deep gravitational trough, its existence evokes much more phenomena than simply attracting the surrounding matter. It can trigger or exacerbate star formation via tidal forces (Morris 1993). It shapes the distribution of its surrounding matter to accretion discs, which themselves release gravitational potential energy as radiation, possibly due to magnetic friction (Blandford 1995). The radiation efficiency of such active galactic nuclei (AGN) can become roughly 100 times more efficient than atomic nuclear

  11. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Astrophysics Data System (ADS)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  12. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  13. Living matter: the "lunar eclipse" phenomena.

    PubMed

    Korpan, Nikolai N

    2010-01-01

    The present investigations describe a unique phenomenon, namely the phenomenon of the "lunar eclipse", which has been observed and discovered by the author in living substance during the freeze-thawing processes in vivo using temperatures of various intensities and its cryosurgical response in animal experiment. Similar phenomena author has observed in nature, namely the total lunar eclipse and total solar eclipse. In this experimental study 76 animals (mongrel dogs) were investigated. A disc cryogenic probe was placed on the pancreas after the laparotomy. For cryosurgical exposure a temperature range of -40 degrees C, -80 degrees C, -120 degrees C and -180 degrees C was selected in contact with pancreas parenchyma. The freeze-thaw cycle was monitored by intraoperative ultrasound before, during and after cryosurgery. Each cryolesion was observed for one hour after thawing intraoperatively. Immediately after freezing, during the thawing process, the snow-white pancreas parenchyma, frozen hard to an ice block and resembling a full moon with a sharp demarcation line, gradually assumed a ruby-red shade and a hemispherical shape as it grew in size depend on reconstruction vascular circulation from the periphery to the center. This snow-white cryogenic lesion dissolved in the same manner in all animal tissues. The "lunar eclipse" phenomenon contributes to a fundamental understanding of the mechanisms of biological tissue damage during low temperature exposure in cryoscience and cryomedicine. Properties of the pancreas parenchyma response during the phenomenon of the "lunar eclipse" provide important insights into the mechanisms of damage and the formation of cryogenic lesion immediately after thawing in cryosurgery. Vascular changes and circulatory stagnation are commonly considered to be the main mechanism of biological tissue injury during low temperature exposure. The phenomenon of the "lunar eclipse" suggests that cryosurgery is the first surgical technique to use

  14. Atmospheric science

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Ackerman, Thomas; Clarke, Antony; Goodman, Jindra; Levin, Zev; Tomasko, Martin; Toon, O. Brian; Whitten, Robert

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) growth of liquid water drop populations; (2) coalescence; (3) drop breakup; (4) breakup of freezing drops; (5) ice nucleation for large aerosols or bacteria; (6) scavenging of gases, for example, SO2 oxidation; (7) phoretic forces, i.e., thermophoresis versus diffusiophoresis; (8) Rayleigh bursting of drops; (9) charge separation due to collisions of rimed and unrimed ice; (10) charged drop dynamics; (11) growth of particles in other planetary atmospheres; and (12) freezing and liquid-liquid evaporation. The required capabilities and desired hardware for the facility are detailed.

  15. Dynamical magnetoelectric phenomena of multiferroic skyrmions.

    PubMed

    Mochizuki, Masahito; Seki, Shinichiro

    2015-12-23

    Magnetic skyrmions, vortex-like swirling spin textures characterized by a quantized topological invariant, realized in chiral-lattice magnets are currently attracting intense research interest. In particular, their dynamics under external fields is an issue of vital importance both for fundamental science and for technical application. Whereas observations of magnetic skyrmions has been limited to metallic magnets so far, their realization was also discovered in a chiral-lattice insulating magnet Cu2OSeO3 in 2012. Skyrmions in the insulator turned out to exhibit multiferroic nature with spin-induced ferroelectricity. Strong magnetoelectric coupling between noncollinear skyrmion spins and electric polarizations mediated by relativistic spin-orbit interaction enables us to drive motion and oscillation of magnetic skyrmions by application of electric fields instead of injection of electric currents. Insulating materials also provide an environment suitable for detection of pure spin dynamics through spectroscopic measurements owing to the absence of appreciable charge excitations. In this article, we review recent theoretical and experimental studies on multiferroic properties and dynamical magnetoelectric phenomena of magnetic skyrmions in insulators. We argue that multiferroic skyrmions show unique coupled oscillation modes of magnetizations and polarizations, so-called electromagnon excitations, which are both magnetically and electrically active, and interference between the electric and magnetic activation processes leads to peculiar magnetoelectric effects in a microwave frequency regime. PMID:26624202

  16. Viscous theory of surface noise interaction phenomena

    NASA Technical Reports Server (NTRS)

    Yates, J. E.

    1980-01-01

    A viscous linear surface noise interaction problem is formulated that includes noise production by an oscillating surface, turbulent or vortical interaction with a surface, and scattering of sound by a surface. The importance of viscosity in establishing uniqueness of solution and partitioning of energy into acoustic and vortical modes is discussed. The results of inviscid two dimensional airfoil theory are used to examine the interactive noise problem in the limit of high reduced frequency and small Helmholtz number. It is shown that in the case of vortex interaction with a surface, the noise produced with the full Kutta condition is 3 dB less than the no Kutta condition result. The results of a study of an airfoil oscillating in a medium at rest are discussed. It is concluded that viscosity can be a controlling factor in analyses and experiments of surface noise interaction phenomena and that the effect of edge bluntness as well as viscosity must be included in the problem formulation to correctly calculate the interactive noise.

  17. Efferent feedback can explain many hearing phenomena

    NASA Astrophysics Data System (ADS)

    Holmes, W. Harvey; Flax, Matthew R.

    2015-12-01

    The mixed mode cochlear amplifier (MMCA) model was presented at the last Mechanics of Hearing workshop [4]. The MMCA consists principally of a nonlinear feedback loop formed when an efferent-controlled outer hair cell (OHC) is combined with the cochlear mechanics and the rest of the relevant neurobiology. Essential elements of this model are efferent control of the OHC motility and a delay in the feedback to the OHC. The input to the MMCA is the passive travelling wave. In the MMCA amplification is localized where both the neural and tuned mechanical systems meet in the Organ of Corti (OoC). The simplest model based on this idea is a nonlinear delay line resonator (DLR), which is mathematically described by a nonlinear delay-differential equation (DDE). This model predicts possible Hopf bifurcations and exhibits its most interesting behaviour when operating near a bifurcation. This contribution presents some simulation results using the DLR model. These show that various observed hearing phenomena can be accounted for by this model, at least qualitatively, including compression effects, two-tone suppression and some forms of otoacoustic emissions (OAEs).

  18. Phantom black holes and critical phenomena

    SciTech Connect

    Azreg-Aïnou, Mustapha; Marques, Glauber T.

    2014-07-01

    We consider the two classes cosh and sinh of normal and phantom black holes of Einstein-Maxwell-dilaton theory. The thermodynamics of these holes is characterized by heat capacities that may have both signs depending on the parameters of the theory. Leaving aside the normal Reissner-Nordström black hole, it is shown that only some phantom black holes of both classes exhibit critical phenomena. The two classes share a nonextremality, but special, critical point where the transition is continuous and the heat capacity, at constant charge, changes sign with an infinite discontinuity. This point yields a classification scheme for critical points. It is concluded that the two unstable and stable phases coexist on one side of the criticality state and disappear on the other side, that is, there is no configuration where only one phase exists. The sinh class has an extremality critical point where the entropy diverges. The transition from extremality to nonextremality with the charge held constant is accompanied by a loss of mass and an increase in the temperature. A special case of this transition is when the hole is isolated (microcanonical ensemble), it will evolve by emission of energy, which results in a decrease of its mass, to the final state of minimum mass and vanishing heat capacity. The Ehrenfest scheme of classification is inaccurate in this case but the generalized one due to Hilfer leads to conclude that the transition is of order less than unity. Fluctuations near criticality are also investigated.

  19. Computational modelling of microfluidic capillary breakup phenomena

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Sprittles, James; Oliver, Jim

    2013-11-01

    Capillary breakup phenomena occur in microfluidic flows when liquid volumes divide. The fundamental process of breakup is a key factor in the functioning of a number of microfluidic devices such as 3D-Printers or Lab-on-Chip biomedical technologies. It is well known that the conventional model of breakup is singular as pinch-off is approached, but, despite this, theoretical predictions of the global flow on the millimetre-scale appear to agree well with experimental data, at least until the topological change. However, as one approaches smaller scales, where interfacial effects become more dominant, it is likely that such unphysical singularities will influence the global dynamics of the drop formation process. In this talk we develop a computational framework based on the finite element method capable of resolving diverse spatio-temporal scales for the axisymmetric breakup of a liquid jet, so that the pinch-off dynamics can be accurately captured. As well as the conventional model, we discuss the application of the interface formation model to this problem, which allows the pinch-off to be resolved singularity-free, and has already been shown to produce improved flow predictions for related ``singular'' capillary flows.

  20. Basic ablation phenomena during laser thrombolysis

    NASA Astrophysics Data System (ADS)

    Sathyam, Ujwal S.; Shearin, Alan; Prahl, Scott A.

    1997-05-01

    This paper presents studies of microsecond ablation phenomena that take place during laser thrombolysis. The main goals were to optimize laser parameters for efficient ablation, and to investigate the ablation mechanism. Gelatin containing an absorbing dye was used as the clot model. A parametric study was performed to identify the optimal wavelength, spot size, pulse energies, and repetition rate for maximum material removal. The minimum radiant exposures to achieve ablation at any wavelength were measured. The results suggest that most visible wavelengths were equally efficient at removing material at radiant exposures above threshold. Ablation was initiated at surface temperatures just above 100 degrees Celsius. A vapor bubble was formed during ablation. Less than 5% of the total pulse energy is coupled into the bubble energy. A large part of the delivered energy is unaccounted for and is likely released partly as acoustic transients from the vapor expansion and partly wasted as heat. The current laser and delivery systems may not be able to completely remove large clot burden that is sometimes encountered in heart attacks. However, laser thrombolysis may emerge as a favored treatment for strokes where the occlusion is generally smaller and rapid recanalization is of paramount importance. A final hypothesis is that laser thrombolysis should be done at radiant exposures close to threshold to minimize any damaging effects of the bubble dynamics on the vessel wall.

  1. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  2. Bifurcation analysis method of nonlinear traffic phenomena

    NASA Astrophysics Data System (ADS)

    Ai, Wenhuan; Shi, Zhongke; Liu, Dawei

    2015-03-01

    A new bifurcation analysis method for analyzing and predicting the complex nonlinear traffic phenomena based on the macroscopic traffic flow model is presented in this paper. This method makes use of variable substitution to transform a traditional traffic flow model into a new model which is suitable for the stability analysis. Although the substitution seems to be simple, it can extend the range of the variable to infinity and build a relationship between the traffic congestion and the unstable system in the phase plane. So the problem of traffic flow could be converted into that of system stability. The analysis identifies the types and stabilities of the equilibrium solutions of the new model and gives the overall distribution structure of the nearby equilibrium solutions in the phase plane. Then we deduce the existence conditions of the models Hopf bifurcation and saddle-node bifurcation and find some bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles and Bogdanov-Takens bifurcation. Furthermore, the Hopf bifurcation and saddle-node bifurcation are selected as the starting point of density temporal evolution and it will be helpful for improving our understanding of stop-and-go wave and local cluster effects observed in the free-way traffic.

  3. Two-Stage Modelling Of Random Phenomena

    NASA Astrophysics Data System (ADS)

    Barańska, Anna

    2015-12-01

    The main objective of this publication was to present a two-stage algorithm of modelling random phenomena, based on multidimensional function modelling, on the example of modelling the real estate market for the purpose of real estate valuation and estimation of model parameters of foundations vertical displacements. The first stage of the presented algorithm includes a selection of a suitable form of the function model. In the classical algorithms, based on function modelling, prediction of the dependent variable is its value obtained directly from the model. The better the model reflects a relationship between the independent variables and their effect on the dependent variable, the more reliable is the model value. In this paper, an algorithm has been proposed which comprises adjustment of the value obtained from the model with a random correction determined from the residuals of the model for these cases which, in a separate analysis, were considered to be the most similar to the object for which we want to model the dependent variable. The effect of applying the developed quantitative procedures for calculating the corrections and qualitative methods to assess the similarity on the final outcome of the prediction and its accuracy, was examined by statistical methods, mainly using appropriate parametric tests of significance. The idea of the presented algorithm has been designed so as to approximate the value of the dependent variable of the studied phenomenon to its value in reality and, at the same time, to have it "smoothed out" by a well fitted modelling function.

  4. Fingering phenomena during grain-grain displacement

    NASA Astrophysics Data System (ADS)

    Mello, Nathália M. P.; Paiva, Humberto A.; Combe, G.; Atman, A. P. F.

    2016-05-01

    Spontaneous formation of fingered patterns during the displacement of dense granular assemblies was experimentally reported few years ago, in a radial Hele-Shaw cell. Here, by means of discrete element simulations, we have recovered the experimental findings and extended the original study to explore the control parameters space. In particular, using assemblies of grains with different geometries (monodisperse, bidisperse, or polydisperse), we measured the macroscopic stress tensor in the samples in order to confirm some conjectures proposed in analogy with Saffman-Taylor viscous fingering phenomena for immiscible fluids. Considering an axial setup which allows to control the discharge of grains and to follow the trajectory and the pressure gradient along the displacing interface, we have applied the Darcy law for laminar flow in fluids in order to measure an "effective viscosity" for each assembly combination, in an attempt to mimic variation of the viscosity ratio between the injected/displaced fluids in the Saffman-Taylor experiment. The results corroborate the analogy with the viscous fluids displacement, with the bidisperse assembly corresponding to the less viscous geometry. But, differently to fluid case, granular fingers only develop for a specific combination of displaced/injected geometries, and we have demonstrated that it is always related with the formation of a force chain network along the finger direction.

  5. Further shock tunnel studies of scramjet phenomena

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Morris, N. A.; Stalker, R. J.

    1986-01-01

    Scramjet phenomena were studied using the shock tunnel T3 at the Australian National University. Simple two dimensional models were used with a combination of wall and central injectors. Silane as an additive to hydrogen fuel was studied over a range of temperatures and pressures to evaluate its effect as an ignition aid. The film cooling effect of surface injected hydrogen was measured over a wide range of equivalence. Heat transfer measurements without injection were repeated to confirm previous indications of heating rates lower than simple flat plate predictions for laminar boundary layers in equilibrium flow. The previous results were reproduced and the discrepancies are discussed in terms of the model geometry and departures of the flow from equilibrium. In the thrust producing mode, attempts were made to increase specific impulse with wall injection. Some preliminary tests were also performed on shock induced ignition, to investigate the possibility in flight of injecting fuel upstream of the combustion chamber, where it could mix but not burn.

  6. Temporal Variations in Jupiter's Atmosphere

    NASA Technical Reports Server (NTRS)

    Simon-Miller, Amy A.; Chanover, N. J.; Yanamandra-Fisher, P.; Hammel, H. B.; dePater, I.; Noll, K.; Wong, M.; Clarke, J.; Sanchez-Levega, A.; Orton, G. S.; Gonzaga, S.

    2009-01-01

    In recent years, Jupiter has undergone many atmospheric changes from storms turning red to global. cloud upheavals, and most recently, a cornet or asteroid impact. Yet, on top of these seemingly random changes events there are also periodic phenomena, analogous to observed Earth and Saturn atmospheric oscillations. We will present 15 years of Hubble data, from 1994 to 2009, to show how the equatorial tropospheric cloud deck and winds have varied over that time, focusing on the F953N, F41 ON and F255W filters. These filters give leverage on wind speeds plus cloud opacity, cloud height and tropospheric haze thickness, and stratospheric haze, respectively. The wind data consistently show a periodic oscillation near 7-8 S latitude. We will discuss the potential for variations with longitude and cloud height, within the calibration limits of those filters. Finally, we will discuss the role that large atmospheric events, such as the impacts in 1994 and 2009, and the global upheaval of 2007, have on temporal studies, This work was supported by a grant from the NASA Planetary Atmospheres Program. HST observational support was provided by NASA through grants from Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under contract NAS5-26555.

  7. Power-law behavior in social and economical phenomena

    NASA Astrophysics Data System (ADS)

    Yamamoto, Keizo; Miyazima, Sasuke

    2004-12-01

    We have already found power-law behavior in various phenomena such as high-tax payer, population distribution, name distribution, passenger number at stations, student number in a university from high schools, and so on. We can explain why these phenomena show such interesting behaviors by doing simulations based on adequate models. We have come to the conclusion that there are fractal structures underlying those phenomena.

  8. Investigation of collective phenomena in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Ruhunusiri, Wellalage Don Suranga

    I study dusty plasma produced by electrostatically confining melamine formaldehyde microparticles in a radio-frequency glow discharge plasma. Dusty plasma is a mixture of particles of solid matter (dust), electrons, ions, and neutral gas atoms. The dust particles have a very high charge and a mass compared to the electrons and ions in the ambient plasma. As a consequence, a dusty plasma exhibits collective phenomena such as dust acoustic waves, crystallization, and melting. The discrete nature of dust particles gives rise to compressibility. In this thesis I report findings of four tasks that were performed to investigate dust acoustic waves, compressibility, and melting. First, the nonlinear phenomenon of synchronization was characterized experimentally for the dust acoustic wave propagating in a dust cloud with many layers. I find four synchronized states, with frequencies that are multiples of 1, 2, 3, and 1/2 of the driving frequency. Comparing to phenomena that are typical of the van der Pol paradigm, I find that synchronization of the dust acoustic wave exhibits the signature of the suppression mechanism but not that of the phaselocking mechanism. Additionally, I find that the synchronization of the dust acoustic wave exhibits three characteristics that differ from the van der Pol paradigm: a threshold amplitude that can be seen in the Arnold tongue diagram, a branching of the 1:1 harmonic tongue at its lower extremity, and a nonharmonic state. Second, to assess which physical processes are important for a dust acoustic instability, I derived dispersion relations that encompass more physical processes than commonly done. I investigated how various physical processes affect a dust acoustic wave by solving these dispersion relations using parameters from a typical dust acoustic wave experiment. I find that the growth rate diminishes for large ion currents. I also find that the compressibility, a measure of the coupling between the dust particles, have a strong

  9. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  10. CFD Analysis of Core Bypass Phenomena

    SciTech Connect

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  11. Atmospheric Propagation

    NASA Technical Reports Server (NTRS)

    Embleton, Tony F. W.; Daigle, Gilles A.

    1991-01-01

    Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.

  12. Impact vaporization: Late time phenomena from experiments

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Gault, D. E.

    1987-01-01

    While simple airflow produced by the outward movement of the ejecta curtain can be scaled to large dimensions, the interaction between an impact-vaporized component and the ejecta curtain is more complicated. The goal of these experiments was to examine such interaction in a real system involving crater growth, ejection of material, two phased mixtures of gas and dust, and strong pressure gradients. The results will be complemented by theoretical studies at laboratory scales in order to separate the various parameters for planetary scale processes. These experiments prompt, however, the following conclusions that may have relevance at broader scales. First, under near vacuum or low atmospheric pressures, an expanding vapor cloud scours the surrounding surface in advance of arriving ejecta. Second, the effect of early-time vaporization is relatively unimportant at late-times. Third, the overpressure created within the crater cavity by significant vaporization results in increased cratering efficiency and larger aspect ratios.

  13. Study of phenomena related to the sintering process of silicon nitride at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Bertani, A.

    1982-01-01

    A procedure was perfected for the production of components used in engineering applications of silicon nitride. Particles of complex geometry that combine remarkable mechanical properties with a high density are obtained. The process developed, in contrast to the "hot pressing" method, does not use external pressures, and in contrast to the reaction bonding method, final densities close to the theoretical value are obtained.

  14. Characteristics of aerosol phenomena in Martian atmosphere from KRFM experiment data

    NASA Astrophysics Data System (ADS)

    Moroz, V. I.; Petrova, E. V.; Ksanfomality, L. V.; Ganpantzerova, O. F.; Goroshkova, N. V.; Zharkov, A. V.; Nikitin, G. E.; Esposito, L.; Bibring, J.-P.; Combes, M.; Soufflot, A.

    1991-02-01

    On the basis of photometric measurements both constant dust haze and high altitude ice clouds on the equatorial part of Mars were analyzed. The imaginary part of the refraction index k from 0.01 to 0.03 at 315 nm and from 0.005 to 0.01 at 550 nm was estimated for constant dust haze, using Mie theory for spherical particles. It is noted that these values for k are a few times higher than those obtained by the laboratory tests of terrestrial analogs including basalt, andesite, and montmorillonite. Two possible explanations for this phenomenon are presented, citing the irregular shape of particles and/or the presence of some more absorbing substances as potentially influential.

  15. Association of Taiwan's October rainfall patterns with large-scale oceanic and atmospheric phenomena

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Chun; Lee, Ming-An; Lu, Mong-Ming

    2016-11-01

    The variability of the amount of October rainfall in Taiwan is the highest among all seasons. The October rainfall in Taiwan is attributable to interactions between the northeasterly monsoon and typhoons and their interaction with Taiwan's Central Mountain Range. This study applied long-term gridded rainfall data for defining the major rainfall pattern for October in Taiwan. The empirical orthogonal function Model 1 (80%) of the October rainfall and El Niño Southern Oscillation (ENSO) index exhibited a significant out-of-phase coherence in a 2-4 year period band. This is because an easterly flow on the northern edge of an anomalous low-level cyclonic circulation over the South China Sea during a La Niña developing stage increased the occurrence of an autumn cold front and enhanced the northeasterly monsoon toward northern Taiwan. In addition, a southerly flow on the eastern edge of the anomalous cyclone increased the moisture transport from the tropical Pacific toward Taiwan. The warmer sea surface temperature in the South China Sea, Kuroshio, and the subtropical western Pacific, which may have been induced by an ENSO warm phase peak in the preceding winter, promoted the formation of the anomalous low-level cyclonic circulation.

  16. FGK stars and T Tauri stars: Monograph series on nonthermal phenomena in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Cram, Lawrence E. (Editor); Kuhi, Leonard V. (Editor)

    1989-01-01

    The purpose of this book, FGK Stars and T Tauri Stars, like all other volumes of this series, is to exhibit and describe the best space data and ground based data currently available, and also to describe and critically evaluate the status of current theoretical models and physical mechanisms that have been proposed to interpret these data. The method for obtaining this book was to collect manuscripts from competent volunteer authors, and then to collate and edit these contributions to form a well structured book, which will be distributed to an international community of research astronomers by NASA and by the French CNRS.

  17. Estimating Atmospheric Turbulence From Flight Records

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.

    1991-01-01

    Method for estimation of atmospheric turbulence encountered by airplanes utilizes wealth of data captured by multichannel digital flight-data recorders and air-traffic-control radar. Developed as part of continuing effort to understand how airplanes respond to such potentially hazardous phenomena as: clear-air turbulence generated by destabilized wind-shear layers above mountains and thunderstorms, and microbursts (intense downdrafts striking ground), associated with thunderstorms. Reconstructed wind fields used to predict and avoid future hazards.

  18. 1995 national heat transfer conference: Proceedings. Volume 4: Transport phenomena in manufacturing and materials processing; Transport phenomena in materials joining processes; Transport phenomena in net shape manufacturing; HTD-Volume 306

    SciTech Connect

    Mahajan, R.L.

    1995-12-31

    This book is divided into three sections: (1) transport phenomena in manufacturing and materials processing; (2) transport phenomena in net shape manufacturing: and (3) transport phenomena in materials joining processes. Separate abstracts were prepared for most papers in this volume.

  19. Coupling of Earth's Atmosphere and Ionosphere

    NASA Astrophysics Data System (ADS)

    Singh, A. K.

    2012-12-01

    The coupling between the Earth's atmosphere and ionosphere is very complex and many aspects are not well understood till date. Recent measurements show that coupling influences both the electron density and electrical conductivity. The ionosphere reacts to various natural hazards related phenomena such as lightening discharges, thunderstorms, high-power explosion, earthquakes, volcano eruptions, and typhoons through a chain of interconnected processes in the lithosphere-atmosphere-ionosphere interaction system. The precipitation of magnetospheric electrons affects higher latitudes while the radioactive elements emitted during the earthquakes affect electron density and conductivity in the lower atmosphere. Thunderstorms and lightning discharges play a major role in transferring energy from the atmosphere to the ionosphere and in establishing electrical coupling between atmosphere and ionosphere through the global electric circuit (GEC). Electrical processes occurring in the atmosphere couple the atmosphere and ionosphere, because both DC and AC effects operate at the speed of light. The electrostatic and electromagnetic field changes in global electric circuit arise from thunderstorm, lightning discharges, and optical emissions in the mesosphere. In the present paper, our present understanding of how various processes play pivotal role in energy transfer from the lower atmosphere to the ionosphere would be briefly reviewed.

  20. Light-induced phenomena in one-component gas: The transport phenomena

    NASA Astrophysics Data System (ADS)

    Chermyaninov, I. V.; Chernyak, V. G.

    2016-09-01

    The article presents the theory of transport processes in a one-component gas located in the capillary under the action of resonant laser radiation and the temperature and pressure gradients. The expressions for the kinetic coefficients determining heat and mass transport in the gas are obtained on the basis of the modified Boltzmann equations for the excited and unexcited particles. The Onsager reciprocal relations for cross kinetic coefficients are proven for all Knudsen numbers and for any law interaction of gas particles with each other and boundary surface. Light-induced phenomena associated with the possible non-equilibrium stationary states of system are analyzed.

  1. Different states of the transient luminous phenomena in Hessdalen valley, Norway.

    NASA Astrophysics Data System (ADS)

    Hauge, B. G.; Montebugnoli, S.

    2012-04-01

    The transient luminous phenomena's in Hessdalen valley has at least been observed for 200 years, since 1811, when the priest Jacob T. Krogh did the first written documentation. The valley is located in the middle of Norway, isolated and with sub arctic climate. The former mining district has no more than 140 inhabitants, and the deep mines are closed and filled with water. The valley has been under scientific surveillance since 1998 when the first automated and remote controlled observatory was put into action. Today a Norwegian, Italian and French collaboration runs 3 different research stations inside the valley. Each year a scientific field campaign establishes 4 temporary bases in the mountains, and up to 100 students and researchers man these bases for up to 14 days in september when the moon is down. The Hessdalen phenomena is not easy to detect, and approximately only 20 observations is done each year. The work done the last 14 years suggests that the phenomenon has different states, at least 6 detected so far. The states are so different that to se a coupling between them is difficult. New work done into dusty plasma physics suggest that the different phenomena's may be of the same origin, since the ionized grains of dusty plasma can change states from weakly coupled (gaseous) to crystalline, altering shape/formation and leading to different phenomena. Optical spectrometry from 2007 suggested that the luminous phenomena consisted of burning air and dust from the valley. Work done by G.S Paiva and C.A Taft suggests that radon decay from closed mines may be the mechanism that ionizes dust and triggers this phenomena. The 6 different main states of the Hessdalen phenomena, Doublet, Fireball, Plasma ray, Dust cloud, Flash and Invisible state is described and discussed. Investigation of the atmosphere inside the Hessdalen valley with low frequency directional RADAR, reveals large areas of ionized matter, giving a reflecting area big enough to saturate the input

  2. Interlayer interaction phenomena in novel materials

    NASA Astrophysics Data System (ADS)

    Pershoguba, Sergii

    Recently, there has been a considerable interest in various novel two-dimensional (2D) materials, such as graphene, topological insulators, etc. These materials host a plethora of exotic phenomena owing to their unconventional electronic structure. Physics of these 2D materials is understood fairly well, so a natural generalization is to assemble these materials into three-dimensional (3D) stacks. In this thesis, we study a number of multilayer systems, where the interlayer interaction plays a salient role. We commence with studying graphene multilayers coupled via interlayer tunneling amplitude. We calculate the energy spectrum of the system in magnetic field B parallel to the layers. The parallel magnetic field leads to a relative gauge shift of the momentum spaces of the individual 2D layers. When the interlayer tunneling is introduced, we find the Landau levels. We observe two qualitatively distinct domains in the Landau spectrum and analyze them using semiclassical arguments. Then, we include electric field E perpendicular to the layers, and analyze the spectrum in the crossed-field geometry. If the fields are in resonance E = upsilon B, where upsilon is the velocity of carriers in graphene, the wave-functions delocalize in the direction along the field E. We compare this prediction to a tunneling spectroscopy study of a graphite mesa in the parallel magnetic field. Indeed, the tunneling spectrum displays a peak, which grows linearly with the applied magnetic field B, and is, thus, consistent with our theoretical analysis. Then, we move on to a discussion of Z2 topological insulators within the Shockley model. We generalize the one dimensional (1D) Shockley model by replacing atomic sites of the original model by the 2D Rashba spin-orbit layers. We analyze surface states of a topological insulator using a construction of vortex lines in the 3D momentum space. We also study a topological insulator in a thin film geometry, where the opposite surface states are

  3. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  4. Saving the Phenomena in Medieval Astronomy

    NASA Astrophysics Data System (ADS)

    Seeskin, K.

    2011-06-01

    Aristotle's theory of motion is based on two principles: (1) all motion to either from the midpoint of the Earth, toward it, or around it, and (2) circular motion must proceed around an immovable point. On this view, the heavenly bodies are individual points of light carried around by a series of concentric spheres rotating at a constant pace around the midpoint of the Earth. But even in Aristotle's day, it was known that this theory had a great deal of difficulty accounting for planetary motion. Ptolemy's alternative was to introduce epicycles and eccentric orbits, thus denying Aristotle's view of natural motion. There was no doubt that Ptolemy's predictions were far better than Aristotle's. But for the medievals, Aristotle's theory made better intuitive sense. Moreover, Ptolemy's theory raised the question of how one sphere could pass through another. What to do? The solution of Moses Maimonides (1138-1204) was to say that it is not the job of the astronomer to tell us how things actually are but merely to propose a series of hypotheses that allow us to explain the relevant data. This view had obvious theological implications. If astronomy could explain planetary motion in an acceptable way, there was reason to believe that the order or structure of the heavens is what it is by necessity. This suggests that God did not exercise any degree of choice in making it that way. But if astronomy cannot explain planetary motion, the most reasonable explanation is that we are dealing with contingent phenomena rather than necessary ones. If there is contingency, there is reason to think God did exercise a degree of choice in making the heavens the way they are. A God who exercises choice is much closer to the God of Scripture. Although Galileo changed all of this, and paved the way for a vastly different view of astronomy, the answer to one set of questions raises a whole different set. In short, the heavenly motion still poses ultimate questions about God, existence, and

  5. Pendulum Phenomena and the Assessment of Scientific Inquiry Capabilities

    ERIC Educational Resources Information Center

    Zachos, Paul

    2004-01-01

    Phenomena associated with the "pendulum" present numerous opportunities for assessing higher order human capabilities related to "scientific inquiry" and the "discovery" of natural law. This paper illustrates how systematic "assessment of scientific inquiry capabilities", using "pendulum" phenomena, can provide a useful tool for classroom teachers…

  6. Atmospheric electricity

    NASA Technical Reports Server (NTRS)

    1987-01-01

    In the last three years the focus was on the information contained in the lightning measurement, which is independent of other meteorological measurements that can be made from space. The characteristics of lightning activity in mesoscale convective systems were quantified. A strong relationship was found between lightning activity and surface rainfall. It is shown that lightning provides a precursor signature for wet microbursts (the strong downdrafts that produce windshears hazardous to aircraft) and that the lightning signature is a direct consequence of storm evolution. The Universities Space Research Association (USRA) collaborated with NASA scientists in the preliminary analysis and scientific justification for the design and deployment of an optical instrument which can detect lightning from geostationary orbit. Science proposals for the NASA mesoscale science program and for the Tethered Satellite System were reviewed. The weather forecasting research and unmanned space vehicles. Software was written to ingest and analyze the lightning ground strike data on the MSFC McIDAS system. The capabilities which were developed have a wide application to a number of problems associated with the operational impacts of electrical discharge within the atmosphere.

  7. Conceptual Framework to Enable Early Warning of Relevant Phenomena (Emerging Phenomena and Big Data)

    SciTech Connect

    Schlicher, Bob G; Abercrombie, Robert K; Hively, Lee M

    2013-01-01

    Graphs are commonly used to represent natural and man-made dynamic systems such as food webs, economic and social networks, gene regulation, and the internet. We describe a conceptual framework to enable early warning of relevant phenomena that is based on an artificial time-based, evolving network graph that can give rise to one or more recognizable structures. We propose to quantify the dynamics using the method of delays through Takens Theorem to produce another graph we call the Phase Graph. The Phase Graph enables us to quantify changes of the system that form a topology in phase space. Our proposed method is unique because it is based on dynamic system analysis that incorporates Takens Theorem, Graph Theory, and Franzosi-Pettini (F-P) theorem about topology and phase transitions. The F-P Theorem states that the necessary condition for phase transition is a change in the topology. By detecting a change in the topology that we represent as a set of M-order Phase Graphs, we conclude a corresponding change in the phase of the system. The onset of this phase change enables early warning of emerging relevant phenomena.

  8. Certain relativistic phenomena in crystal optics

    NASA Astrophysics Data System (ADS)

    Chee-Seng, Lim

    1980-01-01

    Relativistic unsteady phenomena are established for a crystalline medium with unaligned sets of permittivity and permeability principal axes, but incorporating a compounded uniaxiality about some nonprincipal direction. All effects originate from a suddenly activated, arbitrarily oriented, maintained line current conducted with a finite velocity v. Integral representations studied in another paper (Chee-Seng) are applied. The original coordinate system is subjected to a series of rotational and translational, scaled and unscaled transformations. No specific coordinate frame is strictly adhered to. Instead, it is often expedient and advantageous to exploit several reference frames simultaneously in the course of the analysis and interpretations. The electric field is directly related to a net scalar field Δ involving another scalar Ψ and its complement Ψ¯ which can be deduced from Ψ; Ψ and Ψ¯ are associated with two expanding, inclined ellipsoidal wavefronts ξ and ξ¯; these are cocentered at the current origin and touch each other twice along the uniaxis. Elsewhere, ξ leads ξ¯. For a source current faster than ξ:vt ∈ extξ, Ψ≢0 within a finite but growing ''ice-cream cone'' domain, its nontrivial composition being χ-1/2 inside ξ and 2χ-1/2 inside part of a tangent cone from the advancing current edge vt to, and terminating at, ξ; the function χ vanishes along such a tangent cone. Alternatively, for a source current slower than ξ:vt∈ intξ, if vt is avoided, χ≳0 everywhere, while Ψ=χ-1/2 inside ξ but vanishes identically outside ξ. However, the crucial scalar field Δ depends on three separate current-velocity regimes. Over a slow regime: vt∈ intξ¯, Δ is nontrivial inside ξ wherein it is discontinuous across ξ¯. Over an intermediate regime: vt ∈ intξ extξ¯, Δ takes four distinct forms on 12 adjacent domains bounded by ξ, ξ¯ and a double-conical tangent surface linking vt to ξ¯. But for a fast regime: vt∈ ext

  9. Individualization of the anisotropic phenomena of the imbalanced Nature

    NASA Astrophysics Data System (ADS)

    Shlafman, L. M.; Kontar, V. A.

    2013-05-01

    What is an individual phenomenon of Nature? Where are the boundaries? Why it is considered as an individual phenomenon? etc. People cannot directly detect the "something isotropic." Sometimes we notice that there is a "black box." But on closer inspection, especially with new methods, the "black box" began to lighten. It seems that his "blackness" is the result of imperfect human sensors and interpretations, but not a phenomenon of Nature. Really people can identify only the anisotropic phenomena of Nature, but with the significant errors. Let's take a look at our home planet Earth. Where are the borders of our planet? It is may seem as the very simple question. People walk on the land and swim on the seas. This is the border on the surface of land and water. But what is about the dust? The dust is a part of the land, which is in the air. Weight of dust is very small compared to the weight of the planet. But it is the dust has formed valleys. Dust can rise very high above the planet's surface and even fly into the space. A similar situation is with the water. The bulk of the liquid water is in surface and underground waters. Water vapor is in the atmosphere. Atmospheric water is much less than on the earth and under the earth. But atmospheric water plays a huge role in the world and even extends into the space. Without a full accounting of dust and water impossible correctly describe the planet. But with considering the dust and water the planet is not solid-liquid ball. It is like "fuzzy blowball" with the boundaries that go to infinity. This "fuzziness" refers to gravity. The gravitational field does not end in the Lagrange points. This "fuzziness" illustrated by the electro-magnetic fields, etc. Our planet can be seen as a multidimensional anisotropic phenomenon of Nature. The anisotropy precisely is, and therefore is the gradient and movement. This phenomenon is clearly imbalanced because nothing ever repeats itself exactly, etc. The borders of any anisotropic

  10. Experiments to investigate direct containment heating phenomena with scaled models of the Surry Nuclear Power Plant

    SciTech Connect

    Blanchat, T.K.; Allen, M.D.; Pilch, M.M.; Nichols, R.T.

    1994-06-01

    The Containment Technology Test Facility (CTTF) and the Surtsey Test Facility at Sandia National Laboratories are used to perform scaled experiments that simulate High Pressure Melt Ejection accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effects of direct containment heating (DCH) phenomena on the containment load. High-temperature, chemically reactive melt (thermite) is ejected by high-pressure steam into a scale model of a reactor cavity. Debris is entrained by the steam blowdown into a containment model where specific phenomena, such as the effect of subcompartment structures, prototypic air/steam/hydrogen atmospheres, and hydrogen generation and combustion, can be studied. Four Integral Effects Tests (IETs) have been performed with scale models of the Surry NPP to investigate DCH phenomena. The 1/61{sup th} scale Integral Effects Tests (IET-9, IET-10, and IET-11) were conducted in CTRF, which is a 1/6{sup th} scale model of the Surry reactor containment building (RCB). The 1/10{sup th} scale IET test (IET-12) was performed in the Surtsey vessel, which had been configured as a 1/10{sup th} scale Surry RCB. Scale models were constructed in each of the facilities of the Surry structures, including the reactor pressure vessel, reactor support skirt, control rod drive missile shield, biological shield wall, cavity, instrument tunnel, residual heat removal platform and heat exchangers, seal table room and seal table, operating deck, and crane wall. This report describes these experiments and gives the results.

  11. Synchro-ballistic recording of detonation phenomena

    SciTech Connect

    Critchfield, R.R.; Asay, B.W.; Bdzil, J.B.; Davis, W.C.; Ferm, E.N.; Idar, D.J.

    1997-09-01

    Synchro-ballistic use of rotating-mirror streak cameras allows for detailed recording of high-speed events of known velocity and direction. After an introduction to the synchro-ballistic technique, this paper details two diverse applications of the technique as applied in the field of high-explosives research. In the first series of experiments detonation-front shape is recorded as the arriving detonation shock wave tilts an obliquely mounted mirror, causing reflected light to be deflected from the imaging lens. These tests were conducted for the purpose of calibrating and confirming the asymptotic Detonation Shock Dynamics (DSD) theory of Bdzil and Stewart. The phase velocities of the events range from ten to thirty millimeters per microsecond. Optical magnification is set for optimal use of the film`s spatial dimension and the phase velocity is adjusted to provide synchronization at the camera`s maximum writing speed. Initial calibration of the technique is undertaken using a cylindrical HE geometry over a range of charge diameters and of sufficient length-to-diameter ratio to insure a stable detonation wave. The final experiment utilizes an arc-shaped explosive charge, resulting in an asymmetric detonation-front record. The second series of experiments consists of photographing a shaped-charge jet having a velocity range of two to nine millimeters per microsecond. To accommodate the range of velocities it is necessary to fire several tests, each synchronized to a different section of the jet. The experimental apparatus consists of a vacuum chamber to preclude atmospheric ablation of the jet tip with shocked-argon back lighting to produce a shadow-graph image.

  12. Seepage phenomena on Mars at subzero temperature

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos; Möhlmann, Diedrich; Berczi, Szaniszlo; Ganti, Tibor; Horvath, Andras; Kuti, Adrienn; Pocs, Tamas; Sik, Andras; Szathmary, Eors

    At the southern hemisphere of Mars seasonal slope structures emanating from Dark Dune Spots are visible on MGS MOC, and MRO HiRISE images. Based on their analysis two groups of streaks could be identified: diffuse and fan shaped ones forming in an earlier phase of local spring, probably by CO2 gas jets, and confined streaks forming only on steep slopes during a later seasonal phase. The dark color of the streaks may arise from the dark color of the dune grains where surface frost disappeared above them, or caused by the phase change of the water ice to liquid-like water, or even it may be influenced by the solutes of salts in the undercooled interfacial water The second group's morphology (meandering style, ponds at their end), morphometry, and related theoretical modelling suggest they may form by undercooled water that remains in liquid phase in a thin layer around solid grains. We analyzed sequence of images, temperature and topographic data of Russel (54S 12E), Richardson (72S 180E) and an unnamed crater (68S 2E) during southern spring. The dark streaks here show slow motion, with an average speed of meter/day, when the maximal daytime temperature is between 190 and 220 K. Based on thermophysical considerations a thin layer of interfacial water is inevitable on mineral surfaces under the present conditions of Mars. With 10 precipitable micrometer of atmospheric water vapor, liquid phase can be present down about 190 K. Under such conditions dark streaks may form by the movement of grains lubricatred by interfacial water. This possibility have various consequences on chemical, mechanical or even possible astrobiological processes on Mars. Acknowledgment: This work was supported by the ESA ECS-project No. 98004 and the Pro Renovanda Cultura Hungariae Foundation.

  13. Hallucinations, sleep fragmentation, and altered dream phenomena in Parkinson's disease.

    PubMed

    Pappert, E J; Goetz, C G; Niederman, F G; Raman, R; Leurgans, S

    1999-01-01

    In a series of consecutively randomized outpatients who had Parkinson's disease (PD), we examined the association of three behaviors: sleep fragmentation, altered dream phenomena, and hallucinations/illusions. Using a log-linear model methodology, we tested the independence of each behavior. Sixty-two percent of the subjects had sleep fragmentation, 48% had altered dream phenomena, and 26% had hallucinations/illusions. Eighty-two percent of the patients with hallucinations/illusions experienced some form of sleep disorder. The three phenomena were not independent. The interaction between sleep fragmentation and altered dream phenomena was strongly statistically significant. Likewise, a significant interaction existed between altered dream phenomena and hallucinations/illusions. No interaction occurred between sleep fragmentation and hallucinations/illusions. Sleep fragmentation, altered dream phenomena, and hallucinations/illusions in PD should be considered distinct but often overlapping behaviors. The close association between altered dream phenomena and hallucinations suggests that therapeutic interventions aimed at diminishing dream-related activities may have a specific positive impact on hallucinatory behavior.

  14. Meteorological phenomena affecting the presence of solid particles suspended in the air during winter

    NASA Astrophysics Data System (ADS)

    Cariñanos, P.; Galán, C.; Alcázar, P.; Dominguez, E.

    Winter is not traditionally considered to be a risky season for people who suffer from pollen allergies. However, increasing numbers of people are showing symptoms in winter. This prompted our investigation into the levels of solid material in the air, and some of the meteorological phenomena that allow their accumulation. This study showed a possible relationship between the phenomenon of thermal inversion, which occurs when very low temperatures, cloudless skies and atmospheric calms coincide, and an increase in the concentration of solid material in the atmosphere. Frequently, this situation is associated with other predictable phenomena such as fog, dew and frost. This may allow a warning system to be derived for urban pollution episodes. The effect caused by parameters such as wind and rainfall was also analysed. Solid material was differentiated into non-biological material from natural and non-natural sources (e.g. soot, dust, sand, diesel exhaust particles, partially burnt residues) and biological material. The latter mainly comprises pollen grains and fungal spores. Owing to its abundance and importance as a causal agent of winter allergies, Cupressaceae pollen was considered separately.

  15. Meteorological phenomena affecting the presence of solid particles suspended in the air during winter.

    PubMed

    Cariñanos, P; Galán, C; Alcázar, P; Dominguez, E

    2000-05-01

    Winter is not traditionally considered to be a risky season for people who suffer from pollen allergies. However, increasing numbers of people are showing symptoms in winter. This prompted our investigation into the levels of solid material in the air, and some of the meteorological phenomena that allow their accumulation. This study showed a possible relationship between the phenomenon of thermal inversion, which occurs when very low temperatures, cloudless skies and atmospheric calms coincide, and an increase in the concentration of solid material in the atmosphere. Frequently, this situation is associated with other predictable phenomena such as fog, dew and frost. This may allow a warning system to be derived for urban pollution episodes. The effect caused by parameters such as wind and rainfall was also analysed. Solid material was differentiated into non-biological material from natural and non-natural sources (e.g. soot, dust, sand, diesel exhaust particles, partially burnt residues) and biological material. The latter mainly comprises pollen grains and fungal spores. Owing to its abundance and importance as a causal agent of winter allergies, Cupressaceae pollen was considered separately.

  16. The Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael (Editor); Travis, Larry D. (Editor)

    1986-01-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  17. Analytical investigation of critical phenomena in MHD power generators

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the U.S. U-25 Experiment, are analyzed. The performance of a NASA specified 500 MW(th) flow train is analyzed. Critical phenomena analyzed include: Hall voltage overshoots; optimal load schedules; parametric dependence of the electrode voltage drops; boundary layer behavior; near electrode phenomena with finite electrode segmentation; current distribution in the end regions; scale up rules; optimum Mach number distribution; and the effects of alternative cross sectional shapes.

  18. Modeling of evaporation and oxidation phenomena in plasma spraying of metal powders

    NASA Astrophysics Data System (ADS)

    Zhang, Hanwei

    Plasma spraying of metals in air is usually accompanied by evaporation and oxidation of the sprayed material. Optimization of the spraying process must ensure that the particles are fully molten during their short residence time in the plasma jet and prior to hitting the substrate, but not overheated to minimize evaporation losses. In atmospheric plasma spraying (ASP), it is also clearly desirable to be able to control the extent of oxide formation. The objective of this work to develop an overall mathematical model of the oxidization and volatilization phenomena involved in the plasma-spraying of metallic particles in air atmosphere. Four models were developed to simulate the following aspects of the atmospheric plasma spraying (APS) process: (a) the particle trajectories and the velocity and temperature profiles in an Ar-H 2 plasma jet, (b) the heat and mass transfer between particles and plasma jet, (c) the interaction between the evaporation and oxidation phenomena, and (d) the oxidation of liquid metal droplets. The resulting overall model was generated by adapting the computational fluid dynamics code FIDAP and was validated by experimental measurements carried out at the collaborating plasma laboratory of the University of Limoges. The thesis also examined the environmental implications of the oxidization and volatilization phenomena in the plasma spraying of metals. The modeling results showed that the combination of the standard k-s model of turbulence and the Boussinesq eddy-viscosity model provided a more accurate prediction of plasma gas behavior. The estimated NOx generation levels from APS were lower than the U.S.E.P.A. emission standard. Either enhanced evaporation or oxidation can occur on the surface of the metal particles and the relative extent is determined by the process parameters. Comparatively, the particle size has the greatest impact on both evaporation and oxidation. The extent of particle oxidation depends principally on gas

  19. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1998-03-20

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:18268748

  20. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1999-08-16

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:19399049

  1. VERITAS: An Atmospheric Imaging Calorimeter

    SciTech Connect

    Hays, Elizabeth

    2006-10-27

    VERITAS is one of a new generation of imaging air Cerenkov telescope arrays built to study astrophysical sources emitting gamma rays in the GeV to TeV energy range. The catalog of objects that can be studied by these ground-based instruments is expanding rapidly. The observations now possible make a critical contribution to understanding some of the most energetic phenomena in the universe. The imaging Cerenkov technique makes use of atmospheric calorimetry. The types of objects studied and the optical nature of ground-based gamma-ray telescopes places them solidly within the field of astronomy. However, the strong connections to particle processes, the electronic instrumentation, and reconstruction methods are those familiar to high energy particle physics. The advances in instrumentation that have brought about the current success of the field are reviewed and prospects for future improvements discussed.

  2. Investigations of atmospheric dynamics using a CW Doppler sounder array

    NASA Technical Reports Server (NTRS)

    Rao, G. L.

    1974-01-01

    A three-dimensional CW Doppler sounding system currently under operation at the NASA-Marshall Space Flight Center, Alabama is described. The properties of the neutral atmosphere are discussed along with the theory of Doppler sounding technique. Methods of data analyses used to investigate the dynamical phenomena at the ionospheric heights are presented and suggestions for future investigations provided.

  3. Data Processing for Atmospheric Phase Interferometers

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Nessel, James A.; Morabito, David D.

    2009-01-01

    This paper presents a detailed discussion of calibration procedures used to analyze data recorded from a two-element atmospheric phase interferometer (API) deployed at Goldstone, California. In addition, we describe the data products derived from those measurements that can be used for site intercomparison and atmospheric modeling. Simulated data is used to demonstrate the effectiveness of the proposed algorithm and as a means for validating our procedure. A study of the effect of block size filtering is presented to justify our process for isolating atmospheric fluctuation phenomena from other system-induced effects (e.g., satellite motion, thermal drift). A simulated 24 hr interferometer phase data time series is analyzed to illustrate the step-by-step calibration procedure and desired data products.

  4. INVESTIGATIONS INTO BIOFOULING PHENOMENA IN FINE PORE AERATION DEVICES

    EPA Science Inventory

    Microbiologically-based procedures were used to describe biofouling phenomena on fine pore aeration devices and to determine whether biofilm characteristics could be related to diffuser process performance parameters. Fine pore diffusers were obtained from five municipal wastewa...

  5. Deliquescent phenomena of ambient aerosols on the North China Plain

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Ma, N.; Liu, H. J.; Bian, Y. X.; Tao, J. C.; Hu, Min

    2016-08-01

    In this study, we report that the deliquescent phenomena of ambient aerosols on the North China Plain are frequently observed using a humidified nephelometer system. The deliquescence relative humidity (RH) primarily ranges from 73% to 81%, with an average of 76.8%. The observed deliquescent phenomena of ambient aerosols exhibit distinct diurnal patterns and are highly correlated with ammonium sulfate. The diurnal variations of ammonium and nitrate may play significant roles on occurrences of observed deliquescent phenomena. The frequently observed deliquescent phenomena of ambient aerosols in this paper imply that current parameterization schemes that describe the RH dependence of particle light scattering may result in a significant bias when estimating aerosol effects on climate.

  6. Probing Cytological and Reproductive Phenomena by Means of Bryophytes.

    ERIC Educational Resources Information Center

    Newton, M. E.

    1985-01-01

    Describes procedures (recommended for both secondary and college levels) to study mitosis, Giemsa C-banding, reproductive phenomena (including alternation of generations), and phototropism in mosses and liverworts. (JN)

  7. ldentifying Episodes of Earth Science Phenomena Using a Big-Data Technology

    NASA Technical Reports Server (NTRS)

    Kuo, Kwo-Sen; Oloso, Amidu; Rushing, John; Lin, Amy; Fekete, Gyorgy; Ramachandran, Rahul; Clune, Thomas; Dunny, Daniel

    2014-01-01

    A significant portion of Earth Science investigations is phenomenon- (or event-) based, such as the studies of Rossby waves, volcano eruptions, tsunamis, mesoscale convective systems, and tropical cyclones. However, except for a few high-impact phenomena, e.g. tropical cyclones, comprehensive records are absent for the occurrences or events of these phenomena. Phenomenon-based studies therefore often focus on a few prominent cases while the lesser ones are overlooked. Without an automated means to gather the events, comprehensive investigation of a phenomenon is at least time-consuming if not impossible. We have constructed a prototype Automated Event Service (AES) system that is used to methodically mine custom-defined events in the reanalysis data sets of atmospheric general circulation models. Our AES will enable researchers to specify their custom, numeric event criteria using a user-friendly web interface to search the reanalysis data sets. Moreover, we have included a social component to enable dynamic formation of collaboration groups for researchers to cooperate on event definitions of common interest and for the analysis of these events. An Earth Science event (ES event) is defined here as an episode of an Earth Science phenomenon (ES phenomenon). A cumulus cloud, a thunderstorm shower, a rogue wave, a tornado, an earthquake, a tsunami, a hurricane, or an El Nino, is each an episode of a named ES phenomenon, and, from the small and insignificant to the large and potent, all are examples of ES events. An ES event has a duration (often finite) and an associated geo-location as a function of time; it's therefore an entity embedded in four-dimensional (4D) spatiotemporal space. Earth Science phenomena with the potential to cause massive economic disruption or loss of life often rivet the attention of researchers. But, broader scientific curiosity also drives the study of phenomena that pose no immediate danger, such as land/sea breezes. Due to Earth System

  8. Lithosphere - Atmosphere - Ionosphere Circuit Model

    NASA Astrophysics Data System (ADS)

    Kereselidze, Z.; Kachakhidze, N.; Kachakhidze, M.

    2012-04-01

    There are offered possibilities of original LAI circuit model. The problem concerns of existence of self-generated electromagnetic oscillations in the segment of LAI system, which are results of tectonic stress developing in the focus area of expected earthquake. By this model the main (lowest) frequency of these electromagnetic oscillations frequency spectrum is expressed analytically by following formula: ω = β c l where β(ω) is the coefficient depended on the frequency and geological characteristics of the medium and approximate to one, c-is the speed of light, and l- the length of the fault in the focus of the expected earthquake. On the base of relevant diagnosis of experimental data, the model gives us possibility to discuss the problem about location, time of occurrence and intensity of an expected earthquake with certain accuracy. In addition to it, considered model does not block the fall-unstable model of earthquake preparing and electromagnetic phenomena accompanied earthquake preparing process. On the contrary, the imagination of physical picture may be simplified in the separate stage of earthquakes preparing. Namely, it is possible to reliably separate series of foreshocks and aftershocks. By this point of view, the certain optimism about using of EM emission as earthquake precursor of full value may be expressed. The base of such optimism is developing of various phenomena connected to VLF emission many times fixed in the surroundings of epicentral area and cosmic space (changing of intensity of electro-telluric current, perturbations of geomagnetic field in forms of irregular pulsations or regular short-period pulsations, perturbations of atmospheric electric field, perturbations of ionosphere critical frequency and TEC, variations of height of lower ionosphere, parameters of ionospheric medium: changing of specific dielectric conductivity and spectrum of MGD waves in it, atmospheric-ionospheric discharging and etc.).

  9. Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Spivak, B. Z.; Andreev, A. V.

    2016-02-01

    We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric, and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependencies. We also discuss properties of magnetoplasmons and magnetopolaritons, whose existences are entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasiclassical description of electron transport phenomena related to the chiral anomaly.

  10. Classification of Transient Phenomena in Distribution System using wavelet Transform

    NASA Astrophysics Data System (ADS)

    Sedighi, Alireza

    2014-05-01

    An efficient procedure for classification of transient phenomena in distribution systems is proposed in this paper. The proposed method has been applied to classify some transient phenomena such as inrush current, load switching, capacitor switching and single phase to ground fault. The new scheme is based on wavelet transform algorithm. All of the events for feature extraction and test are simulated using Electro Magnetic Transient Program (EMTP). Results show high accuracy of proposed method.

  11. Department of Energy Natural Phenomena Hazards Mitigation Program

    SciTech Connect

    Murray, R.C.

    1993-09-01

    This paper will present a summary of past and present accomplishments of the Natural Phenomena Hazards Program that has been ongoing at Lawrence Livermore National Laboratory since 1975. The Natural Phenomena covered includes earthquake; winds, hurricanes, and tornadoes; flooding and precipitation; lightning; and volcanic events. The work is organized into four major areas (1) Policy, requirements, standards, and guidance (2) Technical support, research development, (3) Technology transfer, and (4) Oversight.

  12. Quenching phenomena for fourth-order nonlinear parabolic equations

    NASA Astrophysics Data System (ADS)

    Yi, Niu; Xiaotong, Qiu; Runzhang, Xu

    2012-09-01

    In this paper, we investigate the quenching phenomena of the initial boundary value problem for the fourth-order nonlinear parabolic equation in bounded domain. By some assumptions on the exponents and initial data for a class of equations with the general source term, we not only obtain the quenching phenomena in finite time but also estimate the quenching time. Our main tools are maximum principle, comparison principle and eigenfunction method.

  13. Search for new phenomena in the CDF top quark sample

    SciTech Connect

    Lannon, Kevin; /Ohio State U.

    2006-10-01

    We present recent results from CDF in the search for new phenomena appearing in the top quark samples. These results use data from p{bar p} collisions at {radical}s = 1.96 TeV corresponding to an integrated luminosity ranging from 195 pb{sup -1} to 760 pb{sup -1}. No deviations are observed from the Standard Model expectations, so upper limits on the size of possible new phenomena are set.

  14. Detecting psychological phenomena: taking bottom-up research seriously.

    PubMed

    Haig, Brian D

    2013-01-01

    For more than 50 years, psychology has been dominated by a top-down research strategy in which a simplistic account of the hypothetico-deductive method is paired with null hypothesis testing in order to test hypotheses and theories. As a consequence of this focus on testing, psychologists have failed to pay sufficient attention to a complementary, bottom-up research strategy in which data-to-theory research is properly pursued.This bottom-up strategy has 2 primary aspects: the detection of phenomena, mostly in the form of empirical generalizations, and the subsequent understanding of those phenomena through the abductive generation of explanatory theories. This article provides a methodologically informative account of phenomena detection with reference to psychology. It begins by presenting the important distinctions between data, phenomena, and theory. It then identifies a number of different methodological strategies that are used to identify empirical phenomena. Thereafter, it discusses aspects of the nature of science that are prompted by a consideration of the distinction between data, phenomena, and explanatory theory. Taken together, these considerations press for significant changes in the way we think about and practice psychological research. The adoption of these changes would help psychology correct a number of its major current research deficiencies.

  15. [Non-epileptic motor paroxysmal phenomena in wakefulness in childhood].

    PubMed

    Ruggieri, Víctor L; Arberas, Claudia L

    2013-09-01

    Paroxysmal events in childhood are a challenge for pediatric neurologists, given its highly heterogeneous clinical manifestations, often difficult to distinguish between phenomena of epileptic seizure or not. The non-epileptic paroxysmal episodes are neurological phenomena, with motor, sensory symptoms, and/or sensory impairments, with or without involvement of consciousness, epileptic phenomena unrelated, so no electroencephalographic correlative expression between or during episodes. From the clinical point of view can be classified into four groups: motor phenomena, syncope, migraine (and associated conditions) and acute psychiatric symptoms. In this paper we analyze paroxysmal motor phenomena in awake children, dividing them according to their clinical manifestations: extrapyramidal episodes (paroxysmal kinesiogenic, non kinesiogenic and not related to exercise dyskinesias, Dopa responsive dystonia) and similar symptoms of dystonia (Sandifer syndrome); manifestations of startle (hyperekplexia); episodic eye and head movements (benign paroxysmal tonic upward gaze nistagmus deviation); episodic ataxia (familial episodic ataxias, paroxysmal benign vertigo); stereotyped and phenomena of self-gratification; and myoclonic events (benign myoclonus of early infancy). The detection of these syndromes will, in many cases, allow an adequate genetic counseling, initiate a specific treatment and avoid unnecessary additional studies. Molecular studies have demonstrated a real relationship between epileptic and non-epileptic basis of many of these entities and surely the identification of the molecular basis and understanding of the pathophysiological mechanisms in many of them allow us, in the near future will benefit our patients.

  16. Light flash phenomena induced by HzE particles

    NASA Technical Reports Server (NTRS)

    Mcnulty, P. J.; Pease, V. P.

    1980-01-01

    Astronauts and Apollo and Skylab missions have reported observing a variety of visual phenomena when their eyes are closed and adapted to darkness. These phenomena have been collectively labelled as light flashes. Visual phenomena which are similar in appearance to those observed in space have been demonstrated at the number of accelerator facilities by expressing the eyes of human subjects to beams of various types of radiation. In some laboratory experiments Cerenkov radiation was found to be the basis for the flashes observed while in other experiments Cerenkov radiation could apparently be ruled out. Experiments that differentiate between Cerenkov radiation and other possible mechanisms for inducing visual phenomena was then compared. The phenomena obtained in the presence and absence of Cerenkov radiation were designed and conducted. A new mechanism proposed to explain the visual phenomena observed by Skylab astronauts as they passed through the South Atlantic Anomaly, namely nuclear interactions in and near the sensitive layer of the retina, is covered. Also some studies to search for similar transient effects of space radiation on sensors and microcomputer memories are described.

  17. Encoding continuous spatial phenomena in GML

    NASA Astrophysics Data System (ADS)

    de Vries, M. E.; Ledoux, H.

    2009-04-01

    In the discussion about how to model and encode geographic information two meta-models of space exist: the 'object' view and the 'field' view. This difference in conceptual view is also reflected in different data models and encoding formats. Among GIS practitioners, ‘fields' (or ‘coverages') are being used almost exclusively in 2D, while in the geoscience community 3D and higher-dimensional fields are widely used. (Note that the dimensions in oceanographic/atmospheric coverages are not necessarily spatial dimensions, as any parameters (e.g. temperature of the air, or density of water) can be considered a dimension.) While standardisation work in ISO and OGC has led to agreement on how to best encode discrete spatial objects, for the modelling and encoding of continuous ‘fields' there are still a number of open issues. In the presentation we will shortly discuss the current standards related to fields, and look at their shortcomings and potential. In ISO 19123 for example a distinction is made between discrete and continuous coverages, but the difference is not very clear and hard to capture for implementers. As far as encoding is concerned: GML 3.x (ISO 19136) has a discrete coverage data type, but no continuous coverage type. We will then present an alternative solution to model fields, and show how it can be implemented using some parts of GML, but not the ISO/GML coverage type. This alternative data model for fields permits us to represent fields in 2D and 3D, although conceptually it can be easily extended to higher dimensions. Unlike current standards where there is a distinction between discrete and continuous fields/coverages, we argue that a field should always have one - and only one! - value for a given attribute at every location in the spatial domain (be this domain the surface of the Earth, a 3D volume, or even a 4D spatio-temporal hypercube). The principal idea behind the proposed model is that two things are needed to have a coverage: 1. a set

  18. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.

    2011-01-01

    For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  19. Atmospheric modulation transfer function in the infrared

    NASA Astrophysics Data System (ADS)

    Buskila, Kobi; Towito, Shay; Shmuel, Elad; Levi, Ran; Kopeika, Natan; Krapels, Keith; Driggers, Ronald G.; Vollmerhausen, Richard H.; Halford, Carl E.

    2004-01-01

    In high-resolution ultranarrow field-of-view thermal imagers, image quality over relatively long path lengths is typically limited by atmospheric degradation, especially atmospheric blur. We report our results and analyses of infrared images from two sites, Fort A. P. Hill and Aberdeen Proving Ground. The images are influenced by the various atmospheric phenomena: scattering, absorption, and turbulence. A series of experiments with high-resolution equipment in both the 3-5- and 8-13-μm regions at the two locations indicate that, as in the visible, image quality is limited much more by atmosphere than by the instrumentation for ranges even of the order of only a few kilometers. For paths close to the ground, turbulence is more dominant, whereas for paths involving higher average elevation, aerosol modulation transfer function (MTF) is dominant. As wavelength increases, turbulence MTF also increases, thus permitting aerosol MTF to become more dominant. A critical role in aerosol MTF in the thermal infrared is attributed to absorption, which noticeably decreases atmospheric transmission much more than in the visible, thereby reducing high-spatial-frequency aerosol MTF. These measurements indicate that atmospheric MTF should be a basic component in imaging system design and analysis even in the infrared, especially as higher-resolution hardware becomes available.

  20. Atmospheric modulation transfer function in the infrared.

    PubMed

    Buskila, Kobi; Towito, Shay; Shmuel, Elad; Levi, Ran; Kopeika, Natan; Krapels, Keith; Driggers, Ronald G; Vollmerhausen, Richard H; Halford, Carl E

    2004-01-10

    In high-resolution ultranarrow field-of-view thermal imagers, image quality over relatively long path lengths is typically limited by atmospheric degradation, especially atmospheric blur. We report our results and analyses of infrared images from two sites, Fort A. P. Hill and Aberdeen Proving Ground. The images are influenced by the various atmospheric phenomena: scattering, absorption, and turbulence. A series of experiments with high-resolution equipment in both the 3-5- and 8-13-microm regions at the two locations indicate that, as in the visible, image quality is limited much more by atmosphere than by the instrumentation for ranges even of the order of only a few kilometers. For paths close to the ground, turbulence is more dominant, whereas for paths involving higher average elevation, aerosol modulation transfer function (MTF) is dominant. As wavelength increases, turbulence MTF also increases, thus permitting aerosol MTF to become more dominant. A critical role in aerosol MTF in the thermal infrared is attributed to absorption, which noticeably decreases atmospheric transmission much more than in the visible, thereby reducing high-spatial-frequency aerosol MTF. These measurements indicate that atmospheric MTF should be a basic component in imaging system design and analysis even in the infrared, especially as higher-resolution hardware becomes available.

  1. Rainbows, water droplets, and seeing--slow motion analysis of experiments in atmospheric optics.

    PubMed

    Vollmer, Michael; Möllmann, Klaus-Peter

    2011-10-01

    Many physics processes underlying phenomena in atmospheric optics happen on a rather short time scale such that neither the human eye nor video cameras are able to analyze the details. We report applications of high-speed imaging of laboratory experiments in atmospheric optics with subsequent slow motion analysis. The potential to study respective transient effects is investigated in general and for a few phenomena in detail, in particular for rainbow scattering due to single oscillating droplets during free fall, and for light propagation effects through atmospheric paths with turbulences, leading, e.g., to scintillation of stars or shimmering of mirage images. PMID:22016242

  2. Work on Planetary Atmospheres and Planetary Atmosphere Probes

    NASA Technical Reports Server (NTRS)

    Lester, Peter

    1999-01-01

    A summary final report of work accomplished is presented. Work was performed in the following areas: (1) Galileo Probe science analysis, (2) Galileo probe Atmosphere Structure Instrument, (3) Mars Pathfinder Atmosphere Structure/Meteorology instrument, (4) Mars Pathfinder data analysis, (5) Science Definition for future Mars missions, (6) Viking Lander data analysis, (7) winds in Mars atmosphere Venus atmospheric dynamics, (8) Pioneer Venus Probe data analysis, (9) Pioneer Venus anomaly analysis, (10) Discovery Venus Probe Titan probe instrument design, and (11) laboratory studies of Titan probe impact phenomena. The work has resulted in more than 10 articles published in archive journals, 2 encyclopedia articles, and many working papers. This final report is organized around the four planets on which there was activity, Jupiter, Mars, Venus, and Titan, with a closing section on Miscellaneous Activities. A major objective was to complete the fabrication, test, and evaluation of the atmosphere structure experiment on the Galileo probe, and to receive, analyze and interpret data received from the spacecraft. The instrument was launched on April 14, 1989. Calibration data were taken for all experiment sensors. The data were analyzed, fitted with algorithms, and summarized in a calibration report for use in analyzing and interpreting data returned from Jupiter's atmosphere. The sensors included were the primary science pressure, temperature and acceleration sensors, and the supporting engineering temperature sensors. Computer programs were written to decode the Experiment Data Record and convert the digital numbers to physical quantities, i.e., temperatures, pressures, and accelerations. The project office agreed to obtain telemetry of checkout data from the probe. Work to extend programs written for use on the Pioneer Venus project included: (1) massive heat shield ablation leading to important mass loss during entry; and (2) rapid planet rotation, which introduced

  3. The earth's atmosphere.

    NASA Technical Reports Server (NTRS)

    Vaughan, W. W. (Editor); Devries, L. L.

    1972-01-01

    Topics discussed include the effects of solar radiation on the heat balance of the earth and its atmosphere, the physicomathematical models of the atmosphere and the computational schemes used in numerical investigations of the general circulation of the atmosphere, the effects of atmospheric turbulence on aeronautical systems, te chemistry of different regions of the atmosphere, the use of hot-filament and cold-cathode vacuum gauges to measure upper-atmosphere densities, methods of determining the air density at heights near a satellite's perigee by analyzing changes in its orbit, and an evaluation of various atmospheric models in the 100- to 1000-km altitude range.

  4. Preseismic changes in atmospheric radon concentration and crustal strain

    NASA Astrophysics Data System (ADS)

    Yasuoka, Yumi; Kawada, Yusuke; Nagahama, Hiroyuki; Omori, Yasutaka; Ishikawa, Tetsuo; Tokonami, Shinji; Shinogi, Masaki

    The anomalous increase in atmospheric radon concentration prior to the 1995 Kobe earthquake is compared with that in crustal strain and in other preseismic phenomena such as groundwater radon concentration, groundwater discharge rate and chloride ion concentration in groundwater. These preseismic phenomena are linked to fluctuations in crustal strain of the order of 10 -6 to 10 -8. The atmospheric radon concentration is the average or summation of radon released from a large area surrounding the monitoring station and the change can be quantitatively expressed by a power-law and log-oscillation model. These indicate that the observation of atmospheric radon is of benefit in the detection of the small anomalous preseismic crustal strain.

  5. Comprehending emergent systems phenomena through direct-manipulation animation

    NASA Astrophysics Data System (ADS)

    Aguirre, Priscilla Abel

    This study seeks to understand the type of interaction mode that best supports learning and comprehension of emergent systems phenomena. Given that the literature has established that students hold robust misconceptions of such phenomena, this study investigates the influence of using three types of interaction; speed-manipulation animation (SMN), post-manipulation animation (PMA) and direct-manipulation animation (DMA) for increasing comprehension and testing transfer of the phenomena, by looking at the effect of simultaneous interaction of haptic and visual channels on long term and working memories when seeking to comprehend emergent phenomena. The questions asked were: (1) Does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool (i.e., SMA, PMA or DMA), improve students' mental model construction of systems, thus increasing comprehension of this scientific concept? And (2) does the teaching of emergent phenomena, with the aid of a dynamic interactive modeling tool, give the students the necessary complex cognitive skill which can then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios? In an empirical study undergraduate and graduate students were asked to participate in one of three experimental conditions: SMA, PMA, or DMA. The results of the study found that it was the participants of the SMA treatment condition that had the most improvement in post-test scores. Students' understanding of the phenomena increased most when they used a dynamic model with few interactive elements (i.e., start, stop, and speed) that allowed for real time visualization of one's interaction on the phenomena. Furthermore, no indication was found that the learning of emergent phenomena, with the aid of a dynamic interactive modeling tool, gave the students the necessary complex cognitive skill which could then be applied to similar (near transfer) and/or novel, but different, (far transfer) scenarios

  6. PREFACE: Transport phenomena in proton conducting media Transport phenomena in proton conducting media

    NASA Astrophysics Data System (ADS)

    Eikerling, Michael

    2011-06-01

    Proton transport phenomena are of paramount importance for acid-base chemistry, energy transduction in biological organisms, corrosion processes, and energy conversion in electrochemical systems such as polymer electrolyte fuel cells. The relevance for such a plethora of materials and systems, and the ever-lasting fascination with the highly concerted nature of underlying processes drive research across disciplines in chemistry, biology, physics and chemical engineering. A proton never travels alone. Proton motion is strongly correlated with its environment, usually comprised of an electrolyte and a solid or soft host material. For the transport in nature's most benign proton solvent and shuttle, water that is, insights from ab initio simulations, matured over the last 15 years, have furnished molecular details of the structural diffusion mechanism of protons. Excess proton movement in water consists of sequences of Eigen-Zundel-Eigen transitions, triggered by hydrogen bond breaking and making in the surrounding water network. Nowadays, there is little debate about the validity of this mechanism in water, which bears a stunning resemblance to the basic mechanistic picture put forward by de Grotthuss in 1806. While strong coupling of an excess proton with degrees of freedom of solvent and host materials facilitates proton motion, this coupling also creates negative synergies. In general, proton mobility in biomaterials and electrochemical proton conducting media is highly sensitive to the abundance and structure of the proton solvent. In polymer electrolyte membranes, in which protons are bound to move in nano-sized water-channels, evaporation of water or local membrane dehydration due to electro-osmotic coupling are well-known phenomena that could dramatically diminish proton conductivity. Contributions in this special issue address various vital aspects of the concerted nature of proton motion and they elucidate important structural and dynamic effects of solvent

  7. Atmospheric discharges and particle fluxes

    NASA Astrophysics Data System (ADS)

    Chilingarian, A.; Chilingaryan, S.; Reymers, A.

    2015-07-01

    Fluxes of the electrons, gamma rays, and neutrons observed by particle detectors located on the Earth's surface during thunderstorms originate so-called Thunderstorm Ground Enhancements (TGEs). The relativistic runaway electron avalanches giving rise to TGEs originate in the thundercloud's lower dipole between the main negatively charged region in the middle of the thundercloud and transient lower positively charged region. Acceleration of electrons in the upper dipole between main negative and main positive charge regions leads to initiation of the terrestrial gamma flashes (TGFs) intensive researched during the last two decades by orbiting gamma ray observatories. TGFs are exceptionally intense, submillisecond bursts of electromagnetic radiation directed to the open space from the thunderstorm atmosphere. Unlike visible lightning, TGF beams do not create a hot plasma channel and optical flash; hence, in the literature they got name "dark lightning." We investigate the TGEs development in 1 min and 1 s time series of particle detector count rates. Synchronized time series of the near-surface electric field and lightning occurrences allows interconnecting two atmospheric phenomena. Registration of the Extensive Air Showers allows approaching problems of relation of the lightning occurrences and particle fluxes.

  8. Shape shifters: biobehavioral determinants and phenomena in symptom research.

    PubMed

    Corwin, Elizabeth J; Meek, Paula; Cook, Paul F; Lowe, Nancy K; Sousa, Karen H

    2012-01-01

    Symptom assessment and management are critical to patient-centered care. Traditionally, the determinants of a symptom are viewed as separate from the phenomena associated with that symptom. By separating determinants and phenomena, however, the complexity and dynamism of the patient experience are ignored. Likewise, categorizing symptom determinants and phenomena as solely biological or behavioral minimizes their dimensionality and may hinder interdisciplinary dialogue. Here we propose that determinants and phenomena are not fixed but shift between each other depending on perspective. To illustrate this way of thinking the metaphor of the "shape shifter" from folklore is used. A shape shifter moves between states and may be seen differently by the same person at different times or by multiple individuals at one time. To guide discussion, we present 5 exemplars of increasing complexity, wherein a determinant becomes a phenomenon or vice versa, depending upon context. Suggestions for statistical testing of the model are included with each. We conclude by exploring how shifting between determinants and phenomena may affect symptom cluster assessment and management.

  9. Direct observation of thitherto unobservable quantum phenomena by using electrons.

    PubMed

    Tonomura, Akira

    2005-10-18

    Fundamental aspects of quantum mechanics, which were discussed only theoretically as "thought experiments" in the 1920s and 1930s, have begun to frequently show up in nanoscopic regions owing to recent rapid progress in advanced technologies. Quantum phenomena were once regarded as the ultimate factors limiting further miniaturization trends of microstructured electronic devices, but now they have begun to be actively used as the principles for new devices such as quantum computers. To directly observe what had been unobservable quantum phenomena, we have tried to develop bright and monochromatic electron beams for the last 35 years. Every time the brightness of an electron beam improved, fundamental experiments in quantum mechanics became possible, and quantum phenomena became observable by using the wave nature of electrons.

  10. Diffusion phenomena of cells and biomolecules in microfluidic devices

    PubMed Central

    Yildiz-Ozturk, Ece; Yesil-Celiktas, Ozlem

    2015-01-01

    Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules. PMID:26180576

  11. Phenomena Identification and Ranking Technique (PIRT) Panel Meeting Summary Report

    SciTech Connect

    Mark Holbrook

    2007-07-01

    Phenomena Identification and Ranking Technique (PIRT) is a systematic way of gathering information from experts on a specific subject and ranking the importance of the information. NRC, in collaboration with DOE and the working group, conducted the PIRT exercises to identify safety-relevant phenomena for NGNP, and to assess and rank the importance and knowledge base for each phenomenon. The overall objective was to provide NRC with an expert assessment of the safety-relevant NGNP phenomena, and an overall assessment of R and D needs for NGNP licensing. The PIRT process was applied to five major topical areas relevant to NGNP safety and licensing: (1) thermofluids and accident analysis (including neutronics), (2) fission product transport, (3) high temperature materials, (4) graphite, and (5) process heat for hydrogen cogeneration.

  12. Direct observation of thitherto unobservable quantum phenomena by using electrons

    PubMed Central

    Tonomura, Akira

    2005-01-01

    Fundamental aspects of quantum mechanics, which were discussed only theoretically as “thought experiments” in the 1920s and 1930s, have begun to frequently show up in nanoscopic regions owing to recent rapid progress in advanced technologies. Quantum phenomena were once regarded as the ultimate factors limiting further miniaturization trends of microstructured electronic devices, but now they have begun to be actively used as the principles for new devices such as quantum computers. To directly observe what had been unobservable quantum phenomena, we have tried to develop bright and monochromatic electron beams for the last 35 years. Every time the brightness of an electron beam improved, fundamental experiments in quantum mechanics became possible, and quantum phenomena became observable by using the wave nature of electrons. PMID:16150719

  13. The Center for Natural Phenomena Engineering (CNPE), 1990--1991

    SciTech Connect

    1992-07-01

    The Center for Natural Phenomena Engineering (CNPE) was established to provide a natural phenomena (NP) engineering oversight role within Martin Marietta Energy Systems, Inc. (MMES). In this oversight role CNPE`s goals are to provide coordination and direction of activities related to earthquake and other natural phenomena engineering, including development of hazard definition, development of design criteria, conducting new facility design, development and conducting of testing, performance of analysis and vulnerability studies, development of analysis methodology, and provision of support for preparation of safety analysis reports for the five MMES sites. In conducting these activities it is CNPE`s goal to implement the elements of Total Quality Management (TQM) in a cost-effective manner, providing its customers with a quality product. This report describes 1990--1991 activities.

  14. On microtransport phenomena in minute droplets: A critical review

    SciTech Connect

    Aydin, O.; Yang, W.J.

    2000-05-01

    Liquid droplets are abundant in nature and industry. Their industrial applications are very broad. They appear in the forms of sessile, impinging, and hanging/suspending droplets, undergoing evaporation or solidification depending upon ambient conditions. In the present article, a critical review is presented for the important literature pertinent to microtransport phenomena in minute droplets. Thermocapillarity is the principal motivating force in convective heat and mass transfer, phase change, and instability inside the droplets, supplemented in part by the buoyancy force. The dimensionless governing parameters are identified and their roles in droplet transport phenomena are determined. This article includes 135 references.

  15. An assessment of Gallistel's (2012) rationalistic account of extinction phenomena.

    PubMed

    Miller, Ralph R

    2012-05-01

    Gallistel (2012) asserts that animals use rationalistic reasoning (i.e., information theory and Bayesian inference) to make decisions that underlie select extinction phenomena. Rational processes are presumed to lead to evolutionarily optimal behavior. Thus, Gallistel's model is a type of optimality theory. But optimality theory is only a theory, a theory about an ideal organism, and its predictions frequently deviate appreciably from observed behavior of animals in the laboratory and the real world. That is, behavior of animals is often far from optimal, as is evident in many behavioral phenomena. Hence, appeals to optimality theory to explain, rather than illuminate, actual behavior are misguided.

  16. Fundamental investigation of duct/ESP phenomena. Final report

    SciTech Connect

    Brown, C.A.; Durham, M.D.; Sowa, W.A.; Himes, R.M.; Mahaffey, W.A.

    1991-10-21

    Radian Corporation was contracted to investigate duct injection and ESP phenomena in a 1.7 MW pilot plant constructed for this test program. This study was an attempt to resolve problems found in previous studies and answer remaining questions for the technology using an approach which concentrates on the fundamental mechanisms of the process. The goal of the study was to obtain a better understanding of the basic physical and chemical phenomena that control: (1) the desulfurization of flue gas by calcium-based reagent, and (2) the coupling of an existing ESP particulate collection device to the duct injection process. Process economics are being studied by others. (VC)

  17. Byurakan Astrophysical Observatory: Active Researches of the Activity Phenomena

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.

    2016-09-01

    Scientific research directions elaborated at the Byurakan astrophysical observatory (BAO) since its foundation are reviewed briefly. Although the wide spectrum of research at BAO we have focused attention on the activity phenomena mainly. Indisputable proof of the existence of newborn stars, as well as the activity phenomena in the galactic nuclei are mentioned as the main scientific attainments of the BAO. These two scientific breakthroughs undoubtedly had also very essential conceptual significance which is not yet estimated at its true worth. Some conceptual changes accompanying the discovery of the accelerated expansion of the Universe are considered from the cosmic objects' activity viewpoint.

  18. Quantum Simulator for Transport Phenomena in Fluid Flows.

    PubMed

    Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-01-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors. PMID:26278968

  19. Quantum Simulator for Transport Phenomena in Fluid Flows.

    PubMed

    Mezzacapo, A; Sanz, M; Lamata, L; Egusquiza, I L; Succi, S; Solano, E

    2015-08-17

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

  20. RELAP5-3D Code Validation for RBMK Phenomena

    SciTech Connect

    Fisher, James Ebberly

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  1. RELAP5-3D code validation for RBMK phenomena

    SciTech Connect

    Fisher, J.E.

    1999-09-01

    The RELAP5-3D thermal-hydraulic code was assessed against Japanese Safety Experiment Loop (SEL) and Heat Transfer Loop (HTL) tests. These tests were chosen because the phenomena present are applicable to analyses of Russian RBMK reactor designs. The assessment cases included parallel channel flow fluctuation tests at reduced and normal water levels, a channel inlet pipe rupture test, and a high power, density wave oscillation test. The results showed that RELAP5-3D has the capability to adequately represent these RBMK-related phenomena.

  2. An assessment of Gallistel's (2012) rationalistic account of extinction phenomena.

    PubMed

    Miller, Ralph R

    2012-05-01

    Gallistel (2012) asserts that animals use rationalistic reasoning (i.e., information theory and Bayesian inference) to make decisions that underlie select extinction phenomena. Rational processes are presumed to lead to evolutionarily optimal behavior. Thus, Gallistel's model is a type of optimality theory. But optimality theory is only a theory, a theory about an ideal organism, and its predictions frequently deviate appreciably from observed behavior of animals in the laboratory and the real world. That is, behavior of animals is often far from optimal, as is evident in many behavioral phenomena. Hence, appeals to optimality theory to explain, rather than illuminate, actual behavior are misguided. PMID:22421221

  3. The influence of large-scale climate phenomena on precipitation in the Ordos Basin, China

    NASA Astrophysics Data System (ADS)

    Zhong, Yu; Lei, Liyuan; Liu, Youcun; Hao, Yonghong; Zou, Chris; Zhan, Hongbin

    2016-09-01

    Large-scale atmospheric circulations significantly affect regional precipitation patterns. However, it is not well known whether and how these phenomena affect regional precipitation distribution in northern China. This paper reported the individual and coupled effects of El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) on annual precipitation for the Ordos Basin, an arid and semi-arid basin, currently with major industries of coal, fossil oil, natural gas, and halite in north central China. Our results showed that ENSO and ISM exerted substantial impact on annual precipitation while the impact of PDO and AMO was relatively limited. There were 24 and 15 out of 33 stations showing significant differences (p < 0.1) in annual precipitation (from 1950 to 2013) for ENSO and ISM, respectively. The median precipitation across the basin during El Niño years was 21.49 % higher than that during La Niña years and 17.28 % higher during the positive phase of ISM years compared to the negative phase of the ISM years. The impacts of ENSO and ISM on precipitation were enhanced during a PDO cold phase but weakened in a PDO warm phase. The impact of ENSO was still enhanced by an AMO warm phase. The effects of climatic phenomena on precipitation showed a strong spatial difference in the Ordos Basin. The impact of ENSO was mostly evident around the edges of the basin while the impact of ISM decreases from south to north. The deserts (i.e., Hobq Desert and Mu Us Sandy Land) in the center of the basin were less affected by these large-scale climatic phenomena. An improved understanding of such relationships would be helpful in water resource planning and disaster management for the Ordos Basin.

  4. The refraction in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Golitsyn, G. S.

    1982-12-01

    An analytical theory of refraction for the atmospheric layer is developed in which the vertical profiles of the refraction are calculated based on the theory of Monin and Obukhov (1954). A similarity parameter is found for the refraction in such conditions. These results are used to clarify the idea of Moroz (1976) that the nearness of the horizon as recorded by the automatic stations on the surface of Venus can be explained by the decrease in the temperature at the very surface of the planet. In addition, several other optical phenomena which occur near the surface of the earth are examined.

  5. Solid State Laser Technology Development for Atmospheric Sensing Applications

    NASA Technical Reports Server (NTRS)

    Barnes, James C.

    1998-01-01

    NASA atmospheric scientists are currently planning active remote sensing missions that will enable global monitoring of atmospheric ozone, water vapor, aerosols and clouds as well as global wind velocity. The measurements of these elements and parameters are important because of the effects they have on climate change, atmospheric chemistry and dynamics, atmospheric transport and, in general, the health of the planet. NASA will make use of Differential Absorption Lidar (DIAL) and backscatter lidar techniques for active remote sensing of molecular constituents and atmospheric phenomena from advanced high-altitude aircraft and space platforms. This paper provides an overview of NASA Langley Research Center's (LaRC's) development of advanced solid state lasers, harmonic generators, and wave mixing techniques aimed at providing the broad range of wavelengths necessary to meet measurement goals of NASA's Earth Science Enterprise.

  6. Present state of knowledge of the upper atmosphere: An assessment report

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.

  7. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  8. Ground-based Optical Observations of Geophysical Phenomena: Aurora Borealis and Meteors

    NASA Astrophysics Data System (ADS)

    Samara, Marilia

    2010-10-01

    Advances in low-light level imaging technology have enabled significant improvements in the ground based study of geophysical phenomena. In this talk we focus on two such phenomena that occur in the Earth's ionosphere: aurorae and meteors. Imaging the aurora which is created by the interplay of the Earth's magnetosphere, ionosphere and atmosphere, provides a tool for remote sensing physical processes that are otherwise very difficult to study. By quantifying the intensities, scale sizes and lifetimes of auroral structures, we can gain significant insight into the physics behind the generation of the aurora and the interaction of the magnetosphere with the solar wind. Additionally, the combination of imaging with radars provides complimentary data and therefore more information than either method on its own. Meteor observations are a perfect example of this because the radar can accurately determine only the line-of-sight component of velocity, while imaging provides the direction of motion, the perpendicular velocity and brightness (a proxy for mass), therefore enabling a much more accurate determination of the full velocity vector and mass.

  9. The corrosion phenomena in the coin cell BR2325 of the ``superstoichiometric fluorocarbon-lithium'' system

    SciTech Connect

    Mitkin, V.N.; Galkin, P.S.; Denisova, T.N.

    1998-07-01

    It was noted at the earlier study and at the longer observations of the novel various types of superstoichiometric fluorocarbon materials CF{sub 1+x}, where x = 0.1--0.33 (FCM) and their behavior, that despite of their known hygroscopity during a storage of samples in laboratory and technological utensils nevertheless occurs an appreciable sorption of atmospheric moisture. The color of samples does not change but sometimes there appears a smell of hydrogen fluoride and even corrosion of glasswares at a long storage. On the basis of these facts was assumed that at a long storage the slow reactions of HF producing with a sorption moisture can proceed. This phenomena is necessary to take into account for successful manufacturing of long life lithium cells based on superstoichiometric fluorocarbon composite cathodes (FCC). The chemistry of such slow hydrolytic process and especially of processes which can proceed at manufacturing of FCC earlier was not investigated also of any data in the literature in this occasion is not present. Just for this reason the authors undertook a study of the corrosion phenomena which can proceed in industrial sources of a current at a long storage under influence of slow hydrolysis of C-F bonds by moisture. The goal of the study was to search long term damages in the slightly wet FCM and based on these materials cathodic composites for fluorocarbon-lithium cells. As a model for corrosion process investigation they have chosen a standard coin lithium battery of a type BR2325.

  10. Characterization of Microwave-Induced Electric Discharge Phenomena in Metal–Solvent Mixtures

    PubMed Central

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-01-01

    Electric discharge phenomena in metal–solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (<40 μm) are heated very rapidly in benzene suspensions and start to glow in the microwave field, whereas larger particles exhibit extremely strong discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere. PMID:24551491

  11. In Situ Visualization of Impacting Phenomena of Plasma-Sprayed Zirconia: From Single Splat to Coating Formation

    NASA Astrophysics Data System (ADS)

    Shinoda, Kentaro; Murakami, Hideyuki; Kuroda, Seiji; Takehara, Kohsei; Oki, Sachio

    2008-12-01

    The authors have developed an in situ monitoring system for particle impacts under atmospheric dc plasma spraying conditions. This system utilized a high-speed video camera coupled with a long-distance microscope, and was capable of capturing the particle-impinging phenomena at one million frames per second. To understand the coating formation mechanism, two approaches were attempted, i.e., observation of the single splat formation and the subsequent coating formation. In the former case, the deformation and cooling processes of yttria-stabilized zirconia (YSZ) droplets impinging on substrates were successfully captured. In the latter case, multiple-droplet-impacting phenomena were observed as an ensemble treatment. Representing the coating process, the tower formation (0-dimensional) and bead formation (1-dimensional) were observed under typical plasma spray conditions for thermal barrier coatings using a triggering system coupled with the motion of a robot. The obtained images clearly showed the coating formation resulting from the integration of single splats.

  12. EUV Coronal Waves: Atmospheric and Heliospheric Connections and Energetics

    NASA Astrophysics Data System (ADS)

    Patsourakos, S.

    2015-12-01

    Since their discovery in late 90's by EIT on SOHO, the study EUV coronal waves has been a fascinating andfrequently strongly debated research area. While it seems as ifan overall consensus has been reached about the nurture and nature of this phenomenon,there are still several important questions regarding EUV waves. By focusing on the most recentobservations, we will hereby present our current understanding about the nurture and nature of EUV waves,discuss their connections with other atmospheric and heliospheric phenomena (e.g.,flares and CMEs, Moreton waves, coronal shocks, coronal oscillations, SEP events) and finallyassess their possible energetic contribution to the overall budget of relatederuptive phenomena.

  13. EDITORIAL: Spin-transfer-torque-induced phenomena Spin-transfer-torque-induced phenomena

    NASA Astrophysics Data System (ADS)

    Hirohata, Atsufumi

    2011-09-01

    This cluster, consisting of five invited articles on spin-transfer torque, offers the very first review covering both magnetization reversal and domain-wall displacement induced by a spin-polarized current. Since the first theoretical proposal on spin-transfer torque—reported by Berger and Slonczewski independently—spin-transfer torque has been experimentally demonstrated in both vertical magnetoresistive nano-pillars and lateral ferromagnetic nano-wires. In the former structures, an electrical current flowing vertically in the nano-pillar exerts spin torque onto the thinner ferromagnetic layer and reverses its magnetization, i.e., current-induced magnetization switching. In the latter structures, an electrical current flowing laterally in the nano-wire exerts torque onto a domain wall and moves its position by rotating local magnetic moments within the wall, i.e., domain wall displacement. Even though both phenomena are induced by spin-transfer torque, each phenomenon has been investigated separately. In order to understand the physical meaning of spin torque in a broader context, this cluster overviews both cases from theoretical modellings to experimental demonstrations. The earlier articles in this cluster focus on current-induced magnetization switching. The magnetization dynamics during the reversal has been calculated by Kim et al using the conventional Landau--Lifshitz-Gilbert (LLG) equation, adding a spin-torque term. This model can explain the dynamics in both spin-valves and magnetic tunnel junctions in a nano-pillar form. This phenomenon has been experimentally measured in these junctions consisting of conventional ferromagnets. In the following experimental part, the nano-pillar junctions with perpendicularly magnetized FePt and half-metallic Heusler alloys are discussed from the viewpoint of efficient magnetization reversal due to a high degree of spin polarization of the current induced by the intrinsic nature of these alloys. Such switching can

  14. New Phenomena in NC Field Theory and Emergent Spacetime Geometry

    SciTech Connect

    Ydri, Badis

    2010-10-31

    We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar {phi}{sup 4} field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at {theta} = 0 there must exist a novel fixed point at {theta} = {infinity} corresponding to the quartic hermitian matrix model.

  15. A Curriculum Framework Based on Archetypal Phenomena and Technologies.

    ERIC Educational Resources Information Center

    Zubrowski, Bernie

    2002-01-01

    Presents an alternative paradigm of curriculum development based on the theory of situated cognition. This approach starts with context rather than concept, gives greater weight to students' interpretative frameworks, and provides for a more holistic development. Presents a grade 1-8 framework that uses archetypal phenomena and technologies as the…

  16. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  17. Do Particle Ideas Help or Hinder Pupils' Understanding of Phenomena?

    ERIC Educational Resources Information Center

    Papageorgiou, George; Johnson, Philip

    2005-01-01

    This paper addresses the question of whether particle ideas help or hinder young pupils' understanding of changes of state and dissolving. Two matched groups in a primary school in Greece (ages 10/11, n = 20 and n = 19) were respectively taught one of two parallel lesson schemes. Covering the same phenomena, one scheme incorporated particle ideas,…

  18. The Discovery of Transient Phenomena by NASA's K2 Mission

    NASA Astrophysics Data System (ADS)

    Colón, Knicole D.

    2016-01-01

    The NASA K2 space mission is photometrically monitoring fields along the ecliptic to achieve a variety of science goals. These goals involve time variable observations of Solar System objects, extrasolar planets, star clusters, supernovae, and more. Because K2 observes each of its fields for just ~80 days, it has a finite baseline over which to acquire observations of photometrically varying astrophysical objects. Thanks to their extended baseline of observations, wide-field ground-based photometric and spectroscopic surveys that have been monitoring the sky for years can provide robust constraints on transiting planets, supernova events, or other transient phenomena that have been newly identified in K2 data. I will discuss the opportunities for synergistic activities between the K2 space mission and such long-running ground-based surveys as HATNet, KELT, SuperWASP, and APOGEE that will maximize the scientific output from these surveys. In particular, I will present results from a search for transient phenomena in K2 data and will use ground-based survey data to aid the characterization of these phenomena. Examples of these phenomena include single planetary transit events and stars with long-duration dimmings caused by an eclipse of a protoplanetary disk. I will also discuss the benefits that upcoming surveys like the NASA Transiting Exoplanet Survey Satellite (TESS) mission and the Large Synoptic Survey Telescope (LSST) will gain from long-term ground-based surveys.

  19. Large-scale phenomena, chapter 3, part D

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Oceanic phenomena with horizontal scales from approximately 100 km up to the widths of the oceans themselves are examined. Data include: shape of geoid, quasi-stationary anomalies due to spatial variations in sea density and steady current systems, and the time dependent variations due to tidal and meteorological forces and to varying currents.

  20. Nuclear phenomena in low-energy nuclear reaction research.

    PubMed

    Krivit, Steven B

    2013-09-01

    This is a comment on Storms E (2010) Status of Cold Fusion, Naturwissenschaften 97:861-881. This comment provides the following remarks to other nuclear phenomena observed in low-energy nuclear reactions aside from helium-4 make significant contributions to the overall energy balance; and normal hydrogen, not just heavy hydrogen, produces excess heat.

  1. Linguistic Studies on English Pronominalization: Syntactic, Discourse and Pragmatic Phenomena.

    ERIC Educational Resources Information Center

    Barnitz, John G.

    To integrate many of the theoretical linguistic studies examining pronoun reference, this paper focuses on tracing the shift from purely transformational syntactic studies of intrasentential phenomena to the wider orientations of discourse and pragmatic studies. The first section describes the classic studies of pronominalization within the…

  2. Unipolar arcing phenomena observed in laboratory and nature

    SciTech Connect

    Sanduloviciu, M.

    1995-12-31

    Unipolar arcing phenomena observed as coherent {open_quotes}plasma{close_quotes} balls operating on a surface of constant potential are explained in the frame of a new already proposed self-organisation mechanism considered at the origin of the formation and stability of extended coherent structures observed in plasma devices.

  3. The Effects of Globalization Phenomena on Educational Concepts

    ERIC Educational Resources Information Center

    Schrottner, Barbara Theresia

    2010-01-01

    It is becoming more and more apparent that globalization processes represent, theoretically as well as practically, a challenge for educational sciences and therefore, it must be addressed within the sphere of education. Accordingly, educational conceptions have to adapt to globalization phenomena and focus more on alternative and innovative…

  4. Beyond a Dichotomic Approach, the Case of Colour Phenomena

    ERIC Educational Resources Information Center

    Viennot, L.; de Hosson, C.

    2012-01-01

    This research documents the aims and the impact of a teaching experiment concerning colour phenomena. This teaching experiment is designed in order to make students consider not only the spectral composition of light but also its intensity, and to consider the absorption of light by a pigment as relative, instead of as total or zero. Eight…

  5. Recent LEP2 results on searches for new phenomena

    SciTech Connect

    Pan Yibin

    1998-05-29

    Recent results of searches for supersymmetric particles, Higgs bosons, and other new phenomena at LEP2 are summarized. These results are based on data and analyses from the four LEP experiments: ALEPH, DELPHI, L3, and OPAL. The data were collected during the summer and fall of 1996 with center-of-mass energies of 161 and 172 GeV.

  6. The Assessment of Object Relations Phenomena in Borderline Personality Disorder.

    ERIC Educational Resources Information Center

    Gustafson, Eric Wayne

    Recent attempts to empirically validate psychoanalytic theory and its contemporary object relational constructs have turned to measuring the concepts with a variety of recently developed assessment scales. This paper reviews the 27 research studies which utilize instruments designed to assess object relations phenomena in subjects diagnosed with…

  7. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  8. Eighty phenomena about the self: representation, evaluation, regulation, and change

    PubMed Central

    Thagard, Paul; Wood, Joanne V.

    2015-01-01

    We propose a new approach for examining self-related aspects and phenomena. The approach includes (1) a taxonomy and (2) an emphasis on multiple levels of mechanisms. The taxonomy categorizes approximately eighty self-related phenomena according to three primary functions involving the self: representing, effecting, and changing. The representing self encompasses the ways in which people depict themselves, either to themselves or to others (e.g., self-concepts, self-presentation). The effecting self concerns ways in which people facilitate or limit their own traits and behaviors (e.g., self-enhancement, self-regulation). The changing self is less time-limited than the effecting self; it concerns phenomena that involve lasting alterations in how people represent and control themselves (e.g., self-expansion, self-development). Each self-related phenomenon within these three categories may be examined at four levels of interacting mechanisms (social, individual, neural, and molecular). We illustrate our approach by focusing on seven self-related phenomena. PMID:25870574

  9. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics

    NASA Astrophysics Data System (ADS)

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G.; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells.

  10. Electrostatic phenomena in organic semiconductors: fundamentals and implications for photovoltaics.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Castet, Frédéric; Poelking, Carl; Andrienko, Denis; Soos, Zoltán G; Cornil, Jérôme; Beljonne, David

    2016-11-01

    This review summarizes the current understanding of electrostatic phenomena in ordered and disordered organic semiconductors, outlines numerical schemes developed for quantitative evaluation of electrostatic and induction contributions to ionization potentials and electron affinities of organic molecules in a solid state, and illustrates two applications of these techniques: interpretation of photoelectron spectroscopy of thin films and energetics of heterointerfaces in organic solar cells. PMID:27603960

  11. Binding Phenomena within a Reductionist Theory of Grammatical Dependencies

    ERIC Educational Resources Information Center

    Drummond, Alex

    2011-01-01

    This thesis investigates the implications of binding phenomena for the development of a reductionist theory of grammatical dependencies. The starting point is the analysis of binding and control in Hornstein (2001, 2009). A number of revisions are made to this framework in order to develop a simpler and empirically more successful account of…

  12. Roughness-induced critical phenomena in a turbulent flow.

    PubMed

    Goldenfeld, Nigel

    2006-02-01

    I present empirical evidence that turbulent flows are closely analogous to critical phenomena, from a reanalysis of friction factor measurements in rough pipes. The data collapse found here corresponds to Widom scaling near critical points, and implies that a full understanding of turbulence requires explicit accounting for boundary roughness.

  13. Developing Critical Thinking through the Study of Paranormal Phenomena.

    ERIC Educational Resources Information Center

    Wesp, Richard; Montgomery, Kathleen

    1998-01-01

    Argues that accounts of paranormal phenomena can serve as an ideal medium in which to encourage students to develop critical-thinking skills. Describes a cooperative-learning approach used to teach critical thinking in a course on paranormal events. Reports that critical-thinking skills increased and that the course received favorable student…

  14. Coastal Sand Dune Plant Ecology: Field Phenomena and Interpretation

    ERIC Educational Resources Information Center

    McDonald, K.

    1973-01-01

    Discusses the advantages and disadvantages of selecting coastal sand dunes as the location for field ecology studies. Presents a descriptive zonal model for seaboard sand dune plant communities, suggestions concerning possible observations and activities relevant to interpreting phenomena associated with these forms of vegetation, and additional…

  15. Stellar atmospheric structural patterns

    NASA Technical Reports Server (NTRS)

    Thomas, R. N.

    1983-01-01

    The thermodynamics of stellar atmospheres is discussed. Particular attention is given to the relation between theoretical modeling and empirical evidence. The characteristics of distinctive atmospheric regions and their radical structures are discussed.

  16. Our shared atmosphere

    EPA Science Inventory

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  17. The Atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Hansen, J. E. (Editor)

    1975-01-01

    Topics considered at the conference included the dynamics, structure, chemistry, and evolution of the Venus atmosphere, as well as cloud physics and motion. Infrared, ultraviolet, and radio occultation methods of analysis are discussed, and atmospheric models are described.

  18. The atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Barth, C. A.

    1974-01-01

    The atmosphere of Mars is essentially a pure carbon dioxide atmosphere that contains a small and seasonably varying amount of water vapor. A number of minor constituents which arise from the interactions of solar radiation with water vapor and carbon dioxide include carbon monoxide, atomic oxygen, molecular oxygen, ozone, and atomic hydrogen. At the surface of Mars the atmospheric pressure is less than one hundredth of the pressure at the surface of the earth. Extensive cloud systems appear on Mars. The structure of the lower Martian atmosphere is discussed together with variations in the lower atmosphere and the characteristics of the upper atmosphere. Reactions of photochemistry are considered along with the atmospheric escape and interactions between the atmosphere and the polar caps.

  19. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  20. Atmospheric deposition to high-elevation forests

    SciTech Connect

    Lovett, G.M.; Weathers, K.C.; Lindberg, S.E. Oak Ridge National Lab., TN )

    1994-06-01

    Three important phenomena characterize atmospheric deposition to high-elevation forests: (1) multiple deposition mechanisms (wet, dry, and cloud deposition), (2) high rates of deposition, and (3) high spatial variability. The high rates of deposition are caused by changes in meteorological conditions with elevation, especially increasing wind speed and cloud immersion frequency. The high spatial variability of deposition is a result of the regulation of cloud and dry deposition rates by microclimatic and canopy structure conditions, which can be extremely heterogeneous in mountain landscapes. Spruce-fir forests are often [open quotes]hot spots[close quotes] of deposition when viewed in a landscape or regional context because of their elevation, exposure, and evergreen canopy. In this talk we will consider atmospheric depositions to high-elevation forests in both the northeastern and southeastern U.S., using field data and geographic information systems to illustrate deposition patterns.

  1. Advanced studies on Simulation Methodologies for very Complicated Fracture Phenomena

    NASA Astrophysics Data System (ADS)

    Nishioka, Toshihisa

    2010-06-01

    Although nowadays, computational techniques are well developed, for Extremely Complicated Fracture Phenomena, they are still very difficult to simulate, for general engineers, researchers. To overcome many difficulties in those simulations, we have developed not only Simulation Methodologies but also theoretical basis and concepts. We sometimes observe extremely complicated fracture patterns, especially in dynamic fracture phenomena such as dynamic crack branching, kinking, curving, etc. For examples, although the humankind, from primitive men to modern scientists such as Albert Einstein had watched the post-mortem patterns of dynamic crack branching, the governing condition for the onset of the phenomena had been unsolved until our experimental study. From in these studies, we found the governing condition of dynamic crack bifurcation, as follows. When the total energy flux per unit time into a propagating crack tip reaches the material crack resistance, the crack braches into two cracks [total energy flux criterion]. The crack branches many times whenever the criterion is satisfied. Furthermore, the complexities also arise due to their time-dependence and/or their-deformation dependence. In order to make it possible to simulate such extremely complicated fracture phenomena, we developed many original advanced computational methods and technologies. These are (i)moving finite element method based on Delaunay automatic triangulation (MFEMBOAT), path independent,(ii) equivalent domain integral expression of the dynamic J integral associated with a continuous auxiliary function,(iii) Mixed phase path-prediction mode simulation, (iv) implicit path prediction criterion. In this paper, these advanced computational methods are thoroughly explained together with successful comparison with the experimental results. Since multiple dynamic crack branching phenomena may be most complicated fracture due to complicated fracture paths, and its time dependence (transient), this

  2. Resistive switching phenomena: A review of statistical physics approaches

    SciTech Connect

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-08-31

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor in determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.

  3. Resistive switching phenomena: A review of statistical physics approaches

    DOE PAGES

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-08-31

    Here we report that resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ~50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor inmore » determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current–voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.« less

  4. Resistive switching phenomena: A review of statistical physics approaches

    NASA Astrophysics Data System (ADS)

    Lee, Jae Sung; Lee, Shinbuhm; Noh, Tae Won

    2015-09-01

    Resistive switching (RS) phenomena are reversible changes in the metastable resistance state induced by external electric fields. After discovery ˜50 years ago, RS phenomena have attracted great attention due to their potential application in next-generation electrical devices. Considerable research has been performed to understand the physical mechanisms of RS and explore the feasibility and limits of such devices. There have also been several reviews on RS that attempt to explain the microscopic origins of how regions that were originally insulators can change into conductors. However, little attention has been paid to the most important factor in determining resistance: how conducting local regions are interconnected. Here, we provide an overview of the underlying physics behind connectivity changes in highly conductive regions under an electric field. We first classify RS phenomena according to their characteristic current-voltage curves: unipolar, bipolar, and threshold switchings. Second, we outline the microscopic origins of RS in oxides, focusing on the roles of oxygen vacancies: the effect of concentration, the mechanisms of channel formation and rupture, and the driving forces of oxygen vacancies. Third, we review RS studies from the perspective of statistical physics to understand connectivity change in RS phenomena. We discuss percolation model approaches and the theory for the scaling behaviors of numerous transport properties observed in RS. Fourth, we review various switching-type conversion phenomena in RS: bipolar-unipolar, memory-threshold, figure-of-eight, and counter-figure-of-eight conversions. Finally, we review several related technological issues, such as improvement in high resistance fluctuations, sneak-path problems, and multilevel switching problems.

  5. Seasonality of alcohol-related phenomena in Estonia

    NASA Astrophysics Data System (ADS)

    Silm, Siiri; Ahas, Rein

    2005-03-01

    We studied alcohol consumption and its consequences as a seasonal phenomenon in Estonia and analysed the social and environmental factors that may cause its seasonal rhythm. There are two important questions when researching the seasonality of human activities: (1) whether it is caused by natural or social factors, and (2) whether the impact of the factors is direct or indirect. Often the seasonality of social phenomena is caused by social factors, but the triggering mechanisms are related to environmental factors like temperature, precipitation, and radiation via the circannual calendar. The indicators of alcohol consumption in the current paper are grouped as: (1) pre-consumption phenomena, i.e. production, tax and excise, sales (beer, wine and vodka are analysed separately), and (2) post-consumption phenomena, i.e. alcohol-related crime and traffic accidents and the number of people detained in lockups and admitted to alcohol treatment clinics. In addition, seasonal variability in the amount of alcohol advertising has been studied, and a survey has been carried out among 87 students of Tartu University. The analysis shows that different phenomena related to alcohol have a clear seasonal rhythm in Estonia. The peak period of phenomena related to beer is in the summer, from June to August and the low point is during the first months of the year. Beer consumption correlates well with air temperature. The consumption of vodka increases sharply at the end of the year and in June; the production of vodka does not have a significant correlation with negative temperatures. The consumption of wine increases during summer and in December. The consequences of alcohol consumption, expressed as the rate of traffic accidents or the frequency of medical treatment, also show seasonal variability. Seasonal variability of alcohol consumption in Estonia is influenced by natural factors (temperature, humidity, etc.) and by social factors (celebrations, vacations, etc.). However

  6. [Food ingestion in ruminants: modalities and associated phenomena].

    PubMed

    Dulphy, J P; Faverdin, P

    1987-01-01

    This paper synthesizes the literature on modalities of food intake in ruminants and their main associated phenomena. Firstly, circadian distribution of feeding and ruminating activities has been examined. Ruminants spend a large part of their time chewing. Their meals have been described in detail; changes in rates of intake, time spent eating, the effect of restricting the amount fed or the period of feed accessibility have been discussed. When food is distributed, the animals have a "long" meal. These meals have been analysed in relation to the type of animal and the feed offered. The other meals ("small" meals) have been briefly described. The paper next examines the phenomena associated with meals, or induced by them, and implied in the control of food intake. Forestomach motricity varies according to ruminant feeding behavior and plays a basic role in digesta transit. Rumen content varies with the meal and its chemical composition due to the arrival in the rumen of food, water and saliva. Rumination may require 600 to 650 min/day and is important in the comminution and sorting of rumen particles. The digestive phenomena associated with meals are related to control of intake. The influence of rumen fill has been thoroughly discussed. Finally, main humoral changes due to intake have been reviewed. The influence of volatile fatty acids (VFA) and metabolites has been discussed as well as the role of glucose, amino acids and fatty acids. Among the hormones, insulin and glucagon seem to play an important role in controlling food intake. The amounts of gastrointestinal hormones increase during intake and may also play an important part. Despite a net improvement in the knowledge of phenomena related to intake, much still remains to be done in setting up models to describe these phenomena in relation to feeding activities and to aid in understanding the mechanisms controlling feed intake in ruminants.

  7. Sub-photosphere to Solar Atmosphere Connection

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; De Moortel, Ineke; Fan, Yuhong; Ilonidis, Stathis; Steiner, Oskar

    2015-12-01

    Magnetic fields extend from the solar interior through the atmosphere. The formation and evolution of active regions can be studied by measuring subsurface flows with local helioseismology. The emergence of magnetic flux from the solar convection zone is associated with acoustic perturbation signatures. In near-surface layers, the average dynamics can be determined for emerging regions. MHD simulations of the emergence of a twisted flux tube show how magnetic twist and free energy are transported from the interior into the corona and the dynamic signatures associated with such transport in the photospheric and sub-photospheric layers. The subsurface twisted flux tube does not emerge into the corona as a whole in emerging active regions. Shear flows at the polarity inversion line and coherent vortical motions in the subsurface flux tubes are the major means by which twist is transported into the corona, leading to the formation of sigmoid-shaped coronal magnetic fields capable of driving solar eruptions. The transport of twist can be followed from the interior by using the kinetic helicity of subsurface flows as a proxy of magnetic helicity; this quantity holds great promise for improving the understanding of eruptive phenomena. Waves are not only vital for studying the link between the solar interior and the surface but for linking the photosphere with the corona as well. Acoustic waves that propagate from the surface into the magnetically structured, dynamic atmosphere undergo mode conversion and refraction. These effects enable atmospheric seismology to determine the topography of magnetic canopies in the solar atmosphere. Inclined magnetic fields lower the cut-off frequency so that low frequency waves can leak into the outer atmosphere. Recent high resolution, high cadence observations of waves and oscillations in the solar atmosphere, have lead to a renewed interest in the potential role of waves as a heating mechanism. In light of their potential contribution

  8. Nonisothermal Pluto atmosphere models

    SciTech Connect

    Hubbard, W.B.; Yelle, R.V.; Lunine, J.I. )

    1990-03-01

    The present thermal profile calculation for a Pluto atmosphere model characterized by a high number fraction of CH4 molecules encompasses atmospheric heating by solar UV flux absorption and conductive transport cooling to the surface of Pluto. The stellar occultation curve predicted for an atmosphere of several-microbar surface pressures (which entail the existence of a substantial temperature gradient close to the surface) agrees with observations and implies that the normal and tangential optical depth of the atmosphere is almost negligible. The minimum period for atmospheric methane depletion is calculated to be 30 years. 29 refs.

  9. Estimation of the atmospheric corrosion on metal containers in industrial waste disposal.

    PubMed

    Baklouti, M; Midoux, N; Mazaudier, F; Feron, D

    2001-08-17

    Solid industrial waste are often stored in metal containers filled with concrete, and placed in well-aerated warehouses. Depending on meteorological conditions, atmospheric corrosion can induce severe material damages to the metal casing, and this damage has to be predicted to achieve safe storage. This work provides a first estimation of the corrosivity of the local atmosphere adjacent to the walls of the container through a realistic modeling of heat transfer phenomena which was developed for this purpose. Subsequent simulations of condensation/evaporation of the water vapor in the atmosphere were carried out. Atmospheric corrosion rates and material losses are easily deduced. For handling realistic data and comparison, two different meteorological contexts were chosen: (1) an oceanic and damp atmosphere and (2) a drier storage location. Some conclusions were also made for the storage configuration in order to reduce the extent of corrosion phenomena.

  10. Therapeutic potential of atmospheric neutrons

    PubMed Central

    Voyant, Cyril; Roustit, Rudy; Tatje, Jennifer; Biffi, Katia; Leschi, Delphine; Briançon, Jérome; Marcovici, Céline Lantieri

    2010-01-01

    Background Glioblastoma multiform (GBM) is the most common and most aggressive type of primary brain tumour in humans. It has a very poor prognosis despite multi-modality treatments consisting of open craniotomy with surgical resection, followed by chemotherapy and/or radiotherapy. Recently, a new treatment has been proposed – Boron Neutron Capture Therapy (BNCT) – which exploits the interaction between Boron-10 atoms (introduced by vector molecules) and low energy neutrons produced by giant accelerators or nuclear reactors. Methods The objective of the present study is to compute the deposited dose using a natural source of neutrons (atmospheric neutrons). For this purpose, Monte Carlo computer simulations were carried out to estimate the dosimetric effects of a natural source of neutrons in the matter, to establish if atmospheric neutrons interact with vector molecules containing Boron-10. Results The doses produced (an average of 1 μGy in a 1 g tumour) are not sufficient for therapeutic treatment of in situ tumours. However, the non-localised yet specific dosimetric properties of 10B vector molecules could prove interesting for the treatment of micro-metastases or as (neo)adjuvant treatment. On a cellular scale, the deposited dose is approximately 0.5 Gy/neutron impact. Conclusion It has been shown that BNCT may be used with a natural source of neutrons, and may potentially be useful for the treatment of micro-metastases. The atmospheric neutron flux is much lower than that utilized during standard NBCT. However the purpose of the proposed study is not to replace the ordinary NBCT but to test if naturally occurring atmospheric neutrons, considered to be an ionizing pollution at the Earth's surface, can be used in the treatment of a disease such as cancer. To finalize this study, it is necessary to quantify the biological effects of the physically deposited dose, taking into account the characteristics of the incident particles (alpha particle and Lithium

  11. Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena.

    PubMed

    Elliott, Brent; Joyce, Eileen; Shorvon, Simon

    2009-08-01

    The purpose of this paper and its pair is to provide a comprehensive review, from the different perspectives of neurology and neuropsychiatry, of the phenomenology and mechanisms of hallucinatory experience in epilepsy. We emphasise the clinical and electrophysiological features, and make comparisons with the primary psychoses. In this paper, we consider definitions and elementary hallucinatory phenomena. Regarding definition, there is a clearly divergent evolution in meaning of the terms delusion, illusion and hallucination in the separate traditions of neurology and psychiatry. Psychiatry makes clear distinctions between the terms and has focussed on the empirical use of descriptive psychopathology in order to delineate the various psychiatric syndromes, including those in epilepsy. These distinctions in psychiatry have stood the test of time and are useful in clinical descriptive terms, but do not help to understand the basic mechanisms. The focus of neurology has been to regard delusions, illusions and hallucinations in epilepsy as a result of localised or network based neuronal epileptic activity that can be investigated especially using intracranial stereoelectroencephalography (SEEG). The neurological approach leads to a more synoptical definition of 'hallucination' than in psychiatry and to the conclusion that there is little point in differentiating hallucination from illusion or delusion in view of the overlap in the physiological bases of the phenomena. The semiologically derived differentiation of these terms in psychiatry is not supported by similarly discrete electrophysiological signatures. However, as discussed in the second paper, some psychotic states are associated with similar electrophysiological changes. The wide range of hallucinatory symptoms occurring during epileptic seizures recorded during intracranial SEEG and brain stimulation are reviewed here, including: experiential and interpretive phenomena, affective symptoms, as well as auditory

  12. Delusions, illusions and hallucinations in epilepsy: 1. Elementary phenomena.

    PubMed

    Elliott, Brent; Joyce, Eileen; Shorvon, Simon

    2009-08-01

    The purpose of this paper and its pair is to provide a comprehensive review, from the different perspectives of neurology and neuropsychiatry, of the phenomenology and mechanisms of hallucinatory experience in epilepsy. We emphasise the clinical and electrophysiological features, and make comparisons with the primary psychoses. In this paper, we consider definitions and elementary hallucinatory phenomena. Regarding definition, there is a clearly divergent evolution in meaning of the terms delusion, illusion and hallucination in the separate traditions of neurology and psychiatry. Psychiatry makes clear distinctions between the terms and has focussed on the empirical use of descriptive psychopathology in order to delineate the various psychiatric syndromes, including those in epilepsy. These distinctions in psychiatry have stood the test of time and are useful in clinical descriptive terms, but do not help to understand the basic mechanisms. The focus of neurology has been to regard delusions, illusions and hallucinations in epilepsy as a result of localised or network based neuronal epileptic activity that can be investigated especially using intracranial stereoelectroencephalography (SEEG). The neurological approach leads to a more synoptical definition of 'hallucination' than in psychiatry and to the conclusion that there is little point in differentiating hallucination from illusion or delusion in view of the overlap in the physiological bases of the phenomena. The semiologically derived differentiation of these terms in psychiatry is not supported by similarly discrete electrophysiological signatures. However, as discussed in the second paper, some psychotic states are associated with similar electrophysiological changes. The wide range of hallucinatory symptoms occurring during epileptic seizures recorded during intracranial SEEG and brain stimulation are reviewed here, including: experiential and interpretive phenomena, affective symptoms, as well as auditory

  13. Multipoint observations of plasma phenomena made in space by Cluster

    NASA Astrophysics Data System (ADS)

    Goldstein, M. L.; Escoubet, P.; Hwang, K.-Joo; Wendel, D. E.; Viñas, A.-F.; Fung, S. F.; Perri, S.; Servidio, S.; Pickett, J. S.; Parks, G. K.; Sahraoui, F.; Gurgiolo, C.; Matthaeus, W.; Weygand, J. M.

    2015-06-01

    Plasmas are ubiquitous in nature, surround our local geospace environment, and permeate the universe. Plasma phenomena in space give rise to energetic particles, the aurora, solar flares and coronal mass ejections, as well as many energetic phenomena in interstellar space. Although plasmas can be studied in laboratory settings, it is often difficult, if not impossible, to replicate the conditions (density, temperature, magnetic and electric fields, etc.) of space. Single-point space missions too numerous to list have described many properties of near-Earth and heliospheric plasmas as measured both in situ and remotely (see http://www.nasa.gov/missions/#.U1mcVmeweRY for a list of NASA-related missions). However, a full description of our plasma environment requires three-dimensional spatial measurements. Cluster is the first, and until data begin flowing from the Magnetospheric Multiscale Mission (MMS), the only mission designed to describe the three-dimensional spatial structure of plasma phenomena in geospace. In this paper, we concentrate on some of the many plasma phenomena that have been studied using data from Cluster. To date, there have been more than 2000 refereed papers published using Cluster data but in this paper we will, of necessity, refer to only a small fraction of the published work. We have focused on a few basic plasma phenomena, but, for example, have not dealt with most of the vast body of work describing dynamical phenomena in Earth's magnetosphere, including the dynamics of current sheets in Earth's magnetotail and the morphology of the dayside high latitude cusp. Several review articles and special publications are available that describe aspects of that research in detail and interested readers are referred to them (see for example, Escoubet et al. 2005 Multiscale Coupling of Sun-Earth Processes, p. 459, Keith et al. 2005 Sur. Geophys. 26, 307-339, Paschmann et al. 2005 Outer Magnetospheric Boundaries: Cluster Results, Space Sciences Series

  14. Gutenberg Lecture: Bridging the gap Between Seismology and Oceanography: New Phenomena in the Background Seismic Wavefield

    NASA Astrophysics Data System (ADS)

    Romanowicz, B. A.

    2004-12-01

    It has long been known (e.g. Longuet-Higgins, 1950) that the source of the microseismic noise peak, which pervades seismic records in the period range 1-10 sec, is generated by complex non-linear interactions between ocean waves and the seafloor. A less obvious signal, discovered six years ago by Japanese scientists deep in the longer period noise of land-based seismic stations (>150 sec), is that of Earth's continually excited free oscillations. This "hum" now appears to also be generated through a non-linear coupling mechanism involving the atmosphere (winds), the ocean (infragravity waves) and the solid earth. The realization that a large portion of the earth's seismic noise, over a wide frequency band, is made of Rayleigh waves has opened up new horizons for the study of earth's crust and upper mantle 3D structure, as well as other non-tectonic phenomena such as the motions of glaciers. I will also argue that the deployment of arrays of ocean observatories comprising sensors recording motions from the seafloor through the entire water column is a necessary next step, complementing land and space-based observations, to further our understanding of this wide class of intriguing atmosphere/ocean/solid earth interactions.

  15. Musical obsessions: a comprehensive review of neglected clinical phenomena.

    PubMed

    Taylor, Steven; McKay, Dean; Miguel, Euripedes C; De Mathis, Maria Alice; Andrade, Chittaranjan; Ahuja, Niraj; Sookman, Debbie; Kwon, Jun Soo; Huh, Min Jung; Riemann, Bradley C; Cottraux, Jean; O'Connor, Kieron; Hale, Lisa R; Abramowitz, Jonathan S; Fontenelle, Leonardo F; Storch, Eric A

    2014-08-01

    Intrusive musical imagery (IMI) consists of involuntarily recalled, short, looping fragments of melodies. Musical obsessions are distressing, impairing forms of IMI that merit investigation in their own right and, more generally, research into these phenomena may broaden our understanding of obsessive-compulsive disorder (OCD), which is phenomenologically and etiologically heterogeneous. We present the first comprehensive review of musical obsessions, based on the largest set of case descriptions ever assembled (N=96). Characteristics of musical obsessions are described and compared with normal IMI, musical hallucinations, and visual obsessional imagery. Assessment, differential diagnosis, comorbidity, etiologic hypotheses, and treatments are described. Musical obsessions may be under-diagnosed because they are not adequately assessed by current measures of OCD. Musical obsessions have been misdiagnosed as psychotic phenomena, which has led to ineffective treatment. Accurate diagnosis is important for appropriate treatment. Musical obsessions may respond to treatments that are not recommended for prototypic OCD symptoms. PMID:24997394

  16. Ecological momentary assessment (EMA) of depression-related phenomena

    PubMed Central

    Armey, Michael F.; Schatten, Heather T.; Haradhvala, Natasha; Miller, Ivan W.

    2015-01-01

    Ecological momentary assessment (EMA) is one research method increasingly employed to better understand the processes that underpin depression and related phenomena. In particular, EMA is well suited to the study of affect (e.g., positive and negative affect), affective responses to stress (e.g., emotion reactivity), and behaviors (e.g., activity level, sleep) that are associated with depression. Additionally, EMA can provide insights into self-harm behavior (i.e. suicide and non-suicidal self-injury), and other mood disorders (e.g. bipolar disorder) commonly associated with depressive episodes. Given the increasing availability and affordability of handheld computing devices such as smartphones, EMA is likely to play an increasingly important role in the study of depression and related phenomena in the future. PMID:25664334

  17. Autoscopic phenomena and one's own body representation in dreams.

    PubMed

    Occhionero, Miranda; Cicogna, Piera Carla

    2011-12-01

    Autoscopic phenomena (AP) are complex experiences that include the visual illusory reduplication of one's own body. From a phenomenological point of view, we can distinguish three conditions: autoscopic hallucinations, heautoscopy, and out-of-body experiences. The dysfunctional pattern involves multisensory disintegration of personal and extrapersonal space perception. The etiology, generally either neurological or psychiatric, is different. Also, the hallucination of Self and own body image is present during dreams and differs according to sleep stage. Specifically, the representation of the Self in REM dreams is frequently similar to the perception of Self in wakefulness, whereas in NREM dreams, a greater polymorphism of Self and own body representation is observed. The parallels between autoscopic phenomena in pathological cases and the Self-hallucination in dreams will be discussed to further the understanding of the particular states of self awareness, especially the complex integration of different memory sources in Self and body representation. PMID:21316265

  18. Sixth Microgravity Fluid Physics and Transport Phenomena Conference Abstracts

    NASA Technical Reports Server (NTRS)

    Singh, Bhim (Compiler)

    2002-01-01

    The Sixth Microgravity Fluid Physics and Transport Phenomena Conference provides the scientific community the opportunity to view the current scope of the Microgravity Fluid Physics and Transport Phenomena Program, current research opportunities, and plans for the near future. The conference focuses not only on fundamental research but also on applications of this knowledge towards enabling future space exploration missions. A whole session dedicated to biological fluid physics shows increased emphasis that the program has placed on interdisciplinary research. The conference includes invited plenary talks, technical paper presentations, poster presentations, and exhibits. This TM is a compilation of abstracts of the papers and the posters presented at the conference. Web-based proceedings, including the charts used by the presenters, will be posted on the web shortly after the conference.

  19. Tank Pressure Control Experiment/thermal Phenomena (TPCE/TP)

    NASA Technical Reports Server (NTRS)

    Hasan, M. M.; Knoll, R. H.

    1992-01-01

    The 'Tank Pressure Control Experiment/Thermal Phenomena (TPCE/TP)' is a reflight of the tank pressure control experiment (TPCE), flown on STS-43 in a standard Get-Away Special (GAS) container in August 1991. The TPCE obtained extensive video and digital data of the jet induced mixing process in a partially filled tank in low gravity environments. It also provided limited data on the thermal processes involved. The primary objective of the reflight of TPCE is to investigate experimentally the phenomena of liquid superheating and pool nucleate boiling at very low heat fluxes in a long duration low gravity environment. The findings of this experiment will be of direct relevance to space based subcritical cryogenic fluid system design and operation. Experiment hardware and results from the first TPCE are described in outline and graphic form.

  20. A review of anode phenomena in vacuum arces

    NASA Astrophysics Data System (ADS)

    Miller, H. Craig

    1988-09-01

    This report discusses arc modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveforms of the particular vacuum arc being considered. In specific experimental conditions, either magnetic constriction in the gap plasma or gross anode melting or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma.

  1. Autoscopic phenomena: case report and review of literature

    PubMed Central

    2011-01-01

    Background Autoscopic phenomena are psychic illusory visual experiences consisting of the perception of the image of one's own body or face within space, either from an internal point of view, as in a mirror or from an external point of view. Descriptions based on phenomenological criteria distinguish six types of autoscopic experiences: autoscopic hallucination, he-autoscopy or heautoscopic proper, feeling of a presence, out of body experience, negative and inner forms of autoscopy. Methods and results We report a case of a patient with he-autoscopic seizures. EEG recordings during the autoscopic experience showed a right parietal epileptic focus. This finding confirms the involvement of the temporo-parietal junction in the abnormal body perception during autoscopic phenomena. We discuss and review previous literature on the topic, as different localization of cortical areas are reported suggesting that out of body experience is generated in the right hemisphere while he-autoscopy involves left hemisphere structures. PMID:21219608

  2. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1975-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena is hindered by the difficulties of devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system, and determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-yr cycle, and meteorological phenomena undergo either no closely correlated variation, an 11-yr variation, or a 22-yr variation.

  3. Some problems in coupling solar activity to meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Dessler, A. J.

    1974-01-01

    The development of a theory of coupling of solar activity to meteorological phenomena has to date foundered on the two difficulties of (1) devising a mechanism that can modify the behavior of the troposphere while employing only a negligible amount of energy compared with the energy necessary to drive the normal meteorological system; and (2) determining how such a mechanism can effectively couple some relevant magnetospheric process into the troposphere in such a way as to influence the weather. A clue to the nature of the interaction between the weather and solar activity might be provided by the fact that most solar activity undergoes a definite 11-year cycle, while meteorological phenomena undergo either no closely correlated variation, or an 11-year variation, or a 22-year variation.

  4. Concepts and methods for describing critical phenomena in fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Sengers, J. M. H. L.

    1977-01-01

    The predictions of theoretical models for a critical-point phase transistion in fluids, namely the classical equation with third-degree critical isotherm, that with fifth-degree critical isotherm, and the lattice gas, are reviewed. The renormalization group theory of critical phenomena and the hypothesis of universality of critical behavior supported by this theory are discussed as well as the nature of gravity effects and how they affect cricital-region experimentation in fluids. The behavior of the thermodynamic properties and the correlation function is formulated in terms of scaling laws. The predictions of these scaling laws and of the hypothesis of universality of critical behavior are compared with experimental data for one-component fluids and it is indicated how the methods can be extended to describe critical phenomena in fluid mixtures.

  5. A universal mechanism of extreme events and critical phenomena

    PubMed Central

    Wu, J. H.; Jia, Q.

    2016-01-01

    The occurrence of extreme events and critical phenomena is of importance because they can have inquisitive scientific impact and profound socio-economic consequences. Here we show a universal mechanism describing extreme events along with critical phenomena and derive a general expression of the probability distribution without concerning the physical details of individual events or critical properties. The general probability distribution unifies most important distributions in the field and demonstrates improved performance. The shape and symmetry of the general distribution is determined by the parameters of the fluctuations. Our work sheds judicious insights into the dynamical processes of complex systems with practical significance and provides a general approach of studying extreme and critical episodes in a combined and multidisciplinary scheme. PMID:26880219

  6. Phenomena associated with magma expansion into a drift

    SciTech Connect

    Gaffney, E. S.

    2002-01-01

    One of the significant threats to the proposed Yucca Mountain nuclear waste repository has been identified as the possibility of intersection of the underground structure by a basaltic intrusion. Based on the geology of the region, it is assumed that such an intrusion would consist of an alkali basalt similar to the nearby Lathrop Wells cone, which has been dated at about 78 ka. The threat of radioactive release may be either from eruption through the surface above the repository of basalt that had been contaminated or from migration through ground water of radionucleides released as a result of damage to waste packages that interact with the magma. As part of our study of these threats, we are analyzing the phenomena associated with magma expansion into drifts in tuff. The early phenomena of the encounter of volatile-rich basaltic magma with a drift are discussed here.

  7. Dispersion phenomena in helical flow in a concentric annulus.

    PubMed

    Song, Young Seok; Brenner, Howard

    2009-12-14

    We examined dispersion phenomena of solutes in helical flow in a concentric annulus through a multiscale approach. The helical flow was developed by the combination of the Poiseuille flow and Couette flow. Here, we present an analytic model that can address the multidimensional Taylor dispersion in the helical flow under a lateral field of thermophoresis (or thermal diffusion) in the gapwise direction. Macroscopic parameters including the average solute velocity and dispersivity were analyzed using relevant microscopic physicochemical properties. The mathematically obtained results were validated by the numerical simulation carried out in this study. The findings show that macrotransport processes are robust and straightforward to handle multidimensional dispersion phenomena of solutes in helical flow. This study is expected to provide a theoretical platform for applications of helical flow such as tube exchangers, oil drilling, and multidimensional field flow fractionations (e.g., helical flow field flow fractionation). PMID:20001025

  8. Critical phenomena in one dimension from a Bethe ansatz perspective

    NASA Astrophysics Data System (ADS)

    Guan, Xiwen

    2014-08-01

    This article briefly reviews recent theoretical developments in quantum critical phenomena in one-dimensional (1D) integrable quantum gases of cold atoms. We present a discussion on quantum phase transitions, universal thermodynamics, scaling functions and correlations for a few prototypical exactly solved models, such as the Lieb-Liniger Bose gas, the spin-1 Bose gas with antiferromagnetic spin-spin interaction, the two-component interacting Fermi gas as well as spin-3/2 Fermi gases. We demonstrate that their corresponding Bethe ansatz solutions provide a precise way to understand quantum many-body physics, such as quantum criticality, Luttinger liquids (LLs), the Wilson ratio, Tan's Contact, etc. These theoretical developments give rise to a physical perspective using integrability for uncovering experimentally testable phenomena in systems of interacting bosonic and fermonic ultracold atoms confined to 1D.

  9. A Brief Survey of Activity Phenomena in Cosmic Objects

    NASA Astrophysics Data System (ADS)

    Harutyunian, H. A.

    2016-06-01

    An attempt is done to unify the variety of physical active phenomena observed in various cosmic objects belonging to the all hierarchical levels. The dark energy carrier is suggested to interact with the baryonic matter and provide the activity energy through the injection from "the main reservoir". The concept that the Hubble flow is not possible for non-cosmological shorter scales where the baryonic objects are believed to be gravitationally bound is considered in a few words to show that it is a simple extrapolation of the a priori hypothesis on the formation of cosmic objects. Some observational facts are pointed to show that expansion phenomena at shorter scales could be explained using the Hubble law only. The physical consequences of dark energy exchange with the atomic nuclei and "gravitationally bound" objects are considered.

  10. Modelling the mass migration phenomena in partially frozen heat pipes

    SciTech Connect

    Keddy, M.D.; Merrigan, M.A.; Critchley, E.

    1993-11-01

    Liquid metal heat pipes operated at power throughputs well below their design point and with sink temperatures below the freezing temperature of the working fluid may fail as a result of the working fluid migrating to a cold region within the pipe, freezing there, and not returning to the evaporator section. Eventually, sufficient working fluid inventory may be lost to the cold region to cause a local dry-out condition in the evaporator. A joint experimental and analytical effort by the Air Force Phillips Laboratory and Los Alamos National Laboratory is underway to investigate this phenomena. This paper presents an analytical model developed to describes this phenomena. The model provides for analytic determination of heat pipe temperature profiles, freeze-front locations and mass migration rates.

  11. Stochastic Car-Following Model for Explaining Nonlinear Traffic Phenomena

    NASA Astrophysics Data System (ADS)

    Meng, Jianping; Song, Tao; Dong, Liyun; Dai, Shiqiang

    There is a common time parameter for representing the sensitivity or the lag (response) time of drivers in many car-following models. In the viewpoint of traffic psychology, this parameter could be considered as the perception-response time (PRT). Generally, this parameter is set to be a constant in previous models. However, PRT is actually not a constant but a random variable described by the lognormal distribution. Thus the probability can be naturally introduced into car-following models by recovering the probability of PRT. For demonstrating this idea, a specific stochastic model is constructed based on the optimal velocity model. By conducting simulations under periodic boundary conditions, it is found that some important traffic phenomena, such as the hysteresis and phantom traffic jams phenomena, can be reproduced more realistically. Especially, an interesting experimental feature of traffic jams, i.e., two moving jams propagating in parallel with constant speed stably and sustainably, is successfully captured by the present model.

  12. The function of nonlinear phenomena in meerkat alarm calls.

    PubMed

    Townsend, Simon W; Manser, Marta B

    2011-02-23

    Nonlinear vocal phenomena are a ubiquitous feature of human and non-human animal vocalizations. Although we understand how these complex acoustic intrusions are generated, it is not clear whether they function adaptively for the animals producing them. One explanation is that nonlinearities make calls more unpredictable, increasing behavioural responses and ultimately reducing the chances of habituation to these call types. Meerkats (Suricata suricatta) exhibit nonlinear subharmonics in their predator alarm calls. We specifically tested the 'unpredictability hypothesis' by playing back naturally occurring nonlinear and linear medium-urgency alarm call bouts. Results indicate that subjects responded more strongly and foraged less after hearing nonlinear alarm calls. We argue that these findings support the unpredictability hypothesis and suggest this is the first study in animals or humans to show that nonlinear vocal phenomena function adaptively.

  13. Bubble Phenomena caused by High Repetitive Plasmas in Water

    NASA Astrophysics Data System (ADS)

    Akiyama, Masahiro; Oikawa, Takuma; Fue, Masatoshi; Ogata, Ryoma; Takaki, Koich; Akiyama, Hidenori; Iwate Univ Team; Kumamoto Univ Collaboration

    2015-09-01

    Streamer discharges in water were generated by a pulsed power generator. The streamer shape changed depending on pulse repetition rate. Streamer discharges at 500 pulses per second (pps) resulted in a ball shape. Under this formation, small bubbles gather near the electrode tip. Our aims are the analysis and discussion of the bubble phenomena caused by high repetitive plasmas produced in water. Pulsed power with a maximum output of 1 J/pulse was applied to an electrode of 0.8 mm in diameter covered by an insulator of 2 mm thickness. The electrode was inserted into tap water with conductivity of 170 uS/cm. The polarity was positive. Phenomena, in which the resulting gas bubbles oscillate and gather, were found to have an important role in producing ball shape streamer discharges.

  14. Reducing spurious flow in simulations of electrokinetic phenomena

    NASA Astrophysics Data System (ADS)

    Rempfer, Georg; Davies, Gary B.; Holm, Christian; de Graaf, Joost

    2016-07-01

    Electrokinetic transport phenomena can strongly influence the behaviour of macromolecules and colloidal particles in solution, with applications in, e.g., DNA translocation through nanopores, electro-osmotic flow in nanocapillaries, and electrophoresis of charged macromolecules. Numerical simulations are an important tool to investigate these electrokinetic phenomena, but are often plagued by spurious fluxes and spurious flows that can easily exceed physical fluxes and flows. Here, we present a method that reduces one of these spurious currents, spurious flow, by several orders of magnitude. We demonstrate the effectiveness and generality of our method for both the electrokinetic lattice-Boltzmann and finite-element-method based algorithms by simulating a charged sphere in an electrolyte solution and flow through a nanopore. We also show that previous attempts to suppress these spurious currents introduce other sources of error.

  15. Purcell effect and Lamb shift as interference phenomena.

    PubMed

    Rybin, Mikhail V; Mingaleev, Sergei F; Limonov, Mikhail F; Kivshar, Yuri S

    2016-01-01

    The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line. PMID:26860195

  16. Autoscopic phenomena and one's own body representation in dreams.

    PubMed

    Occhionero, Miranda; Cicogna, Piera Carla

    2011-12-01

    Autoscopic phenomena (AP) are complex experiences that include the visual illusory reduplication of one's own body. From a phenomenological point of view, we can distinguish three conditions: autoscopic hallucinations, heautoscopy, and out-of-body experiences. The dysfunctional pattern involves multisensory disintegration of personal and extrapersonal space perception. The etiology, generally either neurological or psychiatric, is different. Also, the hallucination of Self and own body image is present during dreams and differs according to sleep stage. Specifically, the representation of the Self in REM dreams is frequently similar to the perception of Self in wakefulness, whereas in NREM dreams, a greater polymorphism of Self and own body representation is observed. The parallels between autoscopic phenomena in pathological cases and the Self-hallucination in dreams will be discussed to further the understanding of the particular states of self awareness, especially the complex integration of different memory sources in Self and body representation.

  17. Dispersion phenomena in helical flow in a concentric annulus

    NASA Astrophysics Data System (ADS)

    Song, Young Seok; Brenner, Howard

    2009-12-01

    We examined dispersion phenomena of solutes in helical flow in a concentric annulus through a multiscale approach. The helical flow was developed by the combination of the Poiseuille flow and Couette flow. Here, we present an analytic model that can address the multidimensional Taylor dispersion in the helical flow under a lateral field of thermophoresis (or thermal diffusion) in the gapwise direction. Macroscopic parameters including the average solute velocity and dispersivity were analyzed using relevant microscopic physicochemical properties. The mathematically obtained results were validated by the numerical simulation carried out in this study. The findings show that macrotransport processes are robust and straightforward to handle multidimensional dispersion phenomena of solutes in helical flow. This study is expected to provide a theoretical platform for applications of helical flow such as tube exchangers, oil drilling, and multidimensional field flow fractionations (e.g., helical flow field flow fractionation).

  18. Dispersion phenomena in helical flow in a concentric annulus.

    PubMed

    Song, Young Seok; Brenner, Howard

    2009-12-14

    We examined dispersion phenomena of solutes in helical flow in a concentric annulus through a multiscale approach. The helical flow was developed by the combination of the Poiseuille flow and Couette flow. Here, we present an analytic model that can address the multidimensional Taylor dispersion in the helical flow under a lateral field of thermophoresis (or thermal diffusion) in the gapwise direction. Macroscopic parameters including the average solute velocity and dispersivity were analyzed using relevant microscopic physicochemical properties. The mathematically obtained results were validated by the numerical simulation carried out in this study. The findings show that macrotransport processes are robust and straightforward to handle multidimensional dispersion phenomena of solutes in helical flow. This study is expected to provide a theoretical platform for applications of helical flow such as tube exchangers, oil drilling, and multidimensional field flow fractionations (e.g., helical flow field flow fractionation).

  19. High spatial resolution measurements of ram accelerator gas dynamic phenomena

    NASA Technical Reports Server (NTRS)

    Hinkey, J. B.; Burnham, E. A.; Bruckner, A. P.

    1992-01-01

    High spatial resolution experimental tube wall pressure measurements of ram accelerator gas dynamic phenomena are presented. The projectile resembles the centerbody of a ramjet and travels supersonically through a tube filled with a combustible gaseous mixture, with the tube acting as the outer cowling. Pressure data are recorded as the projectile passes by sensors mounted in the tube wall at various locations along the tube. Data obtained by using a special highly instrumented section of tube has allowed the recording of gas dynamic phenomena with a spatial resolution on the order of one tenth the projectile length. High spatial resolution tube wall pressure data from the three regimes of propulsion studied to date (subdetonative, transdetonative, and superdetonative) are presented and reveal the 3D character of the flowfield induced by projectile fins and the canting of the projectile body relative to the tube wall. Also presented for comparison to the experimental data are calculations made with an inviscid, 3D CFD code.

  20. ESM of Ionic and Electrochemical Phenomena on the Nanoscale

    SciTech Connect

    Kalinin, Sergei V; Kumar, Amit; Balke, Nina; McCorkle, Morgan L; Guo, Senli; Arruda, Thomas M; Jesse, Stephen

    2011-01-01

    Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes [1-4]. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. All these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales as illustrated in Fig. 1. Similar spectrum of length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.

  1. Purcell effect and Lamb shift as interference phenomena.

    PubMed

    Rybin, Mikhail V; Mingaleev, Sergei F; Limonov, Mikhail F; Kivshar, Yuri S

    2016-01-01

    The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line.

  2. A review of anode phenomena in vacuum arces

    SciTech Connect

    Miller, H.C.

    1988-09-01

    This report discusses arc modes at the anode, experimental results pertinent to anode phenomena, and theoretical explanations of anode phenomena. The dominant mechanism controlling the formation of an anode spot appears to depend upon the electrode geometry, the electrode material, and the current waveforms of the particular vacuum arc being considered. In specific experimental conditions, either magnetic constriction in the gap plasma or gross anode melting or local anode evaporation can trigger the transition. However, the most probable explanation of anode spot formation is a combination theory, which considers magnetic constriction in the plasma together with the fluxes of material from the anode and cathode as well as the thermal, electrical, and geometric effects of the anode in analyzing the behavior of the anode and the nearby plasma. 88 refs., 6 figs., 8 tabs.

  3. The function of nonlinear phenomena in meerkat alarm calls.

    PubMed

    Townsend, Simon W; Manser, Marta B

    2011-02-23

    Nonlinear vocal phenomena are a ubiquitous feature of human and non-human animal vocalizations. Although we understand how these complex acoustic intrusions are generated, it is not clear whether they function adaptively for the animals producing them. One explanation is that nonlinearities make calls more unpredictable, increasing behavioural responses and ultimately reducing the chances of habituation to these call types. Meerkats (Suricata suricatta) exhibit nonlinear subharmonics in their predator alarm calls. We specifically tested the 'unpredictability hypothesis' by playing back naturally occurring nonlinear and linear medium-urgency alarm call bouts. Results indicate that subjects responded more strongly and foraged less after hearing nonlinear alarm calls. We argue that these findings support the unpredictability hypothesis and suggest this is the first study in animals or humans to show that nonlinear vocal phenomena function adaptively. PMID:20659926

  4. Purcell effect and Lamb shift as interference phenomena

    PubMed Central

    Rybin, Mikhail V.; Mingaleev, Sergei F.; Limonov, Mikhail F.; Kivshar, Yuri S.

    2016-01-01

    The Purcell effect and Lamb shift are two well-known physical phenomena which are usually discussed in the context of quantum electrodynamics, with the zero-point vibrations as a driving force of those effects in the quantum approach. Here we discuss the classical counterparts of these quantum effects in photonics, and explain their physics trough interference wave phenomena. As an example, we consider a waveguide in a planar photonic crystal with a side-coupled defect, and demonstrate a perfect agreement between the results obtained on the basis of quantum and classic approaches and reveal their link to the Fano resonance. We find that in such a waveguide-cavity geometry the Purcell effect can modify the lifetime by at least 25 times, and the Lamb shift can exceed 3 half-widths of the cavity spectral line. PMID:26860195

  5. General theory of Taylor dispersion phenomena. Part 3. Surface transport

    SciTech Connect

    Dill, L.H.; Brenner, H.

    1982-01-01

    An asymptotic theory of Brownian tracer particle transport phenomena within a bulk fluid, as augmented by surface transport, is presented in the context of generalized Taylor dispersion theory. The analysis expands upon prior work, which was limited to transport wholly within a continuous phase, so as to now include surface adsorption, diffusion, and convection of the tracer along a continuous surface bounding the continuous fluid phase.

  6. Observations of the mutual phenomena of Saturnian satellites in 1980

    NASA Astrophysics Data System (ADS)

    Soma, M.; Nakamura, T.

    1982-06-01

    Sinclair's (1977) theory is used in a preliminary orbital analysis of five mutual phenomena of the Saturnian satellites in 1980. Midtimes and light losses (normalized to unity) of the events determined from the observed light curves are given, together with calculations made with the orbital elements obtained. In order to check the present computer calculations, results have been compared with the predictions of Aksnes and Franklin (1978), in which substantially the same orbital elements are used.

  7. Seismically-induced sloshing phenomena in LMFBR reactor tanks

    SciTech Connect

    Ma, D.C.; Liu, W.K.; Gvildys, J.; Chang, Y.W.

    1982-01-01

    A coupled fluid-structure interaction solution procedure for analyzing seismically-induced sloshing phenomena in fluid-tank systems is presented. Both rigid and flexible tanks are considered. Surface-wave effects are also included. Results demonstrate that tank flexibility could affect the free surface-wave amplitude and the sloshing pressuare if the natural frequency of the fluid-structure system is below 5 Hz. Furthermore, the presence of higher sloshing modes do enhance the post-earthquake sloshing response.

  8. Recent Applications of the Volterra Theory to Aeroelastic Phenomena

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.; Haji, Muhammad R; Prazenica, Richard J.

    2005-01-01

    The identification of nonlinear aeroelastic systems based on the Volterra theory of nonlinear systems is presented. Recent applications of the theory to problems in experimental aeroelasticity are reviewed. These results include the identification of aerodynamic impulse responses, the application of higher-order spectra (HOS) to wind-tunnel flutter data, and the identification of nonlinear aeroelastic phenomena from flight flutter test data of the Active Aeroelastic Wing (AAW) aircraft.

  9. Reduced Order Models for Fluid-Structure Interaction Phenomena

    NASA Astrophysics Data System (ADS)

    Gallardo, Daniele

    With the advent of active flow control devices for regulating the structural responses of systems involving fluid-structure interaction phenomena, there is a growing need of efficient models that can be used to control the system. The first step is then to be able to model the system in an efficient way based on reduced-order models. This is needed so that accurate predictions of the system evolution could be performed in a fast manner, ideally in real time. However, existing reduced-order models of fluid-structure interaction phenomena that provide closed-form solutions are applicable to only a limited set of scenarios while for real applications high-fidelity experiments or numerical simulations are required, which are unsuitable as efficient or reduced-order models. This thesis proposes a novel reduced-order and efficient model for fluid-structure interaction phenomena. The model structure employed is such that it is generic for different fluid-structure interaction problems. Based on this structure, the model is first built for a given fluid-structure interaction problem based on a database generated through high-fidelity numerical simulations while it can subsequently be used to predict the structural response over a wide set of flow conditions for the fluid-structure interaction problem at hand. The model is tested on two cases: a cylinder suspended in a low Reynolds number flow that includes the lock-in region and an airfoil subjected to plunge oscillations in a high Reynolds number regime. For each case, in addition to training profile we also present validation profiles that are used to determine the performance of the reduced-order model. The reduced-order model devised in this study proved to be an effective and efficient modeling method for fluid-structure interaction phenomena and it shown its applicability in very different kind of scenarios.

  10. Draft tube flow phenomena across the bulb turbine hill chart

    NASA Astrophysics Data System (ADS)

    Duquesne, P.; Fraser, R.; Maciel, Y.; Aeschlimann, V.; Deschênes, C.

    2014-03-01

    In the framework of the BulbT project launched by the Consortium on Hydraulic Machines and the LAMH (Hydraulic Machine Laboratory of Laval University) in 2011, an intensive campaign to identify flow phenomena in the draft tube of a model bulb turbine has been done. A special focus was put on the draft tube component since it has a particular importance for recuperation in low head turbines. Particular operating points were chosen to analyse flow phenomena in this component. For each of these operating points, power, efficiency and pressure were measured following the IEC 60193 standard. Visualizations, unsteady wall pressure and efficiency measurements were performed in this component. The unsteady wall pressure was monitored at seven locations in the draft tube. The frequency content of each pressure signal was analyzed in order to characterize the flow phenomena across the efficiency hill chart. Visualizations were recorded with a high speed camera using tufts and cavitation bubbles as markers. The predominant detected phenomena were mapped and categorized in relation to the efficiency hill charts obtained for three runner blade openings. At partial load, the vortex rope was detected and characterized. An inflection in the partial load efficiency curves was found to be related to complex vortex rope instabilities. For overload conditions, the efficiency curves present a sharp drop after the best efficiency point, corresponding to an inflection on the power curves. This break off is more severe towards the highest blade openings. It is correlated to a flow separation at the wall of the draft tube. Also, due to the separation occurring in these conditions, a hysteresis effect was observed on the efficiency curves.

  11. Natural hazard phenomena and mitigation -- 1996. PVP-Volume 330

    SciTech Connect

    Chang, S.J.; Wang, C.Y.; Chen, W.W.; Mok, G.C.; Lin, C.W.

    1996-12-01

    This volume contains paper to be presented in five sessions under the title Natural Hazard Phenomena and Mitigation at the 1996 Joint ASME/ICPVT Pressure vessel and Piping Conference held July 21--26, 1996 in Montreal, Quebec, Canada. Three areas are presented in this volume: seismic design and design criteria, impact and dynamic load designs, and structural designs. Papers have been processed separately for inclusion on the data base.

  12. Structure for identifying, locating and quantifying physical phenomena

    DOEpatents

    Richardson, John G.

    2006-10-24

    A method and system for detecting, locating and quantifying a physical phenomena such as strain or a deformation in a structure. A minimum resolvable distance along the structure is selected and a quantity of laterally adjacent conductors is determined. Each conductor includes a plurality of segments coupled in series which define the minimum resolvable distance along the structure. When a deformation occurs, changes in the defined energy transmission characteristics along each conductor are compared to determine which segment contains the deformation.

  13. Flow phenomena on plates and airfoils of short span

    NASA Technical Reports Server (NTRS)

    Winter, H

    1936-01-01

    Investigations on the flow phenomena at plates and cambered models were carried out with the aid of force measurements, some pressure distribution measurements, and photographic observation. The experimental methods are described and the results given. Section III of this work gives a comprehensive account of the results and enables us to see how nearly the lift line and lift surface theories agree with the experimental results.

  14. Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1

    SciTech Connect

    Not Available

    1993-12-31

    This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

  15. Investigation of mesoscale meteorological phenomena as observed by geostationary satellite

    NASA Technical Reports Server (NTRS)

    Brundidge, K. C.

    1982-01-01

    Satellite imagery plus conventional synoptic observations were used to examine three mesoscale systems recently observed by the GOES-EAST satellite. The three systems are an arc cloud complex (ACC), mountain lee wave clouds and cloud streets parallel to the wind shear. Possible gravity-wave activity is apparent in all three cases. Of particular interest is the ACC because of its ability to interact with other mesoscale phenomena to produce or enhance convection.

  16. Heliospheric Consecuences of Solar Activity In Several Interplanetary Phenomena

    NASA Astrophysics Data System (ADS)

    Valdés-Galicia, J. F.; Mendoza, B.; Lara, A.; Maravilla, D.

    We have done an analysis of several phenomena related to solar activity such as the total magnetic flux, coronal hole area and sunspots, investigated its long trend evolu- tion over several solar cycles and its possible relationships with interplanetary shocks, sudden storm commencements at earth and cosmic ray variations. Our results stress the physical connection between the solar magnetic flux emergence and the interplan- etary medium dynamics, in particular the importance of coronal hole evolution in the structuring of the heliosphere.

  17. The hard start phenomena in hypergolic engines. Volume 1: Bibliography

    NASA Technical Reports Server (NTRS)

    Miron, Y.; Perlee, H. E.

    1974-01-01

    A bibliography of reports pertaining to the hard start phenomenon in attitude control rocket engines on Apollo spacecraft is presented. Some of the subjects discussed are; (1) combustion of hydrazine, (2) one dimensional theory of liquid fuel rocket combustion, (3) preignition phenomena in small pulsed rocket engines, (4) experimental and theoretical investigation of the fluid dynamics of rocket combustion, and (5) nonequilibrium combustion and nozzle flow in propellant performance.

  18. Possible relationships between solar activity and meteorological phenomena

    NASA Technical Reports Server (NTRS)

    Bandeen, W. R. (Editor); Maran, S. P. (Editor)

    1975-01-01

    A symposium was conducted in which the following questions were discussed: (1) the evidence concerning possible relationships between solar activity and meteorological phenomena; (2) plausible physical mechanisms to explain these relationships; and (3) kinds of critical measurements needed to determine the nature of solar/meteorological relationships and/or the mechanisms to explain them, and which of these measurements can be accomplished best from space.

  19. Didactic Model--Bridging a Concept with Phenomena

    ERIC Educational Resources Information Center

    Shternberg, Beba; Yerushalmy, Michal

    2004-01-01

    The article focuses on a specific method of constructing the concept of function. The core of this method is a didactic model that plays two roles together--on the one hand a role of a model of the concept of function and on the other hand a role of a model of physical phenomena that functions can represent. This synergy of modeling situations and…

  20. Search for Higgs and new phenomena at colliders

    SciTech Connect

    Lammel, Stephan; /Fermilab

    2006-01-01

    The present status of searches for the Higgs boson(s) and new phenomena is reviewed. The focus is on analyses and results from the current runs of the HERA and Tevatron experiments. The LEP experiments have released their final combined MSSM Higgs results for this conference. Also included are results from sensitivity studies of the LHC experiments and lepton flavor violating searches from the B factories, KEKB and PEP-II.

  1. National Center for Atmospheric Research annual report, fiscal year 1991. Report for 1 October 1990-30 September 1991

    SciTech Connect

    Warner, L.

    1992-06-01

    The National Center for Atmospheric Research (NCAR) annual report for fiscal year 1991 is presented. NCAR's projects for the period included investigations of air pollution from the oil well fires in Kuwait, a solar eclipse, thunderstorms in central Florida, the El Nino current, greenhouse processes, and upper atmosphere phenomena.

  2. Some common problems in the numerical modeling of impact phenomena

    NASA Astrophysics Data System (ADS)

    Zukas, J. A.

    1993-02-01

    In 1972, in the preface of his book Impact Strength of Materials, W. Johnson noted that most engineers in the U.S.A. and U.K. graduate without familiarity with impact phenomena, save possibly rigid body impacts. Since the publication of Johnson's book, a wealth of material has appeared in print on impact phenomena spanning the velocity spectrum. There are a large number of books, conference proceedings, short courses, and even a journal devoted to impact problems. Yet the problem noted by Johnson persists. It is particularly evident when looking at computational results of impact problems. The most frequently occurring errors are the use of a computer model inappropriate to the problem, inability to recognize numerical instabilities and attributing these to physical phenomena, improper choice of computational grid, selection of an inappropriate material model or, more likely, the use of material data for a given model generated at strain rates inappropriate to the problem at hand. Most of these can be readily avoided by gaining familiarity with the basic concepts of wave propagation in solids, particularly with reference to the effect of boundaries and material interfaces, attention to the concept of strain rate and a rudimentary familiarity with the approximations involved in transforming a set of coupled nonlinear partial differential equations to a much larger set of algebraic equations. After a brief review of fundamentals, this paper addresses problems common to numerical simulation of high and low velocity impact, to illustrate these concepts.

  3. Preface: cardiac control pathways: signaling and transport phenomena.

    PubMed

    Sideman, Samuel

    2008-03-01

    Signaling is part of a complex system of communication that governs basic cellular functions and coordinates cellular activity. Transfer of ions and signaling molecules and their interactions with appropriate receptors, transmembrane transport, and the consequent intracellular interactions and functional cellular response represent a complex system of interwoven phenomena of transport, signaling, conformational changes, chemical activation, and/or genetic expression. The well-being of the cell thus depends on a harmonic orchestration of all these events and the existence of control mechanisms that assure the normal behavior of the various parameters involved and their orderly expression. The ability of cells to sustain life by perceiving and responding correctly to their microenvironment is the basis for development, tissue repair, and immunity, as well as normal tissue homeostasis. Natural deviations, or human-induced interference in the signaling pathways and/or inter- and intracellular transport and information transfer, are responsible for the generation, modulation, and control of diseases. The present overview aims to highlight some major topics of the highly complex cellular information transfer processes and their control mechanisms. Our goal is to contribute to the understanding of the normal and pathophysiological phenomena associated with cardiac functions so that more efficient therapeutic modalities can be developed. Our objective in this volume is to identify and enhance the study of some basic passive and active physical and chemical transport phenomena, physiological signaling pathways, and their biological consequences.

  4. 8th International symposium on transport phenomena in combustion

    SciTech Connect

    1995-12-31

    The 8th International Symposium on Transport Phenomena in Combustion will be held in San Francisco, California, U.S.A., July 16-20, 1995, under the auspices of the Pacific Center of Thermal-Fluids Engineering. The purpose of the Symposium is to provide a forum for researchers and practitioners from around the world to present new developments and discuss the state of the art and future directions and priorities in the areas of transport phenomena in combustion. The Symposium is the eighth in a series; previous venues were Honolulu 1985, Tokyo 1987, Taipei 1988, Sydney 1991, Beijing 1992, Seoul 1993 and Acapulco 1994, with emphasis on various aspects of transport phenomena. The current Symposium theme is combustion. The Symposium has assembled a balanced program with topics ranging from fundamental research to contemporary applications of combustion theory. Invited keynote lecturers will provide extensive reviews of topics of great interest in combustion. Colloquia will stress recent advances and innovations in fire spread and suppression, and in low NO{sub x} burners, furnaces, boilers, internal combustion engines, and other practical combustion systems. Finally, numerous papers will contribute to the fundamental understanding of complex processes in combustion. This document contains abstracts of papers to be presented at the Symposium.

  5. Assessing Decreased Sensation and Increased Sensory Phenomena in Diabetic Polyneuropathies

    PubMed Central

    Herrmann, David N.; Staff, Nathan P.; Dyck, P. James B.

    2013-01-01

    Loss of sensation and increased sensory phenomena are major expressions of varieties of diabetic polyneuropathies needing improved assessments for clinical and research purposes. We provide a neurobiological explanation for the apparent paradox between decreased sensation and increased sensory phenomena. Strongly endorsed is the use of the 10-g monofilaments for screening of feet to detect sensation loss, with the goal of improving diabetic management and prevention of foot ulcers and neurogenic arthropathy. We describe improved methods to assess for the kind, severity, and distribution of both large- and small-fiber sensory loss and which approaches and techniques may be useful for conducting therapeutic trials. The abnormality of attributes of nerve conduction may be used to validate the dysfunction of large sensory fibers. The abnormality of epidermal nerve fibers/1 mm may be used as a surrogate measure of small-fiber sensory loss but appear not to correlate closely with severity of pain. Increased sensory phenomena are recognized by the characteristic words patients use to describe them and by the severity and persistence of these symptoms. Tests of tactile and thermal hyperalgesia are additional markers of neural hyperactivity that are useful for diagnosis and disease management. PMID:24158999

  6. Superfluous neuroscience information makes explanations of psychological phenomena more appealing.

    PubMed

    Fernandez-Duque, Diego; Evans, Jessica; Christian, Colton; Hodges, Sara D

    2015-05-01

    Does the presence of irrelevant neuroscience information make explanations of psychological phenomena more appealing? Do fMRI pictures further increase that allure? To help answer these questions, 385 college students in four experiments read brief descriptions of psychological phenomena, each one accompanied by an explanation of varying quality (good vs. circular) and followed by superfluous information of various types. Ancillary measures assessed participants' analytical thinking, beliefs on dualism and free will, and admiration for different sciences. In Experiment 1, superfluous neuroscience information increased the judged quality of the argument for both good and bad explanations, whereas accompanying fMRI pictures had no impact above and beyond the neuroscience text, suggesting a bias that is conceptual rather than pictorial. Superfluous neuroscience information was more alluring than social science information (Experiment 2) and more alluring than information from prestigious "hard sciences" (Experiments 3 and 4). Analytical thinking did not protect against the neuroscience bias, nor did a belief in dualism or free will. We conclude that the "allure of neuroscience" bias is conceptual, specific to neuroscience, and not easily accounted for by the prestige of the discipline. It may stem from the lay belief that the brain is the best explanans for mental phenomena.

  7. Computer modelling of nanoscale diffusion phenomena at epitaxial interfaces

    NASA Astrophysics Data System (ADS)

    Michailov, M.; Ranguelov, B.

    2014-05-01

    The present study outlines an important area in the application of computer modelling to interface phenomena. Being relevant to the fundamental physical problem of competing atomic interactions in systems with reduced dimensionality, these phenomena attract special academic attention. On the other hand, from a technological point of view, detailed knowledge of the fine atomic structure of surfaces and interfaces correlates with a large number of practical problems in materials science. Typical examples are formation of nanoscale surface patterns, two-dimensional superlattices, atomic intermixing at an epitaxial interface, atomic transport phenomena, structure and stability of quantum wires on surfaces. We discuss here a variety of diffusion mechanisms that control surface-confined atomic exchange, formation of alloyed atomic stripes and islands, relaxation of pure and alloyed atomic terraces, diffusion of clusters and their stability in an external field. The computational model refines important details of diffusion of adatoms and clusters accounting for the energy barriers at specific atomic sites: smooth domains, terraces, steps and kinks. The diffusion kinetics, integrity and decomposition of atomic islands in an external field are considered in detail and assigned to specific energy regions depending on the cluster stability in mass transport processes. The presented ensemble of diffusion scenarios opens a way for nanoscale surface design towards regular atomic interface patterns with exotic physical features.

  8. Cosmic dust in the earth's atmosphere.

    PubMed

    Plane, John M C

    2012-10-01

    This review discusses the magnitude of the cosmic dust input into the earth's atmosphere, and the resulting impacts from around 100 km to the earth's surface. Zodiacal cloud observations and measurements made with a spaceborne dust detector indicate a daily mass input of interplanetary dust particles ranging from 100 to 300 tonnes, which is in agreement with the accumulation rates of cosmic-enriched elements (Ir, Pt, Os and super-paramagnetic Fe) in polar ice cores and deep-sea sediments. In contrast, measurements in the middle atmosphere - by radar, lidar, high-flying aircraft and satellite remote sensing - indicate that the input is between 5 and 50 tonnes per day. There are two reasons why this huge discrepancy matters. First, if the upper range of estimates is correct, then vertical transport in the middle atmosphere must be considerably faster than generally believed; whereas if the lower range is correct, then our understanding of dust evolution in the solar system, and transport from the middle atmosphere to the surface, will need substantial revision. Second, cosmic dust particles enter the atmosphere at high speeds and undergo significant ablation. The resulting metals injected into the atmosphere are involved in a diverse range of phenomena, including: the formation of layers of metal atoms and ions; the nucleation of noctilucent clouds, which are a sensitive marker of climate change; impacts on stratospheric aerosols and O(3) chemistry, which need to be considered against the background of a cooling stratosphere and geo-engineering plans to increase sulphate aerosol; and fertilization of the ocean with bio-available Fe, which has potential climate feedbacks.

  9. An Atmospheric Science Observing System Simulation Experiment (OSSE) Environment

    NASA Technical Reports Server (NTRS)

    Lee, Meemong; Weidner, Richard; Qu, Zheng; Bowman, Kevin; Eldering, Annmarie

    2010-01-01

    An atmospheric sounding mission starts with a wide range of concept designs involving measurement technologies, observing platforms, and observation scenarios. Observing system simulation experiment (OSSE) is a technical approach to evaluate the relative merits of mission and instrument concepts. At Jet Propulsion Laboratory (JPL), the OSSE team has developed an OSSE environment that allows atmospheric scientists to systematically explore a wide range of mission and instrument concepts and formulate a science traceability matrix with a quantitative science impact analysis. The OSSE environment virtually creates a multi-platform atmospheric sounding testbed (MAST) by integrating atmospheric phenomena models, forward modeling methods, and inverse modeling methods. The MAST performs OSSEs in four loosely coupled processes, observation scenario exploration, measurement quality exploration, measurement quality evaluation, and science impact analysis.

  10. Mechanisms for the atmospheric corrosion of carbonate stone

    SciTech Connect

    Graedel, T.E.

    2000-03-01

    The physical and chemical phenomena responsible for the atmospheric corrosion of carbonate stone are presented. Corrosion product formation, morphology, and chemical makeup are discussed in the context of calcium-containing minerals and other crystalline structures that thermodynamics and kinetics suggest are likely to be present. Formation pathways for the minerals most often reported to occur in carbonate corrosion layers are shown in schematic diagrams. The dominant corrosion products are sulfates and oxalates, the former resulting from interactions with atmospheric sulfur dioxide or sulfate ions, the latter from oxalate secretions from the biological organisms. present (and perhaps to some extent from oxalate deposited from the atmosphere). The degradation processes are enhanced by the catalytic action of transition metal ions present in the stone and of soot deposited from the atmosphere.

  11. Relativistic breakdown in planetary atmospheres

    SciTech Connect

    Dwyer, J. R.

    2007-04-15

    In 2003, a new electrical breakdown mechanism involving the production of runaway avalanches by positive feedback from runaway positrons and energetic photons was introduced. This mechanism, which shall be referred to as 'relativistic feedback', allows runaway discharges in gases to become self-sustaining, dramatically increasing the flux of runaway electrons, the accompanying high-energy radiation, and resulting ionization. Using detailed Monte Carlo calculations, properties of relativistic feedback are investigated. It is found that once relativistic feedback fully commences, electrical breakdown will occur and the ambient electric field, extending over cubic kilometers, will be discharged in as little as 2x10{sup -5} s. Furthermore, it is found that the flux of energetic electrons and x rays generated by this mechanism can exceed the flux generated by the standard relativistic runaway electron model by a factor of 10{sup 13}, making relativistic feedback a good candidate for explaining terrestrial gamma-ray flashes and other high-energy phenomena observed in the Earth's atmosphere.

  12. Light Phenomena over the ESO Observatories II: Red Sprites

    NASA Astrophysics Data System (ADS)

    Horálek, P.; Christensen, L. L.; Bór, J.; Setvák, M.

    2016-03-01

    A rare atmospheric phenomenon, known as red sprites, was observed and captured on camera from the La Silla Observatory. This event signalled the first time that these extremely short-lived flashes of red light, originating in the Earth’s upper atmosphere, were photographed from a major astronomical observatory. Further images of red sprites from the La Silla Paranal Observatory sites are presented and the nature of red sprites is discussed.

  13. Aviation Safety Program Atmospheric Environment Safety Technologies (AEST) Project

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron

    2011-01-01

    Engine Icing: Characterization and Simulation Capability: Develop knowledge bases, analysis methods, and simulation tools needed to address the problem of engine icing; in particular, ice-crystal icing Airframe Icing Simulation and Engineering Tool Capability: Develop and demonstrate 3-D capability to simulate and model airframe ice accretion and related aerodynamic performance degradation for current and future aircraft configurations in an expanded icing environment that includes freezing drizzle/rain Atmospheric Hazard Sensing and Mitigation Technology Capability: Improve and expand remote sensing and mitigation of hazardous atmospheric environments and phenomena

  14. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  15. Numerical Simulation of Low Mach Number Fluid - Phenomena.

    NASA Astrophysics Data System (ADS)

    Reitsma, Scott H.

    A method for the numerical simulation of low Mach number (M) fluid-acoustic phenomena is developed. This computational fluid-acoustic (CFA) methodology is based upon a set of conservation equations, termed finite-compressible, derived from the unsteady Navier-Stokes equations. The finite-compressible and more familiar pseudo-compressible equations are compared. The impact of derivation assumptions are examined theoretically and through numerical experimentation. The error associated with these simplifications is shown to be of O(M) and proportional to the amplitude of unsteady phenomena. A computer code for the solution of the finite -compressible equations is developed from an existing pseudo -compressible code. Spatial and temporal discretization issues relevant in the context of near field fluid-acoustic simulations are discussed. The finite volume code employs a MUSCL based third order upwind biased flux difference splitting algorithm for the convective terms. An explicit, three stage, second order Runge-Kutta temporal integration is employed for time accurate simulations while an implicit, approximately factored time quadrature is available for steady state convergence acceleration. The CFA methodology is tested in a series of problems which examine the appropriateness of the governing equations, the exacerbation of spatial truncation errors and the degree of temporal accuracy. Characteristic based boundary conditions employing a spatial formulation are developed. An original non-reflective boundary condition based upon the generalization and extension of existing methods is derived and tested in a series of multi-dimensional problems including those involving viscous shear flows and propagating waves. The final numerical experiment is the simulation of boundary layer receptivity to acoustic disturbances. This represents the first simulation of receptivity at a surface inhomogeneity in which the acoustic phenomena is modeled using physically appropriate

  16. Parameterized rotating convection for core and planetary atmosphere dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, K.

    1991-04-01

    New types of convective instability and associated nonlinear phenomena in rapidly rotating spherical systems have been discovered through numerical simulations. The Prandtl number, defined as the ratio of the viscous and thermal diffusivities of a fluid, Pr = nu/kappa, plays a crucial role in determining the fundamental features of both the instabilities and the corresponding nonlinear convection. The results shed new light on regimes of convection in the earth's core and the atmospheres of the major planets.

  17. Atmospheric Electricity on Mars

    NASA Astrophysics Data System (ADS)

    Delory, G.; Farrell, W.

    2011-10-01

    The atmosphere of Mars is one compelling example in our solar system that should possess active electrical processes, where dust storms are known to occur on local, regional, and global scales. Laboratory experiments and simulations all indicate that these events are expected to generate substantial quasi-static electric fields via triboelectric (i.e., frictional) charging, perhaps up to the breakdown potential of the Martian atmosphere. However current observations of potential electrical activity on Mars from both ground-based and orbital platforms have yielded conflicting results. If present, significant atmospheric electricity could be an important source of atmospheric chemistry on Mars, and thus impact our understanding of the evolution of the atmosphere and its past or present astrobiological potential. Here we review the current state of understanding regarding atmospheric electricity on Mars, and discuss its implications pending the results of future measurements.

  18. Community Atmosphere Model

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  19. Pluto's atmosphere near perihelion

    SciTech Connect

    Trafton, L.M. )

    1989-11-01

    A recent stellar occultation has confirmed predictions that Pluto has an atmosphere which is sufficiently thick to uniformly envelope the planet and to extend far above the surface. Pluto's atmosphere consists of methane and perhaps other volatile gases at temperatures below their freezing points; it should regulate the surface temperature of its volatile ices to a globally uniform value. As Pluto approaches and passes through perihelion, a seasonal maximum in the atmospheric bulk and a corresponding minimum in the exposed volatile ice abundance is expected to occur. The lag in maximum atmospheric bulk relative to perihelion will be diagnostic of the surface thermal properties. An estimate of Pluto's atmospheric bulk may result if a global darkening (resulting from the disappearance of the seasonally deposited frosts) occurs before the time of maximum atmospheric bulk. The ice deposited shortly after perihelion may be diagnostic of the composition of Pluto's volatile reservoir.

  20. Oscillations in stellar atmospheres

    NASA Technical Reports Server (NTRS)

    Costa, A.; Ringuelet, A. E.; Fontenla, J. M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized.

  1. Sources of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Michaels, J. T.

    1982-01-01

    The information available on factors that influence emissions from the principal societal sources of ammonia to the atmosphere, namely combustion processes, volatilization of farm animal wastes, and volatilization of fertilizers, is reviewed. Emission factors are established for each major source of atmospheric ammonia. The factors are then multiplied by appropriate source characterization descriptors to obtain calculated fluxes of ammonia to the atmosphere on a state-by-state basis for the United States.

  2. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  3. Atmospheres from Within

    NASA Technical Reports Server (NTRS)

    Morgan, Thomas; Abshire, James; Clancy, Todd; Fry, Ghee; Gustafson, Bo; Hecht, Michael; Kostiuk, Theodor; Rall, Jonathan; Reuter, Dennis; Sheldon, Robert

    1996-01-01

    In this review of atmospheric investigations from planetary surfaces, a wide variety of measurement and instrument techniques relevant to atmospheric studies from future planetary lander missions are discussed. The diversity of planetary surface environments within the solar system precludes complete or highly specific coverage, but lander investigations for Mars and cometary missions are presented as specific cases that represent the broad range of atmospheric-surface boundaries and that also correspond to high priority goals for future national and international lander missions.

  4. Stress-Induced Phenomena in Metallization 8th International Workshop on Stress-Induced Phenomena in Metallization

    NASA Astrophysics Data System (ADS)

    Zschech, Ehrenfried; Maex, Karen; Ho, Paul S.; Kawasaki, Hisao; Nakamura, Tomoji

    All papers were peer reviewed. This proceedings presents current research on issues related to stress-induced phenomena in on-chip metal interconnects and solder joints. Stresses arising in on-chip metal interconnects and surrounding dielectric materials due to thermal mismatch, electromigration, microstructure changes or process integration can lead to degradation and failure of microelectronic products. The implementation of low dielectric constant materials into the inlaid copper backend-of-line process has brought new challenges for process integration and reliability.

  5. Dynamics of atmospheres with a non-dilute condensible component

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, Raymond T.; Ding, Feng

    2016-06-01

    The diversity of characteristics for the host of recently discovered exoplanets opens up a great deal of fertile new territory for geophysical fluid dynamics, particularly when the fluid flow is coupled to novel thermodynamics, radiative transfer or chemistry. In this paper, we survey one of these new areas-the climate dynamics of atmospheres with a non-dilute condensible component, defined as the situation in which a condensible component of the atmosphere makes up a substantial fraction of the atmospheric mass within some layer. Non-dilute dynamics can occur for a wide range of condensibles, generically applying near both the inner and the outer edges of the conventional habitable zone and in connection with runaway greenhouse phenomena. It also applies in a wide variety of other planetary circumstances. We first present a number of analytical results developing some key features of non-dilute atmospheres, and then show how some of these features are manifest in simulations with a general circulation model adapted to handle non-dilute atmospheres. We find that non-dilute atmospheres have weak horizontal temperature gradients even for rapidly rotating planets, and that their circulations are largely barotropic. The relative humidity of the condensible component tends towards 100% as the atmosphere becomes more non-dilute, which has important implications for runaway greenhouse thresholds. Non-dilute atmospheres exhibit a number of interesting organized convection features, for which there is not yet any adequate theoretical understanding.

  6. The Mars atmosphere as seen from Curiosity

    NASA Astrophysics Data System (ADS)

    Mischna, Michael

    Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the

  7. ARES : an in situ sensor to characterize Mars atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Montmessin, F.; Godefroy, M.; Hamelin, M.; Berthelier, J. J.; Yahi, S.; Aplin, K.; Simoes, F.; Szago, K.

    2009-04-01

    The Atmospheric Relaxation and Electric Field sensor (ARES) is a compact (200g) instrument devoted to the investigation of atmospheric electricity at the surface of Mars. It can measure the ionization state of the atmosphere, the electric fields that result from various charging mechanisms and investigate the planet global electrical circuit. Atmospheric electrical phenomena are an important issue in many processes at the surface of Mars: dust transport, surface and atmospheric chemistry as well as habitability of the planet through their role in the production of oxydized constituents. A global atmospheric electrical circuit is likely to exist on Mars, between the surface and the ionosphere, with similarities and differences with the Earth's circuit. Atmospheric ionization should be similar to that of the Earth's stratosphere but impact charging through collisions between dust particles moved by the wind and the surface, or between dust particles themselves, is expected to be the dominant charging mechanism on Mars. Intense electric fields, possibly capable of producing electrical breakdown, are expected at the time of dust storms and in the vicinity of dust devils. Atmospheric electricity is also involved in several processes that have a noticeable impact on the surface and atmosphere. At times of dust storms, electrostatic forces on fine electrically charged dust grains may become larger than aerodynamic forces due to the wind. They are expected to play a significant role in the dynamics of suspended dust particles and their interaction with the surface, thus on the processes that contribute to the erosion and long term evolution of the surface. By energizing the free electrons, the atmospheric electric fields control their interaction with both the surface and the atmospheric gases. They have thus a definite role in the chain of physical and chemical processes that govern the chemical state of surface materials and the production of oxidized constituents in the

  8. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  9. Geospatial Predictive Modelling for Climate Mapping of Selected Severe Weather Phenomena Over Poland: A Methodological Approach

    NASA Astrophysics Data System (ADS)

    Walawender, Ewelina; Walawender, Jakub P.; Ustrnul, Zbigniew

    2016-02-01

    The main purpose of the study is to introduce methods for mapping the spatial distribution of the occurrence of selected atmospheric phenomena (thunderstorms, fog, glaze and rime) over Poland from 1966 to 2010 (45 years). Limited in situ observations as well the discontinuous and location-dependent nature of these phenomena make traditional interpolation inappropriate. Spatially continuous maps were created with the use of geospatial predictive modelling techniques. For each given phenomenon, an algorithm identifying its favourable meteorological and environmental conditions was created on the basis of observations recorded at 61 weather stations in Poland. Annual frequency maps presenting the probability of a day with a thunderstorm, fog, glaze or rime were created with the use of a modelled, gridded dataset by implementing predefined algorithms. Relevant explanatory variables were derived from NCEP/NCAR reanalysis and downscaled with the use of a Regional Climate Model. The resulting maps of favourable meteorological conditions were found to be valuable and representative on the country scale but at different correlation (r) strength against in situ data (from r = 0.84 for thunderstorms to r = 0.15 for fog). A weak correlation between gridded estimates of fog occurrence and observations data indicated the very local nature of this phenomenon. For this reason, additional environmental predictors of fog occurrence were also examined. Topographic parameters derived from the SRTM elevation model and reclassified CORINE Land Cover data were used as the external, explanatory variables for the multiple linear regression kriging used to obtain the final map. The regression model explained 89 % of annual frequency of fog variability in the study area. Regression residuals were interpolated via simple kriging.

  10. Physics-based prognostic modelling of filter clogging phenomena

    NASA Astrophysics Data System (ADS)

    Eker, Omer F.; Camci, Fatih; Jennions, Ian K.

    2016-06-01

    In industry, contaminant filtration is a common process to achieve a desired level of purification, since contaminants in liquids such as fuel may lead to performance drop and rapid wear propagation. Generally, clogging of filter phenomena is the primary failure mode leading to the replacement or cleansing of filter. Cascading failures and weak performance of the system are the unfortunate outcomes due to a clogged filter. Even though filtration and clogging phenomena and their effects of several observable parameters have been studied for quite some time in the literature, progression of clogging and its use for prognostics purposes have not been addressed yet. In this work, a physics based clogging progression model is presented. The proposed model that bases on a well-known pressure drop equation is able to model three phases of the clogging phenomena, last of which has not been modelled in the literature yet. In addition, the presented model is integrated with particle filters to predict the future clogging levels and to estimate the remaining useful life of fuel filters. The presented model has been implemented on the data collected from an experimental rig in the lab environment. In the rig, pressure drop across the filter, flow rate, and filter mesh images are recorded throughout the accelerated degradation experiments. The presented physics based model has been applied to the data obtained from the rig. The remaining useful lives of the filters used in the experimental rig have been reported in the paper. The results show that the presented methodology provides significantly accurate and precise prognostic results.

  11. Modeling local chemistry in the presence of collective phenomena.

    SciTech Connect

    Chandross, Michael Evan; Modine, Normand Arthur

    2005-01-01

    Confinement within the nanoscale pores of a zeolite strongly modifies the behavior of small molecules. Typical of many such interesting and important problems, realistic modeling of this phenomena requires simultaneously capturing the detailed behavior of chemical bonds and the possibility of collective dynamics occurring in a complex unit cell (672 atoms in the case of Zeolite-4A). Classical simulations alone cannot reliably model the breaking and formation of chemical bonds, while quantum methods alone are incapable of treating the extended length and time scales characteristic of complex dynamics. We have developed a robust and efficient model in which a small region treated with the Kohn-Sham density functional theory is embedded within a larger system represented with classical potentials. This model has been applied in concert with first-principles electronic structure calculations and classical molecular dynamics and Monte Carlo simulations to study the behavior of water, ammonia, the hydroxide ion, and the ammonium ion in Zeolite-4a. Understanding this behavior is important to the predictive modeling of the aging of Zeolite-based desiccants. In particular, we have studied the absorption of these molecules, interactions between water and the ammonium ion, and reactions between the hydroxide ion and the zeolite cage. We have shown that interactions with the extended Zeolite cage strongly modifies these local chemical phenomena, and thereby we have proven out hypothesis that capturing both local chemistry and collective phenomena is essential to realistic modeling of this system. Based on our results, we have been able to identify two possible mechanisms for the aging of Zeolite-based desiccants.

  12. Modelling transport phenomena in a multi-physics context

    NASA Astrophysics Data System (ADS)

    Marra, Francesco

    2015-01-01

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  13. Modelling transport phenomena in a multi-physics context

    SciTech Connect

    Marra, Francesco

    2015-01-22

    Innovative heating research on cooking, pasteurization/sterilization, defrosting, thawing and drying, often focuses on areas which include the assessment of processing time, evaluation of heating uniformity, studying the impact on quality attributes of the final product as well as considering the energy efficiency of these heating processes. During the last twenty years, so-called electro-heating-processes (radio-frequency - RF, microwaves - MW and ohmic - OH) gained a wide interest in industrial food processing and many applications using the above mentioned technologies have been developed with the aim of reducing processing time, improving process efficiency and, in many cases, the heating uniformity. In the area of innovative heating, electro-heating accounts for a considerable portion of both the scientific literature and commercial applications, which can be subdivided into either direct electro-heating (as in the case of OH heating) where electrical current is applied directly to the food or indirect electro-heating (e.g. MW and RF heating) where the electrical energy is firstly converted to electromagnetic radiation which subsequently generates heat within a product. New software packages, which make easier solution of PDEs based mathematical models, and new computers, capable of larger RAM and more efficient CPU performances, allowed an increasing interest about modelling transport phenomena in systems and processes - as the ones encountered in food processing - that can be complex in terms of geometry, composition, boundary conditions but also - as in the case of electro-heating assisted applications - in terms of interaction with other physical phenomena such as displacement of electric or magnetic field. This paper deals with the description of approaches used in modelling transport phenomena in a multi-physics context such as RF, MW and OH assisted heating.

  14. Space Commercial Opportunities for Fluid Physics and Transport Phenomena Applications

    NASA Technical Reports Server (NTRS)

    Gavert, R.

    2000-01-01

    Microgravity research at NASA has been an undertaking that has included both science and commercial approaches since the late 80s and early 90s. The Fluid Physics and Transport Phenomena community has been developed, through NASA's science grants, into a valuable base of expertise in microgravity science. This was achieved through both ground and flight scientific research. Commercial microgravity research has been primarily promoted thorough NASA sponsored Centers for Space Commercialization which develop cost sharing partnerships with industry. As an example, the Center for Advanced Microgravity Materials Processing (CAMMP)at Northeastern University has been working with cost sharing industry partners in developing Zeolites and zeo-type materials as an efficient storage medium for hydrogen fuel. Greater commercial interest is emerging. The U.S. Congress has passed the Commercial Space Act of 1998 to encourage the development of a commercial space industry in the United States. The Act has provisions for the commercialization of the International Space Station (ISS). Increased efforts have been made by NASA to enable industrial ventures on-board the ISS. A Web site has been established at http://commercial/nasa/gov which includes two important special announcements. One is an open request for entrepreneurial offers related to the commercial development and use of the ISS. The second is a price structure and schedule for U.S. resources and accommodations. The purpose of the presentation is to make the Fluid Physics and Transport Phenomena community, which understands the importance of microgravity experimentation, aware of important aspects of ISS commercial development. It is a desire that this awareness will be translated into a recognition of Fluid Physics and Transport Phenomena application opportunities coordinated through the broad contacts of this community with industry.

  15. Switching Phenomena in a System with No Switches

    NASA Astrophysics Data System (ADS)

    Preis, Tobias; Stanley, H. Eugene

    2010-02-01

    It is widely believed that switching phenomena require switches, but this is actually not true. For an intriguing variety of switching phenomena in nature, the underlying complex system abruptly changes from one state to another in a highly discontinuous fashion. For example, financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("financial collapse"). Such switching occurs on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for a few seconds. We analyze a database containing 13,991,275 German DAX Future transactions recorded with a time resolution of 10 msec. For comparison, a database providing 2,592,531 of all S&P500 daily closing prices is used. We ask whether these ubiquitous switching phenomena have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have properties similar to those of phase transitions. We suggest that the well-known catastrophic bubbles that occur on large time scales—such as the most recent financial crisis—are no outliers but single dramatic representatives caused by the switching between upward and downward trends on time scales varying over nine orders of magnitude from very large (≈102 days) down to very small (≈10 ms).

  16. Clouds in Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    West, R.

    1999-01-01

    In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice cyrstals suspended in the air. The study of clouds touches on many facets of armospheric science. The chemistry of clouds is tied to the chemistry of the surrounding atmosphere.

  17. Evolution of the atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1985-01-01

    Theories on the origin of the Earth atmosphere and chemical composition are presented. The role of oxygenic photosynthesis on the determination of the Earth's origin is discussed. The research suggests that further analysis of the geologic record is needed to more accurately estimate the history of atmospheric oxygen.

  18. MODIS Atmospheric Data Handler

    NASA Technical Reports Server (NTRS)

    Anantharaj, Valentine; Fitzpatrick, Patrick

    2008-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) Atmosphere Data Handler software converts the HDF data to ASCII format, and outputs: (1) atmospheric profiles of temperature and dew point and (2) total precipitable water. Quality-control data are also considered in the export procedure.

  19. Measurement of Flow Phenomena in a VHTR Lower Plenum Model

    SciTech Connect

    Hugh M. McIlroy Jr.; Donald M. McEligot; Robert J. Pink

    2007-06-01

    Mean velocity and turbulence data that measure turbulent flow phenomena in an approximately 1:7 scale model of a region of the lower plenum of a typical prismatic gas-cooled reactor are presented as a follow-up to summaries presented at the 2006 Annual Meeting and the 2006 Winter Meeting. The experiments were designed to develop benchmark databases to support the first Standard Problem endorsed by the Generation IV International Forum to validate the heat transfer and fluid flow software that will be used to study the behavior of the VHTR system.

  20. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  1. Damping phenomena in a wire rope vibration isolation system

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.; Cutchins, M. A.

    1992-01-01

    A study is presented of the dynamic characteristics of a wire rope vibration isolation system constructed with helical isolators, with emphasis placed on the analytical modeling of damping mechanisms in the system. An experimental investigation is described in which the static stiffness curve, hysteresis curves, phase plane trajectories, and frequency response curves are obtained. A semiempirical model having nonlinear stiffness, nth-power velocity damping, and variable Coulomb friction damping is developed, and the results are compared to experimental data. Several observations and conclusions are made about the dynamic phenomena in a typical wire rope vibration isolation system based on the experimental and semiempirical results.

  2. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    PubMed

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  3. Analysis of interaction phenomena between liquid jets and materials [preprint

    SciTech Connect

    Kang, S-W.; Reitter, T.; Carlson, G.

    1995-04-01

    The interaction phenomena of high-velocity liquid jets impinging on a material surface have been investigated theoretically and experimentally to understand the physics of material removal by jet-machining processes. Experiments were performed to delineate conditions under which liquid jet impacts will cause mass removal and to determine optimum jet-cutting conditions. Theoretical analyses have also been carried out to study the effects of multiple jet-droplet impacts on a target surface as a material deformation mechanism. The calculated target response and spallation behavior following droplet impacts and their physical implications are also discussed.

  4. Analysis of interaction phenomena between liquid jets and materials

    SciTech Connect

    Kang, Sang-Wook; Reitter, T.; Carlson, G.

    1995-02-01

    The interaction phenomena of high-velocity liquid jets impinging on a material surface have been investigated theoretically and experimentally to gain an understanding of the physical mechanisms involved in material removal by fluidjet machining processes. Experiments were performed to determine conditions under which the liquid jet impacting a solid material will cause material removal and also to delineate possible physical mechanisms of mass removal at optimum jet-cutting conditions. We have also carried out numerical simulations of jet-induced surface pressure rises and of the material deformation and spallation behavior due to multiple droplet impacts. Results obtained from the experiments and theoretical calculations and their physical implications are also discussed.

  5. A review of experimental investigations on thermal phenomena in nanofluids

    PubMed Central

    2011-01-01

    Nanoparticle suspensions (nanofluids) have been recommended as a promising option for various engineering applications, due to the observed enhancement of thermophysical properties and improvement in the effectiveness of thermal phenomena. A number of investigations have been reported in the recent past, in order to quantify the thermo-fluidic behavior of nanofluids. This review is focused on examining and comparing the measurements of convective heat transfer and phase change in nanofluids, with an emphasis on the experimental techniques employed to measure the effective thermal conductivity, as well as to characterize the thermal performance of systems involving nanofluids. PMID:21711918

  6. Influences of weather phenomena on automotive laser radar systems

    NASA Astrophysics Data System (ADS)

    Rasshofer, R. H.; Spies, M.; Spies, H.

    2011-07-01

    Laser radar (lidar) sensors provide outstanding angular resolution along with highly accurate range measurements and thus they were proposed as a part of a high performance perception system for advanced driver assistant functions. Based on optical signal transmission and reception, laser radar systems are influenced by weather phenomena. This work provides an overview on the different physical principles responsible for laser radar signal disturbance and theoretical investigations for estimation of their influence. Finally, the transmission models are applied for signal generation in a newly developed laser radar target simulator providing - to our knowledge - worldwide first HIL test capability for automotive laser radar systems.

  7. An assessment of transient hydraulics phenomena and its characterization

    NASA Technical Reports Server (NTRS)

    Mortimer, R. W.

    1974-01-01

    A systematic search of the open literature was performed with the purpose of identifying the causes, effects, and characterization (modelling and solution techniques) of transient hydraulics phenomena. The governing partial differential equations are presented which were found to be used most often in the literature. Detail survey sheets are shown which contain the type of hydraulics problem, the cause, the modelling, the solution technique utilized, and experimental verification used for each paper. References and source documents are listed and a discussion of the purpose and accomplishments of the study is presented.

  8. Mutual phenomena involving J5 Amalthea in 2002-2003

    NASA Astrophysics Data System (ADS)

    Vachier, F.; Arlot, J. E.; Thuillot, W.

    2002-10-01

    Every six years mutual eclipses and occultations occur among the Jovian system of satellites. Very accurate astrometric measurements and several physical characteristics of the surfaces can be infered from their observation. This paper is provide predictions of this type of events involving the fifth satellite J5 Amalthea, spanning from November 2002 to June 2003 and to urge astronomers to observe them. Only the predictions of the eclipses of Amalthea by Io are presented, when the distance between Amalthea-Io and Amalthea-Jutpiter is large enough for photometric purposes. A full list of phenomena is available on the server http://www.imcce.fr/Phemu03/phemu03_eng.html

  9. Hysteresis phenomena of the intelligent driver model for traffic flow

    NASA Astrophysics Data System (ADS)

    Dahui, Wang; Ziqiang, Wei; Ying, Fan

    2007-07-01

    We present hysteresis phenomena of the intelligent driver model for traffic flow in a circular one-lane roadway. We show that the microscopic structure of traffic flow is dependent on its initial state by plotting the fraction of congested vehicles over the density, which shows a typical hysteresis loop, and by investigating the trajectories of vehicles on the velocity-over-headway plane. We find that the trajectories of vehicles on the velocity-over-headway plane, which usually show a hysteresis loop, include multiple loops. We also point out the relations between these hysteresis loops and the congested jams or high-density clusters in traffic flow.

  10. The critical phenomena of charged rotating de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Guo, Xiongying; Li, Huaifan; Zhang, Lichun; Zhao, Ren

    2016-07-01

    In this paper, we investigate the effective thermodynamic quantities in Kerr-Newman-de Sitter spacetime by considering the relations between the black hole event horizon and the cosmological event horizon. We find the effect of the critical point of Kerr-Newman-de Sitter spacetime for the different state parameters. We study the critical phenomena of the system taking different state parameters. This result is consistent with the nature of a liquid-gas phase transition at the critical point, hence deepening the understanding of the analogy of charged de Sitter spacetime and liquid-gas systems.

  11. FAST TRACK COMMUNICATION: Ricci flows, wormholes and critical phenomena

    NASA Astrophysics Data System (ADS)

    Husain, Viqar; Seahra, Sanjeev S.

    2008-11-01

    We study the evolution of wormhole geometries under the Ricci flow using numerical methods. Depending on values of initial data parameters, wormhole throats either pinch off or evolve to a monotonically growing state. The transition between these two behaviors exhibits a form of critical phenomena reminiscent of that observed in gravitational collapse. Similar results are obtained for initial data that describe space bubbles attached to asymptotically flat regions. Our numerical methods are applicable to 'matter-coupled' Ricci flows derived from conformal invariance in string theory.

  12. Visualization of In-Flight Flow Phenomena Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; vanDam, C. P.; Shiu, H. J.; Miller, G. M.

    2000-01-01

    Infrared thermography was used to obtain data on the state of the boundary layer of a natural laminar flow airfoil in supersonic flight. In addition to the laminar-to-turbulent transition boundary, the infrared camera was able to detect shock waves and present a time dependent view of the flow field. A time dependent heat transfer code was developed to predict temperature distributions on the test subject and any necessary surface treatment. A commercially available infrared camera was adapted for airborne use in this application. Readily available infrared technology has the capability to provide detailed visualization of various flow phenomena in subsonic to hypersonic flight regimes.

  13. Complex Phenomena in Orchestras - Metaphors for Leadership and Enterprise

    NASA Astrophysics Data System (ADS)

    Beautement, Patrick; Brönner, Christine

    This paper recognises that comparisons have been made between the role of the conductor of an orchestra and leaders of enterprises, but that little note has been taken of how the complex dynamics of orchestras can provide metaphors for transformational and / or evolutionary behaviour in complex enterprises. The paper intends to identify some of the dynamic musical patterns and phenomena that exist in orchestras and show how these can provide insights for other domains where similar complex federated structures emerge ’on-the-fly’ by providing and using a complexity-inspired framework.

  14. Transient Phenomena in Multiphase and Multicomponent Systems: Research Report

    NASA Astrophysics Data System (ADS)

    Zur Beurteilung von Stoffen in der Landwirtschaft, Senatskommission

    2000-09-01

    Due to the reinforced risk and safety-analysis of industrial plants in chemical and energy-engineering there has been increased demand in industry for more information on thermo- and fluiddynamic effects of non-equilibria during strong transients. Therefore, the 'Deutsche Forschungsgemeinschaft' initiated a special research program focusing on the study of transient phenomena in multiphase systems with one or several components. This book describes macroscopic as well as microscopic transient situations. A large part of the book deals with numerical methods for describing transients in two-phase mixtures. New developments in measuring techniques are also presented.

  15. Analyzing simple pendulum phenomena with a smartphone acceleration sensor

    NASA Astrophysics Data System (ADS)

    Vogt, Patrik; Kuhn, Jochen

    2012-10-01

    This paper describes a further experiment using the acceleration sensor of a smartphone. For a previous column on this topic, including the description of the operation and use of the acceleration sensor, see Ref. 1. In this contribution we focus on analyzing simple pendulum phenomena. A smartphone is used as a pendulum bob, and SPARKvue2 software is used in conjunction with an iPhone or an iPod touch, or the Accelogger3 app for an Android device. As described in Ref. 1, the values measured by the smartphone are subsequently exported to a spreadsheet application (e.g., MS Excel) for analysis.

  16. Critical Phenomena in the Aspherical Collapse of Radiation Fluids

    NASA Astrophysics Data System (ADS)

    Baumgarte, Thomas

    2016-03-01

    We study critical phenomena in the gravitational collapse of radiation fluids. We perform numerical simulations in both spherical symmetry and axisymmetry, and observe critical scaling in both supercritical evolutions, which lead to the formation of a black hole, and subcritical evolutions, in which case the fluid disperses to infinity and leaves behind flat space. We identify the critical solution in spherically symmetric collapse, and study the approach to this critical solution in the absence of spherical symmetry. Our simulations are preformed with an unconstrained evolution code, implemented in spherical polar coordinates, and adopting ``moving-puncture'' coordinates. Supported in part by NSF Grant No. PHY-1402780 to Bowdoin College.

  17. Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Prather, Kimberly A.; Hatch, Courtney D.; Grassian, Vicki H.

    2008-07-01

    Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.

  18. The atmosphere below. (Videotape)

    SciTech Connect

    1992-12-31

    In this educational `Liftoff to Learning` video series, astronauts from the STS-45 Space Shuttle Mission (Kathy Sullivan, Byron Lichtenberg, Brian Duffy, Mike Foale, David Leestma, Charlie Bolden, and Dirk Frimont) explain and discuss the Earths atmosphere, its needs, the changes occurring within it, the importance of ozone, and some of the reasons behind the ozone depletion in the Earths atmosphere. The questions of: (1) what is ozone; (2) what has happened to the ozone layer in the atmosphere; and (3) what exactly does ozone do in the atmosphere, are answered. Different chemicals and their reactions with ozone are discussed. Computer animation and graphics show how these chemical reactions affect the atmosphere and how the ozone hole looks and develops at the south pole during its winter season appearance.

  19. Atmospheric Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K.; Sokolsky, P.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric fluorescence from these showers. Accurate knowledge of the conversion from atmospheric fluorescence to energy loss by ionizing particles in the atmosphere is key to this technique. In this paper we discuss a small balloon-borne instrument to make the first in situ measurements versus altitude of the atmospheric fluorescence yield. The instrument can also be used in the lab to investigate the dependence of the fluorescence yield in air on temperature, pressure and the concentrations of other gases that present in the atmosphere. The results can be used to explore environmental effects on and improve the accuracy of cosmic ray energy measurements for existing ground-based experiments and future space-based experiments.

  20. The atmosphere below

    NASA Astrophysics Data System (ADS)

    1992-05-01

    In this educational 'Liftoff to Learning' video series, astronauts from the STS-45 Space Shuttle Mission (Kathy Sullivan, Byron Lichtenberg, Brian Duffy, Mike Foale, David Leestma, Charlie Bolden, and Dirk Frimont) explain and discuss the Earths atmosphere, its needs, the changes occurring within it, the importance of ozone, and some of the reasons behind the ozone depletion in the Earths atmosphere. The questions of: (1) what is ozone; (2) what has happened to the ozone layer in the atmosphere; and (3) what exactly does ozone do in the atmosphere, are answered. Different chemicals and their reactions with ozone are discussed. Computer animation and graphics show how these chemical reactions affect the atmosphere and how the ozone hole looks and develops at the south pole during its winter season appearance.

  1. Geochemical cycles of atmospheric gases

    NASA Technical Reports Server (NTRS)

    Walker, J. C. G.; Drever, J. I.

    1988-01-01

    The processes that control the atmosphere and atmospheric changes are reviewed. The geochemical cycles of water vapor, nitrogen, carbon dioxide, oxygen, and minor atmospheric constituents are examined. Changes in atmospheric chemistry with time are discussed using evidence from the rock record and analysis of the present atmosphere. The role of biological evolution in the history of the atmosphere and projected changes in the future atmosphere are considered.

  2. Origin and evolution of planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lewis, John S.

    1992-01-01

    This report concerns several research tasks related to the origin and evolution of planetary atmospheres and the large-scale distribution of volatile elements in the Solar System. These tasks and their present status are as follows: (1) we have conducted an analysis of the volatility and condensation behavior of compounds of iron, aluminum, and phosphorus in the atmosphere of Venus in response to publish interpretations of the Soviet Venera probe XRF experiment data, to investigate the chemistry of volcanic gases, injection of volatiles by cometary and asteroidal impactors, and reactions in the troposphere; (2) we have completed and are now writing up our research on condensation-accretion modeling of the terrestrial planets; (3) we have laid the groundwork for a detailed study of the effects of water transport in the solar nebula on the bulk composition, oxidation state, and volatile content of preplanetary solids; (4) we have completed an extensive laboratory study of cryovolcanic materials in the outer solar system; (5) we have begun to study the impact erosion and shock alteration of the atmosphere of Mars resulting from cometary and asteroidal bombardment; and (6) we have developed a new Monte Carlo model of the cometary and asteroidal bombardment flux on the terrestrial planets, including all relevant chemical and physical processes associated with atmospheric entry and impact, to assess both the hazards posed by this bombardment to life on Earth and the degree of cross-correlation between the various phenomena (NO(x) production, explosive yield, crater production, iridium signature, etc.) that characterize this bombardment. The purpose of these investigations has been to contribute to the developing understanding of both the dynamics of long-term planetary atmosphere evolution and the short-term stability of planetary surface environments.

  3. Investigation of transient earth resources phenomena: Continuation study

    NASA Technical Reports Server (NTRS)

    Goldman, G. C.

    1974-01-01

    Calculated sensitivity requirements for an earth resource satellite in a geostationary orbit are reported. Radiance levels at the satellite sensor were computed for twenty top-priority Synchronous Earth Observatory Satellite (SEOS) applications. The observation requirements were reviewed and re-evaluated in terms of spectral band definition, spectral signatures of targets and backgrounds, observation time, and site location. With these data and an atmospheric attenuation and scattering model, the total radiances observed by the SEOS sensor were calculated as were the individual components contributed by the target, target variations, and the atmosphere.

  4. The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.

    2008-12-01

    The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on

  5. Shuttle Mounted Sensors For The Analysis Of Ocean Phenomena

    NASA Astrophysics Data System (ADS)

    Steller, David D.

    1984-09-01

    The Space Shuttle has proven to be an excellent platform for testing sensors for the analysis of ocean phenomena. The Shuttle provides a manned, stable platform that can be precisely navigated. The ocean monitoring sensors are operated, retrieved, evaluated in the laboratory and reflown. Of major importance is the ability of the astronaut/oceanographer to use his intellect and visual acuity to recognize valuable ocean phenomena and then to interact directly with the sensors. This interaction can include real-time sensor pointing, tuning, and coordination with the ground and ship stations. In the complex task of identifying ocean features from space, man can: make rapid interpretation, evaluate ocean color changes, filter out cloud affects, make geographic location decisions and assess the contrast of subtle ocean features from background. Optional sensor mounting methods have been designed to reduce flight costs and turnaround times necessary for continuing sensor demonstration schedules. The Shuttle platform permits space testing of ocean monitoring sensors without the commitment of long range, expensive, systems programs necessary for stand-alone satellite sensor testing.

  6. PREFACE: Physics and Mathematics of Nonlinear Phenomena 2013 (PMNP2013)

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Landolfi, G.; Martina, L.; Vitolo, R.

    2014-03-01

    Modern theory of nonlinear integrable equations is nowdays an important and effective tool of study for numerous nonlinear phenomena in various branches of physics from hydrodynamics and optics to quantum filed theory and gravity. It includes the study of nonlinear partial differential and discrete equations, regular and singular behaviour of their solutions, Hamitonian and bi- Hamitonian structures, their symmetries, associated deformations of algebraic and geometrical structures with applications to various models in physics and mathematics. The PMNP 2013 conference focused on recent advances and developments in Continuous and discrete, classical and quantum integrable systems Hamiltonian, critical and geometric structures of nonlinear integrable equations Integrable systems in quantum field theory and matrix models Models of nonlinear phenomena in physics Applications of nonlinear integrable systems in physics The Scientific Committee of the conference was formed by Francesco Calogero (University of Rome `La Sapienza', Italy) Boris A Dubrovin (SISSA, Italy) Yuji Kodama (Ohio State University, USA) Franco Magri (University of Milan `Bicocca', Italy) Vladimir E Zakharov (University of Arizona, USA, and Landau Institute for Theoretical Physics, Russia) The Organizing Committee: Boris G Konopelchenko, Giulio Landolfi, Luigi Martina, Department of Mathematics and Physics `E De Giorgi' and the Istituto Nazionale di Fisica Nucleare, and Raffaele Vitolo, Department of Mathematics and Physics `E De Giorgi'. A list of sponsors, speakers, talks, participants and the conference photograph are given in the PDF. Conference photograph

  7. Comparison of upstream phenomena at Venus and Earth

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1995-01-01

    The region upstream of a planetary bow shock, known as the foreshock, contains a variety of phenomena. Electrons and ions are reflected and energized at the shock. As these stream back upstream, they generate both VLF and ULF waves. Studies of the terrestrial foreshock have provided most of our understanding of these phenomena. However, comparisons with other planetary foreshocks are beneficial, even though the instrumentation used to provide the data may be less sophisticated than that flown on Earth orbiting spacecraft. In particular, maps of the VLF emissions upstream of the Venus bow shock, using data acquired by the Pioneer Venus Orbiter are particularly illuminating. These maps show that the tangent field line is clearly marked by the presence of plasma oscillations. Of additional interest is evidence that the emissions only extend some 15 Venus radii away from the shock, indicating that the emissions are controlled by the shock scale size. Lower frequency ion acoustic waves are observed deep in the ion foreshock. Only close to the shock do both the ion acoustic waves and ULF waves occur simultaneously. The ULF waves mark the ion foreshock boundary where ion beams should be present. The ion acoustic waves tend to be observed further downstream, where diffuse ion distributions are expected to occur. A similar mapping of the terrestrial foreshock, using data from the ISEE-3 spacecraft shows similar results for the electron foreshock. An extensions of this study to include ULF and ion acoustic waves would be helpful.

  8. Different Selection Pressures Give Rise to Distinct Ethnic Phenomena

    PubMed Central

    Moya, Cristina; Boyd, Robert

    2015-01-01

    Many accounts of ethnic phenomena imply that processes such as stereotyping, essentialism, ethnocentrism, and intergroup hostility stem from a unitary adaptation for reasoning about groups. This is partly justified by the phenomena’s co-occurrence in correlational studies. Here we argue that these behaviors are better modeled as functionally independent adaptations that arose in response to different selection pressures throughout human evolution. As such, different mechanisms may be triggered by different group boundaries within a single society. We illustrate this functionalist framework using ethnographic work from the Quechua-Aymara language boundary in the Peruvian Altiplano. We show that different group boundaries motivate different ethnic phenomena. For example, people have strong stereotypes about socioeconomic categories, which are not cooperative units, whereas they hold fewer stereotypes about communities, which are the primary focus of cooperative activity. We also show that, despite the cross-cultural importance of ethnolinguistic boundaries, the Quechua-Aymara linguistic distinction does not strongly motivate any of these intergroup processes. PMID:25731969

  9. Interfacial phenomena, evaporation and stress in a constrained capillary system

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Kim, I. Y.; Wayner, P. C., Jr.

    1992-08-01

    The heat transfer and interfacial characteristics of a small constrained system under stress in the form of an evaporating extended meniscus at the exit of a slot feeder were evaluated. The stress level in the completely wetting fluid-solid system was increased by decreasing the overall size of the film and thereby increasing the relative importance of interfacial phenomena. Recent data concerning the effect of interfacial phenomena on transport processes in a constrained capillary system will be presented. The liquid thickness profile, which was representative of the pressure field in the extended meniscus was measured using ellipsometry and microcomputer enhanced video mciroscopy. The analysis demonstrates that the capillary and disjoining pressures are coupled and they lead to fluid flow and a reduction in vapor pressure. The interfacial forces have a large effect on the heat transfer characteristics. A model equation based on the augmented Young-Laplace equation was numerically solved and compared with the film thickness data to determine the Hamaker constant, in situ. The effects of system resistance on the mass and the heat flux distribution were also investigated.

  10. EUV Dimmings as a Diagnostic of CMEs and Related Phenomena

    NASA Technical Reports Server (NTRS)

    Thompson, Barbara J.; Mays, M. Leila; Webb, David F.; West, Matthew J.

    2012-01-01

    Large-scale coronal EUV dimmings, developing on timescaJes of minutes to hours in association with a flare or filament eruption, are known to exhibit a high correlation with coronal mass ejections. While most observations indicate that the decrease in emission in a dimming is due, at least in part, to a density decrease, a complete understanding requires us to examine at least four mechanisms that have been observed to cause darkened regions in the corona: 1) mass loss, 2) cooling, 3) heating, and 4) absorption/obscuration. Recent advances in automatic detection, observations with improved cadence and resolution, multi-viewpoint imaging, and spectroscopic studies have continued to shed light on dimming formation, evolution, and recovery. However, there are still some outstanding questions, including 1) Why do some CMEs show dimming and some do not? 2) What determines the location of a dimming? 3) What determines the temporal evolution of a dimming? 4) How does the post-eruption dimming connect to the ICME? 5) What is the relationship between dimmings and other CME-associated phenomena? The talk will emphasize the different formation mechanisms of dimmings and their relationship to CMEs and CME-associated phenomena.

  11. Nonextensive Statistical Mechanics: Some Links with Astronomical Phenomena

    NASA Astrophysics Data System (ADS)

    Tsallis, Constantino; Tsallis, Constantino; Prato, Domingo; Plastino, Angel R.; Plastino, Angel R.

    2004-04-01

    A variety of astronomical phenomena appear to not satisfy the ergodic hypothesis in the relevant stationary state, if any. As such, there is no reason for expecting the applicability of Boltzmann Gibbs (BG) statistical mechanics. Some of these phenomena appear to follow, instead, nonextensive statistical mechanics. In the same manner that the BG formalism is based on the entropy S BG=-k∑ i p i ln p i, the nonextensive one is based on the form S q=k(1 -∑ i p i q)/(q- 1) (with S 1=S BG). The stationary states of the former are characterized by an exponential dependence on the energy, whereas those of the latter are characterized by an (asymptotic) power law. A brief review of this theory is given here, as well as of some of its applications, such as the solar neutrino problem, polytropic self-gravitating systems, galactic peculiar velocities, cosmic rays and some cosmological aspects. In addition to these, an analogy with the Keplerian elliptic orbits versus the Ptolemaic epicycles is developed, where we show that optimizing S q with a few constraints is equivalent to optimizing S BG with an infinite number of constraints.

  12. Fundamental radar properties. II. Coherent phenomena in space-time.

    PubMed

    Gabriel, Andrew K

    2008-01-01

    A previous publication [J. Opt. Soc. Am. A19, 946-956 (2002)] presented a general formulation of radiative systems based on special relativity, and properties of imaging radar were derived as examples. Complex and diverse properties of radar images were shown to have a simple and unified origin when viewed as lower-dimensional (temporal) projections of the space-time structure of a radar observation. A diagram was developed that could be manipulated for a simple, intuitive view of the underlying structure of radar observations and phenomena. That treatment is here extended to include coherent phenomena as they appear in the lower time dimensions of the image. Various known coherent properties of imaging radar and interferometry are derived. The formulation is shown to be a generalization of a conventional echo correlation and is extended to a second spatial dimension. From this perspective, coherent properties also have a surprisingly simple and unified structure; their observed complexity is somewhat illusory, also a consequence of projection onto the lower temporal dimension of the receiver. While this formulation and the rules governing it are quite different from the standard treatments, they have the considerable advantage of providing a much simpler, intuitive, and unified description of radiative (radar and optical) systems that is rooted in fundamental physics. PMID:18157218

  13. Assessing transitional phenomena with the transitional object memory probe.

    PubMed

    Fowler, C; Hilsenroth, M J; Handler, L

    1998-01-01

    Winnicott's concept of transitional relatedness has captured the interest of psychoanalysts because it provides an understanding of the dialectical process occurring between inner and outer reality, and by extension, between analyst and analysand. Clinical observations related to transitional phenomena have led the authors to develop a projective early memory probe that assesses transitional phenomena. The transitional object early memory probe was tested both for its empirical validity and for its clinical utility in psychodynamic psychotherapy. Construct validity was assessed by comparing memory scores to the Rorschach Transitional Object Scale, as well as to therapist ratings of patient behaviors. Results demonstrated moderate correlations between early memory scores and Rorschach scale scores. Equally important was the finding that early memory scores were significantly correlated with therapist ratings of key behavioral patterns in therapy. A case vignette highlights the clinical application of the transitional object probe in assessing the capacity for transitional relatedness. In this case, the data gleaned from the patient's memories provided the therapist with a sharper focus on their role in the patient's growing capacity for more vital and creative contact with reality.

  14. Initial aging phenomena in copper-chromium alloys

    NASA Technical Reports Server (NTRS)

    Suzuki, H.; Motohiro, K.

    1985-01-01

    The effects of quenching and aging temperatures on the initial aging curves of Cu-Cr alloy were examined mainly by means of electrical resistivity measurements. Three Cu-Cr alloy specimens having 0.24, 0.74, and 1.0% Cr were solution-treated at 950-1050 C, quenched into ice-water, and subsequently aged at 300-500 C. The results were as follows: (1) At the very early stage of aging (within about 30 sec), an abrupt decrease of resistivity with lowering aging tempratures. (T sub A) and rising solution temperatures (T sub S) was observed at (T sub A) up to about 400 C. In contrast, a transient increase of resistivity with rising T sub A and lowering T sub S was observed at T sub A from about 450 to 500 C. These phenomena seem to be caused by a rapid formation of solute clusters and the reversion of clusters formed during quenching, which are enhanced by quenched-in vacancies, respectively. (2) The amount of precipitation increased at the latter stage of aging with rising T sub S and T sub A as generally expected, where T sub S was not so high as to form secondary defects. (3) As a result, the initial aging phenomena in Cr-Cr alloy were revealed to be complicated against expectations. This was considered to be due to the migration energy of vacancies so larger in Cu-base.

  15. Free-energy calculation methods for collective phenomena in membranes

    NASA Astrophysics Data System (ADS)

    Smirnova, Yuliya G.; Fuhrmans, Marc; Barragan Vidal, Israel A.; Müller, Marcus

    2015-09-01

    Collective phenomena in membranes are those which involve the co-operative reorganization of many molecules. Examples of these are membrane fusion, pore formation, bending, adhesion or fission. The time and length scales, on which these processes occur, pose a challenge for atomistic simulations. Therefore, in order to solve the length scale problem it is popular to introduce a coarse-grained representation. To facilitate sampling of the relevant states additional computational techniques, which encourage the system to explore the free-energy landscape far from equilibrium and visit transition states, are needed. These computational techniques provide insights about the free-energy changes involved in collective transformations of membranes, yielding information about the rate limiting states, the transformation mechanism and the influence of architectural, compositional and interaction parameters. A common approach is to identify an order parameter (or reaction coordinate), which characterizes the pathway of membrane reorganization. However, no general strategy exists to define such an order parameter that can properly describe cooperative reorganizations in membranes. Recently developed methods can overcome this problem of the order-parameter choice and allow us to study collective phenomena in membranes. We will discuss such methods as thermodynamic integration, umbrella sampling, and the string method and results provided by their applications to particle-based simulations, particularly focusing on membrane fusion and pore formation.

  16. Investigations of fundamental phenomena in quantum mechanics with neutrons

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuji

    2014-04-01

    Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics á la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.

  17. Assessing transitional phenomena with the transitional object memory probe.

    PubMed

    Fowler, C; Hilsenroth, M J; Handler, L

    1998-01-01

    Winnicott's concept of transitional relatedness has captured the interest of psychoanalysts because it provides an understanding of the dialectical process occurring between inner and outer reality, and by extension, between analyst and analysand. Clinical observations related to transitional phenomena have led the authors to develop a projective early memory probe that assesses transitional phenomena. The transitional object early memory probe was tested both for its empirical validity and for its clinical utility in psychodynamic psychotherapy. Construct validity was assessed by comparing memory scores to the Rorschach Transitional Object Scale, as well as to therapist ratings of patient behaviors. Results demonstrated moderate correlations between early memory scores and Rorschach scale scores. Equally important was the finding that early memory scores were significantly correlated with therapist ratings of key behavioral patterns in therapy. A case vignette highlights the clinical application of the transitional object probe in assessing the capacity for transitional relatedness. In this case, the data gleaned from the patient's memories provided the therapist with a sharper focus on their role in the patient's growing capacity for more vital and creative contact with reality. PMID:9810109

  18. Scaling of Quench Front and Entrainment-Related Phenomena

    SciTech Connect

    Aumiller, D. L.; Hourser, R. J.; Holowach, M. J.; Hochreiter, L. E.; Cheung, F-B.

    2002-04-01

    The scaling of thermal hydraulic systems is of great importance in the development of experiments in laboratory-scale test facilities that are used to replicate the response of full-size prototypical designs. One particular phenomenon that is of interest in experimental modeling is the quench front that develops during the reflood phase in a PWR (Pressurized Water Reactor) following a large-break LOCA (Loss of Coolant Accident). The purpose of this study is to develop a scaling methodology such that the prototypical quench front related phenomena can be preserved in a laboratory-scale test facility which may have material, geometrical, fluid, and flow differences as compared to the prototypical case. A mass and energy balance on a Lagrangian quench front control volume along with temporal scaling methods are utilized in developing the quench front scaling groups for a phenomena-specific second-tier scaling analysis. A sample calculation is presented comparing the quench front scaling groups calculated for a prototypical Westinghouse 17 x 17 PWR fuel design and that of the geometry and material configuration used in the FLECHT SEASET series of experiments.

  19. Electrokinetic phenomena and dielectrophoresis in charged colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Karttunen, Mikko; Yu, K. W.; Dong, L.

    2003-03-01

    AC electrokinetic phenomena, i.e., electrorotation, dielectrophoresis and traveling wave dielectrophoresis, have gained an increasing amount of attention. This is due to their wide range of applications from cancer research to identifying and separating parasites, cell populations and viruses, and even to design of nanomotors. Despite the number of applications, there is need for a theory that treats the different aspects of electrokinetic phenomena on an equal footing starting from the general underlying physical principles. Here, we present a theoretical study of dielectrophoretic (DEP) crossover spectrum of two polarizable particles under the action of a nonuniform AC electric field. For two approaching particles, the mutual polarization interaction yields a change in their respective dipole moments, and hence, in the DEP crossover spectrum. We use the multiple image method to study the induced polarization effects and using spectral representation theory, an analytic expression for the DEP force is derived. Our results shows that the mutual polarization effects can change the crossover frequency at which the DEP force changes sign. The results are in agreement with recent experimental observations. Importantly, this approach goes beyond the standard theory and helps to clarify the important question of the underlying polarization mechanisms. The extension to dense systems and relation to electrorotation is discussed.

  20. Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry

    DOE PAGES

    Abdeljawad, Fadi; Foiles, Stephen M.

    2016-05-04

    The study of materials interfaces dates back over a century. In solid systems and from an engineering perspective, free surfaces and internal (grain and/or phase) boundaries influence a wide range of properties, such as thermal, electrical and optical transport, and mechanical ones. The properties and the role of interfaces has been discussed extensively in various reviews such as by Sutton and Balluffi. As the characteristic feature size of a materials system (i.e., grain size) is decreased to the nanometer scale, interface-driven physics is expected to dominate due to the increased density of such planar defects. Moreover, interfacial attributes, thermodynamics, andmore » mobility play a key role in phase transformations, such as solidification dynamics and structural transitions in solids, and in homogenization and microstructural evolution processes, such as grain growth, coarsening, and recrystallization. In summary, the set of articles published in this special topic titled: “Interface-Driven Phenomena in Solids: Thermodynamics, Kinetics and Chemistry” covers topics related to microstructure evolution, segregation/adsorption phenomena and interface interactions with other materials defects.« less