Sample records for atmospheric pressure nitrogen

  1. Effect of feed-gas humidity on nitrogen atmospheric-pressure plasma jet for biological applications.

    PubMed

    Stephan, Karl D; McLean, Robert J C; DeLeon, Gian; Melnikov, Vadim

    2016-11-14

    We investigate the effect of feed-gas humidity on the oxidative properties of an atmospheric-pressure plasma jet using nitrogen gas. Plasma jets operating at atmospheric pressure are finding uses in medical and biological settings for sterilization and other applications involving oxidative stress applied to organisms. Most jets use noble gases, but some researchers use less expensive nitrogen gas. The feed-gas water content (humidity) has been found to influence the performance of noble-gas plasma jets, but has not yet been systematically investigated for jets using nitrogen gas. Low-humidity and high-humidity feed gases were used in a nitrogen plasma jet, and the oxidation effect of the jet was measured quantitatively using a chemical dosimeter known as FBX (ferrous sulfate-benzoic acid-xylenol orange). The plasma jet using high humidity was found to have about ten times the oxidation effect of the low-humidity jet, as measured by comparison with the addition of measured amounts of hydrogen peroxide to the FBX dosimeter. Atmospheric-pressure plasma jets using nitrogen as a feed gas have a greater oxidizing effect with a high level of humidity added to the feed gas.

  2. Electron kinetics in atmospheric-pressure argon and nitrogen microwave microdischarges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-28

    Electron kinetics in atmospheric-pressure argon and nitrogen microwave (4 GHz) microdischarges is studied using a self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. The reversal of electric field (i.e., inverted sheath formation) is obtained in nitrogen and is not obtained in argon. This is explained by the different energy dependencies of electron-neutral collision cross sections in atomic and molecular gases and, as a consequence, different drag force acting on electrons. A non-local behavior of electron energy distribution function is obtained in both gases owing to electrons are generated in the plasma sheath. In both gases, electron energy relaxation length is comparable withmore » the interelectrode gap, and therefore, they penetrate the plasma bulk with large energies.« less

  3. Characterization of atmospheric pressure plasma treated wool/cashmere textiles: Treatment in nitrogen

    NASA Astrophysics Data System (ADS)

    Zanini, Stefano; Citterio, Attilio; Leonardi, Gabriella; Riccardi, Claudia

    2018-01-01

    We performed atmospheric pressure plasma treatments of wool/cashmere (15/85%) textiles with a dielectric barrier discharge (DBD) in nitrogen. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy, X-ray photoelectron microscopy (XPS), and fatty acid gas chromatographic analysis. Changes in mechanical properties and tactile performance of textiles after the plasma treatment were determined using the KES-F system. The analyses reveal significant surface modification of the treated fabrics, which enhances their surface wettability.

  4. Dominant Overall Chemical Reaction in a Chlorine Trifluoride Silicon Nitrogen System at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Habuka, Hitoshi; Otsuka, Toru; Qu, Wei-Feng

    1999-11-01

    This study evaluates the overall chemical reaction in a chlorine trifluoride silicon nitrogen system at atmospheric pressure, based on the observation of the dominant chemical species in the gas phase using a quadrupole mass spectra analyzer coupled with a horizontal cold-wall single-wafer epitaxial reactor. Chlorine trifluoride gas etches the silicon surface, producing two major products, silicon tetrafluoride gas and chlorine gas, at room temperature and 530 K. The production of chlorosilanes was not observed in this study. The results obtained in this study indicate that the dominant overall chemical reaction in a chlorine trifluoride silicon nitrogen system is 3Si + 4ClF3 →3SiF4 ↑+ 2Cl2 ↑.

  5. Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Hosokawa, M.; Sasaki, T.; Mukaigawa, S.; Fujiwara, T.

    2005-04-01

    An atmospheric pressure glow discharge was generated using a needle-array electrode in nitrogen, and the voltage-current characteristics of the glow discharge were obtained in a range from 1 mA to 60 A. A pulsed high voltage with short rise time under 10 ns was employed to generate streamer discharges simultaneously at all needle tips. The large number of streamer discharges prevented the glow-to-arc transition caused by inhomogeneous thermalization. Semiconductor opening switch diodes were employed as an opening switch to shorten the rise time. The glow voltage was almost constant until the discharge current became 0.3 A, whereas the voltage increased with the current higher than 0.3 A. Electron density and temperature in a positive column of the glow discharge at 60 A were obtained to 1.4×1012cm-3 and 1.3 eV from calculation based on nitrogen swarm data.

  6. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Xu; Ptasinska, Sylwia; Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

    2013-06-10

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  7. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Sharon Stack, M.; Ptasinska, Sylwia

    2013-06-01

    The nitrogen atmospheric pressure plasma jet (APPJ) was applied to induce DNA damage of SCC-25 oral cancer cells. Optical emission spectra were taken to characterize the reactive species produced in APPJ. In order to explore the spatial distribution of plasma effects, cells were placed onto photo-etched grid slides and the antibody H2A.X was used to locate double strand breaks of DNA inside nuclei using an immunofluorescence assay. The number of cells with double strand breaks in DNA was observed to be varied due to the distance from the irradiation center and duration of plasma treatment.

  8. Shuttle Orbiter Atmospheric Revitalization Pressure Control Subsystem

    NASA Technical Reports Server (NTRS)

    Walleshauser, J. J.; Ord, G. R.; Prince, R. N.

    1982-01-01

    The Atmospheric Revitalization Pressure Control Subsystem (ARPCS) provides oxygen partial pressure and total pressure control for the habitable atmosphere of the Shuttle for either a one atmosphere environment or an emergency 8 PSIA mode. It consists of a Supply Panel, Control Panel, Cabin Pressure Relief Valves and Electronic Controllers. The panels control and monitor the oxygen and nitrogen supplies. The cabin pressure relief valves protect the habitable environment from overpressurization. Electronic controllers provide proper mixing of the two gases. This paper describes the ARPCS, addresses the changes in hardware that have occurred since the inception of the program; the performance of this subsystem during STS-1 and STS-2; and discusses future operation modes.

  9. Two-photon absorption laser-induced fluorescence measurements of atomic nitrogen in a radio-frequency atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Wagenaars, E.; Gans, T.; O'Connell, D.; Niemi, K.

    2012-08-01

    The first direct measurements of atomic nitrogen species in a radio-frequency atmospheric-pressure plasma jet (APPJ) are presented. Atomic nitrogen radicals play a key role in new plasma medicine applications of APPJs. The measurements were performed with a two-photon absorption laser-induced fluorescence diagnostic, using 206.65 nm laser photons for the excitation of ground-state N atoms and observing fluorescence light around 744 nm. The APPJ was run with a helium gas flow of 1 slm and varying small admixtures of molecular nitrogen of 0-0.7 vol%. A maximum in the measured N concentration was observed for an admixture of 0.25 vol% N2.

  10. The quenching effect of hydrogen on the nitrogen in metastable state in atmospheric-pressure N{sub 2}-H{sub 2} microwave plasma torch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shou-Zhe, E-mail: lisz@dlut.edu.cn; Zhang, Xin; Chen, Chuan-Jie

    2014-07-15

    The atmospheric-pressure microwave N{sub 2}-H{sub 2} plasma torch is generated and diagnosed by optical emission spectroscopy. It is found that a large amount of N atoms and NH radicals are generated in the plasma torch and the emission intensity of N{sub 2}{sup +} first negative band is the strongest over the spectra. The mixture of hydrogen in nitrogen plasma torch causes the morphology of the plasma discharge to change with appearance that the afterglow shrinks greatly and the emission intensity of N{sub 2}{sup +} first negative band decreases with more hydrogen mixed into nitrogen plasma. In atmospheric-pressure microwave-induced plasma torch,more » the hydrogen imposes a great influence on the characteristics of nitrogen plasma through the quenching effect of the hydrogen on the metastable state of N{sub 2}.« less

  11. DNA damage in oral cancer cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Klas, Matej; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2013-09-01

    The nitrogen atmospheric pressure plasma jet (APPJ) has been shown to effectively induce DNA double strand breaks in SCC-25 oral cancer cells. The APPJ source constructed in our laboratory consists of two external electrodes wrapping around a quartz tube and nitrogen as a feed gas and operates based on dielectric barrier gas discharge. Generally, it is more challenging to ignite plasma in N2 atmosphere than in noble gases. However, this design provides additional advantages such as lower costs compared to the noble gases for future clinical operation. Different parameters of the APPJ configuration were tested in order to determine radiation dosage. To explore the effects of delayed damage and cell self-repairing, various incubation times of cells after plasma treatment were also performed. Reactive species generated in plasma jet and in liquid environment are essential to be identified and quantified, with the aim of unfolding the mystery of detailed mechanisms for plasma-induced cell apoptosis. Moreover, from the comparison of plasma treatment effect on normal oral cells OKF6T, an insight to the selectivity for cancer treatment by APPJ can be explored. All of these studies are critical to better understand the damage responses of normal and abnormal cellular systems to plasma radiation, which are useful for the development of advanced plasma therapy for cancer treatment at a later stage.

  12. The thermodynamic properties of nitrogen from 65 to 2000 K with pressures to 10,000 atmospheres. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Jacobsen, R. T.

    1972-01-01

    An equation of state is presented for liquid and gaseous nitrogen for temperatures from 65 degrees K to 2000 degrees K and pressures to 10,000 atmospheres. All the pressure-density-temperature data available from published literature have been corrected and applied to bring experimental temperatures into accord with the International Practical Temperature Scale of 1968. The coefficients of the equation of state were determined by a weighted least squares fit to selected published pressure-density-temperature data. The methods of weighting the various data for simultaneous fitting are presented and discussed.

  13. Paleoclimates on Titan: the case of a pure nitrogen atmosphere

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Forget, Francois; Tobie, Gabriel; Sotin, Christophe; Wordsworth, Robin

    2016-06-01

    Several clues indicate that Titan's atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. We explored these exotic climates throughout Titan's history with a 3D Global Climate Model (GCM) including the nitrogen cycle and the radiative effect of nitrogen clouds (Charnay et al. 2014). We found that for the last billion years, only small polar nitrogen lakes should have formed. Yet, before 1 Ga, a significant part of the atmosphere could have condensed, forming deep nitrogen polar seas, which could have flowed and flooded the equatorial regions. During this talk, I will present our results and discuss the possible implications for the erosion and the age of Titan's surface, for the flattening of the polar regions and for the methane outgassing on Titan.

  14. Atmospheric pressure route to epitaxial nitrogen-doped trilayer graphene on 4H-SiC (0001) substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boutchich, M.; Arezki, H.; Alamarguy, D.

    Large-area graphene film doped with nitrogen is of great interest for a wide spectrum of nanoelectronics applications, such as field effect devices, super capacitors, and fuel cells among many others. Here, we report on the structural and electronic properties of nitrogen doped trilayer graphene on 4H-SiC (0001) grown under atmospheric pressure. The trilayer nature of the growth is evidenced by scanning transmission electron microscopy. X-ray photoelectron spectroscopy shows the incorporation of 1.2% of nitrogen distributed in pyrrolic-N, and pyridinic-N configurations as well as a graphitic-N contribution. This incorporation causes an increase in the D band on the Raman signature indicatingmore » that the nitrogen is creating defects. Ultraviolet photoelectron spectroscopy shows a decrease of the work function of 0.3 eV due to the N-type doping of the nitrogen atoms in the carbon lattice and the edge defects. A top gate field effect transistor device has been fabricated and exhibits carrier mobilities up to 1300 cm{sup 2}/V s for holes and 850 cm{sup 2}/V s for electrons at room temperature.« less

  15. Vibrational and Rotational CARS Measurements of Nitrogen in Afterglow of Streamer Discharge in Atmospheric Pressure Fuel/Air Mixtures

    DTIC Science & Technology

    2012-01-01

    in a variety of different ignition regimes, including pulsed detonation engines ( PDEs ) and automobile engines, with experiments demonstrating TPI to...Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures This article...DATE 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Vibrational and rotational CARS measurements of

  16. Double-Layered Atmospheric Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    2009-08-01

    In this paper, we present a double-layered atmospheric pressure plasma jet (DLAPPJ) that is expected to improve conventional single-layered atmospheric pressure plasma jets. With the additional introduction of nitrogen gas into the outer nozzle between the inner and outer tubes, the plasma plume is boosted, resulting in a brighter and longer plasma torch, which may have more radicals and which may broaden the application range of atmospheric pressure plasma jets. The characteristics of the proposed device were investigated with the measurement of the visible torch length, wettability tests and optical emission spectroscopy. The results obtained imply that the DLAPPJ can be used for target-based plasma treatments, that is, (a) oxidation-related applications, such as surface treatment, biological decontamination and apoptosis induction, and (b) nitrification-related applications such as NO generation for wound healing and surface modification, by controlling radicals in plasmas.

  17. The Role of Atmospheric Organic Nitrogen in Forest Nitrogen Cycling

    NASA Astrophysics Data System (ADS)

    Lockwood, A.; Shepson, P.; Rhodes, D.

    2003-12-01

    Changes in the global climate and atmosphere cause significant effects to the biosphere. Forests respond to these global changes in various ways which all can affect their ability to store carbon, which in turn impacts climate change. Many temperate latitude forests are nitrogen-limited. A current working hypothesis is that atmospheric nitrogen compounds that are deposited to the canopy may be directly utilized by the plant as a nitrogen source. A significant fraction of atmospheric reactive nitrogen that can be deposited is organic. Organic nitrogen deposition is not well characterized nor have the ecological consequences been assessed. Our hypothesis is that organic nitrogen deposition to the canopy is significant, and that that nitrogen is utilized by trees. Fumigation experiments were conducted with 14N and 15N-labeled organic nitrates (focusing on 1-nitrooxy-3-methyl butane as a surrogate for isoprene nitrates) to determine if and how that nitrogen gets incorporated into the leaves by detecting the 15N-labeled leaf amino acids. This research builds on work completed during past summer intensives as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET), and begins the next stage of research as part of the Biosphere Atmosphere Research & Training program (BART) at the University of Michigan Biological Station (UMBS). The overall goal of the new effort, the Biosphere Exchange of Atmospheric Carbon and Odd Nitrogen (BEACON) program, is to evaluate the interactive roles of the atmosphere and forest in the coupling of the carbon and nitrogen cycles.

  18. Production mechanism of atomic nitrogen in atmospheric pressure pulsed corona discharge measured using two-photon absorption laser-induced fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teramoto, Yoshiyuki; Ono, Ryo; Oda, Tetsuji

    To study the production mechanism of atomic nitrogen, the temporal profile and spatial distribution of atomic nitrogen are measured in atmospheric pressure pulsed positive corona discharge using two-photon absorption laser-induced fluorescence. The absolute atomic nitrogen density in the streamer filaments is estimated from decay rate of atomic nitrogen in N{sub 2} discharge. The results indicate that the absolute atomic nitrogen density is approximately constant against discharge energy. When the discharge voltage is 21.5 kV, production yield of atomic nitrogen produced by an N{sub 2} discharge pulse is estimated to be 2.9 - 9.8 Multiplication-Sign 10{sup 13} atoms and the energymore » efficiency of atomic nitrogen production is estimated to be about 1.8 - 6.1 Multiplication-Sign 10{sup 16} atoms/J. The energy efficiency of atomic nitrogen production in N{sub 2} discharge is constant against the discharge energy, while that in N{sub 2}/O{sub 2} discharge increases with discharge energy. In the N{sub 2}/O{sub 2} discharge, two-step process of N{sub 2} dissociation plays significant role for atomic nitrogen production.« less

  19. Experimental investigation of anaerobic nitrogen fixation rates with varying pressure, temperature and metal concentration with application to the atmospheric evolution of early Earth and Mars.

    NASA Astrophysics Data System (ADS)

    Gupta, Prateek

    2012-07-01

    The atmosphere of the early Earth is thought to have been significantly different than the modern composition of 21% O2 and 78% N2, yet the planet has been clearly established as hosting microbial life as far back as 3.8 billion years ago. As such, constraining the atmospheric composition of the early Earth is fundamental to establishing a database of habitable atmospheric compositions. A similar argument can be made for the planet Mars, where nitrates have been hypothesized to exist in the subsurface. During the early period on Mars when liquid water was likely more abundant, life may have developed to take advantage of available nitrates and a biologically-driven Martian nitrogen cycle could have evolved. Early Earth atmospheric composition has been investigated numerically, but only recently has the common assumption of a pN2 different than modern been investigated. Nonetheless, these latest attempts fail to take into account a key atmospheric parameter: life. On modern Earth, nitrogen is cycled vigorously by biology. The nitrogen cycle likely operated on the early Earth, but probably differed in the metabolic processes responsible, dominantly due to the lack of abundant oxygen which stabilizes oxidized forms of N that drive de-nitrification today. Recent advances in evolutionary genomics suggest that microbial pathways that are relatively uncommon today (i.e. vanadium and iron-based nitrogen fixation) probably played important roles in the early N cycle. We quantitatively investigate in the laboratory the effects of variable pressure, temperature and metal concentration on the rates of anoxic nitrogen fixation, as possible inputs for future models investigating atmospheric evolution, and better understand the evolution of the nitrogen cycle on Earth. A common anaerobic methanogenic archaeal species with i) a fully sequenced genome, ii) all three nitrogenases (molybdenum, vanadium and iron-based) and iii) the ability to be genetically manipulated will be used as

  20. DNA damage in oral cancer and normal cells induced by nitrogen atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Kapaldo, James; Liu, Yueying; Stack, M. Sharon; Ptasinska, Sylwia

    2015-09-01

    Nitrogen atmospheric pressure plasma jets (APPJs) have been shown to effectively induce DNA double strand breaks in SCC25 oral cancer cells. The APPJ source constructed in our laboratory operates based on dielectric barrier discharge. It consists of two copper electrodes alternatively wrapping around a fused silica tube with nitrogen as a feed gas. It is generally more challenging to ignite plasma in N2 atmosphere than in noble gases. However, N2 provides additional advantages such as lower costs compared to noble gases, thus this design can be beneficial for the future long-term clinical use. To compare the effects of plasma on cancer cells (SCC25) and normal cells (OKF), the cells from both types were treated at the same experimental condition for various treatment times. The effective area with different damage levels after the treatment was visualized as 3D maps. The delayed damage effects were also explored by varying the incubation times after the treatment. All of these studies are critical for a better understanding of the damage responses of cellular systems exposed to the plasma radiation, thus are useful for the development of the advanced plasma cancer therapy. The research described herein was supported by the Division of Chemical Sciences, Geosciences and Biosciences, Basic Energy Sciences, Office of Science, United States Department of Energy through Grant No. DE-FC02-04ER15533.

  1. Modeling of recovery mechanism of ozone zero phenomenaby adding small amount of nitrogen in atmospheric pressure oxygen dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Akashi, Haruaki; Yoshinaga, Tomokazu

    2013-09-01

    Ozone zero phenomena in an atmospheric pressure oxygen dielectric barrier discharges have been one of the major problems during a long time operation of ozone generators. But it is also known that the adding a small amount of nitrogen makes the recover from the ozone zero phenomena. To make clear the mechanism of recovery, authors have been simulated the discharges with using the results of Ref. 3. As a result, the recovery process can be seen and ozone density increased. It is found that the most important species would be nitrogen atoms. The reaction of nitrogen atoms and oxygen molecules makes oxygen atoms which is main precursor species of ozone. This generation of oxygen atoms is effective to increase ozone. The dependence of oxygen atom density (nO) and nitrogen atom density (nN) ratio was examined in this paper. In the condition of low nN/nO ratio case, generation of nitrogen oxide is low, and the quenching of ozone by the nitrogen oxide would be low. But in the high ratio condition, the quenching of ozone by nitrogen oxide would significant. This work was supported by KAKENHI(23560352).

  2. Analysis of nitrogen-based explosives with desorption atmospheric pressure photoionization mass spectrometry.

    PubMed

    Kauppila, T J; Flink, A; Pukkila, J; Ketola, R A

    2016-02-28

    Fast methods that allow the in situ analysis of explosives from a variety of surfaces are needed in crime scene investigations and home-land security. Here, the feasibility of the ambient mass spectrometry technique desorption atmospheric pressure photoionization (DAPPI) in the analysis of the most common nitrogen-based explosives is studied. DAPPI and desorption electrospray ionization (DESI) were compared in the direct analysis of trinitrotoluene (TNT), trinitrophenol (picric acid), octogen (HMX), cyclonite (RDX), pentaerythritol tetranitrate (PETN), and nitroglycerin (NG). The effect of different additives in DAPPI dopant and in DESI spray solvent on the ionization efficiency was tested, as well as the suitability of DAPPI to detect explosives from a variety of surfaces. The analytes showed ions only in negative ion mode. With negative DAPPI, TNT and picric acid formed deprotonated molecules with all dopant systems, while RDX, HMX, PETN and NG were ionized by adduct formation. The formation of adducts was enhanced by addition of chloroform, formic acid, acetic acid or nitric acid to the DAPPI dopant. DAPPI was more sensitive than DESI for TNT, while DESI was more sensitive for HMX and picric acid. DAPPI could become an important method for the direct analysis of nitroaromatics from a variety of surfaces. For compounds that are thermally labile, or that have very low vapor pressure, however, DESI is better suited. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Atmosphere-Forest Exchange: Important Questions Regarding the Atmosphere's Role in the Delivery of Nutrient Nitrogen and Impacts on Nitrogen and Carbon Cycling

    NASA Astrophysics Data System (ADS)

    Carroll, M.; Shepson, P. B.; Bertman, S. B.; Sparks, J. P.; Holland, E. A.

    2002-12-01

    Atmosphere-Forest Exchange: Important Questions Regarding the Atmosphere's Role in the Delivery of Nutrient Nitrogen and Impacts on Nitrogen and Carbon Cycling Atmospheric composition and chemistry directly affect ecosystem nitrogen cycling and indirectly affect ecosystem carbon cycling and storage. Current understanding of atmosphere-forest nitrogen exchange and subsequent impacts is based almost exclusively on nitrogen deposition data obtained from networks using buckets placed in open areas, studies involving inorganic nitrogen, frequently with enhanced N deposition inputs applied only to soils, and that ignore multiple stresses (e.g., the combined effects of aerosols, ozone exposure, elevated CO2, and drought). Current models of nitrogen cycling treat deposited nitrogen (e.g., HNO3 and NO3-) as a permanent sink whereas data appear to indicate that photolytic and heterogeneous chemical processes occurring on surfaces and in dew can result in the re-evolution of gaseous species such as NO and HONO. Similarly, the direct uptake of gaseous nitrogen compounds by foliage has been neglected, compromising conclusions drawn from deposition experiments and ignoring a mechanism that may significantly affect nitrogen cycling and carbon storage, one that may become more significant with future atmospheric and climate change. We hypothesize that the atmosphere plays a significant role in the delivery of nutrient nitrogen to the N-limited mixed hardwood forest at the PROPHET research site at the University of Michigan Biological Station. We assert that a complete understanding of atmosphere- biosphere interactions and feedbacks is required to develop a predictive capability regarding forest response to increasing atmospheric CO2, reactive nitrogen, oxidants, and aerosols, increasing nitrogen and acidic deposition, and anticipated climate change. We further assert that conclusions drawn from studies that are limited to inorganic nitrogen, fertilization of soils, and/or that

  4. Effects of high pressure nitrogen on the thermal stability of SiC fibers

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    1991-01-01

    Polymer-derived SiC fibers were exposed to nitrogen gas pressures of 7 and 50 atm at temperatures up to 1800 C. The fiber weight loss, chemical composition, and tensile strength were then measured at room temperature in order to understand the effects of nitrogen exposure on fiber stability. High pressure nitrogen treatments limited weight loss to 3 percent or less for temperatures up to 1800 C. The bulk Si-C-O chemical composition of the fiber remained relatively constant up to 1800 C with only a slight increase in nitrogen content after treatment at 50 atm; however, fiber strength retention was significantly improved. To further understand the effects of the nitrogen atmosphere on the fiber stability, the results of previous high pressure argon treatments were compared to those of the high pressure nitrogen treatments. High pressure inert gas can temporarily maintain fiber strength by physically inhibiting the evolution of gaseous species which result from internal reactions. In addition to this physical effect, it would appear that high pressure nitrogen further improved fiber temperature capability by chemically reacting with the fiber surface, thereby reducing the rate of gas evolution. Subsequent low pressure argon treatments following the initial nitrogen treatments resulted in stronger fibers than after argon treatment alone, further supporting the chemical reaction mechanism and its beneficial effects on fiber strength.

  5. The transformation of nitrogen during pressurized entrained-flow pyrolysis of Chlorella vulgaris.

    PubMed

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-08-01

    The transformation of nitrogen in microalgae during entrained-flow pyrolysis of Chlorella vulgaris was systematically investigated at the temperatures of 600-900 °C and pressures of 0.1-4.0 MPa. It was found that pressure had a profound impact on the transformation of nitrogen during pyrolysis. The nitrogen retention in bio-char and its content in bio-oil reached a maximum value at 1.0 MPa. The highest conversion of nitrogen (50.25 wt%) into bio-oil was achieved at 1.0 MPa and 800 °C, which was about 7 wt% higher than that at atmospheric pressure. Higher pressures promoted the formation of pyrrolic-N (N-5) and quaternary-N (N-Q) compounds in bio-oil at the expense of nitrile-N and pyridinic-N (N-6) compounds. The X-Ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results on bio-chars clearly evidenced the transformation of N-5 structures into N-6 and N-Q structures at elevated pressures. The nitrogen transformation pathways during pyrolysis of microalgae were proposed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Extremely high-power-density atmospheric-pressure thermal plasma jet generated by the nitrogen-boosted effect

    NASA Astrophysics Data System (ADS)

    Hanafusa, Hiroaki; Nakashima, Ryosuke; Nakano, Wataru; Higashi, Seiichiro

    2018-06-01

    In this study, the effect of N2 addition to an atmospheric-pressure Ar thermal plasma jet (TPJ) on ultrarapid heating was investigated. With increasing N2 flow rate, a boost of arc voltage to ∼36 V was observed, which significantly improved heating characteristics. As a result, a drastic power density increase from 10 to 125 kW/cm2 was achieved with the addition of 2.0 L/min N2 to 3.0 L/min Ar. The results of optical emission analysis and heating characteristics evaluation implied that dissociation and recombination of N2 molecules and the high thermal transport property of nitrogen gas play important roles in the increase in TPJ power density. Furthermore, we obtained TPJ extension with N2 addition that reached 300 mm, and it showed spatial enhancement of heat transport characteristics.

  7. Determination of nitrogen monoxide in high purity nitrogen gas with an atmospheric pressure ionization mass spectrometer

    NASA Technical Reports Server (NTRS)

    Kato, K.

    1985-01-01

    An atmospheric pressure ionization mass spectrometric (API-MS) method was studied for the determination of residual NO in high purity N2 gas. The API-MS is very sensitive to NO, but the presence of O2 interferes with the NO measurement. Nitrogen gas in cylinders as sample gas was mixed with NO standard gas and/or O2 standard gas, and then introduced into the API-MS. The calibration curves of NO and O2 has linearity in the region of 0 - 2 ppm, but the slopes changed with every cylinder. The effect of O2 on NO+ peak was additive and proportional to O2 concentration in the range of 0 - 0.5 ppm. The increase in NO+ intensity due to O2 was (0.07 - 0.13)%/O2, 1 ppm. Determination of NO and O2 was carried out by the standard addition method to eliminate the influence of variation of slopes. The interference due to O2 was estimated from the product of the O2 concentration and the ratio of slope A to Slope B. Slope A is the change in the NO+ intensity with the O2 concentration. Slope B is the intensity with O2 concentration.

  8. Langmuir probe diagnostics of an atmospheric pressure, vortex-stabilized nitrogen plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prevosto, L.; Mancinelli, B. R.; Kelly, H.

    Langmuir probe measurements in an atmospheric pressure direct current (dc) plasma jet are reported. Sweeping probes were used. The experiment was carried out using a dc non-transferred arc torch with a rod-type cathode and an anode of 5 mm diameter. The torch was operated at a nominal power level of 15 kW with a nitrogen flow rate of 25 Nl min{sup -1}. A flat ion saturation region was found in the current-voltage curve of the probe. The ion saturation current to a cylindrical probe in a high-pressure non local thermal equilibrium (LTE) plasma was modeled. Thermal effects and ionization/recombination processesmore » inside the probe perturbed region were taken into account. Averaged radial profiles of the electron and heavy particle temperatures as well as the electron density were obtained. An electron temperature around 11 000 K, a heavy particle temperature around 9500 K and an electron density of about 4 Multiplication-Sign 10{sup 22} m{sup -3}, were found at the jet centre at 3.5 mm downstream from the torch exit. Large deviations from kinetic equilibrium were found throughout the plasma jet. The electron and heavy particle temperature profiles showed good agreement with those reported in the literature by using spectroscopic techniques. It was also found that the temperature radial profile based on LTE was very close to that of the electrons. The calculations have shown that this method is particularly useful for studying spraying-type plasma jets characterized by electron temperatures in the range 9000-14 000 K.« less

  9. Direct current plasma jet at atmospheric pressure operating in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Deng, X. L.; Nikiforov, A. Yu.; Vanraes, P.; Leys, Ch.

    2013-01-01

    An atmospheric pressure direct current (DC) plasma jet is investigated in N2 and dry air in terms of plasma properties and generation of active species in the active zone and the afterglow. The influence of working gases and the discharge current on plasma parameters and afterglow properties are studied. The electrical diagnostics show that discharge can be sustained in two different operating modes, depending on the current range: a self-pulsing regime at low current and a glow regime at high current. The gas temperature and the N2 vibrational temperature in the active zone of the jet and in the afterglow are determined by means of emission spectroscopy, based on fitting spectra of N2 second positive system (C3Π-B3Π) and the Boltzmann plot method, respectively. The spectra and temperature differences between the N2 and the air plasma jet are presented and analyzed. Space-resolved ozone and nitric oxide density measurements are carried out in the afterglow of the jet. The density of ozone, which is formed in the afterglow of nitrogen plasma jet, is quantitatively detected by an ozone monitor. The density of nitric oxide, which is generated only in the air plasma jet, is determined by means of mass-spectroscopy techniques.

  10. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  11. Titan's past and future: 3D modeling of a pure nitrogen atmosphere and geological implications

    NASA Astrophysics Data System (ADS)

    Charnay, Benjamin; Forget, François; Tobie, Gabriel; Sotin, Christophe; Wordsworth, Robin

    2014-10-01

    Several clues indicate that Titan's atmosphere has been depleted in methane during some period of its history, possibly as recently as 0.5-1 billion years ago. It could also happen in the future. Under these conditions, the atmosphere becomes only composed of nitrogen with a range of temperature and pressure allowing liquid or solid nitrogen to condense. Here, we explore these exotic climates throughout Titan's history with a 3D Global Climate Model (GCM) including the nitrogen cycle and the radiative effect of nitrogen clouds. We show that for the last billion years, only small polar nitrogen lakes should have formed. Yet, before 1 Ga, a significant part of the atmosphere could have condensed, forming deep nitrogen polar seas, which could have flowed and flooded the equatorial regions. Alternatively, nitrogen could be frozen on the surface like on Triton, but this would require an initial surface albedo higher than 0.65 at 4 Ga. Such a state could be stable even today if nitrogen ice albedo is higher than this value. According to our model, nitrogen flows and rain may have been efficient to erode the surface. Thus, we can speculate that a paleo-nitrogen cycle may explain the erosion and the age of Titan's surface, and may have produced some of the present valley networks and shorelines. Moreover, by diffusion of liquid nitrogen in the crust, a paleo-nitrogen cycle could be responsible of the flattening of the polar regions and be at the origin of the methane outgassing on Titan.

  12. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  13. Recent changes in the oxidized to reduced nitrogen ratio in atmospheric precipitation

    NASA Astrophysics Data System (ADS)

    Kurzyca, Iwona; Frankowski, Marcin

    2017-10-01

    In this study, the characteristics of precipitation in terms of various nitrogen forms (NO3-, NO2-, NH4+, Norganic, Ntotal) is presented. The samples were collected in the areas of different anthropogenic pressure (urban area vs. ecologically protected woodland area, ∼30 km distant from each other; Wielkopolska region, Poland). Based on the Nox and Nred emission profiles (Nox/Nred ratio), temporal and spatial comparison was carried out. For both sites, during a decade of observation, more than 60% of samples had higher contribution of N-NH4+ than N-NO3-, the amount of N-NO2- was negligible, and organic nitrogen amounted to 30% of total nitrogen content which varied up to 16 mg/l. The precipitation events w ith high concentration of nitrogen species were investigated in terms of possible local and remote sources of nitrogen (synoptic meteorology), to indicate the areas which can act as potential sources of N-compounds. Based on the chemometric analysis, it was found that Nred implies Nox and vice versa, due to interactions between them in the atmosphere. Taking into account the analysis of precipitation occurring simultaneously in both locations (about 50% of all rainfall episodes), it was observed that such factor as anthropogenic pressure differentiates but does not determine the chemical composition of precipitation in the investigated areas (urban vs. woodland area; distance of ∼30 km). Thermodynamics of the atmosphere had a significant impact on concentrations of N-NO3- and N-NH4+ in precipitation, as well as the circulation of air masses and remote N sources responsible for transboundary inflow of pollutants.

  14. Impacts of atmospheric anthropogenic nitrogen on the open ocean.

    PubMed

    Duce, R A; LaRoche, J; Altieri, K; Arrigo, K R; Baker, A R; Capone, D G; Cornell, S; Dentener, F; Galloway, J; Ganeshram, R S; Geider, R J; Jickells, T; Kuypers, M M; Langlois, R; Liss, P S; Liu, S M; Middelburg, J J; Moore, C M; Nickovic, S; Oschlies, A; Pedersen, T; Prospero, J; Schlitzer, R; Seitzinger, S; Sorensen, L L; Uematsu, M; Ulloa, O; Voss, M; Ward, B; Zamora, L

    2008-05-16

    Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to approximately 1.6 teragrams of nitrous oxide (N2O) per year. Although approximately 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.

  15. Thermodynamic Modeling and Mechanical Design of a Liquid Nitrogen Vaporization and Pressure Building Device

    NASA Astrophysics Data System (ADS)

    Leege, Brian J.

    The design of a liquid nitrogen vaporization and pressure building device that has zero product waste while recovering some of its stored energy is of interest for the cost reduction of nitrogen for use in industrial processes. Current devices may waste up to 30% of the gaseous nitrogen product by venting it to atmosphere. Furthermore, no attempt is made to recover the thermal energy available in the coldness of the cryogen. A seven step cycle with changing volumes and ambient heat addition is proposed, eliminating all product waste and providing the means of energy recovery from the nitrogen. This thesis discusses the new thermodynamic cycle and modeling as well as the mechanical design and testing of a prototype device. The prototype was able to achieve liquid nitrogen vaporization and pressurization up to 1000 psi, while full cycle validation is ongoing with promising initial results.

  16. Origin and Evolution of Titan's Nitrogen Atmosphere - A Cassini-Huygens Perspective

    NASA Astrophysics Data System (ADS)

    Atreya, Sushil K.

    2014-05-01

    Prior to Cassini-Huygens, it was debated how Titan acquired its earth-like atmosphere of nitrogen [1]. This talk will review the history of Titan's atmosphere, models, and the unique role of Cassini-Huygens in understanding the origin and evolution of an atmosphere of nitrogen on Titan. After hydrogen and helium, nitrogen is the fourth most abundant element in the solar system. In the colder outer solar system beyond 5 AU, nitrogen is bound to hydrogen in the giant planets. Thus ammonia (NH3), not N2, is the dominant reservoir of nitrogen in these objects. The satellites that form in the relatively warm and dense subnebula of the gas giant planets, Jupiter and Saturn, may acquire nitrogen as NH3 during their accretion [2], although some models had proposed N2, not NH3, as the stable form of nitrogen in the subnebulae. The latter is reflected in the atmosphere of Triton, which almost certainly accreted nitrogen directly as N2, since N2 can be the stable form of nitrogen in the very cold environment of Neptune. Before Cassini-Huygens, it was debated whether Titan, the largest moon of Saturn, also acquired its nitrogen directly as N2, putting it in the same class as Neptune's moon Triton half its size, or the nitrogen on Titan was secondary atmosphere, produced from a nitrogen bearing molecule, putting Titan in the class with terrestrial planets. The evidence from Cassini-Huygens to be discussed in this talk leaves no doubt that Titan's nitrogen atmosphere is secondary [3]. Probable scenarios of the sustenance, evolution and reduction or demise of this atmosphere will also be explored. References: [1]Owen T. (2000), Planet. Space Sci. 48, 747-752. [2]Prinn R.G., Fegley B. (1981), Astrophys J. 249, 308-317. [3]Atreya S.K., Lorenz R.D., Waite J.H. (2009), pp 177-199, in Titan (R.H. Brown et al., eds.) Springer.

  17. Neutralization by a Corona Discharge Ionizer in Nitrogen Atmosphere

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Toru; Takahashi, Kazunori; Ohkubo, Takahiro; Fujiwara, Tamiya

    An electrostatic neutralization of multilayer-loading silicon wafers is demonstrated using a corona discharge ionizer in nitrogen atmosphere, where ac and dc voltages are applied to two needle electrodes for generation of the negative- and positive-charged particles, respectively. We observe a surface potential of the silicon wafer decreases from ±1kV to ±20V within three seconds. Moreover, the density profiles of the charged particles generated by the electrodes are experimentally and theoretically investigated in nitrogen and air atmospheres. Our results show the possibility that the negative-charged particles contributing to the electrostatic neutralization are electrons and negative ions in nitrogen and air atmospheres, respectively.

  18. Quality characteristics of the radish grown under reduced atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Levine, Lanfang H.; Bisbee, Patricia A.; Richards, Jeffrey T.; Birmele, Michele N.; Prior, Ronald L.; Perchonok, Michele; Dixon, Mike; Yorio, Neil C.; Stutte, Gary W.; Wheeler, Raymond M.

    This study addresses whether reduced atmospheric pressure (hypobaria) affects the quality traits of radish grown under such environments. Radish (Raphanus sativus L. cv. Cherry Bomb Hybrid II) plants were grown hydroponically in specially designed hypobaric plant growth chambers at three atmospheric pressures; 33, 66, and 96 kPa (control). Oxygen and carbon dioxide partial pressures were maintained constant at 21 and 0.12 kPa, respectively. Plants were harvested at 21 days after planting, with aerial shoots and swollen hypocotyls (edible portion of the radish referred to as the “root” hereafter) separated immediately upon removal from the chambers. Samples were subsequently evaluated for their sensory characteristics (color, taste, overall appearance, and texture), taste-determining factors (glucosinolate and soluble carbohydrate content and myrosinase activity), proximate nutrients (protein, dietary fiber, and carbohydrate) and potential health benefit attributes (antioxidant capacity). In roots of control plants, concentrations of glucosinolate, total soluble sugar, and nitrate, as well as myrosinase activity and total antioxidant capacity (measured as ORACFL), were 2.9, 20, 5.1, 9.4, and 1.9 times greater than the amount in leaves, respectively. There was no significant difference in total antioxidant capacity, sensory characteristics, carbohydrate composition, or proximate nutrient content among the three pressure treatments. However, glucosinolate content in the root and nitrate concentration in the leaf declined as the atmospheric pressure decreased, suggesting perturbation to some nitrogen-related metabolism.

  19. Influence of field emission on the propagation of cylindrical fast ionization wave in atmospheric-pressure nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-21

    The influence of field emission of electrons from surfaces on the fast ionization wave (FIW) propagation in high-voltage nanosecond pulse discharge in the atmospheric-pressure nitrogen is studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions model. A strong influence of field emission on the FIW dynamics and plasma parameters is obtained. Namely, the accounting for the field emission makes possible the bridging of the cathode–anode gap by rather dense plasma (∼10{sup 13 }cm{sup −3}) in less than 1 ns. This is explained by the generation of runaway electrons from the field emitted electrons. These electrons are able to cross the entire gap pre-ionizingmore » it and promoting the ionization wave propagation. We have found that the propagation of runaway electrons through the gap cannot be accompanied by the streamer propagation, because the runaway electrons align the plasma density gradients. In addition, we have obtained that the field enhancement factor allows controlling the speed of ionization wave propagation.« less

  20. Effect of nitrogen addition to ozone generation characteristics by diffuse and filamentary dielectric barrier discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Osawa, Naoki; Tsuji, Takafumi; Ogiso, Ryota; Yoshioka, Yoshio

    2017-05-01

    Ozone is widely used for gas treatment, advanced oxidation processes, microorganisms inactivation, etc. In this research, we investigated the effect of nitrogen addition to ozone generation characteristics by atmospheric pressure Townsend discharge (APTD) type and filamentary dielectric barrier discharge (DBD) type ozone generators. The result showed that the ozone generated by the filamentary DBD increases rapidly with the increase of O2 content, and is higher than that by the APTD. On the other hand, it is interesting that the ozone generated by the APTD gradually decreases with the increase of O2 content. In order to clarify why the characteristics of ozone generation by the two kinds of discharge modes showed different dependency to the N2 content, we analyzed the exhaust gas composition using FTIR spectroscopy and calculated the rate coefficients using BOLSIG+ code. As a result, we found that although O2 content decreased with increasing N2 content, additional O atoms produced by excited N2 molecules contribute to ozone generation in case of APTD. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  1. The Atmospheric Fate of Organic Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  2. Generation of runaway electron beams in high-pressure nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-07-01

    In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  3. Implications of the Nitrogen Isotope Ratio in Titan's Atmosphere for the Nitrogen Ratio in Ammonia in Comets

    NASA Astrophysics Data System (ADS)

    Mandt, K.; Mousis, O.

    2013-12-01

    The D/H ratio of water measured in solar system bodies has been established as a tool for determining the conditions under which bodies such as comets or icy moons formed. This ratio varies significantly and indicates complex thermal and chemical evolution of the solar nebula during solar system and planetary formation. Nitrogen isotope ratios also vary significantly, and in some but not all cases correlate to D/H ratios, but are poorly understood. Nitrogen in the solar nebula was primarily in the form of atomic and molecular nitrogen. The isotope ratio (14N/15N) of this reservoir is expected to be ~435 based on the ratio measured in Jupiter's atmosphere, because the atmosphere of Jupiter is made up of gas captured from the solar nebula (Owen et al., 2001). The terrestrial atmospheric ratio is 272, which is close to the ratio measured in the Earth's mantle. This may be the primordial ratio for nitrogen delivered to Earth depending on the amount of exchange between the atmosphere and the mantle and any atmospheric fractionation processes that may have influenced the ratio over time. Comets are a possible source of nitrogen in the Earth's atmosphere (Hutsmekers et al., 2009), although chondrites have also been suggested as a source (Marty, 2012). In the case of comets, nitrogen would have been essentially retained in the form of ammonia (Mousis et al., 2012), which is the most abundant form of nitrogen in comets. The nitrogen in Titan's atmosphere is expected to have originated as ammonia hydrates and converted to N2 early in Titan's history (Atreya et al., 1978). The nitrogen ratio in Titan's atmosphere is ~170, which is significantly enriched in the heavy isotope compared to the terrestrial value. We will discuss the evolution of the nitrogen ratio in Titan's atmosphere (Mandt et al., 2009), the limits of the primordial ratio in ammonia, and the implications for this ratio for the isotope ratio in ammonia in comets that should be measured by the ROSINA instrument

  4. Selective ionization of dissolved organic nitrogen by positive ion atmospheric pressure photoionization coupled with Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Podgorski, David C; McKenna, Amy M; Rodgers, Ryan P; Marshall, Alan G; Cooper, William T

    2012-06-05

    Dissolved organic nitrogen (DON) comprises a heterogeneous family of organic compounds that includes both well-known biomolecules such as urea or amino acids and more complex, less characterized compounds such as humic and fulvic acids. Typically, DON represents only a small fraction of the total dissolved organic carbon pool and therefore presents inherent problems for chemical analysis and characterization. Here, we demonstrate that DON may be selectively ionized by atmospheric pressure photionization (APPI) and characterized at the molecular level by Fourier transform ion cyclotron resonance mass spectrometry. Unlike electrospray ionization (ESI), APPI ionizes polar and nonpolar compounds, and ionization efficiency is not determined by polarity. APPI is tolerant to salts, due to the thermal treatment inherent to nebulization, and thus avoids salt-adduct formation that can complicate ESI mass spectra. Here, for dissolved organic matter from various aquatic environments, we selectively ionize DON species that are not efficiently ionized by other ionization techniques and demonstrate significant signal-to-noise increase for nitrogen species by use of APPI relative to ESI.

  5. Hydrophilic surface modification of coronary stent using an atmospheric pressure plasma jet for endothelialization.

    PubMed

    Shim, Jae Won; Bae, In-Ho; Park, Dae Sung; Lee, So-Youn; Jang, Eun-Jae; Lim, Kyung-Seob; Park, Jun-Kyu; Kim, Ju Han; Jeong, Myung Ho

    2018-03-01

    The first two authors contributed equally to this study. Bioactivity and cell adhesion properties are major factors for fabricating medical devices such as coronary stents. The aim of this study was to evaluate the advantages of atmospheric-pressure plasma jet in enhancing the biocompatibility and endothelial cell-favorites. The experimental objects were divided into before and after atmospheric-pressure plasma jet treatment with the ratio of nitrogen:argon = 3:1, which is similar to air. The treated surfaces were basically characterized by means of a contact angle analyzer for the activation property on their surfaces. The effect of atmospheric-pressure plasma jet on cellular response was examined by endothelial cell adhesion and XTT analysis. It was difficult to detect any changeable morphology after atmospheric-pressure plasma jet treatment on the surface. The roughness was increased after atmospheric-pressure plasma jet treatment compared to nonatmospheric-pressure plasma jet treatment (86.781 and 7.964 nm, respectively). The X-ray photoelectron spectroscopy results showed that the surface concentration of the C-O groups increased slightly from 6% to 8% after plasma activation. The contact angle dramatically decreased in the atmospheric-pressure plasma jet treated group (22.6 ± 15.26°) compared to the nonatmospheric-pressure plasma jet treated group (72.4 ± 15.26°) ( n = 10, p < 0.05). The effect of the increment in hydrophilicity due to the atmospheric-pressure plasma jet on endothelial cell migration and proliferation was 85.2% ± 12.01% and 34.2% ± 2.68%, respectively, at 7 days, compared to the nonatmospheric-pressure plasma jet treated group (58.2% ± 11.44% in migration, n = 10, p < 0.05). Taken together, the stent surface could easily obtain a hydrophilic property by the atmospheric-pressure plasma jet method. Moreover, the atmospheric-pressure plasma jet might affect re-endothelialization after stenting.

  6. Pressure-induced transformations of nitrogen implanted into silicon

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. D.; Misiuk, A.; Barcz, A.; Richter, H.

    2006-03-01

    Czochralski (CZ) Si samples implanted with nitrogen, with doses 1017 ion/cm2 and 1018 ion/cm2, at 140 keV, were studied by means of Fourier transform infrared spectroscopy after annealing at 1130 °C/5 h under different hydrostatic pressures, from 1 bar to 10.7 kbar. It has been found for each pressure applied, that the increased nitrogen dose leads to transformation of the broadband spectra to the fine structure ones, corresponding to crystalline silicon nitride. The spectral position of observed sharp peaks in the investigated pressure region is red shifted in comparison to that for the peaks of crystalline silicon oxynitride found recently by other investigators in nitrogen-containing poly-Si as well as in a residual melt of nitrogen-doped CZ-Si. The application of the pressure during annealing results in further red shift of the nitrogen-related bands. The observed decrease of frequency of vibrational bands is explained in terms of the pressure induced lowered incorporation of oxygen into growing oxynitride phase. Secondary ion mass spectrometry data reveal the decrease of oxygen content in implanted layer with increasing pressure during annealing.

  7. Quantifying atmospheric nitrogen outflow from the Front Range of Colorado

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.

    2015-12-01

    Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.

  8. Formation of nitrogenated organic aerosols in the Titan upper atmosphere.

    PubMed

    Imanaka, Hiroshi; Smith, Mark A

    2010-07-13

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan's organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet-vacuum ultraviolet irradiation of a N(2)/CH(4) gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N(2)/CH(4) photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H(2)C(2)N and HCN, respectively, are suggestive of important roles of H(2)C(2)N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using (13)C and (15)N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan's atmosphere.

  9. Atmospheric Nitrogen Inputs to the Ocean and their Impact

    NASA Astrophysics Data System (ADS)

    Jickells, Tim D.

    2016-04-01

    Atmospheric Nitrogen Inputs to the Ocean and their Impact T Jickells (1), K. Altieri (2), D. Capone (3), E. Buitenhuis (1), R. Duce (4), F. Dentener (5), K. Fennel (6), J. Galloway (7), M. Kanakidou (8), J. LaRoche (9), K. Lee (10), P. Liss (1), J. Middleburg (11), K. Moore (12), S. Nickovic (13), G. Okin (14), A. Oschilies (15), J. Prospero (16), M. Sarin (17), S. Seitzinger (18), J. Scharples (19), P. Suntharalingram (1), M. Uematsu (20), L. Zamora (21) Atmospheric nitrogen inputs to the ocean have been identified as an important source of nitrogen to the oceans which has increased greatly as a result of human activity. The significance of atmospheric inputs for ocean biogeochemistry were evaluated in a seminal paper by Duce et al., 2008 (Science 320, 893-7). In this presentation we will update the Duce et al 2008 study estimating the impact of atmospheric deposition on the oceans. We will summarise the latest model estimates of total atmospheric nitrogen deposition to the ocean, their chemical form (nitrate, ammonium and organic nitrogen) and spatial distribution from the TM4 model. The model estimates are somewhat smaller than the Duce et al estimate, but with similar spatial distributions. We will compare these flux estimates with a new estimate of the impact of fluvial nitrogen inputs on the open ocean (Sharples submitted) which estimates some transfer of fluvial nitrogen to the open ocean, particularly at low latitudes, compared to the complete trapping of fluvial inputs on the continental shelf assumed by Duce et al. We will then estimate the impact of atmospheric deposition on ocean primary productivity and N2O emissions from the oceans using the PlankTOM10 model. The impacts of atmospheric deposition we estimate on ocean productivity here are smaller than those predicted by Duce et al impacts, consistent with the smaller atmospheric deposition estimates. However, the atmospheric input is still larger than the estimated fluvial inputs to the open ocean

  10. Modification of surface layers of copper under the action of the volumetric discharge initiated by an avalanche electron beam in nitrogen and CO2 at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Shulepov, M. A.; Akhmadeev, Yu. Kh.; Tarasenko, V. F.; Kolubaeva, Yu. A.; Krysina, O. V.; Kostyrya, I. D.

    2011-05-01

    The results of experimental investigations of the action of the volumetric discharge initiated by an avalanche electron beam on the surface of copper specimens are presented. The volumetric (diffuse) discharge in nitrogen and CO2 at atmospheric pressure was initiated by applying high voltage pulses of nanosecond duration to a tubular foil cathode. It has been found that the treatment of a copper surface by this type of discharge increases the hardness of the surface layer due to oxidation.

  11. Microwave Atmospheric-Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1986-01-01

    Report describes tests of microwave pressure sounder (MPS) for use in satellite measurements of atmospheric pressure. MPS is multifrequency radar operating between 25 and 80 GHz. Determines signal absorption over vertical path through atmosphere by measuring strength of echoes from ocean surface. MPS operates with cloud cover, and suitable for use on current meteorological satellites.

  12. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen

  13. How intensive agriculture affects surface-atmosphere exchange of nitrogen and carbon compounds over peatland

    NASA Astrophysics Data System (ADS)

    Bruemmer, C.; Richter, U.; Schrader, F.; Hurkuck, M.; Kutsch, W. L.

    2016-12-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (∑Nr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ∑Nr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ∑Nr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  14. Growth process of hydrogenated amorphous carbon films synthesized by atmospheric pressure plasma enhanced CVD using nitrogen and helium as a dilution gas

    NASA Astrophysics Data System (ADS)

    Mori, Takanori; Sakurai, Takachika; Sato, Taiki; Shirakura, Akira; Suzuki, Tetsuya

    2016-04-01

    Hydrogenated amorphous carbon films with various thicknesses were synthesized by dielectric barrier discharge-based plasma deposition under atmospheric pressure diluted with nitrogen (N2) and helium (He) at various pulse frequencies. The C2H2/N2 film showed cauliflower-like-particles that grew bigger with the increase in film’s thickness. At 5 kHz, the film with a thickness of 2.7 µm and smooth surface was synthesized. On the other hand, the films synthesized from C2H2/He had a smooth surface and was densely packed with domed particles. The domed particles extended with the increase in the film thickness, enabling it to grow successfully to 37 µm with a smooth surface.

  15. Hexacoordinated nitrogen(V) stabilized by high pressure

    PubMed Central

    Kurzydłowski, Dominik; Zaleski-Ejgierd, Patryk

    2016-01-01

    In all of its known connections nitrogen retains a valence shell electron count of eight therefore satisfying the golden rule of chemistry - the octet rule. Despite the diversity of nitrogen chemistry (with oxidation states ranging from + 5 to −3), and despite numerous efforts, compounds containing nitrogen with a higher electron count (hypervalent nitrogen) remain elusive and are yet to be synthesized. One possible route leading to nitrogen’s hypervalency is the formation of a chemical moiety containing pentavalent nitrogen atoms coordinated by more than four substituents. Here, we present theoretical evidence that a salt containing hexacoordinated nitrogen(V), in the form of an NF6− anion, could be synthesized at a modest pressure of 40 GPa (=400 kbar) via spontaneous oxidation of NF3 by F2. Our results indicate that the synthesis of a new class of compounds containing hypervalent nitrogen is within reach of current high-pressure experimental techniques. PMID:27808104

  16. Atmospheric nitrogen in the Mississippi River Basin - Amissions, deposition and transport

    USGS Publications Warehouse

    Lawrence, G.B.; Goolsby, D.A.; Battaglin, W.A.; Stensland, G.J.

    2000-01-01

    Atmospheric deposition of nitrogen has been cited as a major factor in the nitrogen saturation of forests in the north-eastern United States and as a contributor to the eutrophication of coastal waters, including the Gulf of Mexico near the mouth of the Mississippi River. Sources of nitrogen emissions and the resulting spatial patterns of nitrogen deposition within the Mississippi River Basin, however, have not been fully documented. An assessment of atmospheric nitrogen in the Mississippi River Basin was therefore conducted in 1998-1999 to: (1) evaluate the forms in which nitrogen is deposited from the atmosphere; (2) quantify the spatial distribution of atmospheric nitrogen deposition throughout the basin; and (3) relate locations of emission sources to spatial deposition patterns to evaluate atmospheric transport. Deposition data collected through the NADP/NTN (National Atmospheric Deposition Program/National Trends Network) and CASTNet (Clean Air Status and Trends Network) were used for this analysis. NO(x) Tier 1 emission data by county was obtained for 1992 from the US Environmental Protection Agency (Emissions Trends Viewer CD, 1985-1995, version 1.0, September 1996) and NH3 emissions data was derived from the 1992 Census of Agriculture (US Department of Commerce. Census of Agriculture, US Summary and County Level Data, US Department of Commerce, Bureau of the Census. Geographic Area series, 1995:1b) or the National Agricultural Statistics Service (US Department of Agriculture. National Agricultural Statistics Service Historical Data. Accessed 7/98 at URL, 1998. http://www.usda.gov/nass/pubs/hisdata.htm). The highest rates of wet deposition of NO3- were in the north-eastern part of the basin, downwind of electric utility plants and urban areas, whereas the highest rates of wet deposition of NH4+ were in Iowa, near the center of intensive agricultural activities in the Midwest. The lowest rates of atmospheric nitrogen deposition were on the western (windward

  17. Formation of nitrogenated organic aerosols in the Titan upper atmosphere

    PubMed Central

    Imanaka, Hiroshi; Smith, Mark A.

    2010-01-01

    Many aspects of the nitrogen fixation process by photochemistry in the Titan atmosphere are not fully understood. The recent Cassini mission revealed organic aerosol formation in the upper atmosphere of Titan. It is not clear, however, how much and by what mechanism nitrogen is incorporated in Titan’s organic aerosols. Using tunable synchrotron radiation at the Advanced Light Source, we demonstrate the first evidence of nitrogenated organic aerosol production by extreme ultraviolet–vacuum ultraviolet irradiation of a N2/CH4 gas mixture. The ultrahigh-mass-resolution study with laser desorption ionization-Fourier transform-ion cyclotron resonance mass spectrometry of N2/CH4 photolytic solid products at 60 and 82.5 nm indicates the predominance of highly nitrogenated compounds. The distinct nitrogen incorporations at the elemental abundances of H2C2N and HCN, respectively, are suggestive of important roles of H2C2N/HCCN and HCN/CN in their formation. The efficient formation of unsaturated hydrocarbons is observed in the gas phase without abundant nitrogenated neutrals at 60 nm, and this is confirmed by separately using 13C and 15N isotopically labeled initial gas mixtures. These observations strongly suggest a heterogeneous incorporation mechanism via short lived nitrogenated reactive species, such as HCCN radical, for nitrogenated organic aerosol formation, and imply that substantial amounts of nitrogen is fixed as organic macromolecular aerosols in Titan’s atmosphere. PMID:20616074

  18. Sensitivity of terrestrial N2O emission to atmospheric nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Ito, A.; Sudo, K.; Nishina, K.; Ishijima, K.; Inatomi, M. I.

    2015-12-01

    Terrestrial N2O emission is generated from several nitrogen sources including biological fixation, agricultural fertilizer, and atmospheric deposition. There remain large uncertainties how much N2O is produced from atmospheric deposition. This is a crosscutting issue between global warming and atmospheric pollution. In this study, we assessed the sensitivity of global terrestrial N2O emission to atmospheric deposition, using a process-based model VISIT. In the model, N2O emission is estimated separately for nitrification and denitrfication with the NGAS parameterization. The global simulations were conducted from 1901 to 2014 at spatial resolution of 0.5 degree. Atmospheric deposition of ammonium, NOy, and organic nitrogen simulated by the atmospheric chemistry model CHASER from the pre-industrial time to the present was used. Annual total nitrogen deposition was estimated to increase from 27 Tg N in 1901 to 77 Tg N in 2014. The total N2O emission was also estimated to increase in the period, but it was largely attributable to the increased emission from croplands. We need further investigations for the N2O emission from natural soils, which may be nitrogen-limited.

  19. Effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer

    NASA Technical Reports Server (NTRS)

    Bizjak, F.; Simkin, D. J.

    1967-01-01

    Study investigates effects of helium and nitrogen as pressurants in nitrogen tetroxide transfer from one vessel to another at a higher elevation. Results may contribute to creation of new environmental systems and improved oxygen solubility in water to promote fish life.

  20. Electrode erosion in arc discharges at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Hardy, T. L.

    1985-01-01

    An experimental investigation was performed in an effort to measure and increase lifetime of electrodes in an arcjet thruster. The electrode erosion of various anode and cathode materials was measured after tests in an atmospheric pressure nitrogen arc discharge at powers less than 1 kW. A free-burning arc configuration and a constricted arc configuration were used to test the materials. Lanthanum hexboride and thoriated tungsten had low cathode erosion rates while thoriated tungsten and pure tungsten had the lowest anode erosion rates of the materials tested. Anode cooling, reverse gas flow, an external magnetic fields were all found to reduce electrode mass loss.

  1. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations.

    PubMed

    Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto; de la Barrera, Erick

    2018-01-01

    Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha -1 year -1 , well above the threshold for physiological damage of 12-20 kg of N ha -1 year -1 , depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha -1 year -1 . The isotopic signature, δ 15 N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (-11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments or passive

  2. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations

    PubMed Central

    Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto

    2018-01-01

    Abstract Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha−1 year−1, well above the threshold for physiological damage of 12–20 kg of N ha−1 year−1, depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha−1 year−1. The isotopic signature, δ15N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (−11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments

  3. Atmospheric Nitrogen Deposition in the Western United States: Sources, Sinks and Changes over Time

    NASA Astrophysics Data System (ADS)

    Anderson, Sarah Marie

    Anthropogenic activities have greatly modified the way nitrogen moves through the atmosphere and terrestrial and aquatic environments. Excess reactive nitrogen generated through fossil fuel combustion, industrial fixation, and intensification of agriculture is not confined to anthropogenic systems but leaks into natural ecosystems with consequences including acidification, eutrophication, and biodiversity loss. A better understanding of where excess nitrogen originates and how that changes over time is crucial to identifying when, where, and to what degree environmental impacts occur. A major route into ecosystems for excess nitrogen is through atmospheric deposition. Excess nitrogen is emitted to the atmosphere where it can be transported great distances before being deposited back to the Earth's surface. Analyzing the composition of atmospheric nitrogen deposition and biological indicators that reflect deposition can provide insight into the emission sources as well as processes and atmospheric chemistry that occur during transport and what drives variation in these sources and processes. Chapter 1 provides a review and proof of concept of lichens to act as biological indicators and how their elemental and stable isotope composition can elucidate variation in amounts and emission sources of nitrogen over space and time. Information on amounts and emission sources of nitrogen deposition helps inform natural resources and land management decisions by helping to identify potentially impacted areas and causes of those impacts. Chapter 2 demonstrates that herbaria lichen specimens and field lichen samples reflect historical changes in atmospheric nitrogen deposition from urban and agricultural sources across the western United States. Nitrogen deposition increases throughout most of the 20 th century because of multiple types of emission sources until the implementation of the Clean Air Act Amendments of 1990 eventually decrease nitrogen deposition around the turn of

  4. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    NASA Astrophysics Data System (ADS)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  5. Controlling the nitric and nitrous oxide production of an atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Douat, Claire; Hubner, Simon; Engeln, Richard; Benedikt, Jan

    2016-09-01

    Atmospheric pressure plasma jets are non-thermal plasmas and have the ability to create reactive species. These features make it a very attractive tool for biomedical applications. In this work, we studied NO and N2O production, which are two species having biomedical properties. NO plays a role in the vascularization and in ulcer treatment, while N2O is used as anesthetic and analgesic gas. In this study, the plasma source is similar to the COST Reference Microplasma Jet (µ-APPJ). Helium is used as feed gas with small admixtures of molecular nitrogen and oxygen of below 1%. The absolute densities of NO and N2O were measured in the effluent of an atmospheric pressure RF plasma jet by means of ex-situ quantum-cascade laser absorption spectroscopy via a multi-pass cell in Herriot configuration. We will show that the species' production is dependent on several parameters such as power, flow and oxygen and nitrogen admixture. The NO and N2O densities are strongly dependent on the N2-O2 ratio. Changing this ratio allows for choosing between a NO-rich or a N2O-rich regime.

  6. Over atmospheric pressure flowing afterglow

    NASA Astrophysics Data System (ADS)

    Ganciu, Mihai; Orphal, Johannes; Vervloet, Michel; Pointu, Anne-Marie; Touzeau, Michel

    2002-10-01

    A Tabletop discharge * created above atmospheric pressure in a N2 gas flow, uses some 10 kV very fast high voltage pulses applied between needle electrodes with some 10 kHz repetition rate. It is followed by a post-discharge, in a plastic tube with 6-mm internal diameter. Adjusting the flow and the repetition rate, the post-discharge exhibits a surprisingly long size, 9-10 m, as shown by the tube fluorescence. Preliminary spectroscopic measurements demonstrate that fluorescence is due to internal gas excited molecules (CN and NH) that are locally created by active species interaction with organic impurities. The discharge emission spectrum evidences a high nitrogen atom production rate, much higher than attainable rate with a Dielectric Barrier Discharge with same applied voltage pulses. For small air quantities added in the post-discharge, spectrum exhibits rich UV range corresponding to NO excited states. Further studies will be devoted to the post-discharge kinetics and to possible applications to medical sterilization. *M. Ganciu, private communication

  7. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture.more » In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.« less

  8. Wet-Atmosphere Generator

    NASA Technical Reports Server (NTRS)

    Hamner, Richard M.; Mcguire, Janice K.

    1988-01-01

    Water content in gas controlled. Portable flow-control system generates nitrogen/water atmosphere having range of dew points and pressures. One use of system provides wet nitrogen for canister of wide-field camera requiring this special atmosphere. Also used to inject trace gases other than water vapor for leak testing of large vessels. Potential applications in photography, hospitals, and calibration laboratories.

  9. Long-Term Simulated Atmospheric Nitrogen Deposition Alters ...

    EPA Pesticide Factsheets

    Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we previously observed that 10 years of chronic simulated nitrogen deposition (30 kg N ha-1 yr-1) increased soil organic carbon. Over three years at these sites, we investigated the effects of nitrogen additions on decomposition of two substrates with documented differences in biochemistry: leaf litter (more labile) and fine roots (more recalcitrant). Further, we combined decomposition rates with annual leaf and fine root litter production to estimate how nitrogen additions altered the accumulation of soil organic matter. Nitrogen additions marginally stimulated early-stage decomposition of leaf litter, a substrate with little acid-insoluble material (e.g., lignin). In contrast, nitrogen additions inhibited the late stage decomposition of fine roots, a substrate with high amount of acid insoluble material and a change consistent with observed decreases in lignin-degrading enzyme activities with nitrogen additions at these sites. At the ecosystem scale, the slower fine root decomposition led to additional root mass retention (g m-2), which explained 5, 48, and 52 % of previously-documented soil carbon accumulation due to nitrogen additions. Our results demonstrated that nitrogen deposition ha

  10. Air Purification Pavement Surface Coating by Atmospheric Pressure Cold Plasma

    NASA Astrophysics Data System (ADS)

    Westergreen, Joe; Pedrow, Patrick; Shen, Shihui; Jobson, Bertram

    2011-10-01

    This study develops an atmospheric pressure cold plasma (APCP) reactor to produce activated radicals from precursor molecules, and to immobilize nano titanium dioxide (TiO2) powder to substrate pavement materials. TiO2 has photocatalytic properties and under UV light can be used to oxidize and remove volatile organic compounds (VOCs) and nitrogen oxides (NOx) from the atmosphere. Although TiO2 treated paving materials have great potential to improve air quality, current techniques to adhere TiO2 to substrate materials are either not durable or reduce direct contact of TiO2 with UV light, reducing the photocatalytic effect. To solve this technical difficulty, this study introduces APCP techniques to transportation engineering to coat TiO2 to pavement. Preliminary results are promising and show that TiO2 can be incorporated successfully into an APCP environment and can be immobilized at the surface of the asphalt substrate. The TiO2 coated material with APCP shows the ability to reduce nitrogen oxides when exposed to UV light in an environmental chamber. The plasma reactor utilizes high voltage streamers as the plasma source.

  11. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification

    NASA Astrophysics Data System (ADS)

    Cheng, Kuang-Yao; Chang, Chia-Hsing; Yang, Yi-Wei; Liao, Guo-Chun; Liu, Chih-Tung; Wu, Jong-Shinn

    2017-02-01

    In this paper, we compare the cell growth results of NIH-3T3 and Neuro-2A cells over 72 h on flat and honeycomb structured PLA films without and with a two-step atmospheric-pressure nitrogen-based plasma jet treatment. We developed a fabrication system used for forming of a uniform honeycomb structure on PLA surface, which can produce two different pore sizes, 3-4 μm and 7-8 μm, of honeycomb pattern. We applied a previously developed nitrogen-based atmospheric-pressure dielectric barrier discharge (DBD) jet system to treat the PLA film without and with honeycomb structure. NIH-3T3 and a much smaller Neuro-2A cells were cultivated on the films under various surface conditions. The results show that the two-step plasma treatment in combination with a honeycomb structure can enhance cell growth on PLA film, should the cell size be not too smaller than the pore size of honeycomb structure, e.g., NIH-3T3. Otherwise, cell growth would be better on flat PLA film, e.g., Neuro-2A.

  12. Determining Atmospheric Pressure Using a Water Barometer

    ERIC Educational Resources Information Center

    Lohrengel, C. Frederick, II; Larson, Paul R.

    2012-01-01

    The atmosphere is an envelope of compressible gases that surrounds Earth. Because of its compressibility and nonuniform heating by the Sun, it is in constant motion. The atmosphere exerts pressure on Earth's surface, but that pressure is in constant flux. This experiment allows students to directly measure atmospheric pressure by measuring the…

  13. Does high reactive nitrogen input from the atmosphere decrease the carbon sink strength of a peatland?

    NASA Astrophysics Data System (ADS)

    Brümmer, Christian; Zöll, Undine; Hurkuck, Miriam; Schrader, Frederik; Kutsch, Werner

    2017-04-01

    Mid-latitude peatlands are often exposed to high atmospheric nitrogen deposition when located in close vicinity to agricultural land. As the impacts of altered deposition rates on nitrogen-limited ecosystems are poorly understood, we investigated the surface-atmosphere exchange of several nitrogen and carbon compounds using multiple high-resolution measurement techniques and modeling. Our study site was a protected semi-natural bog ecosystem. Local wind regime and land use in the adjacent area clearly regulated whether total reactive nitrogen (ΣNr) concentrations were ammonia (NH3) or NOx-dominated. Eddy-covariance measurements of NH3 and ΣNr revealed concentration, temperature and surface wetness-dependent deposition rates. Intermittent periods of NH3 and ΣNr emission likely attributed to surface water re-emission and soil efflux, respectively, were found, thereby indicating nitrogen oversaturation in this originally N-limited ecosystem. Annual dry plus wet deposition resulted in 20 to 25 kg N ha-1 depending on method and model used, which translated into a four- to fivefold exceedance of the ecosystem-specific critical load. As the bog site had likely been exposed to the observed atmospheric nitrogen burden over several decades, a shift in grass species' composition towards a higher number of nitrophilous plants was already visible. Three years of CO2 eddy flux measurements showed that the site was a small net sink in the range of 33 to 268 g CO2 m-2 yr-1. Methane emissions of 32 g CO2-eq were found to partly offset the sequestered carbon through CO2. Our study indicates that the sink strength of the peatland has likely been decreased through elevated N deposition over the past decades. It also demonstrates the applicability of novel micrometeorological measurement techniques in biogeochemical sciences and stresses the importance of monitoring long-term changes in vulnerable ecosystems under anthropogenic pressure and climate change.

  14. Atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  15. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    PubMed

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis.

  16. Microplasma discharge vacuum ultraviolet photoionization source for atmospheric pressure ionization mass spectrometry.

    PubMed

    Symonds, Joshua M; Gann, Reuben N; Fernández, Facundo M; Orlando, Thomas M

    2014-09-01

    In this paper, we demonstrate the first use of an atmospheric pressure microplasma-based vacuum ultraviolet (VUV) photoionization source in atmospheric pressure mass spectrometry applications. The device is a robust, easy-to-operate microhollow cathode discharge (MHCD) that enables generation of VUV photons from Ne and Ne/H(2) gas mixtures. Photons were detected by excitation of a microchannel plate detector and by analysis of diagnostic sample ions using a mass spectrometer. Reactive ions, charged particles, and metastables produced in the discharge were blocked from entering the ionization region by means of a lithium fluoride window, and photoionization was performed in a nitrogen-purged environment. By reducing the output pressure of the MHCD, we observed heightened production of higher-energy photons, making the photoionization source more effective. The initial performance of the MHCD VUV source has been evaluated by ionizing model analytes such as acetone, azulene, benzene, dimethylaniline, and glycine, which were introduced in solid or liquid phase. These molecules represent species with both high and low proton affinities, and ionization energies ranging from 7.12 to 9.7 eV.

  17. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    NASA Astrophysics Data System (ADS)

    Korolev, Yu. D.; Frants, O. B.; Nekhoroshev, V. O.; Suslov, A. I.; Kas'yanov, V. S.; Shemyakin, I. A.; Bolotov, A. V.

    2016-06-01

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark and aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.

  18. Simulation of nonstationary phenomena in atmospheric-pressure glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, Yu. D., E-mail: korolev@lnp.hcei.tsc.ru; Frants, O. B.; Nekhoroshev, V. O.

    2016-06-15

    Nonstationary processes in atmospheric-pressure glow discharge manifest themselves in spontaneous transitions from the normal glow discharge into a spark. In the experiments, both so-called completed transitions in which a highly conductive constricted channel arises and incomplete transitions accompanied by the formation of a diffuse channel are observed. A model of the positive column of a discharge in air is elaborated that allows one to interpret specific features of the discharge both in the stationary stage and during its transition into a spark and makes it possible to calculate the characteristic oscillatory current waveforms for completed transitions into a spark andmore » aperiodic ones for incomplete transitions. The calculated parameters of the positive column in the glow discharge mode agree well with experiment. Data on the densities of the most abundant species generated in the discharge (such as atomic oxygen, metastable nitrogen molecules, ozone, nitrogen oxides, and negative oxygen ions) are presented.« less

  19. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    PubMed

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  20. The influence of leaf-atmosphere NH3(g ) exchange on the isotopic composition of nitrogen in plants and the atmosphere.

    PubMed

    Johnson, Jennifer E; Berry, Joseph A

    2013-10-01

    The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. © 2013 John Wiley & Sons Ltd.

  1. Organic Nitrogen in Atmospheric Drops and Particles: Concentrations, (Limited) Speciation, and Chemical Transformations

    NASA Astrophysics Data System (ADS)

    Anastasio, C.; Zhang, Q.

    2003-12-01

    While quite a bit is known of the concentrations, speciation, and chemistry of inorganic forms of nitrogen in the atmosphere, the same cannot be said for organic forms. Despite this, there is growing evidence that organic N (ON) is ubiquitous in the atmosphere, especially in atmospheric condensed phases such as fog/cloud drops and aerosol particles. Although the major compounds that make up organic N are generally unknown, as are the sources of these compounds, it is clear that there are significant fluxes of ON between the atmosphere and ecosystems. It also appears that organic N can have significant effects in both spheres. The goal of our recent work in this area has been to better describe the atmospheric component of the biogeochemistry of organic nitrogen. Based on particle, gas, and fogwater samples from Northern California we have made three major findings: 1) Organic N represents a significant component, approximately 20%, of the total atmospheric N loading in these samples. This is broadly consistent with studies from other locations. 2) Amino compounds, primarily as combined amino acids, account for approximately 20% of the measured ON in our condensed phase samples. Given the properties of amino acids, these compounds could significantly affect the chemical and physical properties of atmospheric particles. 3) Organic nitrogen in atmospheric particles and drops is transformed to inorganic forms - primarily ammonium, nitrate, and nitrogen oxides (NOx) - during exposure to sunlight and/or ozone. These chemical reactions likely increase the bioavailability of the condensed phase nitrogen pool and enhance its biological effects after deposition to ecosystems.

  2. Characterization of Atmospheric Pressure Plasma Torch and the Surface Interaction for Material Removal

    NASA Astrophysics Data System (ADS)

    McWilliams, Anthony Joseph

    An atmospheric pressure plasma torch has been developed and characterized for removal of organic based coatings. The focus of the Strategic Environmental Research & Development Program (SERDP) project WP-1762, that funded the bulk of this dissertation work, is removal of paint from US Navy vessels. The goal is to develop a novel technology for coating removal that is capable of reducing the amount of environmental waste produced during the commonly used grit blasting process. The atmospheric pressure air plasma torch was identified as having the capacity to remove the paint systems while using only compressed air and electricity as a media-less removal system with drastically reduced waste generation. Any improvements to the existing technology need to be based on scientific knowledge and thus the plasma removal mechanisms or material warranted investigation. The removal of material does not show a strong relation to the plasma parameters of power, frequency, and gas flow, nor is there a strong relation to the presences of inorganic fillers impeding or altering the removal rates. The underlying removal mechanisms also do not show a strong correlation to the rotational temperature of the plasma but do show a strong correlation to the optical emission intensity. Primarily, the emission from atomic oxygen and molecular nitrogen were identified significant contributors and were investigated further. The plasma feed gas was then varied from the nitrogen and oxygen ratio present in ambient air to pure nitrogen to identify the effect of oxygen on the removal mechanism. From these experiments it was concluded that the oxygen present in air does contribute to the overall removal mechanism; however, it is not the sole contributing factor with the other major factor being nitrogen.

  3. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of

  4. Examination of fluctuations in atmospheric pressure related to migraine.

    PubMed

    Okuma, Hirohisa; Okuma, Yumiko; Kitagawa, Yasuhisa

    2015-01-01

    Japan has four seasons and many chances of low atmospheric pressure or approaches of typhoon, therefore it has been empirically known that the fluctuation of weather induces migraine in people. Generally, its mechanism has been interpreted as follows: physical loading, attributed by atmospheric pressure to human bodies, compresses or dilates human blood vessels, which leads to abnormality in blood flow and induces migraine. We report our examination of the stage in which migraine tends to be induced focusing on the variation of atmospheric pressure. Subjects were 34 patients with migraine, who were treated in our hospital. The patients included 31 females and three males, whose mean age was 32 ± 6.7. 22 patients had migraine with aura and 12 patients had migraine without aura. All of patients with migraine maintained a headache diary to record atmospheric pressures when they developed a migraine. The standard atmospheric pressure was defined as 1013 hPa, and with this value as the criterion, we investigated slight fluctuations in the atmospheric pressure when they developed a migraine. It was found that the atmospheric pressure when the patients developed a migraine was within 1003-1007 hPa in the approach of low atmospheric pressure and that the patients developed a migraine when the atmospheric pressure decreased by 6-10 hPa, slightly less than the standard atmospheric pressure. Small decreases of 6-10 hPa relative to the standard atmospheric pressure of 1013 hPa induced migraine attacks most frequently in patients with migraine.

  5. An Atmospheric Pressure Ping-Pong "Ballometer"

    ERIC Educational Resources Information Center

    Kazachkov, Alexander; Kryuchkov, Dmitriy; Willis, Courtney; Moore, John C.

    2006-01-01

    Classroom experiments on atmospheric pressure focus largely on demonstrating its existence, often in a most impressive way. A series of amusing physics demonstrations is widely known and practiced by educators teaching the topic. However, measuring the value of atmospheric pressure(P[subscript atm]) is generally done in a rather mundane way,…

  6. Temperature estimation from molecular nitrogen UV spectra in atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Pepper, Keenan; Kim, Yongho; Kim, Jihun

    2008-11-01

    Atmospheric pressure plasmas have many potential applications to fuel processing, surface treatment, and manipulation of chemical reactions. These plasmas are often non-thermal, which means different species are not in equilibrium and have different effective temperatures. This is critical for many applications because it allows high concentrations of reactive species to be produced without using a prohibitive amount of power. In the present work, numerical software was developed to estimate the vibrational and rotational temperatures (Tvib and Trot) of N2 molecules from their ultraviolet emission spectra. The electron temperature Te can also be estimated by comparing the N2 spectrum to that of the N2^+ molecular ion. This technique is applied to several plasma sources including audio frequency, RF, and microwave devices. The results are presented and their implications for practical applications are discussed.

  7. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.

    2015-04-24

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ∼15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  8. Atmospheric pressure dielectric barrier discharges for sterilization and surface treatment

    NASA Astrophysics Data System (ADS)

    Chin, O. H.; Lai, C. K.; Choo, C. Y.; Wong, C. S.; Nor, R. M.; Thong, K. L.

    2015-04-01

    Atmospheric pressure non-thermal dielectric barrier discharges can be generated in different configurations for different applications. For sterilization, a parallel-plate electrode configuration with glass dielectric that discharges in air was used. Gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and Gram-positive bacteria (Bacillus cereus) were successfully inactivated using sinusoidal high voltage of ˜15 kVp-p at 8.5 kHz. In the surface treatment, a hemisphere and disc electrode arrangement that allowed a plasma jet to be extruded under controlled nitrogen gas flow (at 9.2 kHz, 20 kVp-p) was applied to enhance the wettability of PET (Mylar) film.

  9. An Overview of Modeling Middle Atmospheric Odd Nitrogen

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Kawa, S. Randolph; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Odd nitrogen (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, and BrONO2) constituents are important components in the control of middle atmospheric ozone. Several processes lead to the production of odd nitrogen (NO(sub y)) in the middle atmosphere (stratosphere and mesosphere) including the oxidation of nitrous oxide (N2O), lightning, downflux from the thermosphere, and energetic charged particles (e.g., galactic cosmic rays, solar proton events, and energetic electron precipitation). The dominant production mechanism of NO(sub y) in the stratosphere is N2O oxidation, although other processes contribute. Mesospheric NO(sub y) is influenced by N2O oxidation, downflux from the thermosphere, and energetic charged particles. NO(sub y) is destroyed in the middle atmosphere primarily via two processes: 1) dissociation of NO to form N and O followed by N + NO yielding N2 + O to reform even nitrogen; and 2) transport to the troposphere where HNO3 can be rapidly scavenged in water droplets and rained out of the atmosphere. There are fairly significant differences among global models that predict NO(sub y). NO(sub y) has a fairly long lifetime in the stratosphere (months to years), thus disparate transport in the models probably contributes to many of these differences. Satellite and aircraft measurement provide modeling tests of the various components of NO(sub y). Although some recent reaction rate measurements have led to improvements in model/measurement agreement, significant differences do remain. This presentation will provide an overview of several proposed sources and sinks of NO(sub y) and their regions of importance. Multi-dimensional modeling results for NO(sub y) and its components with comparisons to observations will also be presented.

  10. Measuring Ancient Air Pressure Using Fossilized Cyanobacteria

    NASA Astrophysics Data System (ADS)

    Silverman, S. N.; Som, S. M.; Gordon, R.; Bebout, B.

    2016-12-01

    The evolution of Earth's atmosphere has been governed by biological evolution. The dominant air component, nitrogen, has undergone substantial variation over geological time. Today, the partial pressure of nitrogen is 0.79 bar, but this value could have been much higher during early Earth1. The nitrogen partial pressure is postulated to have dropped to a maximum of 0.5 bar before the Great Oxidation Event 2.4 billion years ago, and subsequently recovered to the 0.8 bar value of our modern atmosphere over the next 330 million years2. We are placing constraints on the trajectory of this recovery by investigating how nitrogen partial pressure influences the morphology of a certain species of filamentous cyanobacteria that has been found fossilized in 2 billion year old rocks. These filamentous cyanobacteria convert nitrogen from its dissolved gaseous state (N2) to a biologically useful state (i.e. NH3) when the latter is present at growth-limiting concentrations in their aquatic environment. Such cyanobacteria develop heterocysts (specialized, visually distinct cells), which fix the nitrogen and laterally distribute it to neighboring cells along the one-dimensional filament. We suggest that the distance between heterocysts reflects the nitrogen partial pressure dissolved in water, which is related to atmospheric pN2 by Henry's law. In the laboratory, we are quantifying the relationship between heterocyst distance, variance and covariance to atmospheric pN2 by subjecting cyanobacteria (in media devoid of nitrate) to different partial pressures of N2 at a constant temperature and lighting for the representative species Anabaena variabilis. As far as we know, such experiments have not been previously conducted. This new geobarometer will complement existing methods of quantifying ancient nitrogen partial pressure. 1Goldblatt, Colin, et al. "Nitrogen-enhanced greenhouse warming on early Earth." Nature Geoscience 2 (2009): 891-896. 2Som, S., et al. "Earth's air pressure 2

  11. Validation of a dew-point generator for pressures up to 6 MPa using nitrogen and air

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Mutter, D.; Peruzzi, A.

    2012-08-01

    A new primary humidity standard was developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated with other carrier gases such as natural gas at pressures up to 6 MPa and SF6 at pressures up to 1 MPa. The temperature range of the standard is from -80 °C to +20 °C. In this paper, we report the validation of the new primary dew-point generator in the temperature range -41 °C to +5 °C and the pressure range 0.1 MPa to 6 MPa using nitrogen and air. For the validation the flow through the dew-point generator was varied up to 10 l min-1 (at 23 °C and 1013 hPa) and the dew point of the gas entering the generator was varied up to 15 °C above the dew point exiting the generator. The validation results showed that the new generator, over the tested temperature and pressure range, can be used with a standard uncertainty of 0.02 °C frost/dew point. The measurements used for the validation at -41 °C and -20 °C with nitrogen and at +5 °C with air were also used to calculate the enhancement factor at pressures up to 6 MPa. For +5 °C the differences between the measured and literature values were compatible with the respective uncertainties. For -41 °C and -20 °C they were compatible only up to 3 MPa. At 6 MPa a discrepancy was observed.

  12. Raman Scattering from Atmospheric Nitrogen in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Garvey, M. J.; Kent, G. S.

    1973-01-01

    The Mark II laser radar system at Kingston, Jamaica, has been used to make observations on the Raman shifted line from atmospheric nitrogen at 828.5 nm. The size of the system makes it possible to detect signals from heights of up to 40 kilometres. The effects of aerosol scattering observed using a single wavelength are almost eliminated, and a profile of nitrogen density may be obtained. Assuming a constant mixing ratio, this may be interpreted as a profile of atmospheric density whose accuracy is comparable to that obtained from routine meteorological soundings. In order to obtain an accurate profile several interfering effects have had to be examined and, where necessary, eliminated. These include: 1) Fluorescence in optical components 2) Leakage of signal at 694.3 nm. 3) Overload effects and non-linearities in the receiving and counting electronics. Most of these effects have been carefully examined and comparisons are being made between the observed atmospheric density profiles and local meteorological radio-sonde measurements. Good agreement has been obtained over the region of overlap (15 - 30 KID), discrepancies being of the same order as the experimental accuracy (1-10%), depending on height and length of period of observation.

  13. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    PubMed

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  14. Isotopic constraints on the source of Pluto's nitrogen and the history of atmospheric escape

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen E.; Mousis, Olivier; Luspay-Kuti, Adrienn

    2016-10-01

    The origin and evolution of nitrogen in solar system bodies is an important question for understanding processes that took place during the formation of the planets and solar system bodies. Pluto has an atmosphere that is 99% molecular nitrogen, but it is unclear if this nitrogen is primordial or derived from ammonia in the protosolar nebula. The nitrogen isotope ratio is an important tracer of the origin of nitrogen on solar system bodies, and can be used at Pluto to determine the origin of its nitrogen. After evaluating the potential impact of escape and photochemistry on Pluto's nitrogen isotope ratio (14N/15N), we find that if Pluto's nitrogen originated as N2 the current ratio in Pluto's atmosphere would be greater than 324 while it would be less than 157 if the source of Pluto's nitrogen were NH3. The New Horizons spacecraft successfully visited the Pluto system in July 2015 providing a potential opportunity to measure 14N/15N in N2.

  15. Response of global soil consumption of atmospheric methane to changes in atmospheric climate and nitrogen deposition

    USGS Publications Warehouse

    Zhuang, Qianlai; Chen, Min; Xu, Kai; Tang, Jinyun; Saikawa, Eri; Lu, Yanyu; Melillo, Jerry M.; Prinn, Ronald G.; McGuire, A. David

    2013-01-01

    Soil consumption of atmospheric methane plays an important secondary role in regulating the atmospheric CH4 budget, next to the dominant loss mechanism involving reaction with the hydroxyl radical (OH). Here we used a process-based biogeochemistry model to quantify soil consumption during the 20th and 21st centuries. We estimated that global soils consumed 32–36 Tg CH4 yr−1 during the 1990s. Natural ecosystems accounted for 84% of the total consumption, and agricultural ecosystems only consumed 5 Tg CH4 yr−1 in our estimations. During the twentieth century, the consumption rates increased at 0.03–0.20 Tg CH4 yr−2 with seasonal amplitudes increasing from 1.44 to 3.13 Tg CH4 month−1. Deserts, shrublands, and xeric woodlands were the largest sinks. Atmospheric CH4 concentrations and soil moisture exerted significant effects on the soil consumption while nitrogen deposition had a moderate effect. During the 21st century, the consumption is predicted to increase at 0.05-1.0 Tg CH4 yr−2, and total consumption will reach 45–140 Tg CH4 yr−1 at the end of the 2090s, varying under different future climate scenarios. Dry areas will persist as sinks, boreal ecosystems will become stronger sinks, mainly due to increasing soil temperatures. Nitrogen deposition will modestly reduce the future sink strength at the global scale. When we incorporated the estimated global soil consumption into our chemical transport model simulations, we found that nitrogen deposition suppressed the total methane sink by 26 Tg during the period 1998–2004, resulting in 6.6 ppb higher atmospheric CH4 mixing ratios compared to without considering nitrogen deposition effects. On average, a cumulative increase of every 1 Tg soil CH4 consumption decreased atmospheric CH4 mixing ratios by 0.26 ppb during the period 1998–2004.

  16. The photochemical fractionation of nitrogen isotopologues in Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Dobrijevic, M.; Loison, J. C.

    2018-06-01

    Nitrogen isotopologues could give in principle valuable constraints on the formation and evolution of Titan's atmosphere and its interior over geological time. For this purpose, we developed the first photochemical model dedicated to the study of the fractionation of several nitrogen isotopologues. Emphasis has been placed on several nitriles: HCN, CH3CN, HC3N, C2H3CN, C2H5CN. We show that the HCN/HC15N and HC3N/HC315N ratios are very sensitive to the production of magnetospheric electrons. So, these compounds can serve as probes to study the putative evolution with time of the production of magnetospheric electrons throughout the atmosphere. We also show that the CH3CN/CH3C15N and C2H5CN/C2H5C15N ratios are highly sensitive to cosmic rays. So, they can serve as probes to estimate their effect in the lower atmosphere of Titan (100-300 km). Detection of new isotopologues (particularly CH3C15N) could give strong constraints to photochemical models and could improve our understanding of the main physical and chemical processes at work in Titan's atmosphere.

  17. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    PubMed Central

    Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 2− and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 −–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 +–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 −–N and NH4 +–N was ~31.38% and ~20.50% for the contents of NO3 −–N and NH4 +–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD. PMID:24977238

  18. Impacts of atmospheric nitrogen deposition on vegetation and soils in Joshua Tree National Park

    Treesearch

    E.B. Allen; L. Rao; R.J. Steers; A. Bytnerowicz; M.E. Fenn

    2009-01-01

    The western Mojave Desert is downwind of nitrogen emissions from coastal and inland urban sources, especially automobiles. The objectives of this research were to measure reactive nitrogen (N) in the atmosphere and soils along a N-deposition gradient at Joshua Tree National Park and to examine its effects on invasive and native plant species. Atmospheric nitric acid (...

  19. Nanocapillary Atmospheric Pressure Plasma Jet: A Tool for Ultrafine Maskless Surface Modification at Atmospheric Pressure.

    PubMed

    Motrescu, Iuliana; Nagatsu, Masaaki

    2016-05-18

    With respect to microsized surface functionalization techniques we proposed the use of a maskless, versatile, simple tool, represented by a nano- or microcapillary atmospheric pressure plasma jet for producing microsized controlled etching, chemical vapor deposition, and chemical modification patterns on polymeric surfaces. In this work we show the possibility of size-controlled surface amination, and we discuss it as a function of different processing parameters. Moreover, we prove the successful connection of labeled sugar chains on the functionalized microscale patterns, indicating the possibility to use ultrafine capillary atmospheric pressure plasma jets as versatile tools for biosensing, tissue engineering, and related biomedical applications.

  20. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    PubMed

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  1. Nitrogen solubility in the deep mantle and the origin of Earth's primordial nitrogen budget

    NASA Astrophysics Data System (ADS)

    Yoshioka, Takahiro; Wiedenbeck, Michael; Shcheka, Svyatoslav; Keppler, Hans

    2018-04-01

    be modeled. Such models show that if the magma ocean coexisted with a primordial atmosphere having a nitrogen partial pressure of just a few bars, several times the current atmospheric mass of nitrogen must have been trapped in the deep mantle. It is therefore plausible that the apparent depletion of nitrogen relative to other volatiles in the near-surface reservoirs reflects the storage of a larger reservoir of nitrogen in the solid Earth. Dynamic exchange between these reservoirs may have induced major fluctuations of bulk atmospheric pressure over Earth's history.

  2. Molecular-level characterization of reactive and refractory dissolved natural organic nitrogen compounds by atmospheric pressure photoionization coupled to Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Osborne, Daniel M; Podgorski, David C; Bronk, Deborah A; Roberts, Quinn; Sipler, Rachel E; Austin, David; Bays, James S; Cooper, William T

    2013-04-30

    Dissolved organic nitrogen (DON) represents a significant fraction of the total dissolved nitrogen pool in most surface waters and serves as an important nitrogen source for phytoplankton and bacteria. As with other natural organic matter mixtures, ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) is the only technique currently able to provide molecular composition information on DON. Although electrospray ionization (ESI) is the most commonly used ionization method, it is not very efficient at ionizing most DON components. Positive- and negative-mode atmospheric pressure photoionization (APPI) coupled with ultrahigh resolution FTICRMS at 9.4 T were compared for determining the composition of DON before and after bioassays. Toluene was added as the APPI dopant to the solid-phase DON extracts, producing a final sample that was 90% methanol and 10% toluene by volume. Positive-mode (+) APPI proved significantly more efficient at ionizing DON; 62% of the formulas that could be assigned in the positive-ion spectrum contained at least one nitrogen atom vs. 31% in the negative-ion spectrum. FTICR mass spectral data indicated that most of the refractory DON compounds (i.e. nonreactive during the 5 days of the incubation) had molecular compositions representative of lignin-like molecules, while lipid-like and protein-like molecules comprised most of the small reactive component of the DON pool. From these data we conclude that (+) APPI FTICRMS is a promising technique for describing the molecular composition of DON mixtures. The technique is particularly valuable in assessing the bioavailability of individual components of DON when combined with bioassays. Copyright © 2013 John Wiley & Sons, Ltd.

  3. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  4. A Planar Source of Atmospheric-Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    Zhdanova, O. S.; Kuznetsov, V. S.; Panarin, V. A.; Skakun, V. S.; Sosnin, E. A.; Tarasenko, V. F.

    2018-01-01

    In a single-barrier discharge with voltage sharpening and low gas consumption (up to 1 L/min), plane atmospheric pressure plasma jets with a width of up to 3 cm and length of up to 4 cm in air are formed in the slit geometry of the discharge zone. The energy, temperature, and spectral characteristics of the obtained jets have been measured. The radiation spectrum contains intense maxima corresponding to vibrational transitions of the second positive system of molecular nitrogen N2 ( C 3Π u → B 3Π g ) and comparatively weak transition lines of the first positive system of the N 2 + ion ( B 2Σ u + → X 2Σ g ). By an example of inactivation of the Staphylococcus aureus culture (strain ATCC 209), it is shown that plasma is a source of chemically active particles providing the inactivation of microorganisms.

  5. Atmospheric dry deposition of sulfur and nitrogen in the Athabasca Oil Sands Region, Alberta, Canada

    Treesearch

    Yu-Mei Hsu; Andrzej Bytnerowicz; Mark E. Fenn; Kevin E. Percy

    2016-01-01

    Due to the potential ecological effects on terrestrial and aquatic ecosystems from atmospheric deposition in the Athabasca Oil Sands Region (AOSR), Alberta, Canada, this study was implemented to estimate atmospheric nitrogen (N) and sulfur (S) inputs. Passive samplers were used to measure ambient concentrations of ammonia (NH3), nitrogen dioxide...

  6. Titan. [Voyager IRIS observation of satellite atmosphere

    NASA Technical Reports Server (NTRS)

    Lunine, Jonathan I.

    1990-01-01

    Saturn's satellite Titan is the second-largest in the solar system. Its dense atmosphere is mostly molecular nitrogen with an admixture of methane, a surface pressure of 1.5 bars and a surface temperature of 94K. The fundamental driving force in the long-term evolution of Titan's atmosphere is the photolysis of methane in the stratosphere to form higher hydrocarbons and aerosols. The current rate of photolysis and undersaturation of methane in the lower troposphere suggests the presence of a massive ethane-methane-nitrogen ocean. The ocean evolves to a more ethane-rich state over geologic time, driving changes in the atmospheric thermal structure. An outstanding issue concerning Titan's earliest history is the origin of atmospheric nitrogen: was it introduced into Titan as molecular nitrogen or ammonia? Measurement of the argon-to-nitrogen ratio in the present atmosphere provides a diagnostic test of these competing hypotheses. Many of the questions raised by the Voyager encounters about Titan and its atmosphere can be adequately addressed only by an entry probe, such as that planned for the Cassini mission.

  7. Efficacy of atmospheric pressure dielectric barrier discharge for inactivating airborne pathogens

    DOE PAGES

    Romero-Mangado, Jaione; Dey, Avishek; Diaz-Cartagena, Diana C.; ...

    2017-07-05

    Atmospheric pressure plasmas have gained attention in recent years for several environmental applications. This technology could potentially be used to deactivate airborne microorganisms, surface-bound microorganisms, and biofilms. Here, the authors explore the efficacy of the atmospheric pressure dielectric barrier discharge (DBD) to inactivate airborne Staphylococcus epidermidis and Aspergillus niger that are opportunistic pathogens associated with nosocomial infections. This technology uses air as the source of gas and does not require any process gas such as helium, argon, nitrogen, or hydrogen. Moreover, the effect of DBD was studied on aerosolized S. epidermidis and aerosolized A. niger spores via scanning electron microscopymore » (SEM). The morphology observed on the SEM micrographs showed deformations in the cellular structure of both microorganisms. Cell structure damage upon interaction with the DBD suggests leakage of vital cellular materials, which is a key mechanism for microbial inactivation. The chemical structure of the cell surface of S. epidermidis was also analyzed by near edge x-ray absorption fine structure spectroscopy before and after DBD exposure. Our results from surface analysis revealed that reactive oxygen species from the DBD discharge contributed to alterations on the chemistry of the cell membrane/cell wall of S. epidermidis.« less

  8. Efficacy of atmospheric pressure dielectric barrier discharge for inactivating airborne pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Mangado, Jaione; Dey, Avishek; Diaz-Cartagena, Diana C.

    Atmospheric pressure plasmas have gained attention in recent years for several environmental applications. This technology could potentially be used to deactivate airborne microorganisms, surface-bound microorganisms, and biofilms. Here, the authors explore the efficacy of the atmospheric pressure dielectric barrier discharge (DBD) to inactivate airborne Staphylococcus epidermidis and Aspergillus niger that are opportunistic pathogens associated with nosocomial infections. This technology uses air as the source of gas and does not require any process gas such as helium, argon, nitrogen, or hydrogen. Moreover, the effect of DBD was studied on aerosolized S. epidermidis and aerosolized A. niger spores via scanning electron microscopymore » (SEM). The morphology observed on the SEM micrographs showed deformations in the cellular structure of both microorganisms. Cell structure damage upon interaction with the DBD suggests leakage of vital cellular materials, which is a key mechanism for microbial inactivation. The chemical structure of the cell surface of S. epidermidis was also analyzed by near edge x-ray absorption fine structure spectroscopy before and after DBD exposure. Our results from surface analysis revealed that reactive oxygen species from the DBD discharge contributed to alterations on the chemistry of the cell membrane/cell wall of S. epidermidis.« less

  9. 74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. LIQUID NITROGEN TANK, REGULATOR VALVES, AND PRESSURE GAUGES FOR LIQUID NITROGEN PUMPING STATION - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Large area atmospheric-pressure plasma jet

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Babayan, Steve E.; Hicks, Robert F.

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  11. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  12. Oxygenation of Earth's atmosphere and its impact on the evolution of nitrogen-based metabolisms

    NASA Astrophysics Data System (ADS)

    Papineau, D.; Mojzsis, S. J.

    2002-12-01

    The evolution of metabolic pathways is closely linked to the evolution of the redox state of the terrestrial atmosphere. Nitrogen has been an essential biological element since the emergence of life when reduced nitrogen compounds (e.g. ammonia) were utilized in the prebiotic synthesis of proteins and nucleic acids. The nitrogen isotopic composition of sediments has been used to trace the origin of sedimentary organic matter in the rock record. Nitrogen is therefore suitable as a biosignature to trace the emergence of life on Earth or other planetary bodies as well as to follow the subsequent evolution of the biosphere in response to global redox changes. Evidence is strong that biological nitrogen fixation evolved very early in the history of life. The Last Common Ancestor (LCA) on Earth was most likely capable of nitrogen fixation as seen from the phylogenetic distribution of nitrogen-fixing organisms in both the domains of Bacteria and Archaea. Phylogenetic trees plotted with nitrogen-fixing gene (Nif) sequences from lineages of Bacteria and Archaea suggest that the Nif genes originated in a common ancestor of the two domains. Other phylogenetic analyses have also demonstrated that the paralogous duplication of the nifDK and nifEN operons, central to nitrogen fixation, predated the divergence of Archaea from Bacteria and therefore occurred prior to the emergence of the LCA. Although the same may be true for denitrification, this metabolic pathway probably did not become dominant until atmospheric pO2 increased between ~2.4 to 1.9 Ga during the Great Oxygenation Event (GOE). Recent work has shown a general depletion in 15N content of Archean (pre-2.5 Ga) relative to Phanerozoic (<540 Ma) kerogens. Studies have shown that the distribution of the δ15N values in kerogens shift from negative values in the Early Archean (from -6 to +6‰ with an average near 0‰ ) to approximately contemporary positive values (from +2 to +10‰ with an average at +6‰ ) by the

  13. Unusual neurological syndrome induced by atmospheric pressure change.

    PubMed

    Ptak, Judy A; Yazinski, Nancy A; Block, Clay A; Buckey, Jay C

    2013-05-01

    We describe a case of a 46-yr-old female who developed hypertension, tachycardia, dysarthria, and leg weakness provoked by pressure changes associated with flying. Typically during the landing phase of flight, she would feel dizzy and note that she had difficulty with speech and leg weakness. After the flight the leg weakness persisted for several days. The symptoms were mitigated when she took a combined alpha-beta blocker (labetalol) prior to the flight. To determine if these symptoms were related to atmospheric pressure change, she was referred for testing in a hyperbaric chamber. She was exposed to elevated atmospheric pressure (maximum 1.2 ATA) while her heart rate and blood pressure were monitored. Within 1 min she developed tachycardia and hypertension. She also quickly developed slurred speech, left arm and leg weakness, and sensory changes in her left leg. She was returned to sea level pressure and her symptoms gradually improved. A full neurological workup has revealed no explanation for these findings. She has no air collections, cysts, or other anatomic findings that could be sensitive to atmospheric pressure change. The pattern is most consistent with a vascular event stimulated by altitude exposure. This case suggests that atmospheric pressure change can produce neurological symptoms, although the mechanism is unknown.

  14. Independent Orbiter Assessment (IOA): Analysis of the atmospheric revitalization pressure control subsystem

    NASA Technical Reports Server (NTRS)

    Saiidi, M. J.; Duffy, R. E.; Mclaughlin, T. D.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Atmospheric Revitalization and Pressure Control Subsystem (ARPCS) are documented. The ARPCS hardware was categorized into the following subdivisions: (1) Atmospheric Make-up and Control (including the Auxiliary Oxygen Assembly, Oxygen Assembly, and Nitrogen Assembly); and (2) Atmospheric Vent and Control (including the Positive Relief Vent Assembly, Negative Relief Vent Assembly, and Cabin Vent Assembly). The IOA analysis process utilized available ARPCS hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  15. Solubilities of nitrogen and noble gases in basalt melt

    NASA Technical Reports Server (NTRS)

    Miyazaki, A.; Hiyagon, H.; Sugiura, N.

    1994-01-01

    Nitrogen and noble gases are important tracers in geochemistry and chosmochemistry. Compared to noble gases, however, physicochemical properties of nitrogen, such as solubility in melt or melt/silicate partition, are not well known. Solubility of nitrogen in basalt melt depends on redox condition of the atmosphere. For example, solubility of nitrogen in E chondrite melt under reducing conditions is as high as 2 mol percent at 1500 C, suggesting that nitrogen is chemically dissolved in silicate melts, i.e., being dissolved as free anions or replacing oxygen sites in silicate network. However, the solubility and the dissolution mechanism of nitrogen under oxidizing conditions are not well investigated. To obtain nitrogen solubility in silicate melts under various redox conditions and to understand its mechanism, we are conducting experiments by using (15)N(15)N-labeled nitrogen gas. This makes it easy to distinguish dissolved nitrogen from later contamination of atmospheric nitrogen, and hence enables us to measure the nitrogen solubility accurately. As a preliminary experiment, we have measured solubility of nitrogen in basalt melt under the atmospheric oxygen pressure.

  16. T- P Phase Diagram of Nitrogen at High Pressures

    NASA Astrophysics Data System (ADS)

    Algul, G.; Enginer, Y.; Yurtseven, H.

    2018-05-01

    By employing a mean field model, calculation of the T- P phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N 2, and the fitted parameters are determined. Our model study gives that the observed T- P phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

  17. Reduced Lung Cancer Mortality With Lower Atmospheric Pressure.

    PubMed

    Merrill, Ray M; Frutos, Aaron

    2018-01-01

    Research has shown that higher altitude is associated with lower risk of lung cancer and improved survival among patients. The current study assessed the influence of county-level atmospheric pressure (a measure reflecting both altitude and temperature) on age-adjusted lung cancer mortality rates in the contiguous United States, with 2 forms of spatial regression. Ordinary least squares regression and geographically weighted regression models were used to evaluate the impact of climate and other selected variables on lung cancer mortality, based on 2974 counties. Atmospheric pressure was significantly positively associated with lung cancer mortality, after controlling for sunlight, precipitation, PM2.5 (µg/m 3 ), current smoker, and other selected variables. Positive county-level β coefficient estimates ( P < .05) for atmospheric pressure were observed throughout the United States, higher in the eastern half of the country. The spatial regression models showed that atmospheric pressure is positively associated with age-adjusted lung cancer mortality rates, after controlling for other selected variables.

  18. Episodic inputs of atmospheric nitrogen to the Sargasso Sea: Contributions to new production and phytoplankton blooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, A.F.; Johnson, R.J.; Siegel, D.A.

    1993-06-01

    This paper compares a recent atmospheric wet deposition record (including all measurable daily rainfall events between October 1988 and June 1991) with concurrent measurements of nitrogen cycling and biomass at the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time Series Study station. The two data sets, among the most complete synoptic records of atmospheric nitrogen deposition and ocean nitrogen cycling, provide an opportunity to directly assess the importance of nitrogen deposition in the ocean. The results indicate that individual nitrogen wet deposition events are usually small compared to the ambient nitrogen cycle and that only under sustained calm conditionsmore » following large deposition events will nitrogen deposition processes be an important signal for the understanding of ocean biochemistry. 46 refs., 7 figs.« less

  19. The major influence of the atmosphere on intracranial pressure: an observational study

    NASA Astrophysics Data System (ADS)

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  20. Effect of sheath gas in atmospheric-pressure plasma jet for potato sprouting suppression

    NASA Astrophysics Data System (ADS)

    Nishiyama, S.; Monma, M.; Sasaki, K.

    2016-09-01

    Recently, low-temperature atmospheric-pressure plasma jets (APPJs) attract much interest for medical and agricultural applications. We try to apply APPJs for the suppression of potato sprouting in the long-term storage. In this study, we investigated the effect of sheath gas in APPJ on the suppression efficiency of the potato sprouting. Our APPJ was composed of an insulated thin wire electrode, a glass tube, a grounded electrode which was wound on the glass tube, and a sheath gas nozzle which was attached at the end of the glass tube. The wire electrode was connected to a rectangular-waveform power supply at a frequency of 3 kHz and a voltage of +/- 7 kV. Helium was fed through the glass tube, while we tested dry nitrogen, humid nitrogen, and oxygen as the sheath gas. Eyes of potatoes were irradiated by APPJ for 60 seconds. The sprouting probability was evaluated at two weeks after the plasma irradiation. The sprouting probability was 28% when we employed no sheath gases, whereas an improved probability of 10% was obtained when we applied dry nitrogen as the sheath gas. Optical emission spectroscopy was carried out to diagnose the plasma jet. It was suggested that reactive species originated from nitrogen worked for the efficient suppression of the potato sprouting.

  1. Influence of atmospheric pressure on infrarenal abdominal aortic aneurysm rupture.

    PubMed

    Robert, Nicolas; Frank, Michael; Avenin, Laure; Hemery, Francois; Becquemin, Jean Pierre

    2014-04-01

    Meteorologic conditions have a significant impact on the occurrence of cardiovascular events. Previous studies have shown that abdominal aortic aneurysm rupture (AAAR) may be associated with atmospheric pressure, with conflicting results. Therefore, we aimed to further investigate the nature of the correlation between atmospheric pressure variations and AAAR. Hospital admissions related to AAAR between 2005-2009 were assessed in 19 districts of metropolitan France and correlated with geographically and date-matched mean atmospheric pressures. In parallel and from 2005-2009, all fatal AAARs as reported by death certificates were assessed nationwide and correlated to local atmospheric pressures at the time of aortic rupture. Four hundred ninety-four hospital admissions related to AAAR and 6,358 deaths nationwide by AAAR were identified between 2005-2009. Both in-hospital ruptures and aneurysm-related mortality had seasonal variations, with peak/trough incidences in January and June, respectively. Atmospheric pressure peaks occurred during winter. Univariate analysis revealed a significant association (P < 0.001) of high mean atmospheric pressure values and AAAR. After multivariate analysis, mean maximum 1-month prerupture atmospheric pressure had a persistent correlation with both in-hospital relative risk (1.05 [95% confidence interval: 1.03-1.06]; P < 0.0001) and aneurysm rupture-related mortality relative risk (1.02 [95% confidence interval: 1.01-1.03]; P < 0.0001). The annual incidence of AAAR is nonhomogeneous with a peak incidence in winter, and is independently associated with mean maximum 1-month prerupture atmospheric pressure. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Modeling Historical and Projected Future Atmospheric Nitrogen Loading to the Chesapeake Bay Watershed

    EPA Science Inventory

    Land use and climate change are expected to alter key processes in the Chesapeake Bay watershed and can potentially exacerbate the impact of excess nitrogen. Atmospheric sources are one of the largest loadings of nitrogen to the Chesapeake Bay watershed. In this study, we explore...

  3. The effects of rising atmospheric carbon dioxide on shoot-root nitrogen and water signaling.

    PubMed

    Easlon, Hsien Ming; Bloom, Arnold J

    2013-01-01

    Terrestrial higher plants are composed of roots and shoots, distinct organs that conduct complementary functions in dissimilar environments. For example, roots are responsible for acquiring water and nutrients such as inorganic nitrogen from the soil, yet shoots consume the majority of these resources. The success of such a relationship depends on excellent root-shoot communications. Increased net photosynthesis and decreased shoot nitrogen and water use at elevated CO2 fundamentally alter these source-sink relations. Lower than predicted productivity gains at elevated CO2 under nitrogen or water stress may indicate shoot-root signaling lacks plasticity to respond to rising atmospheric CO2 concentrations. The following presents recent research results on shoot-root nitrogen and water signaling, emphasizing the influence that rising atmospheric carbon dioxide levels are having on these source-sink interactions.

  4. Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds

    EPA Science Inventory

    Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...

  5. The major influence of the atmosphere on intracranial pressure: an observational study.

    PubMed

    Herbowski, Leszek

    2017-01-01

    The impact of the atmosphere on human physiology has been studied widely within the last years. In practice, intracranial pressure is a pressure difference between intracranial compartments and the surrounding atmosphere. This means that gauge intracranial pressure uses atmospheric pressure as its zero point, and therefore, this method of pressure measurement excludes the effects of barometric pressure's fluctuation. The comparison of these two physical quantities can only take place through their absolute value relationship. The aim of this study is to investigate the direct effect of barometric pressure on the absolute intracranial pressure homeostasis. A prospective observational cross-sectional open study was conducted in Szczecin, Poland. In 28 neurosurgical patients with suspected normal-pressure hydrocephalus, intracranial intraventricular pressure was monitored in a sitting position. A total of 168 intracranial pressure and atmospheric pressure measurements were performed. Absolute atmospheric pressure was recorded directly. All values of intracranial gauge pressure were converted to absolute pressure (the sum of gauge intracranial pressure and local absolute atmospheric pressure). The average absolute mean intracranial pressure in the patients is 1006.6 hPa (95 % CI 1004.5 to 1008.8 hPa, SEM 1.1), and the mean absolute atmospheric pressure is 1007.9 hPa (95 % CI 1006.3 to 1009.6 hPa, SEM 0.8). The observed association between atmospheric and intracranial pressure is strongly significant (Spearman correlation r = 0.87, p < 0.05) and all the measurements are perfectly reliable (Bland-Altman coefficient is 4.8 %). It appears from this study that changes in absolute intracranial pressure are related to seasonal variation. Absolute intracranial pressure is shown to be impacted positively by atmospheric pressure.

  6. Water-soluble organic nitrogen in atmospheric fine particles (PM2.5) from northern California

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Anastasio, Cort; Jimenez-Cruz, Mike

    2002-06-01

    Recent studies have suggested that organic nitrogen (ON) is a ubiquitous and significant component of atmospheric dry and wet deposition, but very little is known about the concentrations and speciation of organic nitrogen in aerosol particles. In addition, while amino compounds also appear to be ubiquitous in atmospheric condensed phases, their contribution to organic nitrogen has not been previously quantified. To address these issues, we have characterized the water-soluble organic nitrogen and amino compounds in fine particles (PM2.5) collected in Davis, California, over a period of 1 year. Concentrations of water-soluble organic nitrogen (WSON) ranged from 3.1-57.8 nmol N m-3 air, peaking during winter and early spring, and typically accounted for ~20% of total nitrogen in Davis PM2.5. Assuming an average N-normalized molecular weight of 100 Da per N atom for WSON, particulate organic nitrogen had a median mass concentration of 1.6 μg m-3 air, and typically represented 18% of the total fine particle mass. The average mass of water-soluble ON in Davis PM2.5 was comparable to that of sulfate during the summer, but was significantly higher in winter. Total amino compounds (free plus combined forms) made up a significant portion of particulate organic nitrogen (median value equal to 23%), primarily due to the presence of combined amino compounds such as proteins and peptides. Total amino compounds had a median mass concentration of 290 ng m-3 air, and typically accounted for 3.3% of the total fine particle mass. These results indicate that organic nitrogen is a significant component of fine particles in northern California, and suggest that this group of compounds might play an important role in the ecological, radiative, and potential health effects of atmospheric fine particles in this region.

  7. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, Robert; Polcik, Peter; Anders, André

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  8. Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    DOE PAGES

    Franz, Robert; Polcik, Peter; Anders, André

    2015-06-01

    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+ regardless of the background gas species, whereas Cr 2+ ions were dominating in Ar and N 2 and Cr + in O 2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ionsmore » that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O 2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.« less

  9. PPI/HASI Pressure Measurements in the Atmosphere of Titan

    NASA Astrophysics Data System (ADS)

    M'akinen, J. T. T.; Harri, A.-M.; Siili, T.; Lehto, A.; Kahanp'a'a, H.; Genzer, M.; Leppelmeier, G. W.; Leinonen, J.

    2005-08-01

    The Huygens probe descended through the atmosphere of Titan on January 14, 2005, providing an excellent set of observations. As a part of the Huygens Atmospheric Structure Instrument (HASI) measuring several variables, including acceleration, pressure, temperature and atmospheric electricity, the Pressure Profile Instrument (PPI) provided by FMI commenced operations after the deployment of the main parachute and jettisoning of the heat shield at an altitude of about 160 km. Based on aerodynamic considerations, PPI measured the total pressure with a Kiel probe at the end of a boom, connected to the sensor electronics inside the probe through an inlet tube. The instrument performed flawlessly during the 2.5 hour descent and the 0.5 hour surface phase before the termination of radio link between Huygens and the Cassini orbiter. We present an analysis of the pressure data including recreation of the pressure, temperature, altitude, velocity and acceleration profiles as well as an estimate for the level of atmospheric activity on the surface of Titan.

  10. Trends in Atmospheric Reactive Nitrogen for the Eastern United States

    EPA Science Inventory

    Reactive nitrogen can travel far from emission sources and impact sensitive ecosystems. From 2002-2006, policy actions have led to decreases in NOx emissions from power plants and motor vehicles. In this study, atmospheric chemical transport modeling demonstrates tha...

  11. Foundations of atmospheric pressure non-equilibrium plasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  12. Specific cooling capacity of liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Kilgore, R. A.; Adcock, J. B.

    1977-01-01

    The assumed cooling process and the method used to calculate the specific cooling capacity of liquid nitrogen are described, and the simple equation fitted to the calculated specific cooling capacity data, together with the graphical form calculated values of the specific cooling capacity of nitrogen for stagnation temperatures from saturation to 350 K and stagnation pressures from 1 to 10 atmospheres, are given.

  13. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  14. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Pan, Y.; Wang, Y.; Paulot, F.; Henze, D. K.

    2015-09-01

    Rapid Asian industrialization has led to increased downwind atmospheric nitrogen deposition threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2° × 2/3° horizontal resolution over East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the high-NH3 emissions reflect its intensive agricultural activities. We find Asian NH3 emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind of the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7 % over the South China Sea, and become important (greater than 30 %) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian monsoon and in nitrogen emissions. The model adjoint further estimates that nitrogen deposition to the Yellow Sea originates from sources over China (92 % contribution) and the Korean peninsula (7 %), and by sectors from fertilizer use (24 %), power plants (22 %), and transportation (18

  15. Atmospheric-pressure plasma activation and surface characterization on polyethylene membrane separator

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Chien; Li, Hsiao-Ling; Huang, Chun

    2017-01-01

    The surface hydrophilic activation of a polyethylene membrane separator was achieved using an atmospheric-pressure plasma jet. The surface of the atmospheric-pressure-plasma-treated membrane separator was found to be highly hydrophilic realized by adjusting the plasma power input. The variations in membrane separator chemical structure were confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Chemical analysis showed newly formed carbonyl-containing groups and high surface concentrations of oxygen-containing species on the atmospheric-pressure-plasma-treated polymeric separator surface. It also showed that surface hydrophilicity primarily increased from the polar component after atmospheric-pressure plasma treatment. The surface and pore structures of the polyethylene membrane separator were examined by scanning electron microscopy, revealing a slight alteration in the pore structure. As a result of the incorporation of polar functionalities by atmospheric-pressure plasma activation, the electrolyte uptake and electrochemical impedance of the atmospheric-pressure-plasma-treated membrane separator improved. The investigational results show that the separator surface can be controlled by atmospheric-pressure plasma surface treatment to tailor the hydrophilicity and enhance the electrochemical performance of lithium ion batteries.

  16. Optical and Raman microspectroscopy of nitrogen and hydrogen mixtures at high pressures

    NASA Astrophysics Data System (ADS)

    Ciezak, Jennifer; Jenkins, T.; Hemley, R.

    2009-06-01

    Extended phases of molecular solids formed from simple molecules have led to polymeric materials under extreme conditions with advanced optical, mechanical and energetic properties. Although the existence of extended phases has been demonstrated in N2, CO and CO2, recovery of the materials to ambient conditions has posed considerable difficulty. Recent molecular dynamics simulations have predicted that the addition of hydrogen to nitrogen may increase the stability of the cubic-gauche nitrogen polymer and thereby offer the possibility of synthesis at lower pressures and temperatures. Here we present optical and Raman microspectroscopy measurements performed on nitrogen and hydrogen mixtures to 85 GPa. To pressures of 30 GPa, large deviations in the internal molecular stretching modes of the mixtures relative to those of the pure material reveal unusual phase behavior. After an unusual phase separation near 35 GPa, a phase assemblage of consisting of a phase rich in both nitrogen and hydrogen, a phase of relatively amorphous nitrogen and a mixture of the two is observed. Near this pressure, Raman bands attributed to the N-N single bonded stretch were observed.

  17. Liquid Nitrogen Subcooler Pressure Vessel Engineering Note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rucinski, R.; /Fermilab

    1997-04-24

    The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.

  18. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    NASA Astrophysics Data System (ADS)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from <5° to 40° over a period of 12 hours. When stored under a nitrogen purge, the water contact angle of a clean surface increased from <5° to 30° over a period of 40-60 hours. The change in contact angle resulted from the adsorption of nonanal onto the exposed surface hydroxyl groups. The rate of adsorption of nonanal under a nitrogen purged atmosphere ranged from 0.378+/-0.011 hr-1 to 0.182+/-0.008 hr -1 molecules/(cm2•s), decreasing as the fraction of hydrogen-bonded hydroxyl groups increased from 49% to 96% on the SiO 2 surface. The adsorption of the organic contaminant could be suppressed indefinitely by storing the

  19. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  20. Observation and interpretation of energy efficient, diffuse direct current glow discharge at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Jie, E-mail: tangjie1979@opt.ac.cn; Jiang, Weiman; Wang, Yishan

    2015-08-24

    A diffuse direct-current glow discharge was realized with low energy consumption and high energy utilization efficiency at atmospheric pressure. The formation of diffuse discharge was demonstrated by examining and comparing the electrical properties and optical emissions of plasmas. In combination with theoretical derivation and calculation, we draw guidelines that appearance of nitrogen ions at low electron density is crucial to enhance the ambipolar diffusion for the expansion of discharge channel and the increasing ambipolar diffusion near the cathode plays a key role in the onset of diffuse discharge. An individual-discharge-channel expansion model is proposed to explain the diffuse discharge formation.

  1. Energetic Metastable Oxygen and Nitrogen Atoms in the Terrestrial Atmosphere

    NASA Technical Reports Server (NTRS)

    Kharchenko, Vasili; Dalgarno, A.

    2005-01-01

    This report summarizes our research performed under NASA Grant NAG5-11857. The three-year grant have been supported by the Geospace Sciences SR&T program. We have investigated the energetic metastable oxygen and nitrogen atoms in the terrestrial stratosphere, mesosphere and thermosphere. Hot atoms in the atmosphere are produced by solar radiation, the solar wind and various ionic reactions. Nascent hot atoms arise in ground and excited electronic states, and their translational energies are larger by two - three orders of magnitude than the thermal energies of the ambient gas. The relaxation kinetics of hot atoms determines the rate of atmospheric heating, the intensities of aeronomic reactions, and the rate of atom escape from the planet. Modeling of the non-Maxwellian energy distributions of metastable oxygen and nitrogen atoms have been focused on the determination of their impact on the energetics and chemistry of the terrestrial atmosphere between 25 and 250 km . At this altitudes, we have calculated the energy distribution functions of metastable O and N atoms and computed non-equilibrium rates of important aeronomic reactions, such as destruction of the water molecules by O(1D) atoms and production of highly excited nitric oxide molecules. In the upper atmosphere, the metastable O(lD) and N(2D) play important role in formation of the upward atomic fluxes. We have computed the upward fluxes of the metastable and ground state oxygen atoms in the upper atmosphere above 250 km. The accurate distributions of the metastable atoms have been evaluated for the day and night-time conditions.

  2. Nitrogen and Triple Oxygen Isotopic Analyses of Atmospheric Particulate Nitrate over the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Kamezaki, Kazuki; Hattori, Shohei; Iwamoto, Yoko; Ishino, Sakiko; Furutani, Hiroshi; Miki, Yusuke; Miura, Kazuhiko; Uematsu, Mitsuo; Yoshida, Naohiro

    2017-04-01

    Nitrate plays a significant role in the biogeochemical cycle. Atmospheric nitrate (NO3- and HNO3) are produced by reaction precursor as NOx (NO and NO2) emitted by combustion, biomass burning, lightning, and soil emission, with atmospheric oxidants like ozone (O3), hydroxyl radical (OH), peroxy radical and halogen oxides. Recently, industrial activity lead to increases in the concentrations of nitrogen species (NOx and NHy) throughout the environment. Because of the increase of the amount of atmospheric nitrogen deposition, the oceanic biogeochemical cycle are changed (Galloway et al., 2004; Kim et al., 2011). However, the sources and formation pathways of atmospheric nitrate are still uncertain over the Pacific Ocean because the long-term observation is limited. Stable isotope analysis is useful tool to gain information of sources, sinks and formation pathways. The nitrogen stable isotopic composition (δ15N) of atmospheric particulate NO3- can be used to posses information of its nitrogen sources (Elliott et al., 2007). Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 ×δ18O) of atmospheric particulate NO3- can be used as tracer of the relative importance of mass-independent oxygen bearing species (e.g. O3, BrO; Δ17O ≠ 0 ‰) and mass-dependent oxygen bearing species (e.g. OH radical; Δ17O ≈ 0 ‰) through the formation processes from NOx to NO3- in the atmosphere (Michalski et al., 2003; Thiemens, 2006). Here, we present the isotopic compositions of atmospheric particulate NO3- samples collected over the Pacific Ocean from 40˚ S to 68˚ N. We observed significantly low δ15N values for atmospheric particulate NO3- on equatorial Pacific Ocean during both cruises. Although the data is limited, combination analysis of δ15N and Δ17O values for atmospheric particulate NO3- showed the possibility of the main nitrogen source of atmospheric particulate NO3- on equatorial Pacific Ocean is ammonia oxidation in troposphere. Furthermore, the Δ17O values

  3. Atmospheric nitrogen deposition to China: A model analysis on nitrogen budget and critical load exceedance

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Chen, Youfan; Liu, Xuejun; Xu, Wen; Pan, Yuepeng; Duan, Lei

    2017-03-01

    We present a national-scale model analysis on the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2° × 1/3° horizontal resolution. Model results for 2008-2012 are evaluated with an ensemble of surface measurements of wet deposition flux and gaseous ammonia (NH3) concentration, and satellite measurements of tropospheric NO2 columns. Annual total inorganic nitrogen deposition fluxes are simulated to be generally less than 10 kg N ha-1 a-1 in western China (less than 2 kg N ha-1 a-1 over Tibet), 15-50 kg N ha-1 a-1 in eastern China, and 16.4 kg N ha-1 a-1 averaged over China. Annual total deposition to China is 16.4 Tg N, with 10.2 Tg N (62%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported outside the terrestrial land of China. We find that atmospheric nitrogen deposition is about half of the nitrogen input from fertilizer application (29.6 Tg N a-1), and is much higher than that from natural biological fixation (7.3 Tg N a-1) over China. A comparison of nitrogen deposition with critical load estimates for eutrophication indicates that about 15% of the land over China experiences critical load exceedances, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects.

  4. Pressurized entrained-flow pyrolysis of microalgae: Enhanced production of hydrogen and nitrogen-containing compounds.

    PubMed

    Maliutina, Kristina; Tahmasebi, Arash; Yu, Jianglong

    2018-05-01

    Pressurized entrained-flow pyrolysis of Chlorella vulgaris microalgae was investigated. The impact of pressure on the yield and composition of pyrolysis products were studied. The results showed that the concentration of H 2 in bio-gas increased sharply with increasing pyrolysis pressure, while those of CO, CO 2 , CH 4 , and C 2 H 6 were dramatically decreased. The concentration of H 2 reached 88.01 vol% in bio-gas at 900 °C and 4 MPa. Higher pressures promoted the hydrogen transfer to bio-gas. The bio-oils derived from pressurized pyrolysis were rich in nitrogen-containing compounds and PAHs. The highest concentration of nitrogen-containing compounds in bio-oil was achieved at 800 °C and 1 MPa. Increasing pyrolysis pressure promoted the formation of nitrogen-containing compounds such as indole, quinoline, isoquinoline and phenanthridine. Higher pyrolysis pressures led to increased sphericity, enhanced swelling, and higher carbon order of bio-chars. Pressurized pyrolysis of biomass has a great potential for poly-generation of H 2 , nitrogen containing compounds and bio-char. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank

    2009-12-01

    Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.

  6. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution

    NASA Astrophysics Data System (ADS)

    Zhao, Yuanhong; Zhang, Lin; Pan, Yuepeng; Wang, Yuesi; Paulot, Fabien; Henze, Daven

    2016-04-01

    Rapid Asian industrialization has lead to increased atmospheric nitrogen deposition downwind threatening the marine environment. We present an analysis of the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific, using the GEOS-Chem global chemistry model and its adjoint model at 1/2°× 2/3° horizontal resolution over the East Asia and its adjacent oceans. We focus our analyses on the marginal seas: the Yellow Sea and the South China Sea. Asian nitrogen emissions in the model are 28.6 Tg N a-1 as NH3 and 15.7 Tg N a-1 as NOx. China has the largest sources with 12.8 Tg N a-1 as NH3 and 7.9 Tg N a-1 as NOx; the much higher NH3 emissions reflect its intensive agricultural activities. We improve the seasonality of Asian NH3 emissions; emissions are a factor of 3 higher in summer than winter. The model simulation for 2008-2010 is evaluated with NH3 and NO2 column observations from satellite instruments, and wet deposition flux measurements from surface monitoring sites. Simulated atmospheric nitrogen deposition to the northwestern Pacific ranges 0.8-20 kg N ha-1 a-1, decreasing rapidly downwind the Asian continent. Deposition fluxes average 11.9 kg N ha-1 a-1 (5.0 as reduced nitrogen NHx and 6.9 as oxidized nitrogen NOy) to the Yellow Sea, and 5.6 kg N ha-1 a-1 (2.5 as NHx and 3.1 as NOy) to the South China Sea. Nitrogen sources over the ocean (ship NOx and oceanic NH3) have little contribution to deposition over the Yellow Sea, about 7% over the South China Sea, and become important (greater than 30%) further downwind. We find that the seasonality of nitrogen deposition to the northwestern Pacific is determined by variations in meteorology largely controlled by the East Asian Monsoon and in nitrogen emissions. The model adjoint further points out that nitrogen deposition to the Yellow Sea originates from sources over China (92% contribution) and the Korean peninsula (7%), and by sectors from fertilizer use (24%), power plants

  7. New Data for Modeling Hypersonic Entry into Earth's Atmosphere: Electron-impact Ionization of Atomic Nitrogen

    NASA Astrophysics Data System (ADS)

    Savin, Daniel Wolf; Ciccarino, Christopher

    2017-06-01

    Meteors passing through Earth’s atmosphere and space vehicles returning to Earth from beyond orbit enter the atmosphere at hypersonic velocities (greater than Mach 5). The resulting shock front generates a high temperature reactive plasma around the meteor or vehicle (with temperatures greater than 10,000 K). This intense heat is transferred to the entering object by radiative and convective processes. Modeling the processes a meteor undergoes as it passes through the atmosphere and designing vehicles to withstand these conditions requires an accurate understanding of the underlying non-equilibrium high temperature chemistry. Nitrogen chemistry is particularly important given the abundance of nitrogen in Earth's atmosphere. Line emission by atomic nitrogen is a major source of radiative heating during atomspheric entry. Our ability to accurately calculate this heating is hindered by uncertainties in the electron-impact ionization (EII) rate coefficient for atomic nitrogen.Here we present new EII calculations for atomic nitrogen. The atom is treated as a 69 level system, incorporating Rydberg values up to n=20. Level-specific cross sections are from published B-Spline R-Matrix-with-Pseudostates results for the first three levels and binary-encounter Bethe (BEB) calculations that we have carried out for the remaining 59 levels. These cross section data have been convolved into level-specific rate coefficients and fit with the commonly-used Arrhenius-Kooij formula for ease of use in hypersonic chemical models. The rate coefficient data can be readily scaled by the relevant atomic nitrogen partition function which varies in time and space around the meteor or reentry vehicle. Providing data up to n=20 also enables modelers to account for the density-dependent lowering of the continuum.

  8. Report on ISS O2 Production, Gas Supply and Partial Pressure Management

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.

    2015-01-01

    Oxygen is used on International Space Station (ISS) for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Nitrogen is used to maintain total pressure and account for losses associated with leakage and operational losses. Oxygen and nitrogen have been supplied by various visiting vehicles such as the Progress and Shuttle in addition to the on-orbit oxygen production capability. Starting in 2014, new high pressure oxygen/nitrogen tanks are available to launch on commercial cargo vehicles and will replace the high pressure gas source that Shuttle used to provide. To maintain a habitable atmosphere the oxygen and nitrogen partial pressures are controlled between upper and lower bounds. The full range of the allowable partial pressures along with the increased ISS cabin volume are utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen and nitrogen to the atmosphere from reserves. This paper summarizes the amount of gas supplied and produced from all of the sources and describes past experience of managing partial pressures along with the range of management options available to the ISS.

  9. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  10. Super-atmospheric pressure chemical ionization mass spectrometry.

    PubMed

    Chen, Lee Chuin; Rahman, Md Matiur; Hiraoka, Kenzo

    2013-03-01

    Super-atmospheric pressure chemical ionization (APCI) mass spectrometry was performed using a commercial mass spectrometer by pressurizing the ion source with compressed air up to 7 atm. Similar to typical APCI source, reactant ions in the experiment were generated with corona discharge using a needle electrode. Although a higher needle potential was necessary to initiate the corona discharge, discharge current and detected ion signal were stable at all tested pressures. A Roots booster pump with variable pumping speed was installed between the evacuation port of the mass spectrometer and the original rough pumps to maintain a same pressure in the first pumping stage of the mass spectrometer regardless of ion source pressure. Measurement of gaseous methamphetamine and research department explosive showed an increase in ion intensity with the ion source pressure until an optimum pressure at around 4-5 atm. Beyond 5 atm, the ion intensity decreased with further increase of pressure, likely due to greater ion losses inside the ion transport capillary. For benzene, it was found that besides molecular ion and protonated species, ion due to [M + 2H](+) which was not so common in APCI, was also observed with high ion abundance under super-atmospheric pressure condition. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Evaluation of the impact of atmospheric pressure in different seasons on blood pressure in patients with arterial hypertension.

    PubMed

    Kamiński, Marek; Cieślik-Guerra, Urszula I; Kotas, Rafał; Mazur, Piotr; Marańda, Witold; Piotrowicz, Maciej; Sakowicz, Bartosz; Napieralski, Andrzej; Trzos, Ewa; Uznańska-Loch, Barbara; Rechciński, Tomasz; Kurpesa, Małgorzata

    2016-01-01

    Atmospheric pressure is the most objective weather factor because regardless of if outdoors or indoors it affects all objects in the same way. The majority of previous studies have used the average daily values of atmospheric pressure in a bioclimatic analysis and have found no correlation with blood pressure changes. The main objective of our research was to assess the relationship between atmospheric pressure recorded with a frequency of 1 measurement per minute and the results of 24-h blood pressure monitoring in patients with treated hypertension in different seasons in the moderate climate of the City of Łódź (Poland). The study group consisted of 1662 patients, divided into 2 equal groups (due to a lower and higher average value of atmospheric pressure). Comparisons between blood pressure values in the 2 groups were performed using the Mann-Whitney U test. We observed a significant difference in blood pressure recorded during the lower and higher range of atmospheric pressure: on the days of the spring months systolic (p = 0.043) and diastolic (p = 0.005) blood pressure, and at nights of the winter months systolic blood pressure (p = 0.013). A significant inverse relationship between atmospheric pressure and blood pressure during the spring days and, only for systolic blood pressure, during winter nights was observed. Int J Occup Med Environ Health 2016;29(5):783-792. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V.

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  13. Determination of aldehydes and ketones using derivatization with 2,4-dinitrophenylhydrazine and liquid chromatography-atmospheric pressure photoionization-mass spectrometry.

    PubMed

    van Leeuwen, Suze M; Hendriksen, Laurens; Karst, Uwe

    2004-11-26

    Atmospheric pressure photoionization-mass spectrometry (APPI-MS) is used for the analysis of aldehydes and ketones after derivatization with 2,4-dinitrophenylhydrazine (DNPH) and liquid chromatographic separation. In the negative ion mode, the [M - H]- pseudomolecular ions are most abundant for the carbonyls. Compared with the established atmospheric pressure chemical ionization (APCI)-MS, limits of detection are typically lower using similar conditions. Automobile exhaust and cigarette exhaust samples were analyzed with APPI-MS and APCI-MS in combination with an ion trap mass analyzer. Due to improved limits of detection, more of the less abundant long-chain carbonyls are detected with APPI-MS in real samples. While 2,4-dinitrophenylazide, a known reaction product of DNPH with nitrogen dioxide, is detected in APCI-MS due to dissociative electron capture, it is not observed at all in APPI-MS.

  14. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: Nitrogen cycle feedbacks and the 15N Haber-Bosch effect

    NASA Astrophysics Data System (ADS)

    Yang, Simon; Gruber, Nicolas

    2016-10-01

    Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.

  15. Study of nitrogen two-phase flow pressure drop in horizontal and vertical orientation

    NASA Astrophysics Data System (ADS)

    Koettig, T.; Kirsch, H.; Santandrea, D.; Bremer, J.

    2017-12-01

    The large-scale liquid argon Short Baseline Neutrino Far-detector located at Fermilab is designed to detect neutrinos allowing research in the field of neutrino oscillations. It will be filled with liquid argon and operate at almost ambient pressure. Consequently, its operation temperature is determined at about 87 K. The detector will be surrounded by a thermal shield, which is actively cooled with boiling nitrogen at a pressure of about 2.8 bar absolute, the respective saturation pressure of nitrogen. Due to strict temperature gradient constraints, it is important to study the two-phase flow pressure drop of nitrogen along the cooling circuit of the thermal shield in different orientations of the flow with respect to gravity. An experimental setup has been built in order to determine the two-phase flow pressure drop in nitrogen in horizontal, vertical upward and vertical downward direction. The measurements have been conducted under quasi-adiabatic conditions and at a saturation pressure of 2.8 bar absolute. The mass velocity has been varied in the range of 20 kg·m-2·s-1 to 70 kg·m-2·s-1 and the pressure drop data has been recorded scanning the two-phase region from vapor qualities close to zero up to 0.7. The experimental data will be compared with several established predictions of pressure drop e.g. Mueller-Steinhagen and Heck by using the void fraction correlation of Rouhani.

  16. Electrostatic Precipitation in Nearly Pure Gaseous Nitrogen

    NASA Technical Reports Server (NTRS)

    Buhler, Charles; Calle, Carlos; Clements, Sid; Cox, Bobby; Ritz, Mindy

    2008-01-01

    Electrostatic precipitation was performed in a nearly pure gaseous nitrogen system as a possible remedy for black dust contaminant from high pressure 6000 psi lines at the NASA Kennedy Space Center. The results of a prototype electrostatic precipitator that was built and tested using nitrogen gas at standard atmospheric pressures is presented. High voltage pulsed waveforms are generated using a rotating spark gap system at 30 Hz. A unique dust delivery system utilizing the Venturi effect was devised that supplies a given amount of dust per unit time for testing purposes.

  17. [Spectral investigation of atmospheric pressure plasma column].

    PubMed

    Li, Xue-Chen; Chang, Yuan-Yuan; Xu, Long-Fei

    2012-07-01

    Atmospheric pressure plasma column has many important applications in plasma stealth for aircraft. In the present paper, a plasma column with a length of 65 cm was generated in argon at atmospheric pressure by using dielectric barrier discharge device with water electrodes in coaxial configurations. The discharge mechanism of the plasma column was studied by optical method and the result indicates that a moving layer of light emission propagates in the upstream region. The propagation velocity of the plasma bullet is about 0.6 x 10(5) m x s(-1) through optical measurement. Spectral intensity ratios as functions of the applied voltage and driving frequency were also investigated by spectroscopic method. The variation in spectral intensity ratio implies a change in the averaged electron energy. Results show that the averaged electron energy increases with the increase in the applied voltage and the driving frequency. These results have significant values for industrial applications of the atmospheric pressure discharge and have extensive application potentials in stealth for military aircraft.

  18. Development of a low frost-point generator operating at sub-atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Cuccaro, R.; Rosso, L.; Smorgon, D.; Beltramino, G.; Tabandeh, S.; Fernicola, V.

    2018-05-01

    A low frost-point generator (INRIM 03) operating at sub-atmospheric pressure has been designed and constructed at the Istituto Nazionale di Ricerca Metrologica (INRIM) as part of a calibration facility for upper-air sounding instruments. This new humidity generator covers the frost-point temperature range between  ‑99 °C and  ‑20 °C and works at any controlled pressure between 200 hPa and 1100 hPa, achieving a complete saturation of the carrier gas (nitrogen) in a single passage through a stainless steel isothermal saturator. The generated humid gas contains a water vapour amount fraction between 14  ×  10‑9 mol mol‑1 and 5  ×  10‑3 mol mol‑1. In this work the design of the generator is reported together with characterisation and performance evaluation tests. A preliminary validation of the INRIM 03 against one of the INRIM humidity standards in the common region is also included. Based on experimental test results, an initial uncertainty evaluation of the generated frost-point temperature, T fp, and water vapour amount fraction, x w, in the limited range down to  ‑75 °C at atmospheric pressure is reported. For the frost-point temperature, the uncertainty budget yields a total expanded uncertainty (k  =  2) of less than 0.028 °C, while for the mole fraction the budget yields a total expanded uncertainty of less than 10‑6 mol mol‑1.

  19. The effects of atmospheric pressure on infrared reflectance spectra of Martian analogs

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Pieters, Carle M.; Pratt, Stephen F.; Patterson, William

    1993-01-01

    The use of terrestrial samples as analogs of Mars soils are complicated by the Martian atmosphere. Spectral features due to the Martian atmosphere can be removed from telescopic spectra of Mars and ISM spectra of Mars, but this does not account for any spectral differences resulting from atmospheric pressure or any interactions between the atmosphere and the surface. We are examining the effects of atmospheric pressure on reflectance spectra of powdered samples in the laboratory. Contrary to a previous experiment with granite, no significant changes in albedo or the Christiansen feature were observed from 1 bar pressure down to a pressure of 8 micrometers Hg. However, reducing the atmospheric pressure does have a pronounced affect on the hydration features, even for samples retained in a dry environment for years.

  20. Influence of Atmospheric Pressure and Composition on LIBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, Jeremy J.; Scott, Jill R.; Effenberger, A. J. Jr.

    2014-03-01

    Most LIBS experiments are conducted at standard atmospheric pressure in air. However, there are LIBS studies that vary the pressure and composition of the gas. These studies have provided insights into fundamentals of the mechanisms that lead to the emission and methods for improving the quality of LIBS spectra. These atmospheric studies are difficult because the effects of pressure and gas composition and interconnected, making interpretation of the results difficult. The influence of pressures below and above 760 Torr have been explored. Performing LIBS on a surface at reduced pressures (<760 Torr) can result in enhanced spectra due to highermore » resolution, increased intensity, improved signal-to-noise (S/N), and increased ablation. Lower pressures produce increased resolution because the line width in LIBS spectra is predominantly due to Stark and Doppler broadening. Stark broadening is primarily caused from collisions between electrons and atoms, while Doppler broadening is proportional to the plasma temperature. Close examination using a high resolution spectrometer reveals that spectra show significant peak broadening and self-absorption as pressures increase, especially for pressures >760 Torr. During LIBS plasma expansion, energy is lost to the surrounding atmosphere, which reduces the lifetime of the laser plasma. Therefore, reducing the pressure increases the lifetime of the plasma, allowing more light from the laser plasma to be collected; thus, increasing the observed signal intensity. However, if pressures are too low (<10 Torr), then there is a steep drop in LIBS spectral intensity. This loss in intensity is mostly due to a disordered plasma that results from the lack of sufficient atmosphere to provide adequate confinement. At reduced pressures, the plasma expands into a less dense atmosphere, which results in a less dense shock wave. The reduced density in the shock wave results in reduced plasma shielding, allowing more photons to reach the

  1. Trending of Overboard Leakage of ISS Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Schaezler, Ryan N.; Cook, Anthony J.; Leonard, Daniel J.; Ghariani, Ahmed

    2011-01-01

    The International Space Station (ISS) overboard leakage of cabin atmosphere is continually tracked to identify new or aggravated leaks and to provide information for planning of nitrogen supply to the ISS. The overboard leakage is difficult to trend with various atmosphere constituents being added and removed. Changes to nitrogen partial pressure is the nominal means of trending the overboard leakage. This paper summarizes the method of the overboard leakage trending and presents findings from the trending.

  2. Untangling the Herman-infrared spectra of nitrogen atmospheric-pressure dielectric-barrier discharge

    NASA Astrophysics Data System (ADS)

    Čermák, Peter; Annušová, Adriana; Rakovský, Jozef; Martišovitš, Viktor; Veis, Pavel

    2018-05-01

    This study presents the first application of the N2 Herman-infrared (HIR) ro-vibrational model for the metrology of the atmospheric-pressure dielectric-barrier discharge. Our recent findings of suitable conditions for observation of the unperturbed HIR system (Annušová et al Contrib. Plasma Phys. 2017) gave us the opportunity to develop and test a numerical representation of this complex system composed of 75 branches. Commonly, the HIR covers a part of the near infrared spectra (690–850 nm) with its bands mixed with the N2 first positive system (1PS), which hinders applications of these systems for optical metrology of the discharge. In this work, we present a complex ro-vibrational model of the 1PS and HIR systems, which allowed us to untangle their spectra and retrieve the rotational temperature and vibrational populations of the systems for the first time. The latter was achieved by coupling the PGHOPHER simulation package with molecular constants obtained from high-resolution experiments. To test the model, the results and precision were compared to the retrievals based on the models of the NO γ and N2 second positive systems using the LIFBASE and SPECAIR programs, respectively.

  3. Biological nitrogen fixation under primordial Martian partial pressures of dinitrogen

    NASA Technical Reports Server (NTRS)

    Klingler, J. M.; Mancinelli, R. L.; White, M. R.

    1989-01-01

    One of the most striking differences between the conditions on early Mars and earth was a low (18 mb) partial pressure of N2 (pN2) on early Mars, as opposed to 780 mb N2 on earth. To investigate the possibility of biological nitrogen fixation under conditions of early Mars, experiments were carried out on the growth of Azotobacter vinelandii and Azomonas agilis in nitrogen-free synthetic medium under various partial pressures of N2 (ranging from 780 to 0 mb). It was found that, although the biomass, cell number, and growth rate of these bacteria decreased with decreasing pN2 values below pN2 of 400 mb, both microorganisms were capable of growing at pN2 as low as 5 mb (but not at of below 1 mb), indicating that biological fixation of nitrogen could have occurred on primordial Mars.

  4. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  5. Contamination of liquid oxygen by pressurized gaseous nitrogen

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; King, Tracy K.; Ngo, Kim Chi

    1989-01-01

    The penetration of pressurized gaseous nitrogen (GN2) into liquid oxygen (LOX) was investigated experimentally in the 7-inch High Temperature Tunnel, the pilot tunnel for the 8-foot High Temperature Tunnel (8'HTT) at Langley Research Center. A preliminary test using a nuclear monitor revealed the extent of the liquid nitrogen (LN2) build-up at the LOX interface as a function of GN2 pressure. Then an adaptation of the differential flash vaporization technique was used to determine the binary diffusivity of the LOX-LN2 system at a temperature of 90.2 K. The measured value D equals 0.000086 sq cm/s + or - 25 percent together with two prior measurements at lower temperatures revealed an excellent fit to the Arrhenius equation, yielding a pre-exponential factor D sub 0 equals 0.0452 sq cm/s and an activation enthalpy H equals 1.08 kcal/mol. At a pressure of 1700 psi and holding time of 15 min, the penetration of LN2 into LOX (to a 1 percent contamination level) was found to be 0.9 cm, indicating but minimal impact upon 8'HTT operations.

  6. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects

    NASA Astrophysics Data System (ADS)

    Lu, X.; Naidis, G. V.; Laroussi, M.; Reuter, S.; Graves, D. B.; Ostrikov, K.

    2016-05-01

    Non-equilibrium atmospheric-pressure plasmas have recently become a topical area of research owing to their diverse applications in health care and medicine, environmental remediation and pollution control, materials processing, electrochemistry, nanotechnology and other fields. This review focuses on the reactive electrons and ionic, atomic, molecular, and radical species that are produced in these plasmas and then transported from the point of generation to the point of interaction with the material, medium, living cells or tissues being processed. The most important mechanisms of generation and transport of the key species in the plasmas of atmospheric-pressure plasma jets and other non-equilibrium atmospheric-pressure plasmas are introduced and examined from the viewpoint of their applications in plasma hygiene and medicine and other relevant fields. Sophisticated high-precision, time-resolved plasma diagnostics approaches and techniques are presented and their applications to monitor the reactive species and plasma dynamics in the plasma jets and other discharges, both in the gas phase and during the plasma interaction with liquid media, are critically reviewed. The large amount of experimental data is supported by the theoretical models of reactive species generation and transport in the plasmas, surrounding gaseous environments, and plasma interaction with liquid media. These models are presented and their limitations are discussed. Special attention is paid to biological effects of the plasma-generated reactive oxygen and nitrogen (and some other) species in basic biological processes such as cell metabolism, proliferation, survival, etc. as well as plasma applications in bacterial inactivation, wound healing, cancer treatment and some others. Challenges and opportunities for theoretical and experimental research are discussed and the authors' vision for the emerging convergence trends across several disciplines and application domains is presented to

  7. Designing Extraterrestrial Plant Growth Habitats With Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2001-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  8. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  9. Atmospheric pressure and suicide attempts in Helsinki, Finland

    NASA Astrophysics Data System (ADS)

    Hiltunen, Laura; Ruuhela, Reija; Ostamo, Aini; Lönnqvist, Jouko; Suominen, Kirsi; Partonen, Timo

    2012-11-01

    The influence of weather on mood and mental health is commonly debated. Furthermore, studies concerning weather and suicidal behavior have given inconsistent results. Our aim was to see if daily weather changes associate with the number of suicide attempts in Finland. All suicide attempts treated in the hospitals in Helsinki, Finland, during two separate periods, 8 years apart, were included. Altogether, 3,945 suicide attempts were compared with daily weather parameters and analyzed with a Poisson regression. We found that daily atmospheric pressure correlated statistically significantly with the number of suicide attempts, and for men the correlation was negative. Taking into account the seasonal normal value during the period 1971-2000, daily temperature, global solar radiation and precipitation did not associate with the number of suicide attempts on a statistically significant level in our study. We concluded that daily atmospheric pressure may have an impact on suicidal behavior, especially on suicide attempts of men by violent methods ( P < 0.001), and may explain the clustering of suicide attempts. Men seem to be more vulnerable to attempt suicide under low atmospheric pressure and women under high atmospheric pressure. We show only statistical correlations, which leaves the exact mechanisms of interaction between weather and suicidal behavior open. However, suicidal behavior should be assessed from the point of view of weather in addition to psychiatric and social aspects.

  10. Development of a Dew-Point Generator for Gases Other than Air and Nitrogen and Pressures up to 6 MPa

    NASA Astrophysics Data System (ADS)

    Bosma, R.; Peruzzi, A.

    2012-09-01

    A new primary humidity standard is currently being developed at VSL that, in addition to ordinary operation with air and nitrogen at atmospheric pressure, can be operated also with special carrier gases such as natural gas and SF6 and at pressures up to 6 MPa. In this paper, the design and construction of this new primary dew-point generator and the preliminary tests performed on the generator are reported. The results of the first efficiency tests, performed for the dew-point temperature range from -50 °C to 20°C, for pressures up to 0.7MPa and for carrier gas flow rates up to 4L· min-1, showed satisfactory generator performance when used in the single-pass mode, i.e., with no recirculation of the carrier gas.

  11. CooLN2Car: An Experimental Car Which Uses Liquid Nitrogen as Its Fuel

    NASA Astrophysics Data System (ADS)

    Parker, M. E.; Plummer, M. C.; Ordonez, C. A.

    1997-10-01

    A ``cryogenic" heat engine which operates using the atmosphere as a heat source and a cryogenic medium as a heat sink has been incorporated as the power system for an automobile. A 1973 Volkswagen Beetle has been converted and uses liquid nitrogen as its ``fuel." A Dewar was mounted in the car and provides nitrogen under pressure to two heat exchangers connected in parallel which use atmospheric heat to heat the nitrogen. The heat exchangers deliver compressed nitrogen gas to a vane-type pneumatic motor mounted in place of the original gasoline engine. Pressure in the tank is maintained internally at 1.2 MPa and is reduced to 0.7 MPa before the motor by a pressure regulator. A throttle, composed of a butterfly valve, is mounted between the regulator and the motor and is connected to the driver's accelerator peddle. The vehicle has good acceleration, a maximum range of 15 miles, and a maximum speed of 25 mph. A demonstration with the vehicle is planned.

  12. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth

    NASA Astrophysics Data System (ADS)

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; (Ken) Ostrikov, Kostya

    2016-09-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.

  13. Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth.

    PubMed

    Zhou, Renwu; Zhou, Rusen; Zhang, Xianhui; Zhuang, Jinxing; Yang, Size; Bazaka, Kateryna; Ken Ostrikov, Kostya

    2016-09-01

    Atmospheric-pressure N2, He, air, and O2 microplasma arrays have been used to investigate the effects of plasma treatment on seed germination and seedling growth of mung bean in aqueous solution. Seed germination and growth of mung bean were found to strongly depend on the feed gases used to generate plasma and plasma treatment time. Compared to the treatment with atmospheric-pressure O2, N2 and He microplasma arrays, treatment with air microplasma arrays was shown to be more efficient in improving both the seed germination rate and seedling growth, the effect attributed to solution acidification and interactions with plasma-generated reactive oxygen and nitrogen species. Acidic environment caused by air discharge in water may promote leathering of seed chaps, thus enhancing the germination rate of mung bean, and stimulating the growth of hypocotyl and radicle. The interactions between plasma-generated reactive species, such as hydrogen peroxide (H2O2) and nitrogen compounds, and seeds led to a significant acceleration of seed germination and an increase in seedling length of mung bean. Electrolyte leakage rate of mung bean seeds soaked in solution activated using air microplasma was the lowest, while the catalase activity of thus-treated mung bean seeds was the highest compared to other types of microplasma.

  14. Atmospheric Photochemistry

    NASA Technical Reports Server (NTRS)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  15. Atmospheric-pressure guided streamers for liposomal membrane disruption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterizationmore » including gas temperature calculation.« less

  16. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  17. Investigation and control of the {{\\rm{O}}}_{3}- to {NO}-transition in a novel sub-atmospheric pressure dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Bansemer, Robert; Schmidt-Bleker, Ansgar; van Rienen, Ursula; Weltmann, Klaus-Dieter

    2017-06-01

    A novel flow-driven dielectric barrier discharge concept is presented, which uses a Venturi pump to transfer plasma-generated reactive oxygen and nitrogen species from a sub-atmospheric pressure (200{--}600 {mbar}) discharge region to ambient pressure and can be operated with air. By adjusting the working pressure of the device, the plasma chemistry can be tuned continuously from an ozone ({{{O}}}3)-dominated mode to a nitrogen oxides ({{NO}}x)-only mode. The plasma source is characterized focusing on the mechanisms effecting this mode change. The composition of the device’s output gas was determined using Fourier-transform infrared spectroscopy. The results are correlated to measurements of discharge chamber pressure and temperature as well as of input power. It is found that the mode-change temperature can be controlled by the discharge chamber pressure. The source concept is capable of generating an {{NO}}x-dominated plasma chemistry at gas temperatures distinctly below 400 {{K}}. Through mixing of the processed gas stream with a second flow of pressurized air required for the operation of the Venturi pump, the resulting product gas stream remains close to room temperature. A reduced zero-dimensional reaction kinetics model with only seven reactions is capable of describing the observed pressure- and temperature-dependence of the {{{O}}}3 to {{NO}}x mode-change.

  18. The Protonation Site of para-Dimethylaminobenzoic Acid Using Atmospheric Pressure Ionization Methods

    NASA Astrophysics Data System (ADS)

    Chai, Yunfeng; Weng, Guofeng; Shen, Shanshan; Sun, Cuirong; Pan, Yuanjiang

    2015-04-01

    The protonation site of para-dimethylaminobenzoic acid ( p-DMABA) was investigated using atmospheric pressure ionization methods (ESI and APCI) coupled with collision-induced dissociation (CID), nuclear magnetic resonance (NMR), and computational chemistry. Theoretical calculations and NMR experiments indicate that the dimethyl amino group is the preferred site of protonation both in the gas phase and aqueous solution. Protonation of p-DMABA occurs at the nitrogen atom by ESI independent of the solvents and other operation conditions under typical thermodynamic control. However, APCI produces a mixture of the nitrogen- and carbonyl oxygen-protonated p-DMABA when aprotic organic solvents (acetonitrile, acetone, and tetrahydrofuran) are used, exhibiting evident kinetic characteristics of protonation. But using protic organic solvents (methanol, ethanol, and isopropanol) in APCI still leads to the formation of thermodynamically stable N-protonated p-DMABA. These structural assignments were based on the different CID behavior of the N- and O-protonated p-DMABA. The losses of methyl radical and water are the diagnostic fragmentations of the N- and O-protonated p-DMABA, respectively. In addition, the N-protonated p-DMABA is more stable than the O-protonated p-DMABA in CID revealed by energy resolved experiments and theoretical calculations.

  19. NOx formation in apokamp-type atmospheric pressure plasma jets in air initiated by a pulse-repetitive discharge

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Didenko, Maria V.; Panarin, Victor A.; Skakun, Victor S.; Tarasenko, Victor F.; Liu, Dongping P.; Song, Ying

    2018-04-01

    The decomposition products of atmospheric pressure plasma of repetitive pulsed discharge in apokamp and corona modes were determined by optical and chemical methods. It is shown, that the decomposition products contain mainly nitrogen oxides NOx. A brief review of the plasma- and thermochemical reactions in the pulsed discharges was made. The review and experimental data allow us to explain the reactive oxygen species formation mechanisms in a potential discharge channel with apokamp. The possible applications of this plasma source for treatment of seeds of agricultural crops are discussed.

  20. DC-pulse atmospheric-pressure plasma jet and dielectric barrier discharge surface treatments on fluorine-doped tin oxide for perovskite solar cell application

    NASA Astrophysics Data System (ADS)

    Tsai, Jui-Hsuan; Cheng, I.-Chun; Hsu, Cheng-Che; Chen, Jian-Zhang

    2018-01-01

    Nitrogen DC-pulse atmospheric-pressure plasma jet (APPJ) and nitrogen dielectric barrier discharge (DBD) were applied to pre-treat fluorine-doped tin oxide (FTO) glass substrates for perovskite solar cells (PSCs). Nitrogen DC-pulse APPJ treatment (substrate temperature: ~400 °C) for 10 s can effectively increase the wettability, whereas nitrogen DBD treatment (maximum substrate temperature: ~140 °C) achieved limited improvement in wettability even with increased treatment time of 60 s. XPS results indicate that 10 s APPJ, 60 s DBD, and 15 min UV-ozone treatment of FTO glass substrates can decontaminate the surface. A PSC fabricated on APPJ-treated FTO showed the highest power conversion efficiency (PCE) of 14.90%; by contrast, a PSC with nitrogen DBD-treated FTO shows slightly lower PCE of 12.57% which was comparable to that of a PSC on FTO treated by a 15 min UV-ozone process. Both nitrogen DC-pulse APPJ and nitrogen DBD can decontaminate FTO substrates and can be applied for the substrate cleaning step of PSC.

  1. Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposition

    EPA Science Inventory

    Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we p...

  2. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism

    NASA Astrophysics Data System (ADS)

    Murukesan, Gayathri; Leino, Hannu; Mäenpää, Pirkko; Ståhle, Kurt; Raksajit, Wuttinun; Lehto, Harry J.; Allahverdiyeva-Rinne, Yagut; Lehto, Kirsi

    2016-03-01

    Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.

  3. Supercritical fluid chromatography coupled with in-source atmospheric pressure ionization hydrogen/deuterium exchange mass spectrometry for compound speciation.

    PubMed

    Cho, Yunju; Choi, Man-Ho; Kim, Byungjoo; Kim, Sunghwan

    2016-04-29

    An experimental setup for the speciation of compounds by hydrogen/deuterium exchange (HDX) with atmospheric pressure ionization while performing chromatographic separation is presented. The proposed experimental setup combines the high performance supercritical fluid chromatography (SFC) system that can be readily used as an inlet for mass spectrometry (MS) and atmospheric pressure photo ionization (APPI) or atmospheric pressure chemical ionization (APCI) HDX. This combination overcomes the limitation of an approach using conventional liquid chromatography (LC) by minimizing the amount of deuterium solvents used for separation. In the SFC separation, supercritical CO2 was used as a major component of the mobile phase, and methanol was used as a minor co-solvent. By using deuterated methanol (CH3OD), AP HDX was achieved during SFC separation. To prove the concept, thirty one nitrogen- and/or oxygen-containing standard compounds were analyzed by SFC-AP HDX MS. The compounds were successfully speciated from the obtained SFC-MS spectra. The exchange ions were observed with as low as 1% of CH3OD in the mobile phase, and separation could be performed within approximately 20min using approximately 0.24 mL of CH3OD. The results showed that SFC separation and APPI/APCI HDX could be successfully performed using the suggested method. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Pulsed, atmospheric pressure plasma source for emission spectrometry

    DOEpatents

    Duan, Yixiang; Jin, Zhe; Su, Yongxuan

    2004-05-11

    A low-power, plasma source-based, portable molecular light emission generator/detector employing an atmospheric pressure pulsed-plasma for molecular fragmentation and excitation is described. The average power required for the operation of the plasma is between 0.02 W and 5 W. The features of the optical emission spectra obtained with the pulsed plasma source are significantly different from those obtained with direct current (dc) discharge higher power; for example, strong CH emission at 431.2 nm which is only weakly observed with dc plasma sources was observed, and the intense CN emission observed at 383-388 nm using dc plasma sources was weak in most cases. Strong CN emission was only observed using the present apparatus when compounds containing nitrogen, such as aniline were employed as samples. The present apparatus detects dimethylsulfoxide at 200 ppb using helium as the plasma gas by observing the emission band of the CH radical. When coupled with a gas chromatograph for separating components present in a sample to be analyzed, the present invention provides an apparatus for detecting the arrival of a particular component in the sample at the end of the chromatographic column and the identity thereof.

  5. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    NASA Astrophysics Data System (ADS)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  6. The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao

    2018-05-01

    In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.

  7. Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Park, Jinsung; Cheong, Byoung-Ho; Jeon, Sanghun

    2018-02-01

    The effect of high-pressure nitrogen annealing at up to 50 atmospheres (atm) on Hf0.5Zr0.5O2 films at relatively low temperatures (450 °C) is analyzed using polarization-electric field curves, bipolar switching endurance measurements, grazing angle incidence X-ray diffraction, and piezoelectric force microscopy. Hf0.5Zr0.5O2 films annealed at 450 °C/50 atm have excellent characteristics, including remanent polarizations greater than 20 μC/cm2, a switching speed of 200 ns, and reliability, measured by sustained performance after 1010 bipolar switching cycles. The enhanced device features are attributed to the transition to the orthorhombic-phase from the tetragonal-phase of Hf0.5Zr0.5O2 at high pressure, which is also consistent with the results of "wake-up" analysis, and the variations of the pure polarization curves, extracted from the total displacement field under pressure.

  8. Propagation of sound through the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Meredith, R. W.; Becher, J.

    1983-01-01

    The data collected at a pressure of one atmosphere for the different temperatures and relative humidities of the air-water vapor mixtures is summarized. The dew point hygrometer used in these measurements did not give reliable results for dew points much above the ambient room temperature. For this reason measurements were not attempted at the higher temperatures and humidities. Viscous wall losses in the resonant tube at 0 C so dominate the molecular relaxation of nitrogen, in the air-water vapor mixture, that reliable data could not be obtained using the free decay method in a resonant tube at one atmosphere. In an effort to obtain viable data at these temperatures, measurements were performed at a pressure of 10 atmospheres. Since the molecular relaxation peak is proportional to the pressure and the viscous losses are proportional to the inverse square root of the pressure the peak height should be measurable at the higher pressure. The tradeoff here is that at 10 atmospheres; the highest relative humidity attainable is 10 percent. The data collected at 10 atmospheres is also summarized.

  9. 3D Mapping of plasma effective areas via detection of cancer cell damage induced by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia

    2014-12-01

    In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.

  10. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  11. Study of the design and efficiency of single stage EHD thrusters at the sub-atmospheric pressure of 1.3 kPa

    NASA Astrophysics Data System (ADS)

    Granados, Victor H.; Pinheiro, Mario J.; Sá, Paulo A.

    2017-12-01

    The goal of this article is to contribute to the advancement and the improvement of the performances of electrohydrodynamic (EHD) propulsion systems for space missions, especially in what concerns the control of the geometries of the electrodes and the employed gas and its efficiency. We use a previously developed self-consistent model to compare and study the performance of these systems using three different working gases (argon, nitrogen, and oxygen) in terms of net thrust production and thrust-to-power efficiency of single-stage EHD thrusters. In order to verify the dependency of those physical parameters on the configuration and orientation of the electrodes, we conduct systematic simulations of three thruster cathode configurations (conical, cylindrical, and funnel-like). In the present study, the working pressure is ≈1.3 kPa (10 Torr), well below the normal atmospheric pressure, and the gas temperature is 300 K. A similar systematic investigation was conducted in a recent paper at a relatively much lower pressure of 0.5 Torr (20 times less) for the same cathode duct geometries and working gases, which permit to compare the performances of the considered thrusters and gases at these two pressures; then and now, the distance between the electrodes is fixed at 28 mm, but in addition to the pressure, other parameters were modified. Thus, the input voltage is fixed at 3 kV, and the resistance of the ballast varies in the range of 500-5000 MΩ. Nitrogen gas performed better than argon for all proposed geometries, doubling the produced thrust while presenting higher T/P ratios in almost all cases. Oxygen presented significantly better performance than nitrogen's and argon's, e.g., funnel like cathode configuration presented a net thrust higher than 0.1 mN, about one order of magnitude higher than nitrogen's.

  12. Evaluation of a catalytic reduction technique for the measurement of total reactive odd-nitrogen NOy in the atmosphere

    NASA Technical Reports Server (NTRS)

    Fahey, D. W.; Eubank, C. S.; Hubler, C. S.; Fehsenfeld, F. C.

    1985-01-01

    The suitability of a technique for the measurement of total reactive odd-nitrogen NOy-containing species in the atmosphere has been examined. In the technique, an NOy component species, which may include NO, NO2, NO3, HNO3, peroxyacetyl nitrate, and particulate nitrate, are catalytically reduced by CO to form NO molecules on the surface of a metal converter tube, and the NO product is detected by chemiluminescence produced in reaction with O3. Among the catalysts tested in the temperature range of 25-500 C, Au was the preferred catalyst. The results of laboratory tests investigating the effects of pressure, O3, and H2O on NOy conversion, and the possible sources of interference, have shown that the technique is suitable for atmospheric analyses. The results of a test in ambient air at a remote ground-based field site are included.

  13. TRANC - a novel fast-response converter to measure total reactive atmospheric nitrogen

    NASA Astrophysics Data System (ADS)

    Marx, O.; Brümmer, C.; Ammann, C.; Wolff, V.; Freibauer, A.

    2012-05-01

    The input and loss of plant available nitrogen (reactive nitrogen: Nr) from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter), which offers the opportunity to quantify the sum of all airborne reactive nitrogen compounds (∑Nr) in high time resolution. The basic concept of the TRANC is the full conversion of all Nr to nitrogen monoxide (NO) within two reaction steps. Initially, reduced Nr compounds are being oxidised, and oxidised Nr compounds are thermally converted to lower oxidation states. Particulate Nr is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher nitrogen oxides or those generated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD) for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3-, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in ∑Nr concentrations and also matches the sum of all individual Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal and catalytic

  14. [Spectroscopic diagnostics of DC argon plasma at atmospheric pressure].

    PubMed

    Tu, Xin; Lu, Sheng-yong; Yan, Jian-hua; Ma, Zeng-yi; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno

    2006-10-01

    The optical emission spectra of DC argon plasma at atmospheric pressure were measured inside and outside the arc chamber. The electron temperature was determined from the Boltzmann plot, and the electron density was derived from Stark broadening of Ar I lines. The criteria for the existence of local thermodynamic equilibrium (LTE)in the plasma was discussed. The results indicate that the DC argon plasma at atmospheric pressure under our experimental conditions is in LTE.

  15. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds.

    PubMed

    Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten

    2014-03-01

    We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.

  16. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA

    Treesearch

    Linda H. Geiser; Sarah E. Jovan; Doug A. Glavich; Matthew K. Porter

    2010-01-01

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry,...

  17. The impact of relative humidity and atmospheric pressure on mortality in Guangzhou, China.

    PubMed

    Ou, Chun Quan; Yang, Jun; Ou, Qiao Qun; Liu, Hua Zhang; Lin, Guo Zhen; Chen, Ping Yan; Qian, Jun; Guo, Yu Ming

    2014-12-01

    Although many studies have examined the effects of ambient temperatures on mortality, little evidence is on health impacts of atmospheric pressure and relative humidity. This study aimed to assess the impacts of atmospheric pressure and relative humidity on mortality in Guangzhou, China. This study included 213,737 registered deaths during 2003-2011 in Guangzhou, China. A quasi-Poisson regression with a distributed lag non-linear model was used to assess the effects of atmospheric pressure/relative humidity. We found significant effect of low atmospheric pressure/relative humidity on mortality. There was a 1.79% (95% confidence interval: 0.38%-3.22%) increase in non-accidental mortality and a 2.27% (0.07%-4.51%) increase in cardiovascular mortality comparing the 5th and 25th percentile of atmospheric pressure. A 3.97% (0.67%-7.39%) increase in cardiovascular mortality was also observed comparing the 5th and 25th percentile of relative humidity. Women were more vulnerable to decrease in atmospheric pressure and relative humidity than men. Age and education attainment were also potential effect modifiers. Furthermore, low atmospheric pressure and relative humidity increased temperature-related mortality. Both low atmospheric pressure and relative humidity are important risk factors of mortality. Our findings would be helpful to develop health risk assessment and climate policy interventions that would better protect vulnerable subgroups of the population. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  18. On the permanent hip-stabilizing effect of atmospheric pressure.

    PubMed

    Prietzel, Torsten; Hammer, Niels; Schleifenbaum, Stefan; Kaßebaum, Eric; Farag, Mohamed; von Salis-Soglio, Georg

    2014-08-22

    Hip joint dislocations related to total hip arthroplasty (THA) are a common complication especially in the early postoperative course. The surgical approach, the alignment of the prosthetic components, the range of motion and the muscle tone are known factors influencing the risk of dislocation. A further factor that is discussed until today is atmospheric pressure which is not taken into account in the present THA concepts. The aim of this study was to investigate the impact of atmospheric pressure on hip joint stability. Five joint models (Ø 28-44 mm), consisting of THA components were hermetically sealed with a rubber capsule, filled with a defined amount of fluid and exposed to varying ambient pressure. Displacement and pressure sensors were used to record the extent of dislocation related to intraarticular and ambient pressure. In 200 experiments spontaneous dislocations of the different sized joint models were reliably observed once the ambient pressure was lower than 6.0 kPa. Increasing the ambient pressure above 6.0 kPa immediately and persistently reduced the joint models until the ambient pressure was lowered again. Displacement always exceeded half the diameter of the joint model and was independent of gravity effects. This experimental study gives strong evidence that the hip joint is permanently stabilized by atmospheric pressure, confirming the theories of Weber and Weber (1836). On basis of these findings the use of larger prosthetic heads, capsular repair and the deployment of an intracapsular Redon drain are proposed to substantially decrease the risk of dislocation after THA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Is atmospheric pressure change an Independent risk factor for hemoptysis?

    PubMed

    Araz, Omer; Ucar, Elif Yilmazel; Akgun, Metin; Aydin, Yener; Meral, Mehmet; Saglam, Leyla; Kaynar, Hasan; Gorguner, Ali Metin

    2014-05-01

    Hemoptysis is one of the most important and challenging symptoms in pulmonary medicine. Because of the increased number of patients with hemoptysis in certain periods of the year, we aimed to investigate whether atmospheric changes have an effect on the development of hemoptysis with or without a secondary cause. The data of patients presenting with hemoptysis between January 2006 and December 2011 were analyzed. Data on the daily atmospheric pressure (hectopascal, hPa), relative humidity (%), and temperature ((o) C) during that time were obtained. A total of 232 patients with hemoptysis, 145 male (62.5%) and 87 female (37.5%) with an average age of 48.1(±17.6), were admitted to our hospital between 2006 and 2011. The highest admission rates were in the spring season, the highest in May (n=37, 15.9%), and the lowest admission rates were in December (n=10, 4.3%). A statistically significant negative correlation was found between the number of hemoptysis cases and mean atmospheric pressure but no relative humidity or outdoor temperature. Hemoptysis is very much influenced by weather factors; in particular, low atmospheric pressures significantly affect the development of hemoptysis. Fluctuations in atmospheric pressure may also play a role in hemoptysis.

  20. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    NASA Astrophysics Data System (ADS)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  1. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): review.

    PubMed

    Li, Du-Xin; Gan, Lin; Bronja, Amela; Schmitz, Oliver J

    2015-09-03

    Although the coupling of GC/MS with atmospheric pressure ionization (API) has been reported in 1970s, the interest in coupling GC with atmospheric pressure ion source was expanded in the last decade. The demand of a "soft" ion source for preserving highly diagnostic molecular ion is desirable, as compared to the "hard" ionization technique such as electron ionization (EI) in traditional GC/MS, which fragments the molecule in an extensive way. These API sources include atmospheric pressure chemical ionization (APCI), atmospheric pressure photoionization (APPI), atmospheric pressure laser ionization (APLI), electrospray ionization (ESI) and low temperature plasma (LTP). This review discusses the advantages and drawbacks of this analytical platform. After an introduction in atmospheric pressure ionization the review gives an overview about the history and explains the mechanisms of various atmospheric pressure ionization techniques used in combination with GC such as APCI, APPI, APLI, ESI and LTP. Also new developments made in ion source geometry, ion source miniaturization and multipurpose ion source constructions are discussed and a comparison between GC-FID, GC-EI-MS and GC-API-MS shows the advantages and drawbacks of these techniques. The review ends with an overview of applications realized with GC-API-MS. Copyright © 2015. Published by Elsevier B.V.

  2. Sources and sinks of atmospheric N2O and the possible ozone reduction due to industrial fixed nitrogen fertilizers

    NASA Technical Reports Server (NTRS)

    Liu, S. C.; Cicerone, R. J.; Donahue, T. M.; Chameides, W. L.

    1977-01-01

    The terrestrial and marine nitrogen cycles are examined in an attempt to clarify how the atmospheric content of N2O is controlled. We review available data on the various reservoirs of fixed nitrogen, the transfer rates between the reservoirs, and estimate how the reservoir contents and transfer rates can change under man's influence. It is seen that sources, sinks and lifetime of atmospheric N2O are not understood well. Based on our limited knowledge of the stability of atmospheric N2O we conclude that future growth in the usage of industrial fixed nitrogen fertilizers could cause a 1% to 2% global ozone reduction in the next 50 years. However, centuries from now the ozone layer could be reduced by as much as 10% if soils are the major source of atmospheric N2O.

  3. 143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    143. MOBILE HIGH PRESSURE NITROGEN CART STORED IN CONTROL ROOM (214), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  4. Atmospheric air pollutants: CO in Nitrogen, 5 μmol/mol

    NASA Astrophysics Data System (ADS)

    Konopelko, L. A.; Pankratov, V. V.; Pankov, A. A.; Ivahnenko, B. V.; Efremova, O. V.; Bakovec, N. V.; Mironchik, A. M.; Aleksandrov, V. V.

    2017-01-01

    This article presents the report on the COOMET supplementary comparison "Atmospheric air pollutants: CO in Nitrogen, 5 μmol/mol". Carbon monoxide (CO) is present in atmosphere due to different natural and anthropogenic sources. CO is a toxic gas and in concentrations higher than (3-5) μmol/mol it is hazardous to human health. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  5. Atmospheric pressure ionization-tandem mass spectrometry of the phenicol drug family.

    PubMed

    Alechaga, Élida; Moyano, Encarnación; Galceran, M Teresa

    2013-11-01

    In this work, the mass spectrometry behaviour of the veterinary drug family of phenicols, including chloramphenicol (CAP) and its related compounds thiamphenicol (TAP), florfenicol (FF) and FF amine (FFA), was studied. Several atmospheric pressure ionization sources, electrospray (ESI), atmospheric pressure chemical ionization and atmospheric pressure photoionization were compared. In all atmospheric pressure ionization sources, CAP, TAP and FF were ionized in both positive and negative modes; while for the metabolite FFA, only positive ionization was possible. In general, in positive mode, [M + H](+) dominated the mass spectrum for FFA, while the other compounds, CAP, TAP and FF, with lower proton affinity showed intense adducts with species present in the mobile phase. In negative mode, ESI and atmospheric pressure photoionization showed the deprotonated molecule [M-H](-), while atmospheric pressure chemical ionization provided the radical molecular ion by electron capture. All these ions were characterized by tandem mass spectrometry using the combined information obtained by multistage mass spectrometry and high-resolution mass spectrometry in a quadrupole-Orbitrap instrument. In general, the fragmentation occurred via cyclization and losses or fragmentation of the N-(alkyl)acetamide group, and common fragmentation pathways were established for this family of compounds. A new chemical structure for the product ion at m/z 257 for CAP, on the basis of the MS(3) and MS(4) spectra is proposed. Thermally assisted ESI and selected reaction monitoring are proposed for the determination of these compounds by ultra high-performance liquid chromatography coupled to tandem mass spectrometry, achieving instrumental detection limits down to 0.1 pg. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Plant adaptation to low atmospheric pressures: potential molecular responses

    NASA Technical Reports Server (NTRS)

    Ferl, Robert J.; Schuerger, Andrew C.; Paul, Anna-Lisa; Gurley, William B.; Corey, Kenneth; Bucklin, Ray

    2002-01-01

    There is an increasing realization that it may be impossible to attain Earth normal atmospheric pressures in orbital, lunar, or Martian greenhouses, simply because the construction materials do not exist to meet the extraordinary constraints imposed by balancing high engineering requirements against high lift costs. This equation essentially dictates that NASA have in place the capability to grow plants at reduced atmospheric pressure. Yet current understanding of plant growth at low pressures is limited to just a few experiments and relatively rudimentary assessments of plant vigor and growth. The tools now exist, however, to make rapid progress toward understanding the fundamental nature of plant responses and adaptations to low pressures, and to develop strategies for mitigating detrimental effects by engineering the growth conditions or by engineering the plants themselves. The genomes of rice and the model plant Arabidopsis thaliana have recently been sequenced in their entirety, and public sector and commercial DNA chips are becoming available such that thousands of genes can be assayed at once. A fundamental understanding of plant responses and adaptation to low pressures can now be approached and translated into procedures and engineering considerations to enhance plant growth at low atmospheric pressures. In anticipation of such studies, we present here the background arguments supporting these contentions, as well as informed speculation about the kinds of molecular physiological responses that might be expected of plants in low-pressure environments.

  7. Nitrogen-Pressure Shifts in the v3 Band of Methane Measured at Several Temperatures between 300 and 90 K

    NASA Technical Reports Server (NTRS)

    Tumuhimbise, Anthony T.; Hurtmans, Daniel; Mantz, Arlan W.; Mondelain, Didier

    2008-01-01

    Remote sensing of the Earth's atmosphere requires accurate knowledge of spectroscopic line parameters for the molecules investigated. Knowledge of the temperature dependence of these parameters is also essential if agreement, at the noise level, between calculated and experimental data is to be achieved. The authors recently published results of nitrogen broadening measurements in the v3 band of 12CH4 using the 5.37 m long absorption path length all-copper Herriott cell. The temperature dependent line parameters determined in the laboratory were applied to fit a portion of the atmospheric spectrum recorded with a balloon-borne remote sensing FTIR instrument, called the Limb Profile Monitor of the Atmosphere, and operating in absorption against the sun. Since the authors had a relatively complete series of data for the P(9) transition in the v3 band of 12CH4, the A2 1 as well as the F2 1, F1 1 and A1 1 lines recorded at different pressures and at four temperatures between 300 and 90 K, we reanalyzed the data to derive pressure shift information at different temperatures. The temperatures for which data were collected and analyzed are 298, 140 and 90K. The high precision pressure shift data obtained here over a large range of temperature demonstrate the ability of our experimental arrangement to address specific questions on a given spectral window like in the balloon experiment or in a satellite project, for example.

  8. Atmospheric-pressure plasma decontamination/sterilization chamber

    DOEpatents

    Herrmann, Hans W.; Selwyn, Gary S.

    2001-01-01

    An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

  9. Martian Atmospheric Pressure Static Charge Elimination Tool

    NASA Technical Reports Server (NTRS)

    Johansen, Michael R.

    2014-01-01

    A Martian pressure static charge elimination tool is currently in development in the Electrostatics and Surface Physics Laboratory (ESPL) at NASA's Kennedy Space Center. In standard Earth atmosphere conditions, static charge can be neutralized from an insulating surface using air ionizers. These air ionizers generate ions through corona breakdown. The Martian atmosphere is 7 Torr of mostly carbon dioxide, which makes it inherently difficult to use similar methods as those used for standard atmosphere static elimination tools. An initial prototype has been developed to show feasibility of static charge elimination at low pressure, using corona discharge. A needle point and thin wire loop are used as the corona generating electrodes. A photo of the test apparatus is shown below. Positive and negative high voltage pulses are sent to the needle point. This creates positive and negative ions that can be used for static charge neutralization. In a preliminary test, a floating metal plate was charged to approximately 600 volts under Martian atmospheric conditions. The static elimination tool was enabled and the voltage on the metal plate dropped rapidly to -100 volts. This test data is displayed below. Optimization is necessary to improve the electrostatic balance of the static elimination tool.

  10. Mechanism of Runaway Electron Generation at Gas Pressures from a Few Atmospheres to Several Tens of Atmospheres

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Ivanov, S. N.

    2018-04-01

    The mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres is proposed. According to this mechanism, the electrons pass into the runaway mode in the enhanced field zone that arises between a cathode micropoint—a source of field-emission electrons—and the region of the positive ion space charge accumulated near the cathode in the tails of the developing electron avalanches. As a result, volume gas ionization by runaway electrons begins with a time delay required for the formation of the enhanced field zone. This process determines the delay time of breakdown. The influence of the gas pressure on the formation dynamics of the space charge region is analyzed. At gas pressures of a few atmospheres, the space charge arises due to the avalanche multiplication of the very first field-emission electron, whereas at pressures of several tens of atmospheres, the space charge forms as a result of superposition of many electron avalanches with a relatively small number of charge carriers in each.

  11. Electrode Configurations in Atmospheric Pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure plasma jets (APPJs) are being studied for emerging medical applications including cancer treatment and wound healing. APPJs typically consist of a dielectric tube through which a rare gas flows, sometimes with an O2 or H2O impurity. In this paper, we present results from a computational study of APPJs using nonPDPSIM, a 2-D plasma hydrodynamics model, with the goal of providing insights on how the placement of electrodes can influence the production of reactive species. Gas consisting of He/O2 = 99.5/0.5 is flowed through a capillary tube at 2 slpm into humid air, and a pulsed DC voltage is applied. An APPJ with two external ring electrodes will be compared with one having a powered electrode inside and a ground electrode on the outside. The consequences on ionization wave propagation and the production of reactive oxygen and nitrogen species (RONS) will be discussed. Changing the electrode configuration can concentrate the power deposition in volumes having different gas composition, resulting in different RONS production. An internal electrode can result in increased production of NOx and HNOx by increasing propagation of the ionization wave through the He dominated plume to outside of the tube where humid air is diffusing into the plume. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  12. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  13. New phase in solid nitrogen at high pressures

    NASA Astrophysics Data System (ADS)

    Grimsditch, M.

    1985-07-01

    A Brillouin scattering study of nitrogen up to pressures of 21 GPa shows a phase transition with pronounced hysteresis at 16.5 GPa. This phase transition is consistent with recent Raman measurements of Buchsbaum, Mills, and Schiferl [J. Phys. Chem. 88, 2522 (1984)] which could be interpreted as either a deformation of the lattice or the appearance of a new phase.

  14. New phase in solid nitrogen at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimsditch, M.

    1985-07-01

    A Brillouin scattering study of nitrogen up to pressures of 21 GPa shows a phase transition with pronounced hysteresis at 16.5 GPa. This phase transition is consistent with recent Raman measurements of Buchsbaum, Mills, and Schiferl (J. Phys. Chem. 88, 2522 (1984)) which could be interpreted as either a deformation of the lattice or the appearance of a new phase.

  15. Peptide Fragmentation Induced by Radicals at Atmospheric Pressure

    PubMed Central

    Vilkov, Andrey N.; Laiko, Victor V.; Doroshenko, Vladimir M.

    2009-01-01

    A novel ion dissociation technique, which is capable of providing an efficient fragmentation of peptides at essentially atmospheric pressure conditions, is developed. The fragmentation patterns observed often contain c-type fragments that are specific to ECD/ETD, along with the y-/b- fragments that are specific to CAD. In the presented experimental setup, ion fragmentation takes place within a flow reactor located in the atmospheric pressure region between the ion source and the mass spectrometer. According to a proposed mechanism, the fragmentation results from the interaction of ESI-generated analyte ions with the gas-phase radical species produced by a corona discharge source. PMID:19034885

  16. Operational characteristics of a liquid nitrogen powered automobile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitt, P.D.

    1998-08-04

    The University of Washington is studying a zero-emission vehicle concept, the cryogenic automobile. This propulsion concept uses a cryogenic liquid as its energy storage medium, and offers environmental and economic benefits over current alternative vehicles. The University of Washington is investigating the use of nitrogen, stored in liquid state, as the working fluid in an open Rankine cycle. The liquid nitrogen is first pressurized, then vaporized and superheated in an ambient air heat exchanger. The resulting high pressure gas is injected into an expander which produces the system`s motive work. The spent, low pressure gas is exhausted to the atmosphere.more » A test vehicle was assembled and is being used to learn about liquid nitrogen propulsion. The road performance of cryogenic automobiles was predicted using a mathematical model. The model can be modified for a variety of design choices and configurations. The performance of the test vehicle validates the heat exchanger concept and directs future efforts toward development of a better nitrogen expansion motor. This thesis describes the construction and operation of a liquid nitrogen powered automobile. Operational characteristics like road performance, maintenance, cost, and environmental impact are also explored.« less

  17. Accounting for the effect of temperature in clarifying the response of foliar nitrogen isotope ratios to atmospheric nitrogen deposition.

    PubMed

    Chen, Chongjuan; Li, Jiazhu; Wang, Guoan; Shi, Minrui

    2017-12-31

    Atmospheric nitrogen deposition affects nitrogen isotope composition (δ 15 N) in plants. However, both negative effect and positive effect have been reported. The effects of climate on plant δ 15 N have not been corrected for in previous studies, this has impeded discovery of a true effect of atmospheric N deposition on plant δ 15 N. To obtain a more reliable result, it is necessary to correct for the effects of climatic factors. Here, we measured δ 15 N and N contents of plants and soils in Baiwangshan and Mount Dongling, north China. Atmospheric N deposition in Baiwangshan was much higher than Mount Dongling. Generally, however, foliar N contents showed no difference between the two regions and foliar δ 15 N was significantly lower in Baiwangshan than Mount Dongling. The corrected foliar δ 15 N after accounting for a predicted value assumed to vary with temperature was obviously more negative in Baiwangshan than Mount Dongling. Thus, this suggested the necessity of temperature correction in revealing the effect of N deposition on foliar δ 15 N. Temperature, soil N sources and mycorrhizal fungi could not explain the difference in foliar δ 15 N between the two regions, this indicated that atmospheric N deposition had a negative effect on plant δ 15 N. Additionally, this study also showed that the corrected foliar δ 15 N of bulk data set increased with altitude above 1300m in Mount Dongling, this provided an another evidence for the conclusion that atmospheric N deposition could cause 15 N-depletion in plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Atmospheric Nitrogen Deposition and the Properties of Soils in Forests of Vologda Region

    NASA Astrophysics Data System (ADS)

    Kudrevatykh, I. Yu.; Ivashchenko, K. V.; Ananyeva, N. D.; Ivanishcheva, E. A.

    2018-02-01

    Twenty plots (20 m2 each) were selected in coniferous and mixed forests of the industrial Vologda district and the Vytegra district without developed industries in Vologda region. In March, snow cores corresponding to the snow cover depth were taken on these plots. In August, soil samples from the 0- to 20-cm layer of litter-free soddy-podzolic soil (Albic Retisol (Ochric)) were taken on the same plots in August. The content of mineral nitrogen (Nmin), including its ammonium (NH+ 4) and nitrate (NO- 3) forms, was determined in the snow (meltwater) and soil. The contents of total organic carbon, total nitrogen, and elements (Al, Ca); pH; particle size distribution; and microbiological parameters―carbon of microbial biomass (Cmic) and microbial respiration (MR)―were determined in the soil. The ratio MR/Cmic = qCO2 (specific respiration of microbial biomass, or soil microbial metabolic quotient) was calculated. The content of Nmic in meltwater of two districts was 1.7 mg/L on the average (1.5 and 0.3 mg/L for the NH+ 4 and NO- 3 forms, respectively). The annual atmospheric deposition was 0.6-8.9 kg Nmin/ha, the value of which in the Vologda district was higher than in the Vytegra district by 40%. Reliable correlations were found between atmospheric NH+ 4 depositions and Cmic (-0.45), between NH+ 4 and qCO2 (0.56), between atmospheric NO- 3 depositions and the soil NO- 3 (-0.45), and between NO- 3 and qCO2 (-0.58). The content of atmospheric Nmin depositions correlated with the ratios C/N (-0.46) and Al/Ca (-0.52) in the soil. In forests with the high input of atmospheric nitrogen (>2.0 kg NH+ 4/(ha yr) and >6.4 kg Nmin/(ha yr)), a tendency of decreasing Cmic, C/N, and Al/Ca, as well as increasing qCO2, was revealed, which could be indicative of deterioration in the functioning of microbial community and the chemical properties of the soil.

  19. Simulations of the general circulation of the Martian atmosphere. II - Seasonal pressure variations

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Haberle, Robert M.; Murphy, James R.; Schaeffer, James; Lee, Hilda

    1993-01-01

    The CO2 seasonal cycle of the Martian atmosphere and surface is simulated with a hybrid energy balance model that incorporates dynamical and radiation information from a large number of general circulation model runs. This information includes: heating due to atmospheric heat advection, the seasonally varying ratio of the surface pressure at the two Viking landing sites to the globally averaged pressure, the rate of CO2 condensation in the atmosphere, and solar heating of the atmosphere and surface. The predictions of the energy balance model are compared with the seasonal pressure variations measured at the two Viking landing sites and the springtime retreat of the seasonal polar cap boundaries. The following quantities are found to have a strong influence on the seasonal pressures at the Viking landing sites: albedo of the seasonal CO2 ice deposits, emissivity of this deposit, atmospheric heat advection, and the pressure ratio.

  20. 141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    141. NITROGEN SUPPLY PANEL PRESSURE REGULATOR IN NORTHWEST CORNER OF CONTROL ROOM (214), LSB (BLDG. 751), FACING WEST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  1. Reaction of Unalloyed and Cr-Mo Alloyed Steels with Nitrogen from the Sintering Atmosphere

    NASA Astrophysics Data System (ADS)

    Dlapka, Magdalena; Gierl-Mayer, Christian; Calderon, Raquel de Oro; Danninger, Herbert; Bengtsson, Sven; Dudrova, Eva

    2016-12-01

    Nitrogen is usually regarded as an inert sintering atmosphere for PM steels; however, this cannot be taken for granted in particular for steels alloyed with nitride forming elements. Among those elements, chromium has become more and more important as an alloying element in sintered low alloy structural steels in the last decade due to the moderate alloying cost and the excellent mechanical properties obtainable, in particular when sinter hardening is applied. The high affinity of Cr to oxygen and the possible ways to overcome related problems have been the subject of numerous studies, while the fact that chromium is also a fairly strong nitride forming element has largely been neglected at least for low alloy steel grades, although frequently used materials like steels from Cr and Cr-Mo prealloyed powders are commonly sintered in atmospheres consisting mainly of nitrogen. In the present study, nitrogen pickup during sintering at different temperatures and for varying times has been studied for Cr-Mo prealloyed steel grades as well as for unalloyed carbon steel. Also the effect of the cooling rate and its influence on the properties, of the microstructure and the composition have been investigated. It showed that the main nitrogen uptake occurs not during isothermal sintering but rather during cooling. It could be demonstrated that a critical temperature range exists within which the investigated CrM-based steel is particularly sensitive to nitrogen pickup.

  2. Changes in Pluto's Atmosphere Revealed by Occultations

    NASA Astrophysics Data System (ADS)

    Sicardy, Bruno; Widemann, Thomas; Lellouch, Emmanuel; Veillet, Christian; Colas, Francois; Roques, Francoise; Beisker, Wolfgang; Kretlow, Mike; Cuillandre, Jean-Charles; Hainaut, Olivier

    After the discovery and study of Pluto's tenuous atmosphere in 1985 and 1988 with stellar occultations 14 years were necessary before two other occultations by the planet could be observed on 20 July 2002 and 21 August 2002 from Northern Chile with a portable telescope and from CFHT in Hawaii respectively. These occultations reveal drastric changes in Pluto's nitrogen atmosphere whose pressure increased by a factor two or more since 1988. In spite of an increasing distance to the Sun (and a correlated decrease of solar energy input at Pluto) this increase can be explained by the fact that Pluto's south pole went from permanent darkness to permanent illumination between 1988 and 2002. This might cause the sublimation of the south polar cap and the increase of pressure which could go on till 2015 according to current nitrogen cycle models. Furthermore we detect temperature contrasts between the polar and the equatorial regions probed on Pluto possibly caused by different diurnally averaged insolations at those locations. Finally spikes observed in the light curves reveal a dynamical activity in Pluto's atmosphere.

  3. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review.

    PubMed

    Arjunan, Krishna Priya; Sharma, Virender K; Ptasinska, Sylwia

    2015-01-29

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.

  4. High Energy Cutting and Stripping Utilizing Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Hume, Howard; Noah, Donald E.; Hayes, Paul W.

    2005-01-01

    The Aerospace Industry has endeavored for decades to develop hybrid materials that withstand the rigors of mechanized flight both within our atmosphere and beyond. The development of these high performance materials has led to the need for environmentally friendly technologies for material re-work and removal. The NitroJet(TM) is a fluid jet technology that represents an evolution of the widely used, large-scale water jet fluid jet technology. It involves the amalgamation of fluid jet technology and cryogenics technology to create a new capability that is applicable where water jet or abrasive jet (water jet plus entrained abrasive) are not suitable or acceptable because of technical constraints such as process or materials compatibility, environmental concerns and aesthetic or legal requirements. The NitroJet(TM) uses ultra high-pressure nitrogen to cut materials, strip numerous types of coatings such as paint or powder coating, clean surfaces and profile metals. Liquid nitrogen (LN2) is used as the feed stream and is pressurized in two stages. The first stage pressurizes sub cooled LN2 to an intermediate pressure of between 15,000 and 20,000 psi at which point the temperature of the LN2 is about -250 F. The discharge from this stage is then introduced as feed to a dual intensifier system, which boosts the pressure from 15,000 - 20,000 psi up to the maximum operating pressure of 55,000 psi. A temperature of about -220 F is achieved at which point the nitrogen is supercritical. In this condition the nitrogen cuts, strips and abrades much like ultra high-pressure water would but without any residual liquid to collect, remove or be contaminated. Once the nitrogen has performed its function it harmlessly flashes back into the atmosphere as pure nitrogen gas. The system uses heat exchangers to control and modify the temperature of the various intake and discharge nitrogen streams. Since the system is hydraulically operated, discharge pressures can be easily varied over

  5. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    2013-07-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  6. Rapid Chemical Vapor Infiltration of Silicon Carbide Minicomposites at Atmospheric Pressure.

    PubMed

    Petroski, Kenneth; Poges, Shannon; Monteleone, Chris; Grady, Joseph; Bhatt, Ram; Suib, Steven L

    2018-02-07

    The chemical vapor infiltration technique is one of the most popular for the fabrication of the matrix portion of a ceramic matrix composite. This work focuses on tailoring an atmospheric pressure deposition of silicon carbide onto carbon fiber tows using the methyltrichlorosilane (CH 3 SiCl 3 ) and H 2 deposition system at atmospheric pressure to create minicomposites faster than low pressure systems. Adjustment of the flow rate of H 2 bubbled through CH 3 SiCl 3 will improve the uniformity of the deposition as well as infiltrate the substrate more completely as the flow rate is decreased. Low pressure depositions conducted at 50 Torr deposit SiC at a rate of approximately 200 nm*h -1 , while the atmospheric pressure system presented has a deposition rate ranging from 750 nm*h -1 to 3.88 μm*h -1 . The minicomposites fabricated in this study had approximate total porosities of 3 and 6% for 10 and 25 SCCM infiltrations, respectively.

  7. Atmospheric-Pressure Plasma Interaction with Soft Materials as Fundamental Processes in Plasma Medicine.

    PubMed

    Takenaka, Kosuke; Miyazaki, Atsushi; Uchida, Giichiro; Setsuhara, Yuichi

    2015-03-01

    Molecular-structure variation of organic materials irradiated with atmospheric pressure He plasma jet have been investigated. Optical emission spectrum in the atmospheric-pressure He plasma jet has been measured. The spectrum shows considerable emissions of He lines, and the emission of O and N radicals attributed to air. Variation in molecular structure of Polyethylene terephthalate (PET) film surface irradiated with the atmospheric-pressure He plasma jet has been observed via X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FT-IR). These results via XPS and FT-IR indicate that the PET surface irradiated with the atmospheric-pressure He plasma jet was oxidized by chemical and/or physical effect due to irradiation of active species.

  8. Tailoring non-equilibrium atmospheric pressure plasmas for healthcare technologies

    NASA Astrophysics Data System (ADS)

    Gans, Timo

    2012-10-01

    Non-equilibrium plasmas operated at ambient atmospheric pressure are very efficient sources for energy transport through reactive neutral particles (radicals and metastables), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. This includes the unique opportunity to deliver short-lived highly reactive species such as atomic oxygen and atomic nitrogen. Reactive oxygen and nitrogen species can initiate a wide range of reactions in biochemical systems, both therapeutic and toxic. The toxicological implications are not clear, e.g. potential risks through DNA damage. It is anticipated that interactions with biological systems will be governed through synergies between two or more species. Suitable optimized plasma sources are improbable through empirical investigations. Quantifying the power dissipation and energy transport mechanisms through the different interfaces from the plasma regime to ambient air, towards the liquid interface and associated impact on the biological system through a new regime of liquid chemistry initiated by the synergy of delivering multiple energy carrying species, is crucial. The major challenge to overcome the obstacles of quantifying energy transport and controlling power dissipation has been the severe lack of suitable plasma sources and diagnostic techniques. Diagnostics and simulations of this plasma regime are very challenging; the highly pronounced collision dominated plasma dynamics at very small dimensions requires extraordinary high resolution - simultaneously in space (microns) and time (picoseconds). Numerical simulations are equally challenging due to the inherent multi-scale character with very rapid electron collisions on the one extreme and the transport of chemically stable species characterizing completely different domains. This presentation will discuss our recent progress actively combining both advance optical diagnostics and multi-scale computer simulations.

  9. Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization

    NASA Astrophysics Data System (ADS)

    Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.

    1998-11-01

    We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.

  10. The Effects of Urbanization on Atmospheric Nitrogen Deposition and Nitrate Removal Capacity of Urban Wetlands

    NASA Astrophysics Data System (ADS)

    Stander, E. K.; Ehrenfeld, J. G.

    2006-12-01

    Wetlands are increasingly being used as management tools to combat the widespread problem of excess nitrogen in surface waters of the United States. This is particularly true in urban or urbanizing watersheds. However, due to hypothesized higher rates of atmospheric nitrogen deposition and altered hydrology in the urban context, urban wetlands may actually be acting as sources of nitrate to receiving bodies of water. Fourteen palustrine, forested wetlands in northeastern New Jersey, the most urban part of the state, were sampled for hydrology and rates of nitrogen cycling processes. One autowell in each site recorded water table measurements four times daily. In situ rates of net nitrogen mineralization and nitrification were measured monthly during the same time period using the static core technique. Denitrification rates were measured monthly in laboratory incubations using the acetylene block technique. Additionally, in nine of the 14 sites, which represent a gradient of urban intensity from very urban to less urban, we measured inorganic nitrogen in throughfall and leachate on a weekly basis. Throughfall collectors and lysimeters to 50cm depth were installed in three locations in each of the nine sites. Throughfall and leachate samples were analyzed for 15N and 18O isotopes to distinguish between atmospheric versus nitrification sources of nitrate in soil leachate. Hydrographs demonstrated that many sites have water table depths below 30 cm (i.e., below the biologically active zone) for long periods of time. Many wetlands display uncharacteristically flashy hydrographs. Wetlands with dry or flashy hydrographs had higher rates of nitrification and lower rates of denitrification than wetlands with more normal hydrology. Rates of atmospheric N deposition were higher in wetlands located in municipalities with higher population densities. Population density, however, was not a good predictor of nitrification or denitrification rates. Results from the isotopic

  11. A microwave pressure sounder. [for remote measurement of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Flower, D. A.

    1981-01-01

    A technique for the remote measurement of atmospheric surface pressure will be described. Such measurements could be made from a satellite in polar orbit and would cover many areas for which conventional meteorological data are not available. An active microwave instrument is used to measure the strength of return echoes from the ocean surface at a number of frequencies near the 60 GHz oxygen absorption band. Factors which affect the accuracy with which surface pressure can be deduced from these measurements will be discussed and an instrument designed to test the method by making measurements from an aircraft will be described.

  12. Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst.

    PubMed

    Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio; Mebrahtu, Chalachew; Su, Dangsheng; Centi, Gabriele

    2017-03-01

    Ammonia is synthesized directly from water and N 2 at room temperature and atmospheric pressure in a flow electrochemical cell operating in gas phase (half-cell for the NH 3 synthesis). Iron supported on carbon nanotubes (CNTs) was used as the electrocatalyst in this half-cell. A rate of ammonia formation of 2.2×10 -3  gNH3  m -2  h -1 was obtained at room temperature and atmospheric pressure in a flow of N 2 , with stable behavior for at least 60 h of reaction, under an applied potential of -2.0 V. This value is higher than the rate of ammonia formation obtained using noble metals (Ru/C) under comparable reaction conditions. Furthermore, hydrogen gas with a total Faraday efficiency as high as 95.1 % was obtained. Data also indicate that the active sites in NH 3 electrocatalytic synthesis may be associated to specific carbon sites formed at the interface between iron particles and CNT and able to activate N 2 , making it more reactive towards hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Wet deposition of atmospheric nitrogen in Jiulong River Watershed].

    PubMed

    Chen, Neng-Wang; Hong, Hua-Sheng; Zhang, Luo-Ping

    2008-01-01

    Spatio-temporal distributions and sources of atmospheric nitrogen (N) in precipitation were examined for Jiulong River Watershed (JRW), an agricultural-dominated watershed located in southeastern China with a drainage area of 1.47 x 10(4) km2. During 2004-2005, 847 rain samples were collected in seventeen sites and analyzed for ammonium N, nitrate N and dissolved total N (DTN) followed by filtration through 0.45 microm nucleopore membranes. Atmospheric N deposition flux was calculated using GIS interpolation technique (Universal Kriging method for precipitation, Inverse distance weighted technique for N) based on measured N value and precipitation data from eight weather stations located in the JRW. ArcView GIS 3.2 was used for surface analysis, interpolation and statistical work. It was found that mean DTN concentration in all sites ranged between 2.20 +/- 1.69 and 3.26 +/- 1.37 mg x L(-1). Ammonium, nitrate and dissolved organic N formed 39%, 25% and 36% of DTN, respectively. N concentration decreased with precipitation intensity as a result of dilution, and showed a significant difference between dry season and wet season. The low isotope value of nitrate delta 15N ranging between -7.48 per thousand and -0.27 per thousand (mean: -3.61 per thousand) indicated that the increasing agricultural and soil emissions together with fossil combustions contributed to atmospheric nitrate sources. The annual wet deposition of atmospheric N flux amounted to 9.9 kg x hm(-2), which accounts for 66% of total atmospheric N deposition flux (14.9 kg x hm(-2)). About 91% of wet atmospheric deposition occurred in spring and summer. The spatio-temporal variation of atmospheric N deposition indicated that intensive precipitation, higher ammonia volatilization from fertilizer application in the growing season, and livestock productions together provided the larger N source.

  14. Increasing anthropogenic nitrogen inputs and riverine DIN exports from the Changjiang River basin under changing human pressures

    NASA Astrophysics Data System (ADS)

    Yan, Weijin; Mayorga, Emilio; Li, Xinyan; Seitzinger, Sybil P.; Bouwman, A. F.

    2010-12-01

    In this paper, we estimate the inputs of nitrogen (N) and exports of dissolved inorganic nitrogen (DIN) from the Changjiang River to the estuary for the period 1970-2003, by using the global NEWS-DIN model. Modeled DIN yields range from 260 kg N km-2 yr-1 in 1970 to 895 kg N km-2 yr-1 in 2003, with an increasing trend. The study demonstrated a varied contribution of different N inputs to river DIN yields during the period 1970-2003. Chemical fertilizer and manure together contributed about half of the river DIN yields, while atmospheric N deposition contributed an average of 21% of DIN yields in the period 1970-2003. Biological N fixation contributed 40% of DIN yields in 1970, but substantially decreased to 13% in 2003. Point sewage N input also showed a decreasing trend in contribution to DIN yields, with an average of 8% over the whole period. We also discuss possible future trajectories of DIN export based on the Global NEWS implementation of the Millennium Ecosystem Assessment scenarios. Our result indicates that anthropogenically enhanced N inputs dominate and will continue to dominate river DIN yields under changing human pressures in the basin. Therefore, nitrogen pollution is and will continue to be a great challenge to China.

  15. AIRSHED DOMAINS FOR MODELING ATMOSPHERIC DEPOSITION OF OXIDIZED AND REDUCED NITROGEN TO THE NEUSE/PAMLICO SYSTEM OF NORTH CAROLINA

    EPA Science Inventory

    Atmospheric deposition is important to nutrient loadings to coastal estuaries. Atmospheric emissions of nitrogen travel hundreds of kilometers as they are removed via atmospheric deposition. Long-range transport from outside the Neuse/Pamlico system in North Carolina is an impo...

  16. Surface modification of polylactic acid films by atmospheric pressure plasma treatment

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, V. L.; Zhuravlev, M. V.; Tverdokhlebov, S. I.

    2017-09-01

    A new approach for the modification of polylactic acid (PLA) materials using atmospheric pressure plasma (APP) is described. PLA films plasma exposure time was 20, 60, 120 s. The surface morphology and wettability of the obtained PLA films were investigated by atomic force microscopy (AFM) and the sitting drop method. The atmospheric pressure plasma increased the roughness and surface energy of PLA film. The wettability of PLA has been improved with the application of an atmospheric plasma surface treatment. It was shown that it is possible to obtain PLA films with various surface relief and tunable wettability. Additionally, we demonstrated that the use of cold atmospheric pressure plasma for surface activation allows for the immobilization of bioactive compounds like hyaluronic acid (HA) on the surface of obtained films. It was shown that composite PLA-HA films have an increased long-term hydrophilicity of the films surface.

  17. Application of atmospheric-pressure plasma jet processed carbon nanotubes to liquid and quasi-solid-state gel electrolyte supercapacitors

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Kan, Ken-Yuan; Yu, Ing-Song; Chen, Chieh-Wen; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2017-12-01

    We use a dc-pulse nitrogen atmospheric-pressure plasma jet (APPJ) to calcine carbon nanotubes (CNTs) pastes that are screen-printed on carbon cloth. 30-s APPJ treatment can efficiently oxidize and vaporize the organic binders, thereby forming porous structures. As indicated by X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA), the oxygen content decreases after APPJ treatment owing to the oxidation and vaporization of ethyl cellulose, terpineol, and ethanol. Nitrogen doping was introduced to the materials by the nitrogen APPJ. APPJ-calcination improves the wettability of the CNTs printed on carbon cloth, as evidenced by water contact angle measurement. Raman spectroscopy indicates that reactive species of nitrogen APPJ react violently with CNTs in only 30-s APPJ processing time and introduce defects and/or surface functional groups on CNTs. Carbon cloths with calcined CNT layers are used as electrodes for liquid and quasi-solid-state electrolyte supercapacitors. Under a cyclic voltammetry test with a 2 mV/s potential scan rate, the specific capacitance is 73.84 F/g (areal capacitance = 5.89 mF/cm2) with a 2 M KCl electrolyte and 66.47 F/g (areal capacitance = 6.10 mF/cm2) with a H2SO4/polyvinyl alcohol (PVA) gel electrolyte.

  18. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    NASA Astrophysics Data System (ADS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  19. [Wet deposition of atmospheric nitrogen of the Jinshui watershed in the upper Hanjiang River].

    PubMed

    Wang, Jin-Jie; Zhang, Ke-Rong; Wu, Chuan; Zhang, Quan-Fa

    2014-01-01

    The Jinshui River, a tributary of the Hanjiang River, is an important region of water conservation for the Middle Route of South to North Water Transfer Project. However, water quality has been deteriorated in recent years, in particular nitrogen increasing pollution. In this study, the wet deposition of atmospheric nitrogen in the Jinshui watershed was investigated between Feb. 2012-Feb. 2013, and the corresponding contribution to the river N loading was calculated using N retention model. The results indicated that the volume-weighted concentration of dissolved total nitrogen (DTN) was 0.24-2.89 mg x L(-1), consisting of ammonium (NH(4+)-N) (42.8%), nitrate (NO3- N) (13.3%) and dissolved organic nitrogen (DON) (43.9%), which decreased with rainfall volume as a result of dilution. The wet deposition of atmospheric N was mainly from anthropogenic pollution and the flux was between 4.97-7.00 kg x (hm2 x a)(-1), dominated by seasonal rainfall, of which about 81% occurred in spring and summer and the flux in a decreasing order of upstream, downstream, and middlestream. The wet deposition contributed approximately 34,000-46,000 kg N to the river, accounting for only 5.05%-6.78% of the contribution by fertilizers, which was too small to be the main source of the river N loading.

  20. Pressure Sounding of the Middle Atmosphere from ATMOS Solar Occultation Measurements of Atmospheric CO(sub 2) Absorption Lines

    NASA Technical Reports Server (NTRS)

    Abrams, M.; Gunson, M.; Lowes, L.; Rinsland, C.; Zander, R.

    1994-01-01

    A method for retrieving the atmospheric pressure corresponding to the tangent point of an infrared spectrum recorded in the solar occultation mode is described and applied to measurements made by the Atmospheric Trace Molecule Spectroscopy (ATMOS) Fourier transform spectrometer. Tangent pressure values are inferred from measurements of isolated CO(sub 2) lines with temperature-insensitive intensities. Tangent pressures are determined with a spectroscopic precision of 1-3%, corresponding to a tangent point height precision, depending on the scale height, of 70-210 meters.

  1. 80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. DETAIL OF TYPICAL PRESSURE GAUGE IN NITROGEN AND HELIUM STORAGE AND TRANSFER CONTROL SKIDS ON NORTH END OF SLC-3W FUEL APRON - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  3. Hypobaric Biology: Arabidopsis Gene Expression at Low Atmospheric Pressure1[w

    PubMed Central

    Paul, Anna-Lisa; Schuerger, Andrew C.; Popp, Michael P.; Richards, Jeffrey T.; Manak, Michael S.; Ferl, Robert J.

    2004-01-01

    As a step in developing an understanding of plant adaptation to low atmospheric pressures, we have identified genes central to the initial response of Arabidopsis to hypobaria. Exposure of plants to an atmosphere of 10 kPa compared with the sea-level pressure of 101 kPa resulted in the significant differential expression of more than 200 genes between the two treatments. Less than one-half of the genes induced by hypobaria are similarly affected by hypoxia, suggesting that response to hypobaria is unique and is more complex than an adaptation to the reduced partial pressure of oxygen inherent to hypobaric environments. In addition, the suites of genes induced by hypobaria confirm that water movement is a paramount issue at low atmospheric pressures, because many of gene products intersect abscisic acid-related, drought-induced pathways. A motivational constituent of these experiments is the need to address the National Aeronautics and Space Administration's plans to include plants as integral components of advanced life support systems. The design of bioregenerative life support systems seeks to maximize productivity within structures engineered to minimize mass and resource consumption. Currently, there are severe limitations to producing Earth-orbital, lunar, or Martian plant growth facilities that contain Earth-normal atmospheric pressures within light, transparent structures. However, some engineering limitations can be offset by growing plants in reduced atmospheric pressures. Characterization of the hypobaric response can therefore provide data to guide systems engineering development for bioregenerative life support, as well as lead to fundamental insights into aspects of desiccation metabolism and the means by which plants monitor water relations. PMID:14701916

  4. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    NASA Astrophysics Data System (ADS)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  5. Raman Scattering by Molecular Hydrogen and Nitrogen in Exoplanetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin

    2016-11-01

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected light causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H2 or N2, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.

  6. RAMAN SCATTERING BY MOLECULAR HYDROGEN AND NITROGEN IN EXOPLANETARY ATMOSPHERES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oklopčić, Antonija; Hirata, Christopher M.; Heng, Kevin, E-mail: oklopcic@astro.caltech.edu

    2016-11-20

    An important source of opacity in exoplanet atmospheres at short visible and near-UV wavelengths is Rayleigh scattering of light on molecules. It is accompanied by a related, albeit weaker process—Raman scattering. We analyze the signatures of Raman scattering imprinted in the reflected light and the geometric albedo of exoplanets, which could provide information about atmospheric properties. Raman scattering affects the geometric albedo spectra of planets in the following ways. First, it causes filling-in of strong absorption lines in the incident radiation, thus producing sharp peaks in the albedo. Second, it shifts the wavelengths of spectral features in the reflected lightmore » causing the so-called Raman ghost lines. Raman scattering can also cause a broadband reduction of the albedo due to wavelength shifting of a stellar spectrum with red spectral index. Observing the Raman peaks in the albedo could be used to measure the column density of gas, thus providing constraints on the presence of clouds in the atmosphere. Observing the Raman ghost lines could be used to spectroscopically identify the main scatterer in the atmosphere, even molecules like H{sub 2} or N{sub 2}, which do not have prominent spectral signatures in the optical wavelength range. If detected, ghost lines could also provide information about the temperature of the atmosphere. In this paper, we investigate the effects of Raman scattering in hydrogen- and nitrogen-dominated atmospheres. We analyze the feasibility of detecting the signatures of Raman scattering with the existing and future observational facilities, and of using these signatures as probes of exoplanetary atmospheres.« less

  7. Nitrogen Fixation by Photochemistry in the Atmosphere of Titan and Implications for Prebiotic Chemistry

    NASA Astrophysics Data System (ADS)

    Balucani, Nadia

    The observation of N-containing organic molecules and the composition of the haze aerosols, as determined by the Aerosol Collector and Pyrolyser (ACP) on-board Huygens, are clear indications that some chemistry involving nitrogen active forms and hydrocarbons is operative in the upper atmosphere of Titan. Neutral-neutral reactions involving the first electronically excited state of atomic nitrogen, N(2D), and small hydrocarbons have the right prerequisites to be among the most significant pathways to formation of nitriles, imines and other simple N-containing organic molecules. The closed-shell products methanimine, ethanimine, ketenimine, 2H-azirine and the radical products CH3N, HCCN and CH2NCH can be the intermediate molecular species that, via addition reactions, polymerization and copolymerization form the N-rich organic aerosols of Titan as well as tholins in bulk reactors simulating Titan's atmosphere.

  8. In Brief: Earthquake, windstorm bills approved; Atmospheric map of nitrogen dioxide

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2004-10-01

    The U.S. House of Representatives on 8 October unanimously approved legislation(H.R. 2608) to mitigate damage from earthquakes and windstorms. President Bush is expected to sign into law this bill which has been negotiated between the House and Senate. The European Space Agency's(ESA) Envisat satellite for environmental monitoring has produced a high-resolution global atmospheric map of nitrogen dioxide, the agency announced on 11 October.

  9. Isotopes of nitrogen on Mars: Atmospheric measurements by Curiosity's mass spectrometer

    PubMed Central

    Wong, Michael H; Atreya, Sushil K; Mahaffy, Paul N; Franz, Heather B; Malespin, Charles; Trainer, Melissa G; Stern, Jennifer C; Conrad, Pamela G; Manning, Heidi L K; Pepin, Robert O; Becker, Richard H; McKay, Christopher P; Owen, Tobias C; Navarro-González, Rafael; Jones, John H; Jakosky, Bruce M; Steele, Andrew

    2013-01-01

    [1] The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) measured a Mars atmospheric14N/15N ratio of 173 ± 11 on sol 341 of the mission, agreeing with Viking's measurement of 168 ± 17. The MSL/SAM value was based on Quadrupole Mass Spectrometer measurements of an enriched atmospheric sample, with CO2 and H2O removed. Doubly ionized nitrogen data at m/z 14 and 14.5 had the highest signal/background ratio, with results confirmed by m/z 28 and 29 data. Gases in SNC meteorite glasses have been interpreted as mixtures containing a Martian atmospheric component, based partly on distinctive14N/15N and40Ar/14N ratios. Recent MSL/SAM measurements of the40Ar/14N ratio (0.51 ± 0.01) are incompatible with the Viking ratio (0.35 ± 0.08). The meteorite mixing line is more consistent with the atmospheric composition measured by Viking than by MSL. PMID:26074632

  10. What does atmospheric nitrogen contribute to the Gulf of Mexico area of oxygen depletion?

    NASA Astrophysics Data System (ADS)

    Rabalais, N. N.

    2017-12-01

    The northern Gulf of Mexico influenced by the freshwater discharge and nutrient loads of the Mississippi River watershed is the location of the world's second largest human-caused area of coastal hypoxia. Over 500 more anthropogenic `dead zones' exist in coastal waters. The point source inputs within the Mississippi River watershed account for about ten per cent of the total nitrogen inputs to the Mississippi River, with the remaining being nonpoint source. Atmospheric nitrogen makes up about sixteen per cent of the nonpoint source input of nitrogen. Most of the NOx is generated within the Ohio River watershed from the burning of fossil fuels. Some remains to be deposited into the same watershed, but the airshed deposits much of the NOx along the U.S. eastern seaboard, including Chesapeake Bay, which also has a hypoxia problem. Most of the volatilized ammonia is produced from fertilizers or manure within the upper Mississippi River watershed, is deposited within a localized airshed, and is not airborne long distances like the NOx. The atmospheric nitrogen input to the coastal waters affected by hypoxia is considered to be minimal. In the last half century, the nitrogen load from the Mississippi River to the Gulf of Mexico has increased 300 percent. During this period, low oxygen bottom-waters have developed in the coastal waters and worsened coincident with the increase in the nitrogen load. The 31-yr average size of the bottom-water hypoxia area in the Gulf of Mexico is 13,800 square kilometers, well over the 5,000 square kilometers goal of the Mississippi River Nutrient/Gulf of Mexico Hypoxia Task Force. Knowing the amounts and sources of excess nutrients to watersheds with adjacent coastal waters experiencing eutrophication and hypoxia is important in the management strategies to reduce those nutrients and improve water quality.

  11. Effects of Atmospheric Pressure Plasmas on Isolated and Cellular DNA—A Review

    PubMed Central

    Arjunan, Krishna Priya; Sharma, Virender K.; Ptasinska, Sylwia

    2015-01-01

    Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes. PMID:25642755

  12. Diagnostic of N2(A) concentration in high velocity nitrogen afterglow at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pointu, Anne-Marie; Mintusov, Evgeny

    2009-10-01

    An optical emission diagnostic was used to measure N2(A) concentration in a high velocity (1000 cm/s) N2 flowing afterglow of corona discharge at atmospheric pressure, used for biological decontamination. Introducing impurities of NO (<1e-5) we used two well separated and relatively intense lines of NO gamma and beta bands (248nm and 321 nm), easily studied with a low resolution spectrometer. Based on a simplified transport kinetics, the technique is validated using a variation of lines intensity ratios used as coordinates, for numerous experimental points, measured at different axial distances and for different values of NO injected flow. Moreover, it has been demonstrated that N2(A) creation comes from N+N+N2 atom recombination with a global rate around 2e-33 cm^6/s, a result which agrees with literature, as well as N2(A) loss mechanisms were confirmed to go via quenching with O and N atoms. The order of magnitude of obtained N2(A) concentration, about 1e11 cm-3, coincides with the results of direct measurement (by Vegard-Kaplan band), using a spectrometer of better resolution.

  13. Transmission geometry laserspray ionization vacuum using an atmospheric pressure inlet.

    PubMed

    Lutomski, Corinne A; El-Baba, Tarick J; Inutan, Ellen D; Manly, Cory D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2014-07-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples.

  14. Transmission Geometry Laserspray Ionization Vacuum Using an Atmospheric Pressure Inlet

    PubMed Central

    2015-01-01

    This represents the first report of laserspray ionization vacuum (LSIV) with operation directly from atmospheric pressure for use in mass spectrometry. Two different types of electrospray ionization source inlets were converted to LSIV sources by equipping the entrance of the atmospheric pressure inlet aperture with a customized cone that is sealed with a removable glass plate holding the matrix/analyte sample. A laser aligned in transmission geometry (at 180° relative to the inlet) ablates the matrix/analyte sample deposited on the vacuum side of the glass slide. Laser ablation from vacuum requires lower inlet temperature relative to laser ablation at atmospheric pressure. However, higher inlet temperature is required for high-mass analytes, for example, α-chymotrypsinogen (25.6 kDa). Labile compounds such as gangliosides and cardiolipins are detected in the negative ion mode directly from mouse brain tissue as intact doubly deprotonated ions. Multiple charging enhances the ion mobility spectrometry separation of ions derived from complex tissue samples. PMID:24896880

  15. Analytical vacuum force, atmospheric pressure dispute

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    Typically, the gap gas molecules is 10-9 m, since the center speed of the tornado is over 100 m / sec, it divided by the speed of a tornado, the gap of the gas molecules becomes 10-11m. Equivalent to the gap when there is no tornado that the gas molecules allow radiation to pass through, equivalent to the gap is reduced gas molecules 100 times by a tornado. There is no change in the Earth's radiate, the Earth's radiation is reduced to one percent of the original intensity by the radiation through the tornado periphery into the center of the tornado. According to the APS Division of Nuclear Physics in APS -2013 Fall Meeting - Event - Gravitational radiation theory http://meetings.aps.org/Meeting/DNP13/Session/FB.8, which I published, the gravity will br reduced to the original gravity percentage one. Waterspout by the Earth's gravity to become the original one percent. Cause the external of the tornadoes atmospheric pressure is constant, the height waterspout should support column height atmospheric pressure is 100 times,that height waterspout may reach nearly kilometers.

  16. Conditional vulnerability of plant diversity to atmospheric nitrogen deposition across the United States

    Treesearch

    Samuel M. Simkin; Edith B. Allen; William D. Bowman; Christopher M. Clark; Jayne Belnap; Matthew L. Brooks; Brian S. Cade; Scott L. Collins; Linda H. Geiser; Frank S. Gilliam; Sarah E. Jovan; Linda H. Pardo; Bethany K. Schulz; Carly J. Stevens; Katharine N. Suding; Heather L. Throop; Donald M. Waller

    2016-01-01

    Atmospheric nitrogen (N) deposition has been shown to decrease plant species richness along regional deposition gradients in Europe and in experimental manipulations. However, the general response of species richness to N deposition across different vegetation types, soil conditions, and climates remains largely unknown even though responses may be contingent on these...

  17. TRANC - a novel fast-response converter to measure total reactive atmospheric nitrogen

    NASA Astrophysics Data System (ADS)

    Marx, O.; Brümmer, C.; Ammann, C.; Wolff, V.; Freibauer, A.

    2011-12-01

    The input and loss of plant available nitrogen (N) from/to the atmosphere can be an important factor for the productivity of ecosystems and thus for its carbon and greenhouse gas exchange. We present a novel converter for the measurement of total reactive nitrogen (TRANC: Total Reactive Atmospheric Nitrogen Converter), which offers the opportunity to quantify the sum of all airborne reactive nitrogen (Nr) compounds in high time resolution. The basic concept of the TRANC is the full conversion of total Nr to nitrogen monoxide (NO) within two reaction steps. Initially, reduced N compounds are being oxidised, and oxidised N compounds are thermally converted to lower oxidation states. Particulate N is being sublimated and oxidised or reduced afterwards. In a second step, remaining higher N oxides or those originated in the first step are catalytically converted to NO with carbon monoxide used as reduction gas. The converter is combined with a fast response chemiluminescence detector (CLD) for NO analysis and its performance was tested for the most relevant gaseous and particulate Nr species under both laboratory and field conditions. Recovery rates during laboratory tests for NH3 and NO2 were found to be 95 and 99%, respectively, and 97% when the two gases were combined. In-field longterm stability over an 11-month period was approved by a value of 91% for NO2. Effective conversion was also found for ammonium and nitrate containing particles. The recovery rate of total ambient Nr was tested against the sum of individual measurements of NH3, HNO3, HONO, NH4+, NO3-, and NOx using a combination of different well-established devices. The results show that the TRANC-CLD system precisely captures fluctuations in Nr concentrations and also matches the sum of all Nr compounds measured by the different single techniques. The TRANC features a specific design with very short distance between the sample air inlet and the place where the thermal and catalytic conversions to NO

  18. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults.

    PubMed

    Azcárate, T; Mendoza, B

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  19. Influence of geomagnetic activity and atmospheric pressure in hypertensive adults

    NASA Astrophysics Data System (ADS)

    Azcárate, T.; Mendoza, B.

    2017-09-01

    We performed a study of the systolic and diastolic arterial blood pressure behavior under natural variables such as the atmospheric pressure and the horizontal geomagnetic field component. We worked with a group of eight adult hypertensive volunteers, four men and four women, with ages between 18 and 27 years in Mexico City during a geomagnetic storm in 2014. The data was divided by gender, age, and day/night cycle. We studied the time series using three methods: correlations, bivariate analysis, and superposed epoch (within a window of 2 days around the day of occurrence of a geomagnetic storm) analysis, between the systolic and diastolic blood pressure and the natural variables. The correlation analysis indicated a correlation between the systolic and diastolic blood pressure and the atmospheric pressure and the horizontal geomagnetic field component, being the largest during the night. Furthermore, the correlation and bivariate analyses showed that the largest correlations are between the systolic and diastolic blood pressure and the horizontal geomagnetic field component. Finally, the superposed epoch analysis showed that the largest number of significant changes in the blood pressure under the influence of geomagnetic field occurred in the systolic blood pressure for men.

  20. Cold atmospheric-pressure plasma induces DNA-protein crosslinks through protein oxidation.

    PubMed

    Guo, Li; Zhao, Yiming; Liu, Dingxin; Liu, Zhichao; Chen, Chen; Xu, Ruobing; Tian, Miao; Wang, Xiaohua; Chen, Hailan; Kong, Michael G

    2018-05-03

    Reactive oxygen and nitrogen species (ROS and RNS) generated by cold atmospheric-pressure plasma could damage genomic DNA, although the precise type of these DNA damage induced by plasma are poorly characterized. Understanding plasma-induced DNA damage will help to elucidate the biological effect of plasma and guide the application of plasma in ROS-based therapy. In this study, it was shown that ROS and RNS generated by physical plasma could efficiently induce DNA-protein crosslinks (DPCs) in bacteria, yeast, and human cells. An in vitro assay showed that plasma treatment resulted in the formation of covalent DPCs by activating proteins to crosslink with DNA. Mass spectrometry and hydroperoxide analysis detected oxidation products induced by plasma. DPC formation were alleviated by singlet oxygen scavenger, demonstrating the importance of singlet oxygen in this process. These results suggested the roles of DPC formation in DNA damage induced by plasma, which could improve the understanding of the biological effect of plasma and help to develop a new strategy in plasma-based therapy including infection and cancer therapy.

  1. Atmospheric pressure plasma deposition of antimicrobial coatings on non-woven textiles

    NASA Astrophysics Data System (ADS)

    Nikiforov, Anton Yu.; Deng, Xiaolong; Onyshchenko, Iuliia; Vujosevic, Danijela; Vuksanovic, Vineta; Cvelbar, Uros; De Geyter, Nathalie; Morent, Rino; Leys, Christophe

    2016-08-01

    A simple method for preparation of nanoparticle incorporated non-woven fabric with high antibacterial efficiency has been proposed based on atmospheric pressure plasma process. In this work direct current plasma jet stabilized by fast nitrogen flow was used as a plasma deposition source. Three different types of the nanoparticles (silver, copper and zinc oxide nanoparticles) were employed as antimicrobial agents. X-ray photoelectron spectroscopy (XPS) measurements have shown a positive chemical shift observed for Ag 3d 5/2 (at 368.1 eV) suggests that silver nanoparticles (AgNPs) are partly oxidized during the deposition. The surface chemistry and the antibacterial activity of the samples against Staphylococcus aureus and Escherichia coli were investigated and analyzed. It is shown that the samples loaded with nanoparticles of Ag and Cu and having the barrier layer of 10 nm characterized by almost 97% of bacterial reduction whereas the samples with ZnO nanoparticles provide 86% reduction of Staphylococcus aureus. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  2. Lessons Learned from the Bay Region Atmospheric Chemistry Experiment (BRACE) and Implications for Nitrogen Management of Tampa Bay

    EPA Science Inventory

    Results from air quality modeling and field measurements made as part of the Bay Region Atmospheric Chemistry Experiment (BRACE) along with related scientific literature were reviewed to provide an improved estimate of atmospheric reactive nitrogen (N) deposition to Tampa Bay, to...

  3. Using nitrogen concentration and isotopic composition in lichens to spatially assess the relative contribution of atmospheric nitrogen sources in complex landscapes.

    PubMed

    Pinho, P; Barros, C; Augusto, S; Pereira, M J; Máguas, C; Branquinho, C

    2017-11-01

    Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A novel APPI-MS setup for in situ degradation product studies of atmospherically relevant compounds: capillary atmospheric pressure photo ionization (cAPPI).

    PubMed

    Kersten, Hendrik; Derpmann, Valerie; Barnes, Ian; Brockmann, Klaus J; O'Brien, Rob; Benter, Thorsten

    2011-11-01

    We report on the development of a novel atmospheric pressure photoionization setup and its applicability for in situ degradation product studies of atmospherically relevant compounds. A custom miniature spark discharge lamp was embedded into an ion transfer capillary, which separates the atmospheric pressure from the low pressure region in the first differential pumping stage of a conventional atmospheric pressure ionization mass spectrometer. The lamp operates with a continuous argon flow and produces intense light emissions in the VUV. The custom lamp is operated windowless and efficiently illuminates the sample flow through the transfer capillary on an area smaller than 1 mm(2). Limits of detection in the lower ppbV range, a temporal resolution of milliseconds in the positive as well as the quasi simultaneously operating negative ion mode, and a significant reduction of ion transformation processes render this system applicable to real time studies of rapidly changing chemical systems. The method termed capillary atmospheric pressure photo ionization (cAPPI) is characterized with respect to the lamp emission properties as a function of the operating conditions, temporal response, and its applicability for in situ degradation product studies of atmospherically relevant compounds, respectively.

  5. Atmospheric-pressure plasma jet processed Pt/ZnO composites and its application as counter-electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Chun; Wan, Ting-Hao; Hsu, Cheng-Che; Cheng, I.-Chun; Chen, Jian-Zhang

    2018-04-01

    Nitrogen dc-pulse atmospheric pressure plasma jet (APPJ) is used to fabricate Pt/ZnO composites as the counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). Due to the synergetic effect of the reactive plasma species and heat in nitrogen APPJ, the spin-coated precursors including chloroplatinic acid and zinc acetate can be reduced on fluorine-doped tin oxide (FTO) glass substrates in a few seconds. X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) analyses indicate that the precursors are reduced to Pt/ZnO under APPJ calcination. Electrochemical impedance spectroscopy (EIS) and Tafel measurement show the promising catalytic activities of Pt/ZnO CEs with low charge transfer resistance and high exchange current density. The efficiency of a DSSC with a 30-s APPJ-calcined Pt/ZnO CE is similar to that with a conventional furnace-annealed Pt CE for 15 min. The results indicate that nitrogen dc-pulse APPJ treatment is an efficient tool for rapidly fabricating Pt/ZnO composite CEs of DSSCs.

  6. The shuttle orbiter cabin atmospheric revitalization systems

    NASA Technical Reports Server (NTRS)

    Ward, C. F.; Owens, W. L.

    1975-01-01

    The Orbiter Atmospheric Revitalization Subsystem (ARS) and Pressure Control Subsystem (ARPCS) are designed to provide the flight crew and passengers with a pressurized environment that is both life-supporting and within crew comfort limitations. The ARPCS is a two-gas (oxygen-nitrogen) system that obtains oxygen from the Power Reactant Supply and Distribution (PRSD) subsystem and nitrogen from the nitrogen storage tanks. The ARS includes the water coolant loop; cabin CO2, odor, humidity and temperature control; and avionics cooling. Baseline ARPCS and ARS changes since 1973 include removal of the sublimator from the water coolant loop, an increase in flowrates to accommodate increased loads, elimination of the avionics bay isolation from the cabin, a decision to have an inert vehicle during ferry flight, elimination of coldwall tubing around windows and hatches, and deletion of the cabin heater.

  7. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence.

    PubMed

    Wong, Michael L; Charnay, Benjamin D; Gao, Peter; Yung, Yuk L; Russell, Michael J

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO 3 - ) and nitrite (NO 2 - ) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO 2 and N 2 , will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H 2 O vapor will then produce acids such as HNO, HNO 2 , HNO 3 , and HO 2 NO 2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO 2 models, we calculate the NOx delivery to be 2.4 × 10 5 , 6.5 × 10 8 , and 1.9 × 10 8 molecules cm -2 s -1 . After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life. Key Words: Nitrogen oxides-Nitrate-Nitrite-Photochemistry-Lightning-Emergence of life. Astrobiology 17, 975-983.

  8. Atmospheric cycles of nitrogen oxides and ammonia. [source strengths and destruction rates

    NASA Technical Reports Server (NTRS)

    Bottger, A.; Ehhalt, D. H.; Gravenhorst, G.

    1981-01-01

    The atmospheric cycles of nitrogenous trace compounds for the Northern and Southern Hemispheres are discussed. Source strengths and destruction rates for the nitrogen oxides: NO, NO2 and HNO3 -(NOX) and ammonia (NH3) are given as a function of latitude over continents and oceans. The global amounts of NOX-N and NH3-N produced annually in the period 1950 to 1975 (34 + 5 x one trillion g NOx-N/yr and 29 + or - 6 x one trillion g NH3-N/yr) are much less than previously assumed. Globally, natural and anthropogenic emissions are of similar magnitude. The NOx emission from anthropogenic sources is 1.5 times that from natural processes in the Northern Hemisphere, whereas in the Southern Hemisphere, it is a factor of 3 or 4 less. More than 80% of atmospheric ammonia seems to be derived from excrements of domestic animals, mostly by bulk deposition: 24 + or - 9 x one trillion g NO3 -N/yr and 21 + or - 9 x one trillion g NH4+-N/yr. Another fraction may be removed by absorption on vegetation and soils.

  9. A case study of the relative effects of power plant nitrogen oxides and sulfur dioxide emission reductions on atmospheric nitrogen deposition.

    PubMed

    Vijayaraghavan, Krish; Seigneur, Christian; Bronson, Rochelle; Chen, Shu-Yun; Karamchandani, Prakash; Walters, Justin T; Jansen, John J; Brandmeyer, Jo Ellen; Knipping, Eladio M

    2010-03-01

    The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.

  10. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Kun; Zhu, Xiao-Hua; Zhao, Ruixiang

    2018-02-01

    Ocean bottom pressures, observed by five pressure-recording inverted echo sounders (PIESs) from October 2012 to July 2014, exhibit strong near 7-day variability in the northern South China Sea (SCS) where long-term in situ bottom pressure observations are quite sparse. This variability was strongest in October 2013 during the near two years observation period. By joint analysis with European Center for Medium-Range Weather Forecasts (ECMWF) data, it is shown that the near 7-day ocean bottom pressure variability is closely related to the local atmospheric surface pressure and winds. Within a period band near 7 days, there are high coherences, exceeding 95% significance level, of observed ocean bottom pressure with local atmospheric surface pressure and with both zonal and meridional components of the wind. Ekman pumping/suction caused by the meridional component of the wind in particular, is suggested as one driving mechanism. A Kelvin wave response to the near 7-day oscillation would propagate down along the continental slope, observed at the Qui Nhon in the Vietnam. By multiple and partial coherence analyses, we find that local atmospheric surface pressure and Ekman pumping/suction show nearly equal influence on ocean bottom pressure variability at near 7-day periods. A schematic diagram representing an idealized model gives us a possible mechanism to explain the relationship between ocean bottom pressure and local atmospheric forcing at near 7-day periods in the northern SCS.

  11. Correlation between atmospheric pressure changes and abdominal aortic aneurysm rupture: results of a single-center study.

    PubMed

    Molacek, Jiri; Treska, Vladislav; Kasik, Miroslav; Houdek, Karel; Baxa, Jan

    2013-09-01

    There is much interest in all factors that influence the etiopathogenesis of abdominal aortic aneurysm (AAA) rupture. Apart from the well-established factors such as arterial hypertension, smoking, age, and genetic predisposition, less common factors that may play a role in the mechanism of the rupture are the subject of much discussion. These include atmospheric conditions, temperature, and atmospheric pressure. We conducted this study to investigate the effects of the absolute value of atmospheric pressure and its changes on the frequency of AAA rupture. We retrospectively examined 54 patients who underwent treatment for a ruptured AAA at the Clinic of Surgery in the University Hospital in Pilsen between 1 January 2005 and 31 December 2009. We collected data on the atmospheric pressure in this period from the Czech Hydrometeorological Institute in Pilsen. We did not find a significant difference in atmospheric pressure values between the days when the rupture occurred versus the other days (p < 0.5888). Moreover, we did not find significant changes in the atmospheric pressure during the 48 h preceding the rupture (Student's test p < 0.4434) versus the day of rupture or in the mean atmospheric pressure in that month. These findings suggest that atmospheric pressure and its changes do not affect the pathogenesis of AAA rupture.

  12. Cellular membrane collapse by atmospheric-pressure plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kangil; Sik Yang, Sang, E-mail: jsjlee@ajou.ac.kr, E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation,more » and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.« less

  13. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    PubMed

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  14. Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing

    PubMed Central

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-01-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out. PMID:25489414

  15. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  16. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  17. Atmospheric Pressure Patterns Before and During Dust Storm

    NASA Image and Video Library

    2012-11-27

    This graph compares a typical daily pattern of changing atmospheric pressure blue with the pattern during a regional dust storm hundreds of miles away red. The data are by the Rover Environmental Monitoring Station REMS on NASA Curiosity rover.

  18. Atmospheric Pressure and Abdominal Aortic Aneurysm Rupture: Results From a Time Series Analysis and Case-Crossover Study.

    PubMed

    Penning de Vries, Bas B L; Kolkert, Joé L P; Meerwaldt, Robbert; Groenwold, Rolf H H

    2017-10-01

    Associations between atmospheric pressure and abdominal aortic aneurysm (AAA) rupture risk have been reported, but empirical evidence is inconclusive and largely derived from studies that did not account for possible nonlinearity, seasonality, and confounding by temperature. Associations between atmospheric pressure and AAA rupture risk were investigated using local meteorological data and a case series of 358 patients admitted to hospital for ruptured AAA during the study period, January 2002 to December 2012. Two analyses were performed-a time series analysis and a case-crossover study. Results from the 2 analyses were similar; neither the time series analysis nor the case-crossover study showed a significant association between atmospheric pressure ( P = .627 and P = .625, respectively, for mean daily atmospheric pressure) or atmospheric pressure variation ( P = .464 and P = .816, respectively, for 24-hour change in mean daily atmospheric pressure) and AAA rupture risk. This study failed to support claims that atmospheric pressure causally affects AAA rupture risk. In interpreting our results, one should be aware that the range of atmospheric pressure observed in this study is not representative of the atmospheric pressure to which patients with AAA may be exposed, for example, during air travel or travel to high altitudes in the mountains. Making firm claims regarding these conditions in relation to AAA rupture risk is difficult at best. Furthermore, despite the fact that we used one of the largest case series to date to investigate the effect of atmospheric pressure on AAA rupture risk, it is possible that this study is simply too small to demonstrate a causal link.

  19. Wavelet filter analysis of local atmospheric pressure effects in the long-period tidal bands

    NASA Astrophysics Data System (ADS)

    Hu, X.-G.; Liu, L. T.; Ducarme, B.; Hsu, H. T.; Sun, H.-P.

    2006-11-01

    It is well known that local atmospheric pressure variations obviously affect the observation of short-period Earth tides, such as diurnal tides, semi-diurnal tides and ter-diurnal tides, but local atmospheric pressure effects on the long-period Earth tides have not been studied in detail. This is because the local atmospheric pressure is believed not to be sufficient for an effective pressure correction in long-period tidal bands, and there are no efficient methods to investigate local atmospheric effects in these bands. The usual tidal analysis software package, such as ETERNA, Baytap-G and VAV, cannot provide detailed pressure admittances for long-period tidal bands. We propose a wavelet method to investigate local atmospheric effects on gravity variations in long-period tidal bands. This method constructs efficient orthogonal filter bank with Daubechies wavelets of high vanishing moments. The main advantage of the wavelet filter bank is that it has excellent low frequency response and efficiently suppresses instrumental drift of superconducting gravimeters (SGs) without using any mathematical model. Applying the wavelet method to the 13-year continuous gravity observations from SG T003 in Brussels, Belgium, we filtered 12 long-period tidal groups into eight narrow frequency bands. Wavelet method demonstrates that local atmospheric pressure fluctuations are highly correlated with the noise of SG measurements in the period band 4-40 days with correlation coefficients higher than 0.95 and local atmospheric pressure variations are the main error source for the determination of the tidal parameters in these bands. We show the significant improvement of long-period tidal parameters provided by wavelet method in term of precision.

  20. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-06-01

    Nitrogen Dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging (UV)-vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK. Retrieved NO2 columns at a surface resolution of 80 m x 20 m revealed hot spots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hot spots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  1. High-resolution measurements from the airborne Atmospheric Nitrogen Dioxide Imager (ANDI)

    NASA Astrophysics Data System (ADS)

    Lawrence, J. P.; Anand, J. S.; Vande Hey, J. D.; White, J.; Leigh, R. R.; Monks, P. S.; Leigh, R. J.

    2015-11-01

    Nitrogen dioxide is both a primary pollutant with direct health effects and a key precursor of the secondary pollutant ozone. This paper reports on the development, characterisation and test flight of the Atmospheric Nitrogen Dioxide Imager (ANDI) remote sensing system. The ANDI system includes an imaging UV/Vis grating spectrometer able to capture scattered sunlight spectra for the determination of tropospheric nitrogen dioxide (NO2) concentrations by way of DOAS slant column density and vertical column density measurements. Results are shown for an ANDI test flight over Leicester City in the UK on a cloud-free winter day in February 2013. Retrieved NO2 columns gridded to a surface resolution of 80 m × 20 m revealed hotspots in a series of locations around Leicester City, including road junctions, the train station, major car parks, areas of heavy industry, a nearby airport (East Midlands) and a power station (Ratcliffe-on-Soar). In the city centre the dominant source of NO2 emissions was identified as road traffic, contributing to a background concentration as well as producing localised hotspots. Quantitative analysis revealed a significant urban increment over the city centre which increased throughout the flight.

  2. MEAD Marine Effects of Atmospheric Deposition

    NASA Astrophysics Data System (ADS)

    Jickells, T.; Spokes, L.

    2003-04-01

    The coastal seas are one of the most valuable resources on the planet but they are threatened by human activity. We rely on the coastal area for mineral resources, waste disposal, fisheries and recreation. In Europe, high population densities and high levels of industrial activity mean that the pressures arising from these activities are particularly acute. One of the main problems concerning coastal seas is the rapid increase in the amounts of nitrogen-based pollutants entering the water. They come from many sources, the most important ones being traffic, industry and agriculture. These pollutants can be used by algae as nutrients. The increasing concentrations of these nutrients have led to excessive growth of algae, some of which are harmful. When algae die and decay, oxygen in the water is used up and the resulting lower levels of oxygen may lead to fish kills. Human activity has probably doubled the amount of chemically and biologically reactive nitrogen present globally. In Europe the increases have been greater than this, leading to real concern over the health of coastal waters. Rivers have, until recently, been thought to be the most important source of reactive nitrogen to the coastal seas but we now know that inputs from the atmosphere are large and can equal, or exceed, those from the rivers. Our initial hypothesis was that atmospheric inputs are important and potentially different in their effect on coastal ecosystems to riverine inputs and hence require different management strategies. However, we had almost no information on the direct effects of atmospheric deposition on marine ecosystems, though clearly such a large external nitrogen input should lead to enhanced phytoplankton growth The aim of this European Union funded MEAD project has been to determine how inputs of nitrogen from the atmosphere affect the chemistry and biology of coastal waters. To try to answer this, we have conducted field experiments in the Kattegat, an area where we know

  3. Isotopic apportionment of atmospheric and sewage nitrogen sources in two Connecticut rivers.

    PubMed

    Anisfeld, Shimon C; Barnes, Rebecca T; Altabet, Mark A; Wu, Taixing

    2007-09-15

    We used the dual isotope approach to identify sources of nitrate (NO3-) to two mixed land-use watersheds draining to Long Island Sound. In contrastto previous work, we found that sewage effluent NO3- was not consistently enriched in 15N. However, these effluents followed a characteristic denitrification line in delta15N-delta18O space, which could be used as a source signature. We used this signature, together with those of atmospheric deposition and microbial nitrification, to calculate ranges of possible contributions from each of these sources. These estimates are unaffected by any denitrification that may have taken place in soils or streams. Our estimates for atmospheric nitrogen only include unprocessed atmospheric deposition, i.e., NO3-that is not taken up in watershed soils before being delivered to rivers. Using this method, the contribution of atmospheric NO3- could be assessed with good precision and was found to be very low at all our sampling sites during baseflow. During a moderate storm event, atmospheric deposition contributed up to approximately 50% of stream NO3-, depending on the site, with the sites that experienced more stormflow showing a greater contribution of atmospheric NO3-. Our estimates of sewage contribution generally had too large a range to be useful.

  4. Pulmonary and heart diseases with inhalation of atmospheric pressure plasma flow

    NASA Astrophysics Data System (ADS)

    Hirata, Takamichi; Murata, Shigeru; Kishimoto, Takumi; Tsutsui, Chihiro; Kondo, Akane; Mori, Akira

    2012-10-01

    We examined blood pressure in the abdominal aorta of mini pig under plasma inhalation of atmospheric pressure plasma flow. The coaxial atmospheric pressure plasma source has a tungsten wire inside a glass capillary, that is surrounded by a grounded tubular electrode. Plasma was generated under the following conditions; applied voltage: 8 kVpp, frequency: 3 kHz, and helium (He) gas flow rate: 1 L/min. On the other hand, sphygmomanometry of a blood vessel proceeded using a device comprising a disposable force transducer, and a bedside monitor for simultaneous electrocardiography and signal pressure measurements. We directly measured Nitric oxide (NO) using a catheter-type NO sensor placed in the coronary sinus through an angiography catheter from the abdomen. Blood pressure decreased from 110/65 to 90/40 mm Hg in the animals in vivo under plasma inhalation. The NO concentration in the abdominal aorta like the blood pressure, reached a maximum value at about 40 s and then gradually decreased.

  5. Using dimers to measure biosignatures and atmospheric pressure for terrestrial exoplanets.

    PubMed

    Misra, Amit; Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-02-01

    We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging-reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required.

  6. Using Dimers to Measure Biosignatures and Atmospheric Pressure for Terrestrial Exoplanets

    PubMed Central

    Meadows, Victoria; Claire, Mark; Crisp, Dave

    2014-01-01

    Abstract We present a new method to probe atmospheric pressure on Earth-like planets using (O2-O2) dimers in the near-infrared. We also show that dimer features could be the most readily detectable biosignatures for Earth-like atmospheres and may even be detectable in transit transmission with the James Webb Space Telescope (JWST). The absorption by dimers changes more rapidly with pressure and density than that of monomers and can therefore provide additional information about atmospheric pressures. By comparing the absorption strengths of rotational and vibrational features to the absorption strengths of dimer features, we show that in some cases it may be possible to estimate the pressure at the reflecting surface of a planet. This method is demonstrated by using the O2 A band and the 1.06 μm dimer feature, either in transmission or reflected spectra. It works best for planets around M dwarfs with atmospheric pressures between 0.1 and 10 bar and for O2 volume mixing ratios above 50% of Earth's present-day level. Furthermore, unlike observations of Rayleigh scattering, this method can be used at wavelengths longer than 0.6 μm and is therefore potentially applicable, although challenging, to near-term planet characterization missions such as JWST. We also performed detectability studies for JWST transit transmission spectroscopy and found that the 1.06 and 1.27 μm dimer features could be detectable (SNR>3) for an Earth analogue orbiting an M5V star at a distance of 5 pc. The detection of these features could provide a constraint on the atmospheric pressure of an exoplanet and serve as biosignatures for oxygenic photosynthesis. We calculated the required signal-to-noise ratios to detect and characterize O2 monomer and dimer features in direct imaging–reflected spectra and found that signal-to-noise ratios greater than 10 at a spectral resolving power of R=100 would be required. Key Words: Remote sensing—Extrasolar terrestrial planets

  7. Heating of food in modified atmospheres

    NASA Technical Reports Server (NTRS)

    Sweat, V. E.

    1973-01-01

    Food heating tests were conducted with two model foods; a Carnation turkey salad sandwich spread and frankfurter chunks in a sauce of water and agar. For the first series of tests comparing heating in five different atmospheres, the atmospheres were: (1) air at atmospheric pressure, (2) air at 5 psia, (3) helium at 5 psia, (4) oxygen-nitrogen mixture at 5 psia, and (5) oxygen-helium mixture at 5 psia. No significant differences in heating rates were caused by varying the atmosphere. Initial food temperatures were varied in the next series of tests. Heating times were found to increase with decreasing initial temperatures. There were also differences in heating times between the two foods used.

  8. Laser nitriding of iron: Nitrogen profiles and phases

    NASA Astrophysics Data System (ADS)

    Illgner, C.; Schaaf, P.; Lieb, K. P.; Schubert, E.; Queitsch, R.; Bergmann, H.-W.

    1995-07-01

    Armco iron samples were surface nitrided by irradiating them with pulses of an excimer laser in a nitrogen atmosphere. The resulting nitrogen depth profiles measured by Resonant Nuclear Reaction Analysis (RNRA) and the phase formation determined by Conversion Electron Mössbauer Spectroscopy (CEMS) were investigated as functions of energy density and the number of pulses. The nitrogen content of the samples was found to be independent of the number of pulses in a layer of 50 nm from the surface and to increase in depths exceeding 150 nm. The phase composition did not change with the number of pulses. The nitrogen content can be related to an enhanced nitrogen solubility based on high temperatures and high pressures due to the laser-induced plasma above the sample. With increasing pulse energy density, the phase composition changes towards phases with higher nitrogen contents. Nitrogen diffusion seems to be the limiting factor for the nitriding process.

  9. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    PubMed

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  10. Phase sensitivity of fundamental mode to external atmospheric pressure for hollow-core photonic bandgap fiber

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobin; Liu, Yangqian; Gao, Fuyu; Song, Ningfang

    2018-07-01

    Hollow-core photonic bandgap fibers (HC-PBFs) are suitable for spaceborne fiber optical gyroscopes owing to their excellent environmental adaptability. However, hundreds of small holes full of air at one atmosphere of pressure can make the HC-PBF sensitive to external atmospheric pressure. In this study, we investigated the phase sensitivity of the fundamental mode to external atmospheric pressure for the HC-PBF, and the experimental result indicates that the phase sensitivity is approximately 1.6 × 10-5 ppm/Pa, which is mostly contributed by the change in the pressure-induced length. Through the choice of coating, the phase sensitivity to external atmospheric pressure can be reduced by about a factor of five compared to current HC-PBFs, and the excellent temperature performance can be maintained at the same time.

  11. The natural greenhouse effect of atmospheric oxygen (O2) and nitrogen (N2)

    NASA Astrophysics Data System (ADS)

    Höpfner, M.; Milz, M.; Buehler, S.; Orphal, J.; Stiller, G.

    2012-05-01

    The effect of collision-induced absorption by molecular oxygen (O2) and nitrogen (N2) on the outgoing longwave radiation (OLR) of the Earth's atmosphere has been quantified. We have found that on global average under clear-sky conditions the OLR is reduced due to O2 by 0.11 Wm-2 and due to N2 by 0.17 Wm-2. Together this amounts to 15% of the OLR-reduction caused by CH4 at present atmospheric concentrations. Over Antarctica the combined effect of O2 and N2 increases on average to about 38% of CH4 with single values reaching up to 80%. This is explained by less interference of H2O spectral bands on the absorption features of O2 and N2 for dry atmospheric conditions.

  12. Design development and test: Two-gas atmosphere control subsystem

    NASA Technical Reports Server (NTRS)

    Jackson, J. K.

    1974-01-01

    An atmosphere control subsystem (ACS) was developed for NASA-IBJSC which is designed to measure the major atmospheric constituents in the manned cabin of the space shuttle orbiter and control the addition of oxygen and nitrogen to maintain the partial pressures of these gases within very close limits. The ACS includes a mass spectrometer sensor (MSS) which analyzes the atmosphere of a shuttle vehicle pressurized cabin, and an electronic control assembly (ECA). The MSS was built and tested to meet the requirements for flight equipment for the M-171 Metabolic Analyzer experiment for the Skylab flight program. The instrument analyzes an atmospheric gas sample and produces continuous 0-5 vdc analog signals proportional to the partial pressures of H2, O2, N2, H2O, CO2 and total hydrocarbons having a m/e ratio between 50 and 120. It accepts signals from the MSS proportional to the partial pressures of N2 and O2 and controls the supply of these gases to the closed cabin.

  13. Domestic atmospheric pressure thermal deaerators

    NASA Astrophysics Data System (ADS)

    Egorov, P. V.; Gimmelberg, A. S.; Mikhailov, V. G.; Baeva, A. N.; Chuprakov, M. V.; Grigoriev, G. V.

    2016-04-01

    Based on many years of experience and proven technical solutions, modern atmospheric pressure deaerators of the capacity of 0.4 to 800 t/h were designed and developed. The construction of such deaerators is based on known and explored technical solutions. A two-stage deaeration scheme is applied where the first stage is a jet dripping level (in a column) and the second one is a bubble level (in a tank). In the design of deaeration columns, low-pressure hydraulic nozzles (Δ p < 0.15 MPa) and jet trays are used, and in deaerator tank, a developed "flooded" sparger is applied, which allows to significantly increase the intensity of the heat and mass exchange processes in the apparatus. The use of the two efficient stages in a column and a "flooded" sparger in a tank allows to reliably guarantee the necessary water heating and deaeration. Steam or "superheated" water of the temperature of t ≥ 125°C can be used as the coolant in the deaerators. The commissioning tests of the new deaerator prototypes of the capacity of 800 and 500 t/h in the HPP conditions showed their sustainable, reliable, and efficient work in the designed range of hydraulic and thermal loads. The content of solved oxygen and free carbon dioxide in make-up water after deaerators meets the requirements of State Standard GOST 16860-88, the operating rules and regulations, and the customer's specifications. Based on these results, the proposals were developed on the structure and the design of deaerators of the productivity of more than 800 t/h for the use in circuits of large heating systems and the preparation of feed water to the TPP at heating and industrial-heating plants. The atmospheric pressure thermal deaerators developed at NPO TsKTI with consideration of the current requirements are recommended for the use in water preparation schemes of various power facilities.

  14. The Effect of Varying Atmospheric Pressure upon Habitability and Biosignatures of Earth-like Planets.

    PubMed

    Keles, Engin; Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Rauer, Heike

    2018-02-01

    Understanding the possible climatic conditions on rocky extrasolar planets, and thereby their potential habitability, is one of the major subjects of exoplanet research. Determining how the climate, as well as potential atmospheric biosignatures, changes under different conditions is a key aspect when studying Earth-like exoplanets. One important property is the atmospheric mass, hence pressure and its influence on the climatic conditions. Therefore, the aim of the present study is to understand the influence of atmospheric mass on climate, hence habitability, and the spectral appearance of planets with Earth-like, that is, N 2 -O 2 dominated, atmospheres orbiting the Sun at 1 AU. This work utilizes a 1D coupled, cloud-free, climate-photochemical atmospheric column model; varies atmospheric surface pressure from 0.5 to 30 bar; and investigates temperature and key species profiles, as well as emission and brightness temperature spectra in a range between 2 and 20 μm. Increasing the surface pressure up to 4 bar leads to an increase in the surface temperature due to increased greenhouse warming. Above this point, Rayleigh scattering dominates, and the surface temperature decreases, reaching surface temperatures below 273 K (approximately at ∼34 bar surface pressure). For ozone, nitrous oxide, water, methane, and carbon dioxide, the spectral response either increases with surface temperature or pressure depending on the species. Masking effects occur, for example, for the bands of the biosignatures ozone and nitrous oxide by carbon dioxide, which could be visible in low carbon dioxide atmospheres. Key Words: Planetary habitability and biosignatures-Atmospheres-Radiative transfer. Astrobiology 18, 116-132.

  15. Decomposition Characteristics of Acetone in a DC Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takahiro; Satoh, Kohki; Itoh, Hidenori

    Decomposition characteristics of acetone in a DC corona discharge generated between a multi-needle and a plane electrodes in nitrogen-oxygen mixtures at atmospheric pressure are investigated mainly by infrared absorption spectroscopy in this work. It is found that CO2, CO, CH4, HCHO, HCOOH and HCN are the by-products of acetone in the corona discharge, and that CO, CH4, HCHO, HCOOH and HCN are intermediate products, which tend to be decomposed in the corona discharge. CO2 is found to be the major and end-product. It is also found that acetone is chiefly inverted to CO2 via CO at high oxygen concentration (20%) and via CO and CH4 at relatively low oxygen concentration (0.2%), in addition to the direct conversion from acetone to CO2. As the oxygen concentration increases, the percentages of carbon atoms contained in deposit on the plane electrode and the wall of the discharge chamber increases. Further, the decomposition process of acetone is deduced from the examination of rate constants for the reactions in the gaseous phase.

  16. Optimizing the electrical excitation of an atmospheric pressure plasma advanced oxidation process.

    PubMed

    Olszewski, P; Li, J F; Liu, D X; Walsh, J L

    2014-08-30

    The impact of pulse-modulated generation of atmospheric pressure plasma on the efficiency of organic dye degradation has been investigated. Aqueous samples of methyl orange were exposed to low temperature air plasma and the degradation efficiency was determined by absorbance spectroscopy. The plasma was driven at a constant frequency of 35kHz with a duty cycle of 25%, 50%, 75% and 100%. Relative concentrations of dissolved nitrogen oxides, pH, conductivity and the time evolution of gas phase ozone were measured to identify key parameters responsible for the changes observed in degradation efficiency. The results indicate that pulse modulation significantly improved dye degradation efficiency, with a plasma pulsed at 25% duty showing a two-fold enhancement. Additionally, pulse modulation led to a reduction in the amount of nitrate contamination added to the solution by the plasma. The results clearly demonstrate that optimization of the electrical excitation of the plasma can enhance both degradation efficiency and the final water quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Inerting and atmospheres

    NASA Technical Reports Server (NTRS)

    Carhart, Homer W.

    1987-01-01

    It is argued that fires are dependent primarily on the concentration of oxygen, whereas life is dependent on the partial pressure of oxygen. It follows that in an inhabited capsule it should be possible to exercise a certain amount of willful control over fire and still maintain habitability by proper selection of the composition of the atmosphere. This leads to two concepts in the control of fires in confined spaces by controlling atmospheric composition: the first, to lower the overall potential hazard by maintaining the percent of oxygen in the capsule below that of air, and second, to provide for the emergency extinguishment of a fire by sudden flooding with nitrogen. Several relevant charts and graphs are presented.

  18. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system.

    PubMed

    Doney, Scott C; Mahowald, Natalie; Lima, Ivan; Feely, Richard A; Mackenzie, Fred T; Lamarque, Jean-Francois; Rasch, Phil J

    2007-09-11

    Fossil fuel combustion and agriculture result in atmospheric deposition of 0.8 Tmol/yr reactive sulfur and 2.7 Tmol/yr nitrogen to the coastal and open ocean near major source regions in North America, Europe, and South and East Asia. Atmospheric inputs of dissociation products of strong acids (HNO(3) and H2SO(4)) and bases (NH(3)) alter surface seawater alkalinity, pH, and inorganic carbon storage. We quantify the biogeochemical impacts by using atmosphere and ocean models. The direct acid/base flux to the ocean is predominately acidic (reducing total alkalinity) in the temperate Northern Hemisphere and alkaline in the tropics because of ammonia inputs. However, because most of the excess ammonia is nitrified to nitrate (NO(3)(-)) in the upper ocean, the effective net atmospheric input is acidic almost everywhere. The decrease in surface alkalinity drives a net air-sea efflux of CO(2), reducing surface dissolved inorganic carbon (DIC); the alkalinity and DIC changes mostly offset each other, and the decline in surface pH is small. Additional impacts arise from nitrogen fertilization, leading to elevated primary production and biological DIC drawdown that reverses in some places the sign of the surface pH and air-sea CO(2) flux perturbations. On a global scale, the alterations in surface water chemistry from anthropogenic nitrogen and sulfur deposition are a few percent of the acidification and DIC increases due to the oceanic uptake of anthropogenic CO(2). However, the impacts are more substantial in coastal waters, where the ecosystem responses to ocean acidification could have the most severe implications for mankind.

  19. Atmospheric pressure chemical ionization of fluorinated phenols in atmospheric pressure chemical ionization mass spectrometry, tandem mass spectrometry, and ion mobility spectrometry

    NASA Technical Reports Server (NTRS)

    Eiceman, G. A.; Bergloff, J. F.; Rodriguez, J. E.; Munro, W.; Karpas, Z.

    1999-01-01

    Atmospheric pressure chemical ionization (APCI)-mass spectrometry (MS) for fluorinated phenols (C6H5-xFxOH Where x = 0-5) in nitrogen with Cl- as the reagent ion yielded product ions of M Cl- through ion associations or (M-H)- through proton abstractions. Proton abstraction was controllable by potentials on the orifice and first lens, suggesting that some proton abstraction occurs through collision induced dissociation (CID) in the interface region. This was proven using CID of adduct ions (M Cl-) with Q2 studies where adduct ions were dissociated to Cl- or proton abstracted to (M-H)-. The extent of proton abstraction depended upon ion energy and structure in order of calculated acidities: pentafluorophenol > tetrafluorophenol > trifluorophenol > difluorophenol. Little or no proton abstraction occurred for fluorophenol, phenol, or benzyl alcohol analogs. Ion mobility spectrometry was used to determine if proton abstraction reactions passed through an adduct intermediate with thermalized ions and mobility spectra for all chemicals were obtained from 25 to 200 degrees C. Proton abstraction from M Cl- was not observed at any temperature for phenol, monofluorophenol, or difluorophenol. Mobility spectra for trifluorophenol revealed the kinetic transformations to (M-H)- either from M Cl- or from M2 Cl- directly. Proton abstraction was the predominant reaction for tetra- and penta-fluorophenols. Consequently, the evidence suggests that proton abstraction occurs from an adduct ion where the reaction barrier is reduced with increasing acidity of the O-H bond in C6H5-xFxOH.

  20. A theoretical method for selecting space craft and space suit atmospheres.

    PubMed

    Vann, R D; Torre-Bueno, J R

    1984-12-01

    A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.

  1. Radio jet refraction in galactic atmospheres with static pressure gradients

    NASA Technical Reports Server (NTRS)

    Henriksen, R. N.; Vallee, J. P.; Bridle, A. H.

    1981-01-01

    A theory of double radio sources which have a 'Z' or 'S' morphology is proposed, based on the refraction of radio jets in the extended atmosphere of an elliptical galaxy. The model describes a collimated jet of supersonic material bending self-consistently under the influence of external static pressure gradients. Gravity and magnetic fields are neglected in the simplest case except insofar as they determine the static pressure distribution. The calculation is a straightforward extension of a method used to calculate a ram-pressure model for twin radio trails ('C' morphology). It may also be described as a continuous-jet version of a buoyancy model proposed in 1973. The model has the added virtue of invoking a galactic atmosphere similar to those already indicated by X-ray measurements of some other radio galaxies and by models for the collimation of other radio jets.

  2. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  3. Comparative planetology of the history of nitrogen isotopes in the atmospheres of Titan and Mars

    NASA Astrophysics Data System (ADS)

    Mandt, Kathleen; Mousis, Olivier; Chassefière, Eric

    2015-07-01

    We present here a comparative planetology study of evolution of 14N/15N at Mars and Titan. Studies show that 14N/15N can evolve a great deal as a result of escape in the atmosphere of Mars, but not in Titan's atmosphere. We explain this through the existence of an upper limit to the amount of fractionation allowed to occur due to escape that is a function of the escape flux and the column density of nitrogen.

  4. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  5. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  6. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main

  7. Specific interaction between negative atmospheric ions and organic compounds in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Sakai, Mami; Takayama, Mitsuo

    2012-06-01

    The interaction between negative atmospheric ions and various types of organic compounds were investigated using atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. Atmospheric negative ions such as O(2)(-), HCO(3)(-), COO(-)(COOH), NO(2)(-), NO(3)(-), and NO(3)(-)(HNO(3)) having different proton affinities served as the reactant ions for analyte ionization in APCDI in negative-ion mode. The individual atmospheric ions specifically ionized aliphatic and aromatic compounds with various functional groups as atmospheric ion adducts and deprotonated analytes. The formation of the atmospheric ion adducts under certain discharge conditions is most likely attributable to the affinity between the analyte and atmospheric ion and the concentration of the atmospheric ion produced under these conditions. The deprotonated analytes, in contrast, were generated from the adducts of the atmospheric ions with higher proton affinity attributable to efficient proton abstraction from the analyte by the atmospheric ion.

  8. Atmospheric pressure scanning transmission electron microscopy.

    PubMed

    de Jonge, Niels; Bigelow, Wilbur C; Veith, Gabriel M

    2010-03-10

    Scanning transmission electron microscope (STEM) images of gold nanoparticles at atmospheric pressure have been recorded through a 0.36 mm thick mixture of CO, O2, and He. This was accomplished using a reaction cell consisting of two electron-transparent silicon nitride membranes. Gold nanoparticles of a full width at half-maximum diameter of 1.0 nm were visible above the background noise, and the achieved edge resolution was 0.4 nm in accordance with calculations of the beam broadening.

  9. Germination and growth of lettuce (Lactuca sativa) at low atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Spanarkel, Robert; Drew, Malcolm C.

    2002-01-01

    The response of lettuce (Lactuca sativa L. cv. Waldmann's Green) to low atmospheric pressure was examined during the initial 5 days of germination and emergence, and also during subsequent growth to vegetative maturity at 30 days. Growth took place inside a 66-l-volume low pressure chamber maintained at 70 kPa, and plant response was compared to that of plants in a second, matching chamber that was at ambient pressure (approximately 101 kPa) as a control. In other experiments, to determine short-term effects of low pressure transients, plants were grown at ambient pressure until maturity and then subjected to alternating periods of 24 h of low and ambient atmospheric pressures. In all treatments the partial pressure of O2 was maintained at 21 kPa (approximately the partial pressure in air at normal pressure), and the partial pressure of CO2 was in the range 66.5-73.5 Pa (about twice that in normal air) in both chambers, with the addition of CO2 during the light phase. With continuous exposure to low pressure, shoot and root growth was at least as rapid as at ambient pressure, with an overall trend towards slightly greater performance at the lower pressure. Dark respiration rates were greater at low pressure. Transient periods at low pressure decreased transpiration and increased dark respiration but only during the period of exposure to low pressure. We conclude that long-term or short-term exposure to subambient pressure (70 kPa) was without detectable detriment to vegetative growth and development.

  10. Deposition of Atmospheric Nitrogen to Coastal Ecosystems (DANCE): A study in seasonally oligotrophic waters off the eastern U.S.

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Sedwick, P.; Mulholland, M. R.; Friedrichs, M. A.; Thompson, A. M.; Martins, D. K.; Bernhardt, P. W.; Herrmann, M.; Price, L. M.; Sohst, B. M.; Sookhdeo, C.; St-Laurent, P.; Widner, B.

    2016-02-01

    We carried out a program of process-oriented field measurements and biogeochemical modeling in oligotrophic coastal waters off the eastern U.S.—a region that currently receives high levels of atmospheric nitrogen deposition (AND)—to test whether wet AND events stimulate primary productivity and accumulation of algal biomass in coastal waters following summer storms. Our results from shipboard incubations and numerical modeling indicate that nitrogen in rain stimulated primary production in these waters during the summer of 2014. We will present isotopic, tracer, and modeling analyses that determine the relative roles of vertical mixing and atmospheric deposition during the wet AND events in two anticyclonic eddies north and south of the Gulf Stream. 3-D atmospheric and oceanic modeling results will also be presented, which allow the understanding gained during the summer 2014 field campaign to be applied to quantifying the role of atmospheric deposition throughout coastal waters of the eastern US over many years.

  11. Chemistry of the surface and lower atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Treiman, A.

    1992-01-01

    A comprehensive overview of the chemical interactions between the atmosphere and surface of Venus is presented. Earth-based, earth-orbital, and spacecraft data on the composition of the atmosphere and surface of Venus are presented and applied to quantitative evaluations of the chemical interactions between carbon, hydrogen, sulfur, chlorine, fluorine, and nitrogen-containing gases and possible minerals on the Venus surface. The calculation results are used to predict stable minerals and mineral assemblages on the Venus surface to determine which, if any, atmospheric gases are buffered by mineral assemblages on the surface, and to critically review and assess prior work on atmosphere-surface chemistry on Venus. It is concluded that the CO2 pressure on Venus is comparable to the CO2 equilibrium partial pressure developed by the calcite + wollastonite + quartz assemblage at the mean Venus surface temperature of 740 K.

  12. A new humane method of stunning broilers using low atmospheric pressure

    USDA-ARS?s Scientific Manuscript database

    This research project evaluated an alternative method of controlled atmosphere stunning of commercial broilers to induce anoxia utilizing a vacuum pump to reduce the oxygen tension, low atmospheric pressure stun (LAPS). A custom built 2 cage-module system (holding a total of 600 broilers each) with...

  13. Nitrogen-Containing Low Volatile Compounds from Pinonaldehyde-Dimethylamine Reaction in the Atmosphere: A Laboratory and Field Study.

    PubMed

    Duporté, Geoffroy; Parshintsev, Jevgeni; Barreira, Luís M F; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa

    2016-05-03

    Pinonaldehyde, which is among the most abundant oxidation products of α-pinene, and dimethylamine were selected to study the formation of N-containing low volatile compounds from aldehyde-amine reactions in the atmosphere. Gas phase reactions took place in a Tedlar bag, which was connected to a mass spectrometer ionization source via a short deactivated fused silica column. In addition to on-line analysis, abundance of gaseous precursors and reaction products were monitored off-line. Condensable products were extracted from the bag's walls with a suitable solvent and analyzed by gas chromatography coupled to chemical ionization high-resolution quadrupole time-of-flight mass spectrometry and by ultra-high-performance liquid chromatography coupled to electrospray ionization Orbitrap mass spectrometry. The reactions carried out resulted in several mid-low vapor pressure nitrogen-containing compounds that are potentially important for the formation of secondary organic aerosols in the atmosphere. Further, the presence of brown carbon, confirmed by liquid chromatography-UV-vis-mass spectrometry, was observed. Some of the compounds identified in the laboratory study were also observed in aerosol samples collected at SMEAR II station (Hyytiälä, Finland) in August 2015 suggesting the importance of aldehyde-amine reactions for the aerosol formation and growth.

  14. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  15. Circular array of stable atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhang, Z.-B.; Hoskinson, A.; Hopwood, J.

    2010-12-01

    A circular array composed of six quarter-wavelength microstripline resonators sustains a stable ring-shaped microplasma in atmospheric pressure argon. A single power source (1 GHz, <5 W) drives all six resonators. The operation of the array is modeled by coupled mode theory (CMT) and confirmed by electromagnetic simulations. Non-uniformities in the plasma ring are attributed to parasitic plasma sheath capacitance and confirmed by CMT.

  16. Keratinocytes at the uppermost layer of epidermis might act as sensors of atmospheric pressure change.

    PubMed

    Denda, Mitsuhiro

    2016-01-01

    It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.

  17. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  18. Globalising Synthetic Nitrogen: The Interwar Inauguration of a New Industry.

    PubMed

    Travis, Anthony S

    2017-02-01

    The most spectacular development in industrial chemistry during the early twentieth century concerned the capture of atmospheric nitrogen by the Haber-Bosch high-pressure ammonia process at the German chemical enterprise Badische Anilin- & Soda-Fabrik (BASF), of Ludwigshafen. This firm, confident that its complex process could not be readily imitated, set out to dominate the global nitrogen fertiliser market. The response was the emergence of rival high-pressure ammonia processes in Western Europe, the United States, and Japan during the 1920s. This article is an historical appreciation of the settings in which several countries, often driven by concerns over national security, were encouraged to develop and adopt non-BASF high-pressure nitrogen capture technologies. Moreover, synthetic ammonia was at the forefront of large-scale strategic self-sufficiency and state sponsored programmes in three countries - Italy, Russia, and Japan - at the very same time when the newer technologies became available. As a result, the chemical industries of these nations, under the influences of fascism, communism, and colonial modernisation projects, began moving into the top ranks.

  19. Summertime distribution of PAN and other reactive nitrogen species in the northern high-latitude atmosphere of eastern Canada

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Herlth, D.; O'Hara, D.; Zahnle, K.; Bradshaw, J. D.; Sandholm, S. T.; Talbot, R.; Gregory, G. L.; Sachse, G. W.; Blake, D. R.

    1994-01-01

    Aircraft measurements of key reactive nitrogen species (NO, NO2, HNO3, PAN, PPN, NO3(-), NO(y)), C1 to C6 hydrocarbons, acetone, O3, chemical tracers (C2Cl4, CO), and important meteorological parameters were performed over eastern Canada during July to August 1990 at altitudes between 0 and 6 km as part of an Arctic Boundary Layer Expedition (ABLE3B). In the free troposphere, PAN was found to be the single most abundant reactive nitrogen species constituting a major fraction of NO(y) and was significantly more abundant than NO(x) and HNO3. PAN and O3 were well correlated both in their fine and gross structures. Compared to data previously collected in the Arctic/subarctic atmosphere over Alaska (ABLE3A), the lower troposphere (0-4 km) over eastern Canada was found to contain larger reactive nitrogen and anthropogenic tracer concentrations. At higher altitudes (4-6 km) the atmospheric composition was in many ways similar to what was seen over Alaska and supports the view that a large-scale reservoir of PAN (and NO(y)) is present in the upper troposphere over the entire Arctic/subarctic region. The reactive nitrogen budget based on missions conducted from the North Bay site (missions 2-10) showed a small shortfall, whereas the budget for data collected from the Goose Bay operation (missions 11-19) showed essential balance. It is calculated that 15-20 ppt of the observed NO(x) may find its source from the available PAN reservoir. Meteorological considerations as well as relationships between reactive nitrogen and tracer species suggest that the atmosphere over eastern Canada during summer is greatly influenced by forest fires and transported industrial pollution.

  20. Atmospheric Pressure Variation is a Delayed Trigger for Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    van Donkelaar, Carlina E; Potgieser, Adriaan R E; Groen, Henk; Foumani, Mahrouz; Abdulrahman, Herrer; Sluijter, Rob; van Dijk, J Marc C; Groen, Rob J M

    2018-04-01

    There is an ongoing search for conditions that induce spontaneous subarachnoid hemorrhage (SAH). The seasonal pattern of SAH is shown in a large meta-analysis of the literature, but its explanation remains undecided. There is a clear need for sound meteorologic data to further elucidate the seasonal influence on SAH. Because of the stable and densely monitored atmospheric situation in the north of the Netherlands, we reviewed our unique cohort on the seasonal incidence of SAH and the association between SAH and local atmospheric changes. Our observational cohort study included 1535 patients with spontaneous SAH admitted to our neurovascular center in the north of the Netherlands between 2000 and 2015. Meteorologic data could be linked to the day of the ictus. To compare SAH incidences over the year and to test the association with meteorologic conditions, incidence rate ratios (IRRs) with corresponding 95% confidence intervals (CIs) were used, calculated by Poisson regression analyses. Atmospheric pressure variations were significantly associated with aneurysmal SAH. In particular, the pressure change on the second and third day before the ictus was independently correlated to a higher incidence of aneurysmal SAH (IRR, 1.11; 95% CI, 1.00-1.23). The IRR for aneurysmal SAH in July was calculated 0.67 (95% CI, 0.49-0.92) after adjustment for temperature and atmospheric pressure changes. Atmospheric pressure variations are a delayed trigger for aneurysmal SAH. Also, a significantly decreased incidence of aneurysmal SAH was noted in July. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Explosion characteristics of flammable organic vapors in nitrous oxide atmosphere.

    PubMed

    Koshiba, Yusuke; Takigawa, Tomihisa; Matsuoka, Yusaku; Ohtani, Hideo

    2010-11-15

    Despite unexpected explosion accidents caused by nitrous oxide have occurred, few systematic studies have been reported on explosion characteristics of flammable gases in nitrous oxide atmosphere compared to those in air or oxygen. The objective of this paper is to characterize explosion properties of mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with nitrous oxide and nitrogen using three parameters: explosion limit, peak explosion pressure, and time to the peak explosion pressure. Then, similar mixtures of n-pentane, diethyl ether, diethylamine, or n-butyraldehyde with oxygen and nitrogen were prepared to compare their explosion characteristics with the mixtures containing nitrous oxide. The explosion experiments were performed in a cylindrical vessel at atmospheric pressure and room temperature. The measurements showed that explosion ranges of the mixtures containing nitrous oxide were narrow compared to those of the mixtures containing oxygen. On the other hand, the maximum explosion pressures of the mixtures containing nitrous oxide were higher than those of the mixtures containing oxygen. Moreover, our experiments revealed that these mixtures differed in equivalence ratios at which the maximum explosion pressures were observed: the pressures of the mixtures containing nitrous oxide were observed at stoichiometry; in contrast, those of the mixtures containing oxygen were found at fuel-rich area. Chemical equilibrium calculations confirmed these behaviors. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Xiuying; Xu, Wen; Liu, Xuejun; Li, Yi; Lu, Xuehe; Zhang, Yuehan; Zhang, Wuting

    2017-08-01

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen (Nr). Atmospheric ammonia (NH3) and nitrogen dioxide (NO2) are the most important precursors for Nr compounds (including N2O5, HNO3, HONO and particulate NO3- and NH4+) in the atmosphere. Understanding the changes in NH3 and NO2 has important implications for the regulation of anthropogenic Nr emissions and is a requirement for assessing the consequence of environmental impacts. We conducted the temporal trend analysis of atmospheric NH3 and NO2 on a national scale since 1980 based on emission data (during 1980-2010), satellite observation (for NH3 since 2008 and for NO2 since 2005) and atmospheric chemistry transport modeling (during 2008-2015).Based on the emission data, during 1980-2010, significant continuous increasing trends in both NH3 and NOx were observed in REAS (Regional Emission inventory in Asia, for NH3 0.17 and for NOx 0.16 kg N ha-1 yr-2) and EDGAR (Emissions Database for Global Atmospheric Research, for NH3 0.24 and for NOx 0.17 kg N ha-1 yr-2) over China. Based on the satellite data and atmospheric chemistry transport model (CTM) MOZART-4 (Model for Ozone and Related chemical Tracers, version 4), the NO2 columns over China increased significantly from 2005 to 2011 and then decreased significantly from 2011 to 2015; the satellite-retrieved NH3 columns from 2008 to 2014 increased at a rate of 2.37 % yr-1. The decrease in NO2 columns since 2011 may result from more stringent strategies taken to control NOx emissions during the 12th Five Year Plan, while no control policy has focused on NH3 emissions. Our findings provided an overall insight into the temporal trends of both NO2 and NH3 since 1980 based on emission data, satellite observations and atmospheric transport modeling. These findings can provide a scientific background for policy makers that are attempting to control atmospheric pollution in China. Moreover, the multiple datasets

  3. Asteroid entry in Venusian atmosphere: Pressure and density fields effect on crater formation

    NASA Technical Reports Server (NTRS)

    Schmidt, Robert

    1995-01-01

    The objectives are to look at time scales of overpressure compared to cratering and to determine: what are the transient pressure and density due to atmospheric entry; do shock waves evacuate ambient gas; do transient atmospheric disturbances 'settle down' during cratering; can the pressure/density field be approximated as quasi-static; how does disturbance scale with impactor size; and what is the role of atmospheric thickness. The general approach is to perform inexpensive exploratory calculations, perform experiments to validate code and observe crater growth, and to follow up with more realistic coupling calculations. This viewgraph presentation presents progress made with the objective to obtain useful scaling relationships for crater formation when atmospheric effects are important.

  4. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  5. Powder containing 2H-type silicon carbide produced by reacting silicon dioxide and carbon powder in nitrogen atmosphere in the presence of aluminum

    NASA Technical Reports Server (NTRS)

    Kuramoto, N.; Takiguchi, H.

    1984-01-01

    The production of powder which contains silicon carbide consisting of 40% of 2H-type silicon carbide, beta type silicon carbide and less than 3% of nitrogen is discussed. The reaction temperature to produce the powder containing 40% of 2H-type silicon carbide is set at above 1550 degrees C in an atmosphere of aluminum or aluminum compounds and nitrogen gas or an antioxidation atmosphere containing nitrogen gas. The mixture ratio of silicon dioxide and carbon powder is 0.55 - 1:2.0 and the contents of aluminum or aluminum compounds within silicon dioxide is less than 3% in weight.

  6. Continuous Growth of Hexagonal Graphene and Boron Nitride In-Plane Heterostructures by Atmospheric Pressure Chemical Vapor Deposition

    PubMed Central

    Han, Gang Hee; Rodríguez-Manzo, Julio A.; Lee, Chan-Woo; Kybert, Nicholas J.; Lerner, Mitchell B.; Qi, Zhengqing John; Dattoli, Eric N.; Rappe, Andrew M.; Drndic, Marija; Charlie Johnson, A. T.

    2013-01-01

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to microscopy of nano-domains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric. PMID:24182310

  7. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.

    PubMed

    Han, Gang Hee; Rodríguez-Manzo, Julio A; Lee, Chan-Woo; Kybert, Nicholas J; Lerner, Mitchell B; Qi, Zhengqing John; Dattoli, Eric N; Rappe, Andrew M; Drndic, Marija; Johnson, A T Charlie

    2013-11-26

    Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single crystalline hexagonal boron nitride directly from the oriented edge of hexagonal graphene flakes by atmospheric pressure chemical vapor deposition, and physical property measurements that inform the design of in-plane hybrid electronics. Ribbons of boron nitride monolayer were grown from the edge of a graphene template and inherited its crystallographic orientation. The relative sharpness of the interface was tuned through control of growth conditions. Frequent tearing at the graphene-boron nitride interface was observed, so density functional theory was used to determine that the nitrogen-terminated interface was prone to instability during cool down. The electronic functionality of monolayer heterostructures was demonstrated through fabrication of field effect transistors with boron nitride as an in-plane gate dielectric.

  8. Growth of a Bacterium Under a High-Pressure Oxy-Helium Atmosphere

    PubMed Central

    Taylor, Craig D.

    1979-01-01

    Growth of a barotolerant marine organism, EP-4, in a glutamate medium equilibrated with an oxy-helium atmosphere at 500 atmospheres (atm; total pressure) (20°C) was compared with control cultures incubated at hydrostatic pressures of 1 and 500 atm. Relative to the 1-atm control culture, incubation of EP-4 at 500 atm in the absence of an atmosphere resulted in an approximately fivefold reduction in the growth rate and a significant but time variant reduction in the rate constants for the incorporation of substrate into cell material and respiration. Distinct from the pressurized control and separate from potential effects of dissolution of helium upon decompression of subsamples, exposure of the organism to high-pressure oxy-helium resulted in either a loss of viability of a large fraction of the cells or the arrest of growth for one-third of the experimental period. After these initial effects, however, the culture grew exponentially at a rate which was three times greater than the 500-atm control culture. The rate constant for the incorporation of substrate into cell material was also enhanced twofold in the presence of high-pressure oxy-helium. Dissolved oxygen was well controlled in all of the cultures, minimizing any potential toxic effects of this gas. PMID:16345337

  9. Estimates of the atmospheric deposition of sulfur and nitrogen species: Clean Air Status and Trends Network 1990-2000.

    PubMed

    Baumgardner, Ralph E; Lavery, Thomas F; Rogers, Christopher M; Isil, Selma S

    2002-06-15

    The Clean Air Status and Trends Network (CASTNet) was established by the U.S. EPA in response to the requirements of the 1990 Clean Air Act Amendments. To satisfy these requirements CASTNet was designed to assess and report on geographic patterns and long-term, temporal trends in ambient air pollution and acid deposition in order to gauge the effectiveness of current and future mandated emission reductions. This paper presents an analysis of the spatial patterns of deposition of sulfur and nitrogen pollutants for the period 1990-2000. Estimates of deposition are provided for two 4-yr periods: 1990-1993 and 1997-2000. These two periods were selected to contrast deposition before and after the large decrease in SO2 emissions that occurred in 1995. Estimates of dry deposition were obtained from measurements at CASTNet sites combined with deposition velocities that were modeled using the multilayer model, a 20-layer model that simulates the various atmospheric processes that contribute to dry deposition. Estimates of wet deposition were obtained from measurements at sites operated bythe National Atmospheric Deposition Program. The estimates of dry and wet deposition were combined to calculate total deposition of atmospheric sulfur (dry SO2, dry and wet SO4(2-)) and nitrogen (dry HNO3, dry and wet NO3-, dry and wet NH4+). An analysis of the deposition estimates showed a significant decline in sulfur deposition and no change in nitrogen deposition. The highest rates of sulfur deposition were observed in the Ohio River Valley and downwind states. This region also observed the largest decline in sulfur deposition. The highest rates of nitrogen deposition were observed in the Midwest from Illinois to southern New York State. Sulfur and nitrogen deposition fluxes were significantly higher in the eastern United States as compared to the western sites. Dry deposition contributed approximately 38% of total sulfur deposition and 30% of total nitrogen deposition in the eastern

  10. Development of High Temperature (3400F) and High Pressure (27,000 PSI) Gas Venting Process for Nitrogen Batch Heater

    DTIC Science & Technology

    2018-01-01

    for Mach 14 possibly degrading seals ability to contain pressure due to exposure to high temperatures. A different solution for Mach 14 case will be...AEDC-TR-18-H-1 Development of High Temperature (3400°F) and High Pressure (27,000 PSI) Gas Venting Process for Nitrogen Batch...Development of High Temperature (3400°F) and High Pressure (27,000 PSI) Gas Venting Process for Nitrogen Batch Heater FA9101-10-D-0001-0010 5b. GRANT

  11. [Ammonia volatilization loss of nitrogen fertilizer from rice field and wet deposition of atmospheric nitrogen in rice growing season].

    PubMed

    Su, Chengguo; Yin, Bin; Zhu, Zhaoliang; Shen, Qirong

    2003-11-01

    Plot and field experiments showed that the NH3 volatilization loss from rice field reached its maximum in 1-3 days after N-fertilization, which was affected by the local climate conditions (e.g., sun illumination, temperature, humidity, wind speed, and rainfall), fertilization time, and ammonium concentration in surface water of the rice field. The wet deposition of atmospheric nitrogen was correlated with the application rate of N fertilizer and the rainfall. The amount of nitrogen brought into soil or surface water by the wet deposition in rice growing season reached 7.5 kg.hm-2. The percent of NH4(+)-N in the wet deposition was about 39.8%-73.2%, with an average of 55.5%. There was a significant correlation of total ammonia volatilization loss with the average concentration of NH4(+)-N in wet deposition and total amount of wet deposition in rice growing season.

  12. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  13. The updated bottom up solution applied to atmospheric pressure photoionization and electrospray ionization mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...

  14. Atmospheric deposition of inorganic nitrogen in Spanish forests of Quercus ilex measured with ion-exchange resins and conventional collectors

    Treesearch

    Héctor García-Gomez; Sheila Izquieta-Rojano; Laura Aguillaume; Ignacio González-Fernández; Fernando Valiño; David Elustondo; Jesús M. Santamaría; Anna Àvila; Mark E. Fenn; Rocío Alonso

    2016-01-01

    Atmospheric nitrogen deposition is one of the main threats for biodiversity and ecosystem functioning. Measurement techniques like ion-exchange resin collectors (IECs), which are less expensive and time-consuming than conventional methods, are gaining relevance in the study of atmospheric deposition and are recommended to expand monitoring networks. In the present work...

  15. Optical and electrical characteristics of hollow-needle to plate atmospheric-pressure discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Simek, Milan; Schmidt, Jiri; Pekarek, Stanislav; Khun, Josef

    2006-10-01

    We have studied basic optical and electrical characteristics of the DC hollow needle to plate electrical discharge enhanced by the gas flow through the needle. Substantial advantage of this arrangement is that all gas supplied to the discharge passes through the discharge zone and therefore it is affected by plasma chemical processes. Depending on the energy dissipated between electrodes, we previously observed two basic discharge regimes: a) DC corona and b) DC corona superimposed with pulsed filamentary streamers [1]. In this work, we have analyzed radiation induced by filamentary streamers. In addition to nitrogen emissions driven by electron impact processes we have detected emission induced by specific energy transfer processes [2]. We have also determined mean repetition frequency of filamentary streamers (0.1-15 kHz) for the needle-to-plane gap and for the nitrogen flow through the needle ranging between 2-6 mm and 1-10 slm, respectively. [1] M. Simek and S.Pekarek, GEC 2005, Bul. Am. Phys. Soc. 50, 29, (2005) ; [2] M. Simek at al, Pure Appl. Chem. 78, 1213, (2006).

  16. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    PubMed

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  17. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laniel, Dominique; Desgreniers, Serge; Downie, Laura E.

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network,more » starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.« less

  18. Seasonal emanation of radon at Ghuttu, northwest Himalaya: Differentiation of atmospheric temperature and pressure influences.

    PubMed

    Kamra, Leena

    2015-11-01

    Continuous monitoring of radon along with meteorological parameters has been carried out in a seismically active area of Garhwal region, northwest Himalaya, within the frame work of earthquake precursory research. Radon measurements are carried out by using a gamma ray detector installed in the air column at a depth of 10m in a 68m deep borehole. The analysis of long time series for 2006-2012 shows strong seasonal variability masked by diurnal and multi-day variations. Isolation of a seasonal cycle by minimising short-time by 31 day running average shows a strong seasonal variation with unambiguous dependence on atmospheric temperature and pressure. The seasonal characteristics of radon concentrations are positively correlated to atmospheric temperature (R=0.95) and negatively correlated to atmospheric pressure (R=-0.82). The temperature and pressure variation in their annual progressions are negatively correlated. The calculations of partial correlation coefficient permit us to conclude that atmospheric temperature plays a dominant role in controlling the variability of radon in borehole, 71% of the variability in radon arises from the variation in atmospheric temperature and about 6% of the variability is contributed by atmospheric pressure. The influence of pressure variations in an annual cycle appears to be a pseudo-effect, resulting from the negative correlation between temperature and pressure variations. Incorporation of these results explains the varying and even contradictory claims regarding the influence of the pressure variability on radon changes in the published literature. Temperature dependence, facilitated by the temperature gradient in the borehole, controls the transportation of radon from the deep interior to the surface. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Thresholds for protecting Pacific Northwest ecosystems from atmospheric deposition of nitrogen: state of knowledge report

    USGS Publications Warehouse

    Cummings, Tonnie; Blett, Tamara; Porter, Ellen; Geiser, Linda; Graw, Rick; McMurray, Jill; Perakis, Steven S.; Rochefort, Regina

    2014-01-01

    The National Park Service and U.S. Forest Service manage areas in the states of Idaho, Oregon, and Washington – collectively referred to in this report as the Pacific Northwest - that contain significant natural resources and provide many recreational opportunities. The agencies are mandated to protect the air quality and air pollution-sensitive resources on these federal lands. Human activity has greatly increased the amount of nitrogen emitted to the atmosphere, resulting in elevated amounts of nitrogen being deposited in park and forest ecosystems. There is limited information in the Pacific Northwest about the levels of nitrogen that negatively affect natural systems, i.e., the critical loads. The National Park Service and U.S. Forest Service, with scientific input from the U.S. Geological Survey, have developed an approach for accumulating additional nitrogen critical loads information in the Pacific Northwest and using the data in planning and regulatory arenas. As a first step in that process, this report summarizes the current state of knowledge about nitrogen deposition, effects, and critical loads in the region. It also describes ongoing research efforts and identifies and prioritizes additional data needs.

  20. Mechanisms behind surface modification of polypropylene film using an atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Shaw, David; West, Andrew; Bredin, Jerome; Wagenaars, Erik

    2016-12-01

    Plasma treatments are common for increasing the surface energy of plastics, such as polypropylene (PP), to create improved adhesive properties. Despite the significant differences in plasma sources and plasma properties used, similar effects on the plastic film can be achieved, suggesting a common dominant plasma constituent and underpinning mechanism. However, many details of this process are still unknown. Here we present a study into the mechanisms underpinning surface energy increase of PP using atmospheric-pressure plasmas. For this we use the effluent of an atmospheric-pressure plasma jet (APPJ) since, unlike most plasma sources used for these treatments, there is no direct contact between the plasma and the PP surface; the APPJ provides a neutral, radical-rich environment without charged particles and electric fields impinging on the PP surface. The APPJ is a RF-driven plasma operating in helium gas with small admixtures of O2 (0-1%), where the effluent propagates through open air towards the PP surface. Despite the lack of charged particles and electric fields on the PP surface, measurements of contact angle show a decrease from 93.9° to 70.1° in 1.4 s and to 35° in 120 s, corresponding to a rapid increase in surface energy from 36.4 mN m-1 to 66.5 mN m-1 in the short time of 1.4 s. These treatment effects are very similar to what is found in other devices, highlighting the importance of neutral radicals produced by the plasma. Furthermore, we find an optimum percentage of oxygen of 0.5% within the helium input gas, and a decrease of the treatment effect with distance between the APPJ and the PP surface. These observed effects are linked to two-photon absorption laser-induced fluorescence spectroscopy (TALIF) measurements of atomic oxygen density within the APPJ effluent which show similar trends, implying the importance of this radical in the surface treatment of PP. Analysis of the surface reveals a two stage mechanism for the production of polar

  1. Nitrogen trifluoride global emissions estimated from updated atmospheric measurements

    PubMed Central

    Arnold, Tim; Harth, Christina M.; Mühle, Jens; Manning, Alistair J.; Salameh, Peter K.; Kim, Jooil; Ivy, Diane J.; Steele, L. Paul; Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Baggenstos, Daniel; Weiss, Ray F.

    2013-01-01

    Nitrogen trifluoride (NF3) has potential to make a growing contribution to the Earth’s radiative budget; however, our understanding of its atmospheric burden and emission rates has been limited. Based on a revision of our previous calibration and using an expanded set of atmospheric measurements together with an atmospheric model and inverse method, we estimate that the global emissions of NF3 in 2011 were 1.18 ± 0.21 Gg⋅y−1, or ∼20 Tg CO2-eq⋅y−1 (carbon dioxide equivalent emissions based on a 100-y global warming potential of 16,600 for NF3). The 2011 global mean tropospheric dry air mole fraction was 0.86 ± 0.04 parts per trillion, resulting from an average emissions growth rate of 0.09 Gg⋅y−2 over the prior decade. In terms of CO2 equivalents, current NF3 emissions represent between 17% and 36% of the emissions of other long-lived fluorinated compounds from electronics manufacture. We also estimate that the emissions benefit of using NF3 over hexafluoroethane (C2F6) in electronics manufacture is significant—emissions of between 53 and 220 Tg CO2-eq⋅y−1 were avoided during 2011. Despite these savings, total NF3 emissions, currently ∼10% of production, are still significantly larger than expected assuming global implementation of ideal industrial practices. As such, there is a continuing need for improvements in NF3 emissions reduction strategies to keep pace with its increasing use and to slow its rising contribution to anthropogenic climate forcing. PMID:23341630

  2. Engineering a laser remote sensor for atmospheric pressure and temperature

    NASA Technical Reports Server (NTRS)

    Kalshoven, J. E., Jr.; Korb, C. L.

    1978-01-01

    A system for the remote sensing of atmospheric pressure and temperature is described. Resonant lines in the 7600 Angstrom oxygen A band region are used and an organic dye laser beam is tuned to measure line absorption changes with temperature or pressure. A reference beam outside this band is also transmitted for calibration. Using lidar techniques, profiling of these parameters with altitude can be accomplished.

  3. Airborne and ground based lidar measurements of the atmospheric pressure profile

    NASA Technical Reports Server (NTRS)

    Korb, C. Laurence; Schwemmer, Geary K.; Dombrowski, Mark; Weng, Chi Y.

    1989-01-01

    The first high accuracy remote measurements of the atmospheric pressure profile have been made. The measurements were made with a differential absorption lidar system that utilizes tunable alexandrite lasers. The absorption in the trough between two lines in the oxygen A-band near 760 nm was used for probing the atmosphere. Measurements of the two-dimensional structure of the pressure field were made in the troposphere from an aircraft looking down. Also, measurements of the one-dimensional structure were made from the ground looking up. Typical pressure accuracies for the aircraft measurements were 1.5-2 mbar with a 30-m vertical resolution and a 100-shot average (20 s), which corresponds to a 2-km horizontal resolution. Typical accuracies for the upward viewing ground based measurements were 2.0 mbar for a 30-m resolution and a 100-shot average.

  4. Atmospheric pressure plasma jet treatment of Salmonella Enteritidis inoculated eggshells.

    PubMed

    Moritz, Maike; Wiacek, Claudia; Koethe, Martin; Braun, Peggy G

    2017-03-20

    Contamination of eggshells with Salmonella Enteritidis remains a food safety concern. In many cases human salmonellosis within the EU can be traced back to raw or undercooked eggs and egg products. Atmospheric pressure plasma is a novel decontamination method that can reduce a wide range of pathogens. The aim of this work was to evaluate the possibility of using an effective short time cold plasma treatment to inactivate Salmonella Enteritidis on the eggshell. Therefore, artificially contaminated eggshells were treated with an atmospheric pressure plasma jet under different experimental settings with various exposure times (15-300s), distances from the plasma jet nozzle to the eggshell surface (5, 8 or 12mm), feed gas compositions (Ar, Ar with 0.2, 0.5 or 1.0% O 2 ), gas flow rates (5 and 7slm) and different inoculations of Salmonella Enteritidis (10 1 -10 6 CFU/cm 2 ). Atmospheric pressure plasma could reduce Salmonella Enteritidis on eggshells significantly. Reduction factors ranged between 0.22 and 2.27 log CFU (colony-forming units). Exposure time and, particularly at 10 4 CFU/cm 2 inoculation, feed gas had a major impact on Salmonella reduction. Precisely, longer exposure times led to higher reductions and Ar as feed gas was more effective than ArO 2 mixtures. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Detection of atmospheric pressure loading using very long baseline interferometry measurements

    NASA Technical Reports Server (NTRS)

    Vandam, T. M.; Herring, T. A.

    1994-01-01

    Loading of the Earth by the temporal redistribution of global atmospheric mass is likely to displace the positions of geodetic monuments by tens of millimeters both vertically and horizontally. Estimates of these displacements are determined by convolving National Meteorological Center (NMC) global values of atmospheric surface pressure with Farrell's elastic Green's functions. An analysis of the distances between radio telescopes determined by very long baseline interferometry (VLBI) between 1984 and 1992 reveals that in many of the cases studied there is a significant contribution to baseline length change due to atmospheric pressure loading. Our analysis covers intersite distances of between 1000 and 10,000 km and is restricted to those baselines measured more than 100 times. Accounting for the load effects (after first removing a best fit slope) reduces the weighted root-mean-square (WRMS) scatter of the baseline length residuals on 11 of the 22 baselines investigated. The slight degradation observed in the WRMS scatter on the remaining baselines is largely consistent with the expected statistical fluctuations when a small correction is applied to a data set having a much larger random noise. The results from all baselines are consistent with approximately 60% of the computed pressure contribution being present in the VLBI length determinations. Site dependent coefficients determined by fitting local pressure to the theoretical radial displacement are found to reproduce the deformation caused by the regional pressure to within 25% for most inland sites. The coefficients are less reliable at near coastal and island stations.

  6. Super-atmospheric pressure ionization mass spectrometry and its application to ultrafast online protein digestion analysis.

    PubMed

    Chen, Lee Chuin; Ninomiya, Satoshi; Hiraoka, Kenzo

    2016-06-01

    Ion source pressure plays a significant role in the process of ionization and the subsequent ion transmission inside a mass spectrometer. Pressurizing the ion source to a gas pressure greater than atmospheric pressure is a relatively new approach that aims to further improve the performance of atmospheric pressure ionization sources. For example, under a super-atmospheric pressure environment, a stable electrospray can be sustained for liquid with high surface tension such as pure water, because of the suppression of electric discharge. Even for nano-electrospray ionization (nano-ESI), which is known to work with aqueous solution, its stability and sensitivity can also be enhanced, particularly in the negative mode when the ion source is pressurized. A brief review on the development of super-atmospheric pressure ion sources, including high-pressure electrospray, field desorption and superheated ESI, and the strategies to interface these ion sources to a mass spectrometer will be given. Using a recent ESI prototype with an operating temperature at 220 °C under 27 atm, we also demonstrate that it is possible to achieve an online Asp-specific protein digestion analysis in which the whole processes of digestion, ionization and MS acquisition could be completed on the order of a few seconds. This method is fast, and the reaction can even be monitored on a near-real-time basis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Atmospheric pressure loading parameters from very long baseline interferometry observations

    NASA Technical Reports Server (NTRS)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  8. Corona-glow transition in the atmospheric pressure RF-excited plasma needle

    NASA Astrophysics Data System (ADS)

    Sakiyama, Y.; Graves, D. B.

    2006-08-01

    We present clear evidence of two different discharge modes of the atmospheric pressure RF-excited plasma needle and the transition mechanism by the finite element method. The gas used is helium with 0.1% nitrogen addition. The needle has a point-to-plane geometry with a radius of 30 µm at the tip, 150 µm at the base and an inter-electrode gap of 1 mm. We employ the one-moment fluid model with the local field approximation. Our simulation results indicate that the plasma needle operates as a corona discharge at low power and that the discharge mode transitions to a glow discharge at a critical power. The discharge power increases but the discharge voltage drops abruptly by a factor of about 2 in the corona-glow transition. The plasma density and ionization is confined near the needle tip in corona-mode while it spreads back along the needle surface in glow-mode. The corona-glow transition is also characterized by a dramatic decrease in sheath thickness and an order of magnitude increase in plasma density and volume-averaged ionization. The transition is observed whether or not secondary electron emission is included in the model, and therefore we suggest that this is not an α -γ transition.

  9. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  10. High pressure adsorption isotherms of nitrogen onto granular activated carbon for a single bed pressure swing adsorption refrigeration system

    NASA Astrophysics Data System (ADS)

    Palodkar, Avinash V.; Anupam, Kumar; Roy, Zunipa; Saha, B. B.; Halder, G. N.

    2017-10-01

    Adsorption characteristics of nitrogen onto granular activated carbon for the wide range of temperature (303-323 K) and pressure (0.2027-2.0265 MPa) have been reported for a single bed pressure swing adsorption refrigeration system. The experimental data were fitted to Langmuir, Dubinin-Astakhov and Dubinin-Radushkevich (D-R) isotherms. The Langmuir and D-R isotherm models were found appropriate in correlating experimental adsorption data with an average relative error of ±2.0541% and ±0.6659% respectively. The isosteric heat of adsorption data were estimated as a function of surface coverage of nitrogen and temperature using D-R isotherm. The heat of adsorption was observed to decrease from 12.65 to 6.98 kJ.mol-1 with an increase in surface concentration at 303 K and it followed the same pattern for other temperatures. It was found that an increase in temperature enhances the magnitude of the heat of adsorption.

  11. The effect of nitrogen additions on bracken fern and its insect herbivores at sites with high and low atmospheric pollution

    Treesearch

    M.E. Jones; M.E. Fenn; T.D. Paine

    2011-01-01

    The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles,...

  12. Production of nitrogen oxides in air pulse-periodic discharge with apokamp

    NASA Astrophysics Data System (ADS)

    Panarin, Victor A.; Skakun, Victor S.; Sosnin, Eduard A.; Tarasenko, Victor F.

    2018-05-01

    The decomposition products of pulse-periodic discharge atmospheric pressure plasma in apokamp, diffuse and corona modes were determined by optical and chemical methods. It is shown that apokamp discharge formation starts at a critical value of dissipation power in a discharge channel. Simultaneously, due to the thermochemical reactions, plasma starts to efficiently produce nitrogen oxides.

  13. Spacecraft Sterilization Using Non-Equilibrium Atmospheric Pressure Plasma

    NASA Technical Reports Server (NTRS)

    Cooper, Moogega; Vaze, Nachiket; Anderson, Shawn; Fridman, Gregory; Vasilets, Victor N.; Gutsol, Alexander; Tsapin, Alexander; Fridman, Alexander

    2007-01-01

    As a solution to chemically and thermally destructive sterilization methods currently used for spacecraft, non-equilibrium atmospheric pressure plasmas are used to treat surfaces inoculated with Bacillus subtilis and Deinococcus radiodurans. Evidence of significant morphological changes and reduction in viability due to plasma exposure will be presented, including a 4-log reduction of B. subtilis after 2 minutes of dielectric barrier discharge treatment.

  14. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  15. Interface properties of SiOxNy layer on Si prepared by atmospheric-pressure plasma oxidation-nitridation

    PubMed Central

    2013-01-01

    SiOxNy films with a low nitrogen concentration (< 4%) have been prepared on Si substrates at 400°C by atmospheric-pressure plasma oxidation-nitridation process using O2 and N2 as gaseous precursors diluted in He. Interface properties of SiOxNy films have been investigated by analyzing high-frequency and quasistatic capacitance-voltage characteristics of metal-oxide-semiconductor capacitors. It is found that addition of N into the oxide increases both interface state density (Dit) and positive fixed charge density (Qf). After forming gas anneal, Dit decreases largely with decreasing N2/O2 flow ratio from 1 to 0.01 while the change of Qf is insignificant. These results suggest that low N2/O2 flow ratio is a key parameter to achieve a low Dit and relatively high Qf, which is effective for field effect passivation of n-type Si surfaces. PMID:23634872

  16. Polluting a microbial methane sink. [Effect of nitrogen in acid rain on reducing removal of methane from the atmosphere by soil bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-03-01

    Excess nitrogen, whether from fertilization or from acid rain, seems to reduce the amount of methane that soil organisms can remove from the atmosphere. Methane, an important greenhouse gas, contributes to global warming by acting as an atmospheric blanket. The gas has been increasing approximately 1% a year for the past decade, due either to increases in global sources or decrease in biological sinks. The largest such sinks are the microorganisms in aerobic soils. Recent research by P.A. Steudler, R.D. Bowden, and J.M. Melillo of the Marine Biological Laboratory, Woods Hole, Massachusetts, and J.D. Aber of the University of Newmore » Hampshire, Durham, has shown that added nitrogen significantly decreases the rates at which temperate forest soils can take up methane. Laboratory studies with soil microorganisms support the field observations, suggesting that high nitrogen suppresses methane uptake. The researchers say further measurements in agroecosystems, pastures, and other high-nitrogen systems are needed to clarify the nitrogen-methane interaction before extrapolation to a global basis.« less

  17. Atmospheric-pressure-plasma-enhanced fabrication of nonfouling nanocoatings for 316 stainless steel biomaterial interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Chun; Lin, Jin-He; Li, Chi-Heng; Yu, I.-Chun; Chen, Ting-Lun

    2018-03-01

    Atmospheric-pressure plasma, which was generated with electrical RF power, was fed to a tetramethyldisiloxane/argon gas mixture to prepare bioinert organosilicon coatings for 316 stainless steel. The surface characteristics of atmospheric-pressure-plasma-deposited nanocoatings were evaluated as a function of RF plasma power, precursor gas flow, and plasma working distance. After surface deposition, the chemical features, elemental compositions, and surface morphologies of the organosilicon nanocoatings were examined. It was found that RF plasma power and plasma working distance are the essential factors that affect the formation of plasma-deposited nanocoatings. Fourier transform infrared spectroscopy spectra indicate that the atmospheric-pressure-plasma-deposited nanocoatings formed showed inorganic features. Atomic force microscopy analysis showed the surface roughness variation of the plasma-deposited nanocoating at different RF plasma powers and plasma working distances during surface treatment. From these surface analyses, it was found that the plasma-deposited organosilicon nanocoatings under specific operational conditions have relatively hydrophobic and inorganic characteristics, which are essential for producing an anti-biofouling interface on 316 stainless steel. The experimental results also show that atmospheric-pressure-plasma-deposited nanocoatings have potential use as a cell-resistant layer on 316 stainless steel.

  18. Ionization of EPA Contaminants in Direct and Dopant-Assisted Atmospheric Pressure Photoionization and Atmospheric Pressure Laser Ionization

    NASA Astrophysics Data System (ADS)

    Kauppila, Tiina J.; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  19. Numerical simulation of the generation of reactive oxygen and nitrogen species (RONS) in water by atmospheric-pressure plasmas and their effects on Escherichia coli (E. coli)

    NASA Astrophysics Data System (ADS)

    Ikuse, Kazumasa; Hamaguchi, Satoshi

    2016-09-01

    We have used two types of numerical simulations to examine biological effects of reactive oxygen and nitrogen species (RONS) generated in water by an atmospheric-pressure plasma (APP) that irradiates the water surface. One is numerical simulation for the generation and transport of RONS in water based on the reaction-diffusion-advection equations coupled with Poisson equation. The rate constants, mobilities, and diffusion coefficients used in the equations are obtained from the literature. The gaseous species are given as boundary conditions and time evolution of the concentrations of chemical species in pure water is solved numerically as functions of the depth in one dimension. Although it is not clear how living organisms respond to such exogenous RONS, we also use numerical simulation for metabolic reactions of Escherichia coli (E. coli) and examine possible effects of such RONS on an in-silico model organism. The computation model is based on the flux balance analysis (FBA), where the fluxes of the metabolites in a biological system are evaluated in steady state, i.e., under the assumption that the fluxes do not change in time. The fluxes are determined with liner programming to maximize the growth rate of the bacteria under the given conditions. Although FBA cannot be directly applied to dynamical responses of metabolic reactions, the simulation still gives insight into the biological reactions to exogenous chemical species generated by an APP. Partially supported by JSPS Grants-in-Aid for Scientific Research.

  20. Mapping Critical Loads of Atmospheric Nitrogen Deposition in the Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Nanus, L.; Clow, D. W.; Stephens, V. C.; Saros, J. E.

    2010-12-01

    Atmospheric nitrogen (N) deposition can adversely affect sensitive aquatic ecosystems at high-elevations in the western United States. Critical loads are the amount of deposition of a given pollutant that an ecosystem can receive below which ecological effects are thought not to occur. GIS-based landscape models were used to create maps for high-elevation areas across the Rocky Mountain region showing current atmospheric deposition rates of nitrogen (N), critical loads of N, and exceedances of critical loads of N. Atmospheric N deposition maps for the region were developed at 400 meter resolution using gridded precipitation data and spatially interpolated chemical concentrations in rain and snow. Critical loads maps were developed based on chemical thresholds corresponding to observed ecological effects, and estimated ecosystem sensitivities calculated from basin characteristics. Diatom species assemblages were used as an indicator of ecosystem health to establish critical loads of N. Chemical thresholds (concentrations) were identified for surface waters by using a combination of in-situ growth experiments and observed spatial patterns in surface-water chemistry and diatom species assemblages across an N deposition gradient. Ecosystem sensitivity was estimated using a multiple-linear regression approach in which observed surface water nitrate concentrations at 530 sites were regressed against estimates of inorganic N deposition and basin characteristics (topography, soil type and amount, bedrock geology, vegetation type) to develop predictive models of surface water chemistry. Modeling results indicated that the significant explanatory variables included percent slope, soil permeability, and vegetation type (including barren land, shrub, and grassland) and were used to predict high-elevation surface water nitrate concentrations across the Rocky Mountains. Chemical threshold concentrations were substituted into an inverted form of the model equations and applied to

  1. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    NASA Astrophysics Data System (ADS)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  2. Desorption atmospheric pressure photoionization.

    PubMed

    Haapala, Markus; Pól, Jaroslav; Saarela, Ville; Arvola, Ville; Kotiaho, Tapio; Ketola, Raimo A; Franssila, Sami; Kauppila, Tiina J; Kostiainen, Risto

    2007-10-15

    An ambient ionization technique for mass spectrometry, desorption atmospheric pressure photoionization (DAPPI), is presented, and its application to the rapid analysis of compounds of various polarities on surfaces is demonstrated. The DAPPI technique relies on a heated nebulizer microchip delivering a heated jet of vaporized solvent, e.g., toluene, and a photoionization lamp emitting 10-eV photons. The solvent jet is directed toward sample spots on a surface, causing the desorption of analytes from the surface. The photons emitted by the lamp ionize the analytes, which are then directed into the mass spectrometer. The limits of detection obtained with DAPPI were in the range of 56-670 fmol. Also, the direct analysis of pharmaceuticals from a tablet surface was successfully demonstrated. A comparison of the performance of DAPPI with that of the popular desorption electrospray ionization method was done with four standard compounds. DAPPI was shown to be equally or more sensitive especially in the case of less polar analytes.

  3. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge workingmore » in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.« less

  4. Quanitfying atmospheric nitrogen loading to watersheds using nitrate isotopes (15N, 17O, 18O)

    NASA Astrophysics Data System (ADS)

    Wankel, S. D.; Kendall, C.

    2002-12-01

    Over the past century, human activity has greatly increased the amount of reactive nitrogen (N) in the atmosphere and the N inputs to terrestrial and aquatic ecosystems. Recent studies in the northeastern US have indicated that atmospheric N deposition is a significant source to land and water in the region, with contributions ranging from 15 to 60%. Estimates of the importance of atmospheric N have been plagued with uncertainty, however, due to incomplete data from atmospheric monitoring networks, to the varied spatial and temporal scales of databases dealing with agricultural, population, and land use, and to simplifications that are necessary to describe the complex rates of N accumulation and transformation. The principal objective of this study is the evaluation of new stable isotope techniques for quantifying the relative contributions atmospheric sources of anthropogenic nitrogen to the landscape and to the total N exported from watersheds in the northeastern US. In the last decade, several studies have used d18O and d15N of nitrate to evaluate the relative contributions of riverine nitrate derived from atmospheric sources. Very recent advances in analytical techniques (by Michalski, Thiemens, and colleagues) that allow the analysis of nitrate for d17O have shown that atmospheric nitrate is labeled with an anomalous, non-terrestrial, d17O signature. Hence, we now have three isotopes of nitrate that can be used to quantify sources of riverine nitrate. To test whether the analysis of nitrate for d17O enhances our ability to quantify atmospheric contributions to the total nitrate exported by major river basins, we have initiated a pilot study of many of the major rivers in the Ohio Basin and the northeastern USA. Published studies in these basins suggest that nitrate from basins dominated by urban, forested, and undeveloped landuses frequently has d18O values consistent with significant input from atmospheric sources. Preliminary d18O and d15N of nitrate data

  5. Use of Atmospheric-Pressure Plasma Jet for Polymer Surface Modification: An Overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuettner, Lindsey A.

    Atmospheric-pressure plasma jets (APPJs) are playing an increasingly important role in materials processing procedures. Plasma treatment is a useful tool to modify surface properties of materials, especially polymers. Plasma reacts with polymer surfaces in numerous ways thus the type of process gas and plasma conditions must be explored for chosen substrates and materials to maximize desired properties. This report discusses plasma treatments and looks further into atmospheric-pressure plasma jets and the effects of gases and plasma conditions. Following the short literature review, a general overview of the future work and research at Los Alamos National Laboratory (LANL) is discussed.

  6. One-stage free-vortex aerodynamic window with pressure ratio 100 and atmospheric exhaust

    NASA Astrophysics Data System (ADS)

    Malkov, Victor M.; Trilis, A. V.; Savin, Andrew V.; Druzhinin, S. L.

    2005-03-01

    The aerodynamic windows (AW) are intended for a high power extraction from the gas laser optical cavity, where the pressure is much lower than environment pressure. The main requirements for the aerodynamic windows are to satisfy a low level of optical disturbances in a laser beam extraction channel and an air leakage absence into the optical cavity. Free vortex AW are most economic from a point of working gas consumption and the greatest pressure differential is realized on them at an exhaust to atmosphere. For ideal gas it is possible to receive as much as large pressure differential, however for real gas a pressure differential more than P>=50 is difficult to achieve. To achieve the pressure ratio 100 in free vortex single-stage AW the method of stabilizing of boundary layer was used. The gas of curtain was decelerated in the diffuser and was exhausted into the atmosphere straightly. The pressure recovery improvement was achieved by using the boundary layer blowing inside the diffuser. Only 10% of total mass flow was used for boundary layer blowing.

  7. An analysis of the errors associated with the determination of atmospheric temperature from atmospheric pressure and density data

    NASA Technical Reports Server (NTRS)

    Minzner, R. A.

    1976-01-01

    A graph was developed for relating delta T/T, the relative uncertainty in atmospheric temperature T, to delta p/p, the relative uncertainty in the atmospheric pressure p, for situations, when T is derived from the slope of the pressure-height profile. A similar graph relates delta T/T to delta roh/rho, the relative uncertainty in the atmospheric density rho, for those cases when T is derived from the downward integration of the density-height profile. A comparison of these two graphs shows that for equal uncertainties in the respective basic parameters, p or rho, smaller uncertainties in the derived temperatures are associated with density-height rather than with pressure-height data. The value of delta T/T is seen to depend not only upon delta p or delta rho, and to a small extent upon the value of T or the related scale height H, but also upon the inverse of delta h, the height increment between successive observations of p or rho. In the case of pressure-height data, delta T/T is dominated by 1/delta h for all values of delta h; for density-height data, delta T/T is dominated by delta rho/rho for delta h smaller than about 5 km. In the case of T derived from density-height data, this inverse relationship between delta T/T and delta h applies only for large values of delta h, that is, for delta h 35 km. No limit exists in the fineness of usable height resolution of T which may be derived from densities, while a fine height resolution in pressure-height data leads to temperature with unacceptably large uncertainties.

  8. Methanol Droplet Extinction in Oxygen/Carbon-dioxide/Nitrogen Mixtures in Microgravity: Results from the International Space Station Experiments

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Dietrich, Daniel L.; Ferkul, Paul V.; Hicks, Michael C.; Williams, Forman A.

    2012-01-01

    Motivated by the need to understand the flammability limits of condensed-phase fuels in microgravity, isolated single droplet combustion experiments were carried out in the Combustion Integrated Rack Facility onboard the International Space Station. Experimental observations of methanol droplet combustion and extinction in oxygen/carbon-dioxide/nitrogen mixtures at 0.7 and 1 atmospheric pressure in quiescent microgravity environment are reported for initial droplet diameters varying between 2 mm to 4 mm in this study.The ambient oxygen concentration was systematically lowered from test to test so as to approach the limiting oxygen index (LOI) at fixed ambient pressure. At one atmosphere pressure, ignition and some burning were observed for an oxygen concentration of 13% with the rest being nitrogen. In addition, measured droplet burning rates, flame stand-off ratios, and extinction diameters are presented for varying concentrations of oxygen and diluents. Simplified theoretical models are presented to explain the observed variations in extinction diameter and flame stand-off ratios.

  9. Atmospheric pressure MALDI for the noninvasive characterization of carbonaceous ink from Renaissance documents.

    PubMed

    Grasso, Giuseppe; Calcagno, Marzia; Rapisarda, Alessandro; D'Agata, Roberta; Spoto, Giuseppe

    2017-06-01

    The analytical methods that are usually applied to determine the compositions of inks from ancient manuscripts usually focus on inorganic components, as in the case of iron gall ink. In this work, we describe the use of atmospheric pressure/matrix-assisted laser desorption ionization-mass spectrometry (AP/MALDI-MS) as a spatially resolved analytical technique for the study of the organic carbonaceous components of inks used in handwritten parts of ancient books for the first time. Large polycyclic aromatic hydrocarbons (L-PAH) were identified in situ in the ink of XVII century handwritten documents. We prove that it is possible to apply MALDI-MS as a suitable microdestructive diagnostic tool for analyzing samples in air at atmospheric pressure, thus simplifying investigations of the organic components of artistic and archaeological objects. The interpretation of the experimental MS results was supported by independent Raman spectroscopic investigations. Graphical abstract Atmospheric pressure/MALDI mass spectrometry detects in situ polycyclic aromatic hydrocarbons in the carbonaceous ink of XVII century manuscripts.

  10. Atmospheric pressure and temperature profiling using near IR differential absorption lidar

    NASA Technical Reports Server (NTRS)

    Korb, C. L.; Schwemmer, G. K.; Dombrowski, M.; Weng, C. Y.

    1983-01-01

    The present investigation is concerned with differential absorption lidar techniques for remotely measuring the atmospheric temperature and pressure profile, surface pressure, and cloud top pressure-height. The procedure used in determining the pressure is based on the conduction of high-resolution measurements of absorption in the wings of lines in the oxygen A band. Absorption with respect to these areas is highly pressure sensitive in connection with the mechanism of collisional line broadening. The method of temperature measurement utilizes a determination of the absorption at the center of a selected line in the oxygen A band which originates from a quantum state with high ground state energy.

  11. Atmospheric Pseudohalogen Chemistry

    NASA Technical Reports Server (NTRS)

    Lary, David John

    2004-01-01

    Hydrogen cyanide is not usually considered in atmospheric chemical models. The paper presents three reasons why hydrogen cyanide is likely to be significant for atmospheric chemistry. Firstly, HCN is a product and marker of biomass burning. Secondly, it is also likely that lightning is producing HCN, and as HCN is sparingly soluble it could be a useful long-lived "smoking gun" marker of lightning activity. Thirdly, the chemical decomposition of HCN leads to the production of small amounts of the cyanide (CN) and NCO radicals. The NCO radical can be photolyzed in the visible portion of the spectrum yielding nitrogen atoms (N). The production of nitrogen atoms is significant as it leads to the titration of total nitrogen from the atmosphere via N+N->N2, where N2 is molecular nitrogen.

  12. Weather forecasting by insects: modified sexual behaviour in response to atmospheric pressure changes.

    PubMed

    Pellegrino, Ana Cristina; Peñaflor, Maria Fernanda Gomes Villalba; Nardi, Cristiane; Bezner-Kerr, Wayne; Guglielmo, Christopher G; Bento, José Maurício Simões; McNeil, Jeremy N

    2013-01-01

    Prevailing abiotic conditions may positively or negatively impact insects at both the individual and population levels. For example while moderate rainfall and wind velocity may provide conditions that favour development, as well as movement within and between habitats, high winds and heavy rains can significantly decrease life expectancy. There is some evidence that insects adjust their behaviours associated with flight, mating and foraging in response to changes in barometric pressure. We studied changes in different mating behaviours of three taxonomically unrelated insects, the curcurbit beetle, Diabrotica speciosa (Coleoptera), the true armyworm moth, Pseudaletia unipuncta (Lepidoptera) and the potato aphid, Macrosiphum euphorbiae (Hemiptera), when subjected to natural or experimentally manipulated changes in atmospheric pressure. In response to decreasing barometric pressure, male beetles exhibited decreased locomotory activity in a Y-tube olfactometer with female pheromone extracts. However, when placed in close proximity to females, they exhibited reduced courtship sequences and the precopulatory period. Under the same situations, females of the true armyworm and the potato aphid exhibited significantly reduced calling behaviour. Neither the movement of male beetles nor the calling of armyworm females differed between stable and increasing atmospheric pressure conditions. However, in the case of the armyworm there was a significant decrease in the incidence of mating under rising atmospheric conditions, suggesting an effect on male behaviour. When atmospheric pressure rose, very few M. euphorbiae oviparae called. This was similar to the situation observed under decreasing conditions, and consequently very little mating was observed in this species except under stable conditions. All species exhibited behavioural modifications, but there were interspecific differences related to size-related flight ability and the diel periodicity of mating activity. We

  13. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration

    USGS Publications Warehouse

    McGuire, David A.; Melillo, J.M.; Kicklighter, D.W.; Pan, Y.; Xiao, X.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.; Schloss, A.L.

    1997-01-01

    We ran the terrestrial ecosystem model (TEM) for the globe at 0.5?? resolution for atmospheric CO2 concentrations of 340 and 680 parts per million by volume (ppmv) to evaluate global and regional responses of net primary production (NPP) and carbon storage to elevated CO2 for their sensitivity to changes in vegetation nitrogen concentration. At 340 ppmv, TEM estimated global NPP of 49.0 1015 g (Pg) C yr-1 and global total carbon storage of 1701.8 Pg C; the estimate of total carbon storage does not include the carbon content of inert soil organic matter. For the reference simulation in which doubled atmospheric CO2 was accompanied with no change in vegetation nitrogen concentration, global NPP increased 4.1 Pg C yr-1 (8.3%), and global total carbon storage increased 114.2 Pg C. To examine sensitivity in the global responses of NPP and carbon storage to decreases in the nitrogen concentration of vegetation, we compared doubled CO2 responses of the reference TEM to simulations in which the vegetation nitrogen concentration was reduced without influencing decomposition dynamics ("lower N" simulations) and to simulations in which reductions in vegetation nitrogen concentration influence decomposition dynamics ("lower N+D" simulations). We conducted three lower N simulations and three lower N+D simulations in which we reduced the nitrogen concentration of vegetation by 7,5, 15.0, and 22.5%. In the lower N simulations, the response of global NPP to doubled atmospheric CO2 increased approximately 2 Pg C yr-1 for each incremental 7.5% reduction in vegetation nitrogen concentration, and vegetation carbon increased approximately an additional 40 Pg C, and soil carbon increased an additional 30 Pg C, for a total carbon storage increase of approximately 70 Pg C. In the lower N+D simulations, the responses of NPP and vegetation carbon storage were relatively insensitive to differences in the reduction of nitrogen concentration, but soil carbon storage showed a large change. The

  14. Earth's early atmosphere as seen from carbon and nitrogen isotopic analysis of Archean sediments

    NASA Technical Reports Server (NTRS)

    Gibson, E. K., Jr.; Carr, L. P.; Gilmour, I.; Pillinger, C. T.

    1986-01-01

    The origin and evolution of the Earth's early atmosphere has long been a topic of great interest but determination of actual compositions over geologic time is a difficult problem. However, recent systematic studies of stromatolite deposits (Precambrian Paleobiology Research Group) has extended our knowledge of Archean ecosystems. It has been shown that many stromatolite deposits have undergone negligible alteration since their time of formation. The discovery of primary fluid inclusions within unaltered 3.5 b.y. old Archiean sediments and the observation that the 3.3 b.y. old Barberton cherts have remained closed to argon loss and have not been subjected to thermal metamorphism suggests that an opportunity exists for the direct measurement of the volatile constituents present at their time of formation. Of primary interest to this study was the possibility that the stromatolites and other Archean sediments might retain a vestige of the atmosphere and thus afford an indication of the variations in carbon dioxide and nitrogen isotopic compositions with time. A suite of essentially unaltered Archean stromatolites and the cherts of different ages and geologic sites have been analyzed for their trapped carbon dioxide and nitrogen compositions by the stepped combustion extraction tech nique utilizing static mass spectrometers for the isotope measurements.

  15. Meteorology in ruptured abdominal aortic aneurysm: an institutional study and a meta-analysis of published studies reporting atmospheric pressure.

    PubMed

    Takagi, H; Watanabe, T; Mizuno, Y; Kawai, N; Umemoto, T

    2014-12-01

    The aim of this paper was to determine whether weather factors including atmospheric pressure are associated with the occurrence of ruptured abdominal aortic aneurysm (RAAA). We investigated our institutional experiences of RAAA in more than 150 patients during 8 years. Further, we performed a meta-analysis of published studies reporting the influence of atmospheric pressure on RAAA. We retrospectively evaluated 152 patients who underwent surgery for RAAA (including ruptured iliac arterial aneurysm) at our institute between 1 January 2006 and 31 December 2013. Daily regional meteorological data (in the nearest weather station located 3.5 km from the hospital) were obtained online from Japan Meteorological Agency. To identify comparative studies of mean atmospheric pressure on the day with RAAA versus that on the day without RAAA, MEDLINE and EMBASE were searched through January 2014 using Web-based search engines (PubMed and OVID). Mean sea level atmospheric pressure, delta mean atmospheric pressure (difference between mean sea level atmospheric pressure on the day and that on the previous day), and sunshine duration on the day with RAAA were significantly lower than those on the day without RAAA: 1012.43±7.44 versus 1013.71±6.49 hPa, P=0.039, -1.18±5.15 versus 0.05±5.62 hPa, P=0.005; and 4.76±3.76 versus 5.47±3.88 h, P=0.026; respectively. A pooled analysis of 8 studies (including our institutional study) demonstrated that mean atmospheric pressure on the day with RAAA was significantly lower than that on the day without RAAA: standardized mean difference, -0.09; 95% confidence interval, -0.14 to -0.04; P=0.0009. Atmospheric pressure on the day with RAAA appears lower than that on the day without RAAA. Atmospheric pressure may be associated with the occurrence of RAAA.

  16. Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD.

    PubMed

    Hoffmann, Lukas; Theirich, Detlef; Pack, Sven; Kocak, Firat; Schlamm, Daniel; Hasselmann, Tim; Fahl, Henry; Räupke, André; Gargouri, Hassan; Riedl, Thomas

    2017-02-01

    In this work, we report on aluminum oxide (Al 2 O 3 ) gas permeation barriers prepared by spatial ALD (SALD) at atmospheric pressure. We compare the growth characteristics and layer properties using trimethylaluminum (TMA) in combination with an Ar/O 2 remote atmospheric pressure plasma for different substrate velocities and different temperatures. The resulting Al 2 O 3 films show ultralow water vapor transmission rates (WVTR) on the order of 10 -6 gm -2 d -1 . In notable contrast, plasma based layers already show good barrier properties at low deposition temperatures (75 °C), while water based processes require a growth temperature above 100 °C to achieve equally low WVTRs. The activation energy for the water permeation mechanism was determined to be 62 kJ/mol.

  17. Potential Alternatives for Advanced Energy Material Processing in High Performance Li-ion Batteries (LIBs) via Atmospheric Pressure Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Duh, Jenq-Gong; Chuang, Shang-I.; Lan, Chun-Kai; Yang, Hao; Chen, Hsien-Wei

    2015-09-01

    A new processing technique by atmospheric pressure plasma (APP) jet treatment of LIBs was introduced. Ar/N2 plasma enhanced the high-rate anode performance of Li4Ti5O12. Oxygen vacancies were discovered and nitrogen doping were achieved by the surface reaction between pristine Li4Ti5O12 and plasma reactive species (N* and N2+). Electrochemical impedance spectra confirm that plasma modification increases Li ions diffusivity and reduces internal charge-transfer resistance, leading to a superior capacity (132 mAh/g) and excellent stability with negligible capacity decay over 100 cycles under 10C rate. Besides 2D material surface treatment, a specially designed APP generator that are feasible to modify 3D TiO2 powders is proposed. The rate capacity of 20 min plasma treated TiO2 exhibited 20% increment. Plasma diagnosis revealed that excited Ar and N2 was contributed to TiO2 surface reduction as companied by formation of oxygen vacancy. A higher amount of oxygen vacancy increased the chance for excited nitrogen doped onto surface of TiO2 particle. These findings promote the understanding of APP on processing anode materials in high performance LIBs.

  18. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    PubMed

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  19. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen.

    PubMed

    Buchheit, R G; Schreiner, H R; Doebbler, G F

    1966-02-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622-627. 1966.-Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically "inert gas" present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar > Ne > He. Nitrogen (N(2)) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He ( approximately 300 atm). With respect to inhibition of growth, the noble gases and N(2) differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O(2)-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases.

  20. Marine biogenic source of atmospheric organic nitrogen in the subtropical North Atlantic

    PubMed Central

    Altieri, Katye E.; Fawcett, Sarah E.; Peters, Andrew J.; Sigman, Daniel M.; Hastings, Meredith G.

    2016-01-01

    Global models estimate that the anthropogenic component of atmospheric nitrogen (N) deposition to the ocean accounts for up to a third of the ocean’s external N supply and 10% of anthropogenic CO2 uptake. However, there are few observational constraints from the marine atmospheric environment to validate these findings. Due to the paucity of atmospheric organic N data, the largest uncertainties related to atmospheric N deposition are the sources and cycling of organic N, which is 20–80% of total N deposition. We studied the concentration and chemical composition of rainwater and aerosol organic N collected on the island of Bermuda in the western North Atlantic Ocean over 18 mo. Here, we show that the water-soluble organic N concentration ([WSON]) in marine aerosol is strongly correlated with surface ocean primary productivity and wind speed, suggesting a marine biogenic source for aerosol WSON. The chemical composition of high-[WSON] aerosols also indicates a primary marine source. We find that the WSON in marine rain is compositionally different from that in concurrently collected aerosols, suggesting that in-cloud scavenging (as opposed to below-cloud “washout”) is the main contributor to rain WSON. We conclude that anthropogenic activity is not a significant source of organic N to the marine atmosphere over the North Atlantic, despite downwind transport from large pollution sources in North America. This, in conjunction with previous work on ammonium and nitrate, leads to the conclusion that only 27% of total N deposition to the global ocean is anthropogenic, in contrast to the 80% estimated previously. PMID:26739561

  1. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  2. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  3. Atmospheric Pressure Plasma Jet-Assisted Synthesis of Zeolite-Based Low-k Thin Films.

    PubMed

    Huang, Kai-Yu; Chi, Heng-Yu; Kao, Peng-Kai; Huang, Fei-Hung; Jian, Qi-Ming; Cheng, I-Chun; Lee, Wen-Ya; Hsu, Cheng-Che; Kang, Dun-Yen

    2018-01-10

    Zeolites are ideal low-dielectric constant (low-k) materials. This paper reports on a novel plasma-assisted approach to the synthesis of low-k thin films comprising pure-silica zeolite MFI. The proposed method involves treating the aged solution using an atmospheric pressure plasma jet (APPJ). The high reactivity of the resulting nitrogen plasma helps to produce zeolite crystals with high crystallinity and uniform crystal size distribution. The APPJ treatment also remarkably reduces the time for hydrothermal reaction. The zeolite MFI suspensions synthesized with the APPJ treatment are used for the wet deposition to form thin films. The deposited zeolite thin films possessed dense morphology and high crystallinity, which overcome the trade-off between crystallinity and film quality. Zeolite thin films synthesized using the proposed APPJ treatment achieve low leakage current (on the order of 10 -8 A/cm 2 ) and high Young's modulus (12 GPa), outperforming the control sample synthesized without plasma treatment. The dielectric constant of our zeolite thin films was as low as 1.41. The overall performance of the low-k thin films synthesized with the APPJ treatment far exceed existing low-k films comprising pure-silica MFI.

  4. The influence of atmospheric pressure on aortic aneurysm rupture--is the diameter of the aneurysm important?

    PubMed

    Urbanek, Tomasz; Juśko, Maciej; Niewiem, Alfred; Kuczmik, Wacław; Ziaja, Damian; Ziaja, Krzysztof

    2015-01-01

    The rate of aortic aneurysm rupture correlates with the aneurysm's diameter, and a higher rate of rupture is observed in patients with larger aneurysms. According to the literature, contradictory results concerning the relationship between atmospheric pressure and aneurysm size have been reported. In this paper, we assessed the influence of changes in atmospheric pressure on abdominal aneurysm ruptures in relationship to the aneurysm's size. The records of 223 patients with ruptured abdominal aneurysms were evaluated. All of the patients had been admitted to the department in the period 1997-2007 from the Silesia region. The atmospheric pressures on the day of the rupture and on the days both before the rupture and between the rupture events were compared. The size of the aneurysm was also considered in the analysis. There were no statistically significant differences in pressure between the days of rupture and the remainder of the days within an analysed period. The highest frequency of the admission of patients with a ruptured aortic aneurysm was observed during periods of winter and spring, when the highest mean values of atmospheric pressure were observed; however, this observation was not statistically confirmed. A statistically non-significant trend towards the higher rupture of large aneurysms (> 7 cm) was observed in the cases where the pressure increased between the day before the rupture and the day of the rupture. This trend was particularly pronounced in patients suffering from hypertension (p = 0.1). The results of this study do not support the hypothesis that there is a direct link between atmospheric pressure values and abdominal aortic aneurysm ruptures.

  5. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    NASA Technical Reports Server (NTRS)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  6. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition

    USGS Publications Warehouse

    Elser, J.J.; Andersen, T.; Baron, Jill S.; Bergstrom, A.-K.; Jansson, M.; Kyle, M.; Nydick, K.R.; Steger, L.; Hessen, D.O.

    2009-01-01

    Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

  7. Standard test method for nitrogen dioxide content of the atmosphere (Griess-Saltzman reaction)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    This method covers the manual determination of nitrogen dioxide (NO/sub 2/) in the atmosphere in the range from 4 to 10,000 ..mu..g/m/sup 3/ (0.002 to 5 ppM) when sampling is conducted in fritted-tip bubblers. For concentrations of NO/sub 2/ in excess of 10 mg/m/sup 3/ (5 ppM), as occur in industrial atmospheres, gas burner stacks, or automotive exhaust, or for samples relatively high in sulfur dioxide content, other methods should be applied. The maximum sampling period is 60 min at a flow rate of 0.4 liter/min. The NO/sub 2/ is absorbed in an azo-dye-forming reagent. A red-violet color is producedmore » within 15 min, the intensity of which is measured spectrophotometrically at 550 nm.« less

  8. USE OF 15N IN THE STUDY OF FIXATION OF ATMOSPHERIC NITROGEN BY NON- NODULATED SEED PLANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, G.

    1959-10-31

    Both from observation of non-leguminous plants growing under natural conditions and also from measurements made of plot experiments with grasses it has been found that large amounts of nitrogen, of the order of 50-lb N/acre/year, accumulate both in the soil and in plant material. Measurements of the contribution made by nonsymbiotic nitrogen-fixing bacteria are only of the order of 2 to 3 lb N/acre/year, so that it appears likely that some other mechanism operates which leads to fixation of nitrogen with the growth of many nonleguminous plants. Experiments were carried out with the following species which grow well in Newmore » Zealand under poor nutrient conditions, especially as regards nitrogen: Pinus radiata, Coprosma robusta, Epilobium erectum and Dactylis glomerata. Plants have been grown in sand watered with a nitrogen-free nutrient solution when they have shown signs of nitrogen starvation, but, nevertheless, they have made considerable growth. Some plants have been exposed to an isotopically enriched atmosphere for periods of 7 to 14 days, and significant amounts of nitrogen-15 have been recovered from the combined nitrogen in the plants indicating that fixation of molecular nitrogen has occurred. The effect is not due to any of the known nonsymbiotic nitrogen-fixing bacteria which were shown to be absent from the sand cultures. Two possible explanations considered are that the effect may be due to microorganisms present in or on the plants, and that the effect may be due to some activity of the plants themselves. (auth)« less

  9. Evaluation of analytical methodology for hydrocarbons in high pressure air and nitrogen systems. [evaluation of methodology

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Samples of liquid oxygen, high pressure nitrogen, low pressure nitrogen, and missile grade air were studied to determine the hydrocarbon concentrations. Concentration of the samples was achieved by adsorption on a molecular sieve and activated charcoal. The trapped hydrocarbons were then desorbed and transferred to an analytical column in a gas chromatograph. The sensitivity of the method depends on the volume of gas passed through the adsorbent tubes. The value of the method was verified through recoverability and reproducibility studies. The use of this method enables LOX, GN2, and missile grade air systems to be routinely monitored to determine low level increases in specific hydrocarbon concentration that could lead to potentially hazardous conditions.

  10. The nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  11. Filling a missing link between biogeochemical, climate and ecosystem studies: a global database of atmospheric water-soluble organic nitrogen

    NASA Astrophysics Data System (ADS)

    Cornell, Sarah

    2015-04-01

    It is time to collate a global community database of atmospheric water-soluble organic nitrogen deposition. Organic nitrogen (ON) has long been known to be globally ubiquitous in atmospheric aerosol and precipitation, with implications for air and water quality, climate, biogeochemical cycles, ecosystems and human health. The number of studies of atmospheric ON deposition has increased steadily in recent years, but to date there is no accessible global dataset, for either bulk ON or its major components. Improved qualitative and quantitative understanding of the organic nitrogen component is needed to complement the well-established knowledge base pertaining to other components of atmospheric deposition (cf. Vet et al 2014). Without this basic information, we are increasingly constrained in addressing the current dynamics and potential interactions of atmospheric chemistry, climate and ecosystem change. To see the full picture we need global data synthesis, more targeted data gathering, and models that let us explore questions about the natural and anthropogenic dynamics of atmospheric ON. Collectively, our research community already has a substantial amount of atmospheric ON data. Published reports extend back over a century and now have near-global coverage. However, datasets available from the literature are very piecemeal and too often lack crucially important information that would enable aggregation or re-use. I am initiating an open collaborative process to construct a community database, so we can begin to systematically synthesize these datasets (generally from individual studies at a local and temporally limited scale) to increase their scientific usability and statistical power for studies of global change and anthropogenic perturbation. In drawing together our disparate knowledge, we must address various challenges and concerns, not least about the comparability of analysis and sampling methodologies, and the known complexity of composition of ON. We

  12. Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications?

    Treesearch

    Herman Sievering; Ivan Fernandez; John Lee; John Hom; Lindsey Rustad

    2000-01-01

    Dry deposition determinations, along with wet deposition and throughfall (TF) measurements, at a spruce fir forest in central Maine were used to estimate the effect of atmospherically deposited nitrogen (N) uptake on forest carbon storage. Using nitric acid and particulate N as well as TF ammonium and nitrate data, the growing season (May-October) net canopy uptake of...

  13. Compact atmospheric pressure plasma self-resonant drive circuits

    NASA Astrophysics Data System (ADS)

    Law, V. J.; Anghel, S. D.

    2012-02-01

    This paper reports on compact solid-state self-resonant drive circuits that are specifically designed to drive an atmospheric pressure plasma jet and a parallel-plate dielectric barrier discharge of small volume (0.5 cm3). The atmospheric pressure plasma (APP) device can be operated with helium, argon or a mixture of both. Equivalent electrical models of the self-resonant drive circuits and discharge are developed and used to estimate the plasma impedance, plasma power density, current density or electron number density of three APP devices. These parameters and the kinetic gas temperature are dependent on the self-resonant frequency of the APP device. For a fixed switching frequency and APP device geometry, the plasma parameters are controlled by adjusting the dc voltage at the primary coil and the gas flow rate. The resonant frequency is controlled by the selection of the switching power transistor and means of step-up voltage transformation (ferrite core, flyback transformer, or Tesla coil). The flyback transformer operates in the tens of kHz, the ferrite core in the hundreds of kHz and Tesla coil in the MHz range. Embedded within this work is the principle of frequency pulling which is exemplified in the flyback transformer circuit that utilizes a pickup coil for feedback control of the switching frequency.

  14. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    ERIC Educational Resources Information Center

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  15. Vertical thermal structure of the Venus atmosphere from temperature and pressure measurements

    NASA Technical Reports Server (NTRS)

    Linkin, V. M.; Blamon, Z.; Lipatov, A. P.; Devyatkin, S. I.; Dyachkov, A. V.; Ignatova, S. I.; Kerzhanovich, V. V.; Malyk, K.; Stadny, V. I.; Sanotskiy, Y. V.

    1986-01-01

    Accurate temperature and pressure measurements were made on the Vega-2 lander during its entire descent. The temperature and pressure at the surface were 733 K and 89.3 bar, respectively. A strong temperature inversion was found in the upper troposphere. Several layers with differing static stability were visible in the atmospheric structure.

  16. Nitrogen Oxygen Recharge System for the International Space Station

    NASA Technical Reports Server (NTRS)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  17. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOEpatents

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  18. Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures

    NASA Technical Reports Server (NTRS)

    Berlad, Abraham L

    1954-01-01

    Flame quenching by a variable-width rectangular-slot burner as a function of pressure for various propane-oxygen-nitrogen mixtures was investigated. It was found that for cold gas temperatures of 27 degrees C, pressures of 0.1 ro 1.0 atmosphere, and volumetric oxygen reactions of the oxidant of 0.17, 0.21, 0.30, 0.50, and 0.70, the relation between pressure p and quenching distance d is approximately given by d (unity) p (superscript -r) with r = 1, for equivalence ratios approximately equal to one. The quenching equation of Simon and Belles was tested. For equivalence ratios less than or equal to unity, this equation may by used, together with one empirical constant, to predict the observed quenching distance within 4.2 percent. The equation in it's present form does not appear to be suitable for values of the equivalence ratio greater than unity. A quantitative theoretical investigation has also been made of the error implicit in the assumption that flame quenching by plane parallel plates of infinite extent is equivalent to that of a rectangular burner. A curve is presented which relates the magnitude of this error to the length-to-width ratio of the rectangular burner.

  19. Development of an Atmospheric Pressure Ionization Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.

  20. Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment of Central Asia.

    PubMed

    Li, Kaihui; Liu, Xuejun; Song, Wei; Chang, Yunhua; Hu, Yukun; Tian, Changyan

    2013-01-01

    Arid areas play a significant role in the global nitrogen cycle. Dry and wet deposition of inorganic nitrogen (N) species were monitored at one urban (SDS) and one suburban (TFS) site at Urumqi in a semi-arid region of central Asia. Atmospheric concentrations of NH3, NO2, HNO3, particulate ammonium and nitrate (pNH4 (+) and pNO3 (-)) concentrations and NH4-N and NO3-N concentrations in precipitation showed large monthly variations and averaged 7.1, 26.6, 2.4, 6.6, 2.7 µg N m(-3) and 1.3, 1.0 mg N L(-1) at both SDS and TFS. Nitrogen dry deposition fluxes were 40.7 and 36.0 kg N ha(-1) yr(-1) while wet deposition of N fluxes were 6.0 and 8.8 kg N ha(-1) yr(-1) at SDS and TFS, respectively. Total N deposition averaged 45.8 kg N ha(-1) yr(-1)at both sites. Our results indicate that N dry deposition has been a major part of total N deposition (83.8% on average) in an arid region of central Asia. Such high N deposition implies heavy environmental pollution and an important nutrient resource in arid regions.

  1. Atmosphere and climate studies of Mars using the Mars Observer pressure modulator infrared radiometer

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Haskins, R. D.; Schofield, J. T.; Zurek, R. W.; Leovy, C. B.; Paige, D. A.; Taylor, F. W.

    1992-01-01

    Studies of the climate and atmosphere of Mars are limited at present by a lack of meteorological data having systematic global coverage with good horizontal and vertical resolution. The Mars Observer spacecraft in a low, nearly circular, polar orbit will provide an excellent platform for acquiring the data needed to advance significantly our understanding of the Martian atmosphere and its remarkable variability. The Mars Observer pressure modulator infrared radiometer (PMIRR) is a nine-channel limb and nadir scanning atmospheric sounder which will observe the atmosphere of Mars globally from 0 to 80 km for a full Martian year. PMIRR employs narrow-band radiometric channels and two pressure modulation cells to measure atmospheric and surface emission in the thermal infrared. PMIRR infrared and visible measurements will be combined to determine the radiative balance of the polar regions, where a sizeable fraction of the global atmospheric mass annually condenses onto and sublimes from the surface. Derived meteorological fields, including diabatic heating and cooling and the vertical variation of horizontal winds, are computed from the globally mapped fields retrieved from PMIRR data.

  2. Remote sensing of atmospheric pressure and sea state using laser altimeters

    NASA Technical Reports Server (NTRS)

    Gardner, C. S.

    1985-01-01

    Short-pulse multicolor laser ranging systems are currently being developed for satellite ranging applications. These systems use Q-switched pulsed lasers and streak-tube cameras to provide timing accuracies approaching a few picoseconds. Satellite laser ranging systems have been used to evaluate many important geophysical phenomena such as fault motion, polar motion and solid earth tides, by measuring the orbital perturbations of retroreflector equipped satellites. Some existing operational systems provide range resolution approaching a few millimeters. There is currently considerable interest in adapting these highly accurate systems for use as airborne and satellite based altimeters. Potential applications include the measurement of sea state, ground topography and atmospheric pressure. This paper reviews recent progress in the development of multicolor laser altimeters for use in monitoring sea state and atmospheric pressure.

  3. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees.

    PubMed

    Silva, Lucas C R; Salamanca-Jimenez, Alveiro; Doane, Timothy A; Horwath, William R

    2015-08-21

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases ((13)CO2 and (15)NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the (13)CO2 pulse, assimilation and transport of the (15)NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history.

  4. Pressure drop reduction and heat transfer deterioration of slush nitrogen in triangular and circular pipe flows

    NASA Astrophysics Data System (ADS)

    Ohira, Katsuhide; Kurose, Kizuku; Okuyama, Jun; Saito, Yutaro; Takahashi, Koichi

    2017-01-01

    Slush fluids such as slush hydrogen and slush nitrogen are characterized by superior properties as functional thermal fluids due to their density and heat of fusion. In addition to allowing efficient hydrogen transport and storage, slush hydrogen can serve as a refrigerant for high-temperature superconducting (HTS) equipment using MgB2, with the potential for synergistic effects. In this study, pressure drop reduction and heat transfer deterioration experiments were performed on slush nitrogen flowing in a horizontal triangular pipe with sides of 20 mm under the conditions of three different cross-sectional orientations. Experimental conditions consisted of flow velocity (0.3-4.2 m/s), solid fraction (0-25 wt.%), and heat flux (0, 10, and 20 kW/m2). Pressure drop reduction became apparent at flow velocities exceeding about 1.3-1.8 m/s, representing a maximum amount of reduction of 16-19% in comparison with liquid nitrogen, regardless of heating. Heat transfer deterioration was seen at flow velocities of over 1.2-1.8 m/s, for a maximum amount of deterioration of 13-16%. The authors of the current study compared the results for pressure drop reduction and heat transfer deterioration in triangular pipe with those obtained previously for circular and square pipes, clarifying differences in flow and heat transfer properties. Also, a correlation equation was obtained between the slush Reynolds number and the pipe friction factor, which is important in the estimation of pressure drop in unheated triangular pipe. Furthermore, a second correlation equation was derived between the modified slush Reynolds number and the pipe friction factor, enabling the integrated prediction of pressure drop in both unheated triangular and circular pipes.

  5. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  6. Propagation of atmospheric-pressure ionization waves along the tapered tube

    NASA Astrophysics Data System (ADS)

    Xia, Yang; Wang, Wenchun; Liu, Dongping; Yan, Wen; Bi, Zhenhua; Ji, Longfei; Niu, Jinhai; Zhao, Yao

    2018-02-01

    Gas discharge in a small radius dielectric tube may result in atmospheric pressure plasma jets with high energy and density of electrons. In this study, the atmospheric pressure ionization waves (IWs) were generated inside a tapered tube. The propagation behaviors of IWs inside the tube were studied by using a spatially and temporally resolved optical detection system. Our measurements show that both the intensity and velocity of the IWs decrease dramatically when they propagate to the tapered region. After the taper, the velocity, intensity, and electron density of the IWs are improved with the tube inner diameter decreasing from 4.0 to 0.5 mm. Our analysis indicates that the local gas conductivity and surface charges may play a role in the propagation of the IWs under such a geometrical constraint, and the difference in the dynamics of the IWs after the taper can be related to the restriction in the size of IWs.

  7. Prospect of life on cold planets with low atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Pavlov, A. A.; Vdovina, M.

    2009-12-01

    Stable liquid water on the surface of a planet has been viewed as the major requirement for a habitable planet. Such approach would exclude planets with low atmospheric pressures and cold mean surface temperatures (like present Mars) as potential candidates for extraterrestrial life search. Here we explore a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low average surface temperatures (~-30 C). During brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor can diffuse through the porous surface layer of soil temporarily producing supersaturated conditions in the soil, which lead to the formation of liquid films. We show that non-extremophile terrestrial microorganisms (Vibrio sp.) can grow and reproduce under such conditions. The necessary conditions for metabolism and reproduction are the sublimation of ground ice through a thin layer of soil and short episodes of warm temperatures at the planetary surface.

  8. Photosynthesis and growth response of almond to increased atmospheric ozone partial pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.

    Uniform nursery stock of five almond cultivars [Prunus dulcis (Mill) D.A. Webb syn. P. amygdalus Batsch, cv. Butte, Carmel, Mission, Nonpareil, and Sonora] propagated on peach (P. domstica L. Batsch.) rootstock were exposed to three different atmospheric ozone (O[sub 3]) partial pressures. The trees were planted in open-top fumigation chambers on 19 Apr. 1989 at the University of California Kearny Agricultural Center located in the San Joaquin Valley of California. Exposures of the trees to three atmospheric O[sub 3] partial pressures lasted from 1 June to 2 Nov. 1989. The mean 12-h [0800-2000 h Pacific Daylight Time (PDT)] O[sub 3]more » partial pressures measured in the open-top chambers during the experimental period were 0.038, 0.060, and 0.112 [mu]Pa Pa[sup [minus]1] O[sub 3] in the charcoal filtered, ambient, and ambient + O[sub 3] treatments, respectively. Leaf net CO[sub 2] assimilation, trunk cross-sectional area growth, and root, trunk, foliage, and total dry weight of Nonpareil were reduced by increased atmospheric O[sub 3] partial pressures. Mission was unaffected by O[sub 3] and Butte, Carmel, and Sonora were intermediate in their responses. Foliage of Nonpareil also abscised prematurely in the ambient and ambient + O[sub 3] treatments. The results indicate that there are almond cultivars that are sensitive to O[sub 3] exposure.« less

  9. Measuring N2 Pressure Using Cyanobacteria Discipline: Geomicrobiology

    NASA Technical Reports Server (NTRS)

    Silverman, Shaelyn N.; Kopf, Sebastian; Gordon, Richard; Bebout, Brad M.; Som, Sanjoy

    2017-01-01

    The evolution of Earth's atmosphere has been governed by biological evolution. Dinitrogen (N2) has been a major constituent of Earth's atmosphere throughout the planet's history, yet only a few constraints exist for the partial pressure of N2 (pN2). In this study we evaluate two new potential proxies for pN2: the physical spacing between heterocysts and the isotopic signature of nitrogen fixation in filamentous cyanobacteria. Heterocyst-forming filamentous cyanobacteria are some of the oldest photosynthetic microorganisms on Earth, and debated fossilized specimens have been found in sedimentary rocks as old as 2 Ga. These organisms overcome nitrogen limitation in their aqueous environment through cellular differentiation along their filaments. The specialized cells that develop, known as heterocysts, fix the nitrogen and laterally distribute it to neighboring cells along the filaments. Because the concentration of the dissolved N2 available to the filaments correlates directly with pN2, any preservable physiological response of the organism to the changed N2 availability constitutes a potential proxy for pN2. In the laboratory, we have examined how pN2 is reflected in the heterocyst spacing pattern and in the isotopic signature of nitrogen fixation by subjecting the representative species Anabaena cylindrica and Anabaena variabilis to different N2 partial pressures during growth at constant temperature and lighting (in media free of combined nitrogen). We show experimentally that the distance between heterocysts and the nitrogen isotope fractionation measured in bulk biomass reflect the pN2 experienced by Anabaena cylindrica. Current work is investigating these responses in Anabaena variabilis. When heterocystous cyanobacteria fossilize, these morphological and isotopic signatures should preserve information about pN2 at that time. Application of this relationship to the rock record may provide a paleoproxy to complement the two existing geobarometers.

  10. Enhanced acid rain and atmospheric deposition of nitrogen, sulfur and heavy metals in Northern China

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Wang, Y.

    2013-12-01

    Atmospheric deposition is known to be important mechanism reducing air pollution. In response to the growing concern on the potential effects of the deposited material entering terrestrial and aquatic environments as well as their subsequent health effects, since 2007 we have established a 10-site monitoring network in Northern China, where particularly susceptible to severe air pollution. Wet and dry deposition was collected using an automatic wet-dry sampler. The presentation will focus on the new results of atmospheric deposition flux for a number of chemical species, such as nutrients (e.g. nitrogen and phosphorus), acidic matters (e.g. sulfur and proton), heavy metals and Polycyclic Aromatic Hydrocarbons, etc. This is to our knowledge the first detailed element budget study in the atmosphere across Northern China. We find that: (1) Over the 3 year period, 26% of precipitation events in the target area were more acid than pH 5.60 and these acidic events occurred in summer and autumn. The annual volume-weighted mean (VWM) pH value of precipitation was lower than 5.60 at most sites, which indicated the acidification of precipitation was not optimistic. The primary ions in precipitation were NH4+, Ca2+, SO42- and NO3-, with 10-sites-average concentrations of 221, 216, 216 and 80 μeq L-1, respectively. The ratio of SO42- to NO3- was 2.7; suggesting SO42- was the dominant acid component. (2) The deposited particles were neutral in general and the pH value increased from rural area to industrial and coastal sites. It is not surprising to note that the annual VWM pH value of precipitation was higher than 5.60 at three urban sites (Beijing and Tianjin mega cities) and one coastal site near the Bohai Bay, considering the fact that high buffer capacity of alkaline component, gas NH3 and mineral aerosols, at these sites compared to other places. (3) The 10-sites annual total deposition amounts for sulfur and nitrogen compounds were 60 and 65 kg N/S ha-1 yr-1

  11. Growth Responses of Neurospora crassa to Increased Partial Pressures of the Noble Gases and Nitrogen

    PubMed Central

    Buchheit, R. G.; Schreiner, H. R.; Doebbler, G. F.

    1966-01-01

    Buchheit, R. G. (Union Carbide Corp., Tonawanda, N.Y.), H. R. Schreiner, and G. F. Doebbler. Growth responses of Neurospora crassa to increased partial pressures of the noble gases and nitrogen. J. Bacteriol. 91:622–627. 1966.—Growth rate of the fungus Neurospora crassa depends in part on the nature of metabolically “inert gas” present in its environment. At high partial pressures, the noble gas elements (helium, neon, argon, krypton, and xenon) inhibit growth in the order: Xe > Kr> Ar ≫ Ne ≫ He. Nitrogen (N2) closely resembles He in inhibitory effectiveness. Partial pressures required for 50% inhibition of growth were: Xe (0.8 atm), Kr (1.6 atm), Ar (3.8 atm), Ne (35 atm), and He (∼ 300 atm). With respect to inhibition of growth, the noble gases and N2 differ qualitatively and quantitatively from the order of effectiveness found with other biological effects, i.e., narcosis, inhibition of insect development, depression of O2-dependent radiation sensitivity, and effects on tissue-slice glycolysis and respiration. Partial pressures giving 50% inhibition of N. crassa growth parallel various physical properties (i.e., solubilities, solubility ratios, etc.) of the noble gases. Linear correlation of 50% inhibition pressures to the polarizability and of the logarithm of pressure to the first and second ionization potentials suggests the involvement of weak intermolecular interactions or charge-transfer in the biological activity of the noble gases. PMID:5883104

  12. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  13. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    PubMed

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  15. Gas bubble disease: mortalities of coho salmon, Oncorhynchus kisutch, in water with constant total gas pressure and different oxygen-nitrogen ratios

    USGS Publications Warehouse

    Rucker, R.R.

    1975-01-01

    A review of the literature regarding gas-bubble disease can be found in a recent publication by Rucker (1972); one by the National Academy of Science (Anonymous in press); and an unpublished report by Weitkamp and Katz (1973)." Most discussions on gas-bubble disease have dealt with the inert gas, nitrogen-oxygen was given a secondary role. It is important to know the relationship of nitrogen and oxygen when we are concerned with the total gas pressure in water. Where water becomes aerated at dams or falls, oxygen and nitrogen are usually about equally saturated, however, many of the samples analyzed from the Columbia River indicate that nitrogen is often about 7% higher than oxygen when expressed as a percentage. When oxygen is removed from water by metabolic and chemical action, or when oxygen is added to the water by photosynthesis, there is a definite change in the ratio of oxygen and the inert gases (mainly nitrogen with some argon, etc.). This present study shows the effect of varying the oxygen and nitrogen ratio in water on fingerling coho salmon, Oncorh.llnchllS kislltch, while maintaining a constant total gas pressure. The primary purpose of these experiments was to determine differences in lethality of various gas ratios of oxygen and nitrogen at a constant total gas pressure of 119%. I also wished to determine whether there was a difference in susceptibility between sizes and stocks of juvenile coho. Also to be examined was the effect of reducing the oJl:ygen while holding the nitrogen constant.

  16. Water vapor absorption in the atmospheric window at 239 GHz

    NASA Technical Reports Server (NTRS)

    Bauer, A.; Godon, M.; Carlier, J.; Ma, Q.

    1995-01-01

    Absolute absorption rates of pure water vapor and mixtures of water vapor and nitrogen have been measured in the atmospheric window at 239 GHz. The dependence on pressure as well as temperature has been obtained. The experimental data are compared with several theoretical or empirical models, and satisfactory agreement is obtained with the models involving a continuum; in the case of pure water vapor, the continuum contribution based upon recent theoretical developments gives good results. The temperature dependence is stronger than that proposed in a commonly used atmospheric transmission model.

  17. Recent developments in atmospheric pressure photoionization-mass spectrometry.

    PubMed

    Kauppila, Tiina J; Syage, Jack A; Benter, Thorsten

    2017-05-01

    Recent developments in atmospheric pressure photoionization (APPI), which is one of the three most important ionization techniques in liquid chromatography-mass spectrometry, are reviewed. The emphasis is on the practical aspects of APPI analysis, its combination with different separation techniques, novel instrumental developments - especially in gas chromatography and ambient mass spectrometry - and the applications that have appeared in 2009-2014. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:423-449, 2017. © 2015 Wiley Periodicals, Inc.

  18. Patterning of graphene for flexible electronics with remote atmospheric-pressure plasma using dielectric barrier

    NASA Astrophysics Data System (ADS)

    Kim, Duk Jae; Park, Jeongwon; Geon Han, Jeon

    2016-08-01

    We show results of the patterning of graphene layers on poly(ethylene terephthalate) (PET) films through remote atmospheric-pressure dielectric barrier discharge plasma. The size of plasma discharge electrodes was adjusted for large-area and role-to-role-type substrates. Optical emission spectroscopy (OES) was used to analyze the characteristics of charge species in atmospheric-pressure plasma. The OES emission intensity of the O2* peaks (248.8 and 259.3 nm) shows the highest value at the ratio of \\text{N}2:\\text{clean dry air (CDA)} = 100:1 due to the highest plasma discharge. The PET surface roughness and hydrophilic behavior were controlled with CDA flow rate during the process. Although the atmospheric-pressure plasma treatment of the PET film led to an increase in the FT-IR intensity of C-O bonding at 1240 cm-1, the peak intensity at 1710 cm-1 (C=O bonding) decreased. The patterning of graphene layers was confirmed by scanning electron microscopy and Raman spectroscopy.

  19. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  20. Inorganic nitrogenous air pollutants, atmospheric nitrogen deposition and their potential ecological impacts in remote areas of western North America (Invited)

    NASA Astrophysics Data System (ADS)

    Bytnerowicz, A.; Fenn, M. E.; Fraczek, W.; Johnson, R.; Allen, E. B.

    2013-12-01

    Dry deposition of gaseous inorganic nitrogenous (N) air pollutants plays an important role in total atmospheric N deposition and its ecological effects in the arid and semi-arid ecosystems. Passive samplers and denuder/ filter pack systems have been used for determining ambient concentrations of ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), and nitric acid vapor (HNO3) in the topographically complex remote areas of the western United States and Canada. Concentrations of the measured pollutants varied significantly between the monitoring areas. Highest NH3, NO2 and HNO3 levels occurred in southern California areas downwind of the Los Angeles Basin and in the western Sierra Nevada impacted by emissions from the California Central Valley and the San Francisco Bay area. Strong spatial gradients of N pollutants were also present in southeastern Alaska due to cruise ship emissions and in the Athabasca Oil Sands Region in Canada affected by oil exploitation. Distribution of these pollutants has been depicted by maps generated by several geostatistical methodologies within the ArcGIS Geostatistical Analyst (ESRI, USA). Such maps help to understand spatial and temporal changes of air pollutants caused by various anthropogenic activities and locally-generated vs. long range-transported air pollutants. Pollution distribution maps for individual N species and gaseous inorganic reactive nitrogen (Nr) have been developed for the southern portion of the Sierra Nevada, Lake Tahoe Basin, San Bernardino Mountains, Joshua Tree National Park and the Athabasca Oil Sands Region. The N air pollution data have been utilized for estimates of dry and total N deposition by a GIS-based inferential method specifically developed for understanding potential ecological impacts in arid and semi-arid areas. The method is based on spatial and temporal distribution of concentrations of major drivers of N dry deposition, their surface deposition velocities and stomatal conductance values

  1. Pressure distribution in a converging-diverging nozzle during two-phase choked flow of subcooled nitrogen

    NASA Technical Reports Server (NTRS)

    Simoneau, R. J.

    1975-01-01

    Choked flow rates and axial pressure distributions were measured for subcooled nitrogen in a converging-diverging nozzle with a constant area section in the throat region. Stagnation pressures ranged from slightly above saturation to twice the thermodynamic critical pressure. Stagnation temperatures ranged from 0.75 to 1.03 times the thermodynamic critical temperature. The choking plane is at the divergence end of the constant area throat section. At high stagnation pressures the fluid stays liquid well into the constant area throat region; at near saturation stagnation pressures it appears that vaporization occurs at or before the entrance to the constant area throat region. The throat-to-stagnation pressure ratio data exhibits an anomalous flat region, and this anomaly is related to the two-phase process. The fluid is metastably all liquid below the saturation pressure.

  2. Forced wave induced by an atmospheric pressure disturbance moving towards shore

    NASA Astrophysics Data System (ADS)

    Chen, Yixiang; Niu, Xiaojing

    2018-05-01

    Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.

  3. Nitrogen dioxide (NO2) uptake by vegetation controlled by atmospheric concentrations and plant stomatal aperture

    NASA Astrophysics Data System (ADS)

    Chaparro-Suarez, I. G.; Meixner, F. X.; Kesselmeier, J.

    2011-10-01

    Nitrogen dioxide (NO2) exchange between the atmosphere and five European tree species was investigated in the laboratory using a dynamic branch enclosure system (consisting of two cuvettes) and a highly specific NO2 analyzer. NO2 measurements were performed with a sensitive gas phase chemiluminescence NO detector combined with a NO2 specific (photolytic) converter, both from Eco-Physics (Switzerland). This highly specific detection system excluded bias from other nitrogen compounds. Investigations were performed at two light intensities (Photosynthetic Active Radiation, PAR, 450 and 900 μmol m-2 s-1) and NO2 concentrations between 0 and 5 ppb. Ambient parameters (air temperature and relative humidity) were held constant. The data showed dominant NO2 uptake by the respective tree species under all conditions. The results did not confirm the existence of a compensation point within a 95% confidence level, though we cannot completely exclude emission of NO2 under very low atmospheric concentrations. Induced stomatal stricture, or total closure, by changing light conditions, as well as by application of the plant hormone ABA (Abscisic Acid) caused a corresponding decrease of NO2 uptake. No loss of NO2 to plant surfaces was observed under stomatal closure and species dependent differences in uptake rates could be clearly related to stomatal behavior.

  4. Pyrolysis and combustion of tobacco in a cigarette smoking simulator under air and nitrogen atmosphere.

    PubMed

    Busch, Christian; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin G; Zimmermann, Ralf

    2012-04-01

    A coupling between a cigarette smoking simulator and a time-of-flight mass spectrometer was constructed to allow investigation of tobacco smoke formation under simulated burning conditions. The cigarette smoking simulator is designed to burn a sample in close approximation to the conditions experienced by a lit cigarette. The apparatus also permits conditions outside those of normal cigarette burning to be investigated for mechanistic understanding purposes. It allows control of parameters such as smouldering and puff temperatures, as well as combustion rate and puffing volume. In this study, the system enabled examination of the effects of "smoking" a cigarette under a nitrogen atmosphere. Time-of-flight mass spectrometry combined with a soft ionisation technique is expedient to analyse complex mixtures such as tobacco smoke with a high time resolution. The objective of the study was to separate pyrolysis from combustion processes to reveal the formation mechanism of several selected toxicants. A purposely designed adapter, with no measurable dead volume or memory effects, enables the analysis of pyrolysis and combustion gases from tobacco and tobacco products (e.g. 3R4F reference cigarette) with minimum aging. The combined system demonstrates clear distinctions between smoke composition found under air and nitrogen smoking atmospheres based on the corresponding mass spectra and visualisations using principal component analysis.

  5. Optimizing a remote sensing instrument to measure atmospheric surface pressure

    NASA Technical Reports Server (NTRS)

    Peckham, G. E.; Gatley, C.; Flower, D. A.

    1983-01-01

    Atmospheric surface pressure can be remotely sensed from a satellite by an active instrument which measures return echoes from the ocean at frequencies near the 60 GHz oxygen absorption band. The instrument is optimized by selecting its frequencies of operation, transmitter powers and antenna size through a new procedure baesd on numerical simulation which maximizes the retrieval accuracy. The predicted standard deviation error in the retrieved surface pressure is 1 mb. In addition the measurements can be used to retrieve water vapor, cloud liquid water and sea state, which is related to wind speed.

  6. Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus "Classic" Decontamination.

    PubMed

    Hojnik, Nataša; Cvelbar, Uroš; Tavčar-Kalcher, Gabrijela; Walsh, James L; Križaj, Igor

    2017-04-28

    Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods.

  7. Soil HONO Emissions and Its Potential Impact on the Atmospheric Chemistry and Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Su, H.; Chen, C.; Zhang, Q.; Poeschl, U.; Cheng, Y.

    2014-12-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. The HONO emissions rates are estimated to be comparable to that of nitric oxide (NO) and could be an important source of atmospheric reactive nitrogen. Fertilized soils appear to be particularly strong sources of HONO. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. A new HONO-DNDC model was developed to simulate the evolution of HONO emissions in agriculture ecosystems. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. Reference: Su, H. et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011.

  8. A dc non-thermal atmospheric-pressure plasma microjet

    NASA Astrophysics Data System (ADS)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  9. Viking 1: early results. [Mars atmosphere and surface examinations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A brief outline of the Viking 1 mission to Mars is followed by descriptions of the Martian landing site and the scientific instrumentation aboard Viking 1 orbiter and lander. Measurements of the Martian atmosphere provided data on its molecular composition, temperature and pressure. The detection of nitrogen in the Martian atmosphere indicates the existence of life. Panoramic photographs of the Martian surface were also obtained and are shown. Preliminary chemical and biological investigations on samples of Martian soil indicated the presence of the elements iron, calcium, silicon, titanium and aluminum as major constituents. Observed biochemical reactions were judged conducive of biological activity.

  10. The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2

    NASA Astrophysics Data System (ADS)

    Lebonnois, Sebastien; Schubert, Gerald

    2017-07-01

    With temperatures around 700 K and pressures of around 75 bar, the deepest 12 km of the atmosphere of Venus are so hot and dense that the atmosphere behaves like a supercritical fluid. The Soviet VeGa-2 probe descended through the atmosphere in 1985 and obtained the only reliable temperature profile for the deep Venusian atmosphere thus far. In this temperature profile, the atmosphere appears to be highly unstable at altitudes below 7 km, contrary to expectations. We argue that the VeGa-2 temperature profile could be explained by a change in the atmospheric gas composition, and thus molecular mass, with depth. We propose that the deep atmosphere consists of a non-homogeneous layer in which the abundance of N2--the second most abundant constituent of the Venusian atmosphere after CO2--gradually decreases to near-zero at the surface. It is difficult to explain a decline in N2 towards the surface with known nitrogen sources and sinks for Venus. Instead we suggest, partly based on experiments on supercritical fluids, that density-driven separation of N2 from CO2 can occur under the high pressures of Venus's deep atmosphere, possibly by molecular diffusion, or by natural density-driven convection. If so, the amount of nitrogen in the atmosphere of Venus is 15% lower than commonly assumed. We suggest that similar density-driven separation could occur in other massive planetary atmospheres.

  11. Atmospheric Nitrogen Deposition to the Oceans: Observation- and Model-Based Estimates

    NASA Astrophysics Data System (ADS)

    Baker, Alex; Altieri, Katye; Okin, Greg; Dentener, Frank; Uematsu, Mitsuo; Kanakidou, Maria; Sarin, Manmohan; Duce, Robert; Galloway, Jim; Keene, Bill; Singh, Arvind; Zamora, Lauren; Lamarque, Jean-Francois; Hsu, Shih-Chieh

    2014-05-01

    The reactive nitrogen (Nr) burden of the atmosphere has been increased by a factor of 3-4 by anthropogenic activity since the industrial revolution. This has led to large increases in the deposition of nitrate and ammonium to the surface waters of the open ocean, particularly downwind of major human population centres, such as those in North America, Europe and Southeast Asia. In oligotrophic waters, this deposition has the potential to significantly impact marine productivity and the global carbon cycle. Global-scale understanding of N deposition to the oceans is reliant on our ability to produce effective models of reactive nitrogen emission, atmospheric chemistry, transport and deposition (including deposition to the land surface). The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) recently completed a multi-model analysis of global N deposition, including comparisons to wet deposition observations from three regional networks in North America, Europe and Southeast Asia (Lamarque et al., Atmos. Chem. Phys., 13, 7977-8018, 2013). No similar datasets exist which would allow observation - model comparisons of wet deposition for the open oceans, because long-term wet deposition records are available for only a handful of remote island sites and rain collection over the open ocean itself is very difficult. In this work we attempt instead to use ~2600 observations of aerosol nitrate and ammonium concentrations, acquired chiefly from sampling aboard ships in the period 1995 - 2012, to assess the ACCMIP N deposition fields over the remote ocean. This database is non-uniformly distributed in time and space. We selected four ocean regions (the eastern North Atlantic, the South Atlantic, the northern Indian Ocean and northwest Pacific) where we considered the density and distribution of observational data is sufficient to provide effective comparison to the model ensemble. Two of these regions are adjacent to the land networks used in the ACCMIP

  12. Fluxes of total reactive atmospheric nitrogen using eddy covariance above arable land

    NASA Astrophysics Data System (ADS)

    Brummer, C.; Marx, O.; Kutsch, W. L.; Ammann, C.; Wolff, V.; Freibauer, A.

    2011-12-01

    A novel measurement technique (TRANC: Total Reactive Atmospheric Nitrogen Converter) was used to determine the biosphere-atmosphere exchange of the sum of all airborne reactive nitrogen (Nr) compounds. While concentration and flux measurements of Nr species from agriculture are still challenging from a metrological point of view and well-established measurement techniques (e.g., chemiluminescence detector (CLD), molybdenum converter, denuder/impinger with ion chromatography analysis) are usually limited to single compounds or provide concentration values and flux rates in poor time resolution and require labour and cost-intensive lab analyses, we present results from a campaign where the TRANC in combination with a fast-response analyzer (CLD) was used in an eddy-covariance (EC) setup to quantify total Nr. The basic measurement concept of the TRANC is the full conversion of all Nr compounds in the sample air to nitrogen monoxide (NO) within two reaction steps. Initially, reduced N compounds are being oxidized, whereas oxidized N compounds are thermally converted to compounds of lower oxidation states. Particulate N is being sublimated and oxidized or reduced afterwards. In a second reaction step, remaining higher N oxides in the sample air or those originated in the first reaction step are catalytically converted to NO. Carbon monoxide is used as reduction gas. The 10-months field campaign was conducted at an agricultural site planted with winter wheat in Thuringia, Germany. Total Nr concentrations were usually in the range of 5 to 30 ppb showing distinctive diurnal patterns with relatively low values from midday to late afternoon and highest values at night. Amplitudes were observed to be higher during the period of growth when no fertilizer was added. After fertilization events, total Nr concentrations were as high as 200 ppb for a short period of time. Different diurnal flux patterns depending on season and time passed since the last fertilization could be

  13. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    NASA Astrophysics Data System (ADS)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  14. Nitrogen fluorescence in air for observing extensive air showers

    NASA Astrophysics Data System (ADS)

    Keilhauer, B.; Bohacova, M.; Fraga, M.; Matthews, J.; Sakaki, N.; Tameda, Y.; Tsunesada, Y.; Ulrich, A.

    2013-06-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.

  15. Carbon dioxide level and form of soil nitrogen regulate assimilation of atmospheric ammonia in young trees

    PubMed Central

    Silva, Lucas C. R.; Salamanca-Jimenez, Alveiro; Doane, Timothy A.; Horwath, William R.

    2015-01-01

    The influence of carbon dioxide (CO2) and soil fertility on the physiological performance of plants has been extensively studied, but their combined effect is notoriously difficult to predict. Using Coffea arabica as a model tree species, we observed an additive effect on growth, by which aboveground productivity was highest under elevated CO2 and ammonium fertilization, while nitrate fertilization favored greater belowground biomass allocation regardless of CO2 concentration. A pulse of labelled gases (13CO2 and 15NH3) was administered to these trees as a means to determine the legacy effect of CO2 level and soil nitrogen form on foliar gas uptake and translocation. Surprisingly, trees with the largest aboveground biomass assimilated significantly less NH3 than the smaller trees. This was partly explained by declines in stomatal conductance in plants grown under elevated CO2. However, unlike the 13CO2 pulse, assimilation and transport of the 15NH3 pulse to shoots and roots varied as a function of interactions between stomatal conductance and direct plant response to the form of soil nitrogen, observed as differences in tissue nitrogen content and biomass allocation. Nitrogen form is therefore an intrinsic component of physiological responses to atmospheric change, including assimilation of gaseous nitrogen as influenced by plant growth history. PMID:26294035

  16. The effect of regional sea level atmospheric pressure on sea level variations at globally distributed tide gauge stations with long records

    NASA Astrophysics Data System (ADS)

    Iz, H. Bâki

    2018-05-01

    This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.

  17. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  18. Remote sensing of the atmosphere of Mars using infrared pressure modulation and filter radiometry

    NASA Technical Reports Server (NTRS)

    Mccleese, D. J.; Schofield, J. T.; Zurek, R. W.; Martonchik, J. V.; Haskins, R. D.

    1986-01-01

    The study of the atmosphere and climate of Mars will soon be advanced considerably by the Mars Observer mission. This paper describes the atmospheric sounder for this mission and how it will measure key Martian atmospheric parameters using IR gas correlation and filter radiometry. The instrument now under development will provide high-resolution vertical profiles of atmospheric temperature, pressure, water vapor, dust, and clouds using limb sounding techniques as well as nadir observations of surface thermal properties and polar radiative balance.

  19. Time and space variability of spectral estimates of atmospheric pressure

    NASA Technical Reports Server (NTRS)

    Canavero, Flavio G.; Einaudi, Franco

    1987-01-01

    The temporal and spatial behaviors of atmospheric pressure spectra over the northern Italy and the Alpine massif were analyzed using data on surface pressure measurements carried out at two microbarograph stations in the Po Valley, one 50 km south of the Alps, the other in the foothills of the Dolomites. The first 15 days of the study overlapped with the Alpex Intensive Observation Period. The pressure records were found to be intrinsically nonstationary and were found to display substantial time variability, implying that the statistical moments depend on time. The shape and the energy content of spectra depended on different time segments. In addition, important differences existed between spectra obtained at the two stations, indicating a substantial effect of topography, particularly for periods less than 40 min.

  20. Fructooligosaccharides integrity after atmospheric cold plasma and high-pressure processing of a functional orange juice.

    PubMed

    Almeida, Francisca Diva Lima; Gomes, Wesley Faria; Cavalcante, Rosane Souza; Tiwari, Brijesh K; Cullen, Patrick J; Frias, Jesus Maria; Bourke, Paula; Fernandes, Fabiano A N; Rodrigues, Sueli

    2017-12-01

    In this study, the effect of atmospheric pressure cold plasma and high-pressure processing on the prebiotic orange juice was evaluated. Orange juice containing 7g/100g of commercial fructooligosaccharides (FOS) was directly and indirectly exposed to a plasma discharge at 70kV with processing times of 15, 30, 45 and 60s. For high-pressure processing, the juice containing the same concentration of FOS was treated at 450MPa for 5min at 11.5°C in an industrial equipment (Hyperbaric, model: 300). After the treatments, the fructooligosaccharides were qualified and quantified by thin layer chromatography. The organic acids and color analysis were also evaluated. The maximal overall fructooligosaccharides degradation was found after high-pressure processing. The total color difference was <3.0 for high-pressure and plasma processing. citric and ascorbic acid (Vitamin C) showed increased content after plasma and high-pressure treatment. Thus, atmospheric pressure cold plasma and high-pressure processing can be used as non-thermal alternatives to process prebiotic orange juice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer: A Randomized Controlled Trial.

    PubMed

    Chuangsuwanich, Apirag; Assadamongkol, Tananchai; Boonyawan, Dheerawan

    2016-12-01

    Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.

  2. Investigating the Early Atmospheres of Earth and Mars through Rivers, Raindrops, and Lava Flows

    NASA Astrophysics Data System (ADS)

    Som, Sanjoy M.

    2010-11-01

    nitrogen level of at most twice present levels and perhaps well below present levels. To constrain this further, I re-evaluate a published paleobarometry technique using the vesicle size-distribution in simply emplaced lava flows and apply it to sea-level erupted lava flows from the 2.7 billion year old Fortescue group of Western Australia. Results from three flows suggest a range for atmospheric pressure 0.07 < Patm < 0.64 atm, which has profound consequences for our interpretation of the history of the nitrogen cycle by implying that the development of the nitrogenase enzyme necessary for nitrogen fixation happened very early on in the development of life.

  3. Nitrogen Oxides in Early Earth's Atmosphere as Electron Acceptors for Life's Emergence

    NASA Astrophysics Data System (ADS)

    Wong, Michael L.; Charnay, Benjamin D.; Gao, Peter; Yung, Yuk L.; Russell, Michael J.

    2017-10-01

    We quantify the amount of nitrogen oxides (NOx) produced through lightning and photochemical processes in the Hadean atmosphere to be available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for pulling and enabling crucial redox reactions of autotrophic metabolic pathways at submarine alkaline hydrothermal vents. The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning. Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO, HNO2, HNO3, and HO2NO2 that rain into the ocean. There, they dissociate into or react to form nitrate and nitrite. We present new calculations based on a novel combination of early-Earth global climate model and photochemical modeling, and we predict the flux of NOx to the Hadean ocean. In our 0.1-, 1-, and 10-bar pCO2 models, we calculate the NOx delivery to be 2.4 × 105, 6.5 × 108, and 1.9 × 108 molecules cm-2 s-1. After only tens of thousands to tens of millions of years, these NOx fluxes are expected to produce sufficient (micromolar) ocean concentrations of high-potential electron acceptors for the emergence of life.

  4. Investigation of Nonstationary Modes of Atmospheric Pressure Needle-to-Plane Gas Discharge and Streamer Propagation

    DTIC Science & Technology

    2003-07-20

    known, that at atmospheric pressure in oxygen- I" - contained gases a various modes of discharge can be realized in the needle -to-plane electrode geometry... needle -to-plane electrode system was located in the discharge chamber (volume I dmi3) with controlled gas feeding. The gas pressure was an atmospheric...The 3. Experimental results positive DC voltage was applied to the needle electrode . The discharge voltage was varied from 3 to 15kV. The analysis of

  5. Homogeneous nucleation in liquid nitrogen at negative pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baidakov, V. G., E-mail: baidakov@itp.uran.ru; Vinogradov, V. E.; Pavlov, P. A.

    2016-10-15

    The kinetics of spontaneous cavitation in liquid nitrogen at positive and negative pressures has been studied in a tension wave formed by a compression pulse reflected from the liquid–vapor interface on a thin platinum wire heated by a current pulse. The limiting tensile stresses (Δp = p{sub s}–p, where p{sub s} is the saturation pressure), the corresponding bubble nucleation frequencies J (10{sup 20}–10{sup 22} s{sup –1} m{sup –3}), and temperature induced nucleation frequency growth rate G{sub T} = dlnJ/dT have been experimentally determined. At T = 90 K, the limiting tensile stress was Δp = 8.3 MPa, which was 4.9more » MPa lower than the value corresponding to the boundary of thermodynamic stability of the liquid phase (spinodal). The measurement results were compared to classical (homogeneous) nucleation theory (CNT) with and without neglect of the dependence of the surface tension of critical bubbles on their dimensions. In the latter case, the properties of new phase nuclei were described in terms of the Van der Waals theory of capillarity. The experimental data agree well with the CNT theory when it takes into account the “size effect.”.« less

  6. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp.

    PubMed

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-04-01

    In this paper, ultraviolet radiation produced by the ultraviolet lamp is employed to supply pre-ionization for the dielectric barrier discharge in N(2) or air at atmospheric pressure. The effect of the ultraviolet pre-ionization on improving the uniformity of the dielectric barrier discharge is investigated experimentally. The atmospheric pressure glow discharge of the large area (270 mm x 120 mm) is obtained successfully via the ultraviolet pre-ionization in atmospheric DBD in N(2) when the gas gap decrease to 3mm. Based on the emission spectra, the mechanism which ultraviolet pre-ionization improves the uniformity of the dielectric barrier discharge is discussed.

  7. Surface-initiated graft polymerization on multiwalled carbon nanotubes pretreated by corona discharge at atmospheric pressure.

    PubMed

    Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao

    2010-03-01

    Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure.

  8. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  9. Effects of periodic atmospheric pressure variation on radon entry into buildings

    NASA Astrophysics Data System (ADS)

    Tsang, Y. W.; Narasimhan, T. N.

    1992-06-01

    Using a mathematical model, we have investigated the temporal variations of radon entry into a house basement in the presence of time-dependent periodic variations of barometric pressure as well as a persistent small steady depressurization within the basement. The tool for our investigation is an integral finite difference numerical code which can solve for both diffusive and advective flux of radon in the soil gas which is treated as a slightly compressible fluid. Two different boundary conditions at the house basement are considered: (1) a dirt floor basement so that diffusion is equally or more important than advective transport, and (2) an "impermeable" cement basement except for a 1-cm-wide crack near the perimeter of the basement floor; in which case, advective transport of radon flux dominates. Two frequencies of barometric pressure fluctuation with representative values of amplitudes, based on a Fourier decomposition of barometric pressure data, were chosen in this study: one with a short period of 0.5 hour with pressure amplitude of 50 Pa, the other a diurnal variation with a period of 24 hours with the typical pressure amplitude of 250 Pa. For a homogeneous soil medium with soil permeability to air between 10-13 and 10-10 m2, we predict that the barometric fluctuations increase the radon entry into the basement by up to 120% of the steady radon inflow into the basement owing to a steady depressurization of 5 Pa. If soil permeability heterogeneity is present, such as the presence of a thin layer of higher permeability aggregate immediately below the basement floor, radon flux due to atmospheric pumping is further increased. Effects of pressure pumping on radon entry are also compared to diffusion-only transport when the steady depressurization is absent. It is found that contribution to radon entry is significant for the basement crack configuration. In particular, for pressure pumping at 0.5-hour period and for a homogeneous medium of permeability of 10

  10. Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    NASA Technical Reports Server (NTRS)

    Lange, Kevin; Duffield, Bruce; Jeng, Frank; Campbell, Paul

    2005-01-01

    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments.

  11. In Situ Denitrification and Biological Nitrogen Fixation Under Enhanced Atmospheric Reactive Nitrogen Deposition in UK Peatlands

    NASA Astrophysics Data System (ADS)

    Ullah, Sami; Saiz Val, Ernesto; Sgouridis, Fotis; Peichl, Matthias; Nilsson, Mats

    2017-04-01

    Dinitrogen (N2) and nitrous oxide (N2O) losses due to denitrification and biological N2 fixation (BNF) are the most uncertain components of the nitrogen (N) cycle in peatlands under enhanced atmospheric reactive nitrogen (Nr) deposition. This uncertainty hampers our ability to assess the contribution of denitrification to the removal of biologically fixed and/or atmospherically deposited Nr in peatlands. This uncertainty emanates from the difficulty in measuring in situ soil N2 and N2O production and consumption in peatlands. In situ denitrification and its contribution to total N2O flux was measured monthly between April 2013 and October 2014 in peatlands in two UK catchments. An adapted 15N-Gas Flux method1 with low level addition of 15N tracer (0.03 ± 0.005 kg 15N ha-1) was used to measure denitrification and its contribution to net N2O production (DN2O/TN2O). BNF was measured in situ through incubation of selected sphagnum species under 15N2 gas tracer. Denitrification2 varied temporally and averaged 8 kg N-N2 ha-1 y-1. The contribution of denitrification was about 48% to total N2O flux3 of 0.05 kg N ha-1 y-1. Soil moisture, temperature, ecosystem respiration, pH and mineral N content mainly regulated the flux of N2 and N2O. Preliminary results showed suppression of BNF, which was 1.8 to 7 times lower in peatland mosses exposed to ˜15 to 20 kg N ha-1 y-1 Nr deposition in the UK than in peatland mosses in northern Sweden with background Nr deposition. Overall, the contribution of denitrification to Nr removal in the selected peatlands was ˜50% of the annual Nr deposition rates, making these ecosystems vulnerable to chronic N saturation. These results point to a need for a more comprehensive annual BNF measurement to more accurately account for total Nr input into peatlands and its atmospheric loss due to denitrification. References Sgouridis F, Stott A & Ullah S, 2016. Application of the 15N-Gas Flux method for measuring in situ N2 and N2O fluxes due to

  12. When API Mass Spectrometry Meets Super Atmospheric Pressure Ion Sources

    PubMed Central

    Chen, Lee Chuin

    2015-01-01

    In a tutorial paper on the application of free-jet technique for API-MS, John Fenn mentioned that “…for a number of years and a number of reasons, it has been found advantageous in many situations to carry out the ionization process in gas at pressures up to 1000 Torr or more” (Int. J. Mass Spectrom. 200: 459–478, 2000). In fact, the first ESI mass spectrometer constructed by Yamashita and Fenn had a counter-flow curtain gas source at 1050 Torr (ca. 1.4 atm) to sweep away the neutral (J. Phys. Chem. 88: 4451–4459, 1984). For gaseous ionization using electrospray plume, theoretical analysis also shows that “super-atmospheric operation would be more preferable in space-charge-limited situations.”(Int. J. Mass Spectrom. 300: 182–193, 2011). However, electrospray and the corona-based chemical ion source (APCI) in most commercial instrument are basically operated under an atmospheric pressure ambient, perhaps out of the concern of safety, convenience and simplicity in maintenance. Running the ion source at pressure much higher than 1 atm is not so common, but had been done by a number of groups as well as in our laboratory. A brief review on these ion sources will be given in this paper. PMID:26819912

  13. Special issue: diagnostics of atmospheric pressure microplasmas

    NASA Astrophysics Data System (ADS)

    Bruggeman, Peter; Czarnetzki, Uwe; Tachibana, Kunihide

    2013-11-01

    In recent decades, a strong revival of non-equilibrium atmospheric pressure plasma studies has developed in the form of microplasmas. Microplasmas have typical scales of 1 mm or less and offer a very exciting research direction in the field of plasma science and technology as the discharge physics can be considerably different due to high collisionality and the importance of plasma-surface interaction. These high-pressure small-scale plasmas have a diverse range of physical and chemical properties. This diversity coincides with various applications including light/UV sources [1], material processing [2], chemical analysis [3], material synthesis [4], electromagnetics [5], combustion [6] and even medicine [7]. At atmospheric pressure, large scale plasmas have the tendency to become unstable due to the high collision rates leading to enhanced heating and ionization compared to their low-pressure counterparts. As low-pressure plasmas typically operate in reactors with sizes of tens of centimetres, scaling up the pressure to atmospheric pressure the size of the plasma reduces to typical sizes below 1 mm. A natural approach of stabilizing atmospheric pressure plasmas is thus the use of microelectrode geometries. Traditionally microplasmas have been produced in confined geometries which allow one to stabilize dc excited discharges. This stabilization is intrinsically connected to the large surface-to-volume ratio which enhances heat transfer and losses of charged and excited species to the walls. Currently challenging boundaries are pushed by producing microcavity geometries with dimensions of the order of 1 µm [8]. The subject of this special issue, diagnostics of microplasmas, is motivated by the many challenges in microplasma diagnostics in view of the complex chemistry and strong spatial (and even temporal) gradients of species densities and plasma properties. Atmospheric pressure plasmas have a very long history dating back more than 100 years, with early work of

  14. Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction.

    PubMed

    Castaños Martinez, E; Kabouzi, Y; Makasheva, K; Moisan, M

    2004-12-01

    The modeling of microwave-sustained discharges at atmospheric pressure is much less advanced than at reduced pressure (<10 Torr) because of the greater complexity of the mechanisms involved. In particular, discharge contraction, a characteristic feature of high-pressure discharges, is not well understood. To describe adequately this phenomenon, one needs to consider that the charged-particle balance in atmospheric-pressure discharges relies on the kinetics of molecular ions, including their dissociation through electron impact. Nonuniform gas heating plays a key role in the radial distribution of the density of molecular ions. The onset of contraction is shown to depend only on radially nonuniform gas heating. The radial nonuniformity of the electric field intensity also plays an important role allowing one, for instance, to explain the lower degree of contraction observed in microwave discharges compared to dc discharges. We present a numerical fluid-plasma model that aims to bring into relief the main features of discharge contraction in rare gases. It calls for surface-wave discharges because of their wide range of operating conditions, enabling a closer check between theory and experiment.

  15. An upper limit on Early Mars atmospheric pressure from small ancient craters

    NASA Astrophysics Data System (ADS)

    Kite, E. S.; Williams, J.; Lucas, A.; Aharonson, O.

    2012-12-01

    Planetary atmospheres brake, ablate, and disrupt small asteroids and comets, filtering out small hypervelocity surface impacts and causing fireballs, airblasts, meteors, and meteorites. Hypervelocity craters <1 km diameter on Earth are typically caused by irons (because stones are more likely to break up), and the smallest hypervelocity craters near sea-level on Earth are ~20 m in diameter. 'Zap pits' as small as 30 microns are known from the airless moon, but the other airy worlds show the effects of progressively thicker atmospheres:- the modern Mars atmosphere is marginally capable of removing >90% of the kinetic energy of >240 kg iron impactors; Titan's paucity of small craters is consistent with a model predicting atmospheric filtering of craters smaller than 6-8km; and on Venus, craters below ~20 km diameter are substantially depleted. Changes in atmospheric CO2 concentration are believed to be the single most important control on Mars climate evolution and habitability. Existing data requires an early epoch of massive atmospheric loss to space; suggests that the present-day rate of escape to space is small; and offers only limited evidence for carbonate formation. Existing evidence has not led to convergence of atmosphere-evolution models, which must balance poorly understood fluxes from volcanic degassing, surface weathering, and escape to space. More direct measurements are required in order to determine the history of CO2 concentrations. Wind erosion and tectonics exposes ancient surfaces on Mars, and the size-frequency distribution of impacts on these surfaces has been previously suggested as a proxy time series of Mars atmospheric thickness. We will present a new upper limit on Early Mars atmospheric pressure using the size-frequency distribution of 20-100m diameter ancient craters in Aeolis Dorsa, validated using HiRISE DTMs, in combination with Monte Carlo simulations of the effect of paleo-atmospheres of varying thickness on the crater flux. These

  16. Developing Oxidized Nitrogen Atmospheric Deposition Source Attribution from CMAQ for Air-Water Trading for Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Dennis, R. L.; Napelenok, S. L.; Linker, L. C.; Dudek, M.

    2012-12-01

    Estuaries are adversely impacted by excess reactive nitrogen, Nr, from many point and nonpoint sources, including atmospheric deposition to the watershed and the estuary itself as a nonpoint source. For effective mitigation, trading among sources of Nr is being considered. The Chesapeake Bay Program is working to bring air into its trading scheme, which requires some special air computations. Airsheds are much larger than watersheds; thus, wide-spread or national emissions controls are put in place to achieve major reductions in atmospheric Nr deposition. The tributary nitrogen load reductions allocated to the states to meet the TMDL target for Chesapeake Bay are large and not easy to attain via controls on water point and nonpoint sources. It would help the TMDL process to take advantage of air emissions reductions that would occur with State Implementation Plans that go beyond the national air rules put in place to help meet national ambient air quality standards. There are still incremental benefits from these local or state-level controls on atmospheric emissions. The additional air deposition reductions could then be used to offset water quality controls (air-water trading). What is needed is a source to receptor transfer function that connects air emissions from a state to deposition to a tributary. There is a special source attribution version of the Community Multiscale Air Quality model, CMAQ, (termed DDM-3D) that can estimate the fraction of deposition contributed by labeled emissions (labeled by source or region) to the total deposition across space. We use the CMAQ DDM-3D to estimate simplified state-level delta-emissions to delta-atmospheric-deposition transfer coefficients for each major emission source sector within a state, since local air regulations are promulgated at the state level. The CMAQ 4.7.1 calculations are performed at a 12 km grid size over the airshed domain covering Chesapeake Bay for 2020 CAIR emissions. For results, we first present

  17. Nitrogen Chemistry in Titan's Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.; Cuzzi, Jeffrey (Technical Monitor)

    1996-01-01

    In Titan's upper atmosphere N2 is dissociated to N by solar UV and high energy electrons. This flux of N provides for interesting organic chemistry in the lower atmosphere of Titan. Previously the main pathway for the loss of this N was thought to be the formation of HCN, followed by diffusion of this HCN to lower altitudes leading ultimately to condensation. However, recent laboratory simulations of organic chemistry in Titan's atmosphere suggest that formation of the organic haze may be an important sink for atmospheric N. Because estimates of the eddy diffusion profile on Titan have been based on the HCN profile, inclusion of this additional sink for N will affect estimates for all transport processes in Titan's atmosphere. This and other implications of this sink for the N balance on Titan are considered.

  18. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  19. Rugged, no-moving-parts windspeed and static pressure probe designs for measurements in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Bedard, A. J., Jr.; Nishiyama, R. T.

    1993-01-01

    Instruments developed for making meteorological observations under adverse conditions on Earth can be applied to systems designed for other planetary atmospheres. Specifically, a wind sensor developed for making measurements within tornados is capable of detecting induced pressure differences proportional to wind speed. Adding strain gauges to the sensor would provide wind direction. The device can be constructed in a rugged form for measuring high wind speeds in the presence of blowing dust that would clog bearings and plug passages of conventional wind speed sensors. Sensing static pressure in the lower boundary layer required development of an omnidirectional, tilt-insensitive static pressure probe. The probe provides pressure inputs to a sensor with minimum error and is inherently weather-protected. The wind sensor and static pressure probes have been used in a variety of field programs and can be adapted for use in different planetary atmospheres.

  20. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasenko, V. F., E-mail: vft@loi.hcei.tsc.ru; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse dischargemore » is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.« less

  1. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Zhang, L.; Chen, Y.; Liu, X.; Xu, W.; Pan, Y.; Duan, L.

    2016-12-01

    We present a national-scale model analysis of the sources and processes of inorganic nitrogen deposition over China using the GEOS-Chem model at 1/2°×1/3° horizontal resolution. Averaged model results for 2008-2012 are evaluated with an ensemble of surface measurements of nitrogen wet deposition flux and concentration, and satellite measurements of tropospheric NO2 columns. Annual inorganic nitrogen deposition fluxes are shown to be generally less than 10 kg N ha-1 a-1 in the western China, 15-50 kg N ha-1 a-1 in the eastern China, and 15.6 kg N ha-1 a-1 averaged over China. The model simulates an annual total deposition flux of 16.4 Tg N to China, with 10.3 Tg N (63%) from reduced nitrogen (NHx) and 6.2 Tg N from oxidized nitrogen (NOy). Domestic anthropogenic sources contribute 86% of the total deposition; foreign anthropogenic sources 7% and natural sources 7%. Annually 23% of domestically emitted NH3 and 36% for NOx are exported out of China. We also find while nitrogen deposition to China is comparable to the nitrogen input from fertilizer application (16.5 Tg N a-1) on the national scale, it is much more widely distributed spatially. The deposition flux is also much higher than natural biological fixation (7.3 Tg N a-1). A comparison with estimates of nitrogen critical load for eutrophication indicates that about 40% of the land over China faces nitrogen critical load exceedances. However, 45% of the exceeding areas, mainly in Beijing-Tianjin-Hebei, Central China, East China, and South China, will not occur in the absence of nitrogen deposition, demonstrating the necessity of nitrogen emission controls to avoid potential negative ecological effects over these areas.

  2. Exchange of nitrogen dioxide (NO2) between plants and the atmosphere under laboratory and field conditions

    NASA Astrophysics Data System (ADS)

    Breuninger, C.; Meixner, F. X.; Thielmann, A.; Kuhn, U.; Dindorf, T.; Kesselmeier, J.

    2012-04-01

    Nitric oxide (NO), nitrogen dioxide (NO2), often denoted as nitrogen oxides (NOx), and ozone (O3) are considered as most important compounds in atmospheric chemistry. In remote areas NOx concentration is related to biological activities of soils and vegetation. The emitted NOx will not entirely be subject of long range transport through the atmosphere. Aside oxidation of NO2 by the OH radical (forming HNO3), a considerable part of it is removed from the atmosphere through the uptake of NO2 by plants. The exchange depends on stomatal activity and on NO2 concentrations in ambient air. It is known that NO2 uptake by plants represents a large NO2 sink, but the magnitude and the NO2 compensation point concentration are still under discussion. Our dynamic chamber system allows exchange measurements of NO2 under field conditions (uncontrolled) as well as studies under controlled laboratory conditions including fumigation experiments. For NO2 detection we used a highly NO2 specific blue light converter (photolytic converter) with subsequent chemiluminescence analysis of the generated NO. Furthermore, as the exchange of NO2 is a complex interaction of transport, chemistry and plant physiology, in our field experiments we determined fluxes of NO, NO2, O3, CO2 and H2O. For a better knowledge of compensation point values for the bi-directional NO2 exchange we investigated a primary representative of conifers, Picea abies, under field and laboratory conditions, and re-analyzed older field data of the deciduous tree Quercus robur.

  3. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-01

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer’s solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer’s lactate solution has anti-tumor effects, but of the four components in Ringer’s lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer’s lactate solution. Overall, these results suggest that plasma-activated Ringer’s lactate solution is promising for chemotherapy.

  4. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  5. Atmospheric pressure plasma jet with high-voltage power supply based on piezoelectric transformer.

    PubMed

    Babij, Michał; Kowalski, Zbigniew W; Nitsch, Karol; Silberring, Jerzy; Gotszalk, Teodor

    2014-05-01

    The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

  6. New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN

    NASA Astrophysics Data System (ADS)

    Stevens, M. H.; Evans, J. S.; Schneider, N. M.; Stewart, A. I. F.; Deighan, J.; Jain, S. K.; Crismani, M.; Stiepen, A.; Chaffin, M. S.; McClintock, W. E.; Holsclaw, G. M.; Lefèvre, F.; Lo, D. Y.; Clarke, J. T.; Montmessin, F.; Bougher, S. W.; Jakosky, B. M.

    2015-11-01

    We identify molecular nitrogen (N2) emissions in the Martian upper atmosphere using the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. We report the first observations of the N2 Lyman-Birge-Hopfield (LBH) bands at Mars and confirm the tentative identification of the N2 Vegard-Kaplan (VK) bands. We retrieve N2 density profiles from the VK limb emissions and compare calculated limb radiances between 90 and 210 km against both observations and predictions from a Mars general circulation model (GCM). Contrary to earlier analyses using other satellite data, we find that N2 abundances exceed GCM results by about a factor of 2 at 130 km but are in agreement at 150 km. The analysis and interpretation are enabled by a linear regression method used to extract components of UV spectra from IUVS limb observations.

  7. Nitrogen cycle between surface and mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Watenphul, A.; Heinrich, W.

    2009-12-01

    Nitrogen cycling between the surface and the deep Earth occurs mainly through subduction of ammonium-bearing sediments and alterated oceanic crust and nitrogen release via degassing of molecular nitrogen. Whereas in most environments nitrogen is soon released to the surface via arc volcanism [1] or lost during increasing metamorphic grade [2] at cold slab conditions nitrogen remains in the rocks at least down to 90 km and very probably beyond the depth locus of island arc magmatism [3]. In these rocks, nitrogen is initially bound as ammonium, substituting potassium in the relevant K-bearing phases such as clay minerals, micas, and feldspars, due to similarities in the ionic radius and charge. Multi-anvil experiments [4] have shown that at pressures exceeding the upper stability of phengitic mica and feldspar, ammonium is easily incorporated into high-pressure successor K-bearing phases such as K-cymrite, K-Si-wadeite, K-hollandite and to minor amounts also into omphacitic clinopyroxene. This implies that NH4 can probably be transported down to the transition zone and beyond. The global nitrogen input to the mantle as NH4 via cold slab subduction and the global output to the atmosphere as N2 through mid-ocean ridge basalts and volcanic arcs roughly balance each other [3,5] and are estimated to about 3 - 5 × 1010 mol/a N. Because a large portion of the nitrogen release occurs at mid-ocean ridges [1], a nitrogen reservoir in peridotites probably does exist. High-pressure experiments up to 13 GPa, 750 °C have shown that Cr-diopside may store NH4 by up to 500 to 1000 ppm, making clinopyroxene the ideal candidate for nitrogen storage at depth. If so, the nitrogen storage capacity of the upper mantle is roughly estimated at 1012 mol N. This reservoir also contributes to the deep Earth's water budget. The input of NH4 by slab minerals and the output as N2 requires the occurrence of oxidation reactions during the recycling process. Nitrogen speciation in H-N-O fluids is

  8. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  9. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  10. Application of the 15N tracer method to study the effect of pyrolysis temperature and atmosphere on the distribution of biochar nitrogen in the biomass-biochar-plant system.

    PubMed

    Tan, Zhongxin; Ye, Zhixiong; Zhang, Limei; Huang, Qiaoyun

    2018-05-01

    Biochar nitrogen is key to improving soil fertility, but the distribution of biochar nitrogen in the biomass-biochar-plant system is still unclear. To provide clarity, the 15 N tracer method was utilised to study the distribution of biochar nitrogen in the biochar both before and after its addition to the soil. The results can be summarised as follows. 1) The retention rate of 15 N in biochar decreases from 45.23% to 20.09% with increasing pyrolysis temperature from 400 to 800°C in a CO 2 atmosphere. 2) The retention rate of 15 N in biochar prepared in a CO 2 atmosphere is higher than that prepared in a N 2 atmosphere when the pyrolysis temperature is below 600°C. 3) Not only can biochar N slowly facilitate the adsorption of N by plants but the addition of biochar to the soil can also promote the supply of soil nitrogen to the plant; in contrast, the direct return of wheat straw biomass to the soil inhibits the absorption of soil N by plants. 4) In addition, the distribution of nitrogen was clarified; that is, when biochar was prepared by the pyrolysis of wheat straw at 400°C in a CO 2 atmosphere, the biochar retained 45.23% N, and after the addition of this biochar to the soil, 39.99% of N was conserved in the biochar residue, 4.55% was released into the soil, and 0.69% was contained in the wheat after growth for 31days. Therefore, this study very clearly shows the distribution of nitrogen in the biomass-biochar-plant system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  12. Nitrogen evolution within the Earth's atmosphere-mantle system assessed by recycling in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Li, Yuan; Wiedenbeck, Michael

    2018-01-01

    Understanding the evolution of nitrogen (N) across Earth's history requires a comprehensive understanding of N's behaviour in the Earth's mantle - a massive reservoir of this volatile element. Investigation of terrestrial N systematics also requires assessment of its evolution in the Earth's atmosphere, especially to constrain the N content of the Archaean atmosphere, which potentially impacted water retention on the post-accretion Earth, potentially causing enough warming of surface temperatures for liquid water to exist. We estimated the proportion of recycled N in the Earth's mantle today, the isotopic composition of the primitive mantle, and the N content of the Archaean atmosphere based on the recycling rates of N in modern-day subduction zones. We have constrained recycling rates in modern-day subduction zones by focusing on the mechanism and efficiency of N transfer from the subducting slab to the sub-arc mantle by both aqueous fluids and slab partial melts. We also address the transfer of N by aqueous fluids as per the model of Li and Keppler (2014). For slab partial melts, we constrained the transfer of N in two ways - firstly, by an experimental study of the solubility limit of N in melt (which provides an upper estimate of N uptake by slab partial melts) and, secondly, by the partitioning of N between the slab and its partial melt. Globally, 45-74% of N introduced into the mantle by subduction enters the deep mantle past the arc magmatism filter, after taking into account the loss of N from the mantle by degassing at mid-ocean ridges, ocean islands and back-arcs. Although the majority of the N in the present-day mantle remains of primordial origin, our results point to a significant, albeit minor proportion of mantle N that is of recycled origin (17 ± 8% or 12 ± 5% of N in the present-day mantle has undergone recycling assuming that modern-style subduction was initiated 4 or 3 billion years ago, respectively). This proportion of recycled N is enough to

  13. Formation of Nitrogen Oxides in an Apokamp-Type Plasma Source

    NASA Astrophysics Data System (ADS)

    Sosnin, É. A.; Goltsova, P. A.; Panarin, V. A.; Skakun, V. S.; Tarasenko, V. F.; Didenko, M. V.

    2017-08-01

    Using optical and chemical processes, the composition of the products of decay of the atmospheric-pressure non-equilibrium plasma is determined in a pulsed, high-voltage discharge in the modes of apokampic and corona discharges. It is shown that the products of decay primarily contain nitrogen oxides NO x, and in the mode of the corona discharge - ozone. Potential applications of this source of plasma are discussed with respect to plasma processing of the seeds of agricultural crops.

  14. Comparison of argon-based and nitrogen-based modified atmosphere packaging on bacterial growth and product quality of chicken breast fillets.

    PubMed

    Herbert, Ulrike; Rossaint, Sonja; Khanna, Meik-Ankush; Kreyenschmidt, Judith

    2013-05-01

    Poultry fillets were packaged under 6 different gas atmospheres (A: 15% Ar, 60% O2, 25% CO2; B: 15% N2, 60% O2, 25% CO2; C: 25% Ar, 45% O2, 30% CO2; D: 25% N2, 45% O2, 30% CO2; E: 82% Ar; 18% CO2; F: 82% N2, 18% CO2) and stored at 4°C. During storage, the growth of typical spoilage organisms (Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and Lactobacilli spp.) and total viable count were analyzed and modeled using the Gompertz function. Sensory analyses of the poultry samples were carried out by trained sensory panelists for color, odor, texture, drip loss, and general appearance. No significant difference in microbiological growth parameters was observed for fresh poultry stored under an argon-enriched atmosphere in comparison with nitrogen, except the B. thermosphacta stored under 82% argon. The sensory evaluation showed a significant effect of an argon-enriched atmosphere, particularly on color of meat stored under 15% argon (P < 0.05). In contrast, 25 and 82% argon concentrations in place of nitrogen showed no beneficial effect on sensory parameters.

  15. Atmospheric nitrogen compounds II: emissions, transport, transformation, deposition and assessment

    NASA Astrophysics Data System (ADS)

    Aneja, Viney P.; Roelle, Paul A.; Murray, George C.; Southerland, James; Erisman, Jan Willem; Fowler, David; Asman, Willem A. H.; Patni, Naveen

    The Atmospheric Nitrogen Compounds II: Emissions, Transport, Transformation, Deposition and Assessment workshop was held in Chapel Hill, NC from 7 to 9 June 1999. This international conference, which served as a follow-up to the workshop held in March 1997, was sponsored by: North Carolina Department of Environment and Natural Resources; North Carolina Department of Health and Human Services, North Carolina Office of the State Health Director; Mid-Atlantic Regional Air Management Association; North Carolina Water Resources Research Institute; Air and Waste Management Association, RTP Chapter; the US Environmental Protection Agency and the North Carolina State University (College of Physical and Mathematical Sciences, and North Carolina Agricultural Research Service). The workshop was structured as an open forum at which scientists, policy makers, industry representatives and others could freely share current knowledge and ideas, and included international perspectives. The workshop commenced with international perspectives from the United States, Canada, United Kingdom, the Netherlands, and Denmark. This article summarizes the findings of the workshop and articulates future research needs and ways to address nitrogen/ammonia from intensively managed animal agriculture. The need for developing sustainable solutions for managing the animal waste problem is vital for shaping the future of North Carolina. As part of that process, all aspects of environmental issues (air, water, soil) must be addressed as part of a comprehensive and long-term strategy. There is an urgent need for North Carolina policy makers to create a new, independent organization that will build consensus and mobilize resources to find technologically and economically feasible solutions to this aspect of the animal waste problem.

  16. Eustachian tube function and middle ear barotrauma associated with extremes in atmospheric pressure.

    PubMed

    Miyazawa, T; Ueda, H; Yanagita, N

    1996-11-01

    Eustachian tube (ET) function was studied by means of sonotubometry and tubotympano-aerodynamography (TTAG) prior to and following exposure to hypobaric or hyperbaric conditions. Forty normal adults were subjected to hypobaric pressure. Fifty adults who underwent hyperbaric oxygen (HBO) therapy also were studied. Following hypobaric exposure, 14 of 80 ears (17.5%) exhibited middle ear barotrauma. Following hyperbaric exposure, 34 of 100 ears (34%) exhibited middle ear barotrauma. Dysfunction of the ET, characterized by altered active and passive opening capacity, was more prevalent following exposure to extremes in atmospheric pressure compared to baseline. The ET function, which was impaired after the first HBO treatment, improved gradually over the next 2 hours. Overall, however, ET function was worse after the seventh treatment. The patients who developed barotrauma exhibited worse ET function prior to hypobaric or hyperbaric exposure. Thus, abnormal ET function can be used to predict middle ear barotrauma prior to exposure to hypobaric or hyperbaric atmospheric pressure.

  17. Understanding the Flowing Atmospheric-Pressure Afterglow (FAPA) Ambient Ionization Source through Optical Means

    NASA Astrophysics Data System (ADS)

    Shelley, Jacob T.; Chan, George C.-Y.; Hieftje, Gary M.

    2012-02-01

    The advent of ambient desorption/ionization mass spectrometry (ADI-MS) has led to the development of a large number of atmospheric-pressure ionization sources. The largest group of such sources is based on electrical discharges; yet, the desorption and ionization processes that they employ remain largely uncharacterized. Here, the atmospheric-pressure glow discharge (APGD) and afterglow of a helium flowing atmospheric-pressure afterglow (FAPA) ionization source were examined by optical emission spectroscopy. Spatial emission profiles of species created in the APGD and afterglow were recorded under a variety of operating conditions, including discharge current, electrode polarity, and plasma-gas flow rate. From these studies, it was found that an appreciable amount of atmospheric H2O vapor, N2, and O2 diffuses through the hole in the plate electrode into the discharge to become a major source of reagent ions in ADI-MS analyses. Spatially resolved plasma parameters, such as OH rotational temperature (Trot) and electron number density (ne), were also measured in the APGD. Maximum values for Trot and ne were found to be ~1100 K and ~4 × 1019 m-3, respectively, and were both located at the pin cathode. In the afterglow, rotational temperatures from OH and N{2/+} yielded drastically different values, with OH temperatures matching those obtained from infrared thermography measurements. The higher N{2/+} temperature is believed to be caused by charge-transfer ionization of N2 by He{2/+}. These findings are discussed in the context of previously reported ADI-MS analyses with the FAPA source.

  18. Atmospheric-pressure plasma jets: Effect of gas flow, active species, and snake-like bullet propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, S.; Wang, Z.; Huang, Q.

    2013-02-15

    Cold atmospheric-pressure plasma jets have recently attracted enormous interest owing to numerous applications in plasma biology, health care, medicine, and nanotechnology. A dedicated study of the interaction between the upstream and downstream plasma plumes revealed that the active species (electrons, ions, excited OH, metastable Ar, and nitrogen-related species) generated by the upstream plasma plume enhance the propagation of the downstream plasma plume. At gas flows exceeding 2 l/min, the downstream plasma plume is longer than the upstream plasma plume. Detailed plasma diagnostics and discharge species analysis suggest that this effect is due to the electrons and ions that are generatedmore » by the upstream plasma and flow into the downstream plume. This in turn leads to the relatively higher electron density in the downstream plasma. Moreover, high-speed photography reveals a highly unusual behavior of the plasma bullets, which propagate in snake-like motions, very differently from the previous reports. This behavior is related to the hydrodynamic instability of the gas flow, which results in non-uniform distributions of long-lifetime active species in the discharge tube and of surface charges on the inner surface of the tube.« less

  19. Inactivation of virus in solution by cold atmospheric pressure plasma: identification of chemical inactivation pathways

    NASA Astrophysics Data System (ADS)

    Aboubakr, Hamada A.; Gangal, Urvashi; Youssef, Mohammed M.; Goyal, Sagar M.; Bruggeman, Peter J.

    2016-05-01

    Cold atmospheric pressure plasma (CAP) inactivates bacteria and virus through in situ production of reactive oxygen and nitrogen species (RONS). While the bactericidal and virucidal efficiency of plasmas is well established, there is limited knowledge about the chemistry leading to the pathogen inactivation. This article describes a chemical analysis of the CAP reactive chemistry involved in the inactivation of feline calicivirus. We used a remote radio frequency CAP produced in varying gas mixtures leading to different plasma-induced chemistries. A study of the effects of selected scavengers complemented with positive control measurements of relevant RONS reveal two distinctive pathways based on singlet oxygen and peroxynitrous acid. The first mechanism is favored in the presence of oxygen and the second in the presence of air when a significant pH reduction is induced in the solution by the plasma. Additionally, smaller effects of the H2O2, O3 and \\text{NO}2- produced were also found. Identification of singlet oxygen-mediated 2-imidazolone/2-oxo-His (His  +14 Da)—an oxidative modification of His 262 comprising the capsid protein of feline calicivirus links the plasma induced singlet oxygen chemistry to viral inactivation.

  20. Nitrogen Separation and Liquefaction Apparatus for Medical Applications and Its Thermodynamic Optimization

    NASA Astrophysics Data System (ADS)

    Chorowski, M.; Piotrowska, A.; Polinski, J.

    2006-04-01

    Low temperature medicine is becoming a widely appreciated method in surgery, dermatology, gynecology and rheumatology. The cryomedical equipment is usually supplied with liquid nitrogen LN2 stored in a dewar and transferred to a tip, where it is evaporated providing a cooling power. LN2 in quantities sufficient for cryo-surgical and cryo-therapeutical applications can be first separated from air and then liquefied using a system combining polymer membrane gas separation technology and a Joule-Thomson closed-cycle refrigerator filled with a nitrogen-hydrocarbons gas mixture. Nitrogen is separated from the compressed air, then liquefied and throttled to atmospheric pressure. The paper analyzes the demanded cooling capacity of the system resulting from cryomedical treatment requirements. Thermal design and flow scheme of the apparatus are given. The system is thermodynamically optimized.

  1. Airborne Lidar Measurements of Atmospheric Pressure Made Using the Oxygen A-Band

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriquez, Michael D.; Allan, Graham R.; Hasselbrack, William E.; Mao, Jianping; Stephen, Mark A.; Abshire, James B.

    2012-01-01

    Accurate measurements of greenhouse gas mixing ratios on a global scale are currently needed to gain a better understanding of climate change and its possible impact on our planet. In order to remotely measure greenhouse gas concentrations in the atmosphere with regard to dry air, the air number density in the atmosphere is also needed in deriving the greenhouse gas concentrations. Since oxygen is stable and uniformly mixed in the atmosphere at 20.95%, the measurement of an oxygen absorption in the atmosphere can be used to infer the dry air density and used to calculate the dry air mixing ratio of a greenhouse gas, such as carbon dioxide or methane. OUT technique of measuring Oxygen uses integrated path differential absorption (IPDA) with an Erbium Doped Fiber Amplifier (EDF A) laser system and single photon counting module (SPCM). It measures the absorbance of several on- and off-line wavelengths tuned to an O2 absorption line in the A-band at 764.7 nm. The choice of wavelengths allows us to maximize the pressure sensitivity using the trough between two absorptions in the Oxygen A-band. Our retrieval algorithm uses ancillary meteorological and aircraft altitude information to fit the experimentally obtained lidar O2 line shapes to a model atmosphere and derives the pressure from the profiles of the two lines. We have demonstrated O2 measurements from the ground and from an airborne platform. In this paper we will report on our airborne measurements during our 2011 campaign for the ASCENDS program.

  2. Electrolytic Conductance of the Ternary System of Nitric Acid--Nitrogen Dioxide--Water at 32 deg F and Atmospheric Pressure

    DTIC Science & Technology

    1951-11-12

    solutions of nitrogen dioxide in nitric acid where nitrosonium ions (NO+) and nitrate ions (NO-) have been identified (Cf. Ref. 4). The nitrogen...0.97 weight fraction nitric acid, hydrogen and nitrate ions are the predominant conducting species. In the range 0.97 to 1.00 weight fraction nitric...self-ionization to yield nitronium ions (NJ2) and nitratej2 ions (NO3) according to the expression 2HNO3--NO+ + NO- + H2 0 It is evident from this

  3. Controls on Biogeochemical Cycling of Nitrogen in Urban Ecosystems

    NASA Astrophysics Data System (ADS)

    Templer, P. H.; Hutyra, L.; Decina, S.; Rao, P.; Gately, C.

    2017-12-01

    Rates of atmospheric nitrogen deposition are declining across much of the United States and Europe, yet they remain substantially elevated by almost an order of magnitude over pre-industrial levels and occur as hot spots in urban areas. We measured atmospheric inputs of inorganic and organic nitrogen in multiple urban sites around the Boston Metropolitan area, finding that urban rates are substantially elevated compared to nearby rural areas, and that the range of these atmospheric inputs are as large as observed urban to rural gradients. Within the City of Boston, the variation in deposition fluxes can be explained by traffic intensity, vehicle emissions, and spring fertilizer additions. Throughfall inputs of nitrogen are approximately three times greater than bulk deposition inputs in the city, demonstrating that the urban canopy amplifies rates of nitrogen reaching the ground surface. Similar to many other metropolitan areas of the United States, the City of Boston has 25% canopy cover; however, 25% of this tree canopy is located above impervious pavement. Throughfall inputs that do not have soil below the canopy to retain excess nitrogen may lead to greater inputs of nitrogen into nearby waterways through runoff. Most measurement stations for atmospheric nitrogen deposition are intentionally located away from urban areas and point sources of pollution to capture regional trends. Our data show that a major consequence of this network design is that hotspots of nitrogen deposition and runoff into urban and coastal waterways is likely underestimated to a significant degree. A more complete determination of atmospheric nitrogen deposition and its fate in urban ecosystems is critical for closing regional nitrogen budgets and for improving our understanding of biogeochemical nitrogen cycling across multiple spatial scales.

  4. Mycotoxin Decontamination of Food: Cold Atmospheric Pressure Plasma versus “Classic” Decontamination

    PubMed Central

    Hojnik, Nataša; Cvelbar, Uroš; Tavčar-Kalcher, Gabrijela; Walsh, James L.; Križaj, Igor

    2017-01-01

    Mycotoxins are secondary metabolites produced by several filamentous fungi, which frequently contaminate our food, and can result in human diseases affecting vital systems such as the nervous and immune systems. They can also trigger various forms of cancer. Intensive food production is contributing to incorrect handling, transport and storage of the food, resulting in increased levels of mycotoxin contamination. Mycotoxins are structurally very diverse molecules necessitating versatile food decontamination approaches, which are grouped into physical, chemical and biological techniques. In this review, a new and promising approach involving the use of cold atmospheric pressure plasma is considered, which may overcome multiple weaknesses associated with the classical methods. In addition to its mycotoxin destruction efficiency, cold atmospheric pressure plasma is cost effective, ecologically neutral and has a negligible effect on the quality of food products following treatment in comparison to classical methods. PMID:28452957

  5. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  6. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).

  7. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID

  8. Characteristics of radio-frequency atmospheric pressure dielectric-barrier discharge with dielectric electrodes

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Qazi, H. I. A.; Badar, M. A.

    2014-03-01

    An experimental investigation to characterize the properties and highlight the benefits of atmospheric pressure radio-frequency dielectric-barrier discharge (rf DBD) with dielectric electrodes fabricated by anodizing aluminium substrate is presented. The current-voltage characteristics and millisecond images are used to distinguish the α and γ modes. This atmospheric rf DBD is observed to retain the discharge volume without constriction in γ mode. Optical emission spectroscopy demonstrates that the large discharge current leads to more abundant reactive species in this plasma source.

  9. Atmospheric noble gases in Mid-Ocean Ridge Basalts: Identification of atmospheric contamination processes

    NASA Astrophysics Data System (ADS)

    Roubinet, Claire; Moreira, Manuel A.

    2018-02-01

    Noble gases in oceanic basalts always show the presence in variable proportions of a component having elemental and isotopic compositions that are similar to those of the atmosphere and distinct from the mantle composition. Although this component could be mantle-derived (e.g. subduction of air or seawater-derived noble gases trapped in altered oceanic crust and sediments), it is most often suggested that this air component is added after sample collection and probably during storage at ambient air, although the mechanism remains unknown. In an attempt to reduce this atmospheric component observed in MORBs, four experimental protocols have been followed in this study. These protocols are based on the hypothesis that air can be removed from the samples, as it appears to be sheltered in distinct vesicles compared to those filled with mantle gases. All of the protocols involve a glove box filled with nitrogen, and in certain cases, the samples are stored under primary vacuum (lower than 10-2 mbar) to pump air out or, alternatively, under high pressure of N2 to expel atmospheric noble gases. In all protocols, three components are observed: atmospheric, fractionated atmospheric and magmatic. The fractionated air component seems to be derived from the non-vitreous part of the pillow-lava, which has cooled more slowly. This component is enriched in Ne relative to Ar, reflecting a diffusive process. This contaminant has already been observed in other studies and thus seems to be relatively common. Although it is less visible, unfractionated air has also been detected in some crushing steps, which tends to indicate that despite the experiments, air is still present in the vesicles. This result is surprising, since studies have demonstrated that atmospheric contamination could be limited if samples were stored under nitrogen quickly after their recovery from the seafloor. Thus, the failure of the protocols could be explained by the insufficient duration of these protocols or

  10. Mineral commodity profiles: nitrogen

    USGS Publications Warehouse

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  11. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  12. The effect of meteorological data on atmospheric pressure loading corrections in VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Balidakis, Kyriakos; Glaser, Susanne; Karbon, Maria; Soja, Benedikt; Nilsson, Tobias; Lu, Cuixian; Anderson, James; Liu, Li; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Heinkelmann, Robert; Schuh, Harald

    2015-04-01

    Earth's crustal deformation is a manifestation of numerous geophysical processes, which entail the atmosphere and ocean general circulation and tidal attraction, climate change, and the hydrological circle. The present study deals with the elastic deformations induced by atmospheric pressure variations. At geodetic sites, APL (Atmospheric Pressure Loading) results in displacements covering a wide range of temporal scales which is undesirable when rigorous geodetic/geophysical analysis is intended. Hence, it is of paramount importance that the APL signal are removed at the observation level in the space geodetic data analysis. In this study, elastic non-tidal components of loading displacements were calculated in the local topocentric frame for all VLBI (Very Long Baseline Interferometry) stations with respect to the center-of-figure of the solid Earth surface and the center-of-mass of the total Earth system. The response of the Earth to the load variation at the surface was computed by convolving Farrell Green's function with the homogenized in situ surface pressure observations (in the time span 1979-2014) after the subtraction of the reference pressure and the S1, S2 and S3 thermal tidal signals. The reference pressure was calculated through a hypsometric adjustment of the absolute pressure level determined from World Meteorological Organization stations in the vicinity of each VLBI observatory. The tidal contribution was calculated following the 2010 International Earth Rotation and Reference Systems Service conventions. Afterwards, this approach was implemented into the VLBI software VieVS@GFZ and the entirety of available VLBI sessions was analyzed. We rationalize our new approach on the basis that the potential error budget is substantially reduced, since several common errors are not applicable in our approach, e.g. those due to the finite resolution of NWM (Numerical Weather Models), the accuracy of the orography model necessary for adjusting the former as

  13. The flow field of an underexpanded H2 jet coaxially injected into a hot free or ducted supersonic jet of air or nitrogen

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1977-01-01

    Experimental data obtained in an investigation of the mixing of an underexpanded hydrogen jet in a supersonic flow both with and without combustion are presented. Tests were conducted in a Mach 2 test stream with both air and nitrogen as test media. Total temperature of the test stream was 2170 K, and static exit pressure was about one atmosphere. The static pressure at the exit of the hydrogen injector's Mach 2 nozzle was about two atmospheres. Primary measurements included shadowgraphs and pitot pressure surveys of the flow field. Pitot surveys and wall static pressures were measured for the case where the entire flow was shrouded. The results are compared to similar experimental data and theoretical predictions for the matched pressure case.

  14. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  15. Comparative study between chemical and atmospheric pressure plasma jet cleaning on glass substrate

    NASA Astrophysics Data System (ADS)

    Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Fhong, Soon Chin; Sahdan, Mohd Zainizan; Nayan, Nafarizal

    2017-01-01

    The atmospheric pressure plasma jet with low frequency and argon as working gas is presented in this paper to demonstrate its application for glass substrate clean and modification. The glass substrate clean by atmospheric pressure plasma jet is an efficient method to replace other substrate clean method. A comparative analysis is done in this paper between substrate cleaned by chemical and plasma treatment methods. Water contact angle reading is taken for a different method of substrate clean and period of treatment. Under the plasma treatment, the sample shows low surface adhesion due to having the surface property of super hydrophilic surface 7.26°. This comparative analysis is necessary in the industrial application for cost production due to sufficient time and method of substrate clean.

  16. Production of Nitrogen Oxides by Laboratory Simulated Transient Luminous Events

    NASA Astrophysics Data System (ADS)

    Peterson, H.; Bailey, M.; Hallett, J.; Beasley, W.

    2007-12-01

    Restoration of the polar stratospheric ozone layer has occurred at rates below those originally expected following reductions in chlorofluorocarbon (CFC) usage. Additional reactions affecting ozone depletion now must also be considered. This research examines nitrogen oxides (NOx) produced in the middle atmosphere by transient luminous events (TLEs), with NOx production in this layer contributing to the loss of stratospheric ozone. In particular, NOx produced by sprites in the mesosphere would be transported to the polar stratosphere via the global meridional circulation and downward diffusion. A pressure-controlled vacuum chamber was used to simulate middle atmosphere pressures, while a power supply and in-chamber electrodes were used to simulate TLEs in the pressure controlled environment. Chemiluminescence NOx analyzers were used to sample NOx produced by the chamber discharges- originally a Monitor Labs Model 8440E, later a Thermo Environment Model 42. Total NOx production for each discharge as well as NOx per ampere of current and NOx per Joule of discharge energy were plotted. Absolute NOx production was greatest for discharge environments with upper tropospheric pressures (100-380 torr), while NOx/J was greatest for discharge environments with stratospheric pressures (around 10 torr). The different production efficiencies in NOx/J as a function of pressure pointed to three different production regimes, each with its own reaction mechanisms: one for tropospheric pressures, one for stratospheric pressures, and one for upper stratospheric to mesospheric pressures (no greater than 1 torr).

  17. Impact of low atmosphere pressure stunning of broilers on breast skin Salmonella and Campylobacter post-defeathering and breast fillet meat quality

    USDA-ARS?s Scientific Manuscript database

    Low atmosphere pressure stun (LAPS) is a method of controlled atmosphere poultry slaughter that utilizes a decrease of atmospheric pressure (0.2 ATM) to induce unconsciousness and death. Following feed withdrawal periods of 4, 6, 8, or 10 hours, broilers were slaughtered using LAPS or electrical stu...

  18. Measurement of atmospheric pressure microplasma jet with Langmuir probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Kunning G., E-mail: gabe.xu@uah.edu; Doyle, Steven J.

    2016-09-15

    A radio frequency argon microplasma jet at atmospheric-pressure is characterized using Langmuir probes. While optical methods are the typical diagnostic for these small scale plasmas, the simplicity and low cost of Langmuir probes makes them an attractive option. The plasma density and electron temperature are measured using existing high-pressure Langmuir probe theories developed for flames and arcs. The density and temperature vary from 1 × 10{sup 16} to 1 × 10{sup 19} m{sup −3} and 2.3 to 4.4 eV, respectively, depending on the operating condition. The density decreases while the electron temperature increases with axial distance from the jet exit. Themore » applicability of the probe theories as well as the effect of collisionality and jet mixing is discussed.« less

  19. The Nitrogen Cycle Before the Rise of Oxygen

    NASA Astrophysics Data System (ADS)

    Ward, L. M.; Hemp, J.; Fischer, W. W.

    2016-12-01

    The nitrogen cycle on Earth today is driven by a complex network of microbially-mediated transformations. Atmospheric N2 is fixed into biologically available forms that can either be incorporated into biomass or utilized for bioenergetic redox reactions. The cycle is kept in balance by the return of fixed nitrogen to the atmospheric N2 pool by anammox and denitrification. The early evolution and history of the nitrogen cycle is not well resolved, particularly before the evolution of oxygenic photosynthesis and rise of atmospheric oxygen ca. 2.3 Gya. Ammonia oxidation is a biochemically difficult reaction requiring activation of ammonia using O2 or oxidized nitrogen species that are produced using O2. Before the rise of oxygen, when O2 was largely unavailable, nitrification could not proceed, trapping fixed nitrogen in reduced forms such as ammonia and biomass. Without production of nitrite and nitrate, anammox and denitrification could not occur, preventing return of fixed nitrogen to the N2 pool and leaving the nitrogen cycle unclosed. While it has been hypothesized that ammonia oxidation could be driven anaerobically by processes such as phototrophy or iron reduction, these metabolisms have not been recovered in extant microorganisms, and would require complex unknown biochemical mechanisms. Furthermore, phylogenetic data for the key organisms and biochemical pathways involved in denitrification and anammox suggest that these metabolisms postdate the rise of oxygen. This is particularly clear for steps utilizing enzymes in the Heme-Copper Oxidoreductase superfamily, which appear to have originally evolved for O2 reduction at non-negligible substrate concentrations. Together, this suggests that the Archean nitrogen cycle was not closed, and that nitrogen fixed to reduced forms—either through biological nitrogen fixation or abiotic processes—was not easily returned to the atmospheric N2 pool. In principle, this could have stripped the atmosphere of N2 over

  20. Processing materials inside an atmospheric-pressure radiofrequency nonthermal plasma discharge

    DOEpatents

    Selwyn, Gary S.; Henins, Ivars; Park, Jaeyoung; Herrmann, Hans W.

    2006-04-11

    Apparatus for the processing of materials involving placing a material either placed between an radio-frequency electrode and a ground electrode, or which is itself one of the electrodes. This is done in atmospheric pressure conditions. The apparatus effectively etches or cleans substrates, such as silicon wafers, or provides cleaning of spools and drums, and uses a gas containing an inert gas and a chemically reactive gas.