Science.gov

Sample records for atmospheric pressure microplasma

  1. Microplasma jet at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2006-11-27

    A nitrogen microplasma jet operated at atmospheric pressure was developed for treating thermally sensitive materials. For example, the plasma sources in treatment of vulnerable biological materials must operate near the room temperature at the atmospheric pressure, without any risk of arcing or electrical shock. The microplasma jet device operated by an electrical power less than 10 W exhibited a long plasma jet of about 6.5 cm with temperature near 300 K, not causing any harm to human skin. Optical emission measured at the wide range of 280-800 nm indicated various reactive species produced by the plasma jet.

  2. Special issue: diagnostics of atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  3. [Characterization of an atmospheric pressure DC microplasma jet].

    PubMed

    Zheng, Pei-Chao; Wang, Hong-Mei; Li, Jian-Quan; Han, Hai-Yan; Xu, Guo-Hua; Shen, Cheng-Yin; Chu, Yan-Nan

    2009-02-01

    In the present work, a simply designed and easy made micrometer plasma jet device operating under atmospheric pressure was characterized. The microplasma jet operates in many kinds of working gas at atmospheric pressure, such as Ar, He, N2 etc, and is powered by a direct current power source. It can generate high current density glow discharge. In order to identify various excited species generated by the direct current microplasma jet device, the optical emission spectra of the jet with argon or nitrogen as working gas were studied. Based on the optical emission spectroscopy analysis of argon microplasma jet, the electron excitation temperature was determined to be about 3 000 K by the intensity ratio of two spectral lines. It is much lower than the electron excitation temperature of atmospheric pressure plasma torch, and hints that the atmospheric pressure direct current microplasma jet is cold compared with the atmospheric pressure plasma torch. The emission spectra of the N2 second positive band system were used to determine the vibrational temperature of the atmospheric pressure direct current microplasma jet. The experimental result shows that the molecular vibrational temperature of N2 is about 2 500 K. The electron density of the microplasma jet is about 10(13) cm(-3), which can be estimated from the electrical parameters of the discharge in the microplasma jet. A simple example of application of the microplasma jet is given. General print paper surface was modified with the microplasma jet and afterwards a droplet test was carried out. It was shown that the microplasma jet is more efficient in changing the hydrophilicity of general print paper.

  4. Microplasma deposition of challenging thin films at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hopwood, Jeffrey; Thejaswini, H. C.; Plasma Engineering Laboratory Team

    2015-09-01

    Non-equilibrium microplasmas produce fluxes of ions and excited species to a surface while maintaining the surface near room temperature. At atmospheric pressure, however, it is very difficult to accelerate the highly collisional ions. While many applications do not benefit from energetic interactions between plasma and surface, conventional plasma deposition of thin films often requires either ion bombardment or substrate heating. For example, diamondlike carbon (DLC) is known to require ~ 100 eV ion bombardment and transparent conducting oxides (TCO) typically require substrate temperatures on the order of 400-500 K. A microwave-induced microplasma is used to dissociate dilute precursor molecules within flowing helium. The precursor and plasma species result in rapid deposition of thin films (>1 μm/min). This plasma produces a steady-state ion flux of 6×1017 cm-2s-1, which is more than two orders of magnitude greater than a low pressure capacitively coupled plasma. Likewise, the metastable density is roughly two orders greater. These and other microplasma diagnostics are correlated with the measured film properties of microplasma-deposited DLC and TCO. This study shows that high ion flux, even at low energy (~ 1 eV), can provide the needed surface interactions to produce these materials at room temperature.

  5. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    SciTech Connect

    Park, Sung-Jin; Eden, James Gary

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  6. Measurement of atmospheric pressure microplasma jet with Langmuir probes

    SciTech Connect

    Xu, Kunning G. Doyle, Steven J.

    2016-09-15

    A radio frequency argon microplasma jet at atmospheric-pressure is characterized using Langmuir probes. While optical methods are the typical diagnostic for these small scale plasmas, the simplicity and low cost of Langmuir probes makes them an attractive option. The plasma density and electron temperature are measured using existing high-pressure Langmuir probe theories developed for flames and arcs. The density and temperature vary from 1 × 10{sup 16} to 1 × 10{sup 19} m{sup −3} and 2.3 to 4.4 eV, respectively, depending on the operating condition. The density decreases while the electron temperature increases with axial distance from the jet exit. The applicability of the probe theories as well as the effect of collisionality and jet mixing is discussed.

  7. Synthesis of silicon nanocones using rf microplasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shirai, H.; Kobayashi, T.; Hasegawa, Y.

    2005-10-01

    We report the synthesis of silicon nanocones using the rf microplasma discharge at atmospheric pressure. The products formed underneath the tube electrode on Fe-coated crystalline silicon were constituted mainly of silicon and silicon oxide despite the use of a methane-argon mixture. Carbon nanotubes and silicon nanowires were also formed around the silicon nanocones. The number density and average size of silicon nanocones increased with the plasma exposure time accompanied by the enlargement of their surface distribution. The growth mechanism of silicon nanocones is discussed in terms of the catalytic growth via diffusion of silicon with nanocrystalline Si particle through FeSix nanoclusters, and enhanced Si oxidation by the plasma heating.

  8. Atmospheric-pressure air microplasma jets in aqueous media for the inactivation of Pseudomonas fluorescens cells

    SciTech Connect

    Zhang, Xianhui; Yang, Si-ze; Liu, Dongping; Song, Ying; Sun, Yue

    2013-05-15

    The hollow fiber-based cold air microplasma jet array running at atmospheric pressure has been designed to inactivate Pseudomonas fluorescens (P. fluorescens) cells in vitro in aqueous media. The influences of electrode configurations, air flow rate, and applied voltage on the discharge characteristics of the single microplasma jet operating in aqueous media are presented, and the bactericidal efficiency of the hollow fibers-based and large-volume microplasma jet array is reported. Optical emission spectroscopy is utilized to identify excited species during the antibacterial testing of plasma in solutions. These well-aligned and rather stable air microplasma jets containing a variety of short-lived species, such as OH and O radicals and charged particles, are in direct contact with aqueous media and are very effective in killing P. fluorescens cells in aqueous media. This design shows its potential application for atmospheric pressure air plasma inactivation of bacteria cells in aqueous media.

  9. Non-equilibrium atmospheric pressure microplasma jet: An approach to endoscopic therapies

    SciTech Connect

    Zuo, Xiao; Wei, Yu; Wei Chen, Long; Dong Meng, Yue; Collaboration: Plasma Medicine Team

    2013-08-15

    Atmospheric pressure microplasma jet generated in a long hollow core optical fiber is studied to verify the potential feasibility of endoscopic therapies. Thermal damage and electric shock to the human body were suppressed by two technical methods, i.e., the high-voltage resistant flexible tube wrapped on the optical fiber and a power resistor of 100 kΩ connected between the power supply and the copper foil electrode. Optical emission spectra analysis indicated that many kinds of active radicals like excited atomic O and OH, were generated in the microplasma jet. In addition, the applications of the microplasma jet on sterilization and lung cancer cell apoptosis were presented. After 5 min of exposures to the microplasma jet, the cell viability and the bacillus subtilis replication decreased to about 3% and zero, respectively. More investigations are needed to improve the plasma-aided endoscopic therapies.

  10. Non-equilibrium atmospheric pressure microplasma jet: An approach to endoscopic therapies

    NASA Astrophysics Data System (ADS)

    Zuo, Xiao; Wei, Yu; Wei Chen, Long; Dong Meng, Yue; Plasma Medicine Team

    2013-08-01

    Atmospheric pressure microplasma jet generated in a long hollow core optical fiber is studied to verify the potential feasibility of endoscopic therapies. Thermal damage and electric shock to the human body were suppressed by two technical methods, i.e., the high-voltage resistant flexible tube wrapped on the optical fiber and a power resistor of 100 kΩ connected between the power supply and the copper foil electrode. Optical emission spectra analysis indicated that many kinds of active radicals like excited atomic O and OH, were generated in the microplasma jet. In addition, the applications of the microplasma jet on sterilization and lung cancer cell apoptosis were presented. After 5 min of exposures to the microplasma jet, the cell viability and the bacillus subtilis replication decreased to about 3% and zero, respectively. More investigations are needed to improve the plasma-aided endoscopic therapies.

  11. Atmospheric pressure low-power microwave microplasma source for deactivation of microorganisms

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Dors, Mirosław; Jasiński, Mariusz; Hrycak, Bartosz; Czylkowski, Dariusz

    2013-02-01

    This work was aimed at experimental investigations of deactivation of different types of microorganisms by using atmospheric pressure low-temperature microwave microplasma source (MmPS). The MmPS was operated at standard microwave frequency of 2.45 GHz. Its main advantages are simple and cheap construction, portability and possibility of penetrating into small cavities. The microplasma deactivation concerned two types of bacteria (Escherichia coli, Bacillus subtilis) and one fungus (Aspergillus niger). The quality as well as quantity tests were performed. The influence of the microorganism type, oxygen concentration, absorbed microwave power, microplasma treatment time and MmPS distance from the treated sample on the microorganism deactivation efficiency was investigated. All experiments were performed for Ar microplasma and Ar/O2 microplasma with up to 3% of O2. Absorbed microwave power was up to 50 W. The Ar flow rate was up to 10 L/min. The sample treatment time was up to 10 s. Contribution to the Topical Issue "13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII)", Edited by Nicolas Gherardi, Henryca Danuta Stryczewska and Yvan Ségui.

  12. Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile

    SciTech Connect

    Yuan Chengxun; Zhou Zhongxiang; Zhang, Jingwen W.; Sun Hongguo; Wang He; Du Yanwei; Xiang Xiaoli

    2011-03-15

    Propagation properties of terahertz (THz) waves in a bounded atmospheric-pressure microplasma (AMP) are analyzed in this study. A modified Epstein profile model is used to simulate the electron density distribution caused by the plasma sheaths. By introducing the dielectric constant of a Drude-Lorentz model and using the method of dividing the plasma into a series of subslabs with uniform electron density, the coefficients of power reflection, transmission, and absorption are derived for a bounded microplasma structure. The effects of size of microplasma, electron density profile, and collision frequency on the propagation of THz waves are analyzed numerically. The results indicate that the propagation of THz waves in AMPs depend greatly on the above three parameters. It is demonstrated that the THz wave can play an important role in AMPs diagnostics; meanwhile, the AMP can be used as a novel potential tool to control THz wave propagation.

  13. Optical emission spectroscopy of nanosecond repetitively pulsed microplasmas generated in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Moreau, Eric; Benard, Nicolas; Pai, David

    2015-09-01

    Nanosecond repetitively pulsed (NRP) microplasmas are generated in room temperature air at atmospheric pressure, in order to investigate the enhanced control of discharge properties via the combined effects of spatial confinement and nanosecond repetitive pulsing. Discharges were generated using high-voltage pulses of 15-ns duration applied to a tungsten pin-to-pin reactor, with inter-electrode gap distances (d) from 2 mm down to 0.2 mm. Optical emission spectroscopy and electrical characterization performed on the discharge indicate that heat transfer and plasma chemistry are influenced by the microplasma geometry. Ultrafast gas heating is observed upon deducing the rotational temperature of N2 from the measured emission spectrum of the N2 (C -->B) (0, 2) and (1, 3) transition bands, but use of the microplasma geometry (d = 0.2 mm) results in lower gas temperatures than in larger discharge gaps (d = 2 mm), including at high pulse repetition frequency (30 kHz) where substantial steady-state gas heating can occur. The measured Stark broadening of the Hα transition is significantly greater than for previously studied NRP discharges in air at atmospheric pressure, indicating that the maximum electron number density may be correspondingly much greater, up to 1018 cm-3. Furthermore, for NRP microplasmas, the intensities of emission from excited atomic ions (O+ and N+) are much higher than those of excited neutral atoms (O and N), in contrast to NRP discharges generated in larger discharge gaps.

  14. Atmospheric pressure microplasmas in ZnO nanoforests under high voltage stress

    NASA Astrophysics Data System (ADS)

    Noor, Nafisa; Manthina, Venkata; Cil, Kadir; Adnane, Lhacene; Agrios, Alexander G.; Gokirmak, Ali; Silva, Helena

    2015-09-01

    Atmospheric pressure ZnO microplasmas have been generated by high amplitude single pulses and DC voltages applied using micrometer-separated probes on ZnO nanoforests. The high voltage stress triggers plasma breakdown and breakdown in the surrounding air followed by sublimation of ZnO resulting in strong blue and white light emission with sharp spectral lines and non-linear current-voltage characteristics. The nanoforests are made of ZnO nanorods (NRs) grown on fluorine doped tin oxide (FTO) glass, poly-crystalline silicon and bulk p-type silicon substrates. The characteristics of the microplasmas depend strongly on the substrate and voltage parameters. Plasmas can be obtained with pulse durations as short as ˜1 μs for FTO glass substrate and ˜100 ms for the silicon substrates. Besides enabling plasma generation with shorter pulses, NRs on FTO glass substrate also lead to better tunability of the operating gas temperature. Hot and cold ZnO microplasmas have been observed with these NRs on FTO glass substrate. Sputtering of nanomaterials during plasma generation in the regions surrounding the test area has also been noticed and result in interesting ZnO nanostructures (`nano-flowers' and `nano-cauliflowers'). A practical way of generating atmospheric pressure ZnO microplasmas may lead to various lighting, biomedical and material processing applications.

  15. White light emission from silicon oxycarbide films prepared by using atmospheric pressure microplasma jet

    SciTech Connect

    Ding Yi; Shirai, Hajime

    2009-02-15

    An atmospheric pressure microplasma jet was employed as a deposition tool to fabricate silicon oxycarbide films from tetraethoxysilane-argon (Ar) mixture gas at room temperature. Resultant films exhibit intense visible emission under a 325 nm excitation which appears white to naked eyes in the range from {approx}1.75 to {approx}3.5 eV at room temperature. The origin of photoluminescence is attributed to the electron-hole pair recombination through neutral oxygen vacancies (NOVs) in the film. The density of NOV defects was found in the range from 3.48x10{sup 15} to 2.23x10{sup 16} cm{sup -3}. The photoluminescence quantum efficiencies were estimated to be 1.48%-4.15%. Present experiment results demonstrate that the silicon oxycarbide films prepared by using atmospheric pressure microplasma jet would be a competitive candidate for the development of white light emission devices.

  16. Simulation of atmospheric pressure microplasma in Ar on the basis of heat transfer

    NASA Astrophysics Data System (ADS)

    Yamasaki, Masanori; Yagisawa, Takashi; Tatsumi, Tetsuya; Makabe, Toshiaki

    2011-10-01

    In a decade, atmospheric pressure microplasmas have been applied to wide range of fields based on the characteristics of high plasma density. The underlying mechanism for sustaining a stable glow discharge, however, is not well understood. In this study, the microplasma characteristics at atmospheric pressure are numerically investigated, particularly focusing on a heat transfer in the whole system. We consider a capacitively coupled plasma with the characteristic size of several hundred micrometers, driven by radio frequency (13.56 MHz) in a cylindrical reactor under atmospheric pressure of pure Ar. A plasma fluid model is coupled with a neutral gas dynamics model including the temperature and flow in gas phase. A wall heating caused by energetic ions and metastables coming from the plasma is also incorporated in the model. Under a constant gas pressure, the local depletion of a neutral gas density occurs due to a gas heating, simply shown by ideal gas law. The influence of the local gas density on the structure of the microplasma will be mainly discussed in a periodic steady state.

  17. Radial Measurements of Gas Discharge Parameters of Atmospheric Pressure Microplasma

    NASA Astrophysics Data System (ADS)

    Caetano, R.; Hoyer, Y. D.; Barbosa, I. M.; Grigorov, K. G.; Sismanoglu, B. N.

    2013-07-01

    In this work Abel inversion technique was used for radial measurements of the microplasma in Ar-2%H2 flow at open atmosphere. The gas discharge parameters were investigated using spatially resolved high resolution optical emission spectroscopy (OES) to allow acquisition of OH (A 2Σ+, ν = 0 →X 2Π, ν‧ = 0) rotational bands at 306.357 nm, Ar I 603.213 nm line and N2(C3∏u, ν = 0 →B3∏g, ν‧ = 0) second positive system with the band head at 337.13 nm. The nonthermal plasma was generated between microhollow anode ( 500 μm inner diameter) and a cathode copper foil, fed by direct current source for a current ranging from 20 mA to 100 mA (Townsend discharge from 20 mA to 30 mA, normal glow discharge from 30 mA to 80 mA at 210 V and abnormal discharge beyond 90 mA). The 1.5 mm length cylindrical-shape plasma has an outspread bright disk (negative glow region) near the cathode surface. Besides the gas temperature, the excitation temperature was measured radially for a current ranging from 20 mA to 100 mA, either from Boltzmann-plot of Ar I 4p - 4s and 5p - 4s transitions of excited argon or from Cu I two lines method of excited cuprum atoms released from the cathode surface. The measurements showed a nearly bell-shaped distribution of these temperatures, peaked at 120 μm from the center with the minimum at the plasma border. The average excitation temperature was about 8000 K (maximum 10,000 K) and the average rotational temperature was about 650 K (maximum 800 K) from 20 K to 100 K. For the N2 second positive system with Δν = -2 it was estimated the vibrational temperature for the bright disk (1500 K to 5000 K). Hβ line Stark broadening was employed to define the electron number density of the negative glow (1015cm-3).

  18. Surface diffuse discharge mechanism of well-aligned atmospheric pressure microplasma arrays

    NASA Astrophysics Data System (ADS)

    Ren-Wu, Zhou; Ru-Sen, Zhou; Jin-Xing, Zhuang; Jiang-Wei, Li; Mao-Dong, Chen; Xian-Hui, Zhang; Dong-Ping, Liu; Kostya (Ken, Ostrikov; Si-Ze, Yang

    2016-04-01

    A stable and homogeneous well-aligned air microplasma device for application at atmospheric pressure is designed and its electrical and optical characteristics are investigated. Current-voltage measurements and intensified charge coupled device (ICCD) images show that the well-aligned air microplasma device is able to generate a large-area and homogeneous discharge at the applied voltages ranging from 12 kV to 14 kV, with a repetition frequency of 5 kHz, which is attributed to the diffusion effect of plasma on dielectric surface. Moreover, this well-aligned microplasma device may result in the uniform and large-area surface modification of heat-sensitive PET polymers without damage, such as optimization in hydrophobicity and biocompatibility. In the biomedical field, the utility of this well-aligned microplasma device is further testified. It proves to be very efficient for the large-area and uniform inactivation of E. coli cells with a density of 103/cm2 on LB agar plate culture medium, and inactivation efficiency can reach up to 99% for 2-min treatment. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313005), and the Fund from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  19. Stabilization of the ionization overheating thermal instability in atmospheric pressure microplasmas

    SciTech Connect

    Staack, D.; Farouk, B.; Gutsol, A.; Fridman, A.

    2009-07-01

    Stable direct current atmospheric pressure plasmas can regularly be generated in air using microplasma systems, and rapid cooling due to the small size is typically suggested as the thermally stabilizing mechanism. However, temperatures of the stable discharges are significantly higher than ambient, and stable operation is not easily achieved in all gases at similar sizes. Revisiting a traditional analysis of the thermal instability, we find that the inclusion of the simple ballasted external circuit in the analysis leads to additional stabilizing mechanisms. This stabilization occurs in microplasmas due to the characteristic times of the external circuit and the instability being comparable, which allows the electric field to change during the time frame of the instability. Experimentally this is implemented by reducing the stray capacitance of the external circuit. This stabilizing mechanism is verified in several gases and its application in a plasma enhanced chemical vapor deposition system leads to a more uniform film deposition.

  20. Controlled microdroplet transport in an atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Maguire, P. D.; Mahony, C. M. O.; Kelsey, C. P.; Bingham, A. J.; Montgomery, E. P.; Bennet, E. D.; Potts, H. E.; Rutherford, D. C. E.; McDowell, D. A.; Diver, D. A.; Mariotti, D.

    2015-06-01

    We report the controlled injection of near-isolated micron-sized liquid droplets into a low temperature He-Ne steady-state rf plasma at atmospheric pressure. The H2O droplet stream is constrained within a 2 mm diameter quartz tube. Imaging at the tube exit indicates a log-normal droplet size distribution with an initial count mean diameter of 15 μm falling to 13 μm with plasma exposure. The radial velocity profile is approximately parabolic indicating near laminar flow conditions with the majority of droplets travelling at >75% of the local gas speed and having a plasma transit time of <100 μs. The maximum gas temperature, determined from nitrogen spectral lines, was below 400 K and the observed droplet size reduction implies additional factors beyond standard evaporation, including charge and surface chemistry effects. The demonstration of controlled microdroplet streams opens up possibilities for gas-phase microreactors and remote delivery of active species for plasma medicine.

  1. Uniform dose atmospheric pressure microplasma exposure of individual bacterial cells

    NASA Astrophysics Data System (ADS)

    Rutherford, David; Mahony, Charles; Spence, Sarah; Perez-Martin, Fatima; Kelsey, Colin; Hamilton, Neil; Diver, Declan; Bennet, Euan; Potts, Hugh; Mariotti, Davide; McDowell, David; Maguire, Paul

    2015-09-01

    Plasma - bacteria interactions have been studied for some time with a view to using plasma exposure for wound healing, sterilization and decontamination. While high efficacy has been demonstrated, important fundamental mechanisms are not understood and may be critical for ultimate acceptance. The dose variation across the exposed population and the impact of non-lethal exposure on subsequent bacterial growth are important issues. We demonstrate that individual bacterial cells can remain viable after exposure to a uniform plasma dose. Each bacteria cell (E coli) is delivered to the atmospheric pressure plasma in an aerosolised droplet (d ~ 10 micron). The estimated plasma density is 1E13 - 1E14 cm-3, gas temperature <400 K, and exposure times vary between 0.04 and 0.1ms. Droplet evaporation in flight is ~2 micron and plasma - cell interactions are mediated by the surrounding liquid (Ringers solution) where plasma-induced droplet surface chemistry and charging is known to occur. We report the cell viability and recovery dynamics of individual exposed cells as well as impact on DNA and membrane components with reference to measured plasma parameters. This research was funded by EPSRC (Grants: EP/K006088/1 & EP/K006142/1).

  2. Inactivation of Escherichia coli Cells in Aqueous Solution by Atmospheric-Pressure N2, He, Air, and O2 Microplasmas

    PubMed Central

    Zhou, Renwu; Zhang, Xianhui; Bi, Zhenhua; Zong, Zichao; Niu, Jinhai; Song, Ying; Yang, Size

    2015-01-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to inactivate Escherichia coli cells suspended in aqueous solution. Measurements show that the efficiency of inactivation of E. coli cells is strongly dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2 and He microplasma arrays, air and O2 microplasma arrays may be utilized to more efficiently kill E. coli cells in aqueous solution. The efficiencies of inactivation of E. coli cells in water can be well described by using the chemical reaction rate model, where reactive oxygen species play a crucial role in the inactivation process. Analysis indicates that plasma-generated reactive species can react with E. coli cells in water by direct or indirect interactions. PMID:26025895

  3. Inactivation of Escherichia coli Cells in Aqueous Solution by Atmospheric-Pressure N2, He, Air, and O2 Microplasmas.

    PubMed

    Zhou, Renwu; Zhang, Xianhui; Bi, Zhenhua; Zong, Zichao; Niu, Jinhai; Song, Ying; Liu, Dongping; Yang, Size

    2015-08-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to inactivate Escherichia coli cells suspended in aqueous solution. Measurements show that the efficiency of inactivation of E. coli cells is strongly dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2 and He microplasma arrays, air and O2 microplasma arrays may be utilized to more efficiently kill E. coli cells in aqueous solution. The efficiencies of inactivation of E. coli cells in water can be well described by using the chemical reaction rate model, where reactive oxygen species play a crucial role in the inactivation process. Analysis indicates that plasma-generated reactive species can react with E. coli cells in water by direct or indirect interactions. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Off-axis chemical crosstalk in an atmospheric pressure microplasma jet array

    NASA Astrophysics Data System (ADS)

    Sun, P. P.; Chen, H. L.; Park, S.-J.; Eden, J. G.; Liu, D. X.; Kong, M. G.

    2015-10-01

    Developing arrays of parallel microplasma jets is an attractive route to scaling the area available for the treatment of surfaces with low temperature plasma. Increasing the packing density of the arrays may lead to electrical and gas kinetic jet-jet interactions, but previous work has focused almost exclusively on electrostatic coupling between the jets. Chemical interactions (‘crosstalk’) have received considerably less attention. We report here the results of an investigation of chemical crosstalk in 4  ×  4 arrays of microplasma jets, produced in flowing helium at atmospheric pressure. Oxidation damage to an Escherichia coli lawn serves as a diagnostic of the spatial distribution of molecular radicals and other reactive plasma species, produced at the plasma jet/ambient background interface or between the jets, and incident on the surface. Spatial maps of bacterial inactivation by the microplasma jet array for 20 s show the destruction of E. coli at distances as large as 2.7 jet diameter from the nearest plasma perimeter, compared to typically less than 0.5 jet diameter in the single jet case. Extending to 30 s of plasma exposure leads to destruction of the entire bacterial sample. This ‘action at a distance’ effect, the production of long-lived species such as O, O2(a1Δg) and O3 that are responsible for bacterial deactivation, peaks along a line bisecting columns and rows of plasma jets. The data illustrate the synergistic effect of adjacent jets on off-axis formation of reactive species, and show that the chemical and biological impact of an array cannot be inferred from the plasma chemistry of a single jet.

  5. Plasma diagnostics and modeling of direct current microplasma discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Wang, Qiang

    High pressure (100s of torr) microplasma (length scale 100s of micrometer) non-equilibrium discharges have potential applications as chemical microreactors, sensors, microelectromechanical systems (MEMS), and excimer radiation sources. Experimental and theoretical studies of these microplasmas can provide critical information on fundamental discharge characteristics, and help extend the window of stable discharge operation. Spatially resolved measurements (resolution ˜ 6 mum) were taken across a 200 mum slot-type microdischarge in atmospheric pressure helium or argon. Small amounts of actinometer gases were added to the flow for optical emission spectroscopy measurements. Gas temperature profiles were determined from N2 emission rotational spectroscopy. Stark splitting of the hydrogen Balmer-beta (Hbeta ) line was used to investigate the electric field distribution in the cathode sheath region. Electron densities were evaluated from the analysis of the spectral line broadenings of Hbeta emission. The measured gas temperature was in the range of 350--650 K in He, and 600--1200 K in Ar, both peaking near the cathode and increasing with power. The electron density in the bulk plasma was in the range (3-7)x1013 cm -3 in He, and (1-4)x1014 cm-3 in Ar. The measured electric field in He peaked at the cathode and decayed to small values over a distance of ˜50 mum (sheath edge) from the cathode. The experimental data were also used to validate a self-consistent one-dimensional plasma model. By a combination of measurements and simulation it was found that the dominant gas heating mechanism in DC microplasmas was ion Joule heating. Simulation results also predicted the existence of electric field reversals in the negative glow under operating conditions that favor a high electron diffusion flux emanating from the cathode sheath. The electric field adjusted to satisfy continuity of the total current. Also, the electric field in the anode layer was self adjusted to be

  6. Characterization and stabilization of atmospheric pressure DC microplasmas and their application to thin film deposition

    NASA Astrophysics Data System (ADS)

    Staack, David Alexander

    A comprehensive study was carried out to examine the feasibility of depositing thin films using atmospheric pressure DC and RF microplasma discharges. Atmospheric pressure plasmas for material processing are desirable because of the lower costs, higher throughput, continuous processing, and potentially novel applications obtainable by not using vacuum systems. However, several major concerns exist because of the higher pressures. These are related to: (1) discharge stability, (2) non-thermal operation, (3) non-uniformities, and (4) particle formation. These concerns were investigated using DC and RF microplasmas for atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of thin films. The DC discharges were fundamentally characterized in Air, helium, nitrogen, argon, hydrogen, methane and mixtures thereof by: (1) voltage-current measurements, (2) current density measurements, (3) microscopic visualization and manipulation of the discharges, and (4) extensive spectroscopic measurements. Measurements were made for breakdown, transitional and stable regimes in current ranges from 0 mA to 40 mA, and discharge gaps sizes from 20 mum to 10 mm. The main focus of the optical emission spectroscopy (OES) was the measurements of rotational and vibrational temperature measurement made by the fitting of experimental data to spectral models of the N2 2nd positive system (N2 C3piu→B3pi g), though the N+2 1st negative system, the NO beta, gamma, delta, and epsilon systems, and the atomic emissions lines were also used for additional temperature measurements, species identification, and measurements of relative concentrations. The structure, electric field, current density and voltage-current measurements indicated that the DC microplasmas operate as density scaled version of the low-pressure normal glow discharge regime with notable exceptions. Spectroscopic measurements show the gas temperatures to vary from ambient to 2000K depending on conditions and to be

  7. [Investigation on the electron density of a micro-plasma jet operated at atmospheric pressure].

    PubMed

    Li, Xue-chen; Zhao, Na; Liu, Wei-yuan; Liu, Zhi-qiang

    2010-07-01

    In the present paper, a micro-hollow cathode discharge setup was used to generate micro-plasma jet in flowing mixture of Ar and N2 at atmospheric pressure. The characteristics of the micro-plasma jet were investigated by means of optical method and electrical one. It has been found that breakdown occurs in the gas between the two electrodes when the input power of electric source is increased to a certain value. Plasma appears along the gas flow direction when the mixed gas flows from the aperture of the micro-hollow cathode, and the length of plasma reaches 4 mm. The discharge current is quasi-continuous, and the duration of discharge pulse is about 0.1 micros. Electron density was studied by using Einstein equation and Stark broadening of spectral lines from the emission spectrum respectively. It was found that the results of electron density calculated by the two methods are consistent with the order of 10(15) x cm(-3). It was also found that the electron density is almost independent of power. A qualitative explanation to the phenomenon is given based on the gas discharge theory.

  8. Probe measurements of electron energy spectrum in Helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.; Hensley, A. L.; Tolson, B. A.

    2016-09-01

    It is experimentally demonstrated that a wall probe may be a useful instrument for interpretation of electron energy spectrum in a micro-plasma with a nonlocal electron distribution function at atmospheric pressure. Two micro-plasma devices were fabricated with three layers of molybdenum metal foils with thickness of 0.1 mm separated by two sheets of mica insulation with thickness of 0.11 mm. In one device a hole with the diameter of 0.2 mm formed a cylindrical discharge cavity that passed through the entire five layers. In the second device the hole has the diameter of 0.065 mm. In both devices the inner molybdenum layer formed a wall probe, while the outer layers of molybdenum served as the hollow cathode and anode. The discharge was open into air with flow of helium gas. It is found that the wall probe I-V trace is sensitive to the presence of helium metastable atoms. The first derivative of the probe current with respect to the probe potential shows peaks revealing fast electrons at specific energies arising due to plasma chemical reactions. The devices may be applicable for developing analytical sensors for extreme environments, including high radiation and vibration levels and high temperatures. This work was performed while VID held a NRC Research Associateship Award at AFRL.

  9. Effect of external floating electrode for enhancing efficiency of generating an atmospheric pressure inductively coupled microplasma

    NASA Astrophysics Data System (ADS)

    Tukasaki, Katsuki; Kumagai, Shinya; Sasaki, Minoru; Toyota Technological Institute Team

    2015-09-01

    To make a plasma source which can generate a microplasma at low power without using an ignitor (ex. high-voltage power supply), we have used an electrically floating electrode inside a glass tube surrounded by an antenna coil of inductive coupling. Helium gas was fed into the glass tube. When VHF power was supplied to the antenna coil, the floating electrode reached electrically high potential and an atmospheric pressure inductively coupled microplasma was generated. The ignition power depended on the length of the floating electrode further. The longer the length was, the less ignition power was. To make the plasma source compact, the floating electrode was moved outside the glass tube (O.D. 1.5mm, I.D. 1mm) while only a part of floating electrode (Ni wire, 10mm, ϕ 0.3mm) was remained inside the glass tube. Both the cable and Ni wire was magnetically connected to each other through the wall of glass tube. With changing the cable length, ignition power was measured. The ignition power varied with the unit of half wavelength of the VHF. The wavelength resonance effect decreased the ignition power. This study was supported by MEXT program for Forming Strategic Research Infrastructure (S1101028) Japan.

  10. Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode

    NASA Astrophysics Data System (ADS)

    Park, Hye Sun; Kim, Sun Ja; Joh, H. M.; Chung, T. H.; Bae, S. H.; Leem, S. H.

    2010-03-01

    A microplasma jet with a capillary electrode working at atmospheric pressure is developed to create nonthermal plasma. This jet can be operated at an excitation frequency either in several tens of kilohertz ac range (or pulsed voltage with a repetition rate of kilohertz range) or in radio-frequency range. The working gas, helium or argon, and the additive gas, oxygen, are fed into the plasma jet. The discharge has been characterized by optical emission spectroscopy. The electrical property of the discharge has been studied by means of voltage and current probes. The dynamic nature of the plume is investigated by using intensified charged coupled device camera. The electron temperature is estimated from the modified Boltzmann plot method utilizing the Ar 4p→4s transitions. The plume temperature is determined by using the fitting the fine structure of the emission bands of OH molecules and by utilizing the line shape of the transition. They are compared with the results obtained by optical fiber thermometer. The characteristics of plasma jet are studied by employing different excitation mode and by adjusting the gas flow rates, the applied voltage, and the amount of additive O2 flow. The characteristic differences between the Ar plasma jet and the He plasma jet are compared. The effects of the additive O2 gas are investigated. The plasma bullet velocity is found to increase with the applied voltage but to decrease with the duty cycle. Also the preliminary results of microplasma effects on the human breast cancer cells are presented.

  11. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas.

    PubMed

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M; Orlando, Thomas M

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation. Graphical Abstract ᅟ.

  12. An atmospheric-pressure, high-aspect-ratio, cold micro-plasma

    PubMed Central

    Lu, X.; Wu, S.; Gou, J.; Pan, Y.

    2014-01-01

    An atmospheric pressure nonequilibrium Ar micro-plasma generated inside a micro-tube with plasma radius of 3 μm and length of 2.7 cm is reported. The electron density of the plasma plume estimated from the broadening of the Ar emission line reaches as high as 3 × 1016 cm−3. The electron temperature obtained from CR model is 1.5 ev while the gas temperature of the plasma estimated from the N2 rotational spectrum is close to room temperature. The sheath thickness of the plasma could be close to the radius of the plasma. The ignition voltages of the plasma increase one order when the radius of the dielectric tube is decreased from 1 mm to 3 μm. PMID:25502006

  13. An atmospheric-pressure, high-aspect-ratio, cold micro-plasma

    NASA Astrophysics Data System (ADS)

    Lu, X.; Wu, S.; Gou, J.; Pan, Y.

    2014-12-01

    An atmospheric pressure nonequilibrium Ar micro-plasma generated inside a micro-tube with plasma radius of 3 μm and length of 2.7 cm is reported. The electron density of the plasma plume estimated from the broadening of the Ar emission line reaches as high as 3 × 1016 cm-3. The electron temperature obtained from CR model is 1.5 ev while the gas temperature of the plasma estimated from the N2 rotational spectrum is close to room temperature. The sheath thickness of the plasma could be close to the radius of the plasma. The ignition voltages of the plasma increase one order when the radius of the dielectric tube is decreased from 1 mm to 3 μm.

  14. Laser-Induced Acoustic Desorption Atmospheric Pressure Photoionization via VUV-Generating Microplasmas

    NASA Astrophysics Data System (ADS)

    Benham, Kevin; Hodyss, Robert; Fernández, Facundo M.; Orlando, Thomas M.

    2016-11-01

    We demonstrate the first application of laser-induced acoustic desorption (LIAD) and atmospheric pressure photoionization (APPI) as a mass spectrometric method for detecting low-polarity organics. This was accomplished using a Lyman-α (10.2 eV) photon generating microhollow cathode discharge (MHCD) microplasma photon source in conjunction with the addition of a gas-phase molecular dopant. This combination provided a soft desorption and a relatively soft ionization technique. Selected compounds analyzed include α-tocopherol, perylene, cholesterol, phenanthrene, phylloquinone, and squalene. Detectable surface concentrations as low as a few pmol per spot sampled were achievable using test molecules. The combination of LIAD and APPI provided a soft desorption and ionization technique that can allow detection of labile, low-polarity, structurally complex molecules over a wide mass range with minimal fragmentation.

  15. Microplasma discharge vacuum ultraviolet photoionization source for atmospheric pressure ionization mass spectrometry.

    PubMed

    Symonds, Joshua M; Gann, Reuben N; Fernández, Facundo M; Orlando, Thomas M

    2014-09-01

    In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H(2) gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.

  16. Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode

    SciTech Connect

    Park, Hye Sun; Kim, Sun Ja; Joh, H. M.; Bae, S. H.; Chung, T. H.; Leem, S. H.

    2010-03-15

    A microplasma jet with a capillary electrode working at atmospheric pressure is developed to create nonthermal plasma. This jet can be operated at an excitation frequency either in several tens of kilohertz ac range (or pulsed voltage with a repetition rate of kilohertz range) or in radio-frequency range. The working gas, helium or argon, and the additive gas, oxygen, are fed into the plasma jet. The discharge has been characterized by optical emission spectroscopy. The electrical property of the discharge has been studied by means of voltage and current probes. The dynamic nature of the plume is investigated by using intensified charged coupled device camera. The electron temperature is estimated from the modified Boltzmann plot method utilizing the Ar 4p->4s transitions. The plume temperature is determined by using the fitting the fine structure of the emission bands of OH molecules and by utilizing the line shape of the transition. They are compared with the results obtained by optical fiber thermometer. The characteristics of plasma jet are studied by employing different excitation mode and by adjusting the gas flow rates, the applied voltage, and the amount of additive O{sub 2} flow. The characteristic differences between the Ar plasma jet and the He plasma jet are compared. The effects of the additive O{sub 2} gas are investigated. The plasma bullet velocity is found to increase with the applied voltage but to decrease with the duty cycle. Also the preliminary results of microplasma effects on the human breast cancer cells are presented.

  17. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  18. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  19. Ion kinetics and self pulsing in DC microplasma discharges at atmospheric and higher pressure

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Farouk, Tanvir I.

    2016-04-01

    Atmospheric pressure microplasma devices have been the subject of considerable interest and research during the last decade. Most of the operation regime of the plasma discharges studied fall in the ‘abnormal’, ‘normal’ and ‘corona’ modes—increasing and a ‘flat’ voltage current characteristics. However, the negative differential resistance regime at atmospheric and high pressures has been less studied and possesses unique characteristics that can be employed for novel applications. In this work, the role of ion kinetics especially associated with trace impurities; on the self pulsing behavior has been investigated. Detailed numerical simulations have been conducted with a validated model for a helium-nitrogen feed gas mixture. Different oscillatory modes were observed where the discharge was found to undergo complete or partial relaxation. Trace amount of nitrogen was found to significantly alter the pulsing characteristics. External parameters influencing these self oscillations are also studied and aspects of the ion kinetics on the oscillatory behavior are discussed.

  20. Metastable densities in rf-driven atmospheric pressure microplasma jets in argon and helium

    NASA Astrophysics Data System (ADS)

    Boeke, Marc; Spiekermeier, Stefan; Winter, Joerg

    2016-09-01

    Rf-driven atmospheric pressure microplasma jets (μ-APPJ) are usually operated in the homogeneous glow mode (α-mode). At higher powers the glow discharge becomes unstable due to thermal instabilities and turns into a constricted γ-like discharge (constricted mode), which can damage the jet due to the significantly increased temperature in this operation mode. To prevent these instabilities, rf-driven μ-APPJs are predominantly operated in helium since it provides a better thermal conductivity than argon. However, since argon is much more cost-effective, it is worthwhile to achieve a stable operation of the μ-APPJ using argon as feed gas. Metastable atoms play an important role in the stability of atmospheric pressure discharges, since they pose an important source of electrons via stepwise ionization and penning ionization. To understand the basic processes that lead to the transition from α- to the constricted mode, helium and argon metastable densities have been determined in the μ-APPJ in different operation modes using tunable diode laser absorption spectroscopy (TDLAS). Supported by DFG within (FOR1123).

  1. Synthesis and surface engineering of nanomaterials by atmospheric-pressure microplasmas

    NASA Astrophysics Data System (ADS)

    McKenna, J.; Patel, J.; Mitra, S.; Soin, N.; Švrček, V.; Maguire, P.; Mariotti, D.

    2011-11-01

    Two different atmospheric pressure microplasma systems are discussed and used for the synthesis and surface engineering of a range of nanomaterials. Specifically a gas-phase approach from vaporized tetramethylsilane has been used to synthesize silicon carbide nanoparticles with diameters below 10 nm. A different microplasma system that interfaces with a liquid solution has then been used for the synthesis of surfactant-free electrically stabilized gold nanoparticles with varying size. A similar microplasma-liquid system has been finally successfully used to tailor surface properties of silicon nanoparticles and to reduce graphene oxide into graphene. The synthesis and surface engineering mechanisms are also discussed.

  2. Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo

    2012-10-01

    Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.

  3. Plasma-polymerized methyl methacrylate via intense and highly energetic atmospheric pressure micro-plasma for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Park, Choon-Sang; Ballato, John; Kim, Sung-O.; Clemson University Team

    2013-09-01

    Poly (methyl methacrylate), PMMA, has been widely used as a biocompatible material in bone cement, dental fillings, and many other bio-related applications. Vacuum plasmas and radio frequency (RF) atmospheric plasmas are the most common methods for depositing plasma-derived thin films and nanoparticles. However, the necessary equipment is difficult to operate and maintain as well as being large and expensive. Here, we report the use of a novel intense and highly energetic atmospheric pressure plasma jet array using direct plasma jet-to-jet coupling effects to deposit high quality plasma-polymerized MMA (PPMMA) for bio-medical applications. The newly proposed atmospheric pressure micro-plasma jet array device can generate the intense plasma mode with a strong plasma emission and high plasma particle energy. PPMMA was successfully deposited on a variety of substrates and characterized by SEM, AFM, and FT-IR. The micro-plasma jet is obtained at a sinusoidal voltage with a peak value of 30 kV and frequency of 35 kHz. Argon gas was employed as the discharge gas for plasma generation and its flow rate was in the range of 2230 sccm, Methyl methacrylate (MMA) monomer was vaporized by means of a glass bubbler which was supplied by argon gas with flow rates in the range of 268 sccm from room temperature to 400°C. The deposited PPMMA thin films were flexible, transparent, thin, and strong on metal substrates.

  4. Electric field measurements in an atmospheric-pressure microplasma jet using Stark polarization emission spectroscopy of helium atom

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Wu, Shuqun; Cheng, Wenxin; Lu, Xinpei

    2017-08-01

    Electric field in an atmospheric-pressure microplasma jet, determined by a non-invasive Stark polarization spectroscopy of He 447.1 nm line, is reported in this work. The microplasma jet was driven by a positive pulsed dc power supply with pulse rising time of 60 ns. First, the electric field strength in the streamer head (Eh) is in the range of 9-17 kV/cm. Second, as the streamer head is shooting out of the tube exit, Eh starts to increase rapidly and then decreases after reaching a maximum of 17 kV/cm, indicating the same tendency of streamer velocity. However, a further analysis reveals that the relationship between the electric field and the streamer velocity is non-linear. Third, although the pulse width plays an important role in the control of the length of plasma plume, it has a minor effect on Eh. Fourth, the electric field strength in the secondary discharge is estimated to be less than 6 kV/cm, which further validates the similarity between the secondary discharge and negative discharge. Finally, over atmospheric-pressure plasmas transferring across the glass tube, the electric field in the head of newborn secondary streamer is about 10 kV/cm.

  5. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; Ken Ostrikov, Kostya

    2016-09-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.

  6. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-01-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma. PMID:27584560

  7. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth

    NASA Astrophysics Data System (ADS)

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-09-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.

  8. Degradation of adhesion molecules of G361 melanoma cells by a non-thermal atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Shon, C. H.; Kim, Y. S.; Kim, S.; Kim, G. C.; Kong, M. G.

    2009-11-01

    Increased expression of integrins and focal adhesion kinase (FAK) is important for the survival, growth and metastasis of melanoma cells. Based on this well-established observation in oncology, we propose to use degradation of integrin and FAK proteins as a potential strategy for melanoma cancer therapy. A low-temperature radio-frequency atmospheric microplasma jet is used to study their effects on the adhesion molecules of G361 melanoma cells. Microplasma treatment is shown to (1) cause significant cell detachment from the bottom of microtiter plates coated with collagen, (2) induce the death of human melanoma cells, (3) inhibit the expression of integrin α2, integrin α4 and FAK on the cell surface and finally (4) change well-stretched actin filaments to a diffuse pattern. These results suggest that cold atmospheric pressure plasmas can strongly inhibit the adhesion of melanoma cells by reducing the activities of adhesion proteins such as integrins and FAK, key biomolecules that are known to be important in malignant transformation and acquisition of metastatic phenotypes.

  9. Atmospheric pressure microplasma assisted growth of silver nanosheets and their inhibitory action against bacteria of clinical interest

    NASA Astrophysics Data System (ADS)

    Iqbal, Tariq; Mukhtar, Masood; Khan, M. A.; Khan, Rashid; Zaman, Rehmat; Mahmood, Hasan; Zaka-ul-Islam, M.

    2016-12-01

    Two-dimensional staggered silver nanosheets were synthesized using a facile atmospheric microplasma electrochemical process at room temperature. It is an environmental friendly technique that does not include toxic reducing agents. In this technique, microplasma directly reduces Ag+ ions into an electrolyte solution. The synthesized silver nanosheets were investigated by scanning electron microscope, x-ray diffraction, ultraviolet-visible spectroscopy and fourier transform infrared spectroscopy. This type of morphology has not yet been reported using a microplasma technique. The antibacterial activity of the as-synthesized nanosheets against Klebsiella pneumoniae, the Staphylococcus strain, Escherichia coli and Acinetobacter was carried out using a disc diffusion method. The results indicated that these sheets show significant antibacterial activity against Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli and Acinetobacter compared with that of the standard antibiotic.

  10. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet

    NASA Astrophysics Data System (ADS)

    Yoshiki, Hiroyuki

    2007-04-01

    Atmospheric-pressure microplasma jets (APμPJs) of Ar and Ar /O2 gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2mm, respectively, with a rf excitation of 13.56MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6W and the corresponding peak-to-peak voltage Vp.p. is about 1.5kV. The APμPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10μm) of a copper winding wire of 90μm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APμPJ irradiation was only 3s at a rf power of 4W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of Ar /O2 APμPJ irradiation with an O2 concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO.

  11. An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays.

    PubMed

    Lee, Ok Joo; Ju, Hyung Woo; Khang, Gilson; Sun, Peter P; Rivera, Jose; Cho, Jin Hoon; Park, Sung-Jin; Eden, J Gary; Park, Chan Hum

    2016-04-01

    In contrast with a thermal plasma surgical instrument based on coagulative and ablative properties, low-temperature (non-thermal) non-equilibrium plasmas are known for novel medicinal effects on exposed tissue while minimizing undesirable tissue damage. In this study we demonstrated that arrays of non-thermal microplasma jet devices fabricated from a transparent polymer can efficiently inactivate fungi (Candida albicans) as well as bacteria (Escherichia coli), both in vitro and in vivo, and that this leads to a significant wound-healing effect. Microplasma jet arrays offer several advantages over conventional single-jet devices, including superior packing density, inherent scalability for larger treatment areas, unprecedented material flexibility in a plasma jet device, and the selective generation of medically relevant reactive species at higher plasma densities. The therapeutic effects of our multi-jet device were verified on second-degree burns in animal rat models. Reduction of the wound area and the histology of the wound after treatment have been investigated, and expression of interleukin (IL)-1α, -6 and -10 was verified to evaluate the healing effects. The consistent effectiveness of non-thermal plasma treatment has been observed especially in decreasing wound size and promoting re-epithelialization through collagen arrangement and the regulation of expression of inflammatory genes.

  12. FAST TRACK COMMUNICATION: Different patterns of high-energy and low-energy electrons in an atmospheric-pressure microplasma generated by a hairpin resonator

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Zhu, Xi-Ming; Pu, Yi-Kang

    2010-02-01

    A newly developed device, a hairpin resonator, is used to generate an atmospheric-pressure microplasma with a 1.8 GHz power supply in argon. The two-dimensional distributions of emission lines in such a microplasma are obtained by a spatially resolved optical system. For the first time, it is found that the distributions of high-energy and low-energy electrons have different patterns. The density distribution of the high-energy electrons (with energy higher than that of argon 2p levels) is obtained from the line intensity, while the density of the low-energy ones (approximately equal to the total electron density) is deduced from the emission line ratios. The difference in distribution between the two groups of electrons is related to the different energy-loss characteristic lengths.

  13. DNA Oxidation by Reactive Oxygen Species Produced by Atmospheric Pressure Microplasmas

    NASA Astrophysics Data System (ADS)

    Sousa, Joao Santos; Girard, Pierre-Marie; Sage, Evelyne; Ravanat, Jean-Luc; Puech, Vincent

    Arrays of microcathode sustained discharges (MCSD's) have been ­developed for the production of high fluxes of singlet delta oxygen (SDO) and ozone (O3) at atmospheric pressure. SDO and O3 densities higher than 1017 and 1016 cm-3, respectively, have been efficiently produced and transported over distances longer than 50 cm. These arrays of MCSD's have been optimized to supply well-quantified and tunable fluxes of either SDO or O3. This plasma source has been found to be very useful for examining the reactivity of these reactive oxygen species with biological components. Preliminary results indicate that both SDO and O3 are able to oxidize DNA, originating great damages in DNA such as single- and double-strand breaks and base oxidation. It has been observed that while all bases of DNA are almost indifferently and quite effectively oxidized by O3, SDO reacts mainly with guanine.

  14. Atmospheric Microplasma Application for Surface Modification of Biomaterials

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Fukunaga, Hodaka; Tatematsu, Shigeki; Blajan, Marius

    2012-11-01

    Atmospheric microplasma has been intensively studied for applications in various fields, since in this technology the generated field is only 1 kV (approx) under atmospheric pressure and a dielectric barrier discharge gap of 10 to 100 µm. A low discharge voltage atmospheric plasma process is an economical and effective solution for various applications such as indoor air control including sterilization, odor removal, and surface treatment, and would be suitable for medical applications in the field of plasma life sciences. In this paper, we present the application of microplasma for the surface treatment of materials used in medical fields. Moreover, a biomaterial composed of L-lactic acid is used in experiments, which can be biodecomposed in the human body after medical operations. The surface modification process was carried out with active species generated between the microplasma electrodes, which were observed by emission spectrometry. Microplasma treatment of a polymer sheet using Ar as the process gas decreased the contact angle of a water droplet at the surface of the polymer from 78.3 to 45.6° in 10 s, indicating improved surface adhesive characteristics.

  15. Investigation and Applications of In-Source Oxidation in Liquid Sampling-Atmospheric Pressure Afterglow Microplasma Ionization (LS-APAG) Source.

    PubMed

    Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu

    2016-12-19

    A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H](+) was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. Graphical Abstract ᅟ.

  16. Investigation and Applications of In-Source Oxidation in Liquid Sampling-Atmospheric Pressure Afterglow Microplasma Ionization (LS-APAG) Source

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu

    2017-06-01

    A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H]+ was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well. [Figure not available: see fulltext.

  17. Investigation and Applications of In-Source Oxidation in Liquid Sampling-Atmospheric Pressure Afterglow Microplasma Ionization (LS-APAG) Source

    NASA Astrophysics Data System (ADS)

    Xie, Xiaobo; Wang, Zhenpeng; Li, Yafeng; Zhan, Lingpeng; Nie, Zongxiu

    2016-12-01

    A liquid sampling-atmospheric pressure afterglow microplasma ionization (LS-APAG) source is presented for the first time, which is embedded with both electrospray ionization (ESI) and atmospheric pressure afterglow microplasma ionization (APAG) techniques. This ion source is capable of analyzing compounds with diverse molecule weights and polarities. An unseparated mixture sample was detected as a proof-of-concept, giving complementary information (both polarities and non-polarities) with the two ionization modes. It should also be noted that molecular mass can be quickly identified by ESI with clean and simple spectra, while the structure can be directly studied using APAG with in-source oxidation. The ionization/oxidation mechanism and applications of the LS-APAG source have been further explored in the analysis of nonpolar alkanes and unsaturated fatty acids/esters. A unique [M + O - 3H]+ was observed in the case of individual alkanes (C5-C19) and complex hydrocarbons mixture under optimized conditions. Moreover, branched alkanes generated significant in-source fragments, which could be further applied to the discrimination of isomeric alkanes. The technique also facilitates facile determination of double bond positions in unsaturated fatty acids/esters due to diagnostic fragments (the acid/ester-containing aldehyde and acid oxidation products) generated by on-line ozonolysis in APAG mode. Finally, some examples of in situ APAG analysis by gas sampling and surface sampling were given as well.

  18. Interactions Between Small Arrays of Atmospheric Pressure Micro-Plasma Jets: Gas Dynamic, Radiation and Electrostatic Interactions

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia

    2013-09-01

    Atmospheric pressure plasma jets are widely used devices for biomedical applications. A typical plasma jet consists of a tube through which noble gas or its mixture with a molecular gas flows. The noble gas creates a channel into the ambient air which is eventually dispersed by interdiffusion with the air. Plasma plumes are formed by the propagation of ionization waves (IWs) through the tubes and then through the noble gas phase channel. The IW typically propagates until the mole fraction of the ambient air in the channel increases above a critical values which requires a larger E/N to propagate the IW. By grouping several jets together to form an array of jets, one can in principle increase the area treated by the plume. If the jets are sufficiently far apart, the IWs and resulting plasma plumes are independent. As the spacing between the jets decreases, the plasma jets begin to mutually interact. In this talk, we discuss results from a computational investigation of small arrays of He/O2 micro-plasma jets propagating into ambient air. The model used in this work, nonPDPSIM, is a plasma hydrodynamics model in which continuity, momentum and energy equations are solved for charged and neutral species with solution of Poisson's equation for the electric potential. Navier-Stokes equations are solved for the gas dynamics and radiation transport is addressed using a propagator method. We found that as the spacing between the jets decreases, the He channels from the individual jets tend to merge. The IWs from each channel also merge into regions having the highest He mole fraction and so lowest E/N to sustain the IW. The proximity of the IWs enable other forms of interaction. If the IWs are of the same polarity, electrostatic forces can warp the paths of the IWs. If in sufficient proximity, the photoionization from one IW can influence its neighbors. The synchronization of the voltage pulses of adjacent IWs can also influence its neighbors. With synchronized pulses

  19. Multiplying probe for accurate power measurements on an RF driven atmospheric pressure plasma jet applied to the COST reference microplasma jet

    NASA Astrophysics Data System (ADS)

    Beijer, P. A. C.; Sobota, A.; van Veldhuizen, E. M.; Kroesen, G. M. W.

    2016-03-01

    In this paper a new multiplying probe for measuring the power dissipated in a miniature capacitively coupled, RF driven, atmospheric pressure plasma jet (μAPPJ—COST Reference Microplasma Jet—COST RMJ) is presented. The approach aims for substantially higher accuracy than provided by traditionally applied methods using bi-directional power meters or commercially available voltage and current probes in conjunction with digitizing oscilloscopes. The probe is placed on a miniature PCB and designed to minimize losses, influence of unknown elements, crosstalk and variations in temperature. The probe is designed to measure powers of the order of magnitude of 0.1-10 W. It is estimated that it measures power with less than 2% deviation from the real value in the tested power range. The design was applied to measure power dissipated in COST-RMJ running in helium with a small addition of oxygen.

  20. Optical and electrical characterization of an atmospheric pressure microplasma jet for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures

    SciTech Connect

    Yanguas-Gil, A.; Focke, K.; Benedikt, J.; Keudell, A. von

    2007-05-15

    A rf microplasma jet working at atmospheric pressure has been characterized for Ar, He, and Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures. The microdischarge has a coaxial configuration, with a gap between the inner and outer electrodes of 250 {mu}m. The main flow runs through the gap of the coaxial structure, while the reactive gases are inserted through a capillary as inner electrode. The discharge is excited using a rf of 13.56 MHz, and rms voltages around 200-250 V and rms currents of 0.4-0.6 A are obtained. Electron densities around 8x10{sup 20} m{sup -3} and gas temperatures lower than 400 K have been measured using optical emission spectroscopy for main flows of 3 slm and inner capillary flows of 160 SCCM. By adjusting the flows, the flow pattern prevents the mixing of the reactive species with the ambient air in the discharge region, so that no traces of air are found even when the microplasma is operated in an open atmosphere. This is shown in Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} plasmas, where no CO and CN species are present and the optical emission spectroscopy spectra are mainly dominated by CH and C{sub 2} bands. The ratio of these two species follows different trends with the amount of precursor for Ar/CH{sub 4} and Ar/C{sub 2}H{sub 2} mixtures, showing the presence of distinct chemistries in each of them. In Ar/C{sub 2}H{sub 2} plasmas, CH{sub x} species are produced mainly by electron impact dissociation of C{sub 2}H{sub 2} molecules, and the CH{sub x}/C{sub 2}H{sub x} ratio is independent of the precursor amount. In Ar/CH{sub 4} mixtures, C{sub 2}H{sub x} species are formed mainly by recombination of CH{sub x} species through three-body reactions, so that the CH{sub x}/C{sub 2}H{sub x} ratio depends on the amount of CH{sub 4} present in the mixture. All these properties make our microplasma design of great interest for applications such as thin film growth or surface treatment.

  1. Microplasmas

    SciTech Connect

    Bollinger, J.J.; Wineland, D.J. )

    1990-01-01

    A microplasma is made by first applying electromagnetic fields to confine the ions to a specified region of space. A technique called laser cooling can then cool the trapped ions to temperatures of less than a hundredth of a kelvin. Because microplasmas can be built up practically one ion at a time, they provide an excellent opportunity to explore mesoscopic systems, that is, collections of ions too small to behave like a familiar, macroscopic system and yet too complex to be identified with the behavior of a single ion. Furthermore, microplasmas can serve as models for the dense plasmas in stellar objects. Like the atoms in liquids, the ions in some cold microplasmas can diffuse through a somewhat ordered state. In other cases, the ions can resemble the atoms in solids, diffusing very slowly through a crystal lattice. Yet the nature of microplasmas is quite different from that of conventional liquids and solids. Whereas common liquids and solids have densities of about 10{sup 23} atoms per cubic centimeter, microplasmas have concentrations of about 10{sup 8} ions per cubic centimeter. Consequently, the average distance that separates ions in a microplasma is about 100,000 times greater than the distance between atoms in common liquids or solids. Furthermore, whereas internal attractive forces between the atoms hold a conventional liquid or solid together, external electric and magnetic fields hold the trapped ion microplasmas together. Indeed, the ions, which all have the same charge, actually repel each other and tend to disperse the microplasma.

  2. Micromachined, planar-geometry, atmospheric-pressure, battery-operated microplasma devices (MPDs) on chips for analysis of microsamples of liquids, solids, or gases by optical-emission spectrometry.

    PubMed

    Karanassios, Vassili; Johnson, Kara; Smith, Andrea T

    2007-08-01

    Because of their desirable characteristics, for example small size, lightness, low power and gas consumption, and potential for portability, miniaturized plasma sources are receiving significant attention in the scientific literature. To take advantage of these characteristics we micromachined and fabricated new, planar-geometry, self-igniting, atmospheric-pressure microplasma devices (MPDs) on chips. These microplasmas required such low power for their operation they could be operated from a re-chargeable battery (of the type used in cordless power-tools). Despite their advantages, most miniaturized plasma sources reported in the literature have not performed well with liquid samples; analysis of powders or solids that can be converted to a powder (and processed and used as slurries) is even more difficult. To address these shortcomings we coupled an electrothermal, mini-in-torch vaporization (mini-ITV) "dry" sample-introduction system to the low-power planar microplasma devices we developed. In this preliminary investigation, absolute detection limits obtained from microsamples of single-element liquid standards and optical emission spectrometry with photomultiplier-tube detection and a spectral bandpass similar to that of portable, commercially available fiber-optic spectrometers were in the low-pg to ng range, for example 2 pg (for K) to 25 ng (for Pb). Mini-ITV also enabled (as far as we are aware, for the first time) measurement of analyte emission from microsamples of powdered solids (as slurries). In addition to the 3% H2 in Ar mixtures, the ac-operated microplasmas were sustained by use of a variety of electrode materials and different plasma-support gases (e.g. Ar, He and 3% H2 in He) thus indicating fabrication versatility and operational flexibility. Such flexibility has the potential to enable microplasmas to be tailored to analytical problems, and this is demonstrated by using a He MPD and chlorine emission measurements (837.594 nm) from gaseous

  3. Preparation of TiO{sub 2} thin films on the inner surface of a quartz tube using atmospheric-pressure microplasma

    SciTech Connect

    Yoshiki, Hiroyuki; Saito, Taku

    2008-05-15

    Titanium dioxide (TiO{sub 2}) thin films were prepared on the inner surface of a quartz tube, with inner and outer diameters of 1 and 3 mm, respectively, using plasma-enhanced chemical vapor deposition with titanium tetraisopropoxide and oxygen (O{sub 2}) as reactants and helium as the carrier gas at atmospheric pressure. A microplasma was generated inside the tube by rf (13.56 MHz) excitation using externally attached parallel-plate electrodes. The characteristics of the deposited films were examined by scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction. A typical as-deposited film had an amorphous structure with a smooth surface and was transparent. With increasing O{sub 2} concentration in the plasma gas phase, the deposited film surface was covered with a large number of TiO{sub 2} nanoparticles. However, the deposited films were a mixture of TiO{sub 2} and amorphous carbon and showed rough surface in the absence of O{sub 2} in the source gas. The effects of the O{sub 2} concentration in the plasma gas on the characteristics of the deposited TiO{sub 2} films are discussed on the basis of the analysis of the gas species generated in the plasma using optical emission spectroscopy.

  4. Nonhomogeneous surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Yang, Bin; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng; Liu, Jingquan

    2016-10-01

    Surface properties of parylene-C film etched by an atmospheric pressure He/O2 micro-plasma jet in ambient air were investigated. The morphologies and chemical compositions of the etched surface were analyzed by optical microscopy, SEM, EDS, XPS and ATR-FTIR. The microscopy and SEM images showed the etched surface was nonhomogeneous with six discernable ring patterns from the center to the outside domain, which were composed of (I) a central region; (II) an effective etching region, where almost all of the parylene-C film was removed by the plasma jet with only a little residual parylene-C being functionalized with carboxyl groups (Cdbnd O, Osbnd Cdbnd O-); (III) an inner etching boundary; (IV) a middle etching region, where the film surface was smooth and partially removed; (V) an outer etching boundary, where the surface was decorated with clusters of debris, and (VI) a pristine parylene-C film region. The analysis of the different morphologies and chemical compositions illustrated the different localized etching process in the distinct regions. Besides, the influence of O2 flow rate on the surface properties of the etched parylene-C film was also investigated. Higher volume of O2 tended to weaken the nonhomogeneous characteristics of the etched surface and improve the etched surface quality.

  5. Localized Etching of a Polyimide Film by an Atmospheric-Pressure Radio Frequency Microplasma Excited by a 100-µm-φ Metal Pipe Electrode

    NASA Astrophysics Data System (ADS)

    Yoshiki, Hiroyuki

    2010-08-01

    Atmospheric-pressure He and Ar microplasmas (µ-plasmas) have been generated by a 14 MHz radio-frequency (RF) discharge using a metal narrow pipe electrode with an outer diameter of 100 µm. The metal pipe acts as both a powered electrode and a gas nozzle. The discharge mode changed from a corona discharge to a glow discharge and finally to a thermal spot arc discharge with decreasing discharge gap between the pipe electrode and the grounded plate as well as with increasing RF power. The Ar glow µ-plasma was applied to the localized etching of a polyimide film with a thickness of 0.025 mm in air ambient. The etched spot showed an isotropic profile having a gradual slope with a full width at half maximum of approximately 170 µm. The etching rate was approximately 3 µm/s at an RF power of 1.5 W. The optical emission spectrum exhibited second-positive N2 molecular bands and atomic oxygen lines (777 and 845 nm) as well as many Ar atomic lines. It appears that the energetic N2 molecules and UV photons radiated from the excitation states of N2 broke C-C and C-H bonds and then O radicals reacted with the hydrocarbon fragments to produce CO2 and H2O. Consequently, isotropic chemical etching was achieved.

  6. Optical and RF electrical characteristics of atmospheric pressure open-air hollow slot microplasmas and application to bacterial inactivation

    NASA Astrophysics Data System (ADS)

    Rahul, R.; Stan, O.; Rahman, A.; Littlefield, E.; Hoshimiya, K.; Yalin, A. P.; Sharma, A.; Pruden, A.; Moore, C. A.; Yu, Z.; Collins, G. J.

    2005-06-01

    We report electrical properties of radio frequency (RF)-driven hollow slot microplasmas operating in open air but with uniform luminous discharges at RF current densities of the order of A cm-2. We employ interelectrode separations of 100-600 µm to achieve this open-air operation but because the linear slot dimension of our electrode designs are of extended length, we can achieve, for example, open-air slot shaped plasmas 30 cm in length. This creates a linear plasma source for wide area plasma driven surface treatment applications. RF voltages at frequencies of 4-60 MHz are applied to an interior electrode to both ignite and sustain the plasma between electrodes. The outer slotted electrode is grounded. Illustrative absolute emission of optical spectra from this source is presented in the region from 100 to 400 nm as well as total oxygen radical fluxes from the source. We present both RF breakdown and sustaining voltage measurements as well as impedance values measured for the microplasmas, which use flowing rare gas in the interelectrode region exiting into open air. The requirement for rare gas flow is necessary to get uniform plasmas of dimensions over 30 cm, but is a practical disadvantage. In one mode of operation we create an out-flowing afterglow plasma plume, which extends 1-3 mm from the grounded open slot allowing for treatment of work pieces placed millimetres away from the grounded electrode. This afterglow configuration also allows for lower gas temperatures impinging on substrates, than the use of active plasmas. Work pieces are not required to be part of any electrical circuit, bringing additional practical advantages. We present a crude lumped parameter equivalent circuit model to analyse the effects of changing RF sheaths with frequency of excitation and applied RF current to better understand the relative roles of sheath and bulk plasma behaviour observed in electrical characteristics. Estimates of the bulk plasma densities are also provided

  7. Characteristics of Nanosecond Pulsed Discharges in Atmospheric Helium Microplasmas

    NASA Astrophysics Data System (ADS)

    Manish, Jugroot

    2016-10-01

    Microplasmas are very interesting due to their unique properties and achievable regimes maintained at atmospheric pressures. Due to the small scales, numerical modeling could contribute to the understanding of underlying phenomena as it provides access to local parameters—and complements experimental global characteristics. A self-consistent formalism, applied to nanosecond pulsed atmospheric non-equilibrium helium plasmas, reveals that several successive discharges can persist as a result of a combined volume and dielectric surface effects. The valuable insights provided by the spatiotemporal simulation results show the critical importance of coupled gas and plasma dynamics—namely gas heating and electric field reversals. supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) — Discovery Grant (No. 342369)

  8. Electron avalanches and diffused {gamma}-mode in radio-frequency capacitively coupled atmospheric-pressure microplasmas

    SciTech Connect

    Liu, D. W.; Iza, F.; Kong, M. G.

    2009-07-20

    Space-, time- and wavelength-resolved optical emission profiles suggest that the helium emission at 706 nm can be used to indicate the presence of high energy electrons and estimate the sheath in helium rf discharges containing small concentration of air impurities. Furthermore, the experimental data supports the theoretical predictions of energetic electron avalanches transiting across the discharge gap in rf microdischarges and the absence of an {alpha}-mode. Nonetheless, microdischarges sustained between bare metal electrodes and operating in the {gamma}-mode can produce diffuse glowlike discharges rather than the typical radially constricted plasmas observed in millimeter-size rf atmospheric-pressure {gamma} discharges.

  9. Reactivity in microplasma operating at medium pressure

    NASA Astrophysics Data System (ADS)

    Aubert, X.; Pipa, A.; Ropcke, J.; Marinov, D. L.; Ionikh, Y.; Rousseau, A.

    2007-10-01

    IR Tunable Diode Laser Absorption Spectroscopy (TDLAS) and UV broad band absorption spectroscopy measurements are used to detect O3, NO and NO2 produced by a microplasma made of a micro-hollow cathode geometry. The gas flows through the microplasma; an additional plasma plume may be ignited on the microplasma anode region using an auxiliary anode. The microplasma may be operated in continuous or self-pulsing mode [1]. The current density in the microplasma is about 3 orders of magnitude higher than in the plume and may reach 1000 A/cm^2 in a self pulsing mode. It is shown that NO and NO2 densities scale as a function of the specific energy (J/l). The effect of the plume ignition is to lower the production of these species. Experimental results are compared with an experimental modeling. [1] A. Rousseau and X. Aubert J. Phys.D : Appl. Phys. 39 (2006) 1619--1622.

  10. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer.

    PubMed

    Hoegg, Edward D; Barinaga, Charles J; Hager, George J; Hart, Garret L; Koppenaal, David W; Marcus, R Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs. Graphical Abstract ᅟ.

  11. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    SciTech Connect

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-04-14

    ABSTRACT In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Due to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for orbitrap analyzers are very well documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LSAPGD microplasma and the inherent IR measurement qualities of orbitrap analyzers. Important to the IR performance, the various operating parameters of the orbitrap sampling interface, HCD dissociation stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1 %RSD can be achieved, with values of 1-3 %RSD observed for low-abundance species. The results suggest that the LSAPGD is a very good candidate for field deployable MS analysis and that the high resolving powers of the orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision isotope ratios.

  12. Preliminary Figures of Merit for Isotope Ratio Measurements: The Liquid Sampling-Atmospheric Pressure Glow Discharge Microplasma Ionization Source Coupled to an Orbitrap Mass Analyzer

    NASA Astrophysics Data System (ADS)

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-08-01

    In order to meet a growing need for fieldable mass spectrometer systems for precise elemental and isotopic analyses, the liquid sampling-atmospheric pressure glow discharge (LS-APGD) has a number of very promising characteristics. One key set of attributes that await validation deals with the performance characteristics relative to isotope ratio precision and accuracy. Owing to its availability and prior experience with this research team, the initial evaluation of isotope ratio (IR) performance was performed on a Thermo Scientific Exactive Orbitrap instrument. While the mass accuracy and resolution performance for Orbitrap analyzers are well-documented, no detailed evaluations of the IR performance have been published. Efforts described here involve two variables: the inherent IR precision and accuracy delivered by the LS-APGD microplasma and the inherent IR measurement qualities of Orbitrap analyzers. Important to the IR performance, the various operating parameters of the Orbitrap sampling interface, high-energy collisional dissociation (HCD) stage, and ion injection/data acquisition have been evaluated. The IR performance for a range of other elements, including natural, depleted, and enriched uranium isotopes was determined. In all cases, the precision and accuracy are degraded when measuring low abundance (<0.1% isotope fractions). In the best case, IR precision on the order of 0.1% RSD can be achieved, with values of 1%-3% RSD observed for low-abundance species. The results suggest that the LS-APGD is a promising candidate for field deployable MS analysis and that the high resolving powers of the Orbitrap may be complemented with a here-to-fore unknown capacity to deliver high-precision IRs.

  13. Diagnostics of a High Pressure Helium Microplasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Koleva, Ivanka; Economou, Demetre; Donnelly, Vincent

    2004-09-01

    Gas and plasma diagnostics were performed in a slot-type DC microplasma (200 microns gap) discharge at high pressures. The gas temperature in a helium discharge was estimated by adding small quantities of nitrogen (<100 ppm) into the gas feed. Specific rotational bands of the N2 second positive system were carefully selected to avoid interference with emission from He atoms and He2 excimer. At 250 Torr pressure and 200 mA/cm2 current density, the gas temperature was Tg = 350 +/- 25 K. The measured gas temperature was almost independent (to within experimental uncertainty) of pressure (in the range of 150 Torr - 600 Torr), and current density (in the range of 100 mA/cm2 - 400 mA/cm2). These measurements were consistent with a simple heat transfer model. Spatially resolved measurements of electron temperature were also performed using trace rare gas optical emission actinometry (TRG-OES). These measurements are greatly complicated by collisional quenching at the high operating pressures. Electron density and electron temperature profiles was deduced by comparing emission intensities from the Paschen 2px (x = 1-10) manifold of Ne, Ar, Kr and Xe trace gases. Results suggested that the electron temperature peaks in the cathode sheath region, while the plasma density peaks away from the cathode sheath. A self-consistent fluid model of a DC helium microdischarge was in agreement with the experimental data. The model was used to study the dependence of discharge characteristics on operating conditions (pressure, gap spacing, current density, etc.).

  14. VUV Photon Fluxes from Microwave Excited Microplasmas at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Denning, Mark; Urdhal, Randall; Kushner, Mark J.

    2013-09-01

    Microplasmas in rare gases and rare gases mixtures can provide efficient and discretely tunable sources of VUV light. Microwave excited microplasma sources excited by a split-ring resonator antenna in rare gas mixtures operated in ceramic cavities with sub-mm dimensions have been developed as discretely tunable VUV sources for chemical analysis. Controlling wavelengths and the ratio of ion to VUV fluxes are important to achieving chemical selectivity. In this paper, we will discuss results from an investigation of scaling laws for the efficiency of VUV photon production in rare gas mixtures. The investigation was performed using a hydrodynamics model where the electron energy distribution and radiation transport are addressed by Monte Carlo simulations. Plasma density, VUV photon production and fluxes from the cavities will be discussed for mixtures of Ar, He, Xe, Kr, and as a function of power format (pulsing, cw), pressure and cavity sizes.

  15. Comparison of atmospheric microplasma and plasma jet irradiation for increasing of skin permeability

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Tran, N. A.; Hayashida, K.; Blajan, M.

    2016-08-01

    Atmospheric plasma is attracting interest for medical applications such as sterilization, treatment of cancer cells and blood coagulation. Application of atmospheric plasma in dermatology has potential as a novel tool for wound healing, skin rejuvenation and treatment of wrinkles. In this study, we investigated the enhancement of percutaneous absorption of dye as alternative agents of transdermal drugs. Hypodermic needles are often the only way to deliver large-molecule drugs into the dermis, although a safe transdermal drug delivery method that does not require needles would be desirable. We therefore explored the feasibility of using atmospheric microplasma irradiation to enhance percutaneous absorption of drugs, as an alternative delivery method to conventional hypodermic needles. Pig skin was used as a biological sample, exposed to atmospheric microplasma, and analyzed by attenuated total reflection-Fourier transform infrared spectroscopy. A tape stripping test, a representative method for evaluating skin barrier performance, was also conducted for comparison. Transepidermal water loss (TEWL) was measured and compared with and without atmospheric microplasma irradiation, to quantify water evaporation from the inner body through the skin barrier. The results show that the stratum corneum, the outermost skin layer, could be chemically and physically modified by atmospheric microplasma irradiation. Physical damage to the skin by microplasma irradiation and an atmospheric plasma jet was also assessed by observing the skin surface. The results suggest that atmospheric microplasma has the potential to enhance percutaneous absorption.

  16. Suprathermal electron energy spectrum and nonlocally affected plasma-wall interaction in helium/air micro-plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Demidov, V. I.; Adams, S. F.; Miles, J. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-10-01

    Details of ground-state and excited-state neutral atoms and molecules in an atmospheric-pressure micro-discharge plasma may be obtained by plasma electron spectroscopy (PLES), based on a wall probe. The presence and transport of energetic (suprathermal) electrons, having a nonlocal origin, are responsible for electrostatic charging of the plasma boundary surfaces to potentials many times that associated with the ambient electron kinetic energy. The energy-flux distribution function is shown to be controllable for applications involving analysis of composition and processes taking place in a multiphase (plasma-gas-solid), chemically reactive, interaction region.

  17. Iron oxide magnetic nanoparticles synthesized by atmospheric microplasmas

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Kaur, Parvin; Tan, Augustine Tuck Lee; Singh, Rajveer; Lee, Paul Choon Keat; Springham, Stuart Victor; Ramanujan, Raju V.; Rawat, R. S.

    2014-08-01

    This paper presents the synthesis of iron oxide nanoparticles using the atmospheric microplasma (AMP). The properties of iron oxide nanoparticles synthesized using AMP are compared with particles (i) formed in as-prepared solution and (ii) prepared using thermal decomposition method. Iron oxide nanoparticles prepared by all the 3 treatment methods exhibit quite soft ferromagnetic properties with coercivities less than 10 G. The AMP synthesis technique was found to be more efficient and better than thermal decomposition method due to ultra-shorter experiment time (around 2.5 min) as compared to 90 min required for thermal decomposition method. Moreover, AMP synthesized nanoparticles are better isolated and of smaller size than thermal decomposition ones. The effect of plasma discharge timings on synthesized nanoparticles has also been studied in this work. Coercivity of synthesized nanoparticles decreases with the increasing plasma discharge timings from 3 to 10 min. The nanoparticles synthesized using plasma discharge timing of 10 min exhibit the smallest coercivity of around 3 G. This suggests a high possibility of achieving super-paramagnetic nanoparticles by optimizing the plasma discharge timings of AMP.

  18. Self-organization of SiO{sub 2} nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma

    SciTech Connect

    Arnoult, G.; Belmonte, T.; Henrion, G.

    2010-03-08

    Self-organization of SiO{sub 2} nanodots is obtained by chemical vapor deposition out of hexamethyldisiloxane (HMDSO) and atmospheric pressure remote Ar-O{sub 2} plasma operating at high temperature (1200-1600 K). The dewetting of the film being deposited when it is still thin enough (<500 nm) is found to be partly responsible for this self-organization. When the coating becomes thicker (approx1 mum), and for relatively high contents in HMDSO, SiO{sub 2} walls forming hexagonal cells are obtained on a SiO{sub 2} sublayer. For thicker coatings (>1 mum), droplet-shaped coatings with a Gaussian distribution in thickness over their width are deposited. The coatings are submitted to high compressive stress. When it is relaxed, 'nestlike structures' made of nanoribbons are synthesized.

  19. Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies

    NASA Astrophysics Data System (ADS)

    Lee, M. U.; Jeong, S. Y.; Won, I. H.; Sung, S. K.; Yun, G. S.; Lee, J. K.

    2016-07-01

    Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.

  20. Non-Maxwellian to Maxwellian transitions of atmospheric microplasmas at microwave frequencies

    SciTech Connect

    Lee, M. U.; Jeong, S. Y.; Won, I. H.; Sung, S. K.; Yun, G. S. E-mail: jkl@postech.ac.kr; Lee, J. K. E-mail: jkl@postech.ac.kr

    2016-07-15

    Particle-in-cell/Monte Carlo simulations and numerical analysis of a single particle motion are performed for atmospheric He microplasmas at microwave frequencies to determine the characteristics of non-Maxwellian to Maxwellian transition. The left and the right regimes of Paschen curve, divided by this transition, reveal that the transition frequencies depend on the gap of electrodes and the neutral gas pressure to follow scaling laws for a new extended Paschen law. The fluid models are reasonable at the right-side regime of Paschen breakdown areas, but not on the left side, which is highly kinetic for electrons. The plasmas driven by weaker electric fields of high enough frequencies at the right-side Paschen regime breed more energetic electrons.

  1. Exploring the polymerization of bioactive nano-cones on the inner surface of an organic tube by an atmospheric pressure pulsed micro-plasma jet

    NASA Astrophysics Data System (ADS)

    Xu, H. M.; Yu, J. S.; Chen, G. L.; Qiu, X. P.; Hu, W.; Chen, W. X.; Bai, H. Y.

    2015-12-01

    In this paper, the successful deposition of acrylic acid polymer (PAA) nano-cones on the inner surface of a polyvinyl chloride (PVC) tube using an atmospheric pressure pulsed plasma jet (APPJ) with acrylic acid (AA) monomer is presented. Optical emission spectroscopy (OES) measurements indicated that various reactive radicals, such as rad OH and rad O, existed in the plasma jet. Moreover, the pulsed current proportionally increased with the increase in the applied voltage. The strengthened stretching vibration of the carbonyl group (Cdbnd O) at 1700 cm-1, shown in the ATR-FTIR spectra, clearly indicated that the PAA was deposited on the PVC surface. The maximum height of the PAA nano-cones deposited by this method ranged from 150 to 200 nm. FTIR and XPS results confirmed the enhanced exposure of the carboxyl groups on the modified PVC surface, which was considered highly beneficial for successfully immobilizing a high density of biomolecules. The XPS data showed that the carbon ratios of the Csbnd OH/R and COOH/R groups increased from 7.03% and 2.6% to 18.69% and 6.81%, respectively (more than doubled) when an Ar/O2 plasma with AA monomer was applied to treat the inner surface of the PVC tube. Moreover, the enhanced attachment density of MC3T3-E1 bone cells was observed on the PVC inner surface coated with PAA nano-cones.

  2. The effect of dielectric tube diameter on the propagation velocity of ionization waves in a He atmospheric-pressure micro-plasma jet

    NASA Astrophysics Data System (ADS)

    Talviste, Rasmus; Jõgi, Indrek; Raud, Jüri; Paris, Peeter

    2016-05-01

    The focus of this study was to investigate the effect of the dielectric tube diameter on the velocity of the ionization wave in an atmospheric pressure plasma jet in He gas flow. Plasma was ignited in quartz tubes with inner diameter in the range of 80-500 μm by 6 kHz sinusoidal voltage applied to a cylindrical electrode surrounding the quartz tube and positioned 10 mm from the tube orifice. A grounded plane was placed 2-3 cm downstream from the powered electrode to measure the plasma current. The spatial development of ionization waves was monitored by registering the optical emission along the axis of the tube. The ionization wave velocity was deduced from the temporal shift of the onset of radiation at different axial positions. The velocity of ionization wave increased by almost an order of magnitude with the tube diameter decreasing from 500 to 80 μm and was for the 80 μm microtube 1.7 · 105 m s-1 during the positive half-cycle and 1.45 · 105 m s-1 during the negative half-cycle.

  3. Low temperature atmospheric microplasma jet array for uniform treatment of polymer surface for flexible electronics

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Xiaolin; Yang, Bin; Chen, Xiang; Yang, Chunsheng; Liu, Jingquan

    2017-07-01

    In this paper, the uniformity of polymer film etching by an atmospheric pressure He/O2 microplasma jet array (μPJA) is first investigated with different applied voltage. Plasma characteristics of μPJA were recorded by optical discharge images. Morphologies and chemical compositions of polymer film etched by μPJA were analyzed by optical microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS). By increasing the applied voltage from 8.5 kV to 16.4 kV, the non-uniformity of the luminous intensity of the plasma jets increases. It is interesting that the plasma treated regions are actually composed of an etched region and modification region, with distinct morphologies and chemical compositions. The diameters of the etched parylene-C film show the increase of non-uniformity with higher applied voltage. SEM results show that the non-uniformity of surface morphologies of both the modification regions and etched regions increases with the increase of applied voltage. EDS and XPS results also present the significant effect of higher applied voltage on the non-uniformity of surface chemical compositions of both modification and etched regions. The Coulomb interaction of the streamer heads and the hydrodynamic interaction between the plasma jets and the surrounding air are considered to be responsible for this phenomenon. The results shown in this work can help improve the processing quality of polymer film etched by an atmospheric pressure microplasma jet array and two applications are demonstrated to illustrate the uniform downstream surface treatment.

  4. Low-Pressure Microwave Excited Microplasmas as Sources of VUV Photons and Metastable Excited Atoms: Modeling

    NASA Astrophysics Data System (ADS)

    Kushner, Mark; Cooley, James; Xue, Jun; Urdhal, Randall

    2011-10-01

    Low pressure plasmas sustained in rare gases and rare gas mixtures can be efficient sources of VUV light from resonant optical transitions. Many applications would benefit from having small, inexpensive sources of plasma produced VUV light. To address this need, microwave wave excited microplasma sources in rare gases operating at pressures of <10 Torr are being developed. The microplasmas are sustained in ceramic cavities having cross sectional dimensions of <=1 mm, excited by a split-ring resonator antenna operated at 2.45 GHz. Power deposition is a few W. Hybrid computer modeling of microplasmas sustained in Ar has been performed to develop scaling laws for increasing the efficiency of VUV light production. The model includes a Monte Carlo simulation for the electron energy distribution and for radiation transport. Results from those studies will be discussed for plasma densities, electron energy distributions, VUV light production and excited state densities as a function of power, pressure and aspect ratio of the microplasma cavities. Modeling results will be compared to laser absorption spectroscopy of Ar excited state densities. Work supported by Agilent Technologies.

  5. Dynamics of a Microwave Excited Microplasma Flowing into Very Low Pressures

    NASA Astrophysics Data System (ADS)

    Tian, Peng; Denning, Mark; Urdahl, Randall; Kushner, Mark J.

    2014-10-01

    Capacitively coupled microplasmas in dielectric cavities have a range of applications from VUV sources for surface treatment to radical production. Due to the small size of these devices, pd (pressure × size) scaling requires that they operate at high pressure. When the output of the microplasma is needed at low pressure, a plume of radicals and ions flows from the higher pressure microdischarge cavity into the lower pressure workspace. These conditions affect both the delivery of the radicals, ions and photons in the plume, and the dynamics of the microdischarge. In this paper, we discuss results from a computational investigation of a microwave excited microplasma operating at a pressure of several Torr of a rare gas with powers of 2--10s of Watts at 2.5 GHz. The plume from the microdischarge cavity flows into pressures as low as a few mTorr. A 2-d plasma hydrodynamics model with radiation and electron energy transport addressed using Monte Carlo techniques has been modified to enable the plume to flow into near vacuum. Plasma dynamics and reactive fluxes from the cavity will be discussed for different flow boundary conditions, as a function of power, pressure and gas mixtures. Work supported by Agilent Technologies, DOE Office of Fusion Energy Science and NSF.

  6. Low pressure microplasmas enabled by field ionization: Kinetic modeling

    SciTech Connect

    Macheret, Sergey O. Tholeti, Siva Sashank; Alexeenko, Alina A.

    2016-05-09

    A principle of microplasma generation that utilizes field emission of electrons at the cathode and field ionization producing ions at the anode, both processes relying on nanorods or nanotubes, is explored theoretically. In this plasma generation concept, collisional ionization of atoms and molecules by electron impact would play a negligible role. Analytical estimates as well as plasma kinetic modeling by particle-in-cell method with Monte Carlo collisions in argon confirm that this principle can enable substantial plasma densities at near-collisionless microgaps, while requiring relatively low voltages, less than 100 V. An order of magnitude increase in electron number density can be achieved due to enhancement of field emission at the cathode by positive space charge at high field ionization ion current densities.

  7. EDITORIAL: Cluster issue on microplasmas

    NASA Astrophysics Data System (ADS)

    Chao, Chih C.; Liao, Jiunn-Der; Chang, Juu-En

    2008-10-01

    Ever since the first Workshop on Microplasmas, held in Japan in 2003, plasma scientists and engineers worldwide have been meeting approximately every 18 months to exchange and discuss the results of scientific research and technical applications of this unique type of plasma. Microplasmas are generally described as stable plasmas confined to spatial dimensions below about 1 mm that can be operated at pressures up to and exceeding atmospheric pressure. By their nature, this presents a wide range of opportunities and many advantages in practical applications, just a few examples being low energy consumption, small size, flexibility of use and ease of assembly into a user-friendly package. Nevertheless, there still remain several unanswered basic science questions and a largely untapped potential for environmental, biomedical and industrial applications. The fourth International Workshop on Microplasmas, held during 28-31 October 2007 in Tainan, Taiwan, continued the trend of previous Workshops with an orientation towards industrial and environmental applications. Many high-quality papers on microplasmas and microdischarges were presented and selected full papers were submitted to Journal of Physics D: Applied Physics for assessment by the editors and reviewers in accordance with the usual standards of quality and novelty. This Cluster Issue contains twelve accepted papers, covering four categories: fundamentals and basics, and environmental, biomedical and industrial applications. Fundamentals and basics includes coverage of the physics and microstructure of electrode discharge (Yu A Lebedev et al), the characteristics of low current discharge (Z Lj Petrović et al), plasma ignition (R Gesche et al), novel optical diagnostics (Schulz-von der Gathen et al), plasma generation and micronozzle flow (T Takahashi et al) and the relation between RF-power and atomic oxygen density distribution (N Knake et al). Environmental applications are represented by vapour

  8. Density of metastable atoms in the plume of a low-pressure argon microplasma

    NASA Astrophysics Data System (ADS)

    Cooley, James; Xue, Jun; Urdahl, Randall

    2011-10-01

    Spatially-resolved measurements of the density of metastable excited atoms in the plume of an argon microplasma are presented. The microplasma device is operated at relatively low pressure, on the order of 1 Torr, and is exhausted into a vacuum. Line-integrated densities of excited argon neutrals in the exhaust plume are measured using tunable diode laser absorption spectroscopy. The density of argon metastables in both 1s5 and 1s3 states are measured. These line-integrated density measurements are converted to three-dimensional density maps using Abel inversion. The density of 1s5 argon peaks at a value of approximately 1018 m-3 near the outlet orifice, while the 1s3 density is roughly five times lower everywhere. It is found that, far from the face of the microplasma outlet orifice, metastable density follows an angular distribution consistent with that expected of vacuum gas expansion as predicted by classic rarified flow theory. Metastable flux is found to be conserved as the plume expands through 4 mm, suggesting an absence of de-excitation collisions or other loss processes along with a frozen velocity profile.

  9. Density of metastable atoms in the plume of a low-pressure argon microplasma

    NASA Astrophysics Data System (ADS)

    Xue, J.; Cooley, J. E.; Urdahl, R. S.

    2012-09-01

    Spatially resolved measurements of the density of metastable excited atoms in the plume of an argon microplasma are presented. The microplasma device is operated at a relatively low pressure, on the order of 1 Torr, and is exhausted into a vacuum. Line-integrated densities of excited argon neutrals in the exhaust plume are measured using tunable diode laser absorption spectroscopy. The densities of argon metastables in both 1s5 and 1s3 states are measured. These line-integrated density measurements are converted to three-dimensional density maps using the Abel inversion. The density of 1s5 argon peaks at a value of approximately 1018 m-3 near the outlet orifice, while the 1s3 density is roughly five times lower everywhere. It is found that, far from the face of the microplasma outlet orifice, metastable density follows axial and angular distributions consistent with that expected of vacuum gas expansion as predicted by classic rarified flow theory. Integrated metastable density is found to be conserved as the plume expands through 4 mm, suggesting a net production of excited species in the first millimetre and a constant population further downstream.

  10. Microplasma generator and methods therefor

    DOEpatents

    Hopwood, Jeffrey A

    2015-04-14

    A low-temperature, atmospheric-pressure microplasma generator comprises at least one strip of metal on a dielectric substrate. A first end of the strip is connected to a ground plane and the second end of the strip is adjacent to a grounded electrode, with a gap being defined between the second end of the strip and the grounded electrode. High frequency power is supplied to the strip. The frequency is selected so that the length of the strip is an odd integer multiple of 1/4 of the wavelength traveling on the strip. A microplasma forms in the gap between the second end of the strip and the grounded electrode due to electric fields in that region. A microplasma generator array comprises a plurality of strongly-coupled resonant strips in close proximity to one another. At least one of the strips has an input for high-frequency electrical power. The remaining strips resonate due to coupling from the at least one powered strip. The array can provide a continuous line or ring of plasma. The microplasma generator can be used to alter the surface of a substrate, such as by adding material (deposition), removal of material (etching), or modifying surface chemistry.

  11. Combined pressure and flow sensor integrated in a split-ring resonator microplasma source

    NASA Astrophysics Data System (ADS)

    Snögren, P.; Berglund, M.; Persson, A.

    2016-10-01

    Monitoring and control of the principal properties of a discharge or plasma is vital in many applications, and sensors for measuring them must be integrated close to the plasma source in order to deliver reliable results. This is particularly important, and challenging, in miniaturized systems, where different compatibility issues set the closest level of integration. In this paper, a sensor for simultaneous measurement of the pressure and flow through a stripline split-ring resonator microplasma source is presented. The sensor utilized the fully integrated electrodes positioned upstream and downstream of the microplasma source to study these parameters and was found to deliver uniform and unambiguous results in the pressure and flow range of 1-6 Torr and 1-15 sccm, respectively. Furthermore, hysteresis and drift in the measurements were found to be mitigated by introducing a resistor in parallel with the plasma, in order to facilitate the discharging of the electrodes. Together, the results show that the sensor is fully compatible with the miniaturized microfluidic systems in general and a system for optogalvanic spectroscopy in particular.

  12. The development of microplasmas for spectrochemical analysis.

    PubMed

    Broekaert, J A C

    2002-09-01

    Miniaturized microwave, high-frequency, and dc-powered microplasmas are discussed, with emphasis on the state-of-the-art and development trends. Specific atomic emission sources discussed include the microstrip microwave plasma operated in argon and helium at ca 10-30 W and below 1 L min(-1) gas at atmospheric pressure, the capacitively coupled microplasma, operated at 13.56 MHz, 5-25 W, and 17-150 mL min(-1) helium, the miniaturized inductively coupled plasma operated at several watts and reduced pressure, and dc glow-discharge plasmas on a chip, including a barrier-layer discharge as atom reservoir for atomic absorption spectrometry. Diagnostics for these sources are discussed and some of their figures of merit are compared with those of conventional sources. Current possibilities for introduction of gaseous samples are reported and scope for further development and outlook are both discussed.

  13. Fine Pattern Etching of Molybdenum Thin Film and Silicon Substrate by Using Atmospheric Line-Shaped Microplasma Source

    NASA Astrophysics Data System (ADS)

    Okumura, Tomohiro; Saitoh, Mitsuo; Yashiro, Yoichiro; Kimura, Tadashi

    2003-06-01

    An atmospheric line-shaped microplasma source was developed for fine pattern etching. Observation of plasma emission of the developed plasma source has revealed that the finest plasma line is formed when helium (He) gas is supplied to the inner gas feed and reaction gas to the outer gas feeds. When reaction gas is supplied to the outer gas feeds, fluorine radical (F*) emission intensity increases with the gas flow rate, eventually exceeding the maximum emission intensity obtained when a mixture of reaction gas and He gas is supplied to the inner gas feed. Fine pattern etching of molybdenum thin film and silicon substrate was experimentally carried out using microplasma sources in two different configurations: one with the copper electrode covered to protect it from plasma exposure (type 1), and the other with the aluminum electrode end knife-edged and exposed to a plasma (type 2). The experiment revealed that the type 2 source provides a higher etching rate than of the type 1 source. The type 2 source can produce a fine etched pattern with lines of several ten to several hundred μm width. The maximum etching rate of silicon substrate is 79.0 μm/min.

  14. Monoclinic β-MoO(3) nanosheets produced by atmospheric microplasma: application to lithium-ion batteries.

    PubMed

    Mariotti, Davide; Lindström, Henrik; Bose, Arumugam Chandra; Ostrikov, Kostya Ken

    2008-12-10

    Porous high surface area thin films of nanosheet-shaped monoclinic MoO(3) were deposited onto platinized Si substrates using patch antenna-based atmospheric microplasma processing. The films were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and electrochemical analysis. The electrochemical analysis shows original redox peaks and high charge capacity, and also indicates a reversible electrochemical behaviour particularly beneficial for applications in Li-ion batteries. SEM shows that the films are highly porous and consist of nanosheets 50-100 nm thick with surface dimensions in the micrometre range. HRTEM reveals that the MoO(3) nanosheets consist of the monoclinic beta phase of MoO(3). These intricate nanoarchitectures made of monoclinic MoO(3) nanosheets have not been studied previously in the context of applications in Li-ion batteries and show superior structural and morphological features that enable effective insertion of Li ions.

  15. Study on decomposition of indoor air contaminants by pulsed atmospheric microplasma.

    PubMed

    Shimizu, Kazuo; Kuwabara, Tomoya; Blajan, Marius

    2012-10-29

    Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate NOx as detected by a chemiluminescence NOx analyzer. In the case of large volume treatment the removal ratio of HCHO (initial concentration: 0.5 ppm) after 60 minutes was 51% at 1.2 kV when using HV amplifier considering also a 41% natural decay ratio of HCHO. The removal ratio was 54% at 1.2 kV when a Marx Generator energized the electrodes with a 44% natural decay ratio after 60 minutes of treatment.

  16. Water Purification by Using Microplasma Treatment

    NASA Astrophysics Data System (ADS)

    Shimizu, K.; Masamura, N.; Blajan, M.

    2013-06-01

    Dielectric barrier discharge microplasma generated at the surface of water is proposed as a solution for water treatment. It is an economical and an ecological technology for water treatment due to its generation at atmospheric pressure and low discharge voltage. Microplasma electrodes were placed at small distance above the water thus active species and radicals were flown by the gas towards the water surface and furthermore reacted with the target to be decomposed. Indigo carmine was chosen as the target to be decomposed by the effect of active species and radicals generated between the electrodes. Air, oxygen, nitrogen and argon were used as discharge gases. Measurement of absorbance showed the decomposition of indigo carmine by microplasma treatment. Active species and radicals of oxygen origin so called ROS (reactive oxidative species) were considered to be the main factor in indigo carmine decomposition. The decomposition rate increased with the increase of the treatment time as shown by the spectrophotometer analysis. Discharge voltage also influenced the decomposition process.

  17. Electron and ion kinetics in three-dimensional confined microwave-induced microplasmas at low gas pressures

    NASA Astrophysics Data System (ADS)

    Tang, Jiali; Yu, Xinhai; Wang, Zhenyu; Tu, Shan-Tung; Wang, Zhengdong

    2016-04-01

    The effects of the gas pressure (pg), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter dh = 1000 μm) driven at constant voltage loading on the drive electrode (Vrf) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When pg increased, the maximum electron (ne) or ion density (nAr+) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λSEE-e). The peak ne and nAr+ were not a monotonic function of pg, resulting from the two conflicting effects of pg on ne and nAr+. The impact of ions on the electrode was enhanced when pg increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various pg. The effects of t on the peaks and distributions of ne and nAr+ were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for pg of 800 Pa and Vrf of 180 V. The Au vapor addition increased the peaks of ne and nAr+, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

  18. Conversion of emitted dimethyl sulfide into eco-friendly species using low-temperature atmospheric argon micro-plasma system.

    PubMed

    Chen, Hsin-Hung; Weng, Chih-Chiang; Liao, Jiunn-Der; Whang, Liang-Ming; Kang, Wei-Hung

    2012-01-30

    A custom-made atmospheric argon micro-plasma system was employed to dissociate dimethyl sulfide (DMS) into a non-foul-smelling species. The proposed system takes the advantages of low energy requirement and non-thermal process with a constant flow rate at ambient condition. In the experiments, the compositions of DMS/argon plasma, the residual gaseous phases, and solid precipitates were respectively characterized using an optical emission spectrometer, various gas-phase analyzers, and X-ray photoemission spectroscopy. For 400 ppm DMS introduced into argon plasma with two pairs of electrodes (90 W), a complete decomposition of DMS was achieved; the DMS became converted into excited species such as C, C(2), H, and CH. When gaseous products were taken away from the treatment area, the excited species tended to recombine and form stable compounds or species, which formed as solid particles and gaseous phases. The solid deposition was likely formed by the agglomeration of C-, H-, and S-containing species that became deposited on the quartz inner tube. For the residual gaseous phases, low-molecular-weight segments mostly recombined into relatively thermodynamic stable species, such as hydrogen, hydrogen sulfide, and carbon disulfide. The dissociation mechanism and treatment efficiency are discussed, and a treatment of converting DMS into H(2)-, CS(2)-, and H(2)S-dominant by-products is proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. A novel DC microplasma sensor constructed in a cavity PDMS chamber with needle electrodes for fast detection of methanol-containing spirit.

    PubMed

    Luo, Dai-bing; Duan, Yi-xiang; He, Yi; Gao, Bo

    2014-12-12

    A novel microplasma device, for the first time, was constructed in a cavity Poly (dimethylsiloxane) (PDMS) chamber with two normal syringe needles serve as both the gas channels and the electrodes. This device employs argon plasma with direct current for molecular fragmentation and excitation. The microplasma is generated at atmospheric pressure in the PDMS chamber of 0.5 mL (5 × 10 × 10 mm(3)) volume with a sealable plug. Since the microplasma is maintained in a chamber by separation of the discharge zone and the substrate, stability for a long time of the microplasma is realized which could be observed by argon background emission fluctuation and SEM characterization. This property is beneficial for spectrometric detection of many volatile organics in this chamber. Besides, this kind of microplasma sensor has advantages such as flexibility in replacement of electrodes, convenience in clearance of the discharge chamber, small instrument volume, simple structure, and ease of operation. In addition, methanol-containing spirit samples were chosen to estimate the detecting performance of this microplasma for volatile organic compounds (VOCs) analysis by molecular emission spectrometry. Significant differences are observed upon the introduction of the spirit and the methanol-containing spirit samples. A detection limit of 0.3% is obtained on this microplasma device.

  20. A Novel DC Microplasma Sensor Constructed in a Cavity PDMS Chamber with Needle Electrodes for Fast Detection of Methanol-containing Spirit

    PubMed Central

    Luo, Dai-bing; Duan, Yi-xiang; He, Yi; Gao, Bo

    2014-01-01

    A novel microplasma device, for the first time, was constructed in a cavity Poly (dimethylsiloxane) (PDMS) chamber with two normal syringe needles serve as both the gas channels and the electrodes. This device employs argon plasma with direct current for molecular fragmentation and excitation. The microplasma is generated at atmospheric pressure in the PDMS chamber of 0.5 mL (5 × 10 × 10 mm3) volume with a sealable plug. Since the microplasma is maintained in a chamber by separation of the discharge zone and the substrate, stability for a long time of the microplasma is realized which could be observed by argon background emission fluctuation and SEM characterization. This property is beneficial for spectrometric detection of many volatile organics in this chamber. Besides, this kind of microplasma sensor has advantages such as flexibility in replacement of electrodes, convenience in clearance of the discharge chamber, small instrument volume, simple structure, and ease of operation. In addition, methanol-containing spirit samples were chosen to estimate the detecting performance of this microplasma for volatile organic compounds (VOCs) analysis by molecular emission spectrometry. Significant differences are observed upon the introduction of the spirit and the methanol-containing spirit samples. A detection limit of 0.3% is obtained on this microplasma device. PMID:25502881

  1. A Novel DC Microplasma Sensor Constructed in a Cavity PDMS Chamber with Needle Electrodes for Fast Detection of Methanol-containing Spirit

    NASA Astrophysics Data System (ADS)

    Luo, Dai-Bing; Duan, Yi-Xiang; He, Yi; Gao, Bo

    2014-12-01

    A novel microplasma device, for the first time, was constructed in a cavity Poly (dimethylsiloxane) (PDMS) chamber with two normal syringe needles serve as both the gas channels and the electrodes. This device employs argon plasma with direct current for molecular fragmentation and excitation. The microplasma is generated at atmospheric pressure in the PDMS chamber of 0.5 mL (5 × 10 × 10 mm3) volume with a sealable plug. Since the microplasma is maintained in a chamber by separation of the discharge zone and the substrate, stability for a long time of the microplasma is realized which could be observed by argon background emission fluctuation and SEM characterization. This property is beneficial for spectrometric detection of many volatile organics in this chamber. Besides, this kind of microplasma sensor has advantages such as flexibility in replacement of electrodes, convenience in clearance of the discharge chamber, small instrument volume, simple structure, and ease of operation. In addition, methanol-containing spirit samples were chosen to estimate the detecting performance of this microplasma for volatile organic compounds (VOCs) analysis by molecular emission spectrometry. Significant differences are observed upon the introduction of the spirit and the methanol-containing spirit samples. A detection limit of 0.3% is obtained on this microplasma device.

  2. Suppression of Instability of High Pressure DC Microplasma Operating in the Negative Differential Resistance (NDR) Regime

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Farouk, Tanvir I.

    2015-09-01

    Microplasma devices have been the subject of considerable interest and research during the last decade. In a DC system most of the operation regime of the plasma discharges studied fall in the ``abnormal,'' ``normal'' and ``corona'' modes - where a quasi-steady state is achieved. It is well known that even in a DC system the negative differential resistance (NDR) regime can trigger self pulsing discharges. These pulsations are initiated by the parasitic capacitance of the system hence governed by the response time of the power circuit. The circuit response time is required to be larger than the ion transit time to initiate the oscillations. In this present study a suppressor circuit element in the form of an inductor is used to restrain the plasma from switching to a self pulsing mode. It has been identified that the combined response time of the inductor and the plasma discharge (L/Rplasma) has to be larger than the power circuit time constant (RC) to achieve suppression. Inhibition of oscillation has been observed in both experiments and numerical simulations. The obtained voltage-current characteristics show that the inductor element extends the normal glow regime to lower current. Additional parametric simulations are conducted to map out a ``stable'' operation regime. The author would like to thank DARPA (ARO Grant No. W911NF1210007) and University of South Carolina (USC) for the financial support of the work.

  3. Time-resolved spectral investigations of laser light induced microplasma

    NASA Astrophysics Data System (ADS)

    Nánai, L.; Hevesi, I.

    1992-01-01

    The dynamical and spectral properties of an optical breakdown microplasma created by pulses of different lasers on surfaces of insulators (KCI), metals (Cu) and semiconductors (V 2O 5), have been investigated. Experiments were carried out in air and vacuum using different wavelengths (λ = 0.694μm, type OGM-20,λ = 1.06μm with a home-made laser based on neodymium glass crystal, and λ = 10.6μm, similarly home-made) and pulse durations (Q-switched and free-running regimes). To follow the integral, dynamical and spectral characteristics of the luminous spot of microplasma we have used fast cameras (SFR-2M, IMACON-HADLAND), a high speed spectral camera (AGAT-2) and a spectrograph (STE-1). It has been shown that the microplasma consists of two parts: fast front (peak) with τ≈100 ns and slow front (tail) with τ≈1μs durations. The detonation front speed is of the order of ≈10 5 cm s -1 and follows the temporal dependence of to t0.4. It depends on the composition of the surrounding gas and its pressure and could be connected with quick evaporation of the material investigated (peak) and optical breakdown of the ambient gaseous atmosphere (tail). From the delay in appearance of different characteristic spectral lines of the target material and its gaseous surrounding we have shown that the evolution of the microplasma involves evaporation and ionization of the atoms of the parent material followed by optical breakdown due to the incident and absorbed laser light, together with microplasma expansion.

  4. Electron and ion kinetics in three-dimensional confined microwave-induced microplasmas at low gas pressures

    SciTech Connect

    Tang, Jiali; Yu, Xinhai Tu, Shan-Tung; Wang, Zhengdong; Wang, Zhenyu

    2016-04-15

    The effects of the gas pressure (p{sub g}), microcavity height (t), Au vapor addition, and microwave frequency on the properties of three-dimensional confined microwave-induced microplasmas were discussed in light of simulation results of a glow microdischarge in a three-dimensional microcavity (diameter d{sub h} = 1000 μm) driven at constant voltage loading on the drive electrode (V{sub rf}) of 180 V. The simulation was performed using the PIC/MCC method, whose results were experimentally verified. In all the cases we investigated in this study, the microplasmas were in the γ-mode. When p{sub g} increased, the maximum electron (n{sub e}) or ion density (n{sub Ar+}) distributions turned narrow and close to the discharge gap due to the decrease in the mean free path of the secondary electron emission (SEE) electrons (λ{sub SEE-e}). The peak n{sub e} and n{sub Ar+} were not a monotonic function of p{sub g}, resulting from the two conflicting effects of p{sub g} on n{sub e} and n{sub Ar+}. The impact of ions on the electrode was enhanced when p{sub g} increased. This was determined after comparing the results of ion energy distribution function (IEDFs) at various p{sub g}. The effects of t on the peaks and distributions of n{sub e} and n{sub Ar+} were negligible in the range of t from 1.0 to 3.0 mm. The minimum t of 0.6 mm for a steady glow discharge was predicted for p{sub g} of 800 Pa and V{sub rf} of 180 V. The Au vapor addition increased the peaks of n{sub e} and n{sub Ar+}, due to the lower ionization voltage of Au atom. The acceleration of ions in the sheaths was intensified with the addition of Au vapor because of the increased potential difference in the sheath at the drive electrode.

  5. High Frequency Self-pulsing Microplasmas

    NASA Astrophysics Data System (ADS)

    Lassalle, John; Pollard, William; Staack, David

    2014-10-01

    Pulsing behavior in high-pressure microplasmas was studied. Microplasmas are of interest because of potential application in plasma switches for robust electronics. These devices require fast switching. Self-pulsing microplasmas were generated in a variable-length spark gap at pressures between 0 and 220 psig in Air, Ar, N2, H2, and He for spark gap lengths from 15 to 1810 μm. Resulting breakdown voltages varied between 90 and 1500 V. Voltage measurements show pulse frequencies as high as 8.9 MHz in argon at 100 psig. These findings demonstrate the potential for fast switching of plasma switches that incorporate high-pressure microplasmas. Work was supported by the National Science Foundation, Grant #1057175, and the Department of Defense, ARO Grant #W911NF1210007.

  6. A New Type Microplasma Thruster Using Surface Wave Dishcarges Excited by Microwaves

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Ono, Kouich; Takahashi, Kazuo; Setsuhara, Yuichi

    2003-10-01

    Reducing the scale of propulsion systems is of critical importance on the development of very small and high performance spacecrafts, so-called 'nanosatellites'. This paper presents numerical and experimental investigations of an Ar microplasma excited by azimuthally symmetric surface waves and its application to ultra small thrusters on nanosatellites. The plasma/fluid numerical simulation have shown that in a dielectric tube 1mm in radius, the electron density is as high as 1.0×10^14 cm-3 for a plasma absorbing power of 0.1 W at atmospheric pressures, assuming that the plasma is in thermal equilibrium. The thrust and specific impulse of microplasma thrusters with a micro nozzle have been estimated to be 3 mN and 400 sec, respectively, which are enough for nanospacecrafts less than 1kg. These numerical results are compared with microplasma discharges in Ar excited by 2.45-GHz microwaves in a quartz tube.

  7. Microwave-excited microplasma thruster: a numerical and experimental study of the plasma generation and micronozzle flow

    NASA Astrophysics Data System (ADS)

    Takahashi, Takeshi; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2008-10-01

    A microplasma thruster of the electrothermal type has been developed using azimuthally symmetric microwave-excited microplasmas. The plasma source was ~2 mm in diameter and ~10 mm long, and operated at around atmospheric pressures; the micronozzle was a converging-diverging type, having a throat ~0.2 mm in diameter and ~1 mm long. Numerical and experimental results with Ar demonstrated that this miniature electrothermal thruster gives a thrust of >1 mN, a specific impulse of ~100 s and a thrust efficiency of ~10% at a microwave power of <10 W.

  8. Microwave Atmospheric-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  9. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media

    NASA Astrophysics Data System (ADS)

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-12-01

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency.

  10. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media

    PubMed Central

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-01-01

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency. PMID:28004829

  11. Synergistic Effect of Atmospheric-pressure Plasma and TiO2 Photocatalysis on Inactivation of Escherichia coli Cells in Aqueous Media.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Li, Jiangwei; Wang, Xingquan; Chen, Qiang; Yang, Size; Chen, Zhong; Bazaka, Kateryna; Ken Ostrikov, Kostya

    2016-12-22

    Atmospheric-pressure plasma and TiO2 photocatalysis have been widely investigated separately for the management and reduction of microorganisms in aqueous solutions. In this paper, the two methods were combined in order to achieve a more profound understanding of their interactions in disinfection of water contaminated by Escherichia coli. Under water discharges carried out by microplasma jet arrays can result in a rapid inactivation of E. coli cells. The inactivation efficiency is largely dependent on the feed gases used, the plasma treatment time, and the discharge power. Compared to atmospheric-pressure N2, He and air microplasma arrays, O2 microplasma had the highest activity against E. coli cells in aqueous solution, and showed >99.9% bacterial inactivation efficiency within 4 min. Addition of TiO2 photocatalytic film to the plasma discharge reactor significantly enhanced the inactivation efficiency of the O2 microplasma system, decreasing the time required to achieve 99.9% killing of E. coli cells to 1 min. This may be attributed to the enhancement of ROS generation due to high catalytic activity and stability of the TiO2 photocatalyst in the combined plasma-TiO2 systems. Present work demonstrated the synergistic effect of the two agents, which can be correlated in order to maximize treatment efficiency.

  12. Means of introducing an analyte into liquid sampling atmospheric pressure glow discharge

    DOEpatents

    Marcus, R. Kenneth; Quarles, Jr., Charles Derrick; Russo, Richard E.; Koppenaal, David W.; Barinaga, Charles J.; Carado, Anthony J.

    2017-01-03

    A liquid sampling, atmospheric pressure, glow discharge (LS-APGD) device as well as systems that incorporate the device and methods for using the device and systems are described. The LS-APGD includes a hollow capillary for delivering an electrolyte solution to a glow discharge space. The device also includes a counter electrode in the form of a second hollow capillary that can deliver the analyte into the glow discharge space. A voltage across the electrolyte solution and the counter electrode creates the microplasma within the glow discharge space that interacts with the analyte to move it to a higher energy state (vaporization, excitation, and/or ionization of the analyte).

  13. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  14. Atmospheric Pressure Indicator.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Discusses observable phenomena related to air pressure. Describes a simple, unobtrusive, semiquantitative device to monitor the changes in air pressure that are associated with altitude, using a soft-drink bottle and a balloon. (JRH)

  15. Scalings and universality for high-frequency excited high-pressure argon microplasma

    NASA Astrophysics Data System (ADS)

    Lee, Min Uk; Lee, Jimo; Yun, Gunsu S.; Lee, Jae Koo

    2017-05-01

    The breakdown transition mechanism, scaling law for transition frequency, and universal law for breakdown voltage of a Ramsauer gas Ar with various ranges of neutral gas pressure and micron gap distance between parallel electrodes are examined. The electron kinetics in argon gas is analyzed to understand the reason of the abrupt transition of breakdown voltage partitioning γ- and α-regimes. The quiver motion of electron in high frequency source implies that the breakdown voltage drastically drops when the oscillating amplitude of an electron becomes smaller than its critical value. The scaling law, which reveals that the transition frequency is inversely proportional to the neutral gas pressure and the gap distance to the fractional power, supports the conjecture about the transition mechanism, and this is confirmed by particle-in-cell incorporating Monte Carlo collision (PIC/MCC) simulations. Breakdown voltage as a function of the product of the neutral gas pressure and gap distance, the ratio of the driving frequency and neutral gas pressure, secondary electron emission coefficient induced by the ion bombardment, and the ratio of gap distance over the radius of electrodes is expressed by the universal law which, as well, are confirmed by the PIC/MCC and fluid simulations. Furthermore, no universality is observed at the plasma size of 3 μm with field emission under diversified neutral gas pressure.

  16. Effect of microplasma irradiation on skin barrier function

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Tran, An N.; Blajan, Marius

    2016-07-01

    In this paper, we introduce the feasibility of atmospheric-pressure argon microplasma irradiation (AAMI) to promote percutaneous absorption. A hairless Yucatan micropig skin was used for this ex vivo study. After AAMI, the disturbance in the stratum corneum (SC) lipids was observed using attenuated total reflectance-Fourier transform infrared spectroscopy. Also, an increase in transepidermal water loss and no physical damage on pig skins were confirmed by microscopic observation. These results of AAMI were compared with those of a plasma jet irradiation (PJI) and a tape stripping test (TST) leading to the conclusion that AAMI reduces the barrier function of the skin and could also enhance the transdermal absorption of drugs.

  17. Atmospheric Pressure During Landing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This figure shows the variation with time of pressure (dots) measured by the Pathfinder MET instrument during the landing period shown in image PIA00797. The two diamonds indicate the times of bridal cutting and 1st impact. The overall trend in the data is of pressure increasing with time. This is almost certainly due to the lander rolling downhill by roughly 10 m. The spacing of the horizontal dotted lines indicates the pressure change expected from 10 m changes in altitude. Bounces may also be visible in the data.

  18. MicroScale - Atmospheric Pressure Plasmas

    SciTech Connect

    Sankaran, Mohan

    2012-01-25

    Low-temperature plasmas play an essential role in the manufacturing of integrated circuits which are ubiquitous in modern society. In recent years, these top-down approaches to materials processing have reached a physical limit. As a result, alternative approaches to materials processing are being developed that will allow the fabrication of nanoscale materials from the bottom up. The aim of our research is to develop a new class of plasmas, termed “microplasmas” for nanomaterials synthesis. Microplasmas are a special class of plasmas formed in geometries where at least one dimension is less than 1 mm. Plasma confinement leads to several unique properties including high-pressure stability and non-equilibrium that make microplasams suitable for nanomaterials synthesis. Vapor-phase precursors can be dissociated to homogeneously nucleate nanometer-sized metal and alloyed nanoparticles. Alternatively, metal salts dispersed in liquids or polymer films can be electrochemically reduced to form metal nanoparticles. In this talk, I will discuss these topics in detail, highlighting the advantages of microplasma-based systems for the synthesis of well-defined nanomaterials.

  19. Silicon Nanocrystal Synthesis in Microplasma Reactor

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with grains smaller than 5 nm are widely recognized as a key material in optoelectronic devices, lithium battery electrodes, and bio-medical labels. Another important characteristic is that silicon is an environmentally safe material that is used in numerous silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma-enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. In this study, we explore the possibility of microplasma technologies for efficient production of mono-dispersed nanocrystalline silicon particles on a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using a very-high-frequency (144 MHz) power source in a capillary glass tube with volume of less than 1 μl. Fundamental plasma parameters of the microplasma were characterized using optical emission spectroscopy, which respectively indicated electron density of 1015 cm-3, argon excitation temperature of 5000 K, and rotational temperature of 1500 K. Such high-density non-thermal reactive plasma can decompose silicon tetrachloride into atomic silicon to produce supersaturated silicon vapor, followed by gas-phase nucleation via three-body collision: particle synthesis in high-density plasma media is beneficial for promoting nucleation processes. In addition, further growth of silicon nuclei can be terminated in a short-residence-time reactor. Micro-Raman scattering spectra showed that as-deposited particles are mostly amorphous silicon with a small fraction of silicon nanocrystals. Transmission electron micrography confirmed individual 3-15 nm silicon nanocrystals. Although particles were not mono-dispersed, they were well separated and not coagulated.

  20. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    NASA Astrophysics Data System (ADS)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation via three-body collision. The particle synthesis in high-density plasma media is beneficial for promoting nucleation process. In addition, further growth of silicon nuclei was able to be favorably terminated in a short-residence time reactor. Micro Raman scattering spectrum showed that as-deposited particles were mostly amorphous silicon with small fraction of silicon nanocrystals. Transmission electron micrograph confirmed individual silicon nanocrystals of 3-15 nm size. Although those particles were not mono-dispersed, they were

  1. Improved Atmospheric Surface Pressure Analysis

    NASA Astrophysics Data System (ADS)

    Van den Dool, H. M.

    2011-12-01

    It has been popular to remove upfront the global atmosphere's surface pressure, as known from a weather center's analysis, from mass signals measured by satellites such as Grace, so as to use the residual satellite data to focus exclusively on the lesser known variable mass signals from the ocean, continental hydrology, and snow&ice. The approach is obviously limited by the precision by which meteorological centers know surface pressure. This precision is improving! The purpose of this presentation is to discuss the improvements made in recent Reanalyses (1979-present) of surface pressure in comparison to older analyses of the same. These improvements include also great technical advance, like higher spatial and temporal resolution that allows for a superior description of atmospheric tides. Of course the mass redistribution and mass balance of the atmosphere is interesting for its own sake, and some of those results will be presented as well.

  2. Helium-hydrogen microplasma device (MPD) on postage-stamp-size plastic-quartz chips.

    PubMed

    Weagant, Scott; Karanassios, Vassili

    2009-10-01

    A new design of a miniaturized, atmospheric-pressure, low-power (e.g., battery-operated), self-igniting, planar-geometry microplasma device (MPD) for use with liquid microsamples is described. The inexpensive MPD was a hybrid, three-substrate quartz-plastic-plastic structure and it was formed on chips with area the size of a small postage stamp. The substrates were chosen for rapid prototyping and for speedy device-geometry testing and evaluation. The approximately 700-microm (diameter) and 7-mm (long) He-H(2) (3% H(2)) microplasma was formed by applying high-voltage ac between two needle electrodes. Operating conditions were found to be critical in sustaining stable microplasma on plastic substrates. Spectral interference from the electrode materials was not observed. A small-size, electrothermal vaporization system was used for introduction of microliter volumes of liquids into the MPD. The microplasma was operated from an inexpensive power supply. And, operation from a 14.4-V battery has been demonstrated. Microplasma background emission in the spectral range between 200 and 850 nm obtained using a portable, fiber-optic spectrometer is reported. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. Element-dependent precision was between 10-25% (the average was 15%) and detection limits ranged between 1.5 and 350 ng. The system was used for the determination of Na in diluted bottled-water samples.

  3. Microplasma array patterning of reactive oxygen and nitrogen species onto polystyrene

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Dedrick, James; Oh, Jun-Seok; Bradley, James W.; Boswell, Roderick W.; Charles, Christine; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-02-01

    We investigate an approach for the patterning of reactive oxygen and nitrogen species (RONS) onto polystyrene using atmospheric-pressure microplasma arrays. The spectrally integrated and time-resolved optical emission from the array is characterised with respect to the applied voltage, applied-voltage frequency and pressure; and the array is used to achieve spatially resolved modification of polystyrene at three pressures: 500 Torr, 760 Torr and 1000 Torr. As determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS), regions over which surface modification occurs are clearly restricted to areas that are exposed to individual microplasma cavities. Analysis of the negative-ion ToF-SIMS mass spectra from the centre of the modified microspots shows that the level of oxidation is dependent on the operating pressure, and closely correlated with the spatial distribution of the optical emission. The functional groups that are generated by the microplasma array on the polystyrene surface are shown to readily participate in an oxidative reaction in phosphate buffered saline solution (pH 7.4). Patterns of oxidised and chemically reactive functionalities could potentially be applied to the future development of biomaterial surfaces, where spatial control over biomolecule or cell function is needed.

  4. Generation of Energetic Species by RF Microplasma Arrays

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Lee, S.; Fenner, D. B.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J.

    2012-10-01

    We present preliminary results from the first implementation of a prototype single-board RF micro-discharge, linear array device in a discharge-flow reactor for quantitative determinations of ozone and singlet-oxygen production from microplasmas in O2 and air at 1 atm. The ultimate objective is to develop compact, portable low-power micro-discharge based systems to generate energetic species for atmospheric-pressure applications including decontamination and disinfection. The technology uses application of low DC voltages and low applied powers (˜25 W) at ˜1 GHz frequencies, across small gaps in arrays of resonators to ignite and sustain highly energetic microplasmas at elevated pressures. A set of 15-resonator micro-discharge assemblies was designed, fabricated, and tested in static and flowing environments for O2, air, and Ar flows at pressures of 20 Torr to 1 atm. O3 production was measured by UV absorption spectrometry, and O2(a^1delta-g) (``singlet-oxygen'') concentrations were determined by absolute near-infrared emission spectroscopy. Near-infrared emission spectra from an argon plasma were also recorded, and showed extensive excitation of the Ar(I) 3p^54p -- 3p^54s emission system near 12 eV.

  5. Atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  6. Microplasma Processed Ultrathin Boron Nitride Nanosheets for Polymer Nanocomposites with Enhanced Thermal Transport Performance.

    PubMed

    Zhang, Ri-Chao; Sun, Dan; Lu, Ai; Askari, Sadegh; Macias-Montero, Manuel; Joseph, Paul; Dixon, Dorian; Ostrikov, Kostya; Maguire, Paul; Mariotti, Davide

    2016-06-01

    This Research Article reports on the enhancement of the thermal transport properties of nanocomposite materials containing hexagonal boron nitride in poly(vinyl alcohol) through room-temperature atmospheric pressure direct-current microplasma processing. Results show that the microplasma treatment leads to exfoliation of the hexagonal boron nitride in isopropyl alcohol, reducing the number of stacks from >30 to a few or single layers. The thermal diffusivity of the resulting nanocomposites reaches 8.5 mm(2) s(-1), 50 times greater than blank poly(vinyl alcohol) and twice that of nanocomposites containing nonplasma treated boron nitride nanosheets. From TEM analysis, we observe much less aggregation of the nanosheets after plasma processing along with indications of an amorphous carbon interfacial layer, which may contribute to stable dispersion of boron nitride nanosheets in the resulting plasma treated colloids.

  7. Interaction between a microplasma array and an adjacent dielectric surface

    NASA Astrophysics Data System (ADS)

    Dzikowski, Sebastian; Schulz-von der Gathen, Volker

    2016-09-01

    Microplasma pixel devices are interesting for applications such as surface modification. A representative is the metal grid array, which is a stable alternative to silicon-based arrays and consists of a dielectric, a grounded electrode and a metal grid with symmetrically arranged cavities. Typically, microplasma arrays are operated close to atmospheric pressure with noble gases like argon and helium. By applying a bipolar triangular voltage waveform with an amplitude of 700 V peak-to-peak and a frequency of 10 kHz to the metal grid, the discharge is ignited in the cavities having a diameter of about 200 and depth of 50 µm. For future applications, such as coating and catalysis, the interaction between the array and a dielectric surface positioned at close distance (< 200 µm) is of great importance. By application of phase resolved optical emission spectroscopy, the phase dependent expansion of the emission out of the cavities has been observed. Here, we present results of investigations on the dependence of emission structures of the cavities (individually or as group) on pressure, applied voltage and distance between grid and dielectric. Supported by the DFG in the Research Unit FOR1123.

  8. Microplasma generating array

    DOEpatents

    Hopwood, Jeffrey A.; Wu, Chen; Hoskinson, Alan R.; Sonkusale, Sameer

    2016-10-04

    A microplasma generator includes first and second conductive resonators disposed on a first surface of a dielectric substrate. The first and second conductive resonators are arranged in line with one another with a gap defined between a first end of each resonator. A ground plane is disposed on a second surface of the dielectric substrate and a second end of each of the first and second resonators is coupled to the ground plane. A power input connector is coupled to the first resonator at a first predetermined distance from the second end chosen as a function of the impedance of the first conductive resonator. A microplasma generating array includes a number of resonators in a dielectric material substrate with one end of each resonator coupled to ground. A micro-plasma is generated at the non-grounded end of each resonator. The substrate includes a ground electrode and the microplasmas are generated between the non-grounded end of the resonator and the ground electrode. The coupling of each resonator to ground may be made through controlled switches in order to turn each resonator off or on and therefore control where and when a microplasma will be created in the array.

  9. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  10. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  11. Fundamental Scaling of Microplasmas and Tunable UV Light Generation.

    SciTech Connect

    Manginell, Ronald P.; Sillerud, Colin Halliday; Hopkins, Matthew M.; Yee, Benjamin Tong; Moorman, Matthew W.; Schwindt, Peter; Anderson, John Moses; Pfeifer, Nathaniel Bryant

    2016-11-01

    The temporal evolution of spectral lines from microplasma devices (MD) was studied, including impurity transitions. Long-wavelength emission diminishes more rapidly than deep UV with decreasing pulse width and RF operation. Thus, switching from DC to short pulsed or RF operation, UV emissions can be suppressed, allowing for real-time tuning of the ionization energy of a microplasma photo-ionization source, which is useful for chemical and atomic physics. Scaling allows MD to operate near atmospheric pressure where excimer states are efficiently created and emit down to 65 nm; laser emissions fall off below 200 nm, making MD light sources attractive for deep UV use. A first fully-kinetic three-dimensional model was developed that explicitly calculates electron-energy distribution function. This, and non-continuum effects, were studied with the model and how they are impacted by geometry and transient or DC operation. Finally, a global non-dimensional model was developed to help explain general trends MD physics.

  12. Domestic atmospheric pressure thermal deaerators

    NASA Astrophysics Data System (ADS)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p < 0.15 MPa) and jet trays are used, and in deaerator tank, a developed "flooded" sparger is applied, which allows to significantly increase the intensity of the heat and mass exchange processes in the apparatus. The use of the two efficient stages in a column and a "flooded" sparger in a tank allows to reliably guarantee the necessary water heating and deaeration. Steam or "superheated" water of the temperature of t ≥ 125°C can be used as the coolant in the deaerators. The commissioning tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  13. Study of structural modification of sugarcane bagasse employing hydrothermal treatment followed by atmospheric pressure plasmas treatment

    NASA Astrophysics Data System (ADS)

    Amorim, Jayr; Pimenta, Maria Teresa; Gurgel, Leandro; Squina, Fabio; Souza-Correa, Jorge; Curvelo, Antonio

    2009-10-01

    Nowadays, the cellulosic ethanol is an important alternative way to many liquid biofuels using renewable biomass rich in polysaccharides. To be used as feedstock for ethanol production, the bagasse needs to be pretreated in order to expose its main constitutive. The present work proposes the use of different pretreatment processes to better expose the cellulose for hydrolysis and fermentation. In the present paper the sugarcane bagasse was submitted to a hydrothermal pretreatment followed by atmospheric pressure plasmas (APPs). An RF microplasma torch was employed as APPs in Ar and Ar/O2 mixing. The bagasse was treated in discharge and post-discharge regions. The position and time of treatment was varied as well as the gas mixture. The quantity of polysaccharides was determined by using high performance liquid chromatography. It was observed the release of a fraction of the hemicelluloses in the sugarcane bagasse. Modifications in the surface of the sugarcane fibers were monitored by employing scanning electron microscopy.

  14. High-Spatial-Resolution Multichannel Thomson Scattering Measurements for Atmospheric Pressure Microdischarge

    NASA Astrophysics Data System (ADS)

    Kono, Akihiro; Iwamoto, Kazushige

    2004-08-01

    High-spatial-resolution multichannel Thomson scattering measurement scheme is applied to the diagnostics of a microplasma produced between two knife-edge electrodes separated by a 100 μm microgap and driven by 2.45 GHz microwave. The method provides spatial profile of electron density, electron temperature, and gas temperature simultaneously in a single measurement, with a spatial resolution of ˜ 25 μm; the gas temperature is derived from the spectrum of rotational Raman scattering caused by molecules contained in the discharge gas. Measurements are carried out for discharges with air and He/N2(5%) mixture gas at atmospheric pressure and the differences in the basic plasma parameters are discussed.

  15. Xenon Additives Detection in Helium Micro-Plasma Gas Analytical Sensor

    NASA Astrophysics Data System (ADS)

    Tsyganov, Alexander; Kudryavtsev, Anatoliy; Mustafaev, Alexander

    2012-10-01

    Electron energy spectra of Xe atoms at He filled micro-plasma afterglow gas analyzer were observed using Collisional Electron Spectroscopy (CES) method [1]. According to CES, diffusion path confinement for characteristic electrons makes it possible to measure electrons energy distribution function (EEDF) at a high (up to atmospheric) gas pressure. Simple geometry micro-plasma CES sensor consists of two plane parallel electrodes detector and microprocessor-based acquisition system providing current-voltage curve measurement in the afterglow of the plasma discharge. Electron energy spectra are deduced as 2-nd derivative of the measured current-voltage curve to select characteristic peaks of the species to be detected. Said derivatives were obtained by the smoothing-differentiating procedure using spline least-squares approximation of a current-voltage curve. Experimental results on CES electron energy spectra at 10-40 Torr in pure He and in admixture with 0.3% Xe are discussed. It demonstrates a prototype of the new miniature micro-plasma sensors for industry, safety and healthcare applications. [1]. A.A.Kudryavtsev, A.B.Tsyganov. US Patent 7,309,992. Gas analysis method and ionization detector for carrying out said method, issued December 18, 2007.

  16. Microplasmas: from applications to fundamentals

    NASA Astrophysics Data System (ADS)

    Nguon, Olivier; Huang, Sisi; Gauthier, Mario; Karanassios, Vassili

    2014-05-01

    Microplasmas are receiving increasing attention in the scientific literature and in recent conferences. Yet, few analytical applications of microplasmas for elemental analysis using liquid samples have been described in the literature. To address this, we describe two applications: one involves the determination of Zn in microsamples of the metallo-enzyme Super Oxide Dismutase. The other involves determination of Pd-concentration in microsamples of Pd nanocatalysts. These applications demonstrate the potential of microplasmas and point to the need for future fundamental studies.

  17. Biological Decontamination Using Pulsed Filamentary Microplasma Jet

    NASA Astrophysics Data System (ADS)

    Pothiraja, Ramasamy; Lackmann, Jan-Wilm; Keil, Gernot; Bibinov, Nikita; Awakowicz, Peter

    Microplasma jet for the generation of pulsed filamentary discharge at atmospheric pressure has been devised for biological decontamination as well as for modification of surface properties. Long plasma-filament is generated inside a quartz tube and characterized using optical emission spectroscopy, current voltage measurements, numerical simulations and microphotography. Efficiency of our plasma source for the decontamination on inner surface of the tube as well as on objects placed in proximity of plasma effluent is studied. Escherichia coli (Gram-negative bacteria) and spores of Bacillus atrophaeus (Gram-positive bacteria) are used for the decontamination studies. Decontamination of Bacillus atrophaeus endospores, which are layered on PET polymer material, and placed in the proximity of plasma effluent, shows the mean logarithmic bacterial reduction of 3.67 for the treatment time of 120 s. Inactivation of Escherichia coli coated on inner surface of the tube shows the mean logarithmic bacterial reduction of about 5 for the treatment time of 30 s. In addition to this, inhibition studies of bacteria coated on agar plate are also carried out. It shows plasma effluent generated in our plasma source is very effective for the inhibition of bacterial colonization.

  18. Atmospheric pressure plasma jet applications

    SciTech Connect

    Park, J.; Herrmann, H.W.; Henins, I.; Selwyn, G.S.

    1998-12-31

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure plasma discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g., He/O2/H2O) which flows between two concentric cylindrical electrodes: an outer grounded electrode and an inner electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, ionized or dissociated by electron impact. The fast-flowing effluent consists of ions and electrons, which are rapidly lost by recombination, highly reactive radicals (e.g., O, OH), and metastable species (e.g., O2). The metastable O2, which is reactive to hydrocarbon and other organic species, has been observed through optical emission spectroscopy to decrease by a factor of 2 from the APPJ nozzle exit to a distance of 10 cm. Unreacted metastable O2, and that which does not impinge on a surface, will then decay back to ordinary ground state O2, resulting in a completely dry, environmentally-benign form of surface cleaning. Applications such as removal of photoresist, oxide films and organic residues from wafers for the electronics industry, decontamination of civilian and military areas and personnel exposed to chemical or biological warfare agents, and paint (e.g., graffiti) removal are being considered.

  19. Scaling of Small Arrays of Microplasmas

    NASA Astrophysics Data System (ADS)

    Qu, Chenhui; Tian, Peng; Kushner, Mark J.

    2015-09-01

    Arrays of microplasmas have meta-material capabilities that enable altering the properties of incident electromagnetic waves. The desirable properties of these microplasma arrays (MPAs) are high plasma density, rapid re-configuration and a minimum of isolating structures between microplasma elements that might perturb the dielectric properties of the array. These attributes are in part achieved by tradeoffs between gas mixture, pressure and pulse-power waveform. In this paper, results from a computational investigation of MPAs sustained in rare gas mixtures will be discussed. A 2-dimensional plasma hydrodynamics model with radiation transport was used to investigate the ability to modulate the permittivity of small MPAs - up to 4 × 4 elements. Gas pressures are tens to hundreds of Torr in mixtures of rare gases (e.g., Ar/Xe). We found that in the absence of isolating structures, there is significant cross talk between the elements of the MPAs when using repetitive uni- and bi-polar pulses (tens to hundreds ns duration). For example, when alternate elements of the array are pulsed, unpowered electrodes of adjacent pixels may appear cathodic or anodic to its neighbors, thereby attracting current through the unpowered pixel. Work supported by DARPA, DOE (DE-SC0001319), and NSF (CHE-1124724).

  20. An Atmospheric Pressure Ping-Pong "Ballometer"

    ERIC Educational Resources Information Center

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  1. An Atmospheric Pressure Ping-Pong "Ballometer"

    ERIC Educational Resources Information Center

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  2. Microplasmas and micro-jets

    NASA Astrophysics Data System (ADS)

    Lazzaroni, C.; Aubert, X.; Marinov, D.; Guaitella, O.; Stancu, G.; Welzel, S.; Pipa, A.; Ropcke, J.; Sadeghi, N.; Rousseau, A.

    2008-07-01

    Microplasmas are now widely investigated, one of their advantages being to generate a plasma at relatively high pressure close to the Paschen minimum (Schoenbach et al. 1997). Here, the microplasma is generated in a microhollow cathode type configuration made of a hole drilled through a metal/dielectric/metal sandwich (Schoenbach et al. 1997). One of the electrodes acts as the cathode (K) and the other as the anode (A1). The hole diameter ranges from 100 to 400 mu m and the pressure ranges from 50 to 500 Torr. When a second electrode (A2) is added, a large volume of plasma plume may be generated between A1 and A2, at a low electric field (1-20Td depending upon the gas) (Stark et al. 1999). A microhollow cathode type discharge operates in three different regimes depending on the plasma current: abnormal, self-pulsing and normal regime. The self-pulsing regime is achieved in the range of 1-100 kHz, in argon, helium, nitrogen and oxygen. The self-pulsing frequency is controlled by the microplasma device capacitance, the gas breakdown voltage, and the average discharge current (Rousseau et al. 2006, Aubert et al. 2007). i) First, in pure argon, the radial dependence of atoms excitation mechanisms and of the electronic density is studied inside the micro-hole. Imaging of the emission from the microplasma is performed with a spatial resolution of few mu m. The electron density is estimated from the Stark broadening of the H beta-line. The radial distribution of the emission intensities of an Ar atomic line and an Ar^+ ionic line are used for the excitation study. Ar and Ar^+ lines are excited in the cathode sheath edge by beam electrons accelerated within the sheath. These two excitations show the decay of the energy of electrons in negative glow. The Ar line presents also production of excited atoms by recombination of argon ions with electrons at the center of the micro-hole.Work is in progress to evaluate the contribution of the static electric field on the strak

  3. Does low atmospheric pressure independently trigger migraine?

    PubMed

    Bolay, Hayrunnisa; Rapoport, Alan

    2011-10-01

    Although atmospheric weather changes are often listed among the common migraine triggers, studies to determine the specific weather component(s) responsible have yielded inconsistent results. Atmospheric pressure change produces air movement, and low pressure in particular is associated with warm weather, winds, clouds, dust, and precipitation, but how this effect might generate migraine is not immediately obvious. Humans are exposed to low atmospheric pressure in situations such as ascent to high altitude or traveling by airplane in a pressurized cabin. In this brief overview, we consider those conditions and experimental data delineating other elements in the atmosphere potentially related to migraine (such as Saharan dust). We conclude that the available data suggest low atmospheric pressure unaccompanied by other factors does not trigger migraine. © 2011 American Headache Society.

  4. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  5. Spatially resolved argon microplasma diagnostics by diode laser absorption

    SciTech Connect

    Miura, Naoto; Hopwood, Jeffrey

    2011-01-01

    Microplasmas were diagnosed by spatially resolved diode laser absorption using the Ar 801.4 nm transition (1s{sub 5}-2p{sub 8}). A 900 MHz microstrip split ring resonator was used to excite the microplasma which was operated between 100-760 Torr (13-101 kPa). The gas temperatures and the Ar 1s{sub 5} line-integrated densities were obtained from the atomic absorption lineshape. Spatially resolved data were obtained by focusing the laser to a 30 {mu}m spot and translating the laser path through the plasma with an xyz microdrive. At 1 atm, the microplasma has a warm core (850 K) that spans 0.2 mm and a steep gradient to room temperature at the edge of the discharge. At lower pressure, the gas temperature decreases and the spatial profiles become more diffuse.

  6. Controlling the nitric and nitrous oxide production of an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Douat, Claire; Hubner, Simon; Engeln, Richard; Benedikt, Jan

    2016-09-01

    Atmospheric pressure plasma jets are non-thermal plasmas and have the ability to create reactive species. These features make it a very attractive tool for biomedical applications. In this work, we studied NO and N2O production, which are two species having biomedical properties. NO plays a role in the vascularization and in ulcer treatment, while N2O is used as anesthetic and analgesic gas. In this study, the plasma source is similar to the COST Reference Microplasma Jet (µ-APPJ). Helium is used as feed gas with small admixtures of molecular nitrogen and oxygen of below 1%. The absolute densities of NO and N2O were measured in the effluent of an atmospheric pressure RF plasma jet by means of ex-situ quantum-cascade laser absorption spectroscopy via a multi-pass cell in Herriot configuration. We will show that the species' production is dependent on several parameters such as power, flow and oxygen and nitrogen admixture. The NO and N2O densities are strongly dependent on the N2-O2 ratio. Changing this ratio allows for choosing between a NO-rich or a N2O-rich regime.

  7. Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells - Relevance to Capsular Opacification.

    PubMed

    Recek, Nina; Andjelić, Sofija; Hojnik, Nataša; Filipič, Gregor; Lazović, Saša; Vesel, Alenka; Primc, Gregor; Mozetič, Miran; Hawlina, Marko; Petrovski, Goran; Cvelbar, Uroš

    2016-01-01

    Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO) due to remaining lens epithelial cells (LECs) by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation) at a highly targeted cell level compared to treatment on top of the medium (indirect treatment). Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity) to the posterior lens capsule and PCO formation.

  8. Seasonal buffering of atmospheric pressure on Mars

    NASA Technical Reports Server (NTRS)

    Dzurisin, D.; Ingersoll, A. P.

    1975-01-01

    An isothermal reservoir of carbon dioxide in gaseous contact with the Martian atmosphere would reduce the amplitude and advance the phase of global atmospheric pressure fluctuations caused by seasonal growth and decline of polar CO2 frost caps. Adsorbed carbon dioxide in the upper roughly 10 m of Martian regolith is sufficient to buffer the present atmosphere on a seasonal basis. Available observations and related polar cap models do not confirm or refute the operation of such a mechanism. Implications for the amplitude and phase of seasonal pressure fluctuations are subject to direct test by the upcoming Viking mission to Mars.

  9. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  10. Microdischarge in Porous Ceramics with Atmospheric Pressure High Temperature H2O/SO2 Gas Mixture and its Application for Hydrogen Production

    NASA Astrophysics Data System (ADS)

    Koo, Il Gyo; Choi, Myeong Yeol; Kim, Jong Hoon; Cho, Jin Hoon; Lee, W. M.

    2008-06-01

    Microdischarges in atmospheric pressure H2O/SO2 gas mixture at high temperature are studied to evaluate their plasma-chemical reactivity to produce hydrogen gas. The microplasma is generated inside a porous ceramic (MIPC) covered with two steel meshes as the gas mixture at atmospheric pressure flows through the medium. Voltage-current characteristics and optical emissions are measured to determine the electrical properties of the DC discharge and the degree of non-equilibrium. The discharge current at a given voltage substantially increases as the gas temperature is increased, thus posing a possibility to reduce the electrical power needed to sustain the discharge. The study also showed the possibility of facilitating the reaction between H2O and SO2 not by electrocatalyst like platinum but by non-thermal electrons.

  11. Stability of atmospheric pressure glow discharges

    NASA Astrophysics Data System (ADS)

    Chirokov, Alexandre V.

    There has been a considerable interest in non-thermal atmospheric pressure discharges over the past decade due to increased number of industrial applications. Although non-thermal atmospheric pressure discharges have been intensively studied for the past century the clear physical picture of these discharges is far from being complete. Spontaneous transition of non-thermal atmospheric pressure discharges to thermal discharge and discharge filamentation are among least understood plasma phenomena. The discharge stability and reliable control of plasma parameters are highly desirable for numerous applications. This study focuses on stability of atmospheric pressure glow discharges with respect to filamentation and arcing. Atmospheric pressure glow discharge (APG) is the newest and the most promising addition to the family of non-thermal atmospheric pressure discharges. However this discharge is very susceptible to thermal instability which causes arcing, loss of uniformity and significant damage to electrodes. Suppression of thermal instability and effective control of discharge parameters is critical for industrial applications. A model was developed to understand transition to arc in atmospheric pressure glow discharges. APG discharges that operate in pure helium and in helium with addition of oxygen and nitrogen were considered in these studies. Simulation results indicate that arcing is the result of sheath breakdown rather than thermal instability. It was shown that although sheath breakdown is always followed by overheating the transition to arc in atmospheric glow discharges is not a result of thermal instability. In second part of this research interaction between plasma filaments in dielectric barrier discharges has been studied. This interaction is responsible for the formation of microdischarge patterns reminiscent of two-dimensional crystals. Depending on the application, microdischarge patterns may have a significant influence on DBD performance

  12. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  13. Runaway electron beam in atmospheric pressure discharges

    NASA Astrophysics Data System (ADS)

    Oreshkin, E. V.; Barengolts, S. A.; Chaikovsky, S. A.; Oreshkin, V. I.

    2015-11-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes.

  14. Response of cyanobacteria to low atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Yu, Qingni; Ai, Weidang; Tang, Yongkang; Ren, Jin; Guo, Shuangsheng

    2014-10-01

    Maintaining a low pressure environment in a controlled ecological life support system would reduce the technological complexity and resupply cost in the course of the construction of a future manned lunar base. To estimate the effect of a hypobaric environment in a lunar base on biological components, such as higher plants, microbes, and algae, cyanobacteria was used as the model by determining their response of growth, morphology, and physiology when exposed to half of standard atmospheric pressure for 16 days (brought back to standard atmospheric pressure 30 minutes every two days for sampling). The results indicated that the decrease of atmospheric pressure from 100 kPa to 50 kPa reduced the growth rates of Microcystis aeruginosa, Merismopedia sp., Anabaena sp. PCC 7120, and Anabaena flos-aquae. The ratio of carotenoid to chlorophyll a content in the four tested strains increased under low pressure conditions compared to ambient conditions, resulting from the decrease of chlorophyll a and the increase of carotenoid in the cells. Moreover, low pressure induced the reduction of the phycocyanin content in Microcystis aeruginosa, Anabaena sp. PCC 7120, and Anabaena flos-aquae. The result from the ultrastructure observed using SEM indicated that low pressure promoted the production of more extracellular polymeric substances (EPSs) compared to ambient conditions. The results implied that the low pressure environment of 50 kPa in a future lunar base would induce different effects on biological components in a CELSS, which must be considered during the course of designing a future lunar base. The results will be a reference for exploring the response of other biological components, such as plants, microbes, and animals, living in the life support system of a lunar base.

  15. Numerical and experimental study of microwave-excited microplasma and micronozzle flow for a microplasma thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, Takeshi; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2009-08-01

    Plasma and aerodynamic features have been investigated for a microplasma thruster of electrothermal type using azimuthally symmetric microwave-excited microplasmas. The thruster developed consisted of a microplasma source 1.5 mm in diameter, 10 mm long with a rod antenna on axis, and a converging-diverging micronozzle 1 mm long with a throat 0.2 mm in diameter. The feed or propellant gas employed was Ar at pressures of 10-50 kPa with flow rates of 10-70 SCCM (SCCM denotes standard cubic centimeter per minute at STP) and the surface wave-excited plasmas were established by 4.0 GHz microwaves at powers of ≤6 W. Numerical analysis was made for the plasma and flow properties by developing a self-consistent, two-dimensional model, where a two-temperature fluid model was applied to the entire region through the microplasma source to the micronozzle (or through subsonic to supersonic); in the former, an electromagnetic model based on the finite difference time-domain approximation was also employed for analysis of microwaves interacting with plasmas. In experiments, optical emission spectroscopy was employed with a small amount of additive gases of H2 and N2, to measure the plasma electron density and gas temperature in the microplasma source around the top of the microwave antenna, just upstream of the micronozzle inlet; in practice, the numerical analysis exhibited a maximum thereabout for the microwave power density absorbed, plasma density, and gas temperature. The Stark broadening of H Balmer line and the vibronic spectrum of N2 second positive band indicated that the electron density was in the range of (3-12)×1019 m-3 and the gas or rotational temperature was in the range of 700-1000 K. The thrust performance was also measured by using a microthrust stand with a combination of target and pendulum methods, giving a thrust in the range of 0.2-1.4 mN, a specific impulse in the range of 50-80 s, and a thrust efficiency in the range of 2%-12%. These experimental

  16. Peering inside microplasmas sustained by microwaves, millimeter waves and beyond

    NASA Astrophysics Data System (ADS)

    Hopwood, Jeffrey

    2016-09-01

    Atmospheric microplasmas are experimentally investigated over a range of excitation frequency from 0.5 to 12 GHz. A validated fluid model correctly predicts the measured electron density in this band of operation. This model is then extended to predict plasma behavior up to 0.4 THz. At constant power (0.25 W), the central electron density increases to 5x1014 cm-3 as the microwave frequency increases toward the electron energy dissipation frequency of 5 GHz (in argon). Above 5 GHz, the argon plasma density remains approximately constant, but the electrode voltage decreases to less than 5 volts in amplitude. This is remarkable in that the microwave potential is less than the excitation potential of argon. In the millimeter wave band, we observe series resonance between the plasma inductance and sheath capacitance at 30 GHz. The parallel resonance results in strong electron oscillation within the microplasma at the position where the electron plasma frequency is equal to the excitation frequency ( 200 GHz). Crossing resonance boundaries changes the nature of the microplasma impedance between capacitive, resistive, and inductive. In addition to linear behavior, we also present models and measurements of microplasma nonlinearity. Nonlinearity generates harmonic plasma currents and is due primarily to dynamic sheath expansion and electron conduction currents. In total, the microplasma provides a rich variety of electromagnetic behaviors that can be incorporated into plasma-reconfigurable metamaterials and photonic crystals. This work was supported by the Air Force Office of Scientific Research under Award No. FA9550-14-10317 with Dr. Mitat Birkan as the program manager.

  17. Large area atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  18. Gas and heat dynamics of a micro-scaled atmospheric pressure plasma reference jet

    NASA Astrophysics Data System (ADS)

    Kelly, Seán; Golda, Judith; Turner, Miles M.; Schulz-von der Gathen, Volker

    2015-11-01

    Gas and heat dynamics of the ‘Cooperation on Science and Technology (COST) Reference Microplasma Jet’ (COST-jet), a European lead reference device for low temperature atmospheric pressure plasma application, are investigated. Of particular interest to many biomedical application scenarios, the temperature characteristics of a surface impacted by the jet are revealed. Schlieren imaging, thermocouple measurements, infrared thermal imaging and numerical modelling are employed. Temperature spatial profiles in the gas domain reveal heating primarily of the helium fraction of the gas mixture. Thermocouple and model temporal data show a bounded exponential temperature growth described by a single characteristic time parameter to reach  ∼63% or (1-1/e) fraction of the temperature increase. Peak temperatures occurred in the gas domain where the carrier jet exits the COST-jet, with values ranging from ambient temperatures to in excess of 100 °C in ‘α-mode’ operation. In a horizontal orientation of the COST-jet a curved trajectory of the helium effluent at low gas flows results from buoyant forces. Gas mixture profiles reveal significant containment of the helium concentrations for a surface placed in close proximity to the COST-jet. Surface heating of a quartz plate follows a similar bounded exponential temporal temperature growth as device heating. Spatial profiles of surface heating are found to correlate strongly to the impacting effluent where peak temperatures occur in regions of maximum surface helium concentration.

  19. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  20. Piezoelectric pressure transducer technique for oxidizing atmospheres

    NASA Astrophysics Data System (ADS)

    Roberts, Ted A.; Burton, Rodney L.

    1992-07-01

    The diaphragm sensing tip of a high-speed piezoelectric pressure transducer can be destroyed when measuring transient impulse pressures in hot oxidizing atmospheres, e.g., oxygen at 3000 K and 34 atm for times of tens of milliseconds. A technique is presented to preserve the transducer under these conditions, which uses a protective layer of 0.025-0.050-mm-thick brass foil, held in place with double-sided tape. The integrity of the transducer is preserved, and the response time to a shock wave is increased from 1 to 2-6/microsec using the technique.

  1. Research on atmospheric pressure plasma processing sewage

    NASA Astrophysics Data System (ADS)

    Song, Gui-cai; Na, Yan-xiang; Dong, Xiao-long; Sun, Xiao-liang

    2013-08-01

    The water pollution has become more and more serious with the industrial progress and social development, so it become a worldwide leading environmental management problem to human survival and personal health, therefore, countries are looking for the best solution. Generally speaking, in this paper the work has the following main achievements and innovation: (1) Developed a new plasma device--Plasma Water Bed. (2) At atmospheric pressure condition, use oxygen, nitrogen, argon and helium as work gas respectively, use fiber spectrometer to atmospheric pressure plasma discharge the emission spectrum of measurement, due to the different work gas producing active particle is different, so can understand discharge, different particle activity, in the treatment of wastewater, has the different degradation effects. (3) Methyl violet solution treatment by plasma water bed. Using plasma drafting make active particles and waste leachate role, observe the decolorization, measurement of ammonia nitrogen removal.

  2. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  3. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  4. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  5. [Spectral investigation of atmospheric pressure plasma column].

    PubMed

    Li, Xue-Chen; Chang, Yuan-Yuan; Xu, Long-Fei

    2012-07-01

    Atmospheric pressure plasma column has many important applications in plasma stealth for aircraft. In the present paper, a plasma column with a length of 65 cm was generated in argon at atmospheric pressure by using dielectric barrier discharge device with water electrodes in coaxial configurations. The discharge mechanism of the plasma column was studied by optical method and the result indicates that a moving layer of light emission propagates in the upstream region. The propagation velocity of the plasma bullet is about 0.6 x 10(5) m x s(-1) through optical measurement. Spectral intensity ratios as functions of the applied voltage and driving frequency were also investigated by spectroscopic method. The variation in spectral intensity ratio implies a change in the averaged electron energy. Results show that the averaged electron energy increases with the increase in the applied voltage and the driving frequency. These results have significant values for industrial applications of the atmospheric pressure discharge and have extensive application potentials in stealth for military aircraft.

  6. Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells – Relevance to Capsular Opacification

    PubMed Central

    Hojnik, Nataša; Filipič, Gregor; Lazović, Saša; Vesel, Alenka; Primc, Gregor; Mozetič, Miran; Hawlina, Marko; Petrovski, Goran; Cvelbar, Uroš

    2016-01-01

    Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO) due to remaining lens epithelial cells (LECs) by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation) at a highly targeted cell level compared to treatment on top of the medium (indirect treatment). Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity) to the posterior lens capsule and PCO formation. PMID:27832099

  7. Effect of microplasma irradiation on skin barrier function

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuo; Tran, Nhat An; Blajan, Marius

    2015-09-01

    This study investigates the feasibility of atmospheric-pressure argon microplasma irradiation (AAMI) to promote drug delivery through skin. Yucatan micropig skin was used as a biological object for evaluation of in vitro percutaneous absorption. The changes in lipids, proteins and water content of the pig stratum corneum (SC) after AAMI were compared to those of a tape stripping test (TST) and plasma jet irradiation (PJI) using attenuated total reflection-Fourier transform infrared spectroscopy analysis. The significant reduction in the methylene stretching modes absorbance resulted in the disturbance in the SC lipids caused by AAMI was observed at 2850 and 2920 cm-1. Moreover, as the result of TST, trans-epidermal water loss (TEWL) after both AAMI and PJI were also increased, that could lead to a decrease of barrier function of SC, and could enhance the transdermal absorption of drugs. Under the conditions of this study, TEWL value of 5 minutes AAMI (35.92 +/- 3.48 g/m2h) was approximately the same as that value of 10 times TST (34.30 +/- 3.54 g/m2h), that makes the effect of these manipulations on the surfaces is considered to be at the same levels. Furthermore, unlike the obtained microscopic observation from PJI, there was no thermal damage observed on the skins after AAMI.

  8. The electrodynamics of aerosols and bacteria in a microplasma

    NASA Astrophysics Data System (ADS)

    Maguire, P. D.; Mahony, C. M. O.; Diver, D.; Mariotti, D.; Bennet, E.; Potts, H.; McDowell, D. A.

    2013-09-01

    The physics of living organisms is considered a grand challenge of science. Plasma interactions with living organisms, particularly at atmospheric pressure, offer a unique opportunity to study the physical mechanisms and surface electrodynamics of individual microorganisms. The impact on the plasma of such macroscopic entities is itself important; the dynamics of non-spherical and non-rigid nano-/micro-scale structures have received little attention. Also the plasma interaction with water, from molecules to droplets, is becoming increasingly significant due to induced chemistries that differ considerably from conventional plasma chemistry. We investigate the bulk and surface physical properties of individual microorganisms, particularly bacteria, through electrical and visco-mechanical excitation. Individual organisms are transported by water droplets to an rf microplasma. Their impact on the plasma is determined by imaging, optical and electrical diagnostics. We report, using imaging, electrostatics and simulation, on (i) fluid stability under evaporative stress of charged microbe-carrying macroscopic droplets, (ii) impact of the plasma on the stochastic component of motion and (iii) the acquired charge distribution and transfer from liquid to lipid surface. Engineering and Physical Sciences Research Council EP/K006088, EP/K006142.

  9. Effect of microplasma discharges on aluminum surfaces

    SciTech Connect

    Ivanov, V. A. Konyzhev, M. E.; Kuksenova, L. I.; Lapteva, V. G.; Sakharov, A. S.; Dorofeyuk, A. A.; Kamolova, T. I.; Satunin, S. N.; Letunov, A. A.

    2011-12-15

    Excitation of microplasma discharges on the surfaces of V95 aluminum alloy samples placed in a uniform pulsed plasma flow was studied experimentally. Strong localized interaction of microplasma discharges with aluminum leads to the melting and subsequent fast cooling of micrometer-size regions on the sample surface. Due to the multiple action of microplasma discharges, a continuous remelted layer with a thickness of up to 20 {mu}m forms on the aluminum surface. The physical, structural, and tribotechnical properties of this layer differ substantially from those before microplasma processing.

  10. Battery-operated, argon-hydrogen microplasma on hybrid, postage stamp-sized plastic-quartz chips for elemental analysis of liquid microsamples using a portable optical emission spectrometer.

    PubMed

    Weagant, Scott; Chen, Vivian; Karanassios, Vassili

    2011-11-01

    A battery-operated, atmospheric pressure, self-igniting, planar geometry Ar-H(2) microplasma for elemental analysis of liquid microsamples is described. The inexpensive microplasma device (MPD) fabricated for this work was a hybrid plastic-quartz structure that was formed on chips with an area (roughly) equal to that of a small-sized postage stamp (MPD footprint, 12.5-mm width by 38-mm length). Plastic substrates were chosen due to their low cost, for rapid prototyping purposes, and for a speedy microplasma device evaluation. To enhance portability, the microplasma was operated from an 18-V rechargeable battery. To facilitate portability even further, it was demonstrated that the battery can be recharged by a portable solar panel. The battery-supplied dc voltage was converted to a high-voltage ac. The ~750-μm (diameter) and 12-mm (long) Ar-H(2) (3% H(2)) microplasma was formed by applying the high-voltage ac between two needle electrodes. Spectral interference from the electrode materials or from the plastic substrate was not observed. Operating conditions were found to be key to igniting and sustaining a microplasma that was simply "warm" to the touch (thus alleviating the need for cooling or other thermal management) and that had a stable background emission. A small-sized (900 μL internal volume) electrothermal vaporization system (40-W max power) was used for microsample introduction. Microplasma background emission in the spectral region between 200 and 850 nm obtained using a portable fiber-optic spectrometer is reported and the effect of the operating conditions is described. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. The majority of spectral lines observed for the elements tested were from neutral atoms. The relative lack of emission from ion lines simplified the spectra, thus facilitating the use of a portable spectrometer. Despite the relative spectral

  11. Properties of microplasmas excited by microwaves for VUV photon sources

    NASA Astrophysics Data System (ADS)

    Cooley, James E.; Urdahl, Randall; Xue, Jun; Denning, Mark; Tian, Peng; Kushner, Mark J.

    2015-12-01

    Microplasma sources typically take advantage of pd (pressure  ×  size) scaling by increasing pressure to operate at dimensions as small as tens of microns. In many applications, low pressure operation is desirable, which makes miniaturization difficult. In this paper, the characteristics of low pressure microplasma sources excited by microwave power are discussed based on results from experimental and computational studies. The intended application is production of VUV radiation for chemical analysis, and so emphasis in this study is on the production of resonant excited states of rare gases and radiation transport. The systems of interest operate at a few to 10 Torr in Ar and He/Ar mixtures with cavity dimensions of hundreds of microns to 1 mm. Power deposition is a few watts which produces fractional ionization of about 0.1%. We found that production of VUV radiation from argon microplasmas at 104.8 nm and 106.7 nm saturates as a function of power deposition due to a quasi-equilibrium that is established between the electron temperature (that is not terribly sensitive to power deposition) and the population of the Ar(4s) manifold.

  12. Experimental study of the interaction between DC discharge microplasmas and CW lasers.

    PubMed

    Forati, Ebrahim; Piltan, Shiva; Li, Aobo; Sievenpiper, Dan

    2016-01-25

    A high power (~ 1W) continuous wave (CW) laser was focused on argon microplasma generated in the microgap between two electrodes with submillimeter diameters. Dependence of breakdown (V(BD)) and quench (V(Q)) voltages of microplasma to the laser power, wavelength, and spot location were studied as the gap size and pressure varied. It was observed that the laser-plasma interaction can only occur thermally through the electrodes. Also, the thermal effect of the laser was noticeable at relatively higher pressures (> 10Torr), and in most cases led to a decrease in V(BD), proportional to the pressure.

  13. Atmospheric pressure scanning transmission electron microscopy.

    PubMed

    de Jonge, Niels; Bigelow, Wilbur C; Veith, Gabriel M

    2010-03-10

    Scanning transmission electron microscope (STEM) images of gold nanoparticles at atmospheric pressure have been recorded through a 0.36 mm thick mixture of CO, O2, and He. This was accomplished using a reaction cell consisting of two electron-transparent silicon nitride membranes. Gold nanoparticles of a full width at half-maximum diameter of 1.0 nm were visible above the background noise, and the achieved edge resolution was 0.4 nm in accordance with calculations of the beam broadening.

  14. Healing burns using atmospheric pressure plasma irradiation

    NASA Astrophysics Data System (ADS)

    Hirata, Takamichi; Kishimoto, Takumi; Tsutsui, Chihiro; Kanai, Takao; Mori, Akira

    2014-01-01

    An experiment testing the effects of plasma irradiation with an atmospheric-pressure plasma (APP) reactor on rats given burns showed no evidence of electric shock injuries upon pathology inspection of the irradiated skin surface. In fact, the observed evidence of healing and improvement of the burns suggested healing effects from plasma irradiation. The quantities of neovascular vessels in the living tissues at 7 days were 9.2 ± 0.77 mm-2 without treatment and 18.4 ± 2.9 mm-2 after plasma irradiation.

  15. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    PubMed

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  16. Microplasmas, a platform technology for a plethora of plasma applications

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2017-08-01

    Publications describing microplasmas, which are commonly defined as plasmas with at least one dimension in the submillimeter range, began to appear to the scientific literature about 20 years ago. As discussed in a recent review by Schoenbach and Becker [1], interest and activities in basic microplasma research as well as in the use of microplasma for a variety of application has increased significatly over the past 20 years. The number of papers devoted to basic microplasma science increased by an order of magnitude between 1995 and 2015, a count that excludes publications dealing exclusively with technological applications of microplasmas, where the microplasma is used solely as a tool. In reference [1], the authors limited the topical coverage largely to the status of microplasma science and our understanding of the physics principles that enable microplasma operation and further stated that the rapid proliferation of microplasma applications made it impossible to cover both basic microplasma science and their application in a single review article.

  17. Atmospheric-pressure Penning ionization mass spectrometry.

    PubMed

    Hiraoka, Kenzo; Fujimaki, Susumu; Kambara, Shizuka; Furuya, Hiroko; Okazaki, Shigemitsu

    2004-01-01

    A preliminary study on the atmospheric-pressure Penning ionization (APP(e)I) of gaseous organic compounds with Ar* has been made. The metastable argon atoms (Ar*: 11.55 eV for (3)P(2) and 11.72 eV for (3)P(0)) were generated by the negative-mode corona discharge of atmospheric-pressure argon gas. By applying a high positive voltage (+500 to +1000 V) to the stainless steel capillary for the sample introduction (0.1 mm i.d., 0.3 mm o.d.), strong ion signals could be obtained. The ions formed were sampled through an orifice into the vacuum and mass-analyzed by an orthogonal time-of-flight mass spectrometer. The major ions formed by APP(e)I are found to be molecular-related ions for alkanes, aromatics, and oxygen-containing compounds. Because only the molecules with ionization energies less than the internal energy of Ar* are ionized, the present method will be a selective and highly sensitive interface for gas chromatography/mass spectrometry.

  18. Nonlinear optics in non-equilibrium microplasmas

    NASA Astrophysics Data System (ADS)

    Compton, Ryan E.

    2011-12-01

    This dissertation details the nature of subnanosecond laser-induced microplasma dynamics, particularly concerning the evolution of the electron temperature and concentration. Central to this development is the advent of a femtosecond four-wave mixing (FWM) spectroscopic method. FWM (in the form of coherent anti-Stokes Raman scattering (CARS)) measurements are performed on the fundamental oxygen vibrational transition. An analytical expression is provided that accounts for the resonant and nonresonant contributions to the CARS signal generated from the interaction of broadband pump and Stokes pulses. The inherent phase mismatch is also accounted for, resulting in quantitative agreement between experiment and theory. FWM is then used to measure the early-time electron dynamics in the noble gas series from He to Xe following irradiation by an intense (1014 Wcm-2) nonresonant 80 fs laser pulse. An electron impact ionization cooling model is presented to determine the evolution of electron kinetic energies following ionization. Kinetic energies are predicted to evolve from > 20 eV to < 1 eV in the first 1.5 ns. The initial degree of ionization is determined experimentally via measurement of the Bremsstrahlung background emission, and modeled with a modified ADK theory based on tunnel ionization. Combined, these two descriptions account for the evolution of both the electron temperature and concentration and provide quantitative agreement with the FWM measurements. The model is further tested with measurements of the gas pressure and pump laser intensity on the electron dynamics. The FWM experiments are concluded with a qualitative discussion of dissociative recombination dynamics occurring in molecular microplasmas. The microplasma environment is used as a source for the generation of two-level systems in the excited state manifold of atomic oxygen and argon. These two-level systems are coupled using moderately intense ˜1 ps near-infrared (and near-resonant) pulses

  19. Chaos in atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Iza, F.; Janson, N. B.; Kong, M. G.

    2012-06-01

    We report detailed characterization of a low-temperature atmospheric-pressure plasma jet that exhibits regimes of periodic, quasi-periodic and chaotic behaviors. Power spectra, phase portraits, stroboscopic section and bifurcation diagram of the discharge current combine to comprehensively demonstrate the existence of chaos, and this evidence is strengthened with a nonlinear dynamics analysis using two control parameters that maps out periodic, period-multiplication, and chaotic regimes over a wide range of the input voltage and gas flow rate. In addition, optical emission signatures of excited plasma species are used as the second and independent observable to demonstrate the presence of chaos and period-doubling in both the concentrations and composition of plasma species, suggesting a similar array of periodic, quasi-periodic and chaotic regimes in plasma chemistry. The presence of quasi-periodic and chaotic regimes in structurally unbounded low-temperature atmospheric plasmas not only is important as a fundamental scientific topic but also has interesting implications for their numerous applications. Chaos may be undesirable for industrial applications where cycle-to-cycle reproducibility is important, yet for treatment of cell-containing materials including living tissues it may offer a novel route to combat some of the major challenges in medicine such as drug resistance. Chaos in low-temperature atmospheric plasmas and its effective control are likely to open up new vistas for medical technologies.

  20. Response of cyanobacteria to low atmosphere pressure

    NASA Astrophysics Data System (ADS)

    Qin, Lifeng; Ai, Weidang; Guo, Shuangsheng; Tang, Yongkang; Yu, Qingni; Shen, Yunze; Ren, Jin

    Maintaining a low pressure environment would reduce the technological complexity and constructed cost of future lunar base. To estimate the effect of hypobaric of controlled ecological life support system in lunar base on terrestrial life, cyanobacteria was used as the model to exam the response of growth, morphology, physiology to it. The decrease of atmosphere pressure from 100 KPa to 50 KPa reducing the growth rates of Microcystis aeruginosa, Merismopedia.sp, Anabaena sp. PCC 7120, Anabaena Hos-aquae, the chlorophyll a content in Microcystis aeruginosa, Merismopedia.sp, Anabaena Hos-aquae, the carotenoid content in Microcystis aeruginosa, Merismopedia.sp and Anabaena sp. PCC 7120, the phycocyanin content in Microcystis aeruginosa. This study explored the biological characteristics of the cyanobacteria under low pressure condition, which aimed at understanding the response of the earth's life to environment for the future moon base, the results enrich the research contents of the lunar biology and may be referred for the research of other terrestrial life, such as human, plant, microbe and animal living in life support system of lunar base.

  1. Deposition of organosilicone thin film from hexamethyldisiloxane (HMDSO) with 50 kHz/33 MHz dual-frequency atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Jiaojiao, LI; Qianghua, YUAN; Xiaowei, CHANG; Yong, WANG; Guiqin, YIN; Chenzhong, DONG

    2017-04-01

    The deposition of organosilicone thin films from hexamethyldisiloxane(HMDSO) by using a dual-frequency (50 kHz/33 MHz) atmospheric-pressure micro-plasma jet with an admixture of a small volume of HMDSO and Ar was investigated. The topography was measured by using scanning electron microscopy. The chemical bond and composition of these films were analyzed by Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy. The results indicated that the as-deposited film was constituted by silicon, carbon, and oxygen elements, and FTIR suggested the films are organosilicon with the organic component (–CH x ) and hydroxyl functional group(–OH) connected to the Si–O–Si backbone. Thin-film hardness was recorded by an MH–5–VM Digital Micro-Hardness Tester. Radio frequency power had a strong impact on film hardness and the hardness increased with increasing power.

  2. Propagation of an atmospheric pressure plasma plume

    NASA Astrophysics Data System (ADS)

    Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.

    2009-02-01

    The "plasma bullet" behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

  3. Propagation of an atmospheric pressure plasma plume

    SciTech Connect

    Lu, X.; Xiong, Q.; Xiong, Z.; Hu, J.; Zhou, F.; Gong, W.; Xian, Y.; Zou, C.; Tang, Z.; Jiang, Z.; Pan, Y.

    2009-02-15

    The ''plasma bullet'' behavior of atmospheric pressure plasma plumes has recently attracted significant interest. In this paper, a specially designed plasma jet device is used to study this phenomenon. It is found that a helium primary plasma can propagate through the wall of a dielectric tube and keep propagating inside the dielectric tube (secondary plasma). High-speed photographs show that the primary plasma disappears before the secondary plasma starts to propagate. Both plumes propagate at a hypersonic speed. Detailed studies on the dynamics of the plasma plumes show that the local electric field induced by the charges on the surface of the dielectric tube plays an important role in the ignition of the secondary plasma. This indicates that the propagation of the plasma plumes may be attributed to the local electric field induced by the charges in the bulletlike plasma volume.

  4. Dynamic Rabi sidebands in laser-generated microplasmas: Tunability and control

    SciTech Connect

    Compton, R.; Filin, A.; Levis, R. J.; Romanov, D. A.

    2011-05-15

    Broadband, coherent radiation in the optical-frequency range is generated using microplasma channels in atmospheric gases in a pump-probe experiment. A microplasma medium is created in a gas by a focused intense femtosecond pump pulse. A picosecond probe pulse then interacts with this microplasma channel, producing broad, coherent sidebands that are associated with luminescence lines and are redshifted and blueshifted with respect to the laser carrier frequency. These sidebands originate from the induced Rabi oscillations between pairs of excited states that are coupled by the probe pulse. Thus the sideband radiation intensity tracks the microplasma evolution. The sidebands arise from broad and tunable Rabi shifts corresponding to varying values of the electric-field magnitude in the probe pulse. The {approx}10{sup 10} W cm{sup -2} probe beam creates a maximum sideband shift of >90 meV from the carrier frequency, resulting in an effective bandwidth of 200 meV. The sidebands can be tuned and controlled by the intensity and temporal profile of the probe pulse. The fact that the coherence is observed in a microplasma demonstrates that Rabi cycling is possible at high temperature with moderately high laser intensities as long as transitions close to the driving frequency ({Delta}{approx}2%{omega}{sub c}) are available. Plasma excitation combined with Rabi-shifting measurements also serves as a means to simultaneously extract quantitative ratios for the transition-dipole moments between multiple sets of highly excited states with transitions in the optical regime.

  5. Liquid sampling-atmospheric pressure glow discharge as a secondary excitation source: Assessment of plasma characteristics

    NASA Astrophysics Data System (ADS)

    Manard, Benjamin T.; Gonzalez, Jhanis J.; Sarkar, Arnab; Dong, Meirong; Chirinos, Jose; Mao, Xianglei; Russo, Richard E.; Marcus, R. Kenneth

    The liquid sampling-atmospheric pressure glow discharge (LS-APGD) has been assessed as a secondary excitation source with a parametric evaluation regarding carrier gas flow rate, applied current, and electrode distance. With this parametric evaluation, plasma optical emission was monitored in order to obtain a fundamental understanding with regards to rotational temperature (Trot), excitation temperature (Texc), electron number density (ne), and plasma robustness. Incentive for these studies is not only for a greater overall fundamental knowledge of the APGD, but also in instrumenting a secondary excitation/ionization source following laser ablation (LA). Rotational temperatures were determined through experimentally fitting of the N2 and OH molecular emission bands while atomic excitation temperatures were calculated using a Boltzmann distribution of He and Mg atomic lines. The rotational and excitation temperatures were determined to be ~ 1000 K and ~ 2700 K respectively. Electron number density was calculated to be on the order of ~ 3 × 1015 cm- 3 utilizing Stark broadening effects of the Hα line of the Balmer series and a He I transition. In addition, those diagnostics were performed introducing magnesium (by solution feed and laser ablation) into the plasma in order to determine any perturbation under heavy matrix sampling. The so-called plasma robustness factor, derived by monitoring Mg II/Mg I emission ratios, is also employed as a reflection of potential perturbations in microplasma energetics across the various operation conditions and sample loadings. While truly a miniaturized source (< 1 mm3 volume), the LS-APGD is shown to be quite robust with plasma characteristics and temperatures being unaffected upon introduction of metal species, whether by liquid or laser ablation sample introduction.

  6. Cold plasma brush generated at atmospheric pressure

    SciTech Connect

    Duan Yixiang; Huang, C.; Yu, Q. S.

    2007-01-15

    A cold plasma brush is generated at atmospheric pressure with low power consumption in the level of several watts (as low as 4 W) up to tens of watts (up to 45 W). The plasma can be ignited and sustained in both continuous and pulsed modes with different plasma gases such as argon or helium, but argon was selected as a primary gas for use in this work. The brush-shaped plasma is formed and extended outside of the discharge chamber with typical dimension of 10-15 mm in width and less than 1.0 mm in thickness, which are adjustable by changing the discharge chamber design and operating conditions. The brush-shaped plasma provides some unique features and distinct nonequilibrium plasma characteristics. Temperature measurements using a thermocouple thermometer showed that the gas phase temperatures of the plasma brush are close to room temperature (as low as 42 deg. C) when running with a relatively high gas flow rate of about 3500 ml/min. For an argon plasma brush, the operating voltage from less than 500 V to about 2500 V was tested, with an argon gas flow rate varied from less than 1000 to 3500 ml/min. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical applications including battery-powered operation and use in large-scale applications. Several polymer film samples were tested for surface treatment with the newly developed device, and successful changes of the wettability property from hydrophobic to hydrophilic were achieved within a few seconds.

  7. Cold plasma brush generated at atmospheric pressure.

    PubMed

    Duan, Yixiang; Huang, C; Yu, Q S

    2007-01-01

    A cold plasma brush is generated at atmospheric pressure with low power consumption in the level of several watts (as low as 4 W) up to tens of watts (up to 45 W). The plasma can be ignited and sustained in both continuous and pulsed modes with different plasma gases such as argon or helium, but argon was selected as a primary gas for use in this work. The brush-shaped plasma is formed and extended outside of the discharge chamber with typical dimension of 10-15 mm in width and less than 1.0 mm in thickness, which are adjustable by changing the discharge chamber design and operating conditions. The brush-shaped plasma provides some unique features and distinct nonequilibrium plasma characteristics. Temperature measurements using a thermocouple thermometer showed that the gas phase temperatures of the plasma brush are close to room temperature (as low as 42 degrees C) when running with a relatively high gas flow rate of about 3500 ml/min. For an argon plasma brush, the operating voltage from less than 500 V to about 2500 V was tested, with an argon gas flow rate varied from less than 1000 to 3500 ml/min. The cold plasma brush can most efficiently use the discharge power as well as the plasma gas for material and surface treatment. The very low power consumption of such an atmospheric argon plasma brush provides many unique advantages in practical applications including battery-powered operation and use in large-scale applications. Several polymer film samples were tested for surface treatment with the newly developed device, and successful changes of the wettability property from hydrophobic to hydrophilic were achieved within a few seconds.

  8. Electrode Configurations in Atmospheric Pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure plasma jets (APPJs) are being studied for emerging medical applications including cancer treatment and wound healing. APPJs typically consist of a dielectric tube through which a rare gas flows, sometimes with an O2 or H2O impurity. In this paper, we present results from a computational study of APPJs using nonPDPSIM, a 2-D plasma hydrodynamics model, with the goal of providing insights on how the placement of electrodes can influence the production of reactive species. Gas consisting of He/O2 = 99.5/0.5 is flowed through a capillary tube at 2 slpm into humid air, and a pulsed DC voltage is applied. An APPJ with two external ring electrodes will be compared with one having a powered electrode inside and a ground electrode on the outside. The consequences on ionization wave propagation and the production of reactive oxygen and nitrogen species (RONS) will be discussed. Changing the electrode configuration can concentrate the power deposition in volumes having different gas composition, resulting in different RONS production. An internal electrode can result in increased production of NOx and HNOx by increasing propagation of the ionization wave through the He dominated plume to outside of the tube where humid air is diffusing into the plume. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  9. RF generated atmospheric pressure plasmas and applications

    NASA Astrophysics Data System (ADS)

    Park, Jaeyoung; Herrmann, Hans W.; Henins, Ivars; Gautier, Donald C.

    2001-10-01

    RF generated atmospheric pressure plasma sources have been developed for various materials applications. They operate with rf power and produce a α-mode capacitive discharge that is stable, steady-state, non-thermal, and volumetric. The plasma parameters of this source have been measured: electron densities of 10^11 cm-3 and electron temperatures of 2 eV by using neutral bremsstrahlung emission. Localized electron heating near the sheath boundary has been observed and is related to the discharge stability and α to γ mode (or arcing) transition using 1D fluid model. The discharge stability improves with increase in rf frequency. The electrode surface property such as the secondary electron emission coefficient also plays a significant role in determining α to γ mode transition. For example, a stable α-mode air discharge is produced using 100 MHz rf power with the use of a boron nitride cover on one of the electrodes. In comparison, an air discharge becomes unstable at a lower rf frequency (e.g. 13.56 MHz) or with an alumina cover. Similar results were obtained with various feedgas such as steam, CO_2, and hydrocarbon containing gases. Further characterization of this high frequency source is under progress. For its applications, we have successfully demonstrated the effective neutralization of actual chemical warfare agents such as VX, GD and HD. In addition, significant progresses have been made in the area of etching of organic and metal film etching, and production of novel materials.

  10. Examination of fluctuations in atmospheric pressure related to migraine.

    PubMed

    Okuma, Hirohisa; Okuma, Yumiko; Kitagawa, Yasuhisa

    2015-01-01

    Japan has four seasons and many chances of low atmospheric pressure or approaches of typhoon, therefore it has been empirically known that the fluctuation of weather induces migraine in people. Generally, its mechanism has been interpreted as follows: physical loading, attributed by atmospheric pressure to human bodies, compresses or dilates human blood vessels, which leads to abnormality in blood flow and induces migraine. We report our examination of the stage in which migraine tends to be induced focusing on the variation of atmospheric pressure. Subjects were 34 patients with migraine, who were treated in our hospital. The patients included 31 females and three males, whose mean age was 32 ± 6.7. 22 patients had migraine with aura and 12 patients had migraine without aura. All of patients with migraine maintained a headache diary to record atmospheric pressures when they developed a migraine. The standard atmospheric pressure was defined as 1013 hPa, and with this value as the criterion, we investigated slight fluctuations in the atmospheric pressure when they developed a migraine. It was found that the atmospheric pressure when the patients developed a migraine was within 1003-1007 hPa in the approach of low atmospheric pressure and that the patients developed a migraine when the atmospheric pressure decreased by 6-10 hPa, slightly less than the standard atmospheric pressure. Small decreases of 6-10 hPa relative to the standard atmospheric pressure of 1013 hPa induced migraine attacks most frequently in patients with migraine.

  11. The effect of atmospheric pressure on ventricular assist device output.

    PubMed

    Goto, Takeshi; Sato, Masaharu; Yamazaki, Akio; Fukuda, Wakako; Watanabe, Ken-Ichi; Daitoku, Kazuyuki; Minakawa, Masahito; Fukui, Kozo; Suzuki, Yasuyuki; Fukuda, Ikuo

    2012-03-01

    The effect of cabin pressure change on the respiratory system during flight is well documented in the literature, but how the change in atmospheric pressure affects ventricular assist device (VAD) output flow has not been studied yet. The purpose of our study was to evaluate the change in VAD output using a mock circulatory system in a low-pressure chamber mimicking high altitude. Changes in output and driving pressure were measured during decompression from 1.0 to 0.7 atm and pressurization from 0.7 to 1.0 atm. Two driving systems were evaluated: the VCT system and the Mobart system. In the VCT system, output and driving pressure remained the same during decompression and pressurization. In the Mobart system, the output decreased as the atmospheric pressure dropped and recovered during pressurization. The lowest output was observed at 0.7 atm, which was 80% of the baseline driven by the Mobart system. Under a practical cabin pressure of 0.8 atm, the output driven by the Mobart system was 90% of the baseline. In the Mobart system, the output decreased as the atmospheric pressure dropped, and recovered during pressurization. However, the decrease in output was slight. In an environment where the atmospheric pressure changes, it is necessary to monitor the diaphragmatic motion of the blood pump and the driving air pressure, and to adjust the systolic:diastolic ratio as well as the positive and negative pressures in a VAD system.

  12. Carboxylation of Phenols with CO2 at Atmospheric Pressure.

    PubMed

    Luo, Junfei; Preciado, Sara; Xie, Pan; Larrosa, Igor

    2016-05-10

    A convenient and efficient method for the ortho-carboxylation of phenols under atmospheric CO2 pressure has been developed. This method provides an alternative to the previously reported Kolbe-Schmitt method, which requires very high pressures of CO2 . The addition of a trisubstituted phenol has proved essential for the successful carboxylation of phenols with CO2 at standard atmospheric pressure, allowing the efficient preparation of a broad variety of salicylic acids.

  13. Microwave-Excited Microplasma Thrusters Using Surface Wave and Electron Cyclotron Resonance Discharges

    NASA Astrophysics Data System (ADS)

    Mori, Daisuke; Kawanabe, Tetsuo; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    2012-10-01

    Downsizing spacecrafts has recently been focused on to decrease mission costs and to increase launch rates, and missions with small satellites would bring a great advantage of reducing their risks. Such a concept supports a new approach to developing precise, reliable, and low-cost micropropulsion systems. We have studied two types of microwave-excited microplasma thrusters, using surface wave-excited and electron cyclotron resonance-excited discharges. Microwaves of S-band (4 GHz) and X-band (11 GHz) were employed to excite the plasma in these experiments, with the feed or propellant gases of Ar and He. A microplasma thruster of electrothermal type consisted of a surface wave-excited microplasma source, and a converging-diverging micronozzle to obtain the thrust. For 11-GHz microwaves at a power of 6 W, a thrust of 1.1 mN and a specific impulse of 90 s were obtained at an Ar gas flow rate of 40 sccm, where the plasma electron density was 1.2x10^20 m-3, and the gas temperature was 1.5x10^3 K; under the same conditions for 4-GHz microwaves, the thrust, specific impulse, electron density, and gas temperature were 0.93 mN, 80 s, 7.0x10^19 m-3, and 8.0x10^2 K, respectively. A microplasma thruster of electromagnetic type had a microplasma source excited by electron cyclotron resonance with external magnetic fields, to obtain the thrust through accelerating ions by ambipolar electric fields. Optical emission spectrum was dominated by Ar^+ ion lines in the microplasma thruster of electromagnetic type, owing to higher electron temperatures at lower feed-gas pressures.

  14. Fabrication of electrically conductive metal patterns at the surface of polymer films by microplasma-based direct writing.

    PubMed

    Ghosh, Souvik; Yang, Rui; Kaumeyer, Michelle; Zorman, Christian A; Rowan, Stuart J; Feng, Philip X-L; Sankaran, R Mohan

    2014-03-12

    We describe a direct-write process for producing electrically conductive metal patterns at the surface of polymers. Thin films of poly(acrylic acid) (PAA) loaded with Ag ions are reduced by a scanning, atmospheric-pressure microplasma to form crystalline Ag features with a line width of 300 μm. Materials analysis reveals that the metallization occurs in a thin layer of ∼5 μm near the film surface, suggesting that the Ag ions diffuse to the surface. Sheet resistances of 1-10 Ω/sq are obtained independent of film thickness and Ag volume concentration, which is desirable for producing surface conductivity on polymers while minimizing metal loading.

  15. Organic thin film deposition in atmospheric pressure glow discharge

    SciTech Connect

    Okazaki, S.; Kogoma, M.; Yokoyama, T.; Kodama, M.; Nomiyama, H.; Ichinohe, K.

    1996-01-01

    The stabilization of a homogeneous glow discharge at atmospheric pressure has been studied since 1987. On flat surfaces, various plasma surface treatments and film depositions at atmospheric pressure have been examined. A practical application of the atmospheric pressure glow plasma on inner surfaces of flexible polyvinyl chloride tubes was tested for thin film deposition of polytetrafluoroethylene. Deposited film surfaces were characterized by ESCA and FT-IR/ATR measurements. Also SEM observation was done for platelet adhesion on the plasma treated polyvinyl chloride surface. These results showed remarkable enhancement in the inhibition to platelet adhesion on the inner surface of PVC tube, and homogeneous organic film deposition was confirmed. The deposition mechanism of polytetrafluoroethylene film in atmospheric pressure glow plasma is the same as the mechanism of film formation in the low pressure glow plasma, except for radical formation source. {copyright} {ital 1996 American Institute of Physics.}

  16. Design and characterization of an RF excited micro atmospheric pressure plasma jet for reference in plasma medicine

    NASA Astrophysics Data System (ADS)

    Schulz-von der Gathen, Volker

    2015-09-01

    Over the last decade a huge variety of atmospheric pressure plasma jets has been developed and applied for plasma medicine. The efficiency of these non-equilibrium plasmas for biological application is based on the generated amounts of reactive species and radiation. The gas temperatures stay within a range tolerable for temperature-sensitive tissues. The variety of different discharge geometries complicates a direct comparison. In addition, in plasma-medicine the combination of plasma with reactive components, ambient air, as well as biologic tissue - typically also incorporating fluids - results in a complex system. Thus, real progress in plasma-medicine requires a profound knowledge of species, their fluxes and processes hitting biological tissues. That will allow in particular the necessary tailoring of the discharge to fit the conditions. The complexity of the problem can only be overcome by a common effort of many groups and requires a comparison of their results. A reference device based on the already well-investigated micro-scaled atmospheric pressure plasma jet is presented. It is developed in the frame of the European COST initiative MP1101 to establish a publicly available, stable and reproducible source, where required plasma conditions can be investigated. Here we present the design and the ideas behind. The presentation discusses the requirements for the reference source and operation conditions. Biological references are also defined by the initiative. A specific part of the talk will be attributed to the reproducibility of results from various samples of the device. Funding by the DFG within the Package Project PAK816 ``Plasma Cell Interaction in Dermatology'' and the Research Unit FOR 1123 ``Physics of microplasmas'' is gratefully acknowledged.

  17. Atmospheric Pressure Plasmas for Decontamination of Complex Medical Devices

    NASA Astrophysics Data System (ADS)

    Weltmann, Klaus-Dieter; Winter, Jörn; Polak, Martin; Ehlbeck, Jörg; von Woedtke, Thomas

    Atmospheric pressure plasma sources produce a multiplicity of different antimicrobial agents and are applicable to even complicated geometries as well as to heat sensitive materials. Thus, atmospheric pressure plasmas have a huge potential for the decontamination of even complex medical devices like central venous catheters and endoscopes. In this paper we present practicable realizations of atmospheric pressure plasma sources, namely plasma jet, dielectric barrier discharge and microwave driven discharge that are able to penetrate fine lumen or are adaptable to difficult geometries. Furthermore, the antimicrobial efficacy of these sources is given for one example setup in each case.

  18. Microbubble generation by microplasma in water

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Staack, David

    2014-09-01

    A microscale plasma and a spherical microscale bubble were generated by the application of a single pulsed discharge in water with no pre-existing bubble. The microscale corona discharges were created at the tip of a microelectrode by applying a voltage at around -11 kV with a rise time of around 20 ns. The energy inputs for microplasma generation were controlled by varying the durations of the discharges from nanoseconds to microseconds. Two different energy inputs of 103 and 0.5 mJ were studied in detail and the differences in the microplasma-generated microbubbles, such as the maximum radii, numbers of oscillations and durations of the bubble were observed. These microbubbles were visualized using a microscope based optical system with two different high speed cameras. Images of the discharges were captured by a nanosecond gated intensified charge-coupled device (CCD) camera, and the microbubbles' dynamics were recorded by a million-frame-per-second CCD video camera. A Rayleigh-Plesset (RP) model considering both condensable (water vapour) and incondensable (H2 and O2) gases in the microbubble predicts the bubbles' dynamics accurately. Comparisons of the experimental results and the RP models allow estimation of the thermodynamic states of the microplasmas and microbubbles. The energies in the microbubbles are analysed quantitatively from the model and rough approximations for energy dissipation and the energy of the microplasma are made. The microplasma energy can be significantly less than the applied energy input. Such low initiation energy is the reason that the size of microplasmas is at the micron scale and all microplasmas are confined in a spherical microbubble. All the microbubbles reported in this paper are spherical. The low energy also provides conditions for non-equilibrium plasmas in liquid.

  19. Atmospheric pressure changes and unexplained variability in INR measurements.

    PubMed

    Ernst, Michael E; Shaw, Robert F; Ernst, Erika J; Alexander, Bruce; Kaboli, Peter J

    2009-06-01

    Changes in atmospheric pressure may influence hepatic blood flow and drug metabolism. Anecdotal experience suggests international normalized ratio (INR) variability may be temporally related to significant atmospheric pressure changes. We investigated this potential association in a large sample of patients with multiple INRs. This is a retrospective review of outpatient anticoagulation records from the Iowa City Veteran's Affairs Medical Center and affiliated outpatient clinics from October 1999 to July 2007. All patients, receiving at least one prescription for warfarin and INR at least 30 days or more from the date of the first warfarin prescription, were identified. INRs during periods of hospitalization and vitamin K use were excluded. Proximity analysis using geocoding of ZIP codes of identified patients to the nearest National Oceanic and Atmospheric Administration station was performed to assign atmospheric pressure with INR. Spearman's Rho and Pearson's correlation were used to evaluate atmospheric pressure and INR. Unique patients (1441) with 45 187 INRs were analyzed. When limited to nontherapeutic INRs following a previously therapeutic INR (1121 unique patients/5256 INRs), a small but clinically insignificant association between delta INR and delta atmospheric pressure was observed (r = -0.025; P = 0.038), but not for actual INR and atmospheric pressure (P = 0.06). Delta atmospheric pressure demonstrated greater variation during fall/winter months compared with spring/summer (0.23 vs. 0.15 inHg; P < 0.001); however, variability in INRs for the corresponding seasons was not significant (P = 0.136). No significant difference was detected in the proportions of nontherapeutic INRs among the different seasons (P = 0.371). No correlation was observed between atmospheric pressure changes and INR variability. These findings refute the anecdotal experience seen in our anticoagulation clinic.

  20. Atmospheric Pressure Patterns Before and During Dust Storm

    NASA Image and Video Library

    2012-11-27

    This graph compares a typical daily pattern of changing atmospheric pressure blue with the pattern during a regional dust storm hundreds of miles away red. The data are by the Rover Environmental Monitoring Station REMS on NASA Curiosity rover.

  1. Analysis of Sterilization Effect of Atmospheric Pressure Pulsed Plasma

    SciTech Connect

    Ekem, N.; Akan, T.; Pat, S.; Akgun, Y.; Kiremitci, A.; Musa, G.

    2007-04-23

    We have developed a new technology, the High Voltage Atmospheric Pressure Pulsed Plasma (HVAPPP), for bacteria killing. The aim of this paper is to present a simple device to generate plasma able to kill efficiently bacteria.

  2. Measuring Viscosities of Gases at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  3. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization

    NASA Astrophysics Data System (ADS)

    Vaikkinen, Anu; Kauppila, Tiina J.; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M+. decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques.

  4. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  5. Influence of atmospheric pressure on infrarenal abdominal aortic aneurysm rupture.

    PubMed

    Robert, Nicolas; Frank, Michael; Avenin, Laure; Hemery, Francois; Becquemin, Jean Pierre

    2014-04-01

    Meteorologic conditions have a significant impact on the occurrence of cardiovascular events. Previous studies have shown that abdominal aortic aneurysm rupture (AAAR) may be associated with atmospheric pressure, with conflicting results. Therefore, we aimed to further investigate the nature of the correlation between atmospheric pressure variations and AAAR. Hospital admissions related to AAAR between 2005-2009 were assessed in 19 districts of metropolitan France and correlated with geographically and date-matched mean atmospheric pressures. In parallel and from 2005-2009, all fatal AAARs as reported by death certificates were assessed nationwide and correlated to local atmospheric pressures at the time of aortic rupture. Four hundred ninety-four hospital admissions related to AAAR and 6,358 deaths nationwide by AAAR were identified between 2005-2009. Both in-hospital ruptures and aneurysm-related mortality had seasonal variations, with peak/trough incidences in January and June, respectively. Atmospheric pressure peaks occurred during winter. Univariate analysis revealed a significant association (P < 0.001) of high mean atmospheric pressure values and AAAR. After multivariate analysis, mean maximum 1-month prerupture atmospheric pressure had a persistent correlation with both in-hospital relative risk (1.05 [95% confidence interval: 1.03-1.06]; P < 0.0001) and aneurysm rupture-related mortality relative risk (1.02 [95% confidence interval: 1.01-1.03]; P < 0.0001). The annual incidence of AAAR is nonhomogeneous with a peak incidence in winter, and is independently associated with mean maximum 1-month prerupture atmospheric pressure. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  7. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    NASA Astrophysics Data System (ADS)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  8. Microwave-excited microplasma thruster with helium and hydrogen propellants

    NASA Astrophysics Data System (ADS)

    Takahashi, Takeshi; Takao, Yoshinori; Ichida, Yugo; Eriguchi, Koji; Ono, Kouichi

    2011-06-01

    Microplasma thruster of electrothermal type has been investigated with feed or propellant gases of He and H2. The thruster consisted of an azimuthally symmetric microwave-excited microplasma source 1.5 mm in diameter and 10 mm long with a rod antenna on axis, and a converging-diverging micronozzle 1 mm long with a throat 0.2 mm in diameter. Surface wave-excited plasmas were established by 4.0-GHz microwaves at powers of ≤ 6 W, with the source pressure in the range 0.5-12 kPa at flow rates of 2-70 sccm. The microplasma generation, micronozzle flow, and thrust performance with He were numerically analyzed by using a two-dimensional fluid model, coupled with an electromagnetic model for microwaves interacting with plasmas in the source region. In experiments, the plasma electron density and gas temperature in the microplasma source were measured at around the top of the microwave antenna, or just upstream of the micronozzle inlet, by optical emission spectroscopy with a small amount of additive gases of H2 and N2. In the case of He propellant, the Stark broadening of H Balmer-β line and the vibronic spectrum of N2 2nd positive (0, 2) band indicated that the electron density was in the range (2-5)×1019m-3 and the gas or rotational temperature was in the range 600-700 K. The thrust performance was also measured by using a target-type microthrust stand, giving a thrust in the range 0.04-0.51 mN, a specific impulse in the range 150-270 s, and a thrust efficiency in the range 2%-12%. These experimental results were consistent with those of numerical analysis, depending on microwave power and gas flow rate. Similar plasma characteristics and thrust performance were obtained with H2 propellant, where the specific impulse of ≤ 450 s was more than 1.5 times higher than that with He, owing to a difference in mass between He and H2. A comparison with previous studies with Ar propellant [T. Takahashi et al., Phys. Plasmas 16, 083505 (2009)] indicated that in the presence as

  9. Microwave-excited microplasma thruster with helium and hydrogen propellants

    SciTech Connect

    Takahashi, Takeshi; Takao, Yoshinori; Ichida, Yugo; Eriguchi, Koji; Ono, Kouichi

    2011-06-15

    Microplasma thruster of electrothermal type has been investigated with feed or propellant gases of He and H{sub 2}. The thruster consisted of an azimuthally symmetric microwave-excited microplasma source 1.5 mm in diameter and 10 mm long with a rod antenna on axis, and a converging-diverging micronozzle 1 mm long with a throat 0.2 mm in diameter. Surface wave-excited plasmas were established by 4.0-GHz microwaves at powers of {<=} 6 W, with the source pressure in the range 0.5-12 kPa at flow rates of 2-70 sccm. The microplasma generation, micronozzle flow, and thrust performance with He were numerically analyzed by using a two-dimensional fluid model, coupled with an electromagnetic model for microwaves interacting with plasmas in the source region. In experiments, the plasma electron density and gas temperature in the microplasma source were measured at around the top of the microwave antenna, or just upstream of the micronozzle inlet, by optical emission spectroscopy with a small amount of additive gases of H{sub 2} and N{sub 2}. In the case of He propellant, the Stark broadening of H Balmer-{beta} line and the vibronic spectrum of N{sub 2} 2nd positive (0, 2) band indicated that the electron density was in the range (2-5)x10{sup 19}m{sup -3} and the gas or rotational temperature was in the range 600-700 K. The thrust performance was also measured by using a target-type microthrust stand, giving a thrust in the range 0.04-0.51 mN, a specific impulse in the range 150-270 s, and a thrust efficiency in the range 2%-12%. These experimental results were consistent with those of numerical analysis, depending on microwave power and gas flow rate. Similar plasma characteristics and thrust performance were obtained with H{sub 2} propellant, where the specific impulse of {<=} 450 s was more than 1.5 times higher than that with He, owing to a difference in mass between He and H{sub 2}. A comparison with previous studies with Ar propellant [T. Takahashi et al., Phys. Plasmas

  10. Biomedical applications and diagnostics of atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Petrović, Z. Lj; Puač, N.; Lazović, S.; Maletić, D.; Spasić, K.; Malović, G.

    2012-03-01

    Numerous applications of non-equilibrium (cold, low temperature) plasmas require those plasmas to operate at atmospheric pressure. Achieving non-equilibrium at atmospheric pressure is difficult since the ionization growth is very fast at such a high pressure. High degree of ionization on the other hand enables transfer of energy between electrons and ions and further heating of the background neutral gas through collisions between ions and neutrals. Thus, all schemes to produce non-equilibrium plasmas revolve around some form of control of ionization growth. Diagnostics of atmospheric pressure plasmas is difficult and some of the techniques cannot be employed at all. The difficulties stem mostly from the small size. Optical emission spectroscopy and laser absorption spectroscopy require very high resolution in order to resolve the anatomy of the discharges. Mass analysis is not normally applicable for atmospheric pressure plasmas, but recently systems with triple differential pumping have been developed that allow analysis of plasma chemistry at atmospheric pressures which is essential for numerous applications. Application of such systems is, however, not free from problems. Applications in biomedicine require minimum heating of the ambient air. The gas temperature should not exceed 40 °C to avoid thermal damage to the living tissues. Thus, plasmas should operate at very low powers and power control is essential. We developed unique derivative probes that allow control of power well below 1 W and studied four different sources, including dielectric barrier discharges, plasma needle, atmospheric pressure jet and micro atmospheric pressure jet. The jet operates in plasma bullet regime if proper conditions are met. Finally, we cover results on treatment of bacteria and human cells as well as treatment of plants by plasmas. Localized delivery of active species by plasmas may lead to a number of medical procedures that may also involve removal of bacteria, fungi and

  11. A comparison of continuum and kinetic simulations of microplasmas integrated with high secondary yield cathodes

    NASA Astrophysics Data System (ADS)

    Alamatsaz, Arghavan; Verma, Abhishek Kumar; Venkattraman, Ayyaswamy

    2016-10-01

    During the last two decades, microplasmas have become an active area of research in the field of low-temperature plasma science and engineering with a wide range of applications including electronics, nanomaterial synthesis and metamaterials to name a few. Kinetic and continuum methods are commonly employed numerical simulation techniques to study the low temperature plasmas. The uncertainty and imprecision associated with input parameters used in these models impose a constraint on fidelity of the simulation results. In this work, these computational techniques are compared in the context of modeling microplasmas driven by cathodes with high secondary electron emission coefficient. Simulations of argon microplasmas operating at a moderate pd (pressure*distance between electrodes) are performed using particle-in-cell with Monte Carlo collisions (PIC-MCC), and fluid model using the full momentum equations for both electrons and ions. Results obtained for plasma density, potential, electric field and electron temperature using continuum simulations are compared with the corresponding PIC-MCC simulations as benchmark. These numerical experiments provide insights on importance of input parameters in fluid model for high fidelity simulation of microplasma applications.

  12. Atmospheric pressure fluctuations and oxygen enrichment in waste tanks

    SciTech Connect

    Kurzeja, R.J.; Weber, A.H.

    1993-07-01

    During In-Tank Precipitation (ITP) processing radiolytic decomposition of tetraphenylborate and water can produce benzene and hydrogen, which, given sufficiently high oxygen concentrations, can deflagrate. To prevent accumulations of benzene and hydrogen and avoid deflagration, continuous nitrogen purging is maintained. If the nitrogen purging is interrupted by, for example, a power failure, outside air will begin to seep into the tank through vent holes and cracks. Eventually a flammable mixture of benzene, hydrogen, and oxygen will occur (deflagration). However, this process is slow under steady-state conditions (constant pressure) and mechanisms to increase the exchange rate with the outside atmosphere must be considered. The most important mechanism of this kind is from atmospheric pressure fluctuations in which an increase in atmospheric pressure forces air into the tank which then mixes with the hydrogen-benzene mixture. The subsequent decrease in atmospheric pressure causes venting from the tank of the mixture -- the net effect being an increase in the tank`s oxygen concentration. Thus, enrichment occurs when the atmospheric pressure increases but not when the pressure decreases. Moreover, this natural atmospheric {open_quotes}pumping{close_quotes} is only important if the pressure fluctuations take place on a time scale longer than the characteristic mixing time scale (CMT) of the tank. If pressure fluctuations have a significantly higher frequency than the CMT, outside air will be forced into the tank and then out again before any significant mixing can occur. The CMT is not known for certain, but is estimated to be between 8 and 24 hours. The purpose of this report is to analyze yearly pressure fluctuations for a five year period to determine their statistical properties over 8 and 24-hour periods. The analysis also includes a special breakdown into summer and winter seasons and an analysis of 15-minute data from the SRTC Climatology Site.

  13. A Spectacular Experiment Exhibiting Atmospheric Pressure

    ERIC Educational Resources Information Center

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  14. A Spectacular Experiment Exhibiting Atmospheric Pressure

    ERIC Educational Resources Information Center

    Le Noxaïc, Armand

    2014-01-01

    The experiment described here is fairly easy to reproduce and dramatically shows the magnitude of ambient air pressure. Two circular plates of aluminum are applied one against the other. How do you make their separation very difficult? With only the help of an elastic band! You don't have to use a vacuum pump for this experiment.

  15. Effect of N2 microplasma treatment on initial growth of GaN by metal-organic molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Suzuki, Yohei; Kusakabe, Yasuhiro; Uchiyama, Shota; Maruyama, Takahiro; Naritsuka, Shigeya; Shimizu, Kazuo

    2016-08-01

    N2 atmospheric microplasma was applied to improve the yields and reproducibility of the initial growth of GaN by metal-organic molecular beam epitaxy (MOMBE). The plasma treatment was found to be effective in cleaning the surface, and excellent flat growth was achieved even in the early stage of the growth. The effect of the air exposure after plasma treatment was also studied, and the yield of the growth was found to be largely decreased by the air exposure even after the treatment. Therefore, the oxidation of the substrate is one of main causes of the poor initial growth and the installation of the microplasma equipment in the MBE loading chamber is useful for suppressing the oxidation after the treatment. Atomic force microscopy (AFM) measurement shows that the microplasma treatment is also effective for undoing the surface double steps through etching, which is helpful for a very smooth layer-by-layer growth in the early stage of growth.

  16. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    SciTech Connect

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D.; Kewitz, T.; Sperka, J.

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  17. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    PubMed Central

    Schäfer, J.; Foest, R.; Reuter, S.; Kewitz, T.; Šperka, J.; Weltmann, K.-D.

    2012-01-01

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  18. Unusual neurological syndrome induced by atmospheric pressure change.

    PubMed

    Ptak, Judy A; Yazinski, Nancy A; Block, Clay A; Buckey, Jay C

    2013-05-01

    We describe a case of a 46-yr-old female who developed hypertension, tachycardia, dysarthria, and leg weakness provoked by pressure changes associated with flying. Typically during the landing phase of flight, she would feel dizzy and note that she had difficulty with speech and leg weakness. After the flight the leg weakness persisted for several days. The symptoms were mitigated when she took a combined alpha-beta blocker (labetalol) prior to the flight. To determine if these symptoms were related to atmospheric pressure change, she was referred for testing in a hyperbaric chamber. She was exposed to elevated atmospheric pressure (maximum 1.2 ATA) while her heart rate and blood pressure were monitored. Within 1 min she developed tachycardia and hypertension. She also quickly developed slurred speech, left arm and leg weakness, and sensory changes in her left leg. She was returned to sea level pressure and her symptoms gradually improved. A full neurological workup has revealed no explanation for these findings. She has no air collections, cysts, or other anatomic findings that could be sensitive to atmospheric pressure change. The pattern is most consistent with a vascular event stimulated by altitude exposure. This case suggests that atmospheric pressure change can produce neurological symptoms, although the mechanism is unknown.

  19. Modelling of microwave-driven micro-plasmas in HCPCF

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Leroy, O.; Boisse-Laporte, C.; Leprince, P.; Debord, B.; Gerome, F.; Jamier, R.; Benabid, F.

    2012-10-01

    New UV sources based on microwave-driven micro-plasmas filling a Hollow-Core Photonic Crystal Fibre (HCPCF) [1], exhibit an unprecedented compactness, flexibility, low-cost and high conversion efficiency. The micro-plasma (>10^14 cm-3 electron density, estimated by electromagnetic calculations) is produced by a surface-wave discharge (2.45 GHz frequency) in argon, at 1000-1400 K gas temperatures (measured by OES diagnostics). Our first approach to simulate this system replaces the cladding structure of the fibre (air-holes region) by a capillary cylindrical quartz tube. Simulations use a one-dimensional (radial) stationary model that solves the fluid transport equations for electrons and positive ions, the electron mean energy transport equations, Poisson's and Maxwell's equations for the fields and the gas energy balance equation, coupled to the electron Boltzmann equation for the calculation of the relevant electron parameters [2,3]. We analyze the modification of the plasma with changes in the work conditions, presenting simulations for various HCPCF core radii (50--500 μm) and electron densities (1--5x10^14 cm-3), at 1mbar pressure. [1] B. Debord et al, ECOC conference Mo.2.LeCervin.5. (2011) [2] L.L. Alves et al, Phys. Rev. E 79, 016403 (2009) [3] J. Greg'orio et al, Plasma Sources Sci. Technol. 21, 015013 (2012)

  20. Decomposition of Chemical Chain Molecules with Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Tansli, Murat; Tasal, Erol

    2016-10-01

    Chemical chain molecules' decomposition is an interesting subject area for the atmospheric pressure plasma applications. The effects of the atmospheric pressure argon plasma on 4-((2-methoxyphenyl)Diazenyl)Benzene-1,3,-Diol molecule at room temperature are investigated. This molecule is one of the industrial dye molecules used widely. When considering the ecological life, this molecule will be very harmful and danger. We suggest a different, easy and useful decomposing method for such molecules. Atmospheric pressure plasma jet was principally treated for this decomposing of the molecule. Fourier transform infrared spectrometry (FT-IR) was used to characterization of the molecule after the plasma application to molecule in liquid phase with ethanol and methanol solvents. The atmospheric-pressure plasma jet of argon (Ar) as non-equilibrium has been formed by ac-power generator with frequency - 24 kHz and voltage - 12 kV. Characterizations for solutions prepared with ethanol and methanol solvents of molecule have been examined after applying (duration: 3 minutes) the atmospheric pressure plasma jet. The molecule was broken at 6C-7N =8N-9C stretching peak after the plasma treatment. The new plasma photo-products for ethanol and methanol solutions were produced as 6C-7N-8N =9C (strong, varying) and 12C =17O (strong, wide) stretching peaks.

  1. Effect of atmospheric pressure on hearing in normal subjects.

    PubMed

    Kitahara, M; Ozawa, H; Kodama, A; Izukura, H; Inoue, S; Uchida, K

    1994-01-01

    Hearing is assumed to be altered during or immediately after a change in atmospheric pressure, although this has not been tested experimentally. We used a soundproof pressure chamber to examine the effect of alterations in atmospheric pressure on hearing in 26 normal healthy subjects. The subjects were placed in the soundproof pressure chamber in a supine position and instructed to actively equilibrate middle ear pressure or to abstain from doing so. When the pressure was changed to +/- 500 mmH2O at 33 mmH2O/s the results were as follows: When subjects did not equilibrate middle ear pressure, air conduction at low frequency tones increased more than bone conduction. The degree of deterioration in hearing was greater when the chamber pressure was increased (descent) than where pressure was decreased (ascent). When the subjects equilibrated middle ear pressure, little change in the levels of air or bone conduction was observed. Most of the deterioration in bone conduction was considered to reflect functional loss due to increased stiffness and damping of the sound transmission mechanism.

  2. Surface cleaning of metal wire by atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-11-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  3. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  4. Carbon nanotube-enhanced performance of microplasma devices

    NASA Astrophysics Data System (ADS)

    Park, S.-J.; Eden, J. G.; Park, K.-H.

    2004-05-01

    Incorporating multiwall carbon nanotubes (CNTs) directly into the cylindrical cathode of Ni screen/BN/Ni microplasma devices significantly improves all device performance parameters—operating and ignition voltages, as well as radiative efficiency. Having a cathode diameter of 200 μm, these devices exhibit operating voltages as much as 30 V (˜22%) lower than those required for an identical structure without CNTs. For Ne pressures of 100-300 Torr, ignition voltages are reduced by 14%-18% with the introduction of CNTs. In contrast, radiative efficiencies in the 300-800 nm spectral region are increased with CNTs by 6%-9% over the entire pressure range studied (200-600 Torr Ne). Voltage-current characteristics for two device configurations suggest that electrons generated within the cathode microcavity by CNT field emission are most effective in impacting device performance.

  5. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  6. Plant adaptation to low atmospheric pressures: potential molecular responses.

    PubMed

    Ferl, Robert J; Schuerger, Andrew C; Paul, Anna-Lisa; Gurley, William B; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  7. Is atmospheric pressure change an Independent risk factor for hemoptysis?

    PubMed

    Araz, Omer; Ucar, Elif Yilmazel; Akgun, Metin; Aydin, Yener; Meral, Mehmet; Saglam, Leyla; Kaynar, Hasan; Gorguner, Ali Metin

    2014-05-01

    Hemoptysis is one of the most important and challenging symptoms in pulmonary medicine. Because of the increased number of patients with hemoptysis in certain periods of the year, we aimed to investigate whether atmospheric changes have an effect on the development of hemoptysis with or without a secondary cause. The data of patients presenting with hemoptysis between January 2006 and December 2011 were analyzed. Data on the daily atmospheric pressure (hectopascal, hPa), relative humidity (%), and temperature ((o) C) during that time were obtained. A total of 232 patients with hemoptysis, 145 male (62.5%) and 87 female (37.5%) with an average age of 48.1(±17.6), were admitted to our hospital between 2006 and 2011. The highest admission rates were in the spring season, the highest in May (n=37, 15.9%), and the lowest admission rates were in December (n=10, 4.3%). A statistically significant negative correlation was found between the number of hemoptysis cases and mean atmospheric pressure but no relative humidity or outdoor temperature. Hemoptysis is very much influenced by weather factors; in particular, low atmospheric pressures significantly affect the development of hemoptysis. Fluctuations in atmospheric pressure may also play a role in hemoptysis.

  8. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-05-01

    We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  9. Peptide Fragmentation Induced by Radicals at Atmospheric Pressure

    PubMed Central

    Vilkov, Andrey N.; Laiko, Victor V.; Doroshenko, Vladimir M.

    2009-01-01

    A novel ion dissociation technique, which is capable of providing an efficient fragmentation of peptides at essentially atmospheric pressure conditions, is developed. The fragmentation patterns observed often contain c-type fragments that are specific to ECD/ETD, along with the y-/b- fragments that are specific to CAD. In the presented experimental setup, ion fragmentation takes place within a flow reactor located in the atmospheric pressure region between the ion source and the mass spectrometer. According to a proposed mechanism, the fragmentation results from the interaction of ESI-generated analyte ions with the gas-phase radical species produced by a corona discharge source. PMID:19034885

  10. A simplified nitrogen laser setup operated at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ruangsri, Artit; Wungmool, Piyachat; Tesana, Siripong; Suwanatus, Suchat; Hormwantha, Tongchai; Chiangga, Surasak; Luengviriya, Chaiya

    2015-07-01

    A transversely excited atmospheric pressure nitrogen laser (TEA N2 Laser) is a molecular pulse gas laser, operated at atmospheric pressure, which generates an electromagnetic wave in ultraviolet wavelength of 337.1 nm. It can operate without an optical resonator. We present a TEA N2 laser setup excited by an electronic discharge circuit known as the Blumlein circuit. Our setup is composed of simple components commonly found in everyday life. The setup can be utilized in classroom to demonstrate the dependence of the laser intensity on the flow rate of nitrogen gas.

  11. PPI/HASI Pressure Measurements in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    M'akinen, J. T. T.; Harri, A.-M.; Siili, T.; Lehto, A.; Kahanp'a'a, H.; Genzer, M.; Leppelmeier, G. W.; Leinonen, J.

    2005-08-01

    The Huygens probe descended through the atmosphere of Titan on January 14, 2005, providing an excellent set of observations. As a part of the Huygens Atmospheric Structure Instrument (HASI) measuring several variables, including acceleration, pressure, temperature and atmospheric electricity, the Pressure Profile Instrument (PPI) provided by FMI commenced operations after the deployment of the main parachute and jettisoning of the heat shield at an altitude of about 160 km. Based on aerodynamic considerations, PPI measured the total pressure with a Kiel probe at the end of a boom, connected to the sensor electronics inside the probe through an inlet tube. The instrument performed flawlessly during the 2.5 hour descent and the 0.5 hour surface phase before the termination of radio link between Huygens and the Cassini orbiter. We present an analysis of the pressure data including recreation of the pressure, temperature, altitude, velocity and acceleration profiles as well as an estimate for the level of atmospheric activity on the surface of Titan.

  12. Engineering a laser remote sensor for atmospheric pressure and temperature

    NASA Technical Reports Server (NTRS)

    Kalshoven, J. E., Jr.; Korb, C. L.

    1978-01-01

    A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

  13. Characterization of a microwave-excited atmospheric-pressure argon plasma jet using two-parallel-wires transmission line resonator

    NASA Astrophysics Data System (ADS)

    Choi, J.; Eom, I. S.; Kim, S. J.; Kwon, Y. W.; Joh, H. M.; Jeong, B. S.; Chung, T. H.

    2017-09-01

    This paper presents a method to produce a microwave-excited atmospheric-pressure plasma jet (ME-APPJ) with argon. The plasma was generated by a microwave-driven micro-plasma source that uses a two-parallel-wire transmission line resonator (TPWR) operating at around 900 MHz. The TPWR has a simple structure and is easier to fabricate than coaxial transmission line resonator (CTLR) devices. In particular, the TPWR can sustain more stable ME-APPJ than the CTLR can because the gap between the electrodes is narrower than that in the CTLR. In experiments performed with an Ar flow rate from 0.5 to 8.0 L.min-1 and an input power from 1 to 6 W, the rotational temperature was determined by comparing the measured and simulated spectra of rotational lines of the OH band and the electron excitation temperature determined by the Boltzmann plot method. The rotational temperature obtained from OH(A-X) spectra was 700 K to 800 K, whereas the apparent gas temperature of the plasma jet remains lower than ˜325 K, which is compatible with biomedical applications. The electron number density was determined using the method based on the Stark broadening of the hydrogen Hβ line, and the measured electron density ranged from 6.5 × 1014 to 7.6 × 1014 cm-3. TPWR ME-APPJ can be operated at low flows of the working gas and at low power and is very stable and effective for interactions of the plasma with cells.

  14. Optimization of micropipette fabrication by laser micromachining for application in an ultrafine atmospheric pressure plasma jet using response surface methodology

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, Jingquan; Yang, Bin; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2016-06-01

    The optimization of the laser micromachining process for special tapered micropipettes was investigated using response surface methodology. Three process parameters for the CO2 laser-based micropipette puller (P-2000, Sutter Instrument) were chosen as variables, namely heat, velocity and pull. The targeted length L TVS of the tapered variant section with a tip diameter of 10 μm was taken as a response. The optimum process parameters with L TVS of 7.3 mm were determined by analyzing the response surface three-dimension surface plots. The central composite design was selected to optimize the process variables, and the experimental data were fitted into a reduced cubic polynomial model. The high R 2 value (99.66%) and low coefficient of variation (0.73%) indicated the statistical significance of the model and good precision for the experiment. The optimization result showed that the best parameters were with the heat, velocity and pull values of 850, 53 and 170, respectively. The result was verified by a CO2 laser-based micropipette puller three times with length L TVS at 7.26 mm, 7.35 mm and 7.36 mm with the same optimized parameters. Then, the application to the ultrafine atmospheric pressure He/O2 plasma jets was carried out and micro-hole etching of the parylene-C film was realized with length L TVS at 6.29 mm, 7.35 mm and 8.02 mm. The results showed that the micro-plasma jet with an L TVS of 7.35 mm had the minimum applied voltage of 12.7 kV and the minimum micro-etching diameter of 45 μm with the deepest etching depth of 2.8 μm.

  15. Influences of oxygen content on characteristics of atmospheric pressure dielectric barrier discharge in argon/oxygen mixtures

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Wang, Ruixue; Yang, Jing; Zhang, Cheng

    2016-04-01

    The dielectric barrier discharge generated in argon/oxygen mixtures at atmospheric pressure is investigated, and the effect of oxygen content on discharge characteristics at applied voltage of 4.5 kV is studied by means of electrical measurements and optical diagnostics. The results show that the filaments in the discharge regime become more densely packed with the increasing in the oxygen content, and the distribution of the filaments is more uniform in the gap. An increase in the oxygen content results in a decrease in the average power consumed and transported charges, while there exists an optimal value of oxygen content for the production of oxygen radicals. The maximal yield of oxygen radicals is obtained in mixtures of argon with 0.3% oxygen addition, and the oxygen radicals then decrease with the further increase in the oxygen content. The oxygen/argon plasma is employed to modify surface hydrophilicity of the PET films to estimate the influence of oxygen content on the surface treatment, and the static contact angles before and after the treatments are measured. The lowest contact angle is obtained at a 0.3% addition of oxygen to argon, which is in accordance with the optimum oxygen content for oxygen radicals generation. The electron density and electron temperature are estimated from the measured current and optical emission spectroscopy, respectively. The electron density is found to reduce significantly at a higher oxygen content due to the increased electron attachment, while the estimated electron temperature do not change apparently with the oxygen content. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  16. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    PubMed

    Azcárate, T; Mendoza, B

    2017-03-30

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  17. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.

    2017-03-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  18. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  19. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Ann Lin, Pin; Xue, Albert; Hao, Boyi; Khin Yap, Yoke; Sankaran, R. Mohan

    2013-10-01

    Clusters of diamond-phase carbon, known as nanodiamonds, exhibit novel mechanical, optical and biological properties that have elicited interest for a wide range of technological applications. Although diamond is predicted to be more stable than graphite at the nanoscale, extreme environments are typically used to produce nanodiamonds. Here we show that nanodiamonds can be stably formed in the gas phase at atmospheric pressure and neutral gas temperatures <100 °C by dissociation of ethanol vapour in a novel microplasma process. Addition of hydrogen gas to the process allows in flight purification by selective etching of the non-diamond carbon and stabilization of the nanodiamonds. The nanodiamond particles are predominantly between 2 and 5 nm in diameter, and exhibit cubic diamond, n-diamond and lonsdaleite crystal structures, similar to nanodiamonds recovered from meteoritic residues. These results may help explain the origin of nanodiamonds in the cosmos, and offer a simple and inexpensive route for the production of high-purity nanodiamonds.

  20. Formation of nanodiamonds at near-ambient conditions via microplasma dissociation of ethanol vapour.

    PubMed

    Kumar, Ajay; Ann Lin, Pin; Xue, Albert; Hao, Boyi; Khin Yap, Yoke; Sankaran, R Mohan

    2013-01-01

    Clusters of diamond-phase carbon, known as nanodiamonds, exhibit novel mechanical, optical and biological properties that have elicited interest for a wide range of technological applications. Although diamond is predicted to be more stable than graphite at the nanoscale, extreme environments are typically used to produce nanodiamonds. Here we show that nanodiamonds can be stably formed in the gas phase at atmospheric pressure and neutral gas temperatures <100 °C by dissociation of ethanol vapour in a novel microplasma process. Addition of hydrogen gas to the process allows in flight purification by selective etching of the non-diamond carbon and stabilization of the nanodiamonds. The nanodiamond particles are predominantly between 2 and 5 nm in diameter, and exhibit cubic diamond, n-diamond and lonsdaleite crystal structures, similar to nanodiamonds recovered from meteoritic residues. These results may help explain the origin of nanodiamonds in the cosmos, and offer a simple and inexpensive route for the production of high-purity nanodiamonds.

  1. Study of a 2.45 GHz microwave micro-plasma in air

    NASA Astrophysics Data System (ADS)

    Gregorio, J.; Synek, P.; Alves, L. L.; Boisse-Laporte, C.; Leprince, P.; Leroy, O.; Teulé-Gay, L.

    2007-10-01

    This paper studies a 2.45 GHz microwave micro-plasma source, working in air at atmospheric pressure. The discharge, similar to the one developed by Kono et al [1], is sustained within a slit (50-200 μm wide and 1.4cm width) delimited by two metallic blades placed at one end of a microstrip line. At the other end, a movable short circuit works as an impedance matching unit. The plasma source is placed inside a microwave absorbent box. The power coupling is analyzed theoretically by using the commercial software CST Microwave Studio, and experimentally by taking the ratio of the reflected to incident power, with and without plasma and for different slit sizes. A spatially resolved optical emission spectroscopy study was also realized, using the SPECAIR software [2] to deduce the gas temperature Tg along the plasma width. In general, Tg is found between 650 and 1650 K, for 60-140W input power and 50-200 μm slit size. [1] A. Kono, T. Sugiyama, T. Goto, H. Furuhashi, Y. Uchida, Jpn. J. Appl. Phys. Vol. 40 (2001) pp. L238-L241 [2] http://www.specair-radiation.net/

  2. On the permanent hip-stabilizing effect of atmospheric pressure.

    PubMed

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA.

  3. Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2001-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  4. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  5. Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2001-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  6. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  7. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  8. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  9. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  10. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    ERIC Educational Resources Information Center

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  11. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  12. Atmospheric pressure and suicide attempts in Helsinki, Finland.

    PubMed

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods (P < 0.001), and may explain the clustering of suicide attempts. Men seem to be more vulnerable to attempt suicide under low atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  13. Atmospheric pressure and suicide attempts in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods ( P < 0.001), and may explain the clustering of suicide attempts. Men seem to be more vulnerable to attempt suicide under low atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  14. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    ERIC Educational Resources Information Center

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  15. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  16. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clement, F.; Antimisiaris, S. G.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  17. EDITORIAL Metal vapour in atmospheric-pressure arcs Metal vapour in atmospheric-pressure arcs

    NASA Astrophysics Data System (ADS)

    Murphy, Anthony B.

    2010-11-01

    Metal vapour has a significant, and in some cases dominant, influence in many applications of atmospheric-pressure plasmas, including arc welding, circuit interruption and mineral processing. While the influence of metal vapour has long been recognized, it is only recently that diagnostic and computational tools have been sufficiently well-developed to allow this influence to be more thoroughly examined and understood. Some unexpected findings have resulted: for example, that the presence of metal vapour in gas-metal arc welding leads to local minima in the temperature and current density in the centre of the arc. It has become clear that the presence of metal vapour, as well as having intrinsic scientific interest, plays an important role in determining the values of critical parameters in industrial applications, such as the weld penetration in arc welding and the extinction time in circuit breakers. In gas-tungsten arc welding, metal vapour concentrations are formed by evaporation of the weld pool, and are relatively low, typically at most a few per cent. Moreover, the convective flow of the plasma near the weld pool tends to direct the metal vapour plume radially outwards. In gas-metal arc welding, in contrast, metal vapour concentrations can reach over 50%. In this case, the metal vapour is produced mainly by evaporation of the wire electrode, and the strong downwards convective flow below the electrode concentrates the metal vapour in the central region of the arc. The very different metal concentrations and distributions in the two welding processes mean that the metal vapour has markedly different influences on the arc. In gas-tungsten arc welding, the current density distribution is broadened near the weld pool by the influence of the metal vapour on the electrical conductivity of the plasma, and the arc voltage is decreased. In contrast, in gas-metal arc welding, the arc centre is cooled by increased radiative emission and the arc voltage is increased. In

  18. Model of a stationary microwave argon discharge at atmospheric pressure

    SciTech Connect

    Zhelyazkov, I.; Pencheva, M.; Benova, E.

    2008-03-19

    The many applications of microwave gas discharges at atmospheric pressure in various fields of science, technology and medicine require an adequate model of these discharges. Such a model is based on the electromagnetic wave's propagation properties and on the elementary processes in the discharge bulk. In contrast to the microwave discharges at low-gas pressures, where many elementary processes might be ignored because of their negligible contribution to the electron and heavy particle's balance equations, for such discharges at atmospheric pressure the consideration of a large number of collisional processes is mandatory. For the build of a successful discharge-column model one needs three important quantities, notably the power {theta} necessary for sustaining an electron - ion pair, electron - neutral collision frequency for momentum transfer v{sub en}, and gas temperature T{sub g}. The first two key parameters are obtained by a collisional-radiative model of the argon at atmospheric pressure, while the microwave frequency {omega}/2{pi} = 2.45 GHz, plasma column radius R, gas pressure p and gas temperature T{sub g} are fixed external parameters determined by the experimental conditions. Here, we present a model of a capillary argon microwave plasma column with a length L {approx_equal} 14 cm, sustained by wave power of 110 W - the model yields the longitudinal distributions of the plasma density, expended wave power, wave electric field magnitude, and complex wave number.

  19. Quality characteristics of the radish grown under reduced atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.

    This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.

  20. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.

  1. Heat of freezing for supercooled water: measurements at atmospheric pressure.

    PubMed

    Cantrell, Will; Kostinski, Alexander; Szedlak, Anthony; Johnson, Alexandria

    2011-06-16

    Unlike reversible phase transitions, the amount of heat released upon freezing of a metastable supercooled liquid depends on the degree of supercooling. Although terrestrial supercooled water is ubiquitous and has implications for cloud dynamics and nucleation, measurements of its heat of freezing are scarce. We have performed calorimetric measurements of the heat released by freezing water at atmospheric pressure as a function of supercooling. Our measurements show that the heat of freezing can be considerably below one predicted from a reversible hydrostatic process. Our measurements also indicate that the state of the resulting ice is not fully specified by the final pressure and temperature; the ice is likely to be strained on a variety of scales, implying a higher vapor pressure. This would reduce the vapor gradient between supercooled water and ice in mixed phase atmospheric clouds. © 2011 American Chemical Society

  2. Photoresist Etching by Atmospheric Pressure Uniform-Glow Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Shouguo; Xu, Xiangyu; Zhao, Lingli; Ye, Tianchun

    2007-08-01

    An atmospheric pressure uniform-glow plasma (APUGP) operated by radio-frequency (RF) power at 13.56 MHz has been developed for etching, cleaning, surface treatment, and deposition of thin films among others. This plasma employs a capacitive coupling electrode design and produces a stable, volumetric glow discharge in a large disc area of 150 mm diameter using argon and oxygen mixture gas at atmospheric pressure. Its electrical characteristics were obtained by simultaneous measurements of voltage and current. In addition, typical photoresist-AZ9918 films spin-coated on 4-in. silicon wafers have been etched using this plasma source, which shows promise for replacing low-pressure plasma devices for some existing applications.

  3. Mechanism of hearing disturbance due to alteration in atmospheric pressure.

    PubMed

    Kitahara, M; Kodama, A; Ozawa, H; Izukura, H

    1994-01-01

    We used a soundproof pressure chamber to examine how the changes in atmospheric pressure as experienced in daily life reduces bone conduction in a total of 48 normal adults. The subjects were given special ear plugs that connected external auditory canal to the pressure gauge and a small pump located outside the chamber, and were instructed not to swallow, to avoid active opening of the Eustachian tube. The chamber pressure was increased (or decreased) to +/- 500 mmH2O at a rate of 33 mmH2O/s. Then pressure in the external auditory canal was increased (or decreased) gradually after the chamber pressure had reached +/- 500 mmH2O, to equilibrate the pressure across the ear drum. Bone conduction did not recover the level before increase (or decrease) in the chamber pressure. We conclude that at least a minor part of the deterioration in bone conduction after changes in the chamber pressure was caused by displacement of the round window membrane.

  4. A Micromachined Pressure Sensor with Integrated Resonator Operating at Atmospheric Pressure

    PubMed Central

    Ren, Sen; Yuan, Weizheng; Qiao, Dayong; Deng, Jinjun; Sun, Xiaodong

    2013-01-01

    A novel resonant pressure sensor with an improved micromechanical double-ended tuning fork resonator packaged in dry air at atmospheric pressure is presented. The resonator is electrostatically driven and capacitively detected, and the sensor is designed to realize a low cost resonant pressure sensor with medium accuracy. Various damping mechanisms in a resonator that is vibrating at atmospheric pressure are analyzed in detail, and a formula is developed to predict the overall quality factor. A trade-off has been reached between the quality factor, stress sensitivity and drive capability of the resonator. Furthermore, differential sense elements and the method of electromechanical amplitude modulation are used for capacitive detection to obtain a large signal-to-noise ratio. The prototype sensor chip is successfully fabricated using a micromachining process based on a commercially available silicon-on-insulator wafer and is hermetically encapsulated in a custom 16-pin Kovar package. Preliminary measurements show that the fundamental frequency of the resonant pressure sensor is approximately 34.55 kHz with a pressure sensitivity of 20.77 Hz/kPa. Over the full scale pressure range of 100–400 kPa and the whole temperature range of −20–60 °C, high quality factors from 1,146 to 1,772 are obtained. The characterization of the prototype sensor reveals the feasibility of a resonant pressure sensor packaged at atmospheric pressure.

  5. Atmospheric pressure loading parameters from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  6. Diagnostics of transient non-equilibrium atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter

    2015-09-01

    Atmospheric pressure plasmas have received a renewed interest in last decades for a variety of applications ranging from environmental remediation, material processing and synthesis to envisioned medical applications such as wound healing. While most low pressure plasmas are diffuse, atmospheric pressure plasmas are often filamentary in nature. The existence of these filaments is correlated with strong gradients in plasma properties both in space and time that can significantly affect the plasma chemistry. As these filaments are often randomly appearing in space and time, it poses great challenges for diagnostics often requiring the stabilization of the filament to study the in situ plasma kinetics. In this contribution, diagnostics of a stabilized nanosecond pulsed plasma filament in a pin-pin geometry and a filament in a nanosecond pulsed atmospheric pressure plasma jet will be presented. We will focus on electron kinetics and OH and H radical production in water containing plasmas. The extension of these diagnostics to plasmas in liquids will also be discussed. The author acknowledges support from NSF PHYS1500135, Department of Energy Plasma Science Center through the U.S. Department of Energy, Office of Fusion Energy Sciences (Contract No. DE-SC0001939), University of Minnesota and STW (Netherlands).

  7. Plasma Diagnostics and Thrust Performance Analysis of a Microwave-Excited Microplasma Thruster

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Ono, Kouichi; Takahashi, Kazuo; Eriguchi, Koji

    2006-10-01

    A microwave-excited microplasma source for a miniature electrothermal thruster has been investigated by optical emission spectroscopy and an electrostatic probe. The microplasma source is made of a dielectric tube 10 mm long and 1.5 mm in inner diameter, producing high temperature Ar plasmas in the pressure range from 5 to 40 kPa. Plasma diagnostics showed that higher microwave frequencies and dielectric constants resulted in desirable plasma characteristics: electron densities of 1017-1019 m-3 and rotational temperatures of 700-1800 K at microwave powers below 10 W. Moreover, the temperature increased toward the exit of the plasma chamber where a micronozzle is equipped. Numerical analysis of thrust performance based on the plasma diagnostics indicated that smaller throat diameters of the micronozzle produced better thrust performances: thrusts of 0.98-1.2 mN and specific impulses of 67-81 s.

  8. Influence of Atmospheric Pressure and Composition on LIBS

    SciTech Connect

    Hatch, Jeremy J.; Scott, Jill R.; Effenberger, A. J. Jr.

    2014-03-01

    Most LIBS experiments are conducted at standard atmospheric pressure in air. However, there are LIBS studies that vary the pressure and composition of the gas. These studies have provided insights into fundamentals of the mechanisms that lead to the emission and methods for improving the quality of LIBS spectra. These atmospheric studies are difficult because the effects of pressure and gas composition and interconnected, making interpretation of the results difficult. The influence of pressures below and above 760 Torr have been explored. Performing LIBS on a surface at reduced pressures (<760 Torr) can result in enhanced spectra due to higher resolution, increased intensity, improved signal-to-noise (S/N), and increased ablation. Lower pressures produce increased resolution because the line width in LIBS spectra is predominantly due to Stark and Doppler broadening. Stark broadening is primarily caused from collisions between electrons and atoms, while Doppler broadening is proportional to the plasma temperature. Close examination using a high resolution spectrometer reveals that spectra show significant peak broadening and self-absorption as pressures increase, especially for pressures >760 Torr. During LIBS plasma expansion, energy is lost to the surrounding atmosphere, which reduces the lifetime of the laser plasma. Therefore, reducing the pressure increases the lifetime of the plasma, allowing more light from the laser plasma to be collected; thus, increasing the observed signal intensity. However, if pressures are too low (<10 Torr), then there is a steep drop in LIBS spectral intensity. This loss in intensity is mostly due to a disordered plasma that results from the lack of sufficient atmosphere to provide adequate confinement. At reduced pressures, the plasma expands into a less dense atmosphere, which results in a less dense shock wave. The reduced density in the shock wave results in reduced plasma shielding, allowing more photons to reach the sample

  9. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  10. Atmospheric pressure non-thermal plasma: Sources and applications

    NASA Astrophysics Data System (ADS)

    Napartovich, A. P.

    2008-07-01

    Non-thermal plasma at atmospheric pressure is an inherently unstable object. Nature of discharge plasma instabilities and conditions for observation of uniform non-thermal plasma at atmospheric pressure in different environments will be discussed. Various discharge techniques have been developed, which could support uniform non-thermal plasma with parameters varied in a wide range. Time limitation by plasma instabilities can be overcome by shortening pulse length or by restriction of plasma plug residence time with a fast gas flow. Discharge instabilities leading to formation of filaments or sparks are provoked by a positive feedback between the electric field and plasma density, while the counteracting process is plasma and thermal diffusion. With gas pressure growth the size of plasma fluctuation, which could be stabilized by diffusion, diminishes. As a result, to have long lived uniform plasma one should miniaturize discharge. There exist a number of active methods to organize negative feedback between the electric field and plasma density in order to suppress or, at least, delay the instability. Among them are ballast resistors in combination with electrode sectioning, reactive ballast, electronic feedback, and dielectric barrier across the electric current. The last methods are relevant for ac discharges. In the lecture an overview will be given of different discharge techniques scalable in pressure up to one atmosphere. The interest in this topic is dictated by a potential economic benefit from numerous non-thermal plasma technologies. The spectrum of non-thermal plasma applications is continuously broadening. An incomplete list of known applications includes: plasma-assisted chemical vapor deposition, etching, polymerization, gas-phase synthesis, protective coating deposition, toxic and harmful gas decomposition, destruction of warfare agents, electromagnetic wave shielding, polymer surface modifications, gas laser excitation, odor control, plasma assisted

  11. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  12. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    SciTech Connect

    Vandam, T.M.; Blewitt, G.; Heflin, M.B. ||

    1994-12-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged.

  13. Air plasma jet with hollow electrodes at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-15

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 1 mm diam. The plasma jet device is operated by injecting pressurized air into the electrode hole. The air plasma jet device at average powers less than 5 W exhibits a cold plasma jet of about 2 cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  14. Optimizing a remote sensing instrument to measure atmospheric surface pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Gatley, C.; Flower, D. A.

    1983-01-01

    Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.

  15. Reduced atmospheric pressure in Radish: Alteration of NCER and transpiration at decreased oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Wehkamp, Cara Ann; Stasiak, Michael; Wheeler, Raymond; Dixon, Mike

    Fundamental to the future of space exploration is the development of advanced life support systems capable of maintaining crews for significant periods without re-supply from Earth. Significant research is focused on the development of bioregenerative life support systems to be used in conjunction with the current physico-chemical methods. These bioregenerative life support systems harness natural ecosystem processes and employ plant photosynthesis and transpiration to produce food, oxygen and regenerate water while consuming carbon dioxide. The forthcoming exploration of the Moon and Mars has prompted interest into the effects of hypobaria on plant development. Reduced atmospheric pressures will lessen the pressure gradient between the structure and the local environment thereby decreasing gas leakage and possibly the structural mass of the plant growth facility. In order to establish the optimal specifications for reduced pressure plant growth structures it is essential to determine the atmospheric pressure limits required for conventional plant development and growth. Due to its physiological importance, oxygen will compose a significant portion of these minimal environments. The objective of this study was to test the hypothesis that reduced atmospheric pressure and decreased oxygen partial pressures had no effect on radish productivity. Radishes (Raphanus sativa L. cv. Cherry Bomb II) were grown from seed in the University of Guelph's Hypobaric Plant Growth Chambers for a period of 21 days. Treatments included total pressures of 10, 33, 66 and 96 kPa and oxygen partial pressures of 2, 7, 14 and 20 kPa. Experiments demonstrated that reduced partial pressures of oxygen had a greater effect on radish growth than hypobaria. Results showed a reduction in net carbon exchange rate and transpiration with decreasing oxygen partial pressures leading to diminished productivity. Keywords: hypobaric, radish, oxygen partial pressure, variable pressure chamber

  16. Cu2O nanoparticles synthesis by microplasma

    PubMed Central

    Du, ChangMing; Xiao, MuDan

    2014-01-01

    A simple microplasma method was used to synthesize cuprous oxide (Cu2O) nanoparticles in NaCl–NaOH–NaNO3 electrolytic system. Microplasma was successfully used as the cathode and copper plate was used as the anode. The Cu2O products are characterized by X–ray powder diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The results show that the morphology of Cu2O nanocrystals obtained by this technology is mainly dependent on the electrolytic media, stirring, current density and reaction temperature. The uniform and monodisperse sphere Cu2O nanoparticles with the size about 400 ~ 600 nm can be easily obtained in H2O–ethylene glycol mix–solvent (volume ratio 1:1) and appropriate current density with stirring at room temperature. In addition, the possible mechanism has been reported in the article. And the average energy consumed in producing 1 g Cu2O nanoparticles is 180 kJ. For the flexibility and effectiveness of this microplasma technology, it will have broad application prospects in the realm of nanoscience, energy and environment. PMID:25475085

  17. Medical applications of non-thermal atmospheric pressure plasma

    PubMed Central

    Tanaka, Hiromasa; Hori, Masaru

    2017-01-01

    An innovative approach for producing reactive oxygen and nitrogen species is the use of non-thermal atmospheric pressure plasma. The technique has been applied in a wide variety of fields ranging from the micro-fabrication of electric devices to the treatment of disease. Although non-thermal atmospheric pressure plasmas have been shown to be clinically beneficial for wound healing, blood coagulation, and cancer treatment, the underlying molecular mechanisms are poorly understood. In this review, we describe the current progress in plasma medicine, with a particular emphasis on plasma-activated medium (PAM), which is a solution that is irradiated with a plasma and has broadened the applications of plasmas in medicine. PMID:28163379

  18. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect

    Kim, Kangil; Sik Yang, Sang E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak; Lee, Jong-Soo E-mail: ssyang@ajou.ac.kr; Lee, Jae-Hyeok; Kim, Jae-Ho

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  19. Cellular membrane collapse by atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kim, Kangil; Jun Ahn, Hak; Lee, Jae-Hyeok; Kim, Jae-Ho; Sik Yang, Sang; Lee, Jong-Soo

    2014-01-01

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  20. A decadal precession of atmospheric pressures over the North Pacific

    NASA Astrophysics Data System (ADS)

    Anderson, Bruce T.; Gianotti, Daniel J. S.; Furtado, Jason C.; Di Lorenzo, Emanuele

    2016-04-01

    Sustained droughts over the Northwestern U.S. can alter water availability to the region's agricultural, hydroelectric, and ecosystem service sectors. Here we analyze decadal variations in precipitation across this region and reveal their relation to the slow (~10 year) progression of an atmospheric pressure pattern around the North Pacific, which we term the Pacific Decadal Precession (PDP). Observations corroborate that leading patterns of atmospheric pressure variability over the North Pacific evolve in a manner consistent with the PDP and manifest as different phases in its evolution. Further analysis of the data indicates that low-frequency fluctuations of the tropical Pacific Ocean state energize one phase of the PDP and possibly the other through coupling with the polar stratosphere. Evidence that many recent climate variations influencing the North Pacific/North American sector over the last few years are consistent with the current phase of the PDP confirms the need to enhance our predictive understanding of its behavior.

  1. Cratering mechanics on Venus - Pressure enhancement by the atmospheric 'ocean'

    NASA Technical Reports Server (NTRS)

    Brackett, Robert A.; Mckinnon, William B.

    1992-01-01

    The impedance match technique and EOSs of equations of state (EOSs) of geologically relevant materials are used to investigate cratering mechanics on Venus, specifically, the coupling of impactor kinetic energy and momentum into the target surface. These EOSs are modified to account for multiple shocks. Peak impact pressures from both first reflection and later reverberations are determined. These are compared to values obtained using an atmosphereless model, and the differences between and implications for atmosphere-affected and atmosphereless impacts are discussed.

  2. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    NASA Astrophysics Data System (ADS)

    Bilde, M.; Zardini, A. A.; Hong, J.; Tschiskale, M.; Emanuelsson, E.

    2014-12-01

    The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using thermodynamic modeling. Results are presented and discussed in context of atmospheric gas to particle partitioning.

  3. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    PubMed

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O2), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10(1)-10(6)CFU/cm(2)). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10(4)CFU/cm(2) inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO2 mixtures.

  4. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    PubMed

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  5. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  6. An atmospheric pressure ionography system suitable for mammography.

    PubMed

    Moores, B M; Ramsden, J A; Asbury, D L

    1980-09-01

    Ionography is a possible replacement for silver halide based imaging systems in diagnostic radiology. This type of imaging depends upon the ionisation produced in a gas by incident x-radiation. The ions formed are collected on a plastic foil and the image is made visible by a suitable development process. The physical design properties which can affect sensitivity and image quality of an ionography system are outlined in this paper. Based upon the requirements of adequate sensitivity and resolution an atmospheric pressure ionography system is described which has been designed primarily for use in mammography. Freon 13B1 gas was chosen as the x-ray absorbing medium because it contains a relatively high atomic number atom (bromine, Z = 35) and also has a high density. It is a relatively cheap gas, has a high breakdown potential and has satisfactory resolving capability, particularly when employed at atmospheric pressure with low energy x-ray beams. The performance of the system is discussed in terms of sensitivity and resolution. Problems associated with an atmospheric pressure system are outlined and possible solutions described. Preliminary clinical results obtained with the system are also presented.

  7. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  8. A non-equilibrium diffuse discharge in atmospheric pressure air* A non-equilibrium diffuse discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Laroussi, Mounir; Lu, Xinpei; Malott, Chad M.

    2003-02-01

    The generation and maintenance of non-thermal air plasmas at atmospheric pressure with low power requirements remain formidable challenges. Here, we report on a promising method allowing the production of an air plasma between a planar disc-shaped metal electrode and a second electrode made of a static volume of water contained in a shallow glass dish. Currently, we have used only tap water as one of the electrodes. However, other liquids with low conductivity could also be used. In this paper, the power requirements, gas temperature measurements, and atomic and molecular emission bands of the discharge will be presented. Potential applications of this atmospheric pressure discharge include decontamination, radiation sources, etc.

  9. Time and space variability of spectral estimates of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  10. Solar pressure and molecular decay in cometary atmospheres

    NASA Technical Reports Server (NTRS)

    Beard, D. B.; Whelan, T. A.; Gast, M. A.

    1985-01-01

    The effects of solar pressure and molecular decay on number density in cometary atmospheres are rigorously separated and scale lengths for each are determined from an analysis of observed brightness profiles in the solar and antisolar directions. It is found that the pressure scale length of CN is approximately 160,000 km and that of C2 is approximately 110,000 km. The scale length for molecular decay, heretofore incorrectly inferred from the observational data, is approximately 3 times as long as the pressure scale lengths. It is difficult to determine adequately from observations that extend no more than about 100,000 km from the comet nucleus. The scale length for molecular decay by photodissociation or whatever cause is found to be about 350,000 km for C2 and 500,000 km for CN.

  11. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

  12. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  13. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  14. Benchmark continuum and kinetic simulations of argon microplasmas in the direct current and microwave regimes

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Alamatsaz, Arghavan; Venkattraman, Ayyaswamy

    2017-10-01

    This study presents benchmark comparisons between continuum and kinetic simulations of argon microplasmas operating in the direct current and microwave regimes. Kinetic simulations using the particle-in-cell with Monte Carlo collisions (PIC-MCC) method and continuum simulations using the full-momentum equation for both ions and electrons are performed at various operating conditions in order to study the influence of product of pressure and gap size, pd (for a given gap size), influence of gap size (for a given value of pd) and operating frequency. It is shown that using the electron energy distribution function (EEDF) predicted by zero-dimensional Boltzmann solvers (such as BOLSIG+) in continuum simulations of direct current microplasmas leads to a significant under-prediction of plasma number densities with continuum simulations based on the Maxwellian EEDF performing better particularly for higher values of pd. The discrepancy between kinetic and continuum simulations is attributed to the presence of hot electrons created as a result of secondary emission and subsequent acceleration in the sheath. On the other hand, simulations performed for argon microwave microplasmas operating at 0.5 GHz, 0.8 GHz, 2 GHz and 4 GHz demonstrated that continuum simulations performed using the rate constants from BOLSIG+  showed excellent agreement with kinetic simulations for the plasma density profiles in spite of over-predicting the voltage/power required to achieve a given plasma density.

  15. Optogalvanic spectroscopy with microplasma sources—current status and development towards a lab on a chip

    NASA Astrophysics Data System (ADS)

    Persson, Anders; Berglund, Martin; Khaji, Zahra; Sturesson, Peter; Söderberg, Johan; Thornell, Greger

    2016-10-01

    Miniaturized optogalvanic spectroscopy (OGS) shows excellent prospects for becoming a highly sensitive method for gas analysis in micro total analysis systems. Here, a status report on the current development of microwave-induced microplasma sources for OGS is presented, together with the first comparison of the sensitivity of the method to conventional single-pass absorption spectroscopy. The studied microplasma sources are stripline split-ring resonators, with typical ring radii between 3.5 and 6 mm and operation frequencies around 2.6 GHz. A linear response (R 2  =  0.9999), and a stability of more than 100 s are demonstrated when using the microplasma source as an optogalvanic detector. Additionally, saturation effects at laser powers higher than 100 mW are observed, and the temporal response of the plasma to periodic laser perturbation with repletion rates between 20 Hz and 200 Hz are studied. Finally, the potential of integrating additional functionality with the detector is discussed, with the particular focus on a pressure sensor and a miniaturized combustor to allow for studies of solid samples.

  16. Review of electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to nanomaterials synthesis

    SciTech Connect

    Stauss, Sven Terashima, Kazuo; Muneoka, Hitoshi; Urabe, Keiichiro

    2015-05-15

    Plasma-based fabrication of novel nanomaterials and nanostructures is indispensible for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations, is crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Electric discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. This review discusses an anomaly observed for direct current microplasmas generated near the critical point, a local decrease in the breakdown voltage. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths caused by the high-density fluctuation near the critical point. It is also shown that in the case of dielectric barrier microdischarges generated close to the critical point, the high-density fluctuation of the supercritical fluid persists. The final part of the review discusses the application of discharges generated in supercritical fluids to synthesis of nanomaterials, in particular, molecular diamond—so-called diamondoids—by microplasmas generated inside conventional batch-type and continuous flow microreactors.

  17. A Microwave-Excited Microplasma Thruster: Plasma Diagnostics, Performance Testing, and Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Takao, Yoshinori; Ono, Kouichi; Eriguchi, Koji

    2006-10-01

    Decreasing the scale of propulsion systems is of critical importance on the development of microspacecraft. This paper is concerned with an application of microplasmas to a microthruster, presenting some experimental and numerical results. The microthruster consists of a cylindrical microplasma source 10 mm in length and 1.5 mm in inner diameter and a conical micronozzle fabricated in a 1.0 mm thick quartz plate with a throat diameter of 0.2 mm. The microplasma source produces hot plasmas by 4-GHz microwaves in the pressure range from 5 to 50 kPa, and then the micronozzle converts such high thermal energy into directional kinetic energy as a supersonic jet. Plasma diagnostics and performance testing showed that the electron density, rotational temperature, thrust, and specific impulse obtained were 10^19 m-3, 1000 K, 1.1 mN, and 73 s, respectively, at an Ar/N2 gas flow rate of 50/0.5 sccm and an input power of 9 W. Comparison with a numerical analysis implies that the micronozzle has an adiabatic wall rather than an isothermal one.

  18. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  19. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    PubMed Central

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  20. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources.

    PubMed

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that "…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more" (Int. J. Mass Spectrom. 200: 459-478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451-4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that "super-atmospheric operation would be more preferable in space-charge-limited situations."(Int. J. Mass Spectrom. 300: 182-193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper.

  1. Atmospheric pressure plasma enhanced spatial ALD of silver

    SciTech Connect

    Bruele, Fieke J. van den Smets, Mireille; Illiberi, Andrea; Poodt, Paul; Buskens, Pascal; Roozeboom, Fred

    2015-01-15

    The authors have investigated the growth of thin silver films using a unique combination of atmospheric process elements: spatial atomic layer deposition and an atmospheric pressure surface dielectric barrier discharge plasma source. Silver films were grown on top of Si substrates with good purity as revealed by resistivity values as low as 18 μΩ cm and C- and F-levels below detection limits of energy dispersive x-ray analysis. The growth of the silver films starts through the nucleation of islands that subsequently coalesce. The authors show that the surface island morphology is dependent on surface diffusion, which can be controlled by temperature within the deposition temperature range of 100–120 °C.

  2. Development of an Atmospheric Pressure Ionization Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.

  3. Influence of Atmospheric Pressure Torch Plasma Irradiation on Plant Growth

    NASA Astrophysics Data System (ADS)

    Akiyoshi, Yusuke; Hayashi, Nobuya; Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu

    2011-10-01

    Growth stimulation characteristics of plants seeds are investigated by an atmospheric discharge irradiation into plasma seeds. Atmospheric pressure plasma torch is consisted of alumina ceramics tube and the steel mesh electrodes wind inside and outside of the tube. When AC high voltage (8 kHz) is applied to the electrode gap, the barrier discharge plasma is produced inside the alumina ceramics tube. The barrier discharge plasma is blown outside with the gas flow in ceramics tube. Radish sprouts seeds locate at 1 cm from the torch edge. The growth stimulation was observed in the length of a stem and a root after the plasma irradiation. The stem length increases approximately 2.8 times at the cultivation time of 24 h. And the growth stimulation effect is found to be maintained for 40 h, after sowing seeds. The mechanism of the growth stimulation would be the redox reaction inside plant cells induced by oxygen radicals.

  4. Diode laser heterodyne interferometry for refractive index measurement of small-scale plasmas in high pressure gases

    NASA Astrophysics Data System (ADS)

    Urabe, Keiichiro; Muneoka, Hitoshi; Stauss, Sven; Terashima, Kazuo

    2013-09-01

    The electron density is one of the most important plasma parameters; however, the behavior of the electron density in high-pressure small-scale plasmas (so-called microplasmas) is still not well understood. We have studied the electron density in direct-current microplasmas operated at atmospheric pressure by using laser heterodyne interferometry and reported some results using CO2 laser as a light source. By measuring the temporal evolutions of the refractive index of the plasmas by the interferometer, the temporal changes of the electron and gas number densities can be derived. Because of its shorter wavelength, using near-infrared diode laser (890 nm) as a light source allows improving the spatial resolution of the measurement over that obtained using a CO2 laser (10.6 μm). Furthermore, by replacing a lock-in amplifier used in our previous CO2-laser interferometry by a custom-made phase detecting module, the response time and temporal resolution of the measurements could be improved. Finally, we discuss potentials of the diode laser interferometry for the measurement of electron and gas number densities with the measurement results of pulsed microplasmas operated in atmospheric and higher pressure gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No. 21110002) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

  5. [Spectral diagnosis of plasma jet at atmospheric pressure].

    PubMed

    Li, Chi; Tang, Xiao-liang; Qiu, Gao

    2008-12-01

    A new approach to surface modification of materials using dielectric barrier discharge (DBD) plasma jet at atmospheric pressure is presented in the present paper. The emission spectral lines of argon plasma jet at atmospheric pressure were recorded by the grating spectrograph HR2000 and computer software. The argon plasma emission spectra, ranging from 300nm to 1000 nm, were measured at different applied voltage. Compared to air plasma emission spectra under the same circumstance, it is shown that all of the spectral lines are attributed to neutral argon atoms. The spectral lines 763.51 and 772.42 nm were chosen to estimate the electron excitation temperature. The purpose of the study is to research the relationship between the applied voltage and temperature to control the process of materials' surface modification promptly. The results show that electron excitation temperature is in the range of 0.1-0.5 eV and increases with increasing applied voltage. In the process of surface modification under the plasma jet, the infrared radiation thermometer was used to measure the material surface temperature under the plasma jet. The results show that the material surface temperature is in the range of 50-100 degrees C and it also increases with increasing applied voltage. Because the material surface was under the plasma jet and its temperature was decided by the plasma, and the material surface temperature increased with increasing the macro-temperature of plasma jet, the relationship between the surface temperature and applied voltage indicates the relationship between the macro-temperature of the plasma jet and the applied voltage approximately. The experimental results indicate that DBD plasma jet at atmospheric pressure is a new approach to improving the quality of materials' surface modification, and spectral diagnosis has proved to be a kind of workable method by choosing suitable applied voltage.

  6. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  7. Atmospheric pressure cold plasma as an antifungal therapy

    SciTech Connect

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-10

    A microhollow cathode based, direct-current, atmospheric pressure, He/O{sub 2} (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  8. Atmospheric pressure cold plasma as an antifungal therapy

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Sun, Yi; Wu, Haiyan; Zhu, Weidong; Lopez, Jose L.; Liu, Wei; Zhang, Jue; Li, Ruoyu; Fang, Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  9. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexaboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, and external magnetic fields were all found to reduce electrode mass loss.

  10. Electron kinetics in a microdischarge in nitrogen at atmospheric pressure

    SciTech Connect

    Levko, Dmitry

    2013-12-14

    Electron kinetics during a microdischarge in nitrogen at atmospheric pressure is studied using the one-dimensional Particle-in-Cell/Monte Carlo Collisions model. It is obtained that the electron energy distribution function can be divided into three parts, namely, the non-equilibrium low-energy part, the Maxwellian function at moderate energies, and the high-energy tail. Simulation results showed that the role of the high-energy tail of electron energy distribution increases, when the distance between electrodes increases.

  11. Electrical characteristics and formation mechanism of atmospheric pressure plasma jet

    SciTech Connect

    Liu, Lijuan; Zhang, Yu; Tian, Weijing; Meng, Ying; Ouyang, Jiting

    2014-06-16

    The behavior of atmospheric pressure plasma jet produced by a coplanar dielectric barrier discharge in helium in external electrostatic and magnetic field is investigated. Net negative charges in the plasma jet outside the tube were detected. The deflection of the plume in the external field was observed. The plasma jet is suggested to be formed by the electron beam from the temporal cathode which is accelerated by a longitudinal field induced by the surface charges on the dielectric tube or interface between the helium and ambient air. The helium flow is necessary for the jet formation in the surrounding air.

  12. Cold atmospheric pressure air plasma jet for medical applications

    SciTech Connect

    Kolb, J. F.; Price, R. O.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.; Mohamed, A.-A H.; Swanson, R. J.

    2008-06-16

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2 cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  13. A lidar system for measuring atmospheric pressure and temperature profiles

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  14. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  15. Driven Motion and Instability of an Atmospheric Pressure Arc

    SciTech Connect

    Max Karasik

    1999-12-01

    Atmospheric pressure arcs are used extensively in applications such as welding and metallurgy. However, comparatively little is known of the physics of such arcs in external magnetic fields and the mechanisms of the instabilities present. In order to address questions of equilibrium and stability of such arcs, an experimental arc furnace is constructed and operated in air with graphite cathode and steel anode at currents 100-250 A. The arc is diagnosed with a gated intensified camera and a collimated photodiode array, as well as fast voltage and current probes.

  16. Cold atmospheric pressure plasma jet interactions with plasmid DNA

    SciTech Connect

    O'Connell, D.; Cox, L. J.; Hyland, W. B.; McMahon, S. J.; Reuter, S.; Graham, W. G.; Gans, T.; Currell, F. J.

    2011-01-24

    The effect of a cold (<40 deg. C) radio frequency-driven atmospheric pressure plasma jet on plasmid DNA has been investigated. Gel electrophoresis was used to analyze the DNA forms post-treatment. The experimental data are fitted to a rate equation model that allows for quantitative determination of the rates of single and double strand break formation. The formation of double strand breaks correlates well with the atomic oxygen density. Taken with other measurements, this indicates that neutral components in the jet are effective in inducing double strand breaks.

  17. Pluto's Insolation History: Latitudinal Variations and Effects on Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.

    2014-11-01

    Since previous insolation modeling in the early 1990’s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA’s New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto’s complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto’s insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. For any single rotation of Pluto there is a latitude that receives more insolation relative to the others. Often this is the sub-subsolar latitude but it can also be an arctic circle latitude when near-polar regions of Pluto experience the "midnight sun". We define the amount of that greatest insolation value over the course of one rotation as the "maximum diurnal insolation" (MDI). We find that MDI is driven to its highest values when Pluto’s obliquity creates a long arctic summer (or “midnight sun”) beginning just after perihelion. Pluto’s atmospheric pressure, as measured through stellar occultation observations during the past three decades, appears to correlate with Pluto's currently occurring midnight sun as quantified by the MDI parameter. If insolation (as parameterized by the MDI value) is the single dominant factor driving Pluto's atmospheric pressure, this “Midnight Sun Model” predicts that Pluto's maximum atmospheric pressure will be reached in 2017 followed by a steady decline. Pluto's maximum diurnal insolation value begins dropping after 2017 due to two factors: Pluto’s sub-solar point

  18. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension.

    PubMed

    Kamiński, Marek; Cieślik-Guerra, Urszula I; Kotas, Rafał; Mazur, Piotr; Marańda, Witold; Piotrowicz, Maciej; Sakowicz, Bartosz; Napieralski, Andrzej; Trzos, Ewa; Uznańska-Loch, Barbara; Rechciński, Tomasz; Kurpesa, Małgorzata

    2016-01-01

    Atmospheric pressure is the most objective weather factor because regardless of if outdoors or indoors it affects all objects in the same way. The majority of previous studies have used the average daily values of atmospheric pressure in a bioclimatic analysis and have found no correlation with blood pressure changes. The main objective of our research was to assess the relationship between atmospheric pressure recorded with a frequency of 1 measurement per minute and the results of 24-h blood pressure monitoring in patients with treated hypertension in different seasons in the moderate climate of the City of Łódź (Poland). The study group consisted of 1662 patients, divided into 2 equal groups (due to a lower and higher average value of atmospheric pressure). Comparisons between blood pressure values in the 2 groups were performed using the Mann-Whitney U test. We observed a significant difference in blood pressure recorded during the lower and higher range of atmospheric pressure: on the days of the spring months systolic (p = 0.043) and diastolic (p = 0.005) blood pressure, and at nights of the winter months systolic blood pressure (p = 0.013). A significant inverse relationship between atmospheric pressure and blood pressure during the spring days and, only for systolic blood pressure, during winter nights was observed. Int J Occup Med Environ Health 2016;29(5):783-792. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. The nanogap Pirani—a pressure sensor with superior linearity in an atmospheric pressure range

    NASA Astrophysics Data System (ADS)

    Khosraviani, Kourosh; Leung, Albert M.

    2009-04-01

    We have designed and fabricated a surface micromachined Pirani pressure sensor with an extremely narrow gap between its heater and heatsink (substrate) with superior output linearity in the atmospheric pressure range. The gap size of the device has been reduced to 50 nm by using a layer of PECVD amorphous silicon as a sacrificial layer and a xenon difluoride (XeF2) gas phase etching technique. Such a narrow gap pushes the transition from molecular to continuum heat conduction to pressures beyond 200 kPa. The higher transition pressure increases the measurement range and sensitivity of the gauge in atmospheric pressures. The gas phase etching of the sacrificial layer eliminates stiction problems related to a wet etching process. The active area of the sensor is only a 6 × 50 µm2 microbridge anchored to the substrate at both ends. An innovative fabrication technique was developed which resulted in a virtually flat microbridge with improved mechanical robustness. This process enabled us to have a very well-controlled gap between the microbridge and the substrate. The device was tested in a constant heater temperature mode with pressure ranges from 0.1 to 720 kPa. The heater power was only 3 mW at 101 kPa (atmospheric pressure), which increased to about 8 mW at 720 kPa. The output sensitivity and nonlinearity of the device were 0.55% per kPa at 101 kPa and ±13% of the output full scale, respectively.

  20. Comparison between low-pressure laboratory discharges and atmospheric sprites

    NASA Astrophysics Data System (ADS)

    Robledo-Martinez, A.; Garcia-Villarreal, A.; Sobral, H.

    2017-01-01

    The discharge of a charged dielectric in low-pressure air has characteristics that resemble some of the features of mesospheric discharges. The dielectric discharges in steps when the pressure of the surrounding air is gradually reduced from nearly atmospheric to 0.01 torr. The setup employed here decouples the discharge from the power supply, and, thanks to that, unique properties of the discharge manifest themselves. For example, in the pressure interval 10-100 torr streamers are emitted from the surface of the dielectric but when the pressure decreases to 2-16 torr these are replaced by spherically symmetrical discharges that we call peonies. These have interesting properties, like (a) they do not produce electrical field, (b) they remain static, and (c) their size increases with decreasing pressure. The peonies are a type of discharge that has not been reported before. They resemble sprite beads and are assumed to consist of large avalanches that do not lead to the formation of a streamer. At further lower pressures, in the interval 0.01-0.1 torr, diffuse volume discharges were observed that have some morphological similarities with sprite halos and the top of columnar sprites. The spectrographic measurements carried out show that the discharges have bands from the first and second positive systems in N2 as well as lines of N2+. Quenching of the first negative system of N2 was observed at 3 torr. In this work it was also observed how a cosmic ray can go on to trigger a discharge inside the experimentation chamber.

  1. The major influence of the atmosphere on intracranial pressure: an observational study.

    PubMed

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  2. The major influence of the atmosphere on intracranial pressure: an observational study

    NASA Astrophysics Data System (ADS)

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  3. Inactivation of Escherichia coli using atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kuwahata, Hiroshi; Yamaguchi, Takeshi; Ohyama, Ryu-ichiro; Ito, Atsushi

    2015-01-01

    An atmospheric-pressure argon (Ar) plasma jet was applied to the inactivation of Escherichia coli. The Ar plasma jet was generated at a frequency of 10 kHz, an applied voltage of 10 kV, and an Ar gas flow rate of 10 L/min at atmospheric pressure. E. coli cells seeded on an agar medium in a Petri dish were inactivated by Ar plasma jet irradiation for 1 s. Scanning electron microscopy (SEM) revealed that E. coli cells were killed because their cell wall and membrane were disrupted. To determine the causes of the disruption of the cell wall and membrane of E. coli, we performed the following experiments: the measurement of the surface temperature of an agar medium using a thermograph, the analysis of an emission spectrum of a plasma jet obtained using a multichannel spectrometer, and the determination of the distribution of the concentration of hydrogen peroxide (H2O2) generated on an agar medium by plasma jet irradiation using semiquantitative test strips. Moreover, H2O2 solutions of different concentrations were dropped onto an agar medium seeded with E. coli cells to examine the contribution of H2O2 to the death of E. coli. The results of these experiments showed that the cell wall and membrane of E. coli were disrupted by electrons in the plasma jet, as well as by electroneutral excited nitrogen molecules (N2) and hydroxyl (OH) radicals in the periphery of the plasma jet.

  4. Atmospheric-pressure plasma decontamination/sterilization chamber

    DOEpatents

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  5. Development of atmospheric pressure plasma needle jet for sterilization applications

    NASA Astrophysics Data System (ADS)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Wibowo, Kusnanto Mukti; Bakar, Ahmad Shuhaimi Abu; Arshad, Mohd Khairuddin Md; Hashim, Uda; Nayan, Nafarizal

    2017-09-01

    Inactivation of bacteria or sterilization has been a major issue in the medical field, especially regarding of human safety, whereby, in a huge scenario fatality can be caused by hazardous bacteria. Often, E-coli as gram-negative bacteria are selected as a key indicator of proper sterilization process as E-coli is tough and dormant bacteria. The technology in sterilization has moved on from chemical, wet and irradiation sterilization to a high promising device such as atmospheric pressure plasma needle jet (APPNJ). It has been reported that atmospheric pressure plasma has provided bundle of advantages over earlier sterilization process. The APPNJ is developed in our lab using high frequency and high voltage neon transformer power supply connected to copper needle and copper sheet electrodes. The gas discharge is Ar gas flowing at 40 L/min through a quartz glass tube. The E-coli bacteria are self-cultured from waste water and then treated with APPNJ. The treatment processes are run into two difference gaps between the plasma orifice and sample with various treatment times. Only 40s is required by direct treatment to achieve 100% killing of E-coli. On the other hand, indirect treatment has inactivated 50% of the E-coli in 40s. In this study, direct and indirect effect of APPNJ to the E-coli can be observed which can be utilized into sterilization of bio-compatible material applications.

  6. Pluto's insolation history: Latitudinal variations and effects on atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Earle, Alissa M.; Binzel, Richard P.

    2015-04-01

    Since previous long-term insolation modeling in the early 1990s, new atmospheric pressure data, increased computational power, and the upcoming flyby of the Pluto system by NASA's New Horizons spacecraft have generated new motivation and increased capabilities for the study of Pluto's complex long-term (million-years) insolation history. The two primary topics of interest in studying Pluto's insolation history are the variations in insolation patterns when integrated over different intervals and the evolution of diurnal insolation patterns over the last several decades. We find latitudinal dichotomies when comparing average insolation over timescales of days, decades, centuries, and millennia, where all timescales we consider are short relative to the predicted timescales for Pluto's chaotic orbit. Depending on the timescales of volatile migration, some consequences of these insolation patterns may be manifested in the surface features revealed by New Horizons. We find the Maximum Diurnal Insolation (MDI) at any latitude is driven most strongly when Pluto's obliquity creates a long arctic summer (or "midnight sun") beginning just after perihelion. Pluto's atmospheric pressure, as measured through stellar occultation observations during the past three decades, shows a circumstantial correlation with this midnight sun scenario as quantified by the MDI parameter.

  7. Decolorization of azodyes using the atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Lazovic, Sasa; Maletic, Dejan; Tomic, Natasa; Malovic, Gordana; Cvelbar, Uros; Dohcevic-Mitrovic, Zorana; Petrovic, Zoran Lj.

    2013-09-01

    Atmospheric pressure plasma jet operated in air/argon mixture is tested for decolorization of Bezactiv Orange V-3R dye used in the textile industry. The decolorization efficiency is determined by spectrophotometric measurements at 493.7 nm which corresponds to the breaking of dye N =N bond. The initial concentration of 50 mg/L of dye is reduced 50 times after 120 minutes of treatment by plasma. The results are compared to the efficiency of the suspended TiO2 powder and activated by an UV lamp (300 W). The radicals responsible for removal of the dye are OH and super-anion radical. It is found that efficiency of the plasma and TiO2 + UV is quite similar for the treatment times up to 60 min. After that, TiO2 shows higher decolorization rates (100 times reduction after 90 min). However, when plasma and TiO2 (but without the UV lamp) are applied together, it is found that there are synergetic effects and that the efficiency is increased. Plasma (less than 2 W) is not expected to produce high amounts of UV light in the atmospheric pressure. Supported by MESTD, RS, III41011 and ON 171037.

  8. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    SciTech Connect

    Robert F. Hicks; Hans W. Herrmann

    2003-12-15

    The purpose of this project was to demonstrate a practical, environmentally benigh technology for the surface decontamination and decommissioning of radioactive waste. A low temperature, atmospheric pressure plasma has been developed with initial support from the DOE, Environmental Management Sciences Program. This devise selectively etches radioactive metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. The technology shows a great potential for accelerating the clean-up effort for the equipment and structures contaminated with radioactive materials within the DOE complex. The viability of this technology has been demonstrated by selectively and rapidly stripping uranium from stainless steel surfaces at low temperature. Studies on uranium oxide have shown that etch rates of 4.0 microns per minute can be achieved at temperature below 473 K. Over the past three years, we have made numerous improvements in the design of the atmospheric pressure plasma source. We are now able to scale up the plasma source to treat large surface areas.

  9. The influence of atmospheric pressure on landfill methane emissions.

    PubMed

    Czepiel, P M; Shorter, J H; Mosher, B; Allwine, E; McManus, J B; Harriss, R C; Kolb, C E; Lamb, B K

    2003-01-01

    Landfills are the largest source of anthropogenic methane (CH4) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH4 emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH4 emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m3 CH4 min(-1). A simple regression model of our results was used to calculate an annual emission rate of 8.4 x 10(6) m3 CH4 year(-1). These data, along with CH4 oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH4 generation at this landfill. A reported gas collection rate of 7.1 x 10(6) m3 CH4 year(-1) and an estimated annual rate of CH4 oxidation by cover soils of 1.2 x 10(6) m3 CH4 year(-1) resulted in a calculated annual CH4 generation rate of 16.7 x 10(6) m3 CH4 year(-1). These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.

  10. Atmospheric oxygenation caused by a change in volcanic degassing pressure.

    PubMed

    Gaillard, Fabrice; Scaillet, Bruno; Arndt, Nicholas T

    2011-10-12

    The Precambrian history of our planet is marked by two major events: a pulse of continental crust formation at the end of the Archaean eon and a weak oxygenation of the atmosphere (the Great Oxidation Event) that followed, at 2.45 billion years ago. This oxygenation has been linked to the emergence of oxygenic cyanobacteria and to changes in the compositions of volcanic gases, but not to the composition of erupting lavas--geochemical constraints indicate that the oxidation state of basalts and their mantle sources has remained constant since 3.5 billion years ago. Here we propose that a decrease in the average pressure of volcanic degassing changed the oxidation state of sulphur in volcanic gases, initiating the modern biogeochemical sulphur cycle and triggering atmospheric oxygenation. Using thermodynamic calculations simulating gas-melt equilibria in erupting magmas, we suggest that mostly submarine Archaean volcanoes produced gases with SO(2)/H(2)S < 1 and low sulphur content. Emergence of the continents due to a global decrease in sea level and growth of the continental crust in the late Archaean then led to widespread subaerial volcanism, which in turn yielded gases much richer in sulphur and dominated by SO(2). Dissolution of sulphur in sea water and the onset of sulphate reduction processes could then oxidize the atmosphere.

  11. Opportunities at the Confluence of Microplasma and Nanomaterials

    NASA Astrophysics Data System (ADS)

    Eden, J. Gary

    2009-10-01

    More than a decade ago, plasma science ventured into the mesoscopic realm with low temperature, nonequilibrium plasmas confined to cavities having a characteristic dimension (d) below 50 μm. today, the lower limit for microplasma dimensions is d .3ex˜x 10μm but experiments in which d approaches 1 μm are expected in the near future. Several previous microplasma devices have exploited nanomaterials and nanostructures to realize new functionality. This presentation will briefly describe past efforts to integrate microplasmas with nanomaterials and/or nanodevices. A few thoughts regarding exciting opportunities in merging nanoelectronics or nanoptics with <= 1-10 μm microplasmas will be offered.

  12. Microplasma device architectures with various diamond nanostructures

    NASA Astrophysics Data System (ADS)

    Kunuku, Srinivasu; Jothiramalingam Sankaran, Kamatchi; Leou, Keh-Chyang; Lin, I.-Nan

    2017-02-01

    Diamond nanostructures (DNSs) were fabricated from three different morphological diamonds, microcrystalline diamond (MCD), nanocrystalline diamond (NCD), and ultrananocrystalline diamond (UNCD) films, using a reactive ion etching method. The plasma illumination (PI) behavior of microplasma devices using the DNSs and the diamond films as cathode were investigated. The Paschen curve approach revealed that the secondary electron emission coefficient (γ value) of diamond materials is similar irrespective of the microstructure (MCD, NCD, and UNCD) and geometry of the materials (DNSs and diamond films). The diamond materials show markedly larger γ-coefficient than conventional metallic cathode materials such as Mo that resulted in markedly better PI behavior for the corresponding microplasma devices. Moreover, the PI behavior, i.e. the voltage dependence of plasma current density (J pl‑V), plasma density (n e‑V), and the robustness of the devices, varied markedly with the microstructure and geometry of the cathode materials that was closely correlated to the electron field emission (EFE) properties of the cathode materials. The UNCD nanopillars, possessing good EFE properties, resulted in superior PI behavior, whereas the MCD diamond films with insufficient EFE properties led to inferior PI behavior. Consequently, enhancement of plasma characteristics is the collective effects of EFE behavior and secondary electron emission characteristics of diamond-based cathode materials.

  13. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  14. Measurement of viscosity of gaseous mixtures at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Mall, G. H.; Chegini, H.

    1986-01-01

    Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.

  15. A comparative study of the reduction of silver and gold salts in water by a cathodic microplasma electrode

    NASA Astrophysics Data System (ADS)

    De Vos, Caroline; Baneton, Joffrey; Witzke, Megan; Dille, Jean; Godet, Stéphane; Gordon, Michael J.; Mohan Sankaran, R.; Reniers, François

    2017-03-01

    A comparative study of the reduction of aqueous silver (Ag) and gold (Au) salts to colloidal Ag and Au nanoparticles, respectively, by a gaseous, cathodic, atmospheric-pressure microplasma electrode is presented. The resulting nanoparticles (NPs) were characterized by ultraviolet–visible (UV–vis) absorption spectroscopy and transmission electron microscopy (TEM), and the aqueous solution composition before and after experiments was determined by ionic conductivity, electrochemical potential, and/or UV–vis absorption measurements. TEM showed that Ag and Au NPs were spherical and non-agglomerated when synthesized in the presence of a stabilizer, polyvinyl alcohol. The charge injected by the plasma was correlated to the maximum intensity in the absorbance spectra which in turn depends on the nanoparticle concentration. Separately, the charge injected was correlated to the metal cation concentration. Ag and Au reduction rates were found to be directly proportional to the charge injected, independent of plasma current and process time. Differences in the mechanism for Ag and Au reduction were also observed, and solution species generated by the plasma and their role in the reduction process (e.g. H2O2, electrons) is discussed.

  16. Microplasma source based on a dielectric barrier discharge for the determination of mercury by atomic emission spectrometry.

    PubMed

    Zhu, Zhenli; Chan, George C-Y; Ray, Steven J; Zhang, Xinrong; Hieftje, Gary M

    2008-11-15

    A low-power, atmospheric-pressure microplasma source based on a dielectric barrier discharge (DBD) has been developed for use in atomic emission spectrometry. The small plasma (0.6 mm x 1 mm x 10 mm) is generated within a glass cell by using electrodes that do not contact the plasma. Powered by an inexpensive ozone generator, the discharge ignites spontaneously, can be easily sustained in Ar or He at gas flow rates ranging from 5 to 200 mL min(-1), and requires less than 1 W of power. The effect of operating parameters such as plasma gas identity, plasma gas flow rate, and residual water vapor on the DBD source performance has been investigated. The plasma can be operated without removal of residual water vapor, permitting it to be directly coupled with cold vapor generation sample introduction. The spectral background of the source is quite clean in the range from 200 to 260 nm with low continuum and structured components. The DBD source has been applied to the determination of Hg by continuous-flow, cold vapor generation and offers detection limits from 14 (He-DBD) to 43 pg mL(-1) (Ar-DBD) without removal of the residual moisture. The use of flow injection with the He-DBD permits measurement of Hg with a 7.2 pg limit of detection, and with repetitive injections having an RSD of <2% for a 10 ng mL(-1) standard.

  17. The effect of atmospheric pressure on the dispersal of pyroclasts from martian volcanoes

    NASA Astrophysics Data System (ADS)

    Kerber, Laura; Forget, François; Madeleine, Jean-Baptiste; Wordsworth, Robin; Head, James W.; Wilson, Lionel

    2013-03-01

    A planetary global circulation model developed by the Laboratoire de Météorologie Dynamique (LMD) was used to simulate explosive eruptions of ancient martian volcanoes into paleo-atmospheres with higher atmospheric pressures than that of present-day Mars. Atmospheric pressures in the model were varied between 50 mbar and 2 bars. In this way it was possible to investigate the sensitivity of the volcanic plume dispersal model to atmospheric pressure. It was determined that the model has a sensitivity to pressure that is similar to its sensitivity to other atmospheric parameters such as planetary obliquity and season of eruption. Higher pressure atmospheres allow volcanic plumes to convect to higher levels, meaning that volcanic pyroclasts have further to fall through the atmosphere. Changes in atmospheric circulation due to pressure cause pyroclasts to be dispersed in narrower latitudinal bands compared with pyroclasts in a modern atmosphere. Atmospheric winds are generally slower under higher pressure regimes; however, the final distance traveled by the pyroclasts depends greatly on the location of the volcano and can either increase or decrease with pressure. The directionality of the pyroclast transport, however, remains dominantly east or west along lines of latitude. Augmentation of the atmospheric pressure improves the fit between possible ash sources Arsia and Pavonis Mons and the Medusae Fossae Formation, a hypothesized ash deposit.

  18. Atmospheric pressure vapour phase decomposition: a proof of principle.

    PubMed

    Cinosi, Amedeo; Andriollo, Nunzio; Tibaldi, Francesca; Monticelli, Damiano

    2012-11-15

    In the present work we demonstrated that the digestion of difficult matrices (high boiling petrochemical fractions and distillation bottoms) can be achieved by oxidation with nitric acid vapours at atmospheric pressure employing simple laboratory glassware. The application of this procedure as a digestion method prior to Total Reflection X-Ray Fluorescence (TXRF) is presented, although the employment of other detection techniques may be foreseen. The method ensured a fast, less than half an hour, treatment time and detection limits in the range 20-100 μg/kg for As, Bi, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Zn, whereas higher values were obtained for Ba, Ca, K, P, Rh, Ti and V (0.3-3 mg/kg). The potentialities and limitations of this procedure were discussed: the application to a broad range of matrices may be foreseen. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Electric probe investigations of microwave generated, atmospheric pressure, plasma jets

    SciTech Connect

    Porteanu, H. E.; Kuehn, S.; Gesche, R.

    2010-07-15

    We examine the applicability of the Langmuir-type of characterization for atmospheric pressure plasma jets generated in a millimeter-size cavity microwave resonator at 2.45 GHz. Wide range I-V characteristics of helium, argon, nitrogen, air and oxygen are presented for different gas fluxes, distances probe-resonator, and microwave powers. A detailed analysis is performed for the fine variation in the current around the floating potential. A simplified theory specially developed for this case is presented, considering the ionic and electronic saturation currents and the floating potential. Based on this theory, we conclude that, while the charge carrier density depends on gas flow, distance to plasma source, and microwave absorbed power, the electron temperature is quite independent of these parameters. The resulting plasma parameters for helium, argon, and nitrogen are presented.

  20. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    SciTech Connect

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  1. Atmospheric-Pressure Plasma Cleaning of Contaminated Surfaces

    SciTech Connect

    Robert F. Hicks; Gary S. Selwyn

    2001-01-09

    Project was to develop a low-cost, environmentally benign technology for the decontamination and decommissioning of transuranic waste. With the invention of the atmospheric-pressure plasma jet the goal was achieved. This device selectively etches heavy metals from surfaces, rendering objects radiation free and suitable for decommissioning. The volatile reaction products are captured on filters, which yields a tremendous reduction in the volume of the waste. Studies on tantalum, a surrogate material for plutonium, have shown that etch rate of 6.0 microns per minute can be achieved under mild conditions. Over the past three years, we have made numerous improvements in the design of the plasma jet. It may now be operated for hundreds of hours and not undergo any degradation in performance. Furthermore, small compact units have been developed, which are easily deployed in the field.

  2. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-01

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ˜15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  3. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  4. The solvation of electrons by an atmospheric-pressure plasma

    NASA Astrophysics Data System (ADS)

    Rumbach, Paul; Bartels, David M.; Sankaran, R. Mohan; Go, David B.

    2015-06-01

    Solvated electrons are typically generated by radiolysis or photoionization of solutes. While plasmas containing free electrons have been brought into contact with liquids in studies dating back centuries, there has been little evidence that electrons are solvated by this approach. Here we report direct measurements of solvated electrons generated by an atmospheric-pressure plasma in contact with the surface of an aqueous solution. The electrons are measured by their optical absorbance using a total internal reflection geometry. The measured absorption spectrum is unexpectedly blue shifted, which is potentially due to the intense electric field in the interfacial Debye layer. We estimate an average penetration depth of 2.5+/-1.0 nm, indicating that the electrons fully solvate before reacting through second-order recombination. Reactions with various electron scavengers including H+, NO2-, NO3- and H2O2 show that the kinetics are similar, but not identical, to those for solvated electrons formed in bulk water by radiolysis.

  5. Generation of reactive species by an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kelly, S.; Turner, M. M.

    2014-12-01

    The role of gas mixing in reactive species delivery to treatment surfaces for an atmospheric pressure capacitively coupled plasma helium jet is investigated by numerical modelling. Atomic oxygen in the jet effluent is shown to quickly convert to ozone for increasing device to surface separation due to the molecular oxygen present in the gas mixture. Surface profiles of reactive oxygen species show narrow peaks for atomic oxygen and broader surface distributions for ozone and metastable species. Production efficiency of atomic oxygen to the helium plasma jet by molecular oxygen admixture is shown to be dependent on electro-negativity. Excessive molecular oxygen admixture results in negative ion dominance over electrons which eventually quenches the plasma. Interaction of the plasma jet with an aqueous surface showed hydrogen peroxide as the dominant species at this interface. Gas heating by the plasma is found to be dominated by elastic electron collisions and positive ion heating. Comparison with experimental measurements for atomic oxygen shows good agreement.

  6. Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

    DOE PAGES

    Barnat, E. V.; Fierro, A.

    2017-03-07

    The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (~10 ns), ultrashort pulse laser excitation (<100 fs) of the 23S to 33P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is ~1012 emore » cm-3. Lastly, the spatial profiles of the 23S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.« less

  7. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.

  8. Optical emission spectroscopy of atmospheric pressure microwave plasmas

    SciTech Connect

    Jia Haijun; Fujiwara, Hiroyuki; Kondo, Michio; Kuraseko, Hiroshi

    2008-09-01

    The optical emission behaviors of Ar, He, and Ar+He plasmas generated in air using an atmospheric pressure microwave plasma source have been studied employing optical emission spectroscopy (OES). Emissions from various source gas species and air were observed. The variations in the intensities and intensity ratios of specific emissions as functions of the microwave power and gas flow rate were analyzed to investigate the relationship between the emission behavior and the plasma properties. We find that dependence of the emission behavior on the input microwave power is mainly determined by variations in electron density and electron temperature in the plasmas. On the other hand, under different gas flow rate conditions, changes in the density of the source gas atoms also significantly affect the emissions. Interestingly, when plasma is generated using an Ar+He mixture, emissions from excited He atoms disappear while a strong H{sub {alpha}} signal appears. The physics behind these behaviors is discussed in detail.

  9. Bacterial Inactivation by Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet

    NASA Astrophysics Data System (ADS)

    Deng, Sanxi; Cheng, Cheng; Ni, Guohua; Meng, Yuedong; Chen, Hua

    2008-08-01

    Bacillus subtilis and Escherichia coli seeded in two media (agar and filter papers) were exposed to after-glow plasma emitted from a atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator in open air with a temperature of about 30-80 °C. In order to estimate the inactivation of microorganism using DBD plasma jet, various plasma conditions (such as treatment time and feed-gas composition of plasma jet) were changed. The results shown that the effective area of inactivation increased with the plasma treatment time as the bacteria seeded in Agar medium. The effective area of inactivation was much bigger than plasma jet treatment area after 5 min treatment. With the use of filter papers as the supporting media, the addition of reactive gases (oxygen, hydrogen peroxide vapor) into the plasma jet system, compared with only pure noble gas, led to a significant improvement in the bacterial Inactivation efficacy.

  10. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry.

    PubMed

    Colizza, Kevin; Mahoney, Keira E; Yevdokimov, Alexander V; Smith, James L; Oxley, Jimmie C

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression. Graphical Abstract ᅟ.

  11. Investigation of atmospheric pressure streamer discharges for methane reforming

    NASA Astrophysics Data System (ADS)

    Pachuilo, M. V.; Stefani, F.; Rosocha, L. A.; Raja, L. L.

    2015-09-01

    Hydrogen has several valuable uses in transportation: it can lower the coefficient of variation under lean burn conditions in internal combustion engines, and it is essential for the operation of fuel cells. Currently hydrogen can only be produced efficiently by reducing fossil fuels in large facilities. However, on-board production is desirable to reduce the infrastructure associated with storing and distributing hydrogen. Plasma dry reforming processes are viable candidates for onboard production. Our current work investigates the fundamental behavior of a single streamer discharge in methane. The electron temperature, and active species generation are determined through time resolved spectroscopy. This work will hopefully accelerate the development of non-thermal plasma based devices that include: dielectric barrier discharges, pulsed corona discharges, and other atmospheric-pressure plasma devices.

  12. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  13. Efficacy of Nonthermal Atmospheric Pressure Plasma for Tooth Bleaching

    PubMed Central

    Nam, Seoul Hee; Lee, Hae June; Hong, Jin Woo; Kim, Gyoo Cheon

    2015-01-01

    The conventional light source used for tooth bleaching has the potential to cause thermal damage, and the actual role of the light source is doubtful. In this study, we evaluated bleaching efficacy, temperature, and morphological safety after tooth bleaching with nonthermal atmospheric pressure plasma. Tooth bleaching combined with plasma had improved efficacy in providing a higher level of brightness. The temperature of the pulp chamber was maintained around 37°C, indicating that the plasma does not cause any thermal damage. The morphological results of tooth bleaching with plasma did not affect mineral composition under scanning electron microscopy (SEM) observations. On the basis of these results, the application of plasma and low concentration of 15% carbamide peroxide (CP) has a high capability for effective tooth bleaching. It can be documented that plasma is a safe energe source, which has no deleterious effects on the tooth surface. PMID:25685843

  14. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    SciTech Connect

    Korolev, Yu. D. Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas’yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-15

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  15. Use of Atmospheric Pressure Cold Plasma for Meat Industry

    PubMed Central

    Lee, Juri; Lee, Cheol Woo; Yong, Hae In; Lee, Hyun Jung; Jo, Cheorun; Jung, Samooel

    2017-01-01

    Novel, effective methods to control and prevent spoilage and contamination by pathogenic microorganisms in meat and meat products are in constant demand. Non-thermal pasteurization is an ideal method for the preservation of meat and meat products because it does not use heat during the pasteurization process. Atmospheric pressure cold plasma (APCP) is a new technology for the non-thermal pasteurization of meat and meat products. Several recent studies have shown that APCP treatment reduces the number of pathogenic microorganisms in meat and meat products. Furthermore, APCP treatment can be used to generate nitrite, which is an essential component of the curing process. Here, we introduce the effectiveness of APCP treatment as a pasteurization method and/or curing process for use in the meat and meat product processing industry. PMID:28943759

  16. Plasma reactor for deposition of carbon nanowalls at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Dimitrov, Zh; Mitev, D.; Kiss'ovski, Zh

    2016-10-01

    In this study a novel plasma reactor for deposition of carbon nanowalls at atmospheric pressure is constructed and characterized. A low power microwave discharge is used as a plasma source and working gas of Ar/H2/CH4 gas mixture. The substrate is heated by plasma flame and its temperature is in the range 600-700 C. The chemical composition of the plasma and the gas mixture effect on the concentration of the various particles in the plasma is investigated by optical emission spectroscopy. The emission spectrum of the plasma jet in Ar/H2/CH4 mixture shows the presence of carbon (Swan band) and an intensive line of CH (388 nm), which are necessary species for deposition of carbon nanostructures. Additional voltage in the range from -20 V to -100 V is applied in order to ensure the vertical growth of graphene walls. Results of deposited carbon nanostructures on metal substrate are shown.

  17. Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Storch, Daniel G.; Kushner, Mark J.

    1993-01-01

    Formaldehyde (CH2O) is a common pollutant of indoor air in residences and commercial buildings. The removal of CH2O from atmospheric pressure gas streams (N2/O2/H2O/CH2O) using plasmas generated by a dielectric barrier discharge has been theoretically investigated with the goal of cleansing indoor air. The model consists of a full accounting of the electron, ion, and neutral chemical kinetics in contaminated humid air. We find that the destruction of CH2O results dominantly from chemical attack by OH and O radicals, with the primary end products being CO and H2O. The predicted destruction rates for CH2O are typically 2-8 ppm/(mJ cm-3) (parts per million of CH2O in air/energy deposition). The elimination of the unwanted byproducts, CO and NO, using a platinum catalyst is discussed.

  18. Polymerization of acrylic acid using atmospheric pressure DBD plasma jet

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Bashir, S.

    2016-08-01

    In this paper polymerization of acrylic acid was performed using non thermal atmospheric pressure plasma jet technology. The goal of this study is to deposit organic functional coatings for biomedical applications using a low cost and rapid growth rate plasma jet technique. The monomer solution of acrylic acid was vaporized and then fed into the argon plasma for coating. The discharge was powered using a laboratory made power supply operating with sinusoidal voltage signals at a frequency of 10 kHz. The optical emission spectra were collected in order to get insight into the plasma chemistry during deposition process. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy and growth rates analysis. A high retention of carboxylic functional groups of the monomer was observed at the surface deposited using this low power technique.

  19. Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Takayuki, Watanabe; Narengerile

    2013-04-01

    High concentration of aqueous glycerine was decomposed using a direct current (DC) plasma torch at atmospheric pressure. The torch can generate the plasma with water as the plasma-supporting gas in the absence of any additional gas supply system and cooling devices. The results indicated that 5 mol% glycerine was completely decomposed by water plasmas at arc powers of 0.55~1.05 kW. The major products in the effluent gas were H2 (68.9%~71.1%), CO2 (18.9%~23.0%), and CO (0.2%~0.6%). However, trace levels of formic acid (HCOOH) and formaldehyde (HCHO) were observed in the liquid effluent. The results indicated that the water plasma waste treatment process is capable of being an alternative green technology for organic waste decomposition.

  20. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy, is proposed for double radio sources with a Z or S morphology. The model describes a collimated jet of supersonic material that bends self-consistently under the influence of external static pressure gradients, and may alternatively be seen as a continuous-jet version of the buoyancy model proposed by Gull (1973). Emphasis is placed on (1) S-shaped radio sources identified with isolated galaxies, such as 3C 293, whose radio structures should be free of distortions resulting from motion relative to a cluster medium, and (2) small-scale, galaxy-dominated rather than environment-dominated S-shaped sources such as the inner jet structure of Fornax A.

  1. Ultrafast laser-collision-induced fluorescence in atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Barnat, E. V.; Fierro, A.

    2017-04-01

    The implementation and demonstration of laser-collision-induced fluorescence (LCIF) generated in atmospheric pressure helium environments is presented in this communication. As collision times are observed to be fast (~10 ns), ultrashort pulse laser excitation (<100 fs) of the 23S to 33P (388.9 nm) is utilized to initiate the LCIF process. Both neutral-induced and electron-induced components of the LCIF are observed in the helium afterglow plasma as the reduced electric field (E/N) is tuned from  <0.1 Td to over 5 Td. Under the discharge conditions presented in this study (640 Torr He), the lower limit of electron density detection is ~1012 e cm-3. The spatial profiles of the 23S helium metastable and electrons are presented as functions of E/N to demonstrate the spatial resolving capabilities of the LCIF method.

  2. Plasmid DNA damage induced by helium atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Han, Xu; Cantrell, William A.; Escobar, Erika E.; Ptasinska, Sylwia

    2014-03-01

    A helium atmospheric pressure plasma jet (APPJ) is applied to induce damage to aqueous plasmid DNA. The resulting fractions of the DNA conformers, which indicate intact molecules or DNA with single- or double-strand breaks, are determined using agarose gel electrophoresis. The DNA strand breaks increase with a decrease in the distance between the APPJ and DNA samples under two working conditions of the plasma source with different parameters of applied electric pulses. The damage level induced in the plasmid DNA is also enhanced with increased plasma irradiation time. The reactive species generated in the APPJ are characterized by optical emission spectra, and their roles in possible DNA damage processes occurring in an aqueous environment are also discussed.

  3. Acetonitrile Ion Suppression in Atmospheric Pressure Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Colizza, Kevin; Mahoney, Keira E.; Yevdokimov, Alexander V.; Smith, James L.; Oxley, Jimmie C.

    2016-11-01

    Efforts to analyze trace levels of cyclic peroxides by liquid chromatography/mass spectrometry gave evidence that acetonitrile suppressed ion formation. Further investigations extended this discovery to ketones, linear peroxides, esters, and possibly many other types of compounds, including triazole and menadione. Direct ionization suppression caused by acetonitrile was observed for multiple adduct types in both electrospray ionization and atmospheric pressure chemical ionization. The addition of only 2% acetonitrile significantly decreased the sensitivity of analyte response. Efforts to identify the mechanism were made using various nitriles. The ion suppression was reduced by substitution of an acetonitrile hydrogen with an electron-withdrawing group, but was exacerbated by electron-donating or steric groups adjacent to the nitrile. Although current theory does not explain this phenomenon, we propose that polar interactions between the various functionalities and the nitrile may be forming neutral aggregates that manifest as ionization suppression.

  4. Desorption and ionization mechanisms in desorption atmospheric pressure photoionization.

    PubMed

    Luosujärvi, Laura; Arvola, Ville; Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Franssila, Sami; Kotiaho, Tapio; Kostiainen, Risto; Kauppila, Tiina J

    2008-10-01

    The factors influencing desorption and ionization in newly developed desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS) were studied. Redirecting the DAPPI spray was observed to further improve the versatility of the technique: for dilute samples, parallel spray with increased analyte signal was found to be the best suited, while for more concentrated samples, the orthogonal spray with less risk for contamination is recommended. The suitability of various spray solvents and sampling surface materials was tested for a variety of analytes with different polarities and molecular weights. As in atmospheric pressure photoionization, the analytes formed [M + H](+), [M - H](-), M(+*), M(-*), [M - H + O](-), or [M - 2H + 2O](-) ions depending on the analyte, spray solvent, and ionization mode. In positive ion mode, anisole and toluene as spray solvents promoted the formation of M(+*) ions and were therefore best suited for the analysis of nonpolar compounds (anthracene, benzo[a]pyrene, and tetracyclone). Acetone and hexane were optimal spray solvents for polar compounds (MDMA, testosterone, and verapamil) since they produced intensive [M + H](+) ion peaks of the analytes. In negative ion mode, the type of spray solvent affected the signal intensity, but not the ion composition. M(-*) ions were formed from 1,4-dinitrobenzene, and [M - H + O](-) and [M - 2H + 2O](-) ions from 1,4-naphthoquinone, whereas acidic compounds (naphthoic acid and paracetamol) formed [M - H](-) ions. The tested sampling surfaces included various materials with different thermal conductivities. The materials with low thermal conductivity, i.e., polymers like poly(methyl methacrylate) and poly(tetrafluoroethylene) (Teflon) were found to be the best, since they enable localized heating of the sampling surface, which was found to be essential for efficient analyte desorption. Nevertheless, the sampling surface material did not affect the ionization mechanisms.

  5. Sterilization of Surfaces with a Handheld Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Hicks, Robert; Habib, Sara; Chan, Wai; Gonzalez, Eleazar; Tijerina, A.; Sloan, Mark

    2009-10-01

    Low temperature, atmospheric pressure plasmas have shown great promise for decontaminating the surfaces of materials and equipment. In this study, an atmospheric pressure, oxygen and argon plasma was investigated for the destruction of viruses, bacteria, and spores. The plasma was operated at an argon flow rate of 30 L/min, an oxygen flow rate of 20 mL/min, a power density of 101.0 W/cm^3 (beam area = 5.1 cm^2), and at a distance from the surface of 7.1 mm. An average 6log10 reduction of viable spores was obtained after only 45 seconds of exposure to the reactive gas. By contrast, it takes more than 35 minutes at 121^oC to sterilize anthrax in an autoclave. The plasma properties were investigated by numerical modeling and chemical titration with nitric oxide. The numerical model included a detailed reaction mechanism for the discharge as well as for the afterglow. It was predicted that at a delivered power density of 29.3 W/cm^3, 30 L/min argon, and 0.01 volume% O2, the plasma generated 1.9 x 10^14 cm-3 O atoms, 1.6 x 10^12 cm-3 ozone, 9.3 x 10^13 cm-3 O2(^1δg), and 2.9 x 10^12 cm-3 O2(^1σ^+g) at 1 cm downstream of the source. The O atom density measured by chemical titration with NO was 6.0 x 10^14 cm-3 at the same conditions. It is believe that the oxygen atoms and the O2(^1δg) metastables were responsible for killing the anthrax and other microorganisms.

  6. Mass Spectrometry of Atmospheric Pressure Surface Wave Discharges

    NASA Astrophysics Data System (ADS)

    Ridenti, M. A.; Souza-Corrêa, J. A.; Amorim, J.

    2016-05-01

    By applying mass spectrometry techniques, we carried out measurements of ionic mass spectrum and their energy distribution in order to investigate an atmospheric argon discharge by using a surfatron surface-wave device. The mass and energy distribution measurements were performed with fixed flow rate (2.5 SLM) of pure argon gas (99.999%) and different Ar-O2 gas mixture compositions (99-1, 98-2 and 97-3). The mass spectra and energy distributions were recorded for Ar+, O+, O+ 2, N+ and N2 +. The axial distribution profiles of ionic mass and their energy were obtained for different experimental conditions as a function of the plasma length. The results showed that the peak of the positive ion energy distributions shifted to higher energies and also that the distribution width increased as the distance between the sampling orifice and the launcher gap was increased. It was also found that under certain experimental conditions the ion flux of atomic species were higher than the ion flux of their diatomic counterpart. The motivation of this study was to obtain a better understanding of a surface wave discharge in atmospheric pressure that may play a key role on new second generation biofuel technologies.

  7. Atmospheric Pressure Effects on Cryogenic Storage Tank Boil-Off

    NASA Technical Reports Server (NTRS)

    Sass, J. P.; Frontier, C. R.

    2007-01-01

    The Cryogenics Test Laboratory (CTL) at the Kennedy Space Center (KSC) routinely utilizes cryostat test hardware to evaluate comparative and absolute thermal conductivities of a wide array of insulation systems. The test method is based on measurement of the flow rate of gas evolved due to evaporative boil-off of a cryogenic liquid. The gas flow rate typically stabilizes after a period of a couple of hours to a couple of days, depending upon the test setup. The stable flow rate value is then used to calculate the thermal conductivity for the insulation system being tested. The latest set of identical cryostats, 1,000-L spherical tanks, exhibited different behavior. On a macro level, the flow rate did stabilize after a couple of days; however the stable flow rate was oscillatory with peak to peak amplitude of up to 25 percent of the nominal value. The period of the oscillation was consistently 12 hours. The source of the oscillation has been traced to variations in atmospheric pressure due to atmospheric tides similar to oceanic tides. This paper will present analysis of this phenomenon, including a calculation that explains why other cryostats are not affected by it.

  8. Atmospheric temperature and pressure influence the onset of spontaneous pneumothorax.

    PubMed

    Motono, Nozomu; Maeda, Sumiko; Honda, Ryumon; Tanaka, Makoto; Machida, Yuichiro; Usuda, Katsuo; Sagawa, Motoyasu; Uramoto, Hidetaka

    2016-09-26

    The aim of the study was to examine the influence of the changes in the atmospheric temperature (ATemp) and the atmospheric pressure (APres) on the occurrence of a spontaneous pneumothorax (SP). From January 2000 to March 2014, 192 consecutive SP events were examined. The ATemp and APres data at the onset of SP, as well as those data at 12, 24, 36, 48, 60, and 72 h prior to the onset time, were analyzed. The frequencies of SP occurrence were not statistically different according to the months or seasons, but were statistically different according to the time period (P < .01) and SP events occurred most frequently from 12:00 to 18:00. SP events frequently occurred at an ATemp of 25 degrees Celsius or higher. There was a significantly negative correlation between the APres and the ATemp at the SP onset time. The values of change in the APres from 36 to 24 h prior to SP onset were significantly lower than the preceding values. In this study, we observed that a SP event was likely to occur in the time period from 12:00 to 18:00, at an ATemp of 25 degrees Celsius or higher, and at 24-36 h after a drop of APres. © 2016 John Wiley & Sons Ltd.

  9. The influence of atmospheric pressure on landfill methane emissions

    SciTech Connect

    Czepiel, P.M.; Shorter, J.H.; Mosher, B.; Allwine, E.; McManus, J.B.; Harriss, R.C.; Kolb, C.E.; Lamb, B.K

    2003-07-01

    Landfills are the largest source of anthropogenic methane (CH{sub 4}) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH{sub 4} emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH{sub 4} emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m{sup 3} CH{sub 4} min{sup -1}. A simple regression model of our results was used to calculate an annual emission rate of 8.4x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These data, along with CH{sub 4} oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH{sub 4} generation at this landfill. A reported gas collection rate of 7.1x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} and an estimated annual rate of CH{sub 4} oxidation by cover soils of 1.2x10{sup 6} m{sup 3} CH{sub 4} year{sup -1} resulted in a calculated annual CH{sub 4} generation rate of 16.7x10{sup 6} m{sup 3} CH{sub 4} year{sup -1}. These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.

  10. Dynamics of strong-field laser-induced microplasma formation in noble gases

    SciTech Connect

    Romanov, D. A.; Compton, R.; Filin, A.; Levis, R. J.

    2010-03-15

    The ultrafast dynamics of microplasmas generated by femtosecond laser pulses in noble gases has been investigated using four-wave mixing (FWM). The time dependence of the FWM signal is observed to reach higher intensity levels faster for Xe, with progressively lower scattering intensity and longer time dynamics for the noble gas series Xe, Kr, Ar, Ne, and He. The temporal dynamics is interpreted in terms of a tunnel ionization and impact cooling mechanism. A formalism to interpret the observed phenomena is presented here with comparison to the measured laser intensity and gas pressure trends.

  11. Trends in surface engineering of biomaterials: atmospheric pressure plasma deposition of coatings for biomedical applications

    NASA Astrophysics Data System (ADS)

    da Ponte, G.; Sardella, E.; Fanelli, F.; D'Agostino, R.; Favia, P.

    2011-11-01

    Cold plasma processes for surface engineering of biomaterials and biomedical devices are traditionally performed at low pressure; more and more, though, surface modification plasma processes at atmospheric pressure are also gaining popularity. This short review is aimed to list briefly atmospheric pressure plasma processes reported, in the last decade, for adapting the surface of materials to the best interactions with cells, bacteria and biomolecules.

  12. Synthesis of Carbon Nanomaterials by Atmospheric Pressure Microdischarge

    NASA Astrophysics Data System (ADS)

    Zou, Qin; Wang, Mingzhi; Li, Yanguo; Zou, Lianghua

    2009-12-01

    Atmospheric pressure microdischarge of CH4 was generated in a removable gas cell fitted in a scanning electron microscope (SEM) for synthesizing carbon nanomaterials. A Pd alloy needle with 12 μm tip curve radius and a polycrystalline Pt film with 600 nm thickness were used as the anode and the cathode respectively. A pulse voltage was applied. The pressure of CH4 was 100 kPa. The gaps between the anode and the cathode were changed from 5 μm to 100 μm. The field emission scanning electron microscope (FESEM) and the energy dispersive X-ray spectrometer (EDX) results showed that spherical or sticklike carbon nanomaterials were fabricated in the discharge area on the surface of the Pt film cathode after the microdischarge. With the time of microdischarge increase, the spherical carbon nanomaterials grew into the sticklike gradually within 7 s. For 7 s deposition, the length and the diameter of some sticklike carbon nanomaterials were 1000 nm and 20 nm respectively. However, when the deposition time was longer than 8 s, the discharge center was melted. A high resolution transmission electron microscope (HRTEM) was also used to characterize the structures of the sticklike carbon nanomaterials, which showed that the sticklike carbon nanomaterials were nanorods. This microdischarge is a fast and simple method for synthesizing carbon nanomaterial.

  13. Construction of layered structures on valve metal alloys by microplasma oxidation

    NASA Astrophysics Data System (ADS)

    Baranova, T. A.; Chubenko, A. K.; Mamaev, A. I.; Mamaeva, V. A.; Kovalskaya, Ya B.

    2016-11-01

    Process of layered structure materials creation based on aluminum alloys is presented. Microplasma texturing method, microplasma oxidation method and chemical metallization method were used to create these structures. Non-conductive nonmetallic inorganic coatings were produced by microplasma oxidation method. Obtained structures showed high durability under thermal stress loads due to substrate metal - non-conductive nonmetallic inorganic coating phase boundary texturing.

  14. Optically pumped microplasma rare gas laser.

    PubMed

    Rawlins, W T; Galbally-Kinney, K L; Davis, S J; Hoskinson, A R; Hopwood, J A; Heaven, M C

    2015-02-23

    The optically pumped rare-gas metastable laser is a chemically inert analogue to three-state optically pumped alkali laser systems. The concept requires efficient generation of electronically excited metastable atoms in a continuous-wave (CW) electric discharge in flowing gas mixtures near atmospheric pressure. We have observed CW optical gain and laser oscillation at 912.3 nm using a linear micro-discharge array to generate metastable Ar(4s, 1s(5)) atoms at atmospheric pressure. We observed the optical excitation of the 1s(5) → 2p(9) transition at 811.5 nm and the corresponding fluorescence, optical gain and laser oscillation on the 2p(10) ↔ 1s(5) transition at 912.3 nm, following 2p(9)→2p(10) collisional energy transfer. A steady-state kinetics model indicates efficient collisional coupling within the Ar(4s) manifold.

  15. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  16. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    PubMed

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  17. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  18. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the

  19. Isotope ratio characteristics and sensitivity for uranium determinations using a liquid sampling-atmospheric pressure glow discharge ion source coupled to an Orbitrap mass analyzer

    SciTech Connect

    Hoegg, Edward D.; Barinaga, Charles J.; Hager, George J.; Hart, Garret L.; Koppenaal, David W.; Marcus, R. Kenneth

    2016-01-01

    Abstract The continued development of the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma as an ion source for diverse, elemental/isotopic analysis applications continues. To this end, characterization of the capabilities in performing precise and accurate isotope ratio (IR) determinations is essential. Based on past experience with the Thermo Exactive Orbitrap mass analyzer, the LS-APGD was interfaced with this instrument for these tests. While the Orbitrap platform has demonstrated excellent mass resolution and accuracy in “organic” mass spectrometry (MS) applications, work using an Orbitrap for IR analysis is very sparse. These efforts build off previous work in this coupling, where the importance of a few of the LS-APGD discharge parameters and Orbitrap data acquisition methods on IR precision and accuracy were probed. Presented here are the results of a study that evaluated the analytical precision for natural uranium sample (assumed 235U/238U = 0.0072) determinations. The instrumental parameters evaluated include the number of microscans and scans making up a data acquisition set, uranium concentration/signal level, sample make-up, and Fourier transform digitization window. Ultimately, a precision of 0.41% relative standard deviation (RSD) can be achieved for a single determination, with a reproducibility of 1.63 %RSD over 10 separate analytical measurements. A preliminary study of matrix effects on IR measurements of U is presented, highlighting the importance of pre-mass selection before injection into the Orbitrap. The analytical system sensitivity is suggested with the ability to produce a calibration function having an R2 value of >0.99 over a range of 4 orders of magnitude of concentration (~1 – 1000 ng mL-1). These efforts demonstrate the very promising pairing of the LS-APGD ionization source and the Orbitrap, pointing as well to definitive paths forward to better utilize both components in high quality isotope ratio

  20. Performance of dielectric barrier discharge ionization mass spectrometry for pesticide testing: a comparison with atmospheric pressure chemical ionization and electrospray ionization.

    PubMed

    Gilbert-López, Bienvenida; Geltenpoth, Helma; Meyer, Cordula; Michels, Antje; Hayen, Heiko; Molina-Díaz, Antonio; García-Reyes, Juan F; Franzke, Joachim

    2013-02-15

    The present study reports on the evaluation of dielectric barrier discharge microplasma ionization (DBDI) for liquid chromatography/high resolution mass spectrometry (LC/HRMS) analyses of pesticide residues in fruit and vegetables. Ionization, fragmentation, analytical performance and matrix effects displayed by LC/DBDI-MS were critically evaluated and compared with both atmospheric pressure chemical ionization (APCI) and electrospray (ESI), using a set of over 40 representative multiclass pesticides. Sample preparation was accomplished using standard QuEChERS procedure and the identification and quantitation of the pesticides tested accomplished by means of LC/MS with a hybrid linear quadrupole ion trap (LIT)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer operated in full-scan positive ion mode using DBDI, APCI and ESI sources. The developed LC/DBDI-MS method allowed the screening of 43 pesticides in three different vegetable matrices: apple, orange and tomato. Minor matrix effects (i.e. signal suppression or enhancement ≤20%) were observed in most of the studied compounds: 95%, 70% and 81% of the studied compounds showed minor matrix effects in extracts of apple, orange and tomato, respectively. The results of the analysis of spiked orange extracts showed that the sensitivity obtained with LC/DBDI-MS is appropriate for multi-residue analysis of pesticide residues in fruit and vegetable samples. The limits of quantitation (LOQs) obtained for most of the studied pesticides were in compliance with the European Regulation 396/2005 (and subsequent updates) on food commodities (default maximum residue level of 10 µg kg(-1)). Comparative studies with commercial sources demonstrate the suitability of DBDI as an ionization technique for residue analysis, because of the combination of the following two advantages: (1) the use of DBDI provides minimized matrix effects compared with APCI, and (2) improved the detection - in terms of sensitivity - of

  1. Operating principles of microplasmas assisted by field emitting cathodes

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy

    2016-09-01

    Microplasmas have contributed to an exciting new direction in low-temperature plasma science and engineering with various applications including electronics, nanomaterial synthesis, and lighting to name a few. The rapid miniaturization of microplasma devices has provided the opportunity to exploit physical mechanisms that are considered unimportant in traditional macroscale plasmas. Specifically, the intense electric fields encountered in microplasma devices lead to an auxiliary source of electrons via field-induced electron emission from the electrodes. Also, recent advances in nano/microfabrication have resulted in the engineering of thin film materials (such as ultrananocrystalline diamond) with field emission threshold electric fields as low as 1 V / μm thereby allowing us to exploit them in microplasmas with dimensions 100 μm . In this regard, this talk deals with the principles that govern the operation of microplasma devices assisted by field emitting cathodes. Specifically, the talk will focus on the interesting interplay between field emission and the corresponding microplasma properties with surface-normal electric field serving as the link. Results are presented for the operating modes of field emission assisted microplasmas in the direct current and radio frequency/microwave regimes. The one-dimensional analyses include a combination of simplified global/spatial sheath models, fluid simulations as well as kinetic simulations using the particle-in-cell with Monte Carlo collisions (PIC-MCC) method. Two-dimensional fluid simulations are also presented for microcavity plasmas augmented by field emitting cathodes. The simulations are validated with experimental data whenever possible and a need for additional suitable experimental datasets is highlighted.

  2. Application of atmospheric pressure plasma in polymer and composite adhesion

    NASA Astrophysics Data System (ADS)

    Yu, Hang

    An atmospheric pressure helium and oxygen plasma was used to investigate surface activation and bonding in polymer composites. This device was operated by passing 1.0-3.0 vol% of oxygen in helium through a pair of parallel plate metal electrodes powered by 13.56 or 27.12 MHz radio frequency power. The gases were partially ionized between the capacitors where plasma was generated. The reactive species in the plasma were carried downstream by the gas flow to treat the substrate surface. The temperature of the plasm gas reaching the surface of the substrate did not exceed 150 °C, which makes it suitable for polymer processing. The reactive species in the plasma downstream includes ~ 1016-1017 cm-3 atomic oxygen, ~ 1015 cm-3 ozone molecule, and ~ 10 16 cm-3 metastable oxygen molecule (O2 1Deltag). The substrates were treated at 2-5 mm distance from the exit of the plasma. Surface properties of the substrates were characterized using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and X-ray photoelectron spectroscopy (XPS). Subsequently, the plasma treated samples were bonded adhesively or fabricated into composites. The increase in mechanical strength was correlated to changes in the material composition and structure after plasma treatment. The work presented hereafter establishes atmospheric pressure plasma as an effective method to activate and to clean the surfaces of polymers and composites for bonding. This application can be further expanded to the activation of carbon fibers for better fiber-resin interactions during the fabrication of composites. Treating electronic grade FR-4 and polyimide with the He/O2 plasma for a few seconds changed the substrate surface from hydrophobic to hydrophilic, which allowed complete wetting of the surface by epoxy in underfill applications. Characterization of the surface by X-ray photoelectron spectroscopy shows formation of oxygenated functional groups, including hydroxyl, carbonyl, and

  3. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  4. Influence of atmospheric pressure on the incidence of spontaneous pneumothorax.

    PubMed

    Díaz, Raúl; Díez, Manuel Mariano; Medrano, María José; Vera, Cristina; Guillamot, Paloma; Sánchez, Ana; Ratia, Tomás; Granell, Javier

    2014-01-01

    This study analyses the relationship between the incidence of idiopathic spontaneous pneumothorax (ISP) and atmospheric pressure (AP). A total of 288 cases of ISP were included, 229 men and 59 women. The AP of the day of diagnosis, of the 3 prior days and the monthly average was registered. The association between the incidence of ISP and AP was analyzed by calculating standardized incidence ratio (SIR) and Poisson regression. The AP on the day of admission (mean±standard deviation) (1,017.9±7 hectopascals [hPa]) was higher than the monthly average AP (1,016.9±4.1 hPa) (P=.005). There was a monthly distribution pattern of ISP with the highest incidence in the months of January, February and September and the lowest in April. When AP was less than 1,014 hPa, there were fewer cases registered than what would statistically have been expected (58/72 cases). In contrast, when the pressure was higher than 1,019 hPa, the registered cases were more than expected (109/82 cases) (SIR=1.25; 95% CI: 1.04 to 1.51). The risk of ISP increased 1.15 times (95% CI: 1.05 to 1.25, P=.001) for each hPa of AP, regardless of sex, age and monthly average AP. A dose-response relationship was observed, with progressive increases in risk (IRR=1.06 when the AP was 1,014-1016 hPa; 1.17 hPa when the AP was 1,016-1,019 hPa and 1.69 when AP was superior to 1,019 hPa) (P for trend=.089). The AP is a risk factor for the onset of idiopathic spontaneous pneumothorax. Copyright © 2012 AEC. Published by Elsevier Espana. All rights reserved.

  5. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  6. Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap

    SciTech Connect

    Velasco-Vélez, J. J. E-mail: mh@fhi-berlin.mpg.de; Schlögl, R.; Pfeifer, V.; Algara-Siller, G.; Stotz, E.; Teschner, D.; Kube, P.; Knop-Gericke, A.; Hävecker, M. E-mail: mh@fhi-berlin.mpg.de; Skorupska, K.; Wang, R.; Braeuninger-Weimer, P.; Hofmann, S.; Centeno, A.; Zurutuza, A.

    2016-05-15

    One of the main goals in catalysis is the characterization of solid/gas interfaces in a reaction environment. The electronic structure and chemical composition of surfaces become heavily influenced by the surrounding environment. However, the lack of surface sensitive techniques that are able to monitor these modifications under high pressure conditions hinders the understanding of such processes. This limitation is known throughout the community as the “pressure gap.” We have developed a novel experimental setup that provides chemical information on a molecular level under atmospheric pressure and in presence of reactive gases and at elevated temperatures. This approach is based on separating the vacuum environment from the high-pressure environment by a silicon nitride grid—that contains an array of micrometer-sized holes—coated with a bilayer of graphene. Using this configuration, we have investigated the local electronic structure of catalysts by means of photoelectron spectroscopy and in presence of gases at 1 atm. The reaction products were monitored online by mass spectrometry and gas chromatography. The successful operation of this setup was demonstrated with three different examples: the oxidation/reduction reaction of iridium (noble metal) and copper (transition metal) nanoparticles and with the hydrogenation of propyne on Pd black catalyst (powder).

  7. Influence of geomagnetic activity and atmospheric pressure on human arterial pressure during the solar cycle 24

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.; Levi, J. R.

    2016-11-01

    We performed a study of the systolic (SBP) and diastolic (DBP) arterial blood pressure behavior under natural variables such as the atmospheric pressure (AtmP) and the horizontal geomagnetic field component (H). We worked with a sample of 304 healthy normotense volunteers, 152 men and 152 women, with ages between 18 and 84 years in Mexico City during the period 2008-2014, corresponding to the minimum, ascending and maximum phases of the solar cycle 24. The data was divided by gender, age and day/night cycle. We studied the time series using three methods: Correlations, bivariate and superposed epochs (within a window of three days around the day of occurrence of a geomagnetic storm) analysis, between the SBP and DBP and the natural variables (AtmP and H). The correlation analysis indicated correlation between the SBP and DBP and AtmP and H, being the largest during the night. Furthermore, the correlation and bivariate analysis showed that the largest correlations are between the SBP and DBP and the AtmP. The superposed epoch analysis found that the largest number of significant SBP and DBP changes occurred for women. Finally, the blood pressure changes are larger during the solar minimum and ascending solar cycle phases than during the solar maximum; the storms of the minimum were more intense than those of the maximum and this could be the reason of behavior of the blood pressure changes along the solar cycle.

  8. Atmospheric pressure infrared MALDI imaging mass spectrometry for plant metabolomics.

    PubMed

    Li, Yue; Shrestha, Bindesh; Vertes, Akos

    2008-01-15

    The utility of atmospheric pressure infrared MALDI mass spectrometry (AP IR-MALDI) was assessed for plant metabolomics studies. Tissue sections from plant organs, including flowers, ovaries, aggregate fruits, fruits, leaves, tubers, bulbs, and seeds were studied in both positive and negative ion modes. For leaves, single laser pulses sampled the cuticle and upper epidermal cells, whereas multiple pulses were demonstrated to ablate some mesophyll layers. Tandem mass spectra were obtained with collision-activated dissociation to aid with the identification of some observed ions. In the positive mode, most ions were produced as potassium, proton, or sometimes sodium ion adducts, whereas proton loss was dominant in the negative ion mode. Over 50 small metabolites and various lipids were detected in the spectra including, for example, 7 of the 10 intermediates in the citric acid cycle. Key components of the glycolysis pathway occurring in the plant cytosol were found along with intermediates of phospholipid biosynthesis and reactants or products of amino acid, nucleotide, oligosaccharide, and flavonoid biosynthesis. AP IR-MALDI mass spectrometry was used to follow the fluid transport driven by transpiration and image the spatial distributions of several metabolites in a white lily (Lilium candidum) flower petal.

  9. Atmospheric pressure plasma accelerates tail regeneration in tadpoles Xenopus laevis

    NASA Astrophysics Data System (ADS)

    Rivie, A.; Martus, K.; Menon, J.

    2017-08-01

    Atmospheric pressure plasma is a partially ionized gas composed of neutral and charged particles, including electrons and ions, as well as reactive oxygen species (ROS). Recently, it is utilized as possible therapy in oncology, sterilization, skin diseases, wound healing and tissue regeneration. In this study we focused on effect of plasma exposure on tail regeneration of tadpoles, Xenopus leavis with special emphasis on role of ROS, antioxidant defenses and morphological features of the regenerate. When amputated region of the tail was exposed to the helium plasma it resulted in a faster rate of growth, elevated ROS and increase in antioxidant enzymes in the regenerate compared to that of untreated control. An increase in nitric oxide (free radical) as well as activity of nitric oxide synthase(s) were observed once the cells of the regeneration blastema - a mass of proliferating cells are ready for differentiation. Microscopically the cells of the regenerate of plasma treated tadpoles show altered morphology and characteristics of cellular hypoxia and oxidative stress. We summarize that plasma exposure accelerates the dynamics of wound healing and tail regeneration through its effects on cell proliferation and differentiation as well as angiogenesis mediated through ROS signaling.

  10. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  11. Assessment of Atmospheric Pressure Plasma Treatment for Implant Osseointegration

    PubMed Central

    Danna, Natalie R.; Beutel, Bryan G.; Tovar, Nick; Witek, Lukasz; Marin, Charles; Granato, Rodrigo; Suzuki, Marcelo; Coelho, Paulo G.

    2015-01-01

    This study assessed the osseointegrative effects of atmospheric pressure plasma (APP) surface treatment for implants in a canine model. Control surfaces were untreated textured titanium (Ti) and calcium phosphate (CaP). Experimental surfaces were their 80-second air-based APP-treated counterparts. Physicochemical characterization was performed to assess topography, surface energy, and chemical composition. One implant from each control and experimental group (four in total) was placed in one radius of each of the seven male beagles for three weeks, and one implant from each group was placed in the contralateral radius for six weeks. After sacrifice, bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were assessed. X-ray photoelectron spectroscopy showed decreased surface levels of carbon and increased Ti and oxygen, and calcium and oxygen, posttreatment for Ti and CaP surfaces, respectively. There was a significant (P < 0.001) increase in BIC for APP-treated textured Ti surfaces at six weeks but not at three weeks or for CaP surfaces. There were no significant (P = 0.57) differences for BAFO between treated and untreated surfaces for either material at either time point. This suggests that air-based APP surface treatment may improve osseointegration of textured Ti surfaces but not CaP surfaces. Studies optimizing APP parameters and applications are warranted. PMID:26090443

  12. The solvation of electrons by an atmospheric-pressure plasma

    PubMed Central

    Rumbach, Paul; Bartels, David M.; Sankaran, R. Mohan; Go, David B.

    2015-01-01

    Solvated electrons are typically generated by radiolysis or photoionization of solutes. While plasmas containing free electrons have been brought into contact with liquids in studies dating back centuries, there has been little evidence that electrons are solvated by this approach. Here we report direct measurements of solvated electrons generated by an atmospheric-pressure plasma in contact with the surface of an aqueous solution. The electrons are measured by their optical absorbance using a total internal reflection geometry. The measured absorption spectrum is unexpectedly blue shifted, which is potentially due to the intense electric field in the interfacial Debye layer. We estimate an average penetration depth of 2.5±1.0 nm, indicating that the electrons fully solvate before reacting through second-order recombination. Reactions with various electron scavengers including H+, NO2−, NO3− and H2O2 show that the kinetics are similar, but not identical, to those for solvated electrons formed in bulk water by radiolysis. PMID:26088017

  13. Infrared polarization spectroscopy of CO 2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Alwahabi, Z. T.; Li, Z. S.; Zetterberg, J.; Aldén, M.

    2004-04-01

    Polarisation spectroscopy (PS) was used to probe CO 2 gas concentration in a CO 2/N 2 binary mixture at atmospheric pressure and ambient temperature. The CO 2 molecules were probed by a direct laser excitation to an overtone and combination vibrational state. The tuneable narrow linewidth infrared laser radiation at 2 μm was obtained by Raman shifting of the output from a single-longitudinal-mode pulsed alexandrite laser-system to the second Stokes component in a H 2 gas cell. Infrared polarisation spectroscopy (IRPS) and time-resolved infrared laser-induced fluorescence (IRLIF) spectra were collected. A linear dependence of the IRPS signal on the CO 2 mole fraction has been found. This indicates that the IRPS signal is only weakly affected by the molecular collisions and that the inter- and intra- molecular energy transfer processes do not strongly influence the molecular alignment at the time scale of the measurements. Thus IRPS holds great potential for quantitative instantaneous gas concentration diagnostics in general. This is especially important for molecules which do not posses an accessible optical transition such as CO, CO 2 and N 2O. In addition, an accurate experimental method to measure the extinction ratio of the IR polarisers employed in this study has been developed and applied. With its obvious merits as simplicity, easy alignment and high accuracy, the method can be generalized to all spectral regions, different polarisers and high extinction ratios.

  14. Ultrasonic nebulization atmospheric pressure glow discharge - Preliminary study

    NASA Astrophysics Data System (ADS)

    Greda, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-07-01

    Atmospheric pressure glow microdischarge (μAPGD) generated between a small-sized He nozzle jet anode and a flowing liquid cathode was coupled with ultrasonic nebulization (USN) for analytical optical emission spectrometry (OES). The spatial distributions of the emitted spectra from the novel coupled USN-μAPGD system and the conventional μAPGD system were compared. In the μAPGD, the maxima of the intensity distribution profiles of the atomic emission lines Ca, Cd, In, K, Li, Mg, Mn, Na and Sr were observed in the near cathode region, whereas, in the case of the USN-μAPGD, they were shifted towards the anode. In the novel system, the intensities of the analytical lines of the studied metals were boosted from several to 35 times. As compared to the conventional μAPGD-OES with the introduction of analytes through the sputtering and/or the electrospray-like nebulization of the flowing liquid cathode solution, the proposed method with the USN introduction of analytes in the form of a dry aerosol provides improved detectability of the studied metals. The detection limits of metals achieved with the USN-μAPGD-OES method were in the range from 0.08 μg L- 1 for Li to 52 μg L- 1 for Mn.

  15. Atmospheric pressure arc discharge with ablating graphite anode

    SciTech Connect

    Nemchinsky, V. A.; Raitses, Y.

    2015-05-18

    The anodic carbon arc discharge is used to produce carbon nanoparticles. Recent experiments with the carbon arc at atmospheric pressure helium demonstrated the enhanced ablation rate for narrow graphite anodes resulting in high deposition rates of carbonaceous products on the copper cathode (Fetterman et al 2008 Carbon 46 1322–6). The proposed model explains these results with interconnected steady-state models of the cathode and the anode processes. When considering cathode functioning, the model predicts circulation of the particles in the near-cathode region: evaporation of the cathode material, ionization of evaporated atoms and molecules in the near-cathode plasma, return of the resulting ions to the cathode, surface recombination of ions and electrons followed again by cathode evaporation etc. In the case of the low anode ablation rate, the ion acceleration in the cathode sheath provides the major cathode heating mechanism. In the case of an intensive anode ablation, an additional cathode heating is due to latent fusion heat of the atomic species evaporated from the anode and depositing at the cathode. Using the experimental arc voltage as the only input discharge parameter, the model allows us to calculate the anode ablation rate. A comparison of the results of calculations with the available experimental data shows reasonable agreement.

  16. Breakdown of atmospheric pressure microgaps at high excitation frequencies

    SciTech Connect

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-05-07

    Microwave (mw) breakdown of atmospheric pressure microgaps is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions numerical model. The effect of both field electron emission and secondary electron emission (due to electron impact, ion impact, and primary electron reflection) from surfaces on the breakdown process is considered. For conditions where field emission is the dominant electron emission mechanism from the electrode surfaces, it is found that the breakdown voltage of mw microdischarge coincides with the breakdown voltage of direct-current (dc) microdischarge. When microdischarge properties are controlled by both field and secondary electron emission, breakdown voltage of mw microdischarge exceeds that of dc microdischarge. When microdischarge is controlled only by secondary electron emission, breakdown voltage of mw microdischarge is smaller than that of dc microdischarge. It is shown that if the interelectrode gap exceeds some critical value, mw microdischarge can be ignited only by electrons initially seeded within the gap volume. In addition, the influence of electron reflection and secondary emission due to electron impact is studied.

  17. Microchip atmospheric pressure chemical ionization source for mass spectrometry.

    PubMed

    Ostman, Pekka; Marttila, Seppo J; Kotiaho, Tapio; Franssila, Sami; Kostiainen, Risto

    2004-11-15

    A novel microchip heated nebulizer for atmospheric pressure chemical ionization mass spectrometry is presented. Anisotropic wet etching is used to fabricate the flow channels, inlet, and nozzle on a silicon wafer. An integrated heater of aluminum is sputtered on a glass wafer. The two wafers are jointed by anodic bonding, creating a two-dimensional version of an APCI source with a sample channel in the middle and gas channels symmetrically on both sides. The ionization is initiated with an external corona-discharge needle positioned 2 mm in front of the microchip heated nebulizer. The microchip APCI source provides flow rates down to 50 nL/min, stable long-term analysis with chip lifetime of weeks, good quantitative repeatability (RSD < 10%) and linearity (r(2) > 0.995) with linear dynamic rage of at least 4 orders of magnitude, and cost-efficient manufacturing. The limit of detection (LOD) for acridine measured with microchip APCI at flow rate of 6.2 muL/min was 5 nM, corresponding to a mass flow of 0.52 fmol/s. The LOD with commercial macro-APCI at a flow rate of 1 mL/min for acridine was the same, 5 nM, corresponding to a significantly worse mass flow sensitivity (83 fmol/s) than measured with microchip APCI. The advantages of microchip APCI makes it a very attractive new microfluidic detector.

  18. Atmospheric pressure plasma assisted calcination of composite submicron fibers

    NASA Astrophysics Data System (ADS)

    Medvecká, Veronika; Kováčik, Dušan; Tučeková, Zlata; Zahoranová, Anna; Černák, Mirko

    2016-08-01

    The plasma assisted calcination of composite organic/inorganic submicron fibers for the preparation of inorganic fibers in submicron scale was studied. Aluminium butoxide/polyvinylpyrrolidone fibers prepared by electrospinning were treated using low-temperature plasma generated by special type of dielectric barrier discharge, so called diffuse coplanar surface barrier discharge (DCSBD) at atmospheric pressure in ambient air, synthetic air, oxygen and nitrogen. Effect of plasma treatment on base polymer removal was investigated by using Attenuated total reflectance - Fourier transform infrared (ATR-FTIR) spectroscopy. Influence of working gas on the base polymer reduction was studied by energy-dispersive X-ray spectroscopy (EDX) and CHNS elemental analysis. Changes in fibers morphology were observed by scanning electron microscopy (SEM). High efficiency of organic template removal without any degradation of fibers was observed after plasma treatment in ambient air. Due to the low-temperature approach and short exposure time, the plasma assisted calcination is a promising alternative to the conventional thermal calcination. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  19. In situ impedance measurement of microwave atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Lee, S. T.; Nam, W. J.; Lee, J. K.; Yun, G. S.

    2017-04-01

    The impedance of atmospheric pressure argon plasma jets driven by microwave frequency is determined in situ by a novel ‘two frequency method’. In the conventional method of reflection coefficient ({{S}}11) measurement, the frequency of the driving microwave power is scanned, which inevitably affects the plasma characters and leads to uncertainty in the estimated plasma impedance. In our proposed method, the frequency-scanning signal additional to the driving power is used to measure {{S}}11 over a wide frequency range, which enables accurate determination of the plasma impedance based on an equivalent circuit model. The measured resistance and reactance of the plasma increase with the driving power in agreement with the transmission line theory. Based on this in situ measurement of the plasma impedance, the net power coupled to the plasma has been determined. The overall power efficiency remains approximately unchanged around 45% for different input power levels owing to the competing effects between the impedance mismatch and the volume change of the plasma.

  20. Introduction of Atmospheric Pressure Plasma to Aqueous Detergent Processes.

    PubMed

    Gotoh, Keiko; Kanasaki, Yu; Uchinomaru, Haruka

    2015-01-01

    The effects of exposure of polymer surfaces to atmospheric pressure plasma (APP) on detergency were investigated from the viewpoint of pretreatment to cleaning in aqueous systems using three PET substrates: film, mesh, and fabric. The PET substrates were soiled with stearic acid as a model oily contaminant, and were treated with the APP jet immediately before cleaning. Stir washing in aqueous solutions with and without alkali or anionic surfactant was performed, and then the detergency was evaluated from the microscopic image analysis or surface reflectance measurement. For all PET samples and detergent solutions, APP exposure was found to promote the removal of stearic acid. Contact angle measurements showed that APP exposure enhanced the hydrophilicity of PET and stearic acid. The increase in the surface oxygen concentration on PET and stearic acid due to the APP exposure was also observed by XPS analysis. The simultaneous oxidation of the PET substrate and stearic acid soil by the APP pretreatment resulted in detergency improvement via surface hydrophilization. Furthermore, microscopic observations suggested that the collapse of crystallized stearic acid deposited on the PET substrate by APP heating facilitated its removal. In situ detergency evaluation by a quartz crystal microbalance technique confirmed that the removal of stearic acid from the PET substrate was promoted by the APP exposure. The experimental findings of this study demonstrate the effectiveness of the APP exposure before cleaning in aqueous solutions.

  1. Dynamics of apokamp-type atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victor A.; Skakun, Victor S.; Baksht, Evgeny Kh.; Tarasenko, Victor F.

    2017-02-01

    The paper describes a new discharge source of atmospheric pressure plasma jets (APPJs) in air with no gas supply through the discharge region. In this discharge mode, plasma jets develop from the bending point of a bright current channel between two electrodes and are therefore termed an apokamp (from Greek `off' and `bend'). The apokamp can represent single plasma jets of length up 6 cm or several jets, and the temperature of such jets can range from more than 1000 °C at their base to 100-250 °C at their tip. Apokamps are formed at maximum applied voltage of positive polarity, provided that the second electrode is capacitively decoupled with ground. According to high-speed photography with time resolution from several nanoseconds to several tens of nanoseconds, the apokamp consists of a set of plasma bullets moving with a velocity of 100-220 km/s, which excludes the convective mechanism of plasma decay. Estimates on a 100-ns scale show that the near-electrode zones and the zones from which apokamps develop are close in temperature.

  2. Atmospheric Pressure Plasma Jet for Chem/Bio Warfare Decontamination

    NASA Astrophysics Data System (ADS)

    Herrmann, Hans W.; Henins, Ivars; Park, Jaeyoung; Selwyn, Gary S.

    1999-11-01

    Atmospheric Pressure Plasma Jet (APPJ) technology may provide a much needed method of CBW decontamination which, unlike traditional decon methods, is dry and nondestructive to sensitive equipment and materials. The APPJ discharge uses a high-flow feedgas consisting primarily of an inert carrier gas, such as He, and a small amount of a reactive additive, such as O2, which flows between capacitively-coupled electrodes powered at 13.56 MHz. The plasma generates highly reactive metastable and atomic species of oxygen which are then directed onto a contaminated surface. The reactive effluent of the APPJ has been shown to effectively neutralize VX nerve agent as well as simulants for anthrax and mustard blister agent. Research efforts are now being directed towards reducing He consumption and increasing the allowable stand-off distance. Recent results demonstrate that by replacing the O2 reactive additive with CO2, ozone formation is greatly reduced. This has the result of extending the lifetime of atomic oxygen by an order of magnitude or more. A recirculating APP Decon Chamber which combines heat, vacuum, forced convection and reactivity is currently being developed for enhanced decontamination of sensitive equipment. Several techniques are also being evaluated for use in an APP Decon Jet for decontamination of items which cannot be placed inside a chamber.

  3. Characteristics of Atmospheric Pressure Rotating Gliding Arc Plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhu, Fengsen; Tu, Xin; Bo, Zheng; Cen, Kefa; Li, Xiaodong

    2016-05-01

    In this work, a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions. The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals, high speed photography, and optical emission spectroscopic diagnostics. Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g., 10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone, in this RGA system, a lower gas flow rate (e.g., 2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions. Two different motion patterns can be clearly observed in the N2 and air RGA plasmas. The time-resolved arc voltage signals show that three different arc dynamic modes, the arc restrike mode, takeover mode, and combined modes, can be clearly identified in the RGA plasmas. The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate. supported by National Natural Science Foundation of China (No. 51576174), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120101110099) and the Fundamental Research Funds for the Central Universities (No. 2015FZA4011)

  4. Breakdown of atmospheric pressure microgaps at high excitation frequencies

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan

    2015-09-01

    Microwave breakdown of atmospheric pressure microgaps was studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions numerical model. The effect of both field electron emission and secondary electron emission (due to electron impact, ion impact, and primary electron reflection) from surfaces on the breakdown process is considered. For conditions where field emission is the dominant electron emission mechanism from the electrode surfaces, it is found that the breakdown voltage of mw microdischarge coincides with the breakdown voltage of direct-current microdischarge. When microdischarge properties are controlled by both field and secondary electron emission, breakdown voltage of mw microdischarge exceeds that of dc microdischarge. When microdischarge is controlled only by secondary electron emission, breakdown voltage of mw microdischarge is smaller than that of dc microdischarge. It is shown that if the interelectrode gap exceeds some critical value, mw microdischarge can be ignited only by electrons initially seeded within the gap volume. In addition, the influence of electron reflection and secondary emission due to electron impact is studied. This work was supported by the Air Force Office of Scientific Research.

  5. Breakdown of atmospheric pressure microgaps at high excitation frequencies

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2015-05-01

    Microwave (mw) breakdown of atmospheric pressure microgaps is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions numerical model. The effect of both field electron emission and secondary electron emission (due to electron impact, ion impact, and primary electron reflection) from surfaces on the breakdown process is considered. For conditions where field emission is the dominant electron emission mechanism from the electrode surfaces, it is found that the breakdown voltage of mw microdischarge coincides with the breakdown voltage of direct-current (dc) microdischarge. When microdischarge properties are controlled by both field and secondary electron emission, breakdown voltage of mw microdischarge exceeds that of dc microdischarge. When microdischarge is controlled only by secondary electron emission, breakdown voltage of mw microdischarge is smaller than that of dc microdischarge. It is shown that if the interelectrode gap exceeds some critical value, mw microdischarge can be ignited only by electrons initially seeded within the gap volume. In addition, the influence of electron reflection and secondary emission due to electron impact is studied.

  6. Plasma-induced flow instabilities in atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Johnsen, Eric; Kushner, Mark J.

    2017-09-01

    Pulsed plasma excitation of rare gases flowing into air has been shown to impact the stability of the flow in non-equilibrium atmospheric pressure plasma jets (APPJs). In this paper, the results from a numerical modeling investigation of the stability of a round He APPJ with a powered electrode exposed to the gas flow are discussed. Localized gas heating at the powered electrode occurs on the time scale of the voltage pulse, tens to 100 ns, which is short compared to the fluid timescales. An acoustic wave propagates from this heated, expanding gas and exits the jet. The wave disturbs the shear layer between the He and surrounding humid air, exciting a shear instability which grows downstream with the flow and increases the mixing of the humid air into the He. The effects of the eddy-dominated flow on ionization wave (IW) propagation in an APPJ were investigated. The IW followed the regions of the highest helium concentration, resulting in an increased production of NO, HO2, and NO2.

  7. Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry.

    PubMed

    Li, Yue; Shrestha, Bindesh; Vertes, Akos

    2007-01-15

    An atmospheric pressure (AP) MALDI imaging interface was developed for an orthogonal acceleration time-of-flight mass spectrometer and utilized to analyze peptides, carbohydrates, and other small biomolecules using infrared laser excitation. In molecular imaging experiments, the spatial distribution of mock peptide patterns was recovered with a detection limit of approximately 1 fmol/pixel from a variety of MALDI matrixes. With the use of oversampling for the image acquisition, a spatial resolution of 40 microm, 5 times smaller than the laser spot size, was achieved. This approach, however, required that the analyte was largely removed at the point of analysis before the next point was interrogated. Native water in plant tissue was demonstrated to be an efficient natural matrix for AP infrared laser desorption ionization. In soft fruit tissues from bananas, grapes, and strawberries, potassiated ions of the most abundant metabolites, small carbohydrates, and their clusters produced the strongest peaks in the spectra. Molecular imaging of a strawberry skin sample revealed the distribution of the sucrose, glucose/fructose, and citric acid species around the embedded seeds. Infrared AP MALDI mass spectrometric imaging without the addition of an artificial matrix enables the in vivo investigation of small biomolecules and biological processes (e.g., metabolomics) in their natural environment.

  8. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    NASA Astrophysics Data System (ADS)

    Norberg, Seth A.; Johnsen, Eric; Kushner, Mark J.

    2015-07-01

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O2 = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  9. Using atmospheric pressure plasma treatment for treating grey cotton fabric.

    PubMed

    Kan, Chi-Wai; Lam, Chui-Fung; Chan, Chee-Kooi; Ng, Sun-Pui

    2014-02-15

    Conventional wet treatment, desizing, scouring and bleaching, for grey cotton fabric involves the use of high water, chemical and energy consumption which may not be considered as a clean process. This study aims to investigate the efficiency of the atmospheric pressure plasma (APP) treatment on treating grey cotton fabric when compared with the conventional wet treatment. Grey cotton fabrics were treated with different combinations of plasma parameters with helium and oxygen gases and also through conventional desizing, scouring and bleaching processes in order to obtain comparable results. The results obtained from wicking and water drop tests showed that wettability of grey cotton fabrics was greatly improved after plasma treatment and yielded better results than conventional desizing and scouring. The weight reduction of plasma treated grey cotton fabrics revealed that plasma treatment can help remove sizing materials and impurities. Chemical and morphological changes in plasma treated samples were analysed by FTIR and SEM, respectively. Finally, dyeability of the plasma treated and conventional wet treated grey cotton fabrics was compared and the results showed that similar dyeing results were obtained. This can prove that plasma treatment would be another choice for treating grey cotton fabrics.

  10. Theory and analysis of operating modes in microplasmas assisted by field emitting cathodesa)

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy

    2015-05-01

    Motivated by the recent interest in the development of novel diamond-based cathodes, we study microplasmas assisted by field emitting cathodes with large field enhancement factors using a simplified model and comparisons with particle-in-cell with Monte Carlo collision (PIC-MCC) simulations and experiments. The model used to determine current-voltage characteristics assumes a linearly varying electric field in the sheath and predicts transition from an abnormal glow to arc mode at moderate current densities in a 1 mm argon gap. The influence of an external circuit is also considered to show the dependence of current as a function of the applied voltage, including potential drop across external resistors. PIC-MCC simulations confirm the validity of the model and also show the significant non-equilibrium nature of these low-temperature microplasmas with electron temperatures ˜1 eV and ion temperatures ˜ 0.07 eV in the quasi-neutral region. The model is also used to explain experimental data reported for a 1 mm argon gap at a pressure of 2 Torr using three different diamond-based cathodes with superior field emitting properties. The comparison shows that operating conditions in the experiments may not result in significant field emission and the differences observed in current-voltage characteristics can be attributed to small differences in the secondary electron emission coefficient of the three cathodes. However, the model and simulations clearly indicate that field emission using novel cathodes with high field enhancement factors can be used to enhance microplasmas by significantly decreasing the power requirements to achieve a given plasma number density even in gaps at which field emission is traditionally not considered to be a dominant mechanism.

  11. Theory and analysis of operating modes in microplasmas assisted by field emitting cathodes

    SciTech Connect

    Venkattraman, Ayyaswamy

    2015-05-15

    Motivated by the recent interest in the development of novel diamond-based cathodes, we study microplasmas assisted by field emitting cathodes with large field enhancement factors using a simplified model and comparisons with particle-in-cell with Monte Carlo collision (PIC-MCC) simulations and experiments. The model used to determine current-voltage characteristics assumes a linearly varying electric field in the sheath and predicts transition from an abnormal glow to arc mode at moderate current densities in a 1 mm argon gap. The influence of an external circuit is also considered to show the dependence of current as a function of the applied voltage, including potential drop across external resistors. PIC-MCC simulations confirm the validity of the model and also show the significant non-equilibrium nature of these low-temperature microplasmas with electron temperatures ∼1 eV and ion temperatures ∼0.07 eV in the quasi-neutral region. The model is also used to explain experimental data reported for a 1 mm argon gap at a pressure of 2 Torr using three different diamond-based cathodes with superior field emitting properties. The comparison shows that operating conditions in the experiments may not result in significant field emission and the differences observed in current-voltage characteristics can be attributed to small differences in the secondary electron emission coefficient of the three cathodes. However, the model and simulations clearly indicate that field emission using novel cathodes with high field enhancement factors can be used to enhance microplasmas by significantly decreasing the power requirements to achieve a given plasma number density even in gaps at which field emission is traditionally not considered to be a dominant mechanism.

  12. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-01

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N2, and 0.05% CO2 are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50-250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  13. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    SciTech Connect

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-15

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  14. Pressure Sounding of the Middle Atmosphere from ATMOS Solar Occultation Measurements of Atmospheric CO(sub 2) Absorption Lines

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Gunson, M.; Lowes, L.; Rinsland, C.; Zander, R.

    1994-01-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(sub 2) lines with temperature-insensitive intensities. Tangent pressures are determined with a spectroscopic precision of 1-3%, corresponding to a tangent point height precision, depending on the scale height, of 70-210 meters.

  15. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    PubMed

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  16. Design and simulation of a microwave powered microplasma system for local area materials processing

    NASA Astrophysics Data System (ADS)

    Narendra, Jeffri Julliarsa

    A microwave powered microplasma source is developed and tested for materials processing on spatially localized areas. A small diameter stream of plasma (less than 2 mm in diameter) is created by focusing microwave energy inside a discharge tube. The discharge then flows out the end of the tube onto the surface being processed delivering ions and reactive radicals. The diameter of the plasma stream from the tube to the material being processed can be controlled by an aperture mounted at the end of the tube. The spot size of the localized plasma stream ranges from 2 mm down to 10's micrometers depending on the aperture size. The discharge is created by using 2.45 GHz microwave energy that is coupled into the discharge using a small foreshortened cylindrical cavity that has a hollow inner conductor and a small capacitive gap at the end of the cavity. A processing gas mixture is fed through a 2 mm inner diameter quartz tube which is located inside the hollow inner conductor of the cavity. This tube is exposed to a high electric field at the small gap end of the cavity thus generating a surface wave plasma. The length of the surface wave discharge in the tube can be extended by increasing the microwave power to the discharge so that the plasma reaches the aperture. The operating pressures range from 0.5 Torr to 100 Torr and the microwave power utilized ranges from a few Watts to 10's Watts. Several properties of the discharge including plasma power density, electron density and electron temperature are measured. The power densities of argon and Ar/O2 plasma discharges vary from 10's to over 450 W/cm 3. The plasma density and electron temperature of argon discharges are measured using a double Langmuir probe placed in the materials processing area. The plasma densities are in the range of 1011 -- 1013 cm-3. Computational modeling of the plasma discharge and the microwave excitation of the discharge is performed using a finite element analysis. The goal of the modeling

  17. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Martus, K.; Lee, W. Y.; Becker, K.

    2004-04-01

    We explored the feasibility of using a single flow-through microhollow cathode discharge (MHCD) as a non-thermal plasma source for hydrogen (H2) production for portable fuel cell applications. The MHCD device consisted of two thin metal electrodes separated by a mica spacer with a single-hole, roughly 100 [mu]m in diameter, through all three layers. The efficiency of the MHCD reactor for H2 generation from NH3 was analyzed by monitoring the products formed in the discharge in a mass spectrometer. Using a gas mixture of up to 10% NH3 in Ar at pressures up to one atmosphere, the MHCD reactor achieved a maximum ammonia conversion of slightly more than 20%. The overall power efficiency of the MHCD reactor reached a peak value of about 11%. The dependence of NH3 conversion and power efficiency on the residence time of the gas in the MHCD plasma was studied. Experiments using pulsed excitation of the MHCD plasma indicated that pulsing can increase the power efficiency. Design and operating criteria are proposed for a microplasma-based H2 generator that can achieve a power efficiency above the break-even point, i.e., a microplasma reactor that requires less electrical power to generate and maintain the plasma than the power that can be obtained from the conversion of the H2 generated in the microplasma reactor.

  18. Microplasma fabrication: from semiconductor technology for 2D-chips and microfluidic channels to rapid prototyping and 3D-printing of microplasma devices

    NASA Astrophysics Data System (ADS)

    Shatford, R.; Karanassios, Vassili

    2014-05-01

    Microplasmas are receiving attention in recent conferences and current scientific literature. In our laboratory, microplasmas-on-chips proved to be particularly attractive. The 2D- and 3D-chips we developed became hybrid because they were fitted with a quartz plate (quartz was used due to its transparency to UV). Fabrication of 2D- and 3D-chips for microplasma research is described. The fabrication methods described ranged from semiconductor fabrication technology, to Computer Numerical Control (CNC) machining, to 3D-printing. These methods may prove to be useful for those contemplating in entering microplasma research but have no access to expensive semiconductor fabrication equipment.

  19. Microplasma-assisted rapid synthesis of luminescent nitrogen-doped carbon dots and their application in pH sensing and uranium detection

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Lu, Yuexiang; Yuan, Hang; Ren, Zhonghua; Xu, Chao; Chen, Jing

    2015-12-01

    Developing a simple synthesis method and expanding the application of carbon dots have attracted increasing attention. In this report, we have developed a facile method to synthesize fluorescent carbon dots (CDs) with the assistance of atmospheric-pressure microplasma. The CDs could be produced within a few minutes with no need of high temperature, external energy input, and multistep procedures. The as-prepared CDs had a relatively uniform size of approximately 2.3 nm. The FTIR spectrum and the XPS analysis showed that carbonyl groups and amide groups exist on the surface of CDs. The CDs showed bright blue luminescence and high stability in high salt concentration and low pH without further modification. A pH-dependent PL behavior was observed and could be applied for pH sensing in the range of 3-14. Moreover, the CDs could be utilized as a reagent capable of detecting U(vi) with a low detection limit and high selectivity.Developing a simple synthesis method and expanding the application of carbon dots have attracted increasing attention. In this report, we have developed a facile method to synthesize fluorescent carbon dots (CDs) with the assistance of atmospheric-pressure microplasma. The CDs could be produced within a few minutes with no need of high temperature, external energy input, and multistep procedures. The as-prepared CDs had a relatively uniform size of approximately 2.3 nm. The FTIR spectrum and the XPS analysis showed that carbonyl groups and amide groups exist on the surface of CDs. The CDs showed bright blue luminescence and high stability in high salt concentration and low pH without further modification. A pH-dependent PL behavior was observed and could be applied for pH sensing in the range of 3-14. Moreover, the CDs could be utilized as a reagent capable of detecting U(vi) with a low detection limit and high selectivity. Electronic supplementary information (ESI) available: Details of characterization of plasma and hydrothermal prepared CDs

  20. Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations

    NASA Astrophysics Data System (ADS)

    Pollack, J. B.; Haberle, R. M.; Murphy, J. R.; Schaeffer, J.; Lee, H.

    1993-02-01

    The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

  1. Electric discharge microplasmas generated in highly fluctuating fluids: Characteristics and application to the synthesis of molecular diamond

    NASA Astrophysics Data System (ADS)

    Stauss, Sven

    2014-10-01

    Plasma-based fabrication of novel nanomaterials and nanostructures is paramount for the development of next-generation electronic devices and for green energy applications. In particular, controlling the interactions between plasmas and materials interfaces, and the plasma fluctuations are crucial for further development of plasma-based processes and bottom-up growth of nanomaterials. Discharge microplasmas generated in supercritical fluids represent a special class of high-pressure plasmas, where fluctuations on the molecular scale influence the discharge properties and the possible bottom-up growth of nanomaterials. In the first part of the talk, we will discuss an anomaly observed for microplasmas generated near the critical point, a local decrease in the breakdown voltage, which has been observed for both molecular and monoatomic gases. This anomalous behavior is suggested to be caused by the concomitant decrease of the ionization potential due to the formation of clusters near the critical point, and the formation of extended electron mean free paths induced by the high-density fluctuation near the critical point. We will also show that when generating microplasma discharges close to the critical point, that the high-density fluctuation of the supercritical fluid persists. In the second part of the presentation, we will first introduce the basic properties of diamondoids and their potential for application in many different fields - biotechnology, medicine, opto- and nanoelectronics - before discussing their synthesis by microplasmas generated inside both conventional batch-type and continuous flow reactors, using the smallest diamondoid, adamantane, as a precursor and seed. Finally we show that one possible growth mechanism of larger diamondoids from smaller ones consists in the repeated abstraction of hydrogen terminations and the addition of methyl radicals. Supported financially in part by Grant No. 23760688 and Grant No. 21110002 from the Ministry of

  2. Novel applications of atmospheric pressure plasma on textile materials

    NASA Astrophysics Data System (ADS)

    Cornelius, Carrie Elizabeth

    Various applications of atmospheric pressure plasma are investigated in conjunction with polymeric materials including paper, polypropylene non-woven fabric, and cotton. The effect of plasma on bulk and surface properties is examined by treating both cellulosic pulp and prefabricated paper with various plasma-gas compositions. After treatment, pulp is processed into paper and the properties are compared. The method of pulp preparation is found to be more significant than the plasma, but differences in density, strength, and surface roughness are apparent for the pulp vs. paper plasma treatments. The plasma is also used to remove sizes of PVA and starch from poly/cotton and cotton fabric respectively. In both cases plasma successfully removes a significant amount of size, but complete size removal is not achieved. Subsequent washes (PVA) or scouring (cotton) to remove the size are less successful than a control, suggesting the plasma is crosslinking the size that is not etched away. However, at short durations in cold water using an oxygen plasma, slightly more PVA is removed than with a control. For the starch sized samples, plasma and scouring are never as successful at removing starch as a conventional enzyme, but plasma improves dyeability without need for scouring. Plasma is also used to graft chemicals to the surface of polypropylene and cotton fabric. HTCC, an antimicrobial is grafted to polypropylene with successful grafting indicated by x-ray photoemission spectroscopy (XPS), dye tests, and Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity of the grafted samples is also characterized. 3ATAC, a vinyl monomer is also grafted to polypropylene and to cotton. Additives including Mohr's salt, potassium persulfate, and diacrylate are assessed to increase yield. Successful grafting of 3ATAC is confirmed by XPS and dye testing. A combination of all three additives is identified as optimum for maximizing graft yield.

  3. Atmospheric pressure dielectric barrier discharges interacting with liquid covered tissue

    NASA Astrophysics Data System (ADS)

    Tian, Wei; Kushner, Mark J.

    2014-04-01

    The interaction of plasmas with liquids is of increasing importance in biomedical applications. Tissues treated by atmospheric pressure dielectric barrier discharges (DBDs) in plasma medicine are often covered by a thin layer of liquid, typically a blood serum like water with dissolved gases and proteins up to hundreds of micrometres thick. The liquid processes the plasma-produced radicals and ions prior to their reaching the tissue. In this paper, we report on a computational investigation of the interaction of DBDs in humid air with a thin water layer covering tissue. The water layer, 50-400 µm thick, contains dissolved O2aq (aq means an aqueous species) and alkane-like hydrocarbons (RHaq). In the model, the DBDs are operated with multiple pulses at 100 Hz followed by a 1 s afterglow. Gas phase reactive oxygen and nitrogen species (RONS) intersect the water-vapour saturated air above the liquid and then solvate when reaching the water. The photolysis of water by plasma-produced UV/VUV plays a significant role in the production of radicals. Without RHaq, O_{2aq}^{-} , ONOO_{aq}^{-} , NO_{3aq}^{-} and hydronium (H_{3} O_{aq}^{+} ) dominate the water ions with H_{3} O_{aq}^{+} determining the pH. The dominant RONS in the liquid are O3aq, H2O2aq, and HNOxaq. Dissolved O2aq assists the production of HNO3aq and HOONOaq during the afterglow. With RHaq, reactive oxygen species are largely consumed, leaving an R·aq (alkyl radical) to reach the tissue. These results are sensitive to the thickness of the water layer.

  4. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  5. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    SciTech Connect

    Norberg, Seth A. Johnsen, Eric; Kushner, Mark J.

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  6. Atmospheric Pressure Plasma Jet as an Accelerator of Tooth Bleaching

    PubMed Central

    Santak, Vedran; Zaplotnik, Rok; Milosevic, Slobodan; Klaric, Eva; Tarle, Zrinka

    2014-01-01

    Objective To study the effect of atmospheric pressure plasma (APP) jet as a potential accelerator of the degradation of hydrogen peroxide in bleaching gels which could lead to better and faster bleaching. Material and Methods 25 pastilles of hydroxylapatite were colored in green tea for 8 hours and were randomly divided into five groups (n = 5). The bleaching process was performed with 30% and 40% hydrogen peroxide (HP) gel alone and in conjunction with helium APP jet. During the bleaching treatment, optical emission spectroscopy and non-contact surface temperature measurement using pyrometer were performed. Color of the pastilles was determined by a red–green–blue (RGB) colorimeter. PH values of bleaching gels were measured before and after the plasma treatment on additional 10 pastilles using a pH meter with contact pH electrode. Results The color measurements of pastilles before and after the treatment showed that treatment with APP jet improved the bleaching effect by 32% and 15% in the case of 30% and 40% HP gel. Better results were obtained approximately six times faster than with a procedure suggested by the bleaching gel manufacturer. Optical emission spectroscopy proved that plasma has a chemically active role on the gel. After the APP treatment, pH values of bleaching gels dropped to about 50–75% of their initial value while the surface temperature increased by 8–10˚C above baseline. Conclusion The use of plasma jet provides more effective bleaching results in a shorter period of time without a significant temperature increase which may cause damage of the surrounding tissue. PMID:27688375

  7. Microwave capillary plasmas in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Santos, M.; Noël, C.; Belmonte, T.; Alves, L. L.

    2014-07-01

    This work uses both simulations and experiments to study helium plasmas (99.999% purity), sustained by surface-wave discharges (2.45 GHz frequency) in capillary tubes (3 mm in-radius) at atmospheric pressure. The simulations use a self-consistent homogeneous and stationary collisional-radiative model (CRM) that solves the rate balance equations for the different species present in the plasma (electrons, He+ and He_2^+ ions, He(n ⩽ 6) excited states and He_2^* excimers) and the gas thermal balance equation, coupled with the two-term electron Boltzmann equation (including direct and stepwise inelastic and superelastic collisions as well as electron-electron collisions). The experiments use optical emission spectroscopy diagnostics to measure the electron density ne (from the Hβ Stark broadening), the gas temperature Tg (from the ro-vibrational transitions of OH, present at trace concentrations) and the populations of excited states in the energy region 22.7-24.2 eV, whose spectrum allows determining the excitation temperature Texc. Measurements yield ne ≃ (2.45 ± 1.4) × 1013 cm-3, Tg ≃ 1700 ± 100 K and Texc ≃ 2793 ± 116 K, for a ˜180 ± 10 W power coupled and ˜1 cm length plasma column. The model predictions at ne = 1.7 × 1013 cm-3 are in very good agreement with measurements yielding Tg = 1800 K, Texc = 2792 K (for ˜30% average relative error between calculated and measured excited-state densities), and a power absorbed by the plasma per unit length of 165 W cm-1. The model results depend strongly on ne, and hence on the plasma conductivity and on the power coupled to the plasma. The coupling of a thermal module to the CRM has been shown to be crucial. Increasing the electron density leads to very high gas temperature values, which limits the variation range of (ne, Tg) as input parameters to the model.

  8. Abatement of perfluorinated compounds using microwave plasmas at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kabouzi, Y.; Moisan, M.; Rostaing, J. C.; Trassy, C.; Guérin, D.; Kéroack, D.; Zakrzewski, Z.

    2003-06-01

    Microwave plasmas sustained at atmospheric pressure, for instance by electromagnetic surface waves, can be efficiently used to abate greenhouse-effect gases such as perfluorinated compounds. As a working example, we study the destruction and removal efficiency (DRE) of SF6 at concentrations ranging from 0.1% to 2.4% of the total gas flow where N2, utilized as a purge gas, is the carrier gas. O2 is added to the mixture at a fixed ratio of 1.2-1.5 times the concentration of SF6 to ensure full oxidation of the SF6 fragments, providing thereby scrubbable by-products. Fourier-transform infrared spectroscopy has been utilized for identification of the by-products and quantification of the residual concentration of SF6. Optical emission spectroscopy was employed to determine the gas temperature of the nitrogen plasma. In terms of operating parameters, the DRE is found to increase with increasing microwave power and decrease with increasing gas flow rate and discharge tube radius. Increasing the microwave power, in the case of a surface-wave discharge, or decreasing the gas flow rate increases the residence time of the molecules to be processed, hence, the observed DRE increase. In contrast, increasing the tube radius or the gas-flow rate increases the degree of radial contraction of the discharge and, therefore, the plasma-free space close to the tube wall: this comparatively colder region favors the reformation of the fragmented SF6 molecules, and enlarging it lowers the destruction rate. DRE values higher than 95% have been achieved at a microwave power of 6 kW with 2.4% SF6 in N2 flow rates up to 30 standard l/min.

  9. Water solubility in rhyolitic silicate melts at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Ryan, Amy; Russell, Kelly; Nichols, Alexander; Porritt, Lucy; Friedlander, Elizabeth

    2014-05-01

    High temperature (900-1100 °C) experiments have been conducted to measure the solubility of water in a rhyolitic melt at atmospheric pressure (1 atm) and to quantify the magnitude of retrograde solubility at low pressure. Individual cores (1 cm x 1 cm) of crystal- and bubble-free rhyolitic obsidian from Hrafntinnugryggur, Krafla (Iceland) were held in a furnace at 900-1100 °C for 0.25 to 20 hours. During this time, the uniform bubble-free cores vesiculate to produce variably swollen bubble-rich run products. The volume change in each core reflects the volume of bubbles produced in each experiment and depends on the experimental temperature and the time held at that temperature. The run product volumes for isothermal experiments (e.g., 950 °C) increase non-linearly with increasing time (e.g., 0.18 cm3 at 1.5 h, 0.96 cm3 at 12.5 h) until reaching a maximum value, after which the volume does not change appreciably. We take this plateau in the isothermal volume:time curve as coinciding with the 1 atm. solubility limit for the rhyolite at this temperature. With increasing temperature, the slope and final horizontal plateaus of the volume:time curves increase such that samples from the higher temperature suites vesiculate more, as well as more rapidly (e.g., 0.85 cm3 after 0.5 hours, 1.78 cm3 after 1 hour at 1100 °C). The variations in the maximum volume of bubbles produced for each temperature constrain the retrograde solubility of water in the melt at 1 atm. Fourier transform infrared spectroscopy (FTIR) analyses of the residual water content of the glass in the starting material and in the most vesiculated sample from each temperature suite shows a decrease in the water content of the glass from an initial 0.114 wt% (σ 0.013) to 0.098 wt% (σ 0.010), 0.087 wt% (σ 0.009), 0.093 wt% (σ 0.008), 0.090 wt% (σ 0.006) and 0.108 wt% (σ 0.010) for 900 °C, 950 °C, 1000 °C, 1050 °C and 1100 °C respectively. This change in the solubility of water at different

  10. The effect of atmospheric pressure on Snowball Earth deglaciation

    NASA Astrophysics Data System (ADS)

    Edkins, Nicholas; Davies, Roger

    2017-02-01

    The most common explanation for the escape from a Snowball Earth state involves, among other factors, a strong greenhouse effect caused by a large partial pressure of CO2. This leads to an increase in surface pressure, which most models do not account for. With a higher surface pressure, pressure broadening increases, and convection reaches a deeper layer, both of which result in higher surface temperatures. The latter mechanism, which has not previously been reported, is found to be a greater source of warming than pressure broadening in the normal range of CO2 partial pressures at the point of deglaciation.

  11. Remote sensing of the atmosphere of Mars using infrared pressure modulation and filter radiometry

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Schofield, J. T.; Zurek, R. W.; Martonchik, J. V.; Haskins, R. D.

    1986-01-01

    The study of the atmosphere and climate of Mars will soon be advanced considerably by the Mars Observer mission. This paper describes the atmospheric sounder for this mission and how it will measure key Martian atmospheric parameters using IR gas correlation and filter radiometry. The instrument now under development will provide high-resolution vertical profiles of atmospheric temperature, pressure, water vapor, dust, and clouds using limb sounding techniques as well as nadir observations of surface thermal properties and polar radiative balance.

  12. Characterization of Microplasma Sprayed Hydroxyapatite Coating

    NASA Astrophysics Data System (ADS)

    Dey, Arjun; Mukhopadhyay, Anoop K.; Gangadharan, S.; Sinha, Mithilesh K.; Basu, Debabrata

    2009-12-01

    Microplasma sprayed (MIPS) HAP coatings on SS316L substrates were characterized by x-ray diffraction, Fourier transformed infrared spectroscopy, optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), atomic force microscopy and image analysis. The coating showed a high degree of crystallinity ~92%, a high porosity level of 20 vol.% and a moderate bonding strength of about 13 MPa. The displacement controlled three-point bend tests and associated results of optical microscopy indicated that crack deflection, crack branching, and also local crack bridging occurred during crack propagation in the coating. The nano-hardness ( H) and Young’s modulus ( E) of the MIPS-HAP coatings as measured by nanoindentation technique were about 6 and 92 GPa, respectively. The fracture toughness ( K ic) of the coating was ~0.6 MPa·m0.5. From the nano-scratch experiments, the critical normal load at which localized microcracking led to delamination was measured to be ~400 mN.

  13. Plasma Ion Sources for Atmospheric Pressure Ionization Mass Spectrometry.

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-Guo

    1994-01-01

    Atmospheric pressure ionization (API) sources using direct-current (DC) and radio-frequency (RF) plasma have been developed in this thesis work. These ion sources can provide stable discharge currents of ~ 1 mA, 2-3 orders of magnitude larger than that of the corona discharge, a widely used API source. The plasmas can be generated and maintained in 1 atm of various buffer gases by applying -500 to -1000 V (DC plasma) or 1-15 W with a frequency of 165 kHz (RF plasma) on the needle electrode. These ion sources have been used with liquid injection to detect various organic compounds of pharmaceutical, biotechnological and environmental interest. Key features of these ion sources include soft ionization with the protonated molecule as the largest peak, and superb sensitivity with detection limits in the low picogram or femtomole range and a linear dynamic range over ~4 orders of magnitude. The RF plasma has advantages over the DC plasma in its ability to operate in various buffer gases and to produce a more stable plasma. Factors influencing the performance of the ion sources have been studied, including RF power level, liquid flow rate, chamber temperature, solvent composition, and voltage affecting the collision induced dissociation (CID). Ionization of hydrocarbons by the RF plasma API source was also studied. Soft ionization is generally produced. To obtain high sensitivity, the ion source must be very dry and the needle-to-orifice distance must be small. Nitric oxide was used to enhance the sensitivity. The RF plasma source was then used for the analysis of hydrocarbons in auto emissions. Comparisons between the corona discharge and the RF plasma have been made in terms of discharge current, ion residence time, and the ion source model. The RF plasma source provides larger linear dynamic range and higher sensitivity than the corona discharge, due to its much larger discharge current. The RF plasma was also observed to provide longer ion residence times and was not

  14. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  15. Measurements of density, pressure and temperature in the middle atmosphere with Rayleigh lidar

    NASA Astrophysics Data System (ADS)

    Deng, Pan; Zhang, Tianshu; Chen, Wei; Liu, Jianguo

    2016-10-01

    Ground-based observations of the middle atmospheric density, pressure and temperature profiles can be obtained by lidar. A single-wavelength Rayleigh lidar system based at Hefei (31°N,117°E) has been used to measure the atmospheric density, pressure and temperature in the middle atmosphere in night in the altitude range from about 25 to 40 km. The structure of Rayleigh lidar system, principles of middle atmospheric density, pressure and temperature measurement which is based on the Rayleigh scattering theory and method to retrieve atmospheric density, pressure and temperature profiles were described respectively. This instrument combined a 500mW Nd:YAG laser transmitter with a 0.4 m receiver mirror to observe returns from altitudes between 25km and 40km.The lidar observed atmosphere density, pressure and temperature profiles are validated through comparison with the measure data provided by sounding balloon. According to the data from actual measurement, the inversion of the vertical distribution of middle atmosphere density, pressure and temperature are in good agreement with the result of sounding balloon. Generally, in the altitude range 25 to 40 km, the density ratio profile of Rayleigh lidar to the sounding balloon density fluctuates between 0.98 and 1.10, the pressure ratio profile of Rayleigh lidar to the sounding balloon is between 0.99 and 1.06 and the deviation of the temperature is less than 6 k.

  16. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS.

  17. Thermodynamic analysis and experimental study of the effect of atmospheric pressure on the ice point

    SciTech Connect

    Harvey, A. H.; McLinden, M. O.; Tew, W. L.

    2013-09-11

    We present a detailed thermodynamic analysis of the temperature of the ice point as a function of atmospheric pressure. This analysis makes use of accurate international standards for the properties of water and ice, and of available high-accuracy data for the Henry's constants of atmospheric gases in liquid water. The result is an ice point of 273.150 019(5) K at standard atmospheric pressure, with higher ice-point temperatures (varying nearly linearly with pressure) at lower pressures. The effect of varying ambient CO{sub 2} concentration is analyzed and found to be significant in comparison to other uncertainties in the model. The thermodynamic analysis is compared with experimental measurements of the temperature difference between the ice point and the triple point of water performed at elevations ranging from 145 m to 4302 m, with atmospheric pressures from 101 kPa to 60 kPa.

  18. Effect of Atmospheric Pressure on Wet Bulb Depression

    NASA Astrophysics Data System (ADS)

    Wheeler, Raymond; Stasiak, Michael; Lawson, Jamie; Wehkamp, Cara Ann; Dixon, Mike

    Future space exploration missions will likely operate at pressures less than 1 atm ( 100 kPa) to reduce gas leakage and structural mass, and facilitate rapid EVAs. Understanding environmental monitoring, control, and physiological responses to reduced pressures will be required to assure mission success. Wet / dry bulb psychrometers are useful devices for monitoring humidity and provide insights into cooling phenomena for wet, evaporating surfaces. To study the effects of pressure on psychrometers we conducted a series of tests in a hypobaric chamber. Chamber RH monitoring and control were based on capacitance type devices, which previous testing and manufacturer's specifications have shown to be unaffected by pressure. Test data were gathered using an Enercorp model HT-WD-A psychrometer with matched platinum RTD temperature probes positioned side-by-side with a dew point (chilled mirror) device and two capacitance RH sensors. The chamber was kept dark and measurements were taken at three RHs (30, 50, and 70) and four pressures (10, 25, 50, and 97 kPa). Results showed an increase in wet bulb depression (i.e., a drop in wet bulb temperature) for a given RH as the pressure decreased, with the largest changes occurring as pressure dropped from 25 and 10 kPa. At a dry bulb temperature of 25 C, the normal wet bulb temperature for 30 RH and 97 kPa is 15 C, but this dropped to 8 C at 10 kPa. These observations are consistent with previous reports of increased evaporation rates at reduced pressure and match recently published psychrometric models for different pressures. The results suggest that psychrometers need direct calibration at the target pressures or that pressure corrected charts are required. Moreover, for a given vapor pressure deficit, any moist surfaces, including transpiring plant leaves, will be cooler at lower pressures due to the increased evaporation rates.

  19. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation

    NASA Astrophysics Data System (ADS)

    Du, Changming; Liu, Ya; Huang, Yani; Li, Ziming; Men, Rui; Men, Yue; Tang, Jun

    2016-01-01

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation.

  20. Qualitation and Quantitation on Microplasma Jet for Bacteria Inactivation

    PubMed Central

    Du, ChangMing; Liu, Ya; Huang, YaNi; Li, ZiMing; Men, Rui; Men, Yue; Tang, Jun

    2016-01-01

    In this work, a self-made microplasma jet system was used to conduct the qualitation and quantitation of inactivation with Escherichia coli as the target bacteria. The logarithmic concentration and the size of antimicrobial rings served as the evaluation parameters, respectively. The effect of various parameters on inactivation effect was studied. The results showed that the majority of bacteria had been inactivated in 30 s. The inactivation effect enhanced and then weakened with the increase of air flow rate, and receded as the extension of treatment distance. The effect with different carrier gases showed as follows: oxygen > air > nitrogen > argon. Meanwhile, the effect of different components of microplasma was studied in the optimum conditions (The flow rate was 5 L/min; inactivation distance was 2 cm). The results showed that electrically neutral active species was the main factor of inactivation rather than heating effect, ultraviolet radiation and charged particles. Finally the experiments of thallus change proved that microplasma jet had etching effect on cell membrane. It also found that microplasma could degrade organic material like protein. Furthermore, the images of scanning electron microscope (SEM) revealed the change of cell morphology step by step in the whole process of inactivation. PMID:26732987

  1. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    PubMed

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  2. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    NASA Astrophysics Data System (ADS)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  3. Mars - The role of the regolith in determining atmospheric pressure and the atmosphere's response to insolation changes

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Cannon, W. A.

    1978-01-01

    A quantitative model for atmosphere-regolith exchange of CO2 on Mars is presented. The model, based on new laboratory measurements of CO2 adsorption on ground rock at 158, 175, 196, and 231 K for CO2 pressures from 1.0 to 80 mbar, is consistent with Viking observations, while models involving a massive residual CO2 cap and no long-term atmosphere-regolith CO2 exchange are not consistent. The model indicates: (1) the atmosphere-plus-cap system is buffered on a long-term basis by exchangeable CO2 adsorbed in the regolith; (2) if the atmosphere-plus-cap system suddenly disappeared, the system would eventually be almost completely restored by reequilibration with the regolith; (3) exchange with the adsorbed phase in the regolith has greatly restricted O-18 enrichment of the atmosphere; (4) the layered terrain primarily represents current periodic pressure increases; and (5) pressures of 100-300 nbar might have existed during the early history of the planet.

  4. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper.

  5. Super-Atmospheric Pressure Ion Sources: Application and Coupling to API Mass Spectrometer

    PubMed Central

    Chen, Lee Chuin; Rahman, Md. Matiur; Hiraoka, Kenzo

    2014-01-01

    Pressurizing the ionization source to gas pressure greater than atmospheric pressure is a new tactic aimed at further improving the performance of atmospheric pressure ionization (API) sources. In principle, all API sources, such as ESI, APCI and AP-MALDI, can be operated at pressure higher than 1 atm if suitable vacuum interface is available. The gas pressure in the ion source can have different role for different ionization. For example, in the case of ESI, stable electrospray could be sustained for high surface tension liquid (e.g., pure water) under super-atmospheric pressure, owing to the absence of electric discharge. Even for nanoESI, which is known to work well with aqueous solution, its stability and sensitivity were found to be enhanced, particularly in the negative mode when the ion source was pressurized. For the gas phase ionization like APCI, measurement of gaseous compound also showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4–5 atm. The enhancement was due to the increased collision frequency among reactant ion and analyte that promoted the ion/molecule reaction and a higher intake rate of gas to the mass spectrometer. Because the design of vacuum interface for API instrument is based on the upstream pressure of 1 atm, some coupling aspects need to be considered when connecting the high pressure ion source to the mass spectrometer. Several coupling strategies are discussed in this paper. PMID:26819896

  6. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  7. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    PubMed

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  8. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    PubMed

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  9. Preflame zone structure and main features of fuel conversion in atmospheric pressure premixed laminar hydrocarbon flames

    SciTech Connect

    Ksandopulo, G.I.

    1995-08-25

    This report describes the structure study of the premixed hydrocarbon-oxidizer Bunsen flames burning at the atmospheric pressure and also the ones with some inhibitors added. Studies were performed on hexane, propane, methane, acetylene, and hexene flames.

  10. Photochemical Ignition Studies. 3. Ignition by Efficient and Resonant Multiphoton Photochemical Formation of Microplasmas

    DTIC Science & Technology

    1987-06-01

    Security Ct14sfIcation) PHOTOCHEMICAL IGNITION STUDIES. I11. IGNITION BY EFFICIENT AND RESONANT MULTIPHOTON PHOTOCHEMICAL FORMATION OF MICROPLASMAS 12... Microplasmas 07 04ý 19. ABSTRACT (Coninu On 06 it= iP rwouiry and ikti n~jnilW) ;;is is the third of a series of reports concerning the activation...p--spectral studies were carried out on 02 and N 0 flows alone. These indicated a resonant formation of a microplasma with a fifetime on the order

  11. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  12. Dissociation of nitrogen in a pulse-periodic dielectric barrier discharge at atmospheric pressure

    SciTech Connect

    Popov, N. A.

    2013-05-15

    Nitrogen molecule dissociation in a pulse-periodic atmospheric-pressure dielectric barrier discharge is numerically analyzed. It is shown that the quenching rate of predissociation states at atmospheric pressure is relatively low and the production of nitrogen atoms in this case can be adequately described using the cross section for electron-impact dissociation of N{sub 2} molecules taken from the paper by P.C. Cosby [J. Chem. Phys. 98, 9544 (1993)].

  13. Data Assimilation in an Ocean Model of the Mediterranean Sea Forced by the Atmospheric Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Dobricic, Srdjan; Oddo, Paolo; Pinardi, Nadia

    2012-03-01

    Recently the atmospheric pressure gradient forcing has been implemented in the oceanographic model used in the Mediterranean Forecasting System data assimilation scheme. Experiments show that there is an impact on how the temperature and salinity is updated in the assimilation when the ocean model is forced by the atmospheric pressure gradient. It is, however, necessary to perform longer data assimilation experiments to quantify the impact on the quality of the MFS analyses of the state of the Mediterranean Sea.

  14. Pressure sounding of the middle atmosphere from ATMOS solar occultation measurements of atmospheric CO(2) absorption lines.

    PubMed

    Abrams, M C; Gunson, M R; Lowes, L L; Rinsland, C P; Zander, R

    1996-06-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier-transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(2) lines with temperature-insensitive strengths by measuring the slant-column CO(2) amount and by adjusting the viewing geometry until the calculated column matches the observed column. Tangent pressures are determined with a spectroscopic precision of l%-3%, corresponding to a tangent-point height precision of 70-210 m. The total uncertainty is limited primarily by the quality of the spectra and ranges between 4% and 6% (280-420 m) for spectra with signal-to-noise ratios of 300:1 and between 4% and 10% for spectra with signal-to-noise ratios of 100:1. The retrieval of atmospheric pressure increases the accuracy of the retrieved-gas concentrations by minimizing the effect of systematic errors introduced by climatological pressure data, ephemeris parameters, and the uncertainties in instrumental pointing.

  15. Atmospheric Pressure and Velocity Fluctuations Near the Auroral Electrojet.

    DTIC Science & Technology

    1982-01-15

    various aspects of the atmosphere’s dynamical response to auroral activity have been carried out by Blumen and Hendl (1969), Testud (1970), Francis...Geophys. Res. 80, 2839, 1975. Testud , 3., Gravity waves generated during magnetic substorms, 3. Atmos. Terr. Phys. 32, 1793, 1970. Waco, D. E., A

  16. A new humane method of stunning broilers using low atmospheric pressure

    USDA-ARS?s Scientific Manuscript database

    This research project evaluated an alternative method of controlled atmosphere stunning of commercial broilers to induce anoxia utilizing a vacuum pump to reduce the oxygen tension, low atmospheric pressure stun (LAPS). A custom built 2 cage-module system (holding a total of 600 broilers each) with...

  17. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    PubMed

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd.

  18. On the Generation of Multiple Atmospheric Pressure Waves Observed During Violent Volcanic Eruptions.

    NASA Astrophysics Data System (ADS)

    Medici, E. F.; Waite, G. P.

    2015-12-01

    One or more atmospheric pressure waves followed by a supersonic jet may be generated during the over pressurized vapor-solid-liquid mixture ejection of a violent volcanic eruption. The source of these multiple atmospheric pressure waves could have different origins. Among the physical mechanisms that could explain these behaviors are pulsating eruptions, the dynamics of shock waves, coupled pressure wave-supersonic jet interaction, or a combination of all these factors. In order to elucidate the causes of these complex fluid flow dynamics, a series of analog volcanic eruption experiments using an atmospheric shock tube were performed. During the testing, single and multiple pressure waves and the subsequent supersonic jet were generated. The controlled laboratory conditions enable studies of the most relevant variables potentially responsible for the formation of the multiple pressure waves. The tests were performed using dry, compressed nitrogen at standard room temperature that was free of particles. Yet, under this idealization of a real volcanic eruption, multiple pressure waves were observed on the high-speed video imaging and recorded on the pressure transducer. The amount of energy being released on each test was varied to achieve different discharge dynamics and the formation of single and multiple pressure waves. The preliminary experimental observations indicate a coupled pressure wave-jet interaction as source of multiple pressure waves.

  19. Water cycles in closed ecological systems: effects of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  20. Water cycles in closed ecological systems: effects of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  1. Past epochs of significantly higher pressure atmospheres on Pluto

    NASA Astrophysics Data System (ADS)

    Stern, S. A.; Binzel, R. P.; Earle, A. M.; Singer, K. N.; Young, L. A.; Weaver, H. A.; Olkin, C. B.; Ennico, K.; Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; New Horizons Geology; Geophysics; Atmospheres Teams

    2017-05-01

    Pluto is known to have undergone thousands of cycles of obliquity change and polar precession. These variations have a large and corresponding impact on the total average solar insolation reaching various places on Pluto's surface as a function of time. Such changes could produce dramatic increases in surface pressure and may explain certain features observed by New Horizons on Pluto's surface, including some that indicate the possibility of surface paleo-liquids. This paper is the first to discuss multiple lines of geomorphological evidence consistent with higher pressure epochs in Pluto's geologic past, and it also the first to provide a mechanism for potentially producing the requisite high pressure conditions needed for an environment that could support liquids on Pluto. The presence of such liquids and such conditions, if borne out by future work, would fundamentally affect our view of Pluto's past climate, volatile transport, and geological evolution. This paper motivates future, more detailed climate modeling and geologic interpretation efforts in this area.

  2. Modified drug release using atmospheric pressure plasma deposited siloxane coatings

    NASA Astrophysics Data System (ADS)

    Dowling, D. P.; Maher, S.; Law, V. J.; Ardhaoui, M.; Stallard, C.; Keenan, A.

    2016-09-01

    This pilot study evaluates the potential of atmospheric plasma polymerised coatings to modify the rate of drug release from polymeric substrates. The antibiotic rifampicin was deposited in a prototype multi-layer drug delivery system, consisting of a nebulized layer of active drug between a base layer of TEOS deposited on a plastic substrate (polystyrene) and an overlying layer of plasma polymerised PDMS. The polymerised TEOS and PDMS layers were deposited using a helium atmospheric plasma jet system. Elution of rifampicin was measured using UV-VIS spectroscopy, in addition to a antimicrobial well diffusion assay with an established indicator organism. The multi-layered plasma deposited coatings significantly extended the duration of release of the rifampicin from 24 h for the uncoated polymer to 144 h for the coated polymer.

  3. Ignition during hydrogen release from high pressure into the atmosphere

    NASA Astrophysics Data System (ADS)

    Oleszczak, P.; Wolanski, P.

    2010-12-01

    The first investigations concerned with a problem of hydrogen jet ignition, during outflow from a high-pressure vessel were carried out nearly 40 years ago by Wolanski and Wojcicki. The research resulted from a dramatic accident in the Chorzow Chemical Plant Azoty, where the explosion of a synthesis gas made up of a mixture composed of three moles of hydrogen per mole of nitrogen, at 300°C and 30 MPa killed four people. Initial investigation had excluded potential external ignition sources and the main aim of the research was to determine the cause of ignition. Hydrogen is currently considered as a potential fuel for various vehicles such as cars, trucks, buses, etc. Crucial safety issues are of potential concern, associated with the storage of hydrogen at a very high pressure. Indeed, the evidence obtained nearly 40 years ago shows that sudden rupture of a high-pressure hydrogen storage tank or other component can result in ignition and potentially explosion. The aim of the present research is identification of the conditions under which hydrogen ignition occurs as a result of compression and heating of the air by the shock wave generated by discharge of high-pressure hydrogen. Experiments have been conducted using a facility constructed in the Combustion Laboratory of the Institute of Heat Engineering, Warsaw University of Technology. Tests under various configurations have been performed to determine critical conditions for occurrence of high-pressure hydrogen ignition. The results show that a critical pressure exists, leading to ignition, which depends mainly on the geometric configuration of the outflow system, such as tube diameter, and on the presence of obstacles.

  4. Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements

    NASA Technical Reports Server (NTRS)

    Linkin, V. M.; Blamon, Z.; Lipatov, A. P.; Devyatkin, S. I.; Dyachkov, A. V.; Ignatova, S. I.; Kerzhanovich, V. V.; Malyk, K.; Stadny, V. I.; Sanotskiy, Y. V.

    1986-01-01

    Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.

  5. Subtarget Effect on Laser Plasma Generated by Transversely Excited Atmospheric CO2 Laser at Atmospheric Gas Pressure

    NASA Astrophysics Data System (ADS)

    Kagawa, Kiichiro; Lie, Tjung Jie; Hedwig, Rinda; Abdulmajid, Syahrun Nur; Suliyanti, Maria Margaretha; Kurniawan, Hendrik

    2000-05-01

    An experimental study has been carried out on the dynamical process taking place in the laser plasma generated by Transversely Excited Atmospheric CO2 laser (100 mJ, 50 ns) irradiation of a soft sample at surrounding helium pressure of 1 atm. It is shown that the presence of a copper subtarget behind the soft sample is crucial in raising the gushing speed of the atoms to the level adequate for the generation of shock wave laser plasma even at atmospheric pressure. It is also found that the time profiles of spatially integrated emission intensity of the target’s atoms and gas atoms exhibit a characteristic dynamical process that consists of successive excitation and cooling stages even at such a high pressure, which is typical of shock wave laser plasma. It is therefore suggested that the generation of the laser plasma at atmospheric pressure is more likely due to the shock wave mechanism than to the widely known breakdown mechanism. Initial spectrochemical analysis of water from the blow off of a boiler system was also carried out, showing a detection limit of as low as 5 ppm for calcium.

  6. Atmospheric Pressure Oscillations Forced by Surface Waves From the 2003 Tokachi-Oki Earthquake

    NASA Astrophysics Data System (ADS)

    Watada, S.; Nishida, K.; Sekiguchi, S.

    2004-12-01

    Clear atmospheric pressure changes associated with the 2003 Tokachi-Oki Earthquake with M 8.3 were recorded by 8 microbarographs along Japan. The maximum oscillatory pressure change is about 2 Pascal with dominant period is about 15-20 second, and lasted for more than 30 minutes. Comparing the pressure change with broadband seismic records observed near or at the microbarogram, the pressure change starts at the arrival of seismic waves and reaches its maximum amplitude at the arrival of Rayleigh waves. Four microbarographs, co-located with STS-1 broadband seismographs and suffering less atmospheric wind noise, show that peaks in vertical ground velocity records correspond to the peaks of atmospheric pressure records. Similar pressure changes were observed during the largest aftershock (M 7.4). All ground motion analyzed in this paper were recorded by STS-1 broadband sensors. Spectrum analysis in the frequency domain supports that the vertical ground velocity and the pressure change has the same phase and the amplitude ratio is constant up to a period of about 50 second. The constant amplitude ratio is about (atmospheric density) times (sound velocity in the atmosphere), indicating that the surface ground in vertical ground motion compresses or inflates the air above the ground locally and low-frequency sound waves are generated. Pressure change recorded after the passage of Rayleigh waves does not well correlate with the ground velocity. Through the precise atmospheric pressure and ground motion measurement at the same sites, we witnessed the process of low-frequency sound generation by the vertical ground surface motion acted as a vibrating plate of a speaker. The radiated low-frequency sound waves propagates upward and reaches to the ionosphere with large amplitude because of the energy conservation. The ionospheric turbulence reported in the past researches were originated from this low-frequency sound at the ground surface.

  7. The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

  8. The Effect of Atmospheric Pressure on Rocket Thrust -- Part I.

    ERIC Educational Resources Information Center

    Leitner, Alfred

    1982-01-01

    The first of a two-part question asks: Does the total thrust of a rocket depend on the surrounding pressure? The answer to this question is provided, with accompanying diagrams of rockets. The second part of the question (and answer) are provided in v20 n7, p479, Oct 1982 of this journal. (Author/JN)

  9. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  10. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    SciTech Connect

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  11. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    PubMed

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  12. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  13. Electron heating in radio-frequency capacitively coupled atmospheric-pressure plasmas

    SciTech Connect

    Liu, D. W.; Iza, F.; Kong, M. G.

    2008-12-29

    In atmospheric-pressure plasmas the main electron heating mechanism is Ohmic heating, which has distinct spatial and temporal evolutions in the {alpha} and {gamma} modes. In {gamma} discharges, ionizing avalanches in the sheaths are initiated not only by secondary electrons but also by metastable pooling reactions. In {alpha} discharges, heating takes place at the sheath edges and in contrast with low-pressure plasmas, close to 50% of the power absorbed by the electrons is absorbed at the edge of the retreating sheaths. This heating is due to a field enhancement caused by the large collisionality in atmospheric-pressure discharges.

  14. Relating landfill gas emissions to atmospheric pressure using numerical modelling and state-space analysis.

    PubMed

    Poulsen, Tjalfe G; Christophersen, Mette; Moldrup, Per; Kjeldsen, Peter

    2003-08-01

    Landfill gas (CO2 and CH4) concentrations and fluxes in soil adjacent to an old, unlined Danish municipal landfill measured over a 48-hour period during the passage of a low-pressure weather system were used to identify processes governing gas fluxes and concentrations. Two different approaches were applied: (I) State-space analysis was used to identify relations between gas flux and short-term (hourly) variations in atmospheric pressure. (II) A numerical gas transport model was fitted to the data and used to quantify short-term impacts of variations in atmospheric pressure, volumetric soil-water content, soil gas permeability, soil gas diffusion coefficients, and biological CH4 degradation rate upon landfill gas concentration and fluxes in the soil. Fluxes and concentrations were found to be most sensitive to variations in volumetric soil water content, atmospheric pressure variations and gas permeability whereas variations in CH4 oxidation rate and molecular coefficients had less influence. Fluxes appeared to be most sensitive to atmospheric pressure at intermediate distances from the landfill edge. Also overall CH4 fluxes out of the soil over longer periods (years) were largest during periods with rapidly decreasing atmospheric pressures resulting in emission of large amounts of CH4 during short periods of time. This effect, however, was less significant for the CO2 fluxes.

  15. Review on VUV to MIR absorption spectroscopy of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Reuter, Stephan; Santos Sousa, Joao; Stancu, Gabi Daniel; Hubertus van Helden, Jean-Pierre

    2015-10-01

    Absorption spectroscopy (AS) represents a reliable method for the characterization of cold atmospheric pressure plasma jets. The method’s simplicity stands out in comparison to competing diagnostic techniques. AS is an in situ, non-invasive technique giving absolute densities, free of calibration procedures, which other diagnostics, such as laser-induced fluorescence or optical emission spectroscopy, have to rely on. Ground state densities can be determined without the knowledge of the influence of collisional quenching. Therefore, absolute densities determined by absorption spectroscopy can be taken as calibration for other methods. In this paper, fundamentals of absorption spectroscopy are presented as an entrance to the topic. In the second part of the manuscript, a review of AS performed on cold atmospheric pressure plasma jets, as they are used e.g. in the field of plasma medicine, is presented. The focus is set on special techniques overcoming not only the drawback of spectrally overlapping absorbing species, but also the line-of-sight densities that AS usually provides or the necessity of sufficiently long absorption lengths. Where references are not available for measurements on cold atmospheric pressure plasma jets, other plasma sources including low-pressure plasmas are taken as an example to give suggestions for possible approaches. The final part is a table summarizing examples of absorption spectroscopic measurements on cold atmospheric pressure plasma jets. With this, the paper provides a ‘best practice’ guideline and gives a compendium of works by groups performing absorption spectroscopy on cold atmospheric pressure plasma jets.

  16. Survival of deep-sea shrimp (Alvinocaris sp.) during decompression and larval hatching at atmospheric pressure.

    PubMed

    Koyama, Sumihiro; Nagahama, Takahiko; Ootsu, Noriyuki; Takayama, Tomoji; Horii, Masae; Konishi, Satoshi; Miwa, Tetsuya; Ishikawa, Yoichi; Aizawa, Masuo

    2005-01-01

    We report successful larval hatching of deep-sea shrimp after decompression to atmospheric pressure. Three specimens of deep-sea shrimp were collected from an ocean depth of 1157 m at cold-seep sites off Hatsushima Island in Sagami Bay, Japan, using a pressure-stat aquarium system. Phylogenetic analysis of Alvinocaris sp. based on cytochrome c oxidase subunit gene sequences confirmed that these species were a member of the genus Alvinocaris. All 3 specimens survived to reach atmospheric pressure conditions after stepwise 63-day decompression. Two of the specimens contained eggs, which hatched after 10 and 16 days, respectively, of full decompression. Although no molting of the shrimp larvae was observed during 74 days of rearing under atmospheric pressure, the larvae developed conventional dark-adapted eyes after 15 days.

  17. Application of Langmuir Probe Method to the Atmospheric Pressure Discharge Plasma

    SciTech Connect

    Matsuura, Hiroto; Matsumura, Yasuhiro; Nakano, Ken

    2008-12-31

    The heat balance model in the probe tip applied to atmospheric pressure plasma is constructed. Considering the natural convective heat loss, the limitation of plasma density for probe application to such a plasma is estimated. The rough limit is about n{sub e} = 10{sup 18} m{sup -3}. Four kind of materials (Cu, SUS, W, Al) are used for probe tips, and are tested in DC atmospheric pressure discharge. Heat conductivity is found to be a more important property than melting point in design of probes in high pressure discharge. DC atmospheric pressure discharge plasma parameters are obtained with our test probes. Obtained density is the order of 10{sup 17} m{sup -3} and does not contradict with the above density limitation. Change of space potential in air/Ar plasma is also confirmed.

  18. Wavelet filter analysis of local atmospheric pressure effects in the long-period tidal bands

    NASA Astrophysics Data System (ADS)

    Hu, X.-G.; Liu, L. T.; Ducarme, B.; Hsu, H. T.; Sun, H.-P.

    2006-11-01

    It is well known that local atmospheric pressure variations obviously affect the observation of short-period Earth tides, such as diurnal tides, semi-diurnal tides and ter-diurnal tides, but local atmospheric pressure effects on the long-period Earth tides have not been studied in detail. This is because the local atmospheric pressure is believed not to be sufficient for an effective pressure correction in long-period tidal bands, and there are no efficient methods to investigate local atmospheric effects in these bands. The usual tidal analysis software package, such as ETERNA, Baytap-G and VAV, cannot provide detailed pressure admittances for long-period tidal bands. We propose a wavelet method to investigate local atmospheric effects on gravity variations in long-period tidal bands. This method constructs efficient orthogonal filter bank with Daubechies wavelets of high vanishing moments. The main advantage of the wavelet filter bank is that it has excellent low frequency response and efficiently suppresses instrumental drift of superconducting gravimeters (SGs) without using any mathematical model. Applying the wavelet method to the 13-year continuous gravity observations from SG T003 in Brussels, Belgium, we filtered 12 long-period tidal groups into eight narrow frequency bands. Wavelet method demonstrates that local atmospheric pressure fluctuations are highly correlated with the noise of SG measurements in the period band 4-40 days with correlation coefficients higher than 0.95 and local atmospheric pressure variations are the main error source for the determination of the tidal parameters in these bands. We show the significant improvement of long-period tidal parameters provided by wavelet method in term of precision.

  19. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  20. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  1. Existence of the threshold pressure for seismic excitation by atmospheric disturbances

    NASA Astrophysics Data System (ADS)

    Tanimoto, Toshiro; Valovcin, Anne

    2016-11-01

    Excitation of seismic waves by atmospheric pressure changes is examined from data for two tropical cyclones, Tropical Storm Lee (2011) and Hurricane Isaac (2012). They moved through the EarthScope Transportable Array and generated variations in pressure and ground motions that spanned 4-5 orders of magnitude in power spectral density (PSD). For vertical seismic ground velocity PSD (SV) for frequencies between 0.01 and 0.02 Hz, there is a threshold pressure at about pressure PSD (SP) of 10 Pa2 s, below which vertical motion is not affected by local atmospheric pressure. Above this threshold pressure, vertical ground motion increases with surface pressure as SV SP1.5. In order to understand the land-atmosphere interaction, pressure above this threshold is the only useful range. Horizontal component PSDs are about 2 orders of magnitude larger than vertical component PSDs and change with pressure for its entire range. This overall trend is most likely caused by ground tilt.

  2. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial.

    PubMed

    Chuangsuwanich, Apirag; Assadamongkol, Tananchai; Boonyawan, Dheerawan

    2016-08-31

    Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.

  3. Atmospheric Refraction Predictions Based on Actual Atmospheric Pressure and Temperature Data

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2017-04-01

    Calculations of atmospheric refraction are generally based on a simplified model of atmospheric density in the troposphere that assumes the temperature decreases at a constant lapse rate L from sea level up to a height {h}t≈ 11 {km}, and that afterward it remains constant. In this model, the ratio T o /L, where T o is the temperature at the observer’s location, determines the length scale in the calculations for altitudes h≤slant {h}t. But daily balloon measurements across the USA show that in some cases there is an inversion so that the air temperature actually increases from sea level up to a height {h}p≈ 1 {km}, and only after reaching a plateau with temperature {T}o\\prime at this height, it decreases at an approximately constant lapse rate. Hence, in such cases the relevant length scale for atmospheric refraction calculations in the range {h}p≤slant h< {h}t is {T}o\\prime /L, and the contribution for h≤slant {h}p has to be calculated from actual measurements of air density in this range. Moreover, in three examples considered here, the temperature does not remain constant for {h}t≤slant h, but continues to decreases to a minimum at {h}m≈ 16 {km}, and then increases at higher altitudes at a lower rate. Calculations of atmospheric refraction based on this actual atmospheric data are compared with the results of current simplified models.

  4. Three-dimensional simulation of a microplasma pump

    NASA Astrophysics Data System (ADS)

    Wang, Chin-Cheng; Roy, Subrata

    2009-09-01

    We present a three-dimensional simulation of dielectric barrier discharge (DBD) using the finite element based multiscale ionized gas (MIG) flow code. The two-species hydrodynamic plasma model coupled Poisson equation and Navier-Stokes equation are solved using MIG flow code to predict complicated flow structure inside a plasma induced micropump. The advantage of such a micropump is rapid on/off switching without any moving parts. Results show a reasonable distribution for ion and electron densities as well as an electric field. The key factors of microplasma pump design are the location of actuators and input voltage. The flow rate of the microplasma pump is on the order of ml min-1. Such a flow rate may be beneficial for micropropulsion in space.

  5. Numerical Simulation of a Microwave-Excited Microplasma Thruster

    NASA Astrophysics Data System (ADS)

    Takahashi, Takeshi; Ichida, Yugo; Takao, Yoshinori; Eriguchi, Koji; Ono, Kouichi

    Numerical analysis has been made for the plasma and flow properties in the microplasma source and micronozzle by developing a self-consistent numerical model, where a two-temperature fluid model was applied to the entire region through the plasma source to nozzle. Numerical results with 4-GHz microwaves and propellant gas of Ar 0.98 mg/s (33 sccm) revealed a spatially nonuniform distribution of plasma and flow parameters in the microplasma source: the absorbed power density, plasma density, and gas temperature were maximum at around the top of the microwave antenna, or near the inlet of the micronozzle, which is preferred for a thruster of electrothermal type using a converging-diverging nozzle.

  6. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-05-17

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017

  7. Bench testing of a new hyperbaric chamber ventilator at different atmospheric pressures.

    PubMed

    Lefebvre, Jean-Claude; Lyazidi, Aissam; Parceiro, Miguel; Sferrazza Papa, Giuseppe F; Akoumianaki, Evangelia; Pugin, Deborah; Tassaux, Didier; Brochard, Laurent; Richard, Jean-Christophe M

    2012-08-01

    Providing mechanical ventilation is challenging at supra-atmospheric pressure. The higher gas density increases resistance, reducing the flow delivered by the ventilator. A new hyperbaric ventilator (Siaretron IPER 1000) is said to compensate for these effects automatically. The aim of this bench test study was to validate the compensation, define its limits and provide details on the ventilator's output at varied atmospheric pressures. Experiments were conducted inside a multiplace hyperbaric chamber at 1, 2.2, 2.8 and 4 atmospheres absolute (ATA), with the ventilator connected to a test lung. Transducers were recalibrated at each ATA level. Various ventilator settings were tested in volume and pressure control modes. Measured tidal volumes were compared with theoretical predictions based on gas laws. Results confirmed the ventilator's ability to provide compensation, but also identified its limits. The compensation range could be predicted and depended on the maximal flow attainable, decreasing linearly with increasing atmospheric pressure. With settings inside the range, tidal volumes approximated set values (mean error 10 ± 5 %). With settings outside the range, the volume was limited to the predicted maximal value calculated from maximal flow. A practical guide for clinicians is provided. The IPER 1000 ventilator attempted to deliver stable tidal volume by adjusting the opening of the inspiratory valve in proportion to atmospheric pressure. Adequate compensation was observed, albeit only within a predictable range, which can be reliably predicted for each setting and ATA level combination. Setting a tidal volume outside this range can result in an unwanted decrease in minute ventilation.

  8. Breaking the pumping speed barrier in mass spectrometry: discontinuous atmospheric pressure interface.

    PubMed

    Gao, Liang; Cooks, R Graham; Ouyang, Zheng

    2008-06-01

    The performance of mass spectrometers with limited pumping capacity is shown to be improved through use of a discontinuous atmospheric pressure interface (DAPI). A proof-of-concept DAPI interface was designed and characterized using a miniature rectilinear ion trap mass spectrometer. The interface consists of a simple capillary directly connecting the atmospheric pressure ion source to the vacuum mass analyzer region; it has no ion optical elements and no differential pumping stages. Gases carrying ionized analytes were pulsed into the mass analyzer for short periods at high flow rates rather than being continuously introduced at lower flow rates; this procedure maximized ion transfer. The use of DAPI provides a simple solution to the problem of coupling an atmospheric pressure ionization source to a miniature instrument with limited pumping capacity. Data were recorded using various atmospheric pressure ionization sources, including electrospray ionization (ESI), nano-ESI, atmospheric pressure chemical ionization (APCI), and desorption electrospray ionization (DESI) sources. The interface was opened briefly for ion introduction during each scan. With the use of the 18 W pumping system of the Mini 10, limits of detection in the low part-per-billion levels were achieved and unit resolution mass spectra were recorded.

  9. Rugged, no-moving-parts windspeed and static pressure probe designs for measurements in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Bedard, A. J., Jr.; Nishiyama, R. T.

    1993-01-01

    Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.

  10. Pressure sensing of the atmosphere by solar occultation using broadband CO(2) absorption.

    PubMed

    Park, J H; Russell Iii, J M; Drayson, S R

    1979-06-15

    A technique for obtaining pressure at the tangent point in an IR solar occultation experiment is described. By measuring IR absorption in bands of atmospheric CO(2) (e.g., 2.0 microm, 2.7 microm, or 4.3 microm), mean pressure values for each tangent point layer (vertical thickness 2 km or less) of the atmosphere can be obtained with rms errors of less than 3%. The simultaneous retrieval of pressure and gas concentration in a remote-sensing experiment will increase the accuracy of inverted gas concentrations and minimize the dependence of the experiment on pressure or mass path error resulting from use of climatological pressure data, satellite ephemeris, and instrument pointing accuracy.

  11. An analysis of the errors associated with the determination of atmospheric temperature from atmospheric pressure and density data

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.

    1976-01-01

    A graph was developed for relating delta T/T, the relative uncertainty in atmospheric temperature T, to delta p/p, the relative uncertainty in the atmospheric pressure p, for situations, when T is derived from the slope of the pressure-height profile. A similar graph relates delta T/T to delta roh/rho, the relative uncertainty in the atmospheric density rho, for those cases when T is derived from the downward integration of the density-height profile. A comparison of these two graphs shows that for equal uncertainties in the respective basic parameters, p or rho, smaller uncertainties in the derived temperatures are associated with density-height rather than with pressure-height data. The value of delta T/T is seen to depend not only upon delta p or delta rho, and to a small extent upon the value of T or the related scale height H, but also upon the inverse of delta h, the height increment between successive observations of p or rho. In the case of pressure-height data, delta T/T is dominated by 1/delta h for all values of delta h; for density-height data, delta T/T is dominated by delta rho/rho for delta h smaller than about 5 km. In the case of T derived from density-height data, this inverse relationship between delta T/T and delta h applies only for large values of delta h, that is, for delta h 35 km. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperature with unacceptably large uncertainties.

  12. Micro-plasma textured Ti-implant surfaces.

    PubMed

    Beck, U; Lange, R; Neumann, H-G

    2007-02-01

    The surface state of titanium implants modulates bone response and implant anchorage. This evidence brought implant manufacturers to switch from the standard surface refinements and implement new surface treatments for more bone apposition and enhanced interfacial strength measured by removal torque or push-out tests. Anodic plasma-chemical treatment of implant surfaces is a cost-effective process to modify surface topography and chemistry. This technique is used for structuring connected with a coating of implant surfaces. The aim of our investigations, here, is to texture the implant surface in the nanoscale without coating. Ti disks with different mechanical pre-treatment (grinded, glass blasted) were used as substrate. Micro-plasma texturing was carried out in an aqueous electrolyte. By applying a pulsed DC voltage to the specimen, micro-plasma discharge was generated in the thin steam film between immersed specimen and electrolyte. The electrical process parameter current density was varied. The micro-plasma textured Ti surfaces were characterised optically by SEM and electrochemically by CV- (for testing the corrosion parameters), CA- (to give the enlargement of the real surface) and EIS-measurement in range of 100 kHz-100 microHz. We found that the initial structure of the material surface has small or no influence on the results of the micro-plasma treatment. The properties of the thick oxide layer resulting from the plasma process are influenced by electrical process parameters. After removal of the thick oxide layer a fine, micro- and nanoscaled surface structure of the titanium remains.

  13. Development of Microplasma Arrays for High Efficiency Lighting Tiles

    DTIC Science & Technology

    2012-02-01

    other three lamps. At this moment, the bill of materials ( BOM ) for the microplasma lamp is expected to be in the middle of LED fixtures and mercury...incorporates an internal spacer structure fabricated from various materials (currently from glass). Areal capacitance is the primary drawback of such...Mason ( Material Scientist), Youngwha Kim (Intern), Kyle Moon (Intern) B. University of Illinois (Subcontract) Prof. J. Gary Eden (Co-PI), Dr. Jin

  14. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    PubMed

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface.

  15. Initiation of microplasma discharges at the edge of a dielectric film deposited on a metal surface